Sample records for generic length scale

  1. Locking of length scales in two-band superconductors

    DOE PAGES

    Ichioka, M.; Kogan, Vladimir G.; Schmalian, J.

    2017-02-21

    Here, a model of a clean two-band s-wave superconductor with cylindrical Fermi surfaces, different Fermi velocities v 1,2, and a general 2×2 coupling matrix V αβ is used to study the order parameter distribution in vortex lattices. The Eilenberger weak coupling formalism is used to calculate numerically the spatial distributions of the pairing amplitudes Δ 1 and Δ 2 of the two bands for vortices parallel to the Fermi cylinders. For generic values of the interband coupling V 12, it is shown that, independently of the couplings V αβ, of the ratio v 1/v 2, of the temperature, and themore » applied field, the length scales of spatial variation of Δ 1 and of Δ 2 are the same within the accuracy of our calculations. The only exception from this single length-scale behavior is found for V 12 << V 11, i.e., for nearly decoupled bands.« less

  2. Single-trabecula building block for large-scale finite element models of cancellous bone.

    PubMed

    Dagan, D; Be'ery, M; Gefen, A

    2004-07-01

    Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.

  3. Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher

    NASA Astrophysics Data System (ADS)

    Loosen, S.; Statnikov, V.; Meinke, M.; Schröder, W.

    2018-06-01

    The turbulent wake of a generic planar space launcher equipped with two passive flow control devices is simulated using a zonal RANS-LES method and analyzed by dynamic mode decomposition (DMD). In the first approach, the effect of a classical boat tail on the wake is examined. In the second concept, a flow control device consisting of semi-circular lobes integrated at the base shoulder of the main body is used. The objective of the two concepts is to reduce the reattachment length and thus the lever arm of the forces as well as to stabilize the separated shear layer. Using a boat tail, the reattachment length can be reduced by 50%. Furthermore, it is shown that the semi-circular lobes enhance the turbulent mixing and the shear layer growth rate. Hence, they significantly reduce the reattachment length by about 75%. The semi-circular lobes partially reduce undesired low-frequency pressure fluctuations on the nozzle surface. However, this reduction is achieved at the expense of an increase of high-frequency pressure fluctuations due to intensified small turbulent scales. The DMD analysis of the velocity field reveals that the large-scale coherent structures featuring a wave length of two step heights observed in the reference configuration without flow control can be suppressed by the lobes. The spanwise wave length of the coherent structures seems to depend on the geometry of the lobes, since all detected spatial DMD modes show a spanwise periodicity being equal to the distance between two lobes.

  4. Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher

    NASA Astrophysics Data System (ADS)

    Loosen, S.; Statnikov, V.; Meinke, M.; Schröder, W.

    2017-12-01

    The turbulent wake of a generic planar space launcher equipped with two passive flow control devices is simulated using a zonal RANS-LES method and analyzed by dynamic mode decomposition (DMD). In the first approach, the effect of a classical boat tail on the wake is examined. In the second concept, a flow control device consisting of semi-circular lobes integrated at the base shoulder of the main body is used. The objective of the two concepts is to reduce the reattachment length and thus the lever arm of the forces as well as to stabilize the separated shear layer. Using a boat tail, the reattachment length can be reduced by 50%. Furthermore, it is shown that the semi-circular lobes enhance the turbulent mixing and the shear layer growth rate. Hence, they significantly reduce the reattachment length by about 75%. The semi-circular lobes partially reduce undesired low-frequency pressure fluctuations on the nozzle surface. However, this reduction is achieved at the expense of an increase of high-frequency pressure fluctuations due to intensified small turbulent scales. The DMD analysis of the velocity field reveals that the large-scale coherent structures featuring a wave length of two step heights observed in the reference configuration without flow control can be suppressed by the lobes. The spanwise wave length of the coherent structures seems to depend on the geometry of the lobes, since all detected spatial DMD modes show a spanwise periodicity being equal to the distance between two lobes.

  5. Is there a relationship between patient beliefs or communication about generic drugs and medication utilization?

    PubMed

    Shrank, William H; Cadarette, Suzanne M; Cox, Emily; Fischer, Michael A; Mehta, Jyotsna; Brookhart, Alan M; Avorn, Jerry; Choudhry, Niteesh K

    2009-03-01

    Insurers and policymakers strive to stimulate more cost-effective prescribing and, increasingly, are educating beneficiaries about generics. To evaluate the relationship between patient beliefs and communication about generic drugs and actual drug use. We performed a national mailed survey of a random sample of 2500 commercially-insured adults. Patient responses were linked to pharmacy claims data to assess actual generic medication use. We used factor analysis to develop 5 multi-item scales from patient survey responses that measured: (1) general preferences for generics, (2) generic safety/effectiveness, (3) generic cost/value, (4) comfort with generic substitution, and (5) communication with providers about generics. The relationship between each scale and the proportion of prescriptions filled for generics was assessed using linear regression, controlling for demographic, health, and insurance characteristics. Separate models were created for each scale and then all 5 scales were included simultaneously in a fully-adjusted model. The usable response rate was 48%. When evaluated independently, a 1 SD increase in each of the 5 scales was associated with a 3.1% to 6.3% increase in generic drug use (P < 0.05 for each). In the fully adjusted model, only 2 scales were significantly associated with generic drug use: comfort with generic substitution (P = 0.021) and communication with providers about generic drugs (P = 0.012). Generic drug use is most closely associated with the 2 actionable items we evaluated: communication with providers about generics and comfort with generic substitution. Educational campaigns that focus on these 2 domains may be most effective at influencing generic drug use.

  6. Molecular-Level Computational Investigation of Mechanical Transverse Behavior of p-Phenylene Terephthalamide (PPTA) Fibers

    DTIC Science & Technology

    2013-01-01

    fabricated today are based on polymer matrix composites containing Kevlarw KM2 reinforcements , the present work will deal with generic PPTA fibers . In...Multi-length scale enriched continuum-level material model for Kevlarw- fiber reinforced polymer-matrix composites”, Journal of Materials...mechanical transverse behavior of p-phenylene terephthalamide (PPTA) fibers Purpose – A series of all-atom molecular-level computational analyses is

  7. Generalized theory of semiflexible polymers.

    PubMed

    Wiggins, Paul A; Nelson, Philip C

    2006-03-01

    DNA bending on length scales shorter than a persistence length plays an integral role in the translation of genetic information from DNA to cellular function. Quantitative experimental studies of these biological systems have led to a renewed interest in the polymer mechanics relevant for describing the conformational free energy of DNA bending induced by protein-DNA complexes. Recent experimental results from DNA cyclization studies have cast doubt on the applicability of the canonical semiflexible polymer theory, the wormlike chain (WLC) model, to DNA bending on biologically relevant length scales. This paper develops a theory of the chain statistics of a class of generalized semiflexible polymer models. Our focus is on the theoretical development of these models and the calculation of experimental observables. To illustrate our methods, we focus on a specific, illustrative model of DNA bending. We show that the WLC model generically describes the long-length-scale chain statistics of semiflexible polymers, as predicted by renormalization group arguments. In particular, we show that either the WLC or our present model adequately describes force-extension, solution scattering, and long-contour-length cyclization experiments, regardless of the details of DNA bend elasticity. In contrast, experiments sensitive to short-length-scale chain behavior can in principle reveal dramatic departures from the linear elastic behavior assumed in the WLC model. We demonstrate this explicitly by showing that our toy model can reproduce the anomalously large short-contour-length cyclization factors recently measured by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics in the context of future experiments.

  8. Is There a Relationship Between Patient Beliefs or Communication About Generic Drugs and Medication Utilization?

    PubMed Central

    Shrank, William H.; Cadarette, Suzanne M.; Cox, Emily; Fischer, Michael A.; Mehta, Jyotsna; Brookhart, Alan M.; Avorn, Jerry; Choudhry, Niteesh K.

    2009-01-01

    Background Insurers and policymakers strive to stimulate more cost-effective prescribing and, increasingly, are educating beneficiaries about generics. Objectives To evaluate the relationship between patient beliefs and communication about generic drugs and actual drug use. Research Design and Subjects We performed a national mailed survey of a random sample of 2500 commercially-insured adults. Patient responses were linked to pharmacy claims data to assess actual generic medication use. Measures We used factor analysis to develop 5 multi-item scales from patient survey responses that measured: (1) general preferences for generics, (2) generic safety/effectiveness, (3) generic cost/value, (4) comfort with generic substitution, and (5) communication with providers about generics. The relationship between each scale and the proportion of prescriptions filled for generics was assessed using linear regression, controlling for demographic, health, and insurance characteristics. Separate models were created for each scale and then all 5 scales were included simultaneously in a fully-adjusted model. Results The usable response rate was 48%. When evaluated independently, a 1 SD increase in each of the 5 scales was associated with a 3.1% to 6.3% increase in generic drug use (P < 0.05 for each). In the fully adjusted model, only 2 scales were significantly associated with generic drug use: comfort with generic substitution (P = 0.021) and communication with providers about generic drugs (P = 0.012). Conclusions Generic drug use is most closely associated with the 2 actionable items we evaluated: communication with providers about generics and comfort with generic substitution. Educational campaigns that focus on these 2 domains may be most effective at influencing generic drug use. PMID:19194329

  9. Criticality in conserved dynamical systems: experimental observation vs. exact properties.

    PubMed

    Marković, Dimitrije; Gros, Claudius; Schuelein, André

    2013-03-01

    Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.

  10. Self-organization of vortex-length distribution in quantum turbulence: An approach based on the Barabasi-Albert model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, Akira; Tsubota, Makoto

    2006-07-01

    The energy spectrum of decaying quantum turbulence at T=0 obeys Kolmogorov's law. In addition to this, recent studies revealed that the vortex-length distribution (VLD), meaning the size distribution of the vortices, in decaying Kolmogorov quantum turbulence also obeys a power law. This power-law VLD suggests that the decaying turbulence has scale-free structure in real space. Unfortunately, however, there has been no practical study that answers the following important question: why can quantum turbulence acquire a scale-free VLD? We propose here a model to study the origin of the power law of the VLD from a generic point of view. Themore » nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model, which explains the scale-invariance structure of large networks. We show here that such a model can reproduce the power law of the VLD well.« less

  11. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  12. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  13. The PedsQL in pediatric cancer: reliability and validity of the Pediatric Quality of Life Inventory Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module.

    PubMed

    Varni, James W; Burwinkle, Tasha M; Katz, Ernest R; Meeske, Kathy; Dickinson, Paige

    2002-04-01

    The Pediatric Quality of Life Inventory (PedsQL) is a modular instrument designed to measure health-related quality of life (HRQOL) in children and adolescents ages 2-18 years. The PedsQL 4.0 Generic Core Scales are multidimensional child self-report and parent proxy-report scales developed as the generic core measure to be integrated with the PedsQL disease specific modules. The PedsQL Multidimensional Fatigue Scale was designed to measure fatigue in pediatric patients. The PedsQL 3.0 Cancer Module was designed to measure pediatric cancer specific HRQOL. The PedsQL Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module were administered to 339 families (220 child self-reports; 337 parent proxy-reports). Internal consistency reliability for the PedsQL Generic Core Total Scale Score (alpha = 0.88 child, 0.93 parent report), Multidimensional Fatigue Total Scale Score (alpha = 0.89 child, 0.92 parent report) and most Cancer Module Scales (average alpha = 0.72 child, 0.87 parent report) demonstrated reliability acceptable for group comparisons. Validity was demonstrated using the known-groups method. The PedsQL distinguished between healthy children and children with cancer as a group, and among children on-treatment versus off-treatment. The validity of the PedsQL Multidimensional Fatigue Scale was further demonstrated through hypothesized intercorrelations with dimensions of generic and cancer specific HRQOL. The results demonstrate the reliability and validity of the PedsQL Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module in pediatric cancer. The PedsQL may be utilized as an outcome measure in clinical trials, research, and clinical practice. Copyright 2002 American Cancer Society.

  14. A note on the comparative turbidity of some estuaries of the Americas

    USGS Publications Warehouse

    Uncles, R.J.; Smith, R.E.

    2005-01-01

    Field data from 27 estuaries of the Americas are used to show that, in broad terms, there is a large difference in turbidity between the analyzed east and west-coast estuaries and that tidal range and tidal length have an important influence on that turbidity. Generic, numerical sediment-transport modeling is used to illustrate this influence, which exists over a range of space scales from, e.g., the Rogue River Estuary (few km, few mg l-1) to the Bay of Fundy (hundreds of km, few g l-1). The difference in Pacific and Atlantic seaboard estuarine turbidity for the analyzed estuaries is ultimately related to the broad-scale geomorphology of the two continents.

  15. Wrinkle motifs in thin films

    PubMed Central

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-01-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as ‘telephone cord’ buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales. PMID:25758174

  16. Scaling ansatz for the ac magnetic response in two-dimensional spin ice

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi; Takatsu, Hiroshi; Goto, Kazuki; Kadowaki, Hiroaki

    2014-10-01

    A theory for frequency-dependent magnetic susceptibility χ (ω ) is developed for thermally activated magnetic monopoles in a two-dimensional (2D) spin ice. By modeling the system in the vicinity of the ground-state manifold as a 2D Coulomb gas with an entropic interaction, and then as a 2D sine-Gordon model, we have shown that the susceptibility has a scaling form χ (ω ) /χ (0 ) =F (ω /ω1) , where the characteristic frequency ω1 is related to a charge correlation length between diffusively moving monopoles, and to the principal-breather excitation. The dynamical scaling is universal and applicable not only for kagome ice, but also for superfluid and superconducting films and generic 2D ices possibly including the artificial spin ice.

  17. Comparison between utility of the Thai Pediatric Quality of Life Inventory 4.0 Generic Core Scales and 3.0 Cerebral Palsy Module.

    PubMed

    Tantilipikorn, Pinailug; Watter, Pauline; Prasertsukdee, Saipin

    2013-03-01

    Health-related quality of life (HRQOL) is increasingly being considered in the management of patients with various conditions. HRQOL instruments can be broadly classified as generic or disease-specific measures. Several generic HRQOL instruments in different languages have been developed for paediatric populations including the Pediatric Quality of Life Inventory 4.0 (PedsQL 4.0) Generic Core Scale. This tool and a condition-specific tool, PedsQL 3.0 Cerebral Palsy (CP) Module, are widely used in children with CP. No psychometric properties have been reported for Thai PedsQL 4.0. Therefore, this study aimed to explore the psychometric properties of the Thai version of the PedsQL 4.0 Generic Core Scales and compare these with the values for the Thai PedsQL 3.0 CP Module reported previously. Thai PedsQL 4.0 Generic Core Scales and the PedsQL 3.0 CP Module were completed, respectively, by children with CP and their parents or caregivers twice within 2-4 weeks. Respondents were 97 parents or caregivers and 54 children. Minimal missing data were found in most scales. Acceptable internal consistency was supported, except for Emotional, Social, and School Functioning. Intraclass correlation coefficients for parent-proxy report and self-report were good to excellent (0.625-0.849). The feasibility and reliability of the Thai PedsQL 4.0 Generic Core Scales were supported. The Thai PedsQL 3.0 CP Module showed higher values for the psychometric properties. Low-to-good correlations were found among the scales between the PedsQL 4.0 Generic Core Scales and the 3.0 CP Module. Both instruments could be used to measure HRQOL for children with CP, and may provide different information.

  18. Sensitivity of estimated muscle force in forward simulation of normal walking

    PubMed Central

    Xiao, Ming; Higginson, Jill

    2009-01-01

    Generic muscle parameters are often used in muscle-driven simulations of human movement estimate individual muscle forces and function. The results may not be valid since muscle properties vary from subject to subject. This study investigated the effect of using generic parameters in a muscle-driven forward simulation on muscle force estimation. We generated a normal walking simulation in OpenSim and examined the sensitivity of individual muscle to perturbations in muscle parameters, including the number of muscles, maximum isometric force, optimal fiber length and tendon slack length. We found that when changing the number muscles included in the model, only magnitude of the estimated muscle forces was affected. Our results also suggest it is especially important to use accurate values of tendon slack length and optimal fiber length for ankle plantarflexors and knee extensors. Changes in force production one muscle were typically compensated for by changes in force production by muscles in the same functional muscle group, or the antagonistic muscle group. Conclusions regarding muscle function based on simulations with generic musculoskeletal parameters should be interpreted with caution. PMID:20498485

  19. Reliability and Validity of the Turkish Version of the PedsQL 3.0 Cancer Module for 2- to 7-Year-Old and the PedsQL 4.0 Generic Core Scales for 5- to 7-Year-Old: The Hacettepe University Experience.

    PubMed

    Yıldız Kabak, Vesile; Yakut, Yavuz; Çetin, Mualla; Düger, Tülin

    2016-09-05

    The aim of this study was to investigate the reliability and validity of the Turkish version of the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module for 2- to 7-year-old and the PedsQL 4.0 Generic Core Scales for 5- to 7-year-old in childhood cancer. The PedsQL 3.0 Cancer Module and PedsQL 4.0 Generic Core Scales were administered to children with cancer and their parents at Hacettepe University. Internal consistency was determined by using Cronbach's alpha and test-retest reliability was determined by using the intraclass correlation coefficient (ICC). Construct validity was assessed by comparing the results of the PedsQL 3.0 Cancer Module with those of the PedsQL 4.0 Generic Core Scales. Cronbach's alpha of the PedsQL 3.0 Cancer Module varied from 0.803 to 0.873 and that of the PedsQL 4.0 Generic Core Scales from 0.665 to 0.841. Test-retest ICC values of the PedsQL 3.0 Cancer Module varied from 0.877 to 0.949 and those of the PedsQL 4.0 Generic Core Scales from 0.681 to 0.824. The correlation of the PedsQL 3.0 Cancer Module with subscale scores of the PedsQL 4.0 Generic Core Scales showed that there were excellent to fair correlations between the two scales. The relationship between parent proxy-report and child self-report of the PedsQL 3.0 Cancer Module had very good correlation (r=0.694, p<0.001), as did the PedsQL 4.0 Generic Core Scales (r=0.540, p=0.002). This study demonstrated the reliability, validity, and feasibility of the Turkish version of the PedsQL 3.0 Cancer Module in 2- to 4-year-old and 5- to 7-year-old and the PedsQL 4.0 Generic Core Scales in 5- to 7-year-old in childhood cancer.

  20. External validity of a generic safety climate scale for lone workers across different industries and companies.

    PubMed

    Lee, Jin; Huang, Yueng-hsiang; Robertson, Michelle M; Murphy, Lauren A; Garabet, Angela; Chang, Wen-Ruey

    2014-02-01

    The goal of this study was to examine the external validity of a 12-item generic safety climate scale for lone workers in order to evaluate the appropriateness of generalized use of the scale in the measurement of safety climate across various lone work settings. External validity evidence was established by investigating the measurement equivalence (ME) across different industries and companies. Confirmatory factor analysis (CFA)-based and item response theory (IRT)-based perspectives were adopted to examine the ME of the generic safety climate scale for lone workers across 11 companies from the trucking, electrical utility, and cable television industries. Fairly strong evidence of ME was observed for both organization- and group-level generic safety climate sub-scales. Although significant invariance was observed in the item intercepts across the different lone work settings, absolute model fit indices remained satisfactory in the most robust step of CFA-based ME testing. IRT-based ME testing identified only one differentially functioning item from the organization-level generic safety climate sub-scale, but its impact was minimal and strong ME was supported. The generic safety climate scale for lone workers reported good external validity and supported the presence of a common feature of safety climate among lone workers. The scale can be used as an effective safety evaluation tool in various lone work situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Psychometric properties of the Chinese version of the Pediatric Quality Of Life Inventory 4.0 Generic Core scales among pediatric cancer patients.

    PubMed

    Yeung, Nelson C Y; Lau, Joseph T F; Yu, Xiao-nan; Chu, Yvonne; Shing, Matthew M K; Leung, Ting Fan; Li, Chi Kong; Fok, Tai Fai; Mak, Winnie W S

    2013-01-01

    The Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Scales are commonly used to assess health-related quality of life of healthy children and pediatric patients. Validation of the Generic Core Scales among Chinese pediatric cancer patients has not been reported in the literature. The scales can serve to measure different quality-of-life domains that are not captured by the PedsQL Cancer Module. Psychometric properties of the Chinese version of the PedsQL 4.0 among pediatric cancer patients and their caretakers were examined. The Generic Core Scales were administered to 335 pairs of pediatric cancer patients (aged 8-18 years) and their caretakers in Hong Kong. A 5-factor structure (physical, emotional, social, school-related cognitive function, and missed school) was identified in the patient and proxy versions of the scales using confirmatory factor analysis. Both versions of the total scale reported Cronbach α's of .90 or greater, with almost all subscales reporting α's of .70 or greater. Test-retest reliability at 2 weeks was acceptable (intraclass correlations ≥0.60) for a majority of subscales. Agreement between patients' and caretakers' ratings was medium. The scales demonstrated acceptable psychometric properties and construct validity. This study validated the Chinese version of the Generic Core Scales among pediatric cancer patients and their caretakers, which supports the future use of the scales in clinical settings. The Generic Core Scales can also be supplementary to the PedsQL Cancer Module for measuring multiple domains of quality of life in cancer population.

  2. Feasibility, reliability, and validity of the Pediatric Quality of Life Inventory ™ generic core scales, cancer module, and multidimensional fatigue scale in long-term adult survivors of pediatric cancer.

    PubMed

    Robert, Rhonda S; Paxton, Raheem J; Palla, Shana L; Yang, Grace; Askins, Martha A; Joy, Shaini E; Ater, Joann L

    2012-10-01

    Most health-related quality of life assessments are designed for either children or adults and have not been evaluated for adolescent and young adult survivors of pediatric cancer. The objective of this study was to examine the feasibility, reliability, and validity of the Pediatric Quality of Life Inventory (PedsQL ™ Generic Core Scales, Cancer Module, and Multidimensional Fatigue Scale in adult survivors of pediatric cancer. Adult survivors (n = 64; Mean age 35 year old; >2 years after treatment) completed the PedsQL™ Generic Core Scales, Cancer Module, and Multidimensional Fatigue Scale. Feasibility was examined with floor and ceiling effects; and internal consistency was determined by Cronbach's coefficient alpha calculations. Inter-factor correlations were also assessed. Significant ceiling effects were observed for the scales of social function, nausea, procedural anxiety, treatment anxiety, and communication. Internal consistency for all subscales was within the recommended ranges (α ≥ 0.70). Moderate to strong correlations between most Cancer Module and Generic Core Scales (r = 0.25 to r = 0.76) and between the Multidimensional Fatigue Scale and Generic Core Scales (r = 0.37 to r = 0.73). The PedsQL™ Generic Core Scales, Cancer Module, and Multidimensional Fatigue Scale appear to be feasible for an older population of pediatric cancer survivors; however, some of the Cancer Module Scales (nausea, procedural/treatment anxiety, and communication) were deemed not relevant for long-term survivors. More information is needed to determine whether the issues addressed by these modules are meaningful to long-term adult survivors of pediatric cancers. Copyright © 2012 Wiley Periodicals, Inc.

  3. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  4. Reliability and Validity of the Turkish Version of the PedsQL 3.0 Cancer Module for 2- to 7-Year-Old and the PedsQL 4.0 Generic Core Scales for 5- to 7-Year-Old: The Hacettepe University Experience

    PubMed Central

    Yıldız Kabak, Vesile; Yakut, Yavuz; Çetin, Mualla; Düger, Tülin

    2016-01-01

    Objective: The aim of this study was to investigate the reliability and validity of the Turkish version of the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module for 2- to 7-year-old and the PedsQL 4.0 Generic Core Scales for 5- to 7-year-old in childhood cancer. Materials and Methods: The PedsQL 3.0 Cancer Module and PedsQL 4.0 Generic Core Scales were administered to children with cancer and their parents at Hacettepe University. Internal consistency was determined by using Cronbach’s alpha and test-retest reliability was determined by using the intraclass correlation coefficient (ICC). Construct validity was assessed by comparing the results of the PedsQL 3.0 Cancer Module with those of the PedsQL 4.0 Generic Core Scales. Results: Cronbach’s alpha of the PedsQL 3.0 Cancer Module varied from 0.803 to 0.873 and that of the PedsQL 4.0 Generic Core Scales from 0.665 to 0.841. Test-retest ICC values of the PedsQL 3.0 Cancer Module varied from 0.877 to 0.949 and those of the PedsQL 4.0 Generic Core Scales from 0.681 to 0.824. The correlation of the PedsQL 3.0 Cancer Module with subscale scores of the PedsQL 4.0 Generic Core Scales showed that there were excellent to fair correlations between the two scales. The relationship between parent proxy-report and child self-report of the PedsQL 3.0 Cancer Module had very good correlation (r=0.694, p<0.001), as did the PedsQL 4.0 Generic Core Scales (r=0.540, p=0.002). Conclusion: This study demonstrated the reliability, validity, and feasibility of the Turkish version of the PedsQL 3.0 Cancer Module in 2- to 4-year-old and 5- to 7-year-old and the PedsQL 4.0 Generic Core Scales in 5- to 7-year-old in childhood cancer. PMID:27095607

  5. Gravitational clustering in the expanding universe - Controlled high-resolution studies in two dimensions

    NASA Technical Reports Server (NTRS)

    Beacom, John Francis; Dominik, Kurt G.; Melott, Adrian L.; Perkins, Sam P.; Shandarin, Sergei F.

    1991-01-01

    Results are presented from a series of gravitational clustering simulations in two dimensions. These simulations are a significant departure from previous work, since in two dimensions one can have large dynamic range in both length scale and mass using present computer technology. Controlled experiments were conducted by varying the slope of power-law initial density fluctuation spectra and varying cutoffs at large k, while holding constant the phases of individual Fourier components and the scale of nonlinearity. Filaments are found in many different simulations, even with pure power-law initial conditions. By direct comparison, filaments, called 'second-generation pancakes' are shown to arise as a consequence of mild nonlinearity on scales much larger than the correlation length and are not relics of an initial lattice or due to sparse sampling of the Fourier components. Bumps of low amplitude in the two-point correlation are found to be generic but usually only statistical fluctuations. Power spectra are much easier to relate to initial conditions, and seem to follow a simple triangular shape (on log-log plot) in the nonlinear regime. The rms density fluctuation with Gaussian smoothing is the most stable indicator of nonlinearity.

  6. Phase Transitions on Random Lattices: How Random is Topological Disorder?

    NASA Astrophysics Data System (ADS)

    Barghathi, Hatem; Vojta, Thomas

    2015-03-01

    We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class of random lattices whose disorder fluctuations decay much faster with increasing length scale than those of generic random systems, yielding a wandering exponent of ω = (d - 1) / (2 d) in d dimensions. The stability of clean critical points is thus governed by the criterion (d + 1) ν > 2 rather than the usual Harris criterion dν > 2 , making topological disorder less relevant than generic randomness. The Imry-Ma criterion is also modified, allowing first-order transitions to survive in all dimensions d > 1 . These results explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase transitions on random lattices. We discuss applications, and we illustrate our theory by computer simulations of random Voronoi and other lattices. This work was supported by the NSF under Grant Nos. DMR-1205803 and PHYS-1066293. We acknowledge the hospitality of the Aspen Center for Physics.

  7. Longitudinal factorial invariance of the PedsQL 4.0 Generic Core Scales child self-report Version: one year prospective evidence from the California State Children's Health Insurance Program (SCHIP).

    PubMed

    Varni, James W; Limbers, Christine A; Newman, Daniel A; Seid, Michael

    2008-11-01

    The measurement of health-related quality of life (HRQOL) in pediatric medicine and health services research has grown significantly over the past decade. The paradigm shift toward patient-reported outcomes (PROs) has provided the opportunity to emphasize the value and critical need for pediatric patient self-report. In order for changes in HRQOL/PRO outcomes to be meaningful over time, it is essential to demonstrate longitudinal factorial invariance. This study examined the longitudinal factor structure of the PedsQL 4.0 Generic Core Scales over a one-year period for child self-report ages 5-17 in 2,887 children from a statewide evaluation of the California State Children's Health Insurance Program (SCHIP) utilizing a structural equation modeling framework. Specifying four- and five-factor measurement models, longitudinal structural equation modeling was used to compare factor structures over a one-year interval on the PedsQL 4.0 Generic Core Scales. While the four-factor conceptually-derived measurement model for the PedsQL 4.0 Generic Core Scales produced an acceptable fit, the five-factor empirically-derived measurement model from the initial field test of the PedsQL 4.0 Generic Core Scales produced a marginally superior fit in comparison to the four-factor model. For the five-factor measurement model, the best fitting model, strict factorial invariance of the PedsQL 4.0 Generic Core Scales across the two measurement occasions was supported by the stability of the comparative fit index between the unconstrained and constrained models, and several additional indices of practical fit including the root mean squared error of approximation, the non-normed fit index, and the parsimony normed fit index. The findings support an equivalent factor structure on the PedsQL 4.0 Generic Core Scales over time. Based on these data, it can be concluded that over a one-year period children in our study interpreted items on the PedsQL 4.0 Generic Core Scales in a similar manner.

  8. Toward an Accurate Theoretical Framework for Describing Ensembles for Proteins under Strongly Denaturing Conditions

    PubMed Central

    Tran, Hoang T.; Pappu, Rohit V.

    2006-01-01

    Our focus is on an appropriate theoretical framework for describing highly denatured proteins. In high concentrations of denaturants, proteins behave like polymers in a good solvent and ensembles for denatured proteins can be modeled by ignoring all interactions except excluded volume (EV) effects. To assay conformational preferences of highly denatured proteins, we quantify a variety of properties for EV-limit ensembles of 23 two-state proteins. We find that modeled denatured proteins can be best described as follows. Average shapes are consistent with prolate ellipsoids. Ensembles are characterized by large correlated fluctuations. Sequence-specific conformational preferences are restricted to local length scales that span five to nine residues. Beyond local length scales, chain properties follow well-defined power laws that are expected for generic polymers in the EV limit. The average available volume is filled inefficiently, and cavities of all sizes are found within the interiors of denatured proteins. All properties characterized from simulated ensembles match predictions from rigorous field theories. We use our results to resolve between conflicting proposals for structure in ensembles for highly denatured states. PMID:16766618

  9. Can manual ability be measured with a generic ABILHAND scale? A cross-sectional study conducted on six diagnostic groups

    PubMed Central

    Arnould, Carlyne; Vandervelde, Laure; Batcho, Charles Sèbiyo; Penta, Massimo; Thonnard, Jean-Louis

    2012-01-01

    Objectives Several ABILHAND Rasch-built manual ability scales were previously developed for chronic stroke (CS), cerebral palsy (CP), rheumatoid arthritis (RA), systemic sclerosis (SSc) and neuromuscular disorders (NMD). The present study aimed to explore the applicability of a generic manual ability scale unbiased by diagnosis and to study the nature of manual ability across diagnoses. Design Cross-sectional study. Setting Outpatient clinic homes (CS, CP, RA), specialised centres (CP), reference centres (CP, NMD) and university hospitals (SSc). Participants 762 patients from six diagnostic groups: 103 CS adults, 113 CP children, 112 RA adults, 156 SSc adults, 124 NMD children and 124 NMD adults. Primary and secondary outcome measures Manual ability as measured by the ABILHAND disease-specific questionnaires, diagnosis and nature (ie, uni-manual or bi-manual involvement and proximal or distal joints involvement) of the ABILHAND manual activities. Results The difficulties of most manual activities were diagnosis dependent. A principal component analysis highlighted that 57% of the variance in the item difficulty between diagnoses was explained by the symmetric or asymmetric nature of the disorders. A generic scale was constructed, from a metric point of view, with 11 items sharing a common difficulty among diagnoses and 41 items displaying a category-specific location (asymmetric: CS, CP; and symmetric: RA, SSc, NMD). This generic scale showed that CP and NMD children had significantly less manual ability than RA patients, who had significantly less manual ability than CS, SSc and NMD adults. However, the generic scale was less discriminative and responsive to small deficits than disease-specific instruments. Conclusions Our finding that most of the manual item difficulties were disease-dependent emphasises the danger of using generic scales without prior investigation of item invariance across diagnostic groups. Nevertheless, a generic manual ability scale could be developed by adjusting and accounting for activities perceived differently in various disorders. PMID:23117570

  10. Measuring 3D Alloy Composition Profiles at Surfaces

    NASA Astrophysics Data System (ADS)

    Hannon, James

    2006-03-01

    A key challenge in thin-film growth is controlling structure and composition. Of particular importance is understanding how and why atomic-scale heterogeneity develops during growth. We have used low-energy electron microscopy (LEEM) to measure how the three-dimensional composition of an alloy film evolves with time at the nanometer length scale. By quantitatively analyzing the reflected electron intensity in LEEM, we determine the alloy composition and structure, layer by layer near a surface, with 9 nm lateral spatial resolution. As an example, we show that heterogeneity during the growth of Pd on Cu(001) arises naturally from a generic step-overgrowth mechanism that is likely to be relevant in many growth systems. This work was performed in collaboration with Jiebing Sun (UNH), Karsten Pohl (UNH), and Gary Kellogg (Sandia Labs).

  11. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Willard, Adam P.

    2015-01-01

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering a new direction for study in heterogeneous catalysis at the nanoscale.

  12. Skin rash during treatment with generic itraconazole.

    PubMed

    De Vuono, Antonio; Palleria, Caterina; Scicchitano, Francesca; Squillace, Aida; De Sarro, Giovambattista; Gallelli, Luca

    2014-04-01

    Generic drugs have the same active substance, the same pharmaceutical form, the same therapeutic indications and a similar bioequivalence with the reference medicinal product (branded). Although a similar efficacy is postulated, some cases of clinical inefficacy during treatment with generic formulations have been reported. In this case, we describe a woman with onychomycosis that developed a skin rash during treatment with a generic formulation of itraconazole. Drug administration and its re-challenge confirmed the association between itraconazole and skin rash. Both Naranjo probability scale and World Health Organization causality assessment scale documented a probable association between generic-itraconazole and skin rash. The switch from generic formulation to brand one induced an improvement of symptoms. Since we are unable to evaluate the role of each excipient in the development of skin rash, we cannot rule out their involvement. However, more data are necessary to better define the similarities or differences between branded and generic formulations.

  13. Skin rash during treatment with generic itraconazole

    PubMed Central

    De Vuono, Antonio; Palleria, Caterina; Scicchitano, Francesca; Squillace, Aida; De Sarro, Giovambattista; Gallelli, Luca

    2014-01-01

    Generic drugs have the same active substance, the same pharmaceutical form, the same therapeutic indications and a similar bioequivalence with the reference medicinal product (branded). Although a similar efficacy is postulated, some cases of clinical inefficacy during treatment with generic formulations have been reported. In this case, we describe a woman with onychomycosis that developed a skin rash during treatment with a generic formulation of itraconazole. Drug administration and its re-challenge confirmed the association between itraconazole and skin rash. Both Naranjo probability scale and World Health Organization causality assessment scale documented a probable association between generic-itraconazole and skin rash. The switch from generic formulation to brand one induced an improvement of symptoms. Since we are unable to evaluate the role of each excipient in the development of skin rash, we cannot rule out their involvement. However, more data are necessary to better define the similarities or differences between branded and generic formulations. PMID:24799820

  14. Development and validation of a tool to assess knowledge and attitudes towards generic medicines among students in Greece: The ATtitude TOwards GENerics (ATTOGEN) questionnaire.

    PubMed

    Domeyer, Philip J; Aletras, Vassilis; Anagnostopoulos, Fotios; Katsari, Vasiliki; Niakas, Dimitris

    2017-01-01

    The use of generic medicines is a cost-effective policy, often dictated by fiscal restraints. To our knowledge, no fully validated tool exploring the students' knowledge and attitudes towards generic medicines exists. The aim of our study was to develop and validate a questionnaire exploring the knowledge and attitudes of M.Sc. in Health Care Management students and recent alumni's towards generic drugs in Greece. The development of the questionnaire was a result of literature review and pilot-testing of its preliminary versions to researchers and students. The final version of the questionnaire contains 18 items measuring the respondents' knowledge and attitude towards generic medicines on a 5-point Likert scale. Given the ordinal nature of the data, ordinal alpha and polychoric correlations were computed. The sample was randomly split into two halves. Exploratory factor analysis, performed in the first sample, was used for the creation of multi-item scales. Confirmatory factor analysis and Generalized Linear Latent and Mixed Model analysis (GLLAMM) with the use of the rating scale model were used in the second sample to assess goodness of fit. An assessment of internal consistency reliability, test-retest reliability, and construct validity was also performed. Among 1402 persons contacted, 986 persons completed our questionnaire (response rate = 70.3%). Overall Cronbach's alpha was 0.871. The conjoint use of exploratory and confirmatory factor analysis resulted in a six-scale model, which seemed to fit the data well. Five of the six scales, namely trust, drug quality, state audit, fiscal impact and drug substitution were found to be valid and reliable, while the knowledge scale suffered only from low inter-scale correlations and a ceiling effect. However, the subsequent confirmatory factor and GLLAMM analyses indicated a good fit of the model to the data. The ATTOGEN instrument proved to be a reliable and valid tool, suitable for assessing students' knowledge and attitudes towards generic medicines.

  15. Grizzly Staus Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Zhang, Yongfeng; Chakraborty, Pritam

    2014-09-01

    This report summarizes work during FY 2014 to develop capabilities to predict embrittlement of reactor pressure vessel steel, and to assess the response of embrittled reactor pressure vessels to postulated accident conditions. This work has been conducted a three length scales. At the engineering scale, 3D fracture mechanics capabilities have been developed to calculate stress intensities and fracture toughnesses, to perform a deterministic assessment of whether a crack would propagate at the location of an existing flaw. This capability has been demonstrated on several types of flaws in a generic reactor pressure vessel model. Models have been developed at themore » scale of fracture specimens to develop a capability to determine how irradiation affects the fracture toughness of material. Verification work has been performed on a previously-developed model to determine the sensitivity of the model to specimen geometry and size effects. The effects of irradiation on the parameters of this model has been investigated. At lower length scales, work has continued in an ongoing to understand how irradiation and thermal aging affect the microstructure and mechanical properties of reactor pressure vessel steel. Previously-developed atomistic kinetic monte carlo models have been further developed and benchmarked against experimental data. Initial work has been performed to develop models of nucleation in a phase field model. Additional modeling work has also been performed to improve the fundamental understanding of the formation mechanisms and stability of matrix defects caused.« less

  16. A stepped strategy that aims at the nationwide implementation of the Enhanced Recovery After Surgery programme in major gynaecological surgery: study protocol of a cluster randomised controlled trial.

    PubMed

    de Groot, Jeanny Ja; Maessen, José Mc; Slangen, Brigitte Fm; Winkens, Bjorn; Dirksen, Carmen D; van der Weijden, Trudy

    2015-07-30

    Enhanced Recovery After Surgery (ERAS) programmes aim at an early recovery after surgical trauma and consequently at a reduced length of hospitalisation. This paper presents the protocol for a study that focuses on large-scale implementation of the ERAS programme in major gynaecological surgery in the Netherlands. The trial will evaluate effectiveness and costs of a stepped implementation approach that is characterised by tailoring the intensity of implementation activities to the needs of organisations and local barriers for change, in comparison with the generic breakthrough strategy that is usually applied in large-scale improvement projects in the Netherlands. All Dutch hospitals authorised to perform major abdominal surgery in gynaecological oncology patients are eligible for inclusion in this cluster randomised controlled trial. The hospitals that already fully implemented the ERAS programme in their local perioperative management or those who predominantly admit gynaecological surgery patients to an external hospital replacement care facility will be excluded. Cluster randomisation will be applied at the hospital level and will be stratified based on tertiary status. Hospitals will be randomly assigned to the stepped implementation strategy or the breakthrough strategy. The control group will receive the traditional breakthrough strategy with three educational sessions and the use of plan-do-study-act cycles for planning and executing local improvement activities. The intervention group will receive an innovative stepped strategy comprising four levels of intensity of support. Implementation starts with generic low-cost activities and may build up to the highest level of tailored and labour-intensive activities. The decision for a stepwise increase in intensive support will be based on the success of implementation so far. Both implementation strategies will be completed within 1 year and evaluated on effect, process, and cost-effectiveness. The primary outcome is length of postoperative hospital stay. Additional outcome measures are length of recovery, guideline adherence, and mean implementation costs per patient. This study takes up the challenge to evaluate an efficient strategy for large-scale implementation. Comparing effectiveness and costs of two different approaches, this study will help to define a preferred strategy for nationwide dissemination of best practices. Dutch Trial Register NTR4058.

  17. Measuring health-related quality of life in Hungarian children with heart disease: psychometric properties of the Hungarian version of the Pediatric Quality of Life Inventory 4.0 Generic Core Scales and the Cardiac Module.

    PubMed

    Berkes, Andrea; Pataki, István; Kiss, Mariann; Kemény, Csilla; Kardos, László; Varni, James W; Mogyorósy, Gábor

    2010-01-28

    The aim of the study was to investigate the psychometric properties of the Hungarian version of the Pediatric Quality of Life Inventory (PedsQL) Generic Core Scales and Cardiac Module. The PedsQL 4.0 Generic Core Scales and the PedsQL 3.0 Cardiac Module was administered to 254 caregivers of children (aged 2-18 years) and to 195 children (aged 5-18 years) at a pediatric cardiology outpatient unit. A postal survey on a demographically group-matched sample of the general population with 525 caregivers of children (aged 2-18 years) and 373 children (aged 5-18 years) was conducted with the PedsQL 4.0 Generic Core Scale. Responses were described, compared over subgroups of subjects, and were used to assess practical utility, distributional coverage, construct validity, internal consistency, and inter-reporter agreement of the instrument. The moderate scale-level mean percentage of missing item responses (range 1.8-2.3%) supported the feasibility of the Generic Core Scales for general Hungarian children. Minimal to moderate ceiling effects and no floor effects were found on the Generic Core Scales. We observed stronger ceiling than floor effects in the Cardiac Module. Most of the scales showed satisfactory reliability with Cronbach's alpha estimates exceeding 0.70. Generally, moderate to good agreement was found between self- and parent proxy-reports in the patient and in the comparison group (intraclass correlation coefficient range 0.52-0.77), but remarkably low agreement in the perceived physical appearance subscale in the age group 5-7 years (0.18) and for the treatment II scale (problems on taking heart medicine) scale of the Cardiac Module in children aged 8-12 years (0.39). Assessing the construct validity of the questionnaires, statistically significant difference was found between the patient group and the comparison group only in the Physical Functioning Scale scores (p = 0.003) of the child self-report component, and in Physical (p = 0.022), Emotional, (p = 0.017), Psychosocial Summary (p = 0.019) scores and in the total HRQoL (health-related quality of life) scale score (p = 0.034) for parent proxy-report. The findings generally support the feasibility, reliability and validity of the Hungarian translation of the PedsQL 4.0 Generic Core Scales and the PedsQL 3.0 Cardiac Module in Hungarian children with heart disease.

  18. Leo Szilard Lectureship Award Talk - Universal Scaling Laws from Cells to Cities; A Physicist's Search for Quantitative, Unified Theories of Biological and Social Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    West, Geoffrey

    2013-04-01

    Many of the most challenging, exciting and profound questions facing science and society, from the origins of life to global sustainability, fall under the banner of ``complex adaptive systems.'' This talk explores how scaling can be used to begin to develop physics-inspired quantitative, predictive, coarse-grained theories for understanding their structure, dynamics and organization based on underlying mathematisable principles. Remarkably, most physiological, organisational and life history phenomena in biology and socio-economic systems scale in a simple and ``universal'' fashion: metabolic rate scales approximately as the 3/4-power of mass over 27 orders of magnitude from complex molecules to the largest organisms. Time-scales (such as lifespans and growth-rates) and sizes (such as genome lengths and RNA densities) scale with exponents which are typically simple multiples of 1/4, suggesting that fundamental constraints underlie much of the generic structure and dynamics of living systems. These scaling laws follow from dynamical and geometrical properties of space-filling, fractal-like, hierarchical branching networks, presumed optimised by natural selection. This leads to a general framework that potentially captures essential features of diverse systems including vasculature, ontogenetic growth, cancer, aging and mortality, sleep, cell size, and DNA nucleotide substitution rates. Cities and companies also scale: wages, profits, patents, crime, disease, pollution, road lengths scale similarly across the globe, reflecting underlying universal social network dynamics which point to general principles of organization transcending their individuality. These have dramatic implications for global sustainability: innovation and wealth creation that fuel social systems, left unchecked, potentially sow the seeds for their inevitable collapse.

  19. Development and validation of a tool to assess knowledge and attitudes towards generic medicines among students in Greece: The ATtitude TOwards GENerics (ATTOGEN) questionnaire

    PubMed Central

    Katsari, Vasiliki; Niakas, Dimitris

    2017-01-01

    Introduction The use of generic medicines is a cost-effective policy, often dictated by fiscal restraints. To our knowledge, no fully validated tool exploring the students’ knowledge and attitudes towards generic medicines exists. The aim of our study was to develop and validate a questionnaire exploring the knowledge and attitudes of M.Sc. in Health Care Management students and recent alumni’s towards generic drugs in Greece. Materials and methods The development of the questionnaire was a result of literature review and pilot-testing of its preliminary versions to researchers and students. The final version of the questionnaire contains 18 items measuring the respondents’ knowledge and attitude towards generic medicines on a 5-point Likert scale. Given the ordinal nature of the data, ordinal alpha and polychoric correlations were computed. The sample was randomly split into two halves. Exploratory factor analysis, performed in the first sample, was used for the creation of multi-item scales. Confirmatory factor analysis and Generalized Linear Latent and Mixed Model analysis (GLLAMM) with the use of the rating scale model were used in the second sample to assess goodness of fit. An assessment of internal consistency reliability, test-retest reliability, and construct validity was also performed. Results Among 1402 persons contacted, 986 persons completed our questionnaire (response rate = 70.3%). Overall Cronbach’s alpha was 0.871. The conjoint use of exploratory and confirmatory factor analysis resulted in a six-scale model, which seemed to fit the data well. Five of the six scales, namely trust, drug quality, state audit, fiscal impact and drug substitution were found to be valid and reliable, while the knowledge scale suffered only from low inter-scale correlations and a ceiling effect. However, the subsequent confirmatory factor and GLLAMM analyses indicated a good fit of the model to the data. Conclusions The ATTOGEN instrument proved to be a reliable and valid tool, suitable for assessing students’ knowledge and attitudes towards generic medicines. PMID:29186163

  20. Causality violations in Lovelock theories

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Sherf, Yotam

    2018-04-01

    Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.

  1. Self-avoiding walks on scale-free networks

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.

    2005-01-01

    Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > / -1 . For finite N , sn is reduced due to the presence of loops in the network, which causes the emergence of attrition of the paths. For kinetic growth walks, the average maximum length increases as a power of the system size: ˜ Nα , with an exponent α increasing as the parameter γ is raised. We discuss the dependence of α on the minimum allowed degree in the network. A similar power-law dependence is found for the mean self-intersection length of nonreversal random walks. Simulation results support our approximate analytical calculations.

  2. On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif

    2006-10-01

    We explore the possibility that extended disks, such as that recently discovered in M31, are the result of a single dwarf (109-1010 Msolar) satellite merger. We conduct N-body simulations of dwarf NFW halos with embedded spheroidal stellar components on coplanar, prograde orbits in an M31-like host galaxy. As the orbit decays due to dynamical friction and the system is disrupted, the stellar particles relax to form an extended, exponential-disk-like structure that spans the radial range 30-200 kpc. The disk scale length Rd correlates with the initial extent of the stellar component within the satellite halo: the more embedded the stars, the smaller the resulting disk scale length. If the progenitors start on circular orbits, the kinematics of the stars that make up the extended disk have an average rotational motion that is 30-50 km s-1 lower than the host's circular velocity. For dwarf galaxies moving on highly eccentric orbits (e~=0.7), the stellar debris exhibits a much lower rotational velocity. Our results imply that extended galactic disks might be a generic feature of the hierarchical formation of spiral galaxies such as M31 and the Milky Way.

  3. Accuracy and Reliability of Marker-Based Approaches to Scale the Pelvis, Thigh, and Shank Segments in Musculoskeletal Models.

    PubMed

    Kainz, Hans; Hoang, Hoa X; Stockton, Chris; Boyd, Roslyn R; Lloyd, David G; Carty, Christopher P

    2017-10-01

    Gait analysis together with musculoskeletal modeling is widely used for research. In the absence of medical images, surface marker locations are used to scale a generic model to the individual's anthropometry. Studies evaluating the accuracy and reliability of different scaling approaches in a pediatric and/or clinical population have not yet been conducted and, therefore, formed the aim of this study. Magnetic resonance images (MRI) and motion capture data were collected from 12 participants with cerebral palsy and 6 typically developed participants. Accuracy was assessed by comparing the scaled model's segment measures to the corresponding MRI measures, whereas reliability was assessed by comparing the model's segments scaled with the experimental marker locations from the first and second motion capture session. The inclusion of joint centers into the scaling process significantly increased the accuracy of thigh and shank segment length estimates compared to scaling with markers alone. Pelvis scaling approaches which included the pelvis depth measure led to the highest errors compared to the MRI measures. Reliability was similar between scaling approaches with mean ICC of 0.97. The pelvis should be scaled using pelvic width and height and the thigh and shank segment should be scaled using the proximal and distal joint centers.

  4. Global Formation of Topological Defects in the Multiferroic Hexagonal Manganites

    DOE PAGES

    Meier, Q. N.; Lilienblum, M.; Griffin, S. M.; ...

    2017-10-20

    The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic length scales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding, e.g., its degree of universality. Here, we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburgmore » and mean field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.« less

  5. Global Formation of Topological Defects in the Multiferroic Hexagonal Manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Q. N.; Lilienblum, M.; Griffin, S. M.

    The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic length scales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding, e.g., its degree of universality. Here, we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburgmore » and mean field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.« less

  6. Cross-cultural adaptation, reliability and validity of the Spanish version of the Quality of Life in Adult Cancer Survivors (QLACS) questionnaire: application in a sample of short-term survivors.

    PubMed

    Escobar, Antonio; Trujillo-Martín, Maria del Mar; Rueda, Antonio; Pérez-Ruiz, Elisabeth; Avis, Nancy E; Bilbao, Amaia

    2015-11-16

    The aim of this study was to validate the Quality of Life in Adult Cancer Survivors (QLACS) in short-term Spanish cancer survivor's patients. Patients with breast, colorectal or prostate cancer that had finished their initial cancer treatment 3 years before the beginning of this study completed QLACS, WHOQOL, Short Form-36, Hospital Anxiety and Depression Scale, EORTC-QLQ-BR23 and EQ-5D. Cultural adaptation was made based on established guidelines. Reliability was evaluated using internal consistency and test-retest. Convergent validity was studied by mean of Pearson's correlation coefficient. Structural validity was determined by a second-order confirmatory factor analysis (CFA) and Rasch analysis was used to assess the unidimensionality of the Generic and Cancer-specific scales. Cronbach's alpha were above 0.7 in all domains and summary scales. Test-retest coefficients were 0.88 for Generic and 0.82 for Cancer-specific summary scales. QLACS generic summary scale was correlated with other generic criterion measures, SF-36 MCS (r = - 0.74) and EQ-VAS (r = - 0.63). QLACS cancer-specific scale had lower values with the same constructs. CFA provided satisfactory fit indices in all cases. The RMSEA value was 0.061 and CFI and TLI values were 0.929 and 0.925, respectively. All factor loadings were higher than 0.40 and statistically significant (P < 0.001). Generic summary scale had eight misfitting items. In the remaining 20 items, the unidimensionality was supported. Cancer Specific summary scale showed four misfitting items, the remaining showed unidimensionality. The findings support the validity and reliability of QLACS questionnaire to be used in short-term cancer survivors.

  7. What use is generic prescribing?

    PubMed Central

    Archer, Michael

    1985-01-01

    The dispensing of generic preparations at four dispensing chemist shops was investigated by means of a questionnaire. Certain generic prescriptions result in the dispensing of proprietary products despite the existence of generic preparations, and the pharmacist may be reimbursed for the cost of the proprietary drug which has been dispensed. Not all generic prescriptions result in the dispensing of cheaper drugs because of the methods of payment to chemists. If doctors write more generic prescriptions there will ultimately be more dispensing of generic products. Even in the case of drugs still under patent, prescribing by generic name should be encouraged. The savings achieved by generic prescribing are to some extent at the cost of the dispensing chemists. The method and scale of payments for dispensing requires urgent review. PMID:4032358

  8. Assessment of the equivalence of a generic to a branded femoral stem

    PubMed Central

    Hothi, H.; Henckel, J.; Shearing, P.; Holme, T.; Cerquiglini, A.; Laura, A. Di; Atrey, A.; Skinner, J.; Hart, A.

    2017-01-01

    Aims The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem. Materials and Methods We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters. Results We found that the OptiStems were lighter (p < 0.001), had a rougher trunnion surface (p < 0.001) with a greater spacing and depth of the machined threads (p < 0.001), had greater trunnion cone angles (p = 0.007), and a smaller radius at the top of the trunnion (p = 0.007). There was no difference in stem volume (p = 0.643), CCD angle (p = 0.788), offset (p = 0.993), neck length (p = 0.344), stem length (p = 0.808), shaft width (p = 0.058 to 0.720) or roughness of the polished surface (p = 0.536). Conclusion This preliminary investigation found that whilst there were similarities between the two designs, the generic OptiStem is different to the branded Exeter design. Cite this article: Bone Joint J 2017;99-B:310–16. PMID:28249969

  9. The PedsQL Multidimensional Fatigue Scale in pediatric rheumatology: reliability and validity.

    PubMed

    Varni, James W; Burwinkle, Tasha M; Szer, Ilona S

    2004-12-01

    . The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health related quality of life (HRQOL) in children and adolescents ages 2-18 years. The recently developed 18-item PedsQL Multidimensional Fatigue Scale was designed to measure fatigue in pediatric patients and comprises the General Fatigue Scale (6 items), Sleep/Rest Fatigue Scale (6 items), and Cognitive Fatigue Scale (6 items). The PedsQL 4.0 Generic Core Scales were developed as the generic core measure to be integrated with the PedsQL Disease-Specific Modules. The PedsQL 3.0 Rheumatology Module was designed to measure pediatric rheumatology-specific HRQOL. Methods. The PedsQL Multidimensional Fatigue Scale, Generic Core Scales, and Rheumatology Module were administered to 163 children and 154 parents (183 families accrued overall) recruited from a pediatric rheumatology clinic. Results. Internal consistency reliability for the PedsQL Multidimensional Fatigue Scale Total Score (a = 0.95 child, 0.95 parent report), General Fatigue Scale (a = 0.93 child, 0.92 parent), Sleep/Rest Fatigue Scale (a = 0.88 child, 0.90 parent), and Cognitive Fatigue Scale (a = 0.93 child, 0.96 parent) were excellent for group and individual comparisons. The validity of the PedsQL Multidimensional Fatigue Scale was confirmed through hypothesized intercorrelations with dimensions of generic and rheumatology-specific HRQOL. The PedsQL Multidimensional Fatigue Scale distinguished between healthy children and children with rheumatic diseases as a group, and was associated with greater disease severity. Children with fibromyalgia manifested greater fatigue than children with other rheumatic diseases. The results confirm the initial reliability and validity of the PedsQL Multidimensional Fatigue Scale in pediatric rheumatology.

  10. Validation of the Korean version of the pediatric quality of life inventory 4.0 (PedsQL) generic core scales in school children and adolescents using the Rasch model.

    PubMed

    Kook, Seung Hee; Varni, James W

    2008-06-02

    The Pediatric Quality of Life Inventory (PedsQL) is a child self-report and parent proxy-report instrument designed to assess health-related quality of life (HRQOL) in healthy and ill children and adolescents. It has been translated into over 70 international languages and proposed as a valid and reliable pediatric HRQOL measure. This study aimed to assess the psychometric properties of the Korean translation of the PedsQL 4.0 Generic Core Scales. Following the guidelines for linguistic validation, the original US English scales were translated into Korean and cognitive interviews were administered. The field testing responses of 1425 school children and adolescents and 1431 parents to the Korean version of PedsQL 4.0 Generic Core Scales were analyzed utilizing confirmatory factor analysis and the Rasch model. Consistent with studies using the US English instrument and other translation studies, score distributions were skewed toward higher HRQOL in a predominantly healthy population. Confirmatory factor analysis supported a four-factor and a second order-factor model. The analysis using the Rasch model showed that person reliabilities are low, item reliabilities are high, and the majority of items fit the model's expectation. The Rasch rating scale diagnostics showed that PedsQL 4.0 Generic Core Scales in general have the optimal number of response categories, but category 4 (almost always a problem) is somewhat problematic for the healthy school sample. The agreements between child self-report and parent proxy-report were moderate. The results demonstrate the feasibility, validity, item reliability, item fit, and agreement between child self-report and parent proxy-report of the Korean version of PedsQL 4.0 Generic Core Scales for school population health research in Korea. However, the utilization of the Korean version of the PedsQL 4.0 Generic Core Scales for healthy school populations needs to consider low person reliability, ceiling effects and cultural differences, and further validation studies on Korean clinical samples are required.

  11. Customization of a generic 3D model of the distal femur using diagnostic radiographs.

    PubMed

    Schmutz, B; Reynolds, K J; Slavotinek, J P

    2008-01-01

    A method for the customization of a generic 3D model of the distal femur is presented. The customization method involves two steps: acquisition of calibrated orthogonal planar radiographs; and linear scaling of the generic model based on the width of a subject's femoral condyles as measured on the planar radiographs. Planar radiographs of seven intact lower cadaver limbs were obtained. The customized generic models were validated by comparing their surface geometry with that of CT-reconstructed reference models. The overall mean error was 1.2 mm. The results demonstrate that uniform scaling as a first step in the customization process produced a base model of accuracy comparable to other models reported in the literature.

  12. Validation of Persian Version of PedsQL™ 4.0™ Generic Core Scales in Toddlers and Children

    PubMed Central

    Gheissari, Alaleh; Farajzadegan, Ziba; Heidary, Maryam; Salehi, Fatemeh; Masaeli, Ali; Mazrooei, Amin; Varni, James W; Fallah, Zahra; Zandieh, Fariborz

    2012-01-01

    Introduction: To evaluate the reliability, validity and feasibility of the Persian version of the Pediatric Quality of Life inventory (PedsQL™ 4.0™ 4.0) Generic Core Scales in Iranian healthy students ages 7-15 and chronically ill children ages 2-18. Methods: We followed the translation methodology proposed by developer to validate Persian version of PedsQL™ 4.0™ 4.0 Generic Core Scales for children. Six hundred and sixty children and adolescents and their parents were enrolled. Sample of 160 healthy students were chosen by random cluster method between 4 regions of Isfahan education offices and 60 chronically ill children were recruited from St. Alzahra hospital private clinics. The questionnaires were fulfilled by the participants. Results: The Persian version of PedsQL™ 4.0™ 4.0 Generic Core Scales discriminated between healthy and chronically ill children (healthy students mean score was 12.3 better than chronically ill children, P<0.001). Cronbachs’ alpha internal consistency values exceeded 0.7 for children self reports and proxy reports of children 5-7 years old and 13-18 years old. Reliability of proxy reports for 2-4 years old was much lower than 0.7. Although, proxy reports for chronically ill children 8-12 years old was more than 0.7, these reports for healthy children with same age group was slightly lower than 0.7. Constructive, criterion face and content validity were acceptable. In addition, the Persian version of PedsQL™ 4.0™ 4.0 Generic Core Scales was feasible and easy to complete. Conclusion: Results showed that Persian version of PedsQL™ 4.0™ 4.0 Generic Core Scales is valid and acceptable for pediatric health researches. It is necessary to alternate scoring for 2-4 years old questionnaire and to find a way to increase reliability for healthy children aged 8-12 years especially, according to Iranian culture. PMID:22701775

  13. Performance of four turbulence closure models implemented using a generic length scale method

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P.

    2005-01-01

    A two-equation turbulence model (one equation for turbulence kinetic energy and a second for a generic turbulence length-scale quantity) proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235] is implemented in a three-dimensional oceanographic model (Regional Oceanographic Modeling System; ROMS v2.0). These two equations, along with several stability functions, can represent many popular turbulence closures, including the k-kl (Mellor-Yamada Level 2.5), k-??, and k-?? schemes. The implementation adds flexibility to the model by providing an unprecedented range of turbulence closure selections in a single 3D oceanographic model and allows comparison and evaluation of turbulence models in an otherwise identical numerical environment. This also allows evaluation of the effect of turbulence models on other processes such as suspended-sediment distribution or ecological processes. Performance of the turbulence models and sediment-transport schemes is investigated with three test cases for (1) steady barotropic flow in a rectangular channel, (2) wind-induced surface mixed-layer deepening in a stratified fluid, and (3) oscillatory stratified pressure-gradient driven flow (estuarine circulation) in a rectangular channel. Results from k-??, k-??, and gen (a new closure proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235]) are very similar for these cases, but the k-kl closure results depend on a wall-proximity function that must be chosen to suit the flow. Greater variations appear in simulations of suspended-sediment concentrations than in salinity simulations because the transport of suspended-sediment amplifies minor variations in the methods. The amplification is caused by the added physics of a vertical settling rate, bottom stress dependent resuspension, and diffusive transport of sediment in regions of well mixed salt and temperature. Despite the amplified sensitivity of sediment to turbulence models in the estuary test case, the four closures investigated here all generated estuarine turbidity maxima that were similar in their shape, location, and concentrations. 

  14. Patients’ beliefs about generic medicines in Malaysia

    PubMed Central

    Wong, Zhi Y.; Hassali, Mohamed A.; Alrasheedy, Alian A.; Saleem, Fahad; Yahaya, Abdul H.; Aljadhey, Hisham

    2014-01-01

    Background: Acceptance of generic medicines by patients is an essential factor given that they are the end users of these medicines. In fact, adequate knowledge and positive perceptions are prerequisite to patients’ acceptance and use of generic medicines. Objective: To assess the current belief and views of patients about generic medicines in Malaysia. Method: This was a self-administered questionnaire-based study. The study was conducted with patients visiting outpatient pharmacy department at a tertiary care hospital in Malaysia. The Malaysian version of Generic Medicines Scale (GMS) was used. The GMS consists of two subscales: efficacy and similarity of generic medicines to original brand medicines. The efficacy subscale consists of 10 items while the similarity subscale consists of 6 items. The responses to the items were framed as a five-point Likert scale (1=strongly disagree to 5=strongly agree). Results: A total of 202 out of 300 patients participated in the study, giving a response rate of 67.3%. In this study, only 49% of them (n=99) knew the term ‘generic medicine’. Moreover, only 53.5% of the respondents (n=108) believed that the efficacy of generic medicines was the same as original brand medicines. In terms of quality, only 44% of the respondents (n=89) disagreed that generic medicines were of a lower quality. About one third (n=65, 32.2%) believed that generic medicines were cheaper because they were less efficacious. In terms of side effects, 44.5% of the respondents (n=90) believed that generic medicines had the same side effect profile as original brand medicines. Conclusions: The study finding showed that almost half of the respondents had negative belief in generic medicines. Similarly, many patients were not aware of the similarities and differences between generic and original brand medicines. Therefore, there is a need to provide patients with adequate information about generic medicines. PMID:25580171

  15. The PedsQL in pediatric cerebral palsy: reliability and validity of the Chinese version pediatric quality of life inventory 4.0 generic core scales and 3.0 cerebral palsy module.

    PubMed

    Yang, Xue; Xiao, Nong; Yan, Jianying

    2011-03-01

    This investigation examines the reliability, validity, and sensitivity of the Chinese version Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Scales and 3.0 cerebral palsy (CP) Module in pediatric CP. The study sample was comprised of 126 parents of children with CP between the ages of 2 and 12 years including 18 child respondents 5-12 years of age. Mean age of the 87 boys (69.0%) and 39 girls (31.0%) was 4 years 1 month (SD 2 years 2 month). Reliability was demonstrated for the PedsQL 4.0 (α = 0.86 child, 0.89 parent) and CP Module (α = 0.91 child, 0.96 parent). The PedsQL 4.0 distinguished between healthy children and children with CP. Construct validity of the CP Module was supported through an analysis of the intercorrelations between the Generic Core Scale scores and the CP Module Scale scores and exploratory factor analysis of PedsQL items. The findings provide support for the measurement properties of the Chinese version PedsQL 4.0 Generic Core Scales and 3.0 CP Module in pediatric CP.

  16. Bulk and edge spin transport in topological magnon insulators

    NASA Astrophysics Data System (ADS)

    Rückriegel, Andreas; Brataas, Arne; Duine, Rembert A.

    2018-02-01

    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin current driven through a normal metal |topological magnon insulator |normal metal heterostructure by a spin accumulation imbalance between the metals, with and without random lattice defects. We show that bulk and edge transport are characterized by different length scales. This results in a characteristic system size where the magnon transport crosses over from being bulk dominated for small systems to edge dominated for larger systems. These findings are generic and relevant for topological transport in systems of nonconserved bosons.

  17. Cognitive and affective determinants of generic drug acceptance and use: cross-sectional and experimental findings

    PubMed Central

    Dohle, Simone; Siegrist, Michael

    2013-01-01

    An increase in generic substitution could be a viable approach to reduce global healthcare expenditures. In many countries, however, generic drug use is rather low. This study examines cognitive predictors (knowledge and beliefs) and affective predictors (general affect and sacred values) to explain generic drug acceptance and use. Data for the study come from a random postal survey conducted in Switzerland (N = 668). A detailed knowledge scale about generic drugs was developed. In addition, an experimental choice task was constructed in which respondents chose between branded and generic drugs. Generic drug acceptance as well as drug choices were influenced by knowledge, beliefs, and affect. It was also found that generic substitution is chosen less frequently for a more severe illness. Key insights could be used for developing information material or interventions aimed at increasing the substitution of generic drugs in order to make health care more affordable. PMID:25632372

  18. The Link Between Shocks, Turbulence, and Magnetic Reconnection in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Roytershteyn, V.; Vu, H. X.; Omelchenko, Y. A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; hide

    2014-01-01

    Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence and magnetic reconnection. In particular collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These 'wavefronts' maintain their integrity for tens of ion cyclotron times but eventually disrupt and dissipate their energy. (iii) Rippling of the shock front, which can in turn lead to formation of fast collimated jets extending to hundreds of ion inertial lengths downstream of the shock. The jets, which have high dynamical pressure, 'stir' the downstream region, creating large scale disturbances such as vortices, sunward flows, and can trigger flux ropes along the magnetopause. This phenomenology closes the loop between shocks, turbulence and magnetic reconnection in ways previously unrealized. These interconnections appear generic for the collisionless plasmas typical of space, and are expected even at planar shocks, although they will also occur at curved shocks as occur at planets or around ejecta.

  19. ICME — A Mere Coupling of Models or a Discipline of Its Own?

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Schmitz, Georg J.; Prahl, Ulrich

    Technically, ICME — Integrated computational materials engineering — is an approach for solving advanced engineering problems related to the design of new materials and processes by combining individual materials and process models. The combination of models by now is mainly achieved by manual transformation of the output of a simulation to form the input to a subsequent one. This subsequent simulation is either performed at a different length scale or constitutes a subsequent step along the process chain. Is ICME thus just a synonym for the coupling of simulations? In fact, most ICME publications up to now are examples of the joint application of selected models and software codes to a specific problem. However, from a systems point of view, the coupling of individual models and/or software codes across length scales and along material processing chains leads to highly complex meta-models. Their viability has to be ensured by joint efforts from science, industry, software developers and independent organizations. This paper identifies some developments that seem necessary to make future ICME simulations viable, sustainable and broadly accessible and accepted. The main conclusion is that ICME is more than a multi-disciplinary subject but a discipline of its own, for which a generic structural framework has to be elaborated and established.

  20. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian

    2018-02-01

    In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.

  1. Psychometric properties of the self-report Malay version of the Pediatric Quality of Life (PedsQLTM) 4.0 Generic Core Scales among multiethnic Malaysian adolescents.

    PubMed

    Ainuddin, Husna A; Loh, Siew Yim; Chinna, Karuthan; Low, Wah Yun; Roslani, April Camilla

    2015-06-01

    Adolescence is the potential period for growth and optimal functioning, but developmental issues like time of transition from childhood to adulthood will create stress and affect the adolescent's quality of life (QOL). However, there is a lack of research tool for measuring adolescent's QOL in Malaysia. The aim of the study was to determine the validity and reliability of the self-report Malay version of the pediatric QOL (PedsQL™) 4.0 Generic Core Scales in assessing the QOL of Malaysian adolescents. A cross-sectional study design using the 23-item self-report Malay version of the PedsQL 4.0 Generic Core Scales was administered on a convenient cluster sampling (n = 297 adolescent) from a secondary school. The internal consistency reliability had Cronbach's α values ranging from .70 to .89. Factor analysis reported a six-factor structure via principal axis factor analysis. In conclusion, the self-report Malay version of the pediatric QOL 4.0 Generic Core Scales is a reliable and valid tool to measure the QOL of multiethnic Malaysian adolescents. © The Author(s) 2013.

  2. The risks and costs of multiple-generic substitution of topiramate.

    PubMed

    Duh, M S; Paradis, P E; Latrémouille-Viau, D; Greenberg, P E; Lee, S P; Durkin, M B; Wan, G J; Rupnow, M F T; LeLorier, J

    2009-06-16

    To investigate clinical and economic consequences following generic substitution of one vs multiple generics of topiramate (Topamax; Ortho-McNeil Neurologics, Titusville, NJ). Medical and pharmacy claims data of Régie de l'Assurance-Maladie du Québec from January 2006 to October 2007 were used. Patients with epilepsy treated with topiramate were selected. An open-cohort design was used to classify the observation period into periods of brand, single-generic, and multiple-generic use. One-year generic-switch and switchback-to-brand rates were estimated using Kaplan-Meier methodology. Medical resource utilization and costs were compared among the three periods using multivariate regression analysis. In total, 948 patients were observed during 1,105 person-years of brand use, 233 person-years of single-generic use, and 92 person-years of multiple-generic use. A total of 23% of generic users received at least two different generic versions. Compared to brand use, multiple-generic use was associated with higher utilization of other prescription drugs (incidence rate ratio [IRR] = 1.27, 95% confidence interval [CI] = 1.24-1.31), higher hospitalization rates (0.48 vs 0.83 visit/person-year, IRR = 1.65, 95% CI = 1.28-2.13), and longer hospital stays (2.6 vs 3.9 days/person-year, IRR = 1.43, 95% CI = 1.27-1.60), but the effect was less pronounced in single-generic use (hospitalization: IRR = 1.08, 95% CI = 0.88-1.34, length of stay: IRR = 1.12, 95% CI = 1.03-1.23). The risk of head injury or fracture was nearly three times higher (hazard ratio = 2.84, 95% CI = 1.24-6.48) following a generic-to-generic switch compared to brand use. The total annualized health care cost per patient was higher in the multiple-generic than brand periods by C$1,716 (cost ratio = 1.21, p = 0.0420). Multiple-generic substitution of topiramate was significantly associated with negative outcomes, such as hospitalizations and injuries, and increased health care costs.

  3. Measuring health-related quality of life in children with cancer living in Mainland China: feasibility, reliability and validity of the Chinese Mandarin version of PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module.

    PubMed

    Ji, Yi; Chen, Siyuan; Li, Kai; Xiao, Nong; Yang, Xue; Zheng, Shan; Xiao, Xianmin

    2011-11-23

    The Pediatric Quality of Life Inventory (PedsQL) is widely used instrument to measure pediatric health-related quality of life (HRQOL) for children aged 2 to 18 years. The purpose of the current study was to investigate the feasibility, reliability and validity of the Chinese mandarin version of the PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module in a group of Chinese children with cancer. The PedsQL 4.0 Genetic Core Scales and the PedsQL 3.0 Cancer Module were administered to children with cancer (aged 5-18 years) and parents of such children (aged 2-18 years). For comparison, a survey on a demographically group-matched sample of the general population with children (aged 5-18) and parents of children (aged 2-18 years) was conducted with the PedsQL 4.0 Genetic Core Scales. The minimal mean percentage of missing item responses (except the School Functioning scale) supported the feasibility of the PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module for Chinese children with cancer. Most of the scales showed satisfactory reliability with Cronbach's α of exceeding 0.70, and all scales demonstrated sufficient test-retest reliability. Assessing the clinical validity of the questionnaires, statistically significant difference was found between healthy children and children with cancer, and between children on-treatment versus off-treatment ≥12 months. Positive significant correlations were observed between the scores of the PedsQL 4.0 Generic Core Scale and the PedsQL 3.0 Cancer Module. Exploratory factor analysis demonstrated sufficient factorial validity. Moderate to good agreement was found between child self- and parent proxy-reports. The findings support the feasibility, reliability and validity of the Chinese Mandarin version of PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module in children with cancer living in mainland China.

  4. Measuring health-related quality of life in children with cancer living in mainland China: feasibility, reliability and validity of the Chinese mandarin version of PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module

    PubMed Central

    2011-01-01

    Background The Pediatric Quality of Life Inventory (PedsQL) is widely used instrument to measure pediatric health-related quality of life (HRQOL) for children aged 2 to 18 years. The purpose of the current study was to investigate the feasibility, reliability and validity of the Chinese mandarin version of the PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module in a group of Chinese children with cancer. Methods The PedsQL 4.0 Genetic Core Scales and the PedsQL 3.0 Cancer Module were administered to children with cancer (aged 5-18 years) and parents of such children (aged 2-18 years). For comparison, a survey on a demographically group-matched sample of the general population with children (aged 5-18) and parents of children (aged 2-18 years) was conducted with the PedsQL 4.0 Genetic Core Scales. Result The minimal mean percentage of missing item responses (except the School Functioning scale) supported the feasibility of the PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module for Chinese children with cancer. Most of the scales showed satisfactory reliability with Cronbach's α of exceeding 0.70, and all scales demonstrated sufficient test-retest reliability. Assessing the clinical validity of the questionnaires, statistically significant difference was found between healthy children and children with cancer, and between children on-treatment versus off-treatment ≥12 months. Positive significant correlations were observed between the scores of the PedsQL 4.0 Generic Core Scale and the PedsQL 3.0 Cancer Module. Exploratory factor analysis demonstrated sufficient factorial validity. Moderate to good agreement was found between child self- and parent proxy-reports. Conclusion The findings support the feasibility, reliability and validity of the Chinese Mandarin version of PedsQL 4.0 Generic Core Scales and 3.0 Cancer Module in children with cancer living in mainland China. PMID:22111968

  5. Reliability and validity of the PedsQL™ Generic Core Scales 4.0 for Chinese children with epilepsy.

    PubMed

    Duan, Xiaoling; Zhang, Shuqing; Xiao, Nong

    2012-04-01

    This investigation examines the reliability and validity of the Chinese version of the PedsQL 4.0 Generic Core Scales for prognostic measures of pediatric epilepsy. The study comprised 163 parents whose children, between the ages of 2 and 18 years, were diagnosed with epilepsy. The parents were given a questionnaire to be completed on behalf of the child. Reliability was assessed by Cronbach's alpha analysis. Validity was assessed by the exploratory factor analysis and intercorrelation analysis between the four subscales as well as Student's t-test. The internal consistency reliability for Total Scale Score was 0.94 by Cronbach's alpha test. Four major factors were extracted by factor analysis. The scores from all sub-scales derived from healthy children were significantly higher than children with epilepsy (P<0.001). The reliability and validity of the parent proxy-report scales from the Chinese version of the PedsQL™ 4.0 Generic Core Scales effectively matched the original version and could be used to evaluate the health-related quality of life of children with epilepsy. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Factors affecting economies of scale in combined sewer systems.

    PubMed

    Maurer, Max; Wolfram, Martin; Anja, Herlyn

    2010-01-01

    A generic model is introduced that represents the combined sewer infrastructure of a settlement quantitatively. A catchment area module first calculates the length and size distribution of the required sewer pipes on the basis of rain patterns, housing densities and area size. These results are fed into the sewer-cost module in order to estimate the combined sewer costs of the entire catchment area. A detailed analysis of the relevant input parameters for Swiss settlements is used to identify the influence of size on costs. The simulation results confirm that an economy of scale exists for combined sewer systems. This is the result of two main opposing cost factors: (i) increased construction costs for larger sewer systems due to larger pipes and increased rain runoff in larger settlements, and (ii) lower costs due to higher population and building densities in larger towns. In Switzerland, the more or less organically grown settlement structures and limited land availability emphasise the second factor to show an apparent economy of scale. This modelling approach proved to be a powerful tool for understanding the underlying factors affecting the cost structure for water infrastructures.

  7. Comparison between Utility of the Thai Pediatric Quality of Life Inventory 4.0 Generic Core Scales and 3.0 Cerebral Palsy Module

    ERIC Educational Resources Information Center

    Tantilipikorn, Pinailug; Watter, Pauline; Prasertsukdee, Saipin

    2013-01-01

    Health-related quality of life (HRQOL) is increasingly being considered in the management of patients with various conditions. HRQOL instruments can be broadly classified as generic or disease-specific measures. Several generic HRQOL instruments in different languages have been developed for paediatric populations including the Pediatric Quality…

  8. Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches?

    NASA Astrophysics Data System (ADS)

    Meyer-Vernet, Nicole; Rospars, Jean-Pierre

    2016-12-01

    Self-locomotion is central to animal behaviour and survival. It is generally analysed by focusing on preferred speeds and gaits under particular biological and physical constraints. In the present paper we focus instead on the maximum speed and we study its order-of-magnitude scaling with body size, from bacteria to the largest terrestrial and aquatic organisms. Using data for about 460 species of various taxonomic groups, we find a maximum relative speed of the order of magnitude of ten body lengths per second over a 1020-fold mass range of running and swimming animals. This result implies a locomotor time scale of the order of one tenth of second, virtually independent on body size, anatomy and locomotion style, whose ubiquity requires an explanation building on basic properties of motile organisms. From first-principle estimates, we relate this generic time scale to other basic biological properties, using in particular the recent generalisation of the muscle specific tension to molecular motors. Finally, we go a step further by relating this time scale to still more basic quantities, as environmental conditions at Earth in addition to fundamental physical and chemical constants.

  9. A generic method for evaluating crowding in the emergency department.

    PubMed

    Eiset, Andreas Halgreen; Erlandsen, Mogens; Møllekær, Anders Brøns; Mackenhauer, Julie; Kirkegaard, Hans

    2016-06-14

    Crowding in the emergency department (ED) has been studied intensively using complicated non-generic methods that may prove difficult to implement in a clinical setting. This study sought to develop a generic method to describe and analyse crowding from measurements readily available in the ED and to test the developed method empirically in a clinical setting. We conceptualised a model with ED patient flow divided into separate queues identified by timestamps for predetermined events. With temporal resolution of 30 min, queue lengths were computed as Q(t + 1) = Q(t) + A(t) - D(t), with A(t) = number of arrivals, D(t) = number of departures and t = time interval. Maximum queue lengths for each shift of each day were found and risks of crowding computed. All tests were performed using non-parametric methods. The method was applied in the ED of Aarhus University Hospital, Denmark utilising an open cohort design with prospectively collected data from a one-year observation period. By employing the timestamps already assigned to the patients while in the ED, a generic queuing model can be computed from which crowding can be described and analysed in detail. Depending on availability of data, the model can be extended to include several queues increasing the level of information. When applying the method empirically, 41,693 patients were included. The studied ED had a high risk of bed occupancy rising above 100 % during day and evening shift, especially on weekdays. Further, a 'carry over' effect was shown between shifts and days. The presented method offers an easy and generic way to get detailed insight into the dynamics of crowding in an ED.

  10. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demuth, Scott Francis; Sprinkle, James K.

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout ofmore » Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.« less

  11. Off-shell dark matter: A cosmological relic of quantum gravity

    NASA Astrophysics Data System (ADS)

    Saravani, Mehdi; Afshordi, Niayesh

    2017-02-01

    We study a novel proposal for the origin of cosmological cold dark matter (CDM) which is rooted in the quantum nature of spacetime. In this model, off-shell modes of quantum fields can exist in asymptotic states as a result of spacetime nonlocality (expected in generic theories of quantum gravity) and play the role of CDM, which we dub off-shell dark matter (O f DM ). However, their rate of production is suppressed by the scale of nonlocality (e.g. Planck length). As a result, we show that O f DM is only produced in the first moments of big bang, and then effectively decouples (except through its gravitational interactions). We examine the observational predictions of this model: In the context of cosmic inflation, we show that this proposal relates the reheating temperature to the inflaton mass, which narrows down the uncertainty in the number of e -foldings of specific inflationary scenarios. We also demonstrate that O f DM is indeed cold, and discuss potentially observable signatures on small scale matter power spectrum.

  12. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    PubMed Central

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  13. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  14. Hospital at home for chronic obstructive pulmonary disease: an integrated hospital and community based generic intermediate care service for prevention and early discharge.

    PubMed

    Davison, A G; Monaghan, M; Brown, D; Eraut, C D; O'Brien, A; Paul, K; Townsend, J; Elston, C; Ward, L; Steeples, S; Cubitt, L

    2006-01-01

    Recent randomized controlled studies have reported success for hospital at home for prevention and early discharge of chronic obstructive pulmonary disease (COPD) patients using hospital based respiratory nurse specialists. This observational study reports results using an integrated hospital and community based generic intermediate care service. The length of care, readmission within 60 days and death within 60 days in the early discharge (9.37 days, 21.1%, 7%) and the prevention of admission (five to six days, 34.1%, 3.8%) are similar to previous studies. We suggest that this generic community model of service may allow hospital at home services for COPD to be introduced in more areas.

  15. Experimental Testing of a Generic Submarine Model in the DSTO Low Speed Wind Tunnel. Phase 2

    DTIC Science & Technology

    2014-03-01

    axis, z-axis (Nm) l Model reference length (1.35 m) L Lift force (N) MRP Moment Reference Point q Dynamic pressure       2 2 1 Uρ (Pa...moment reference point ( MRP ). The moment reference point was defined as the mid-length position on the centre-line of the model. Figure 5 presents the

  16. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry

    PubMed Central

    Meyer, Andrew J.; Patten, Carolynn

    2017-01-01

    Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient’s lower extremity muscle excitations contribute to the patient’s lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient’s musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that with appropriate experimental data, joint moment predictions for walking generated by an EMG-driven model can be improved significantly when automated adjustment of musculoskeletal geometry is included in the model calibration process. PMID:28700708

  17. Universality of long-range correlations in expansion randomization systems

    NASA Astrophysics Data System (ADS)

    Messer, P. W.; Lässig, M.; Arndt, P. F.

    2005-10-01

    We study the stochastic dynamics of sequences evolving by single-site mutations, segmental duplications, deletions, and random insertions. These processes are relevant for the evolution of genomic DNA. They define a universality class of non-equilibrium 1D expansion-randomization systems with generic stationary long-range correlations in a regime of growing sequence length. We obtain explicitly the two-point correlation function of the sequence composition and the distribution function of the composition bias in sequences of finite length. The characteristic exponent χ of these quantities is determined by the ratio of two effective rates, which are explicitly calculated for several specific sequence evolution dynamics of the universality class. Depending on the value of χ, we find two different scaling regimes, which are distinguished by the detectability of the initial composition bias. All analytic results are accurately verified by numerical simulations. We also discuss the non-stationary build-up and decay of correlations, as well as more complex evolutionary scenarios, where the rates of the processes vary in time. Our findings provide a possible example for the emergence of universality in molecular biology.

  18. Wall shear stress characterization of a 3D bluff-body separated flow

    NASA Astrophysics Data System (ADS)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi

    2013-10-01

    Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.

  19. Small pixel cross-talk MTF and its impact on MWIR sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Willers, Cornelius J.

    2017-05-01

    As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.

  20. Psychometric properties of the Sinhala version of the PedsQL™ 4.0 Generic Core Scales in early adolescents in Sri Lanka.

    PubMed

    Danansuriya, Manjula Nishanthi; Rajapaksa, Lalini C

    2012-09-04

    The concept Health related Quality of life (HRQOL) is increasingly recognized as an important health outcome measure in clinical and research fields. The present study attempted to evaluate the psychometric properties of the Sinhala version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™ 4.0) Generic Core Scales among adolescents in Sri Lanka. The original US PedsQL™ was translated into Sinhala and conceptually validated according to international guidelines. A cross-sectional study was conducted among 142 healthy school going adolescents (12-14 years), their parents (n = 120) and a group of adolescents with asthma who attended asthma clinics (n = 115). Reliability was assessed using Cronbach's alpha and validity by examining scale structure, exploring inter-scale correlations and comparing across known groups (healthy vs. chronically ill). The PedsQL™ Sinhala version was found to be acceptable with minimal missing responses. All scales demonstrated satisfactory reliability. Cronbach's alpha for the total scale scores was 0.85 for adolescent self-report while for the parent proxy-report for the healthy group it was 0.86. No floor effects were observed. Ceiling effects were noticed in self-report and parent proxy-report for the healthy group. Overall results of the multi trait scaling analysis confirmed the scale structure with 74% item-convergent validity, 88% item-discriminant validity and an overall scaling success of 72%. Moderate to high correlations were shown among the domains of teen self-report (Spearman rho = .37-.54) and between teen self-report and parent proxy-reports (Spearman rho = .41-.57). The PedsQL™ tool was able to discriminate between the quality of life in healthy adolescents and adolescents with asthma. The findings support the reliability and validity of the Sinhala version of the PedsQL™ 4.0 Generic Core Scales as a generic instrument to measure HRQOL among early adolescents in Sri Lanka in a population setting.

  1. A synchrotron-based local computed tomography combined with data-constrained modelling approach for quantitative analysis of anthracite coal microstructure

    PubMed Central

    Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng

    2014-01-01

    Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649

  2. Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts.

    PubMed

    Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C

    2007-05-01

    The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs.

  3. Muscle parameters estimation based on biplanar radiography.

    PubMed

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

  4. Scaling effects in angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Morton, John

    1992-01-01

    The effect of specimen size upon the response and strength of +/- 45 degree angle-ply laminates was investigated for two graphite fiber reinforced plastic systems and several stacking sequences. The first material system was a brittle epoxy based system, AS4 fibers in 3502 epoxy, and the second was a tough thermoplastic based system, AS4 fibers in PEEK matrix. For the epoxy based system, two generic +/- 45 degree lay-ups were studied: (+45 degrees sub n/-45 degrees sub n) sub 2S (blocked plies), and (+45 degrees/-45 degrees) sub 2nS, for n=1 and 2. The in-plane dimensions of the specimens were varied such that the width/length relationship was 12.7 x n/127 x n mm, for m=1, 2, 3, or 4. It is shown that the stress/strain response and the ultimate strength of these angle-ply laminates depends on the laminate thickness and the type of generic lay-up used. Furthermore, it is shown that first ply failure occurs in the surface plies as a result of normal rather than shear stresses. The implications of the experimental findings upon the validity of the +/- 45 degree tensile test which is used to determine the in-plane shear response of unidirectional composites are discussed.

  5. Kinetic control of intralayer cobalt coordination in layered hydroxides: Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n.

    PubMed

    Neilson, James R; Schwenzer, Birgit; Seshadri, Ram; Morse, Daniel E

    2009-12-07

    We report the synthesis and characterization of new structural variants of the isotypic compound with the generic chemical formula, Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n, all modifications of an alpha-Co(OH)2 lattice. We show that the occupancy of tetrahedrally coordinated cobalt sites and associated chloride ligands, x, is modulated by the rate of formation of the respective layered hydroxide salts from kinetically controlled aqueous hydrolysis at an air-water interface. This new level of structural control is uniquely enabled by the slow diffusion of a hydrolytic catalyst, a simple technique. Independent structural characterizations of the compounds separately describe various attributes of the materials on different length scales, revealing details hidden by the disordered average structures. The precise control over the population of distinct octahedrally and tetrahedrally coordinated cobalt ions in the lattice provides a gentle, generic method for modulating the coordination geometry of cobalt in the material without disturbing the lattice or using additional reagents. A mechanism is proposed to reconcile the observation of the kinetic control of the structure with competing interactions during the initial stages of hydrolysis and condensation.

  6. Measuring Belief in Conspiracy Theories: The Generic Conspiracist Beliefs Scale

    PubMed Central

    Brotherton, Robert; French, Christopher C.; Pickering, Alan D.

    2013-01-01

    The psychology of conspiracy theory beliefs is not yet well understood, although research indicates that there are stable individual differences in conspiracist ideation – individuals’ general tendency to engage with conspiracy theories. Researchers have created several short self-report measures of conspiracist ideation. These measures largely consist of items referring to an assortment of prominent conspiracy theories regarding specific real-world events. However, these instruments have not been psychometrically validated, and this assessment approach suffers from practical and theoretical limitations. Therefore, we present the Generic Conspiracist Beliefs (GCB) scale: a novel measure of individual differences in generic conspiracist ideation. The scale was developed and validated across four studies. In Study 1, exploratory factor analysis of a novel 75-item measure of non-event-based conspiracist beliefs identified five conspiracist facets. The 15-item GCB scale was developed to sample from each of these themes. Studies 2, 3, and 4 examined the structure and validity of the GCB, demonstrating internal reliability, content, criterion-related, convergent and discriminant validity, and good test-retest reliability. In sum, this research indicates that the GCB is a psychometrically sound and practically useful measure of conspiracist ideation, and the findings add to our theoretical understanding of conspiracist ideation as a monological belief system unpinned by a relatively small number of generic assumptions about the typicality of conspiratorial activity in the world. PMID:23734136

  7. Reconstruction of genome-scale human metabolic models using omics data.

    PubMed

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-08-01

    The impact of genome-scale human metabolic models on human systems biology and medical sciences is becoming greater, thanks to increasing volumes of model building platforms and publicly available omics data. The genome-scale human metabolic models started with Recon 1 in 2007, and have since been used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic models. Integration of tissue/cell type-specific omics data with the generic human metabolic models is the key step, and we discuss omics data and their integration methods to achieve this task. The initial version of the tissue/cell type-specific human metabolic models can further be computationally refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model.

  8. Estimated generic prices for novel treatments for drug-resistant tuberculosis.

    PubMed

    Gotham, Dzintars; Fortunak, Joseph; Pozniak, Anton; Khoo, Saye; Cooke, Graham; Nytko, Frederick E; Hill, Andrew

    2017-04-01

    The estimated worldwide annual incidence of MDR-TB is 480 000, representing 5% of TB incidence, but 20% of mortality. Multiple drugs have recently been developed or repurposed for the treatment of MDR-TB. Currently, treatment for MDR-TB costs thousands of dollars per course. To estimate generic prices for novel TB drugs that would be achievable given large-scale competitive manufacture. Prices for linezolid, moxifloxacin and clofazimine were estimated based on per-kilogram prices of the active pharmaceutical ingredient (API). Other costs were added, including formulation, packaging and a profit margin. The projected costs for sutezolid were estimated to be equivalent to those for linezolid, based on chemical similarity. Generic prices for bedaquiline, delamanid and pretomanid were estimated by assessing routes of synthesis, costs/kg of chemical reagents, routes of synthesis and per-step yields. Costing algorithms reflected variable regulatory requirements and efficiency of scale based on demand, and were validated by testing predictive ability against widely available TB medicines. Estimated generic prices were US$8-$17/month for bedaquiline, $5-$16/month for delamanid, $11-$34/month for pretomanid, $4-$9/month for linezolid, $4-$9/month for sutezolid, $4-$11/month for clofazimine and $4-$8/month for moxifloxacin. The estimated generic prices were 87%-94% lower than the current lowest available prices for bedaquiline, 95%-98% for delamanid and 94%-97% for linezolid. Estimated generic prices were $168-$395 per course for the STREAM trial modified Bangladesh regimens (current costs $734-$1799), $53-$276 for pretomanid-based three-drug regimens and $238-$507 for a delamanid-based four-drug regimen. Competitive large-scale generic manufacture could allow supplies of treatment for 5-10 times more MDR-TB cases within current procurement budgets. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Validity and reliability of the Iranian version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™) Generic Core Scales in children

    PubMed Central

    2012-01-01

    Background This study aimed to investigate the reliability and validity of the Iranian version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™ 4.0) Generic Core Scales in children. Methods A standard forward and backward translation procedure was used to translate the US English version of the PedsQL™ 4.0 Generic Core Scales for children into the Iranian language (Persian). The Iranian version of the PedsQL™ 4.0 Generic Core Scales was completed by 503 healthy and 22 chronically ill children aged 8-12 years and their parents. The reliability was evaluated using internal consistency. Known-groups discriminant comparisons were made, and exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were conducted. Results The internal consistency, as measured by Cronbach's alpha coefficients, exceeded the minimum reliability standard of 0.70. All monotrait-multimethod correlations were higher than multitrait-multimethod correlations. The intraclass correlation coefficients (ICC) between the children self-report and parent proxy-reports showed moderate to high agreement. Exploratory factor analysis extracted six factors from the PedsQL™ 4.0 for both self and proxy reports, accounting for 47.9% and 54.8% of total variance, respectively. The results of the confirmatory factor analysis for 6-factor models for both self-report and proxy-report indicated acceptable fit for the proposed models. Regarding health status, as hypothesized from previous studies, healthy children reported significantly higher health-related quality of life than those with chronic illnesses. Conclusions The findings support the initial reliability and validity of the Iranian version of the PedsQL™ 4.0 as a generic instrument to measure health-related quality of life of children in Iran. PMID:22221765

  10. Validity and reliability of the Iranian version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™) Generic Core Scales in children.

    PubMed

    Amiri, Parisa; Eslamian, Ghazaleh; Mirmiran, Parvin; Shiva, Niloofar; Jafarabadi, Mohammad Asghari; Azizi, Fereidoun

    2012-01-05

    This study aimed to investigate the reliability and validity of the Iranian version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™ 4.0) Generic Core Scales in children. A standard forward and backward translation procedure was used to translate the US English version of the PedsQL™ 4.0 Generic Core Scales for children into the Iranian language (Persian). The Iranian version of the PedsQL™ 4.0 Generic Core Scales was completed by 503 healthy and 22 chronically ill children aged 8-12 years and their parents. The reliability was evaluated using internal consistency. Known-groups discriminant comparisons were made, and exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were conducted. The internal consistency, as measured by Cronbach's alpha coefficients, exceeded the minimum reliability standard of 0.70. All monotrait-multimethod correlations were higher than multitrait-multimethod correlations. The intraclass correlation coefficients (ICC) between the children self-report and parent proxy-reports showed moderate to high agreement. Exploratory factor analysis extracted six factors from the PedsQL™ 4.0 for both self and proxy reports, accounting for 47.9% and 54.8% of total variance, respectively. The results of the confirmatory factor analysis for 6-factor models for both self-report and proxy-report indicated acceptable fit for the proposed models. Regarding health status, as hypothesized from previous studies, healthy children reported significantly higher health-related quality of life than those with chronic illnesses. The findings support the initial reliability and validity of the Iranian version of the PedsQL™ 4.0 as a generic instrument to measure health-related quality of life of children in Iran.

  11. Efficacy of antipsychotics in dementia depended on the definition of patients and outcomes: a meta-epidemiological study.

    PubMed

    Smeets, C H W; Zuidema, S U; Hulshof, T A; Smalbrugge, M; Gerritsen, D L; Koopmans, R T C M; Luijendijk, H J

    2018-05-18

    Postulating that efficacy of antipsychotics for agitation and psychosis in dementia is best estimated in trials among patients with these symptoms and with symptom-specific outcomes, we investigated whether clinically broader definitions affected the pooled efficacy. Trials were searched in multiple databases and categorized according to patient population (agitated, psychotic, mixed) and outcome scale (agitation, psychosis, generic). Standardized mean differences with 95% confidence intervals were calculated for conventional and atypical antipsychotics separately. Thirty trials met our inclusion criteria. Conventional antipsychotics might have a small effect in agitated patients on agitation scales (-0.44; -0.88, 0.01), and in psychotic patients on psychosis scales (-0.31; -0.61, -0.02). There was no effect on generic scales. Efficacy of atypical antipsychotics was not established in agitated patients on agitation scales (-0.15; -0.43, 0.13), and in psychotic patients on psychosis scales (-0.11; -0.20, -0.03), but was small in mixed patients on agitation scales (-0.29; -0.40, -0.18). Pooled efficacy of antipsychotics for agitation and psychosis in dementia is biased when based on trials that included patients without these target symptoms, or on results measured with generic scales. This finding is important for reviewers and guideline developers who select trials for reviews. Copyright © 2018. Published by Elsevier Inc.

  12. Critical Fluctuations in Cortical Models Near Instability

    PubMed Central

    Aburn, Matthew J.; Holmes, C. A.; Roberts, James A.; Boonstra, Tjeerd W.; Breakspear, Michael

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen–Rit model) of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations. PMID:22952464

  13. The PedsQL multidimensional fatigue scale in pediatric obesity: feasibility, reliability and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2010-01-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were completed by 41 pediatric patients with a physician-diagnosis of obesity and 43 parents from a hospital-based Pediatric Endocrinology Clinic. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (1.6%, child report; 0.5%, parent report), achieved excellent reliability for the Total Fatigue Scale Score (alpha = 0.90 child report, 0.90 parent report), distinguished between pediatric patients with obesity and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with obesity experienced fatigue comparable with pediatric patients receiving cancer treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with obesity.

  14. Increasing Supercycle Lengths of Active SU UMa-type Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Otulakowska-Hypka, M.; Olech, A.

    2014-12-01

    We present observational evidence that supercycle lengths of the most active SU UMa-type stars are increasing during the past decades. We analyzed a large number of photometric measurements from available archives and found that this effect is generic for this class of stars, independently of their evolutionary status. This finding is in agreement with previous predictions and the most recent work of Patterson et al. (2012) on BK Lyn.

  15. Hydrodynamics of electrons in graphene.

    PubMed

    Lucas, Andrew; Fong, Kin Chung

    2018-02-07

    Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the 'phase diagram' of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.

  16. Hydrodynamics of electrons in graphene

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Chung Fong, Kin

    2018-02-01

    Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the ‘phase diagram’ of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.

  17. Generic evolution of mixing in heterogeneous media

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J.; Carrera, J.; Dentz, M.; Le Borgne, T.

    2011-12-01

    Mixing in heterogeneous media results from the competition bewteen flow fluctuations and local scale diffusion. Flow fluctuations quickly create concentration contrasts and thus heterogeneity of the concentration field, which is slowly homogenized by local scale diffusion. Mixing first deviates from Gaussian mixing, which represents the potential mixing induced by spreading before approaching it. This deviation fundamentally expresses the evolution of the interaction between spreading and local scale diffusion. We characterize it by the ratio γ of the non-Gaussian to the Gaussian mixing states. We define the Gaussian mixing state as the integrated squared concentration of the Gaussian plume that has the same longitudinal dispersion as the real plume. The non-Gaussian mixing state is the difference between the overall mixing state defined as the integrated squared concentration and the Gaussian mixing state. The main advantage of this definition is to use the full knowledge previously acquired on dispersion for characterizing mixing even when the solute concentration field is highly non Gaussian. Using high precision numerical simulations, we show that γ quickly increases, peaks and slowly decreases. γ can be derived from two scales characterizing spreading and local mixing, at least for large flux-weighted solute injection conditions into classically log-normal Gaussian correlated permeability fields. The spreading scale is directly related to the longitudinal dispersion. The local mixing scale is the largest scale over which solute concentrations can be considered locally uniform. More generally, beyond the characteristics of its maximum, γ turns out to have a highly generic scaling form. Its fast increase and slow decrease depend neither on the heterogeneity level, nor on the ratio of diffusion to advection, nor on the injection conditions. They might even not depend on the particularities of the flow fields as the same generic features also prevail for Taylor dispersion. This generic characterization of mixing can offer new ways to set up transport equations that honor not only advection and spreading (dispersion), but also mixing.

  18. Ash deposits - Initiating the change from empiricism to generic engineering. Part 1: The generic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagoner, C.L.; Wessel, R.A.

    1986-01-01

    Empiricism has traditionally been used to relate laboratory and pilot-scale measurements of fuel characteristics with the design, performance, and the slagging and fouling behavior of steam generators. Currently, a new engineering approach is being evaluated. The goal is to develop and use calculations and measurements from several engineering disciplines that exceed the demonstrated limitations of present empirical techniques for predicting slagging/fouling behavior. In Part I of this paper, the generic approach to deposits and boiler performance is defined and a matrix of engineering concepts is described. General relationships are presented for assessing the effects of deposits and sootblowing on themore » real-time performance of heat transfer surfaces in pilot- and commercial-scale steam generators.« less

  19. The global biopharma industry and the rise of Indian drug multinationals: implications for Australian generics policy.

    PubMed

    Löfgren, Hans

    2007-06-01

    This article provides a synopsis of the new dynamics of the global biopharma industry. The emergence of global generics companies with capabilities approximating those of 'big pharma' has accelerated the blurring of boundaries between the innovator and generics sectors. Biotechnology-based products form a large and growing segment of prescription drug markets and regulatory pathways for biogenerics are imminent. Indian biopharma multinationals with large-scale efficient manufacturing plants and growing R&D capabilities are now major suppliers of Active Pharmaceutical Ingredients (APIs) and generic drugs across both developed and developing countries. In response to generic competition, innovator companies employ a range of life cycle management techniques, including the launch of 'authorised generics'. The generics segment in Australia will see high growth rates in coming years but the prospect for local manufacturing is bleak. The availability of cheap generics in international markets has put pressure on Pharmaceutical Benefits Scheme (PBS) pricing arrangements, and a new policy direction was announced in November 2006. Lower generics prices will have a negative impact on some incumbent suppliers but industrial renewal policies for the medicines industry in Australia are better focused on higher value R&D activities and niche manufacturing of sophisticated products.

  20. Embedding Academic Literacy Skills: Towards a Best Practice Model

    ERIC Educational Resources Information Center

    McWilliams, Robyn; Allan, Quentin

    2014-01-01

    Learning advisors provide academic literacy development support in a variety of configurations, ranging from one-on-one consultations through to large-scale lectures. Such lectures can be generic, stand-alone modules or embedded within a discipline-specific course. Pragmatic and institutional considerations suggest that a generic model of delivery…

  1. Measurement of Quality of Life III. From the IQOL Theory to the Global, Generic SEQOL Questionnaire

    PubMed Central

    Ventegodt, Soren; Merrick, Joav; Andersen, Niels Jorgen

    2003-01-01

    The Danish Quality of Life Survey is based on the philosophy of life known as the integrative quality-of-life (IQOL) theory. It consists of eight different quality-of-life concepts, ranging from the superficially subjective via the deeply existential to the superficially objective (well being, satisfaction with life, happiness, meaning in life, biological order, realizing life potential, fulfillment of needs, and objective factors [ability of functioning and fulfilling societal norms]).This paper presents the work underlying the formulation of the theories of a good life and how these theories came to be expressed in a comprehensive, multidimensional, generic questionnaire for the evaluation of the global quality of life — SEQOL (self-evaluation of quality of life) — presented in full length in this paper. The instruments and theories on which the Quality of Life Survey was based are constantly being updated. It is an on-going process due to aspects such as human development, language, and culture. We arrived at eight rating scales for the quality of life that, guided by the IQOL theory, were combined into a global and generic quality-of-life rating scale. This was simplified to the validated QOL5 with only five questions, made for use in clinical databases. Unfortunately, the depth of human existence is to some extent lost in QOL5.We continue to aim towards greater simplicity, precision, and depth in the questions in order to explore the depths of human existence. We have not yet found a final form that enables us to fully rate the quality of life in practice. We hope that the several hundred questions we found necessary to adequately implement the theories of the Quality of Life Survey can be replaced by far fewer; ideally, only eight questions representing the eight component theories. These eight ideal questions have not yet been evaluated, and therefore they should not form the basis of a survey. However, the perspective is clear. If eight simple questions can accurately rate the quality of life as well as its depth, we have found an instrument of immense practical scope. PMID:14570988

  2. Soot loading in a generic gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1987-01-01

    Variation in soot loading along the centerline of a generic gas turbine combustor was experimentally investigated. The 12.7-cm dia burner consisted of six sheet-metal louvers. Soot loading along the burner length was quantified by acquiring measurements first at the exit of the full-length combustor and then at upstream stations by sequential removal of liner louvers to shorten the burner length. Alteration of the flow field approaching removed louvers, maintaining a constant liner pressure drop. Burner exhaust flow was sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust flow were determined by optical techniques. Four test fuels were burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Data were acquired at two combustor pressures. Particulate concentration data indicated a strong oxidation mechanism in the combustor secondary zone, though the oxidation was significantly affected by flow temperature. Soot production was directly related to fuel smoke point. Less soot production and lower secondary-zone oxidation rates were observed at reduced combustor pressure.

  3. Nucleation of stable superconductivity in YBCO-films

    NASA Astrophysics Data System (ADS)

    Kötzler, J.

    By means of the linear dynamic conductivity, inductively measured on epitaxial films between 30mHz and 30 MHz, the transition line T g (B) to generic superconductivity is studied in fields between B=0 and 19T. It follows closely the melting line T m (B) described recently in terms of a blowout of thermal vortex loops in clean materials. The critical exponents of the correlation length and time near T g (B), however, enem to be dominated by some intrinsic disorder. Columnar defects produced by heavy-ion irradiation up to field-equivalent-doses of B ϕ =10T lead to adisappointing reduction of T g (B→0) while for B>B ϕ the generic line of the pristine film is recovered. These novel results are also discussed in terms of a loop-driven destruction of generic superconductivity.

  4. Generic Modeling of a Life Support System for Process Technology Comparison

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  5. Psychometric properties of the Sinhala version of the PedsQL™ 4.0 Generic Core Scales in early adolescents in Sri Lanka

    PubMed Central

    2012-01-01

    Background The concept Health related Quality of life (HRQOL) is increasingly recognized as an important health outcome measure in clinical and research fields. The present study attempted to evaluate the psychometric properties of the Sinhala version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™ 4.0) Generic Core Scales among adolescents in Sri Lanka. Methods The original US PedsQL™ was translated into Sinhala and conceptually validated according to international guidelines. A cross-sectional study was conducted among 142 healthy school going adolescents (12-14 years), their parents (n = 120) and a group of adolescents with asthma who attended asthma clinics (n = 115). Reliability was assessed using Cronbach’s alpha and validity by examining scale structure, exploring inter-scale correlations and comparing across known groups (healthy vs. chronically ill). Results The PedsQL™ Sinhala version was found to be acceptable with minimal missing responses. All scales demonstrated satisfactory reliability. Cronbach’s alpha for the total scale scores was 0.85 for adolescent self-report while for the parent proxy-report for the healthy group it was 0.86. No floor effects were observed. Ceiling effects were noticed in self-report and parent proxy-report for the healthy group. Overall results of the multi trait scaling analysis confirmed the scale structure with 74% item-convergent validity, 88% item-discriminant validity and an overall scaling success of 72%. Moderate to high correlations were shown among the domains of teen self-report (Spearman rho = .37-.54) and between teen self-report and parent proxy-reports (Spearman rho = .41-.57). The PedsQL™ tool was able to discriminate between the quality of life in healthy adolescents and adolescents with asthma. Conclusion The findings support the reliability and validity of the Sinhala version of the PedsQL™ 4.0 Generic Core Scales as a generic instrument to measure HRQOL among early adolescents in Sri Lanka in a population setting. PMID:22947113

  6. Impaired health-related quality of life in children and adolescents with chronic conditions: a comparative analysis of 10 disease clusters and 33 disease categories/severities utilizing the PedsQL 4.0 Generic Core Scales.

    PubMed

    Varni, James W; Limbers, Christine A; Burwinkle, Tasha M

    2007-07-16

    Advances in biomedical science and technology have resulted in dramatic improvements in the healthcare of pediatric chronic conditions. With enhanced survival, health-related quality of life (HRQOL) issues have become more salient. The objectives of this study were to compare generic HRQOL across ten chronic disease clusters and 33 disease categories/severities from the perspectives of patients and parents. Comparisons were also benchmarked with healthy children data. The analyses were based on over 2,500 pediatric patients from 10 physician-diagnosed disease clusters and 33 disease categories/severities and over 9,500 healthy children utilizing the PedsQL 4.0 Generic Core Scales. Patients were recruited from general pediatric clinics, subspecialty clinics, and hospitals. Pediatric patients with diabetes, gastrointestinal conditions, cardiac conditions, asthma, obesity, end stage renal disease, psychiatric disorders, cancer, rheumatologic conditions, and cerebral palsy self-reported progressively more impaired overall HRQOL than healthy children, respectively, with medium to large effect sizes. Patients with cerebral palsy self-reported the most impaired HRQOL, while patients with diabetes self-reported the best HRQOL. Parent proxy-reports generally paralleled patient self-report, with several notable differences. The results demonstrate differential effects of pediatric chronic conditions on patient HRQOL across diseases clusters, categories, and severities utilizing the PedsQL 4.0 Generic Core Scales from the perspectives of pediatric patients and parents. The data contained within this study represents a larger and more diverse population of pediatric patients with chronic conditions than previously reported in the extant literature. The findings contribute important information on the differential effects of pediatric chronic conditions on generic HRQOL from the perspectives of children and parents utilizing the PedsQL 4.0 Generic Core Scales. These findings with the PedsQL have clinical implications for the healthcare services provided for children with chronic health conditions. Given the degree of reported impairment based on PedsQL scores across different pediatric chronic conditions, the need for more efficacious targeted treatments for those pediatric patients with more severely impaired HRQOL is clearly and urgently indicated.

  7. Impaired health-related quality of life in children and adolescents with chronic conditions: a comparative analysis of 10 disease clusters and 33 disease categories/severities utilizing the PedsQL™ 4.0 Generic Core Scales

    PubMed Central

    Varni, James W; Limbers, Christine A; Burwinkle, Tasha M

    2007-01-01

    Background Advances in biomedical science and technology have resulted in dramatic improvements in the healthcare of pediatric chronic conditions. With enhanced survival, health-related quality of life (HRQOL) issues have become more salient. The objectives of this study were to compare generic HRQOL across ten chronic disease clusters and 33 disease categories/severities from the perspectives of patients and parents. Comparisons were also benchmarked with healthy children data. Methods The analyses were based on over 2,500 pediatric patients from 10 physician-diagnosed disease clusters and 33 disease categories/severities and over 9,500 healthy children utilizing the PedsQL™ 4.0 Generic Core Scales. Patients were recruited from general pediatric clinics, subspecialty clinics, and hospitals. Results Pediatric patients with diabetes, gastrointestinal conditions, cardiac conditions, asthma, obesity, end stage renal disease, psychiatric disorders, cancer, rheumatologic conditions, and cerebral palsy self-reported progressively more impaired overall HRQOL than healthy children, respectively, with medium to large effect sizes. Patients with cerebral palsy self-reported the most impaired HRQOL, while patients with diabetes self-reported the best HRQOL. Parent proxy-reports generally paralleled patient self-report, with several notable differences. Conclusion The results demonstrate differential effects of pediatric chronic conditions on patient HRQOL across diseases clusters, categories, and severities utilizing the PedsQL™ 4.0 Generic Core Scales from the perspectives of pediatric patients and parents. The data contained within this study represents a larger and more diverse population of pediatric patients with chronic conditions than previously reported in the extant literature. The findings contribute important information on the differential effects of pediatric chronic conditions on generic HRQOL from the perspectives of children and parents utilizing the PedsQL™ 4.0 Generic Core Scales. These findings with the PedsQL™ have clinical implications for the healthcare services provided for children with chronic health conditions. Given the degree of reported impairment based on PedsQL™ scores across different pediatric chronic conditions, the need for more efficacious targeted treatments for those pediatric patients with more severely impaired HRQOL is clearly and urgently indicated. PMID:17634123

  8. Patient-reported outcome measures in reconstructive breast surgery: is there a role for generic measures?

    PubMed

    Korus, Lisa J; Cypel, Tatiana; Zhong, Toni; Wu, Albert W

    2015-03-01

    Patient-reported outcomes provide an invaluable tool in the assessment of outcomes in plastic surgery. Traditionally, patient-reported outcomes have consisted of either generic or ad hoc measures; however, more recently, there has been interest in formally constructed and validated questionnaires that are specifically designed for a particular patient population. The purpose of this systematic review was to determine whether generic measures still have a role in the evaluation of breast reconstruction outcomes, given the recent popularity and push for use of specific measures. A systematic review was performed to identify all articles using patient-reported outcomes in the assessment of postmastectomy breast reconstruction. Frequency of use was tabulated and the most frequently used tools were assessed for success of use, using criteria described previously by the Medical Outcomes Trust. To date, the most frequently used measures are still generic measures. The 36-Item Short-Form Health Survey was the most frequently used and most successfully applied showing evidence of responsiveness in multiple settings. Other measures such as the Hospital Anxiety and Depression Scale, the Hopwood Body Image Scale, and the Rosenberg Self-Esteem Scale were able to show responsiveness in certain settings but lacked evidence as universal tools for the assessment of outcomes in reconstructive breast surgery. Despite the recent advent of measures designed specifically to assess patient-reported outcomes in the breast reconstruction population, there still appears to be a role for the use of generic instruments. Many of these tools would benefit from undergoing formal validation in the breast reconstruction population.

  9. The PedsQL Multidimensional Fatigue Scale in type 1 diabetes: feasibility, reliability, and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2009-08-01

    The Pediatric Quality of Life Inventory (PedsQL, Mapi Research Trust, Lyon, France; www.pedsql.org) is a modular instrument designed to measure health-related quality of life and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were administered to 83 pediatric patients with type 1 diabetes and 84 parents. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (0.3% child report and 0.3% parent report), achieved excellent reliability for the Total Fatigue Scale score (alpha= 0.92 child report, 0.94 parent report), distinguished between pediatric patients with diabetes and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with diabetes experienced fatigue that was comparable to pediatric patients with cancer on treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with type 1 diabetes.

  10. The PedsQL Multidimensional Fatigue Scale in young adults: feasibility, reliability and validity in a University student population.

    PubMed

    Varni, James W; Limbers, Christine A

    2008-02-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents ages 2-18. The PedsQL Multidimensional Fatigue Scale was designed as a generic symptom-specific instrument to measure fatigue in pediatric patients ages 2-18. Since a sizeable number of pediatric patients prefer to remain with their pediatric providers after age 18, the objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in young adults. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains), the PedsQL 4.0 Generic Core Scales Young Adult Version, and the SF-8 Health Survey were completed by 423 university students ages 18-25. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (alpha = 0.90), distinguished between healthy young adults and young adults with chronic health conditions, was significantly correlated with the relevant PedsQL 4.0 Generic Core Scales and the SF-8 standardized scores, and demonstrated a factor-derived structure largely consistent with the a priori conceptual model. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in a convenience sample of young adult university students. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the evaluation of fatigue for a broad age range.

  11. Psychometric properties of the Chinese version of the pediatric quality of life inventory 4.0 Generic core scales among children with short stature.

    PubMed

    Wu, Hua-hong; Li, Hui; Gao, Qian

    2013-05-30

    The quality of life in children with short stature was rarely studied in China, so we explore these children's quality of life and psychometric properties of the Chinese version of the Pediatric Quality of Life Inventory 4.0(PedsQL4.0) Generic Core Scales among children with short stature. A total of 201 children aged 8 ~ 18 years from the short stature clinic and other clinics of capital institute of pediatrics attended this study. The questionnaires include demographic information and PedsQL4.0 generic core scales. According to children's height, we divided them into three groups: short stature, normal short and normal group, then compared the score of scales by the height category. Moreover, we analyzed the reliability and validity of PedsQL4.0 generic core scales in these 201 children. The child self-report total PedsQL mean score, for the short stature, normal short and normal groups were 77.77 ± 9.69, 83.50 ± 8.56 and 87.36 ± 7.23; the parent-proxy total PedsQL mean score were 77.62 ± 10.50, 82.69 ± 8.35 and 84.91 ± 9.96 respectively. Both for children self- and parent proxy-reports, the Cronbach's α coefficients of total scale, psychosocial health and social functioning ranged between 0.74 and 0.80, it ranged between 0.51 and 0.66 in other dimensions. For child self-reports, the correlation coefficients of 17 items' scores (total 23 items) with the scores of dimensions they belong to were above 0.5, with the highest 0.759; the other 6 items' correlation coefficients were below 0.5, with the lowest 0.280. For parent proxy-reports, the correlation coefficients of 19 items' scores with the scores of dimension they belong to were above 0.5, with the highest 0.793, the other 4 items' below 0.5 with the lowest 0.243. The quality of life in children with short stature is worse than their normal peers by Peds QL4.0 generic core scales, the statues of their quality of life was positively related to their stature.

  12. On non-local energy transfer via zonal flow in the Dimits shift

    NASA Astrophysics Data System (ADS)

    St-Onge, Denis A.

    2017-10-01

    The two-dimensional Terry-Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth-Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.

  13. Early Breakdown of Area-Law Entanglement at the Many-Body Delocalization Transition

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep; Singh, Rajiv R. P.

    2015-10-01

    We introduce the numerical linked cluster expansion as a controlled numerical tool for the study of the many-body localization transition in a disordered system with continuous nonperturbative disorder. Our approach works directly in the thermodynamic limit, in any spatial dimension, and does not rely on any finite size scaling procedure. We study the onset of many-body delocalization through the breakdown of area-law entanglement in a generic many-body eigenstate. By looking for initial signs of an instability of the localized phase, we obtain a value for the critical disorder, which we believe should be a lower bound for the true value, that is higher than current best estimates from finite size studies. This implies that most current methods tend to overestimate the extent of the localized phase due to finite size effects making the localized phase appear stable at small length scales. We also study the mobility edge in these systems as a function of energy density, and we find that our conclusion is the same at all examined energies.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Onge, Denis A.

    The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in anmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.« less

  15. Psychometric properties of the Swedish PedsQL, Pediatric Quality of Life Inventory 4.0 generic core scales.

    PubMed

    Petersen, Solveig; Hägglöf, Bruno; Stenlund, Hans; Bergström, Erik

    2009-09-01

    To study the psychometric performance of the Swedish version of the Pediatric Quality of Life Inventory (PedsQL) 4.0 generic core scales in a general child population in Sweden. PedsQL forms were distributed to 2403 schoolchildren and 888 parents in two different school settings. Reliability and validity was studied for self-reports and proxy reports, full forms and short forms. Confirmatory factor analysis tested the factor structure and multigroup confirmatory factor analysis tested measurement invariance between boys and girls. Test-retest reliability was demonstrated for all scales and internal consistency reliability was shown with alpha value exceeding 0.70 for all scales but one (self-report short form: social functioning). Child-parent agreement was low to moderate. The four-factor structure of the PedsQL and factorial invariance across sex subgroups were confirmed for the self-report forms and for the proxy short form, while model fit indices suggested improvement of several proxy full-form scales. The Swedish PedsQL 4.0 generic core scales are a reliable and valid tool for health-related quality of life (HRQoL) assessment in Swedish child populations. The proxy full form, however, should be used with caution. The study also support continued use of the PedsQL as a four-factor model, capable of revealing meaningful HRQoL differences between boys and girls.

  16. [Intention of purchasing generic prescription drugs on the part of consumers in Asturias, Spain].

    PubMed

    González Hernando, Santiago; González Mieres, Celina; Díaz Martín, Ana M

    2003-01-01

    Ascertaining how consumers perceive the risk related to the use of generic prescription drugs and those factors which have the greatest impact on the intention to request a generic drug from the prescribing physician and/or the pharmacist for the purpose of determining any possible barriers or hindrances to the acceptance of generics and to gather information to aid healthcare managers in their decision-making processes. Study on prescription drug use revolving around the degree to which patients are willing to request an EFG. In this quantitative transversal study, a total of 542 individuals were individually surveyed upon exiting a healthcare center or pharmacy in Asturias. A scale for measuring the perceived risk involved in the purchase of a prescription drug including 15 attributes grouped into five aspects was included in the questionnaire. Information was also gathered regarding the intention of using generic prescription drugs and on the demographic and socioeconomic characteristics of those surveyed. For the analysis of the results, a factorial confirmational analysis, multiple regression and univariate analysis were used. The data was processed using the EQS and SPSS statistics programs. Mean perception of the risk (scales 1-7): functional: 2.75; physical: 2.68: financial: 2.19; psychological: 1.99; social: 1.42. Factors having a bearing on the intention of requesting generic prescription drugs from their physician: psychological risk (p = 0.000). On requesting the same from their pharmacist: psychological risk (p = 0.000) and social risk (p = 0.020). The agents interested in the development on the EFG market should target their communication efforts on putting the functional and financial aspects of the manufacturer's specialties and generic specialties on the same level, but should not leave out psychological and social aspects of the consumers' purchasing behavior.

  17. The global biopharma industry and the rise of Indian drug multinationals: implications for Australian generics policy

    PubMed Central

    Löfgren, Hans

    2007-01-01

    This article provides a synopsis of the new dynamics of the global biopharma industry. The emergence of global generics companies with capabilities approximating those of 'big pharma' has accelerated the blurring of boundaries between the innovator and generics sectors. Biotechnology-based products form a large and growing segment of prescription drug markets and regulatory pathways for biogenerics are imminent. Indian biopharma multinationals with large-scale efficient manufacturing plants and growing R&D capabilities are now major suppliers of Active Pharmaceutical Ingredients (APIs) and generic drugs across both developed and developing countries. In response to generic competition, innovator companies employ a range of life cycle management techniques, including the launch of 'authorised generics'. The generics segment in Australia will see high growth rates in coming years but the prospect for local manufacturing is bleak. The availability of cheap generics in international markets has put pressure on Pharmaceutical Benefits Scheme (PBS) pricing arrangements, and a new policy direction was announced in November 2006. Lower generics prices will have a negative impact on some incumbent suppliers but industrial renewal policies for the medicines industry in Australia are better focused on higher value R&D activities and niche manufacturing of sophisticated products. PMID:17543115

  18. Validity and responsiveness of the pediatric quality of life inventory (PedsQL) 4.0 generic core scales in the pediatric inpatient setting.

    PubMed

    Desai, Arti D; Zhou, Chuan; Stanford, Susan; Haaland, Wren; Varni, James W; Mangione-Smith, Rita M

    2014-12-01

    Validated patient-reported outcomes responsive to clinical change are needed to evaluate the effectiveness of quality improvement interventions. To evaluate responsiveness, construct validity, and predictive validity of the Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Scales in the pediatric inpatient setting. Prospective, cohort study of parents and caregivers of patients 1 month to 18 years old (n = 4637) and patients 13 to 18 years old (n = 359) admitted to Seattle Children's Hospital between October 1, 2011, and December 31, 2013. Of 7184 eligible participants invited to complete the survey, 4637 (64.5%) completed the PedsQL on admission, and of these 2694 (58.1%) completed the follow-up survey 2 to 8 weeks after discharge. Responsiveness was assessed by calculating improvement scores (difference between follow-up and admission scores). Construct validity was examined by comparing the mean improvement scores for known groups differing by medical complexity. Predictive validity was assessed using Poisson regression to examine associations among admission scores, prolonged length of stay (≥3 days), and 30-day readmissions or emergency department (ED) return visits. Similar models examined the association between improvement scores and risk for 30-day readmissions or ED return visits. The mean (SD) PedsQL improvement scores (scale, 0-100) were 22.1 (22.7) for total, 29.4 (32.4) for physical, and 17.1 (21.0) for psychosocial. The mean PedsQL total improvement scores were lower for patients with medically complex conditions compared with patients without chronic conditions (13.7 [95% CI, 11.6-15.8] vs. 24.1 [95% CI, 22.4-25.7], P < .001). A 10-point decrement in the PedsQL total admission score below the established community-based mean was associated with an increase in risk for prolonged length of stay (15% [95% CI, 13%-17%]), 30-day readmissions (8% [95% CI, 3%-14%]), and ED return visits (13% [95% CI, 6%-20%]). A 5-point decrement in the PedsQL total improvement score below the study sample mean improvement score was associated with an increase in risk for 30-day readmissions or ED return visits (9% [95% CI, -1% to 19%]). The PedsQL demonstrated responsiveness, construct validity, and predictive validity in hospitalized pediatric patients. The PedsQL may be a useful patient-reported outcome for hospital-based clinical effectiveness research.

  19. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth S.; Saltzman, Erica J.

    2004-07-01

    A statistical mechanical theory of collective dynamic barriers, slow segmental relaxation, and the glass transition of polymer melts is developed by combining, and in some aspects extending, methods of mode coupling, density functional, and activated hopping transport theories. A coarse-grained description of polymer chains is adopted and the melt is treated as a liquid of segments. The theory is built on the idea that collective density fluctuations on length scales considerably longer than the local cage scale are of primary importance in the deeply supercooled regime. The barrier hopping or segmental relaxation time is predicted to be a function primarily of a single parameter that is chemical structure, temperature, and pressure dependent. This parameter depends on the material-specific dimensionless amplitude of thermal density fluctuations (compressibility) and a reduced segmental density determined by the packing length and backbone characteristic ratio. Analytic results are derived for a crossover temperature Tc, collective barrier, and glass transition temperature Tg. The relation of these quantities to structural and thermodynamic properties of the polymer melt is established. A universal power-law scaling behavior of the relaxation time below Tc is predicted based on identification of a reduced temperature variable that quantifies the breadth of the supercooled regime. Connections between the ratio Tc/Tg, two measures of dynamic fragility, and the magnitude of the local relaxation time at Tg logically follow. Excellent agreement with experiment is found for these generic aspects, and the crucial importance of the experimentally observed near universality of the dynamic crossover time is established. Extensions of the theory to treat the full chain dynamics, heterogeneity, barrier fluctuations, and nonpolymeric thermal glass forming liquids are briefly discussed.

  20. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  1. Can the generic antiretroviral industry support access to a universal antiretroviral regimen?

    PubMed

    Amole, Carolyn D; Middlecote, Caroline; Prabhu, Vineet R; Kumarasamy, N

    2017-07-01

    The generic antiretroviral (ARV) industry played a critical role in the massive scale-up of HIV treatment in low-income and middle-income countries since 2000. As the global community looks ahead to a universal antiretroviral regimen, this article considers the industry's role in supporting universal access to affordable, simpler, more durable, and tolerable HIV treatment regimens. Generic manufacturers made treatment scale-up in low-income and middle-income countries possible through reducing prices, combining molecules from different originator companies to develop optimal fixed-dose combinations, and investing in production capacity to meet escalating demand. Achieving scale-up of a universal regimen will require continued partnership in these areas. Collaboration on the demand and supply sides of the ARV marketplace will be required to foster a healthy and sustainable marketplace for new regimens. This includes clear priority setting from the global treatment community on priority products; predictable demand; regulatory prioritization of optimal products; effective tendering and procurement practices that enable multiple suppliers to participate in the market; coordinated product introduction efforts between Ministries of Health, partners, and civil society; and transparency from both buyers and suppliers to promote and monitor supply security. New regimens will benefit people living with HIV, as well as buyers and generic suppliers, by maximizing existing production capacity and treatment budgets to reach the 90-90-90 goals.

  2. Projected economic impact of clinical findings of generic entry of topiramate on G4 European countries.

    PubMed

    Paradis, Pierre Emmanuel; Latrémouille-Viau, Dominick; Moore, Yuliya; Mishagina, Natalia; Lafeuille, Marie-Hélène; Lefebvre, Patrick; Gaudig, Maren; Duh, Mei Sheng

    2009-07-01

    To explore the effects of generic substitution of the antiepileptic drug (AED) topiramate (Topamax) in Canada; to convert observed Canadian costs into the settings of France, Germany, Italy, and the United Kingdom (UK); and to forecast the economic impact of generic topiramate entry in these four European countries. Health claims from Régie de l'assurance maladie du Québec (RAMQ) plan (1/2006-9/2008) and IMS Health data (1998-2008) were used. Patients with epilepsy and > or = 2 topiramate dispensings were selected. An open-cohort design was used to classify observation into mutually-exclusive periods of branded versus generic use of topiramate. Canadian healthcare utilization and costs (2007 CAN$/person-year) were compared between periods using multivariate models. Annualized per-patient costs (2007 euro or 2007 pound sterling/person-year) were converted using Canadian utilization rates, European prices and service-use ratios. Non-parametric bootstrap served to assess statistical significance of cost differences. Topiramate market was forecasted following generic entry (09/2009-09/2010) using autoregressive models based on the European experience. The economic impact of generic topiramate entry was estimated for each country. A total of 1164 patients (mean age: 39.8 years, 61.7% female) were observed for 2.6 years on average. After covariates adjustment, generic-use periods were associated with increased pharmacy dispensings (other AEDs: +0.95/person-year, non-AEDs: +12.28/person-year, p < 0.001), hospitalizations ( + 0.08/person-year, p = 0.015), and lengths of hospital stays (+0.51 days/person-year, p < 0.001). Adjusted costs, excluding topiramate, were CAN$1060/person-year higher during generic use (p = 0.005). Converted per-patient costs excluding topiramate were significantly higher for generic relative to brand periods in all European countries (adjusted cost differences per person-year: 706-815 euro, p < 0.001 for all comparisons). System-wide costs would increase from 3.5 to 24.4% one year after generic entry. Study limitations include the absence of indirect costs, possible claim inaccuracies, and IMS data limitations. Higher health costs were projected for G4 European countries from the Canadian experience following the generic entry of topiramate.

  3. Novel quantum phase transition from bounded to extensive entanglement

    PubMed Central

    Zhang, Zhao; Ahmadain, Amr

    2017-01-01

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises. PMID:28461464

  4. Novel quantum phase transition from bounded to extensive entanglement.

    PubMed

    Zhang, Zhao; Ahmadain, Amr; Klich, Israel

    2017-05-16

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.

  5. Communication: Slow relaxation, spatial mobility gradients, and vitrification in confined films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2014-10-28

    Two decades of experimental research indicate that spatial confinement of glass-forming molecular and polymeric liquids results in major changes of their slow dynamics beginning at large confinement distances. A fundamental understanding remains elusive given the generic complexity of activated relaxation in supercooled liquids and the major complications of geometric confinement, interfacial effects, and spatial inhomogeneity. We construct a predictive, quantitative, force-level theory of relaxation in free-standing films for the central question of the nature of the spatial mobility gradient. The key new idea is that vapor interfaces speed up barrier hopping in two distinct, but coupled, ways by reducing near surface local caging constraints and spatially long range collective elastic distortion. Effective vitrification temperatures, dynamic length scales, and mobile layer thicknesses naturally follow. Our results provide a unified basis for central observations of dynamic and pseudo-thermodynamic measurements.

  6. Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films

    DOE PAGES

    Mirigian, Stephen; Schweizer, Kenneth S.

    2014-10-31

    Two decades of experimental research indicate that spatial confinement of glass-forming molecular and polymeric liquids results in major changes of their slow dynamics beginning at large confinement distances. A fundamental understanding remains elusive given the generic complexity of activated relaxation in supercooled liquids and the major complications of geometric confinement, interfacial effects, and spatial inhomogeneity. For this research, we construct a predictive, quantitative, force-level theory of relaxation in free-standing films for the central question of the nature of the spatial mobility gradient. The key new idea is that vapor interfaces speed up barrier hopping in two distinct, but coupled, waysmore » by reducing near surface local caging constraints and spatially long range collective elastic distortion. Effective vitrification temperatures, dynamic length scales, and mobile layer thicknesses naturally follow. In conclusion, our results provide a unified basis for central observations of dynamic and pseudo-thermodynamic measurements.« less

  7. Magnetoresistance of an Anderson insulator of bosons.

    PubMed

    Gangopadhyay, Anirban; Galitski, Victor; Müller, Markus

    2013-07-12

    We study the magnetoresistance of two-dimensional bosonic Anderson insulators. We describe the change in spatial decay of localized excitations in response to a magnetic field, which is given by an interference sum over alternative tunneling trajectories. The excitations become more localized with increasing field (in sharp contrast to generic fermionic excitations which get weakly delocalized): the localization length ξ(B) is found to change as ξ(-1)(B)-ξ(-1)(0)~B(4/5). The quantum interference problem maps onto the classical statistical mechanics of directed polymers in random media (DPRM). We explain the observed scaling using a simplified droplet model which incorporates the nontrivial DPRM exponents. Our results have implications for a variety of experiments on magnetic-field-tuned superconductor-to-insulator transitions observed in disordered films, granular superconductors, and Josephson junction arrays, as well as for cold atoms in artificial gauge fields.

  8. Understanding and perceptions of final-year Doctor of Pharmacy students about generic medicines in Karachi, Pakistan: a quantitative insight

    PubMed Central

    Jamshed, Shazia Qasim; Ibrahim, Mohamad Izham Mohamad; Hassali, Mohamad Azmi; Sharrad, Adheed Khalid; Shafie, Asrul Akmal; Babar, Zaheer-Ud-Din

    2015-01-01

    General objective To evaluate the understanding and perceptions of generic medicines among final-year Doctor of Pharmacy students in Karachi, Pakistan. Methods A 23-item survey instrument that included a question on the bioequivalence limits and Likert-type scale questions regarding the understanding and perceptions of generic medicines among the students was executed. Cronbach’s alpha was found to be 0.62. Results Responses were obtained from 236 final-year Doctor of Pharmacy students (n=85 from a publicly funded institute; n=151 from a privately funded institute). When comparing a brand-name medicine to a generic medicine, pharmacy students scored poorly on bioequivalence limits. More than 80% of the students incorrectly answered that all the products that are rated as generic equivalents are therapeutically equivalent to each other (P<0.04). Half of the students agreed that a generic medicine is bioequivalent to the brand-name medicine (P<0.001). With regard to quality, effectiveness, and safety, more than 75% of the students disagreed that generic medicines are of inferior quality and are less effective than brand-name medicines (P<0.001). More than 50% of the students disagreed that generic medicines produce more side effects than brand-name medicines (P<0.001). Conclusion The current study identified a positive perception toward generic medicines but also gaps in the understanding of generic medicines. Pharmacy students lacked a thorough understanding of the concepts of bioequivalence. Pharmacy academia should address these issues, which will help build confidence in generic medicines and increase the generic medicine use in Pakistan. PMID:26028981

  9. 21 CFR 880.2720 - Patient scale.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Patient scale. (a) Identification. A patient scale is a device intended for medical purposes that is used to measure the weight of a patient who cannot stand on a scale. This generic device includes devices... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Patient scale. 880.2720 Section 880.2720 Food and...

  10. Generic drug prices and policy in Australia: room for improvement? a comparative analysis with England.

    PubMed

    Mansfield, Sarah J

    2014-02-01

    To assess the degree to which reimbursement prices in Australia and England differ for a range of generic drugs, and to analyse the supply- and demand-side factors that may contribute to these differences. Australian and English reimbursement prices were compared for a range of generic drugs using pricing information obtained from government websites. Next, a literature review was conducted to identify supply- and demand-side factors that could affect generic prices in Australia and England. Various search topics were identified addressing potential supply-side (e.g. market approval, intellectual property protection of patented drugs, generic pricing policy, market size, generic supply chain and discounting practices) and demand-side (consumers, prescribers and pharmacists) factors. Related terms were searched in academic databases, official government websites, national statistical databases and internet search engines. Analysis of drug reimbursement prices for 15 generic molecules (representing 45 different drug presentations) demonstrated that Australian prices were on average over 7-fold higher than in England. Significant supply-side differences included aspects of pricing policy, the relative size of the generics markets and the use of clawback policies. Major differences in demand-side policies related to generic prescribing, pharmacist substitution and consumer incentives. Despite recent reforms, the Australian Government continues to pay higher prices than its English counterpart for many generic medications. The results suggest that particular policy areas may benefit from review in Australia, including the length of the price-setting process, the frequency of subsequent price adjustments, the extent of price competition between originators and generics, medical professionals' knowledge about generic medicines and incentives for generic prescribing. WHAT IS KNOWN ABOUT THE TOPIC? Prices of generic drugs have been the subject of much scrutiny over recent years. From 2005 to 2010 the Australian Government responded to observations that Pharmaceutical Benefits Scheme prices for many generics were higher than in numerous comparable countries by instituting several reforms aimed at reducing the prices of generics. Despite this, several studies have demonstrated that prices for generic statins (one class of cholesterol-lowering drug) are higher in Australia compared with England and many other developed countries, and prices of numerous other generics remain higher than in the USA and New Zealand. Recently there has been increasing interest in why these differences exist. WHAT DOES THIS PAPER ADD? By including a much larger range of commonly used and costly generic drugs, this paper builds significantly on the limited previous investigations of generic drug prices in Australia and England. Additionally, this is the first comprehensive investigation of multiple supply- and, in particular, demand-side factors that may explain any price differences between these countries. WHAT ARE THE IMPLICATIONS FOR PRACTITIONERS? Practitioners may contribute to the higher prices of generic medications in Australia compared with England through relatively low rates of generic prescribing. There are also significant implications for health policy makers, as this paper demonstrates that if Australia achieved the same prices as England for many generic drugs there could be substantial savings for the Pharmaceutical Benefits Scheme.

  11. Patient-reported Pediatric Quality of Life Inventory™ 4.0 Generic Core Scales in pediatric patients with attention-deficit/hyperactivity disorder and comorbid psychiatric disorders: feasibility, reliability, and validity.

    PubMed

    Limbers, Christine A; Ripperger-Suhler, Jane; Heffer, Robert W; Varni, James W

    2011-06-01

    The primary objective of the study was to evaluate the feasibility, reliability, and validity of the Pediatric Quality of Life Inventory™ (PedsQL) 4.0 Generic Core Scales as a patient self-reported health-related quality of life measurement instrument in pediatric patients with attention-deficit/hyperactivity disorder (ADHD) and physician-diagnosed comorbid psychiatric disorders being seen in a pediatric psychiatric clinic. The secondary objective was to evaluate parent proxy-reported PedsQL in this population. One hundred seventy-nine children with ADHD and comorbid psychiatric disorders ages 5 to 18 years and 181 parents completed the PedsQL 4.0 Generic Core Scales and parents also completed the Vanderbilt ADHD Diagnostic Rating Scales. Known-groups discriminant validity comparisons were made between the sample of pediatric patients with ADHD and comorbid psychiatric disorders and healthy, cancer, and type 1 diabetes samples. The PedsQL evidenced minimal missing responses for patient self-report and parent proxy-report (0.2% and 0.5%, respectively), demonstrated no significant floor or ceiling effects, and achieved excellent reliability for the Total Scale Score (α = 0.85 patient self-report, 0.92 parent proxy-report). Pediatric patients with ADHD and comorbid psychiatric disorders and their parents reported statistically significantly worse PedsQL scores than healthy children, with large effect sizes across all domains, supporting known-groups discriminant validity. Pediatric patients with ADHD and comorbid psychiatric disorders and their parents reported worse PedsQL scores compared to pediatric patients with cancer and diabetes with the exception of physical health, in which pediatric cancer patients manifested lower physical health, indicating the relative severe impact of ADHD and comorbid psychiatric disorders. More severe ADHD symptoms were generally associated with more impaired PedsQL scores, supporting construct validity. These data demonstrate the feasibility, reliability, and validity of patient self-reported PedsQL 4.0 Generic Core Scales in this high risk population of pediatric patients and highlight the profound negative impact of ADHD and comorbid psychiatric disorders on generic health-related quality of life, comparable to or worse than serious pediatric chronic physical diseases. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. Generic lamotrigine versus brand-name Lamictal bioequivalence in patients with epilepsy: A field test of the FDA bioequivalence standard.

    PubMed

    Ting, Tricia Y; Jiang, Wenlei; Lionberger, Robert; Wong, Jessica; Jones, Jace W; Kane, Maureen A; Krumholz, Allan; Temple, Robert; Polli, James E

    2015-09-01

    To test the current U.S. Food and Drug Administration (FDA) bioequivalence standard in a comparison of generic and brand-name drug pharmacokinetic (PK) performance in "generic-brittle" patients with epilepsy under clinical use conditions. This randomized, double-blind, multiple-dose, steady-state, fully replicated bioequivalence study compared generic lamotrigine to brand-name Lamictal in "generic-brittle" patients with epilepsy (n = 34) who were already taking lamotrigine. Patients were repeatedly switched between masked Lamictal and generic lamotrigine. Intensive PK blood sampling at the end of each 2-week treatment period yielded two 12-h PK profiles for brand-name and generic forms for each patient. Steady-state area under the curve (AUC), peak plasma concentration (Cmax ), and minimum plasma concentration (Cmin ) data were subjected to conventional average bioequivalence (ABE) analysis, reference-scaled ABE analysis, and within-subject variability (WSV) comparisons. In addition, generic-versus-brand comparisons in individual patients were performed. Secondary clinical outcomes included seizure frequency and adverse events. Generic demonstrated bioequivalence to brand. The 90% confidence intervals of the mean for steady-state AUC, Cmax , and Cmin for generic-versus-brand were 97.2-101.6%, 98.8-104.5%, and 93.4-101.0%, respectively. The WSV of generic and brand were also similar. Individual patient PK ratios for generic-versus-brand were similar but not identical, in part because brand-versus-brand profiles were not identical, even though subjects were rechallenged with the same product. Few subjects had seizure exacerbations or tolerability issues with product switching. One subject, however, reported 267 focal motor seizures, primarily on generic, although his brand and generic PK profiles were practically identical. Some neurologists question whether bioequivalence in healthy volunteers ensures therapeutic equivalence of brand and generic antiepileptic drugs in patients with epilepsy, who may be at increased risk for problems with brand-to-generic switching. Bioequivalence results in "generic-brittle" patients with epilepsy under clinical conditions support the soundness of the FDA bioequivalence standards. Adverse events on generic were not related to the small, allowable PK differences between generic and brand. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  13. [Validity and reliability of Pediatric Quality of Life Inventory Version 4.0 Generic Core Scales in Chinese children and adolescents].

    PubMed

    Chen, Yu-Ming; He, Li-Ping; Mai, Jin-Cheng; Hao, Yuan-Tao; Xiong, Li-Hua; Chen, Wei-Qing; Wu, Jiang-Nan

    2008-06-01

    To evaluate the reliability and validity of parent proxy-report scales of Pediatric Quality of Life Inventory Version 4.0 (PedsQL 4.0) Generic Core Scales, the Chinese Version. 3493 school students aged 6-18 years were recruited using multistage cluster sampling method. Health-related quality of life was assessed using the above-mentioned PedsQL 4.0 scales. The internal consistency was assessed, using Cronbach's a coefficient, while its validity was tested through correlation analysis, t-test and exploratory factor analysis. The internal consistency reliability for Total Scale Score (Cronbach's alpha = 0.90), Physical Health Summary Score (alpha= 0.81), and Psychosocial Health Summary Score (alpha= 0.89) were excellent. Six major factors were extracted by factor analysis which basically matched the designed structure of the original version accounting for nearly 66% of the variance. The total Scale Score significantly decreased by 3.5 to 13.3 (P < 0.05) in children and adolescents who had diseases including cold, skin hypersensitiveness, food allergy, courbature or arthralgia, breathlessness with a frequency of 6 times or more per year or had asthma as compared to those with lower frequency (< or = 5 times/y) of the diseases or without asthma. We found moderate to high correlations between items and the subscales. Correlation coefficients ranged between 0.45 to 0.84 (P < 0.01). The reliability and validity of the parent proxy-report scales of PedsQL 4.0 Generic Core Scales of the Chinese Version were as good as the original version. Our findings suggested that the scales could be applied to evaluate the health-related quality of life in childhood children in similar Chinese regions to Guangzhou.

  14. Dimensional scaling for impact cratering and perforation

    NASA Technical Reports Server (NTRS)

    Watts, Alan J.; Atkinson, Dale

    1995-01-01

    POD Associates have revisited the issue of generic scaling laws able to adequately predict (within better than 20 percent) cratering in semi-infinite targets and perforations through finite thickness targets. The approach used was to apply physical logic for hydrodynamics in a consistent manner able to account for chunky-body impacts such that the only variables needed are those directly related to known material properties for both the impactor and target. The analyses were compared and verified versus CTH hydrodynamic code calculations and existing data. Comparisons with previous scaling laws were also performed to identify which (if any) were good for generic purposes. This paper is a short synopsis of the full report available through the NASA Langley Research Center, LDEF Science Office.

  15. Evidence on the cost of breast cancer drugs is required for rational decision making.

    PubMed

    Berghuis, Anne Margreet Sofie; Koffijberg, Hendrik; Terstappen, Leonardus Wendelinus Mathias Marie; Sleijfer, Stefan; IJzerman, Maarten Joost

    2018-01-01

    For rational decision making, assessing the cost-effectiveness and budget impact of new drugs and comparing the costs of drugs already on the market is required. In addition to value frameworks, such as the American Society of Clinical Oncology Value Framework and the European Society of Medical Oncology-Magnitude of Clinical benefit Scale, this also requires a transparent overview of actual drug prices. While list prices are available, evidence on treatment cost is not. This paper aims to synthesise evidence on the reimbursement and costs of high-cost breast cancer drugs in The Netherlands (NL). A literature review was performed to identify currently reimbursed breast cancer drugs in the NL. Treatment costs were determined by multiplying list prices with the average length of treatment and dosing schedule. Comparing list prices to the estimated treatment cost resulted in substantial differences in the ranking of costliness of the drugs. The average mean treatment length was unknown for 11/31 breast cancer drugs (26.2%). The differences in the 15 highest-cost drugs were largest for Bevacizumab, Lapatinib and everolimus, with list prices of €541, €158, €1,168 and estimated treatment cost of €174,400, €18,682 and €31,207, respectively. The lowest-cost (patented) targeted drug is €1,818 more expensive than the highest-cost (off-patent) generic drug according to the estimated drug treatment cost. A lack of evidence on the reimbursement and cost of high-cost breast cancer drugs complicates rapid and transparent evidence synthesis, necessary to focus strategies aiming to limit the increasing healthcare costs. Interestingly, the findings show that off-patent generics (such as paclitaxel or doxorubicin), although substantially cheaper than patented drugs, are still relatively costly. Extending standardisation and increasing European and national regulations on presenting information on costs per cancer drug is highly recommended.

  16. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization.

    PubMed

    West, Geoffrey B; Brown, James H

    2005-05-01

    Life is the most complex physical phenomenon in the Universe, manifesting an extraordinary diversity of form and function over an enormous scale from the largest animals and plants to the smallest microbes and subcellular units. Despite this many of its most fundamental and complex phenomena scale with size in a surprisingly simple fashion. For example, metabolic rate scales as the 3/4-power of mass over 27 orders of magnitude, from molecular and intracellular levels up to the largest organisms. Similarly, time-scales (such as lifespans and growth rates) and sizes (such as bacterial genome lengths, tree heights and mitochondrial densities) scale with exponents that are typically simple powers of 1/4. The universality and simplicity of these relationships suggest that fundamental universal principles underly much of the coarse-grained generic structure and organisation of living systems. We have proposed a set of principles based on the observation that almost all life is sustained by hierarchical branching networks, which we assume have invariant terminal units, are space-filling and are optimised by the process of natural selection. We show how these general constraints explain quarter power scaling and lead to a quantitative, predictive theory that captures many of the essential features of diverse biological systems. Examples considered include animal circulatory systems, plant vascular systems, growth, mitochondrial densities, and the concept of a universal molecular clock. Temperature considerations, dimensionality and the role of invariants are discussed. Criticisms and controversies associated with this approach are also addressed.

  17. Assessing Attitude towards Religion: The Astley-Francis Scale of Attitude towards Theistic Faith

    ERIC Educational Resources Information Center

    Astley, Jeff; Francis, Leslie J.; Robbins, Mandy

    2012-01-01

    This study builds on the research tradition modelled by the Francis Scale of Attitude towards Christianity, the Katz-Francis Scale of Attitude towards Judaism, the Sahin-Francis Scale of Attitude towards Islam and the Santosh-Francis Scale of Attitude towards Hinduism to propose a generic instrument concerned with attitudes towards theistic faith.…

  18. [Geographic variation of seed morphological traits of Picea schrenkiana var. tianschanica in Tianshan Mountains, Xinjiang of Northwest China].

    PubMed

    Liu, Gui-Feng; Zang, Run-Guo; Liu, Hua; Bai, Zhi-Qiang; Guo, Zhong-Jun; Ding, Yi

    2012-06-01

    Taking the Picea schrenkiana var. tianschanica forests at three sites with different longitudes (Zhaosu, Tianchi, and Qitai) in Tianshan Mountains as the objects, the cones were collected along an altitudinal gradient to analyze the variation of their seed morphological traits (seed scale length and width, seed scale length/width ratio, seed wing length and width, seed wing length/ width ratio, seed length and width, and seed length/width ratio). All the seed traits except seed width tended to decrease with increasing altitude. The seed traits except seed wing width, seed width, and seed length/width ratio all had significant negative correlations with altitude. Seed scale length and width and seed scale length/width ratio had significant positive correlations with longitude. Seed scale length, seed scale length/width ratio, and seed wing length/width ratio had significant negative correlations with slope degree. No significant correlations were observed between the seed traits except seed wing width and the slope aspect. Altitude was the main factor affecting the seed scale length, seed scale length/width ratio, and seed wing length/width ratio.

  19. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com; WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577; Mori, Takashi

    2016-04-15

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian onmore » the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.« less

  20. Trunk-acceleration based assessment of gait parameters in older persons: a comparison of reliability and validity of four inverted pendulum based estimations.

    PubMed

    Zijlstra, Agnes; Zijlstra, Wiebren

    2013-09-01

    Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Assessing health-related quality of life in Japanese children with a chronic condition: validation of the DISABKIDS chronic generic module.

    PubMed

    Sasaki, Hatoko; Kakee, Naoko; Morisaki, Naho; Mori, Rintaro; Ravens-Sieberer, Ulrike; Bullinger, Monika

    2018-05-02

    This study examined the reliability and validity of the Japanese versions of the DISABKIDS-37 generic modules, a tool for assessing the health-related quality of life (HRQOL) of children and adolescents with a chronic condition. The study was conducted using a sample of 123 children/adolescents with a chronic medical condition, aged 8-18 years, and their parents. Focus interviews were performed to ensure content validity after translation. The classical psychometric tests were used to assess reliability and scale intercorrelations. The factor structure was examined with confirmatory factor analysis (CFA). Convergent validity was assessed by the correlation between the total score and the sub-scales of DISABKIDS-37 as well as the total score of KIDSCREEN-10. Both the children/adolescent and parent versions of the score showed good to high internal consistency, and the test-retest reliability correlations were r = 0.91 or above. The CFA revealed that the modified models for all domains were better fit than the original 37 item scale model for both self-report and proxy-report. Moderate to high positive correlations were found for the associations within DISABKIDS-37 sub-scales and between the subscales and total score, except for the treatment sub-scale, which correlated weakly with the remaining sub-scales. The total score of the child-reported version of KIDSCREEN-10 correlated significantly and positively with the total score and all the sub-scales of the child-reported version of DISABKIDS-37 except the Treatment sub-scale in adolescents. The modified models of Japanese version of DISABKIDS generic module were psychometrically robust enough to assess the HRQOL of children with a chronic condition.

  2. Early stage aggregation of a coarse-grained model of polyglutamine

    NASA Astrophysics Data System (ADS)

    Haaga, Jason; Gunton, J. D.; Buckles, C. Nadia; Rickman, J. M.

    2018-01-01

    In this paper, we study the early stages of aggregation of a model of polyglutamine (polyQ) for different repeat lengths (number of glutamine amino acid groups in the chain). In particular, we use the Large-scale Atomic/Molecular Massively Parallel Simulator to study a generic coarse-grained model proposed by Bereau and Deserno. We focus on the primary nucleation mechanism involved and find that our results for the initial self-assembly process are consistent with the two-dimensional classical nucleation theory of Kashchiev and Auer. More specifically, we find that with decreasing supersaturation, the oligomer fibril (protofibril) transforms from a one-dimensional β sheet to two-, three-, and higher layer β sheets as the critical nucleus size increases. We also show that the results are consistent with several predictions of their theory, including the dependence of the critical nucleus size on the supersaturation. Our results for the time dependence of the mass aggregation are in reasonable agreement with an approximate analytical solution of the filament theory by Knowles and collaborators that corresponds to an additional secondary nucleation arising from filament fragmentation. Finally, we study the dependence of the critical nucleus size on the repeat length of polyQ. We find that for the larger length polyglutamine chain that we study, the critical nucleus is a monomer, in agreement with experiment and in contrast to the case for the smaller chain, for which the smallest critical nucleus size is four.

  3. Quality-of-Life Impairments Persist Six Months After Treatment of Graves' Hyperthyroidism and Toxic Nodular Goiter: A Prospective Cohort Study.

    PubMed

    Cramon, Per; Winther, Kristian Hillert; Watt, Torquil; Bonnema, Steen Joop; Bjorner, Jakob Bue; Ekholm, Ola; Groenvold, Mogens; Hegedüs, Laszlo; Feldt-Rasmussen, Ulla; Rasmussen, Åse Krogh

    2016-08-01

    The treatment of hyperthyroidism is aimed at improving health-related quality of life (HRQoL) and reducing morbidity and mortality. However, few studies have used validated questionnaires to assess HRQoL prospectively in such patients. The purpose of this study was to assess the impact of hyperthyroidism and its treatment on HRQoL using validated disease-specific and generic questionnaires. This prospective cohort study enrolled 88 patients with Graves' hyperthyroidism and 68 with toxic nodular goiter from endocrine outpatient clinics at two Danish university hospitals. The patients were treated with antithyroid drugs, radioactive iodine, or surgery. Disease-specific and generic HRQoL were assessed using the thyroid-related patient-reported outcome (ThyPRO) and the Medical Outcomes Study 36-item Short Form (SF-36), respectively, evaluated at baseline and six-month follow-up. The scores were compared with those from two general population samples who completed ThyPRO (n = 739) and SF-36 (n = 6638). Baseline scores for patients with Graves' hyperthyroidism and toxic nodular goiter were significantly worse than those for the general population scores on all comparable ThyPRO scales and all SF-36 scales and component summaries. ThyPRO scores improved significantly with treatment on all scales in Graves' hyperthyroidism and four scales in toxic nodular goiter, while SF-36 scores improved on five scales and both component summaries in Graves' hyperthyroidism and only one scale in toxic nodular goiter. In Graves' hyperthyroidism, large treatment effects were observed on three ThyPRO scales (Hyperthyroid Symptoms, Tiredness, Overall HRQoL) and moderate effects on three scales (Anxiety, Emotional Susceptibility, Impaired Daily Life), while moderate effects were seen in two ThyPRO scales in toxic nodular goiter (Anxiety, Overall HRQoL). However, significant disease-specific and generic HRQoL deficits persisted on multiple domains across both patient groups. Graves' hyperthyroidism and toxic nodular goiter cause severe disease-specific and generic HRQoL impairments, and HRQoL deficits persist in both patient groups six months after treatment. These data have the potential to improve communication between physicians and patients by offering realistic estimates of expected HRQoL impairments and treatment effects. Future studies should identify risk factors for persistent HRQoL deficits, compare HRQoL effects of the various therapies, and thereby aid in determining the optimal treatment strategies.

  4. Time and length scales within a fire and implications for numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TIESZEN,SHELDON R.

    2000-02-02

    A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less

  5. Predicting the Ability of Marine Mammal Populations to Compensate for Behavioral Disturbances

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting the Ability of Marine Mammal Populations to...determine the ability of marine mammal populations to respond to behavioral disturbances. These tools are to be generic and applicable in a wide range...scale consequences. OBJECTIVES • Develop simple, generic measures that allow the estimation of marine mammal populations and individuals to

  6. Impact of brand or generic labeling on medication effectiveness and side effects.

    PubMed

    Faasse, Kate; Martin, Leslie R; Grey, Andrew; Gamble, Greg; Petrie, Keith J

    2016-02-01

    Branding medication with a known pharmaceutical company name or product name bestows on the drug an added assurance of authenticity and effectiveness compared to a generic preparation. This study examined the impact of brand name and generic labeling on medication effectiveness and side effects. 87 undergraduate students with frequent headaches took part in the study. Using a within-subjects counterbalanced design, each participant took tablets labeled either as brand name "Nurofen" or "Generic Ibuprofen" to treat each of 4 headaches. In reality, half of the tablets were placebos, and half were active ibuprofen (400 mg). Participants recorded their headache pain on a verbal descriptor and visual analogue scale prior to taking the tablets, and again 1 hour afterward. Medication side effects were also reported. Pain reduction following the use of brand name labeled tablets was similar in active ibuprofen or a placebo. However, if the tablets had a generic label, placebo tablets were significantly less effective compared to active ibuprofen. Fewer side effects were attributed to placebo tablets with brand name labeling compared to the same placebo tablets with a generic label. Branding of a tablet appears to have conferred a treatment benefit in the absence of an active ingredient, while generic labeled tablets were substantially less effective if they contained no active ingredient. Branding is also associated with reduced attribution of side effects to placebo tablets. Future interventions to improve perceptions of generics may have utility in improving treatment outcomes from generic drugs. (c) 2016 APA, all rights reserved).

  7. Impulse-induced optimum signal amplification in scale-free networks.

    PubMed

    Martínez, Pedro J; Chacón, Ricardo

    2016-04-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.

  8. Viewpoint: observations on scaled average bioequivalence.

    PubMed

    Patterson, Scott D; Jones, Byron

    2012-01-01

    The two one-sided test procedure (TOST) has been used for average bioequivalence testing since 1992 and is required when marketing new formulations of an approved drug. TOST is known to require comparatively large numbers of subjects to demonstrate bioequivalence for highly variable drugs, defined as those drugs having intra-subject coefficients of variation greater than 30%. However, TOST has been shown to protect public health when multiple generic formulations enter the marketplace following patent expiration. Recently, scaled average bioequivalence (SABE) has been proposed as an alternative statistical analysis procedure for such products by multiple regulatory agencies. SABE testing requires that a three-period partial replicate cross-over or full replicate cross-over design be used. Following a brief summary of SABE analysis methods applied to existing data, we will consider three statistical ramifications of the proposed additional decision rules and the potential impact of implementation of scaled average bioequivalence in the marketplace using simulation. It is found that a constraint being applied is biased, that bias may also result from the common problem of missing data and that the SABE methods allow for much greater changes in exposure when generic-generic switching occurs in the marketplace. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Optimal Weighting for Exam Composition

    ERIC Educational Resources Information Center

    Ganzfried, Sam; Yusuf, Farzana

    2018-01-01

    A problem faced by many instructors is that of designing exams that accurately assess the abilities of the students. Typically, these exams are prepared several days in advance, and generic question scores are used based on rough approximation of the question difficulty and length. For example, for a recent class taught by the author, there were…

  10. Complex networks with scale-free nature and hierarchical modularity

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  11. On non-local energy transfer via zonal flow in the Dimits shift

    DOE PAGES

    St-Onge, Denis A.

    2017-10-10

    The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in anmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.« less

  12. Accurate visible speech synthesis based on concatenating variable length motion capture data.

    PubMed

    Ma, Jiyong; Cole, Ron; Pellom, Bryan; Ward, Wayne; Wise, Barbara

    2006-01-01

    We present a novel approach to synthesizing accurate visible speech based on searching and concatenating optimal variable-length units in a large corpus of motion capture data. Based on a set of visual prototypes selected on a source face and a corresponding set designated for a target face, we propose a machine learning technique to automatically map the facial motions observed on the source face to the target face. In order to model the long distance coarticulation effects in visible speech, a large-scale corpus that covers the most common syllables in English was collected, annotated and analyzed. For any input text, a search algorithm to locate the optimal sequences of concatenated units for synthesis is desrcribed. A new algorithm to adapt lip motions from a generic 3D face model to a specific 3D face model is also proposed. A complete, end-to-end visible speech animation system is implemented based on the approach. This system is currently used in more than 60 kindergarten through third grade classrooms to teach students to read using a lifelike conversational animated agent. To evaluate the quality of the visible speech produced by the animation system, both subjective evaluation and objective evaluation are conducted. The evaluation results show that the proposed approach is accurate and powerful for visible speech synthesis.

  13. Identifying Floppy and Rigid Regions in Proteins

    NASA Astrophysics Data System (ADS)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  14. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  15. A machine learning approach for viral genome classification.

    PubMed

    Remita, Mohamed Amine; Halioui, Ahmed; Malick Diouara, Abou Abdallah; Daigle, Bruno; Kiani, Golrokh; Diallo, Abdoulaye Baniré

    2017-04-11

    Advances in cloning and sequencing technology are yielding a massive number of viral genomes. The classification and annotation of these genomes constitute important assets in the discovery of genomic variability, taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for specific well-studied family of viruses. Thus, the viral comparative genomic studies could benefit from more generic, fast and accurate tools for classifying and typing newly sequenced strains of diverse virus families. Here, we introduce a virus classification platform, CASTOR, based on machine learning methods. CASTOR is inspired by a well-known technique in molecular biology: restriction fragment length polymorphism (RFLP). It simulates, in silico, the restriction digestion of genomic material by different enzymes into fragments. It uses two metrics to construct feature vectors for machine learning algorithms in the classification step. We benchmark CASTOR for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis B viruses (HBV) and human immunodeficiency viruses type 1 (HIV-1). Results reveal true positive rates of 99%, 99% and 98% for HPV Alpha species, HBV genotyping and HIV-1 M subtyping, respectively. Furthermore, CASTOR shows a competitive performance compared to well-known HIV-1 specific classifiers (REGA and COMET) on whole genomes and pol fragments. The performance of CASTOR, its genericity and robustness could permit to perform novel and accurate large scale virus studies. The CASTOR web platform provides an open access, collaborative and reproducible machine learning classifiers. CASTOR can be accessed at http://castor.bioinfo.uqam.ca .

  16. A cross-sectional survey of pharmacists to understand their personal preference of brand and generic over-the-counter medications used to treat common health conditions.

    PubMed

    Patel, Mira; Slack, Marion; Cooley, Janet; Bhattacharjee, Sandipan

    2016-01-01

    Consumers are hesitant in choosing generic medications as they are under the assumption that they are not as safe nor effective as brand medications. However, pharmacists do have the education and training to know that this is not the case. The aim of this study was to determine pharmacists' preference of generic versus brand over-the-counter (OTC) medication for their personal use as self-treatment for various health symptoms. A prospective, cross sectional study was conducted on 553 licensed pharmacists who were presumed to have expertise in the use of generic and brand name OTC medications. In a single Southwestern state in the United States, from December 2014 to January 2015, a web-based questionnaire was sent to pharmacists to explore their preference of brand and generic medications based on various health symptoms. Thirty-one brand-generic medication pairs were used to identify which medication type pharmacists preferred when asked about nine health symptoms. Frequency counts of pharmacists' preference of a brand medication or a generic OTC medication overall and for each of the nine health symptoms were determined. Chi-squared analyses and one-way ANOVA were conducted to determine if there were any differences between the preferences of brand and generic OTC medications across each symptom. The study overall showed that pharmacists preferred generic OTC medications to brand OTC medications (62 to 5 %, respectively). Based on an 11-point rating scale, pharmacists were likely to take OTC generic medications (as their choice of self-treatment) when presented with health symptoms (mean = 7.32 ± 2.88). In addition, pharmacists chose generic OTC medications over brand medications regardless of health symptoms (p < 0.001). Pharmacists who have expertise in medications were shown to prefer using generic OTC medications rather than brand name OTC medications for self-treating a variety of health symptoms. These study findings support the theory that expertise affects preference for generic versus brand name OTC medications. This information can be used to provide consumers the evidence needed to make well-informed choices when choosing between brand and generic medications.

  17. Genericness of inflation in isotropic loop quantum cosmology.

    PubMed

    Date, Ghanashyam; Hossain, Golam Mortuza

    2005-01-14

    Nonperturbative corrections from loop quantum cosmology (LQC) to the scalar matter sector are already known to imply inflation. We prove that the LQC modified scalar field generates exponential inflation in the small scale factor regime, for all positive definite potentials, independent of initial conditions and independent of ambiguity parameters. For positive semidefinite potentials it is always possible to choose, without fine-tuning, a value of one of the ambiguity parameters such that exponential inflation results, provided zeros of the potential are approached at most as a power law in the scale factor. In conjunction with the generic occurrence of bounce at small volumes, particle horizon is absent, thus eliminating the horizon problem of the standard big bang model.

  18. The influence of generic substitution on the content of patient-pharmacist communication in Swedish community pharmacies.

    PubMed

    Olsson, Erika; Wallach-Kildemoes, Helle; Ahmed, Ban; Ingman, Pontus; Kaae, Susanne; Kälvemark Sporrong, Sofia

    2017-08-01

    The objective was to study the relationship between the length and content of patient-pharmacist communication in community pharmacies, and generic substitution. The study was conducted in six community pharmacies in Sweden. Non-participant observations with audio recordings and short structured interviews were conducted. Out of 32 pharmacists 29 agreed to participate (90.6%), as did 282 out of 407 patients (69.3%). Logistic regression analysis was applied to calculate odds ratio for occurrence of generic substitution. Linear regression (β-coefficients) was applied to test for differences in time spent on different categories. In encounters where generic substitution occurred more time (19.2 s) was spent on non-medical (for instance administrative or economical) issues (P = 0.01, 95% confidence interval 4.8-33.6). However, the total time of the encounter was not significantly longer. The amount of time spent on non-medical issues increased with age of patient (age 60+: β, 33 s, P < 0.001). The results indicate that more time was spent on medical issues with patients who have a higher education (high school: β, 10.8 s, P = 0.07, university: β, 10.2 s, P = 0.11) relative to those with only elementary school education. Occurrence of generic substitution was correlated with more time spent on communicating on non-medical, but not on medical, issues. No extra time was spent on medical information for the groups normally overrepresented among those with low health literacy. This study suggests that pharmacists need to further embrace their role in promoting rational use of medicines, not least when generic substitution occurs. © 2016 Royal Pharmaceutical Society.

  19. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.

    PubMed

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-14

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ∼220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.

  20. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-01

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the Newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is Gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ˜220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.

  1. Calculation of the attenuation and phase displacement per unit of length due to rain composed of ellipsoidal drops

    NASA Technical Reports Server (NTRS)

    Maggiori, D.

    1981-01-01

    All of the phenomena which influence the propagation of radiowaves at frequencies above 10 GHz (attenuation, depolarization, scintillation) can by intensified by parameters directly derived from a solution of individual scatter, naturally in addition to be meteorological elements which characterize the physical medium. The diffusion caused by rainy precipitation was studied using Mie's algorithm for rain composed of spherical drops, and Oguchi's algorithm for rain composed of drops in an ellipsoidal form with axes of rotational symmetry arrange along the vertical line of a generic reference point. Specific phase displacement and attenuation along the principal planes, propagation of radiowaves in generic polarization, and propagation with inclined axes are also considered.

  2. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion

    NASA Astrophysics Data System (ADS)

    Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-01

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  3. The Psychometric Properties of an Arabic version of the PedsQL Multidimensional Fatigue Scale Tested for Children with Cancer.

    PubMed

    Al-Gamal, Ekhlas; Long, Tony

    2017-09-01

    Fatigue is considered to be one of the most reported symptoms experienced by children with cancer. A major aim of this study was to develop an Arabic version of the Pediatric Quality of Life (PedsQL) Multidimensional Fatigue Scale (child report) and to test its psychometric proprieties for the assessment of fatigue in Arabic children with cancer. The PedsQL Multidimensional Fatigue Scale (Arabic version) and the PedsQL TM 4.0 Generic Core scale (existing Arabic version) were completed by 70 Jordanian children with cancer. Cronbach's alpha coefficients were found to be 0.90 for the total PedsQL Multidimensional Fatigue Scale (Arabic version), 0.94 for the general fatigue subscale, 0.67 for the sleep/rest fatigue subscale, and 0.87 for the cognitive fatigue subscale. The PedsQL Multidimensional Fatigue Scale scores correlated significantly with the PedsQL TM 4.0 Generic Core scale and demonstrated good construct validity. The results demonstrate excellent reliability and good validity of the PedsQL Multidimensional Fatigue Scale (Arabic version) for children with cancer. This is the first validated scale that assesses fatigue in Arabic children with cancer. The English scale has been used with several pediatric clinical populations, so this Arabic version may be equally useful beyond the field of cancer.

  4. Developing multiple-choices test items as tools for measuring the scientific-generic skills on solar system

    NASA Astrophysics Data System (ADS)

    Bhakti, Satria Seto; Samsudin, Achmad; Chandra, Didi Teguh; Siahaan, Parsaoran

    2017-05-01

    The aim of research is developing multiple-choices test items as tools for measuring the scientific of generic skills on solar system. To achieve the aim that the researchers used the ADDIE model consisting Of: Analyzing, Design, Development, Implementation, dan Evaluation, all of this as a method research. While The scientific of generic skills limited research to five indicator including: (1) indirect observation, (2) awareness of the scale, (3) inference logic, (4) a causal relation, and (5) mathematical modeling. The participants are 32 students at one of junior high schools in Bandung. The result shown that multiple-choices that are constructed test items have been declared valid by the expert validator, and after the tests show that the matter of developing multiple-choices test items be able to measuring the scientific of generic skills on solar system.

  5. Nurse Competence Scale: a systematic and psychometric review.

    PubMed

    Flinkman, Mervi; Leino-Kilpi, Helena; Numminen, Olivia; Jeon, Yunsuk; Kuokkanen, Liisa; Meretoja, Riitta

    2017-05-01

    The aim of this study was to report a systematic and psychometric review. The Nurse Competence Scale is currently the most widely used generic instrument to measure Registered Nurses' competence in different phases of their careers. Based on a decade of research, this review provides a summary of the existing evidence. A systematic literature review of research evidence and psychometric properties. Nine databases from 2004 - October 2015. We retrieved scientific publications in English and Finnish. Two researchers performed data selection and appraised the methodological quality using the COnsensus-based Standards for the selection of health status Measurement INstruments checklist. A total of 30 studies reported in 43 publications were included. These consisted of over 11,000 competence assessments. Twenty studies were from Europe and 10 from outside Europe. In addition to experienced nurses, the Nurse Competence Scale has been used for the competence assessment of newly graduated nurses and nursing students, mainly in hospital settings. Length of work experience, age, higher education, permanent employment and participation in educational programmes correlated positively with competence. Variables including empowerment, commitment, practice environment, quality of care and critical thinking were also associated with higher competence. The Nurse Competence Scale has demonstrated good content validity and appropriate internal consistency. The value of Nurse Competence Scale has been confirmed in determining relationships between background variables and competence. The instrument has been widely used with experienced and newly graduated nurses and their managers. Cross-cultural validation must be continued using rigorous methods. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  6. Health-related quality of life in young adult patients with rheumatoid arthritis in Iran: reliability and validity of the Persian translation of the PedsQL™ 4.0 Generic Core Scales Young Adult Version.

    PubMed

    Pakpour, Amir H; Zeidi, Isa Mohammadi; Hashemi, Fariba; Saffari, Mohsen; Burri, Andrea

    2013-01-01

    The objective of the present study was to determine the reliability and validity of the Persian translation of the Pediatric Quality of Life Inventory (PedsQL™) 4.0 Generic Core Scales Young Adult Version in an Iranian sample of young adult patients with rheumatoid arthritis (RA). One hundred ninety-seven young adult patients with RA completed the 23-item PedsQL™ and the 36-item Short-Form Health Survey (SF-36). Disease activity based on Disease Activity Score 28 was also measured. Internal consistency and test-retest reliability, as well as construct, discriminant, and convergent validity, were tested. Confirmatory factor analysis (CFA) was used to verify the original factor structure of the PedsQL™. Also, responsiveness to change in PedsQL™ scores over time was assessed. Cronbach's alpha coefficients ranged from α = 0.82 to α = 0.91. Test-retest reproducibility was satisfactory for all scales and the total scale score. The PedsQL proved good convergent validity with the SF-36. The PedsQL distinguished well between young adult patients and healthy young adults and also RA groups with different comorbidities. The CFA did not confirm the original four-factor model, instead, analyses revealed a best-fitting five-factor model for the PedsQL™ Young Adult Version. Repeated measures analysis of variance indicated that the PedsQL scale scores for young adults increased significantly over time. The Persian translation of the PedsQL™ 4.0 Generic Core Scales Young Adult Version demonstrated good psychometric properties in young adult patients with RA and can be recommended for the use in RA research in Iran.

  7. Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers

    NASA Astrophysics Data System (ADS)

    Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.

    2017-11-01

    The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.

  8. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gapinski, Jacek, E-mail: gapinski@amu.edu.pl; Patkowski, Adam; NanoBioMedical Center, A. Mickiewicz University, Umultowska 85, 61-614 Poznań

    Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shownmore » to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.« less

  9. The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems

    NASA Technical Reports Server (NTRS)

    Abramson, Michael; Refai, Mohamad; Santiago, Confesor

    2017-01-01

    The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is "generic" in that it makes no assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Accordingly, GRACE is well suited to research applications where alerting and guidance is a central feature and requirements are fluid involving a wide range of aviation technologies. GRACE has been used at NASA in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.

  10. Measuring health-related quality of life in young adolescents: reliability and validity in the Norwegian version of the Pediatric Quality of Life Inventory 4.0 (PedsQL) generic core scales.

    PubMed

    Reinfjell, Trude; Diseth, Trond H; Veenstra, Marijke; Vikan, Arne

    2006-09-14

    Health-Related Quality of Life (HRQOL) studies concerning children and adolescents are a growing field of research. The Pediatric Quality of Life Inventory (PedsQL) is considered as a promising HRQOL instrument with the availability of age appropriate versions and parallel forms for both child and parents. The purpose of the current study was to evaluate the psychometric properties of the Norwegian translation of the Pediatric Quality of Life Inventory (PedsQL) 4.0 generic core scale in a sample of healthy young adolescents. A cross-sectional study of 425 healthy young adolescents and 237 of their caregivers participating as a proxy. Reliability was assessed by Cronbach's alpha. Construct validity was assessed using exploratory factor analysis and by exploring the intercorrelations between and among the four PedsQL subscales for adolescents and their parents. All the self-report scales and proxy-report scales showed satisfactory reliability with Cronbach's alpha varying between 0.77 and 0.88. Factor analysis showed results comparable with the original version, except for the Physical Health scale. On average, monotrait-multimethod correlations were higher than multitrait-multimethod correlations. Sex differences were noted on the emotional functioning subscale, girls reported lower HRQOL than boys. The Norwegian PedsQL is a valid and reliable generic pediatric health-related Quality of Life measurement that can be recommended for self-reports and proxy-reports for children in the age groups ranging from 13-15 years.

  11. The PedsQL 4.0 as a school population health measure: feasibility, reliability, and validity.

    PubMed

    Varni, James W; Burwinkle, Tasha M; Seid, Michael

    2006-03-01

    The application of health-related quality of life (HRQOL) as a school population health measure may facilitate risk assessment and resource allocation, the tracking of student health at the school and district level, the identification of health disparities among schoolchildren, and the determination of health outcomes from interventions and policy decisions at the school, district, and county level. To determine the feasibility, reliability, and validity of the 23-item PedsQL 4.0 (Pediatric Quality of Life Inventory) Generic Core Scales as a school population health measure for children and adolescents. Survey conducted in 304 classes at 18 elementary schools, 4 middle schools, and 3 high schools within a large metropolitan school district. The PedsQL 4.0 Generic Core Scales (Physical, Emotional, Social, School Functioning) were completed by 2437 children ages 8-18 and 4227 parents of children ages 5-18. The PedsQL 4.0 evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (alpha = 0.89 child, 0.92, parent report), and distinguished between healthy children and children with chronic health conditions. The PedsQL 4.0 was related to indicators of socioeconomic status (SES) at the school and district level. The PedsQL School Functioning Scale was significantly correlated with standardized achievement scores based on the Stanford 9. The results demonstrate the feasibility, reliability and validity of the PedsQL 4.0 Generic Core Scales as a school population health measure. The implications of measuring HRQOL in schoolchildren at the school, district, and county level for identifying and ameliorating health disparities are discussed.

  12. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-04-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.

  13. A Summary of the Experimental Results for a Generic Tractor-Trailer in the Ames Research Center 7- by 10-Foot and 12-Foot Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Satran, Dale R.; Heineck, James T.; Walker, Stephen M.

    2006-01-01

    Experimental measurements of a generic tractor-trailer were obtained in two wind tunnels at Ames Research Center. After a preliminary study at atmospheric conditions in the 7- by 10-Foot Wind Tunnel, additional testing was conducted at Reynolds numbers corresponding to full-scale highway speeds in the 12-Foot Pressure Wind Tunnel. To facilitate computational modeling, the 1:8-scale geometry, designated the Generic Conventional Model, included a simplified underbody and omitted many small-scale details. The measurements included overall and component forces and moments, static and dynamic surface pressures, and three-component particle image velocimetry. This summary report highlights the effects of numerous drag reduction concepts and provides details of the model installation in both wind tunnels. To provide a basis for comparison, the wind-averaged drag coefficient was tabulated for all configurations tested. Relative to the baseline configuration representative of a modern class-8 tractor-trailer, the most effective concepts were the trailer base flaps and trailer belly box providing a drag-coefficient reduction of 0.0855 and 0.0494, respectively. Trailer side skirts were less effective yielding a drag reduction of 0.0260. The database of this experimental effort is publicly available for further analysis.

  14. A Generic Method for Distribution and Transfer of ECTS and Other Norm-Referenced Grades within Student Cohorts

    ERIC Educational Resources Information Center

    Warfvinge, Per

    2008-01-01

    The ECTS grade transfer scale is an interface grade scale to help European universities, students and employers to understand the level of student achievement. Hence, the ECTS scale can be seen as an interface, transforming local scales to a common system where A-E denote passing grades. By definition, ECTS should distribute the passing students…

  15. Generic phytosanitary irradiation treatments

    NASA Astrophysics Data System (ADS)

    Hallman, Guy J.

    2012-07-01

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zealand, 300 Gy for all arthropods on mango shipped from Australia to Malaysia, 350 Gy for all arthropods on lychee shipped from Australia to New Zealand and 400 Gy for all hosts of insects other than pupae and adult Lepidoptera shipped to the United States. Efforts to develop additional generic PI treatments and reduce the dose for the 400 Gy treatment are ongoing with a broad based 5-year, 12-nation cooperative research project coordinated by the joint Food and Agricultural Organization/International Atomic Energy Agency Program on Nuclear Techniques in Food and Agriculture. Key groups identified for further development of generic PI treatments are Lepidoptera (eggs and larvae), mealybugs and scale insects. A dose of 250 Gy may suffice for these three groups plus others, such as thrips, weevils and whiteflies.

  16. Reliability and validity of functional health status and health-related quality of life questionnaires in children with recurrent acute otitis media

    PubMed Central

    Brouwer, Carole N. M.; Schilder, Anne G. M.; van Stel, Henk F.; Rovers, Maroeska M.; Veenhoven, Reinier H.; Grobbee, Diederick E.; Sanders, Elisabeth A. M.

    2007-01-01

    In this study the reliability and validity of generic and disease-specific questionnaires has been assessed focusing on responsiveness. This is part of a study on the effects of recurrent acute otitis media (rAOM) on functional health status (FHS) and health-related quality of life (HRQoL) in 383 children with rAOM participating in a randomized clinical trial. The following generic questionnaires were studied: 1. RAND general health rating index, 2. Functional Status Questionnaire (FSQ Generic and FSQ Specific), 3. TNO-AZL Infant Quality of Life (TAIQOL), and the following disease-specific questionnaires: 1. Otitis Media-6 (OM-6), 2. Numerical rating scales (NRS) for child and caregiver (NRS Child and NRS Caregiver), and 3. a new Family Functioning Questionnaire (FFQ). Reliability was good to excellent (Cronbach’s α range 0.80–0.90, intraclass correlation coefficient range 0.76–0.93). Moderate to strong correlations were found between the questionnaires as well as between questionnaires and relevant clinical indicators (r = 0.29–0.49), demonstrating construct validity. Discriminant validity for children with few versus frequent episodes of acute otitis media per year was good for most questionnaires (P < 0.004) but poor for the otitis media-related subscales of the TAIQOL (P = 0.10–0.97) and both NRS (P = 0.22 and 0.48). Except for the TAIQOL subscales, change scores were significant (P < 0.003) for generic and disease-specific questionnaires. Effect sizes were somewhat higher for disease-specific compared to generic questionnaires (0.55–0.95 versus 0.32–0.60) except for the TAIQOL subscales, which showed very poor sensitivity to change. Anchor-based methods resulted in a somewhat larger range of estimates of MCID than distribution-based methods. Combining distribution-based and anchor-based methods resulted in similar ranges for the minimally clinical important differences for generic and disease-specific questionnaires: 2–15 points on a 0–100 scale. Apart from the generic TAIQOL subscales, both generic and disease-specific questionnaires used in this study showed good psychometric qualities and responsiveness for use in clinical studies on children with rAOM. PMID:17668290

  17. Multi Scale Modeling of Continuous Aramid Fiber Reinforced Polymer Matrix Composites Used in Ballistic Protection Applications

    DTIC Science & Technology

    2014-11-16

    related to identification of the type and the extent of data generated at a finer length scale to the adjacent coarser length scale, as well as seamless ...data generated at a finer length scale to the adjacent coarser length scale, as well as seamless integration of different length scales into a unified...composite laminate consisting of 32 laminae and impacted (at a 0° obliquity angle and an incident velocity of 500 m/s) by a 0.30 caliber steel

  18. The physical properties of generic latanoprost ophthalmic solutions are not identical.

    PubMed

    Kolko, Miriam; Koch Jensen, Peter

    2017-06-01

    To compare various characteristics of Xalatan ® and five generic latanoprost ophthalmic solutions. Drop size, volume, pH values, buffer capacity, viscosity, hardness of bottles and costs were determined. Drop sizes were measured in triplicates by micropipettes, and the number of drops counted in three separate bottles of each generic product was determined. pH values were measured in triplicates by a calibrated pH meter. Buffer capacity was exploited by titrating known quantities of strong base into 2.5 ml of each brand and interpolated to neutral pH. Kinematic viscosity was determined by linear regression of timed gravity flow from a vertical syringe through a 21-G cannula. The hardness of the bottles was evaluated by gradually increasing tension on a hook placed around each bottle until a drop was expelled reading the tension on an attached spring scale. Drop sizes and the number of drops in the bottles varied significantly between the generic drugs. The control value of pH in the brand version (Xalatan ® ) was markedly lower compared to the generic latanoprost products. Titration of Xalatan ® to neutrality required substantially more NaOH compared to the generic latanoprost products. Finally, the viscosity revealed a significant variability between brands. Remarkable differences were found in bottle shapes, bottle hardness and costs of the latanoprost generics. Generic latanoprost eye drops should not be considered identical to the original brand version as regards to drop size, volumes, pH values, buffer capacity, viscosity, hardness of bottles and costs. It is likely that these issues affect compliance and intraocular pressure (IOP)-lowering effect. Therefore, re-evaluation of the requirements for introducing generic eye drops seems reasonable. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Fatigue and health related quality of life in children and adolescents with cancer.

    PubMed

    Nunes, Michelle Darezzo Rodrigues; Jacob, Eufemia; Bomfim, Emiliana Omena; Lopes-Junior, Luis Carlos; de Lima, Regina Aparecida Garcia; Floria-Santos, Milena; Nascimento, Lucila Castanheira

    2017-08-01

    The study examined the different dimensions of fatigue (general, sleep/rest, cognitive), health related quality of life (HRQL) (physical, emotional, cognitive, social), and the relationships between fatigue and HRQL in hospitalized children and adolescents with cancer in Brazil. Participants were recruited from a pediatric oncology inpatient unit in a comprehensive cancer care hospital in southeast Brazil. They completed the PedsQL Multidimensional Fatigue Scale and the PedsQL Inventory of Quality of Life (Generic and Cancer module) once during hospitalization. The majority (66.7%) of the participants (n = 38; mean age 12.1 ± 2.9 years) had total fatigue scores < 75 on 0 to 100 scale; with the mean total fatigue score of 63.8 ± 18.5. The majority (72.2% generic; 83.3% cancer modules) had total PedsQL scores < 75 on 0 to 100 scale. The mean PedsQL score on generic module (61.1 ± 17.0) was similar to the mean PedsQL score cancer module (59.1 ± 16.7). Significant correlations were found between total fatigue and quality of life generic (r = 0.63, p = 0.000) and cancer module (r = 0.74, p = 0.000). The study is the first to report fatigue and health related quality of life in hospitalized children and adolescents with cancer in Brazil. Similar to experiences of other children in the world, our findings indicate that children and adolescents with cancer had problems with fatigue that were associated with low HRQL. Future studies are recommended to examine interventions (exercise, leisurely activities) that may alleviate fatigue and improve HRQL in pediatric patients with cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A randomized crossover study comparing the antiplatelet effect of plavix versus generic clopidogrel.

    PubMed

    Sambu, Nalyaka; Radhakrishnan, Ashwin; Curzen, Nick

    2012-12-01

    Clopidogrel exists in different salt formulations. All published data that have demonstrated its beneficial effect are based entirely on the hydrogen sulphate salt contained in the branded product Plavix, which had US sales of $6.1 billion in 2010 alone. A number of cheaper generic versions of clopidogrel are increasingly being used in Europe as an alternative to Plavix, mainly for cost reasons. However, there is insufficient evidence to show that their pharmacodynamic effect is equivalent to Plavix. This prospective study investigated whether there is any significant difference in the antiplatelet effect of Plavix versus generic clopidogrel hydrochloride in healthy male volunteers. All participants received loading and maintenance doses of both drugs, in a crossover manner, separated by a 2-week washout period. Adenosine diphosphate (ADP)-induced platelet reactivity was measured using short thrombelastography at multiple timepoints. The results showed interindividual heterogeneity in responses to clopidogrel but no significant difference in ADP-induced platelet reactivity between Plavix versus generic clopidogrel hydrochloride. Our findings suggest comparable inhibition of ADP-induced platelet reactivity with Plavix and generic clopidogrel hydrochloride. This observation is particularly pertinent at a time when the patent for Plavix is expected to expire in the near future leading to the large-scale switch to cheaper generic preparations.

  1. Finite-size scaling above the upper critical dimension in Ising models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin

    2015-01-01

    The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.

  2. Vortex lattices and defect-mediated viscosity reduction in active liquids

    NASA Astrophysics Data System (ADS)

    Slomka, Jonasz; Dunkel, Jorn

    2016-11-01

    Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.

  3. Measuring AT Usability with the Modified System Usability Scale (SUS).

    PubMed

    Friesen, Emma L

    2017-01-01

    The modified System Usability Scale (SUS) is a widely used generic measure of product usability. This study concerns the usability of mobile shower commodes using correlations between the SUS and AT device-specific measures. Results suggest the modified SUS, and corresponding adjective-anchored rating scale, are appropriate for measuring MSC usability, and have potential for use with other AT devices.

  4. Dystonia rating scales: critique and recommendations

    PubMed Central

    Albanese, Alberto; Sorbo, Francesca Del; Comella, Cynthia; Jinnah, H.A.; Mink, Jonathan W.; Post, Bart; Vidailhet, Marie; Volkmann, Jens; Warner, Thomas T.; Leentjens, Albert F.G.; Martinez-Martin, Pablo; Stebbins, Glenn T.; Goetz, Christopher G.; Schrag, Anette

    2014-01-01

    Background Many rating scales have been applied to the evaluation of dystonia, but only few have been assessed for clinimetric properties. The Movement Disorders Society commissioned this task force to critique existing dystonia rating scales and place them in the clinical and clinimetric context. Methods A systematic literature review was conducted to identify rating scales that have either been validated or used in dystonia. Results Thirty six potential scales were identified. Eight were excluded because they did not meet review criteria, leaving twenty-eight scales that were critiqued and rated by the task force. Seven scales were found to meet criteria to be “recommended”: the Blepharospasm Disability Index is recommended for rating blepharospasm; the Cervical Dystonia Impact Scale and the Toronto Western Spasmodic Torticollis Rating Scale for rating cervical dystonia; the Craniocervical Dystonia Questionnaire for blepharospasm and cervical dystonia; the Voice Handicap Index (VHI) and the Vocal Performance Questionnaire (VPQ) for laryngeal dystonia; and the Fahn-Marsden Dystonia Rating Scale for rating generalized dystonia. Two “recommended” scales (VHI and VPQ) are generic scales validated on few patients with laryngeal dystonia, whereas the others are disease-specific scales. Twelve scales met criteria for “suggested” and seven scales met criteria for “listed”. All the scales are individually reviewed in the online appendix. Conclusion The task force recommends five specific dystonia scales and suggests to further validate in dystonia two recommended generic voice-disorder scales. Existing scales for oromandibular, arm and task-specific dystonia should be refined and fully assessed. Scales should be developed for body regions where no scales are available, such as lower limbs and trunk. PMID:23893443

  5. Analytical formulation of impulsive collision avoidance dynamics

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio

    2014-02-01

    The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.

  6. Development and Validation of an Internet Use Attitude Scale

    ERIC Educational Resources Information Center

    Zhang, Yixin

    2007-01-01

    This paper describes the development and validation of a new 40-item Internet Attitude Scale (IAS), a one-dimensional inventory for measuring the Internet attitudes. The first experiment initiated a generic Internet attitude questionnaire, ensured construct validity, and examined factorial validity and reliability. The second experiment further…

  7. The Association Between Length of Recovery Following Sport-Related Concussion and Generic and Specific Health-Related Quality of Life in Adolescent Athletes: A Prospective, Longitudinal Study.

    PubMed

    Valovich McLeod, Tamara; Bay, R Curtis; Lam, Kenneth C; Snyder Valier, Alison R

    2018-05-31

    Our purpose was to determine the association between concussion recovery and health-related quality of life (HRQOL). Secondary school athletic training facilities. Patients (N = 122) with a concussion. Prospective, longitudinal cohort. The Pediatric Quality-of-Life Inventory (PedsQL), PedsQL Multidimensional Fatigue Scale (MFS), and Headache Impact Test-6 (HIT-6) were completed at preseason and days 3 (D3), 10 (D10), and 30 (D30) postconcussion. The independent variable was the recovery group. Interactions between group and time (P < .001) were noted for all PedsQL subscales, except Social Functioning (P = .75). Significantly lower scores were found among Prolonged than in Short on D3 (P < .05). Significant interactions (P < .001) were also noted for all MFS subscales. Pairwise comparisons for General and Sleep subscales revealed Prolonged had lower scores than Short and Moderate on D3 and D10. A group by time interaction was found for the HIT-6 (P < .001), with scores being higher (P < .01) in Prolonged than in Short on D3 and D10. Adolescents with a prolonged recovery demonstrated lower HRQOL in the immediate days postinjury, particularly in physical and school functioning, fatigue, and headache. There was a strong association between recovery length and school functioning. Additional research is needed to understand how to minimize the impact of concussion on HRQOL.

  8. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks

    NASA Astrophysics Data System (ADS)

    Levis, Demian; Berthier, Ludovic

    2014-06-01

    We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.

  9. Impacts of supersymmetric higher derivative terms on inflation models in supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Shuntaro; Yamada, Yusuke, E-mail: shun-soccer@akane.waseda.jp, E-mail: yuusuke-yamada@asagi.waseda.jp

    2015-07-01

    We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two.

  10. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  11. Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.

    PubMed

    Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R

    2010-07-01

    Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.

  12. Factorial invariance of child self-report across healthy and chronic health condition groups: a confirmatory factor analysis utilizing the PedsQLTM 4.0 Generic Core Scales.

    PubMed

    Limbers, Christine A; Newman, Daniel A; Varni, James W

    2008-07-01

    The objective of the present study was to examine the factorial invariance of the PedsQL 4.0 Generic Core Scales for child self-report across 11,433 children ages 5-18 with chronic health conditions and healthy children. Multigroup Confirmatory Factor Analysis was performed specifying a five-factor model. Two multigroup structural equation models, one with constrained parameters and the other with unconstrained parameters, were proposed in order to compare the factor loadings across children with chronic health conditions and healthy children. Metric invariance (i.e., equal factor loadings) was demonstrated based on stability of the Comparative Fit Index (CFI) between the two models, and several additional indices of practical fit including the root mean squared error of approximation, the Non-normed Fit Index, and the Parsimony Normed Fit Index. The findings support an equivalent five-factor structure on the PedsQL 4.0 Generic Core Scales across healthy and chronic health condition groups. These findings suggest that when differences are found across chronic health condition and healthy groups when utilizing the PedsQL, these differences are more likely real differences in self-perceived health-related quality of life, rather than differences in interpretation of the PedsQL items as a function of health status.

  13. Converged photonic data storage and switch platform for exascale disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Worrall, A.

    2017-02-01

    We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.

  14. Techniques for Developing Health Quality of Life Scales for Point of Service Use

    ERIC Educational Resources Information Center

    Lee, Young-Sun; Douglas, Jeffrey; Chewning, Betty

    2007-01-01

    Clinical and health policy research frequently involves health status measurement using generic or disease specific instruments. These instruments are generally developed to arrive at several scales, each measuring a distinct domain of health quality of life (HQOL). Clinical settings are starting to explore how to integrate patient perspectives of…

  15. Validation of modified forms of the PedsQL generic core scales and cancer module scales for adolescents and young adults (AYA) with cancer or a blood disorder.

    PubMed

    Ewing, Jane E; King, Madeleine T; Smith, Narelle F

    2009-03-01

    To validate two health-related quality of life (HRQOL) measures, the PedsQL Generic Core and Cancer Module adolescent forms (13-18 years), after modification for 16-25-year-old adolescents and young adults (AYA) with cancer or a blood disorder. AYA patients and nominated proxies were recruited from three Sydney hospitals. Modified forms were administered by telephone or in clinics/wards. Analyses included correlations, factor analysis, and analysis of variance of known-groups (defined by the Memorial Symptom Assessment Scale). Eighty-eight patients and 79 proxies completed questionnaires. Factor structures consistent with those of the unmodified forms confirmed construct validity. Cronbach's alpha ranged 0.81-0.98. Inter-scale correlations were as hypothesized, confirming discriminant validity. Statistically significant differences between groups with mild, moderate, and severe symptoms (P < 0.05) confirmed clinical validity. These modified forms provide reliable and valid measures of HRQOL in AYA with cancer or a blood disorder, suitable for clinical trials, research, and practice.

  16. The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Unmanned Aircraft Detect-And-Avoid Systems

    NASA Technical Reports Server (NTRS)

    Abramson, Michael; Refai, Mohamad; Santiago, Confesor

    2017-01-01

    The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is generic since it was designed without any assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Therefore, GRACE was adopted as a core component of the Java Architecture for Detect-And-Avoid (DAA) Extensibility and Modeling, developed by NASA as a research and modeling tool for Unmanned Aerial Systems Integration in the National Airspace System (NAS). GRACE has been used in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.

  17. Thermal fluctuations of dark matter in bouncing cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changhong, E-mail: changhongli@ynu.edu.cn

    We investigate the statistical nature of the dark matter particles produced in bouncing cosmology, especially, the evolution of its thermal fluctuations. By explicitly deriving and solving the equation of motion of super-horizon mode, we fully determine the evolution of thermal perturbation of dark matter in a generic bouncing background. And we also show that the evolution of super-horizon modes is stable and will not ruin the background evolution of a generic bouncing universe till the Planck scale. Given no super-horizon thermal perturbation of dark matter appears in standard inflation scenario such as WIMP(-less) miracles, such super-horizon thermal perturbation of darkmore » matter generated during the generic bouncing universe scenario may be significant for testing and distinguishing these two scenario in near future.« less

  18. Rank Dynamics of Word Usage at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Morales, José A.; Colman, Ewan; Sánchez, Sergio; Sánchez-Puig, Fernanda; Pineda, Carlos; Iñiguez, Gerardo; Cocho, Germinal; Flores, Jorge; Gershenson, Carlos

    2018-05-01

    The recent dramatic increase in online data availability has allowed researchers to explore human culture with unprecedented detail, such as the growth and diversification of language. In particular, it provides statistical tools to explore whether word use is similar across languages, and if so, whether these generic features appear at different scales of language structure. Here we use the Google Books N-grams dataset to analyze the temporal evolution of word usage in several languages. We apply measures proposed recently to study rank dynamics, such as the diversity of N-grams in a given rank, the probability that an N-gram changes rank between successive time intervals, the rank entropy, and the rank complexity. Using different methods, results show that there are generic properties for different languages at different scales, such as a core of words necessary to minimally understand a language. We also propose a null model to explore the relevance of linguistic structure across multiple scales, concluding that N-gram statistics cannot be reduced to word statistics. We expect our results to be useful in improving text prediction algorithms, as well as in shedding light on the large-scale features of language use, beyond linguistic and cultural differences across human populations.

  19. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  20. Bioequivalence of generic alendronate sodium tablets (70 mg) to Fosamax® tablets (70 mg) in fasting, healthy volunteers: a randomized, open-label, three-way, reference-replicated crossover study

    PubMed Central

    Zhang, Yifan; Chen, Xiaoyan; Tang, Yunbiao; Lu, Youming; Guo, Lixia; Zhong, Dafang

    2017-01-01

    Purpose The aim of this study was to evaluate the bioequivalence of a generic product 70 mg alendronate sodium tablets with the reference product Fosamax® 70 mg tablet. Materials and methods A single-center, open-label, randomized, three-period, three-sequence, reference-replicated crossover study was performed in 36 healthy Chinese male volunteers under fasting conditions. In each study period, the volunteers received a single oral dose of the generic or reference product (70 mg). Blood samples were collected at pre-dose and up to 8 h after administration. The bioequivalence of the generic product to the reference product was assessed using the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) reference-scaled average bioequivalence (RSABE) methods. Results The average maximum concentrations (Cmax) of alendronic acid were 64.78±43.76, 56.62±31.95, and 60.15±37.12 ng/mL after the single dose of the generic product and the first and second doses of the reference product, respectively. The areas under the plasma concentration–time curves from time 0 to the last timepoint (AUC0–t) were 150.36±82.90, 148.15±85.97, and 167.11±110.87 h⋅ng/mL, respectively. Reference scaling was used because the within-subject standard deviations of the reference product (sWR) for Cmax and AUC0–t were all higher than the cutoff value of 0.294. The 95% upper confidence bounds were −0.16 and −0.17 for Cmax and AUC0–t, respectively, and the point estimates for the generic/reference product ratio were 1.08 and 1.00, which satisfied the RSABE acceptance criteria of the FDA. The 90% CIs for Cmax and AUC0–t were 90.35%–129.04% and 85.31%–117.15%, respectively, which were within the limits of the EMA for the bioequivalence of 69.84%–143.19% and 80.00%–125.00%. Conclusion The generic product was bioequivalent to the reference product in terms of the rate and extent of alendronate absorption after a single 70 mg oral dose under fasting conditions. PMID:28744102

  1. Generic antiepileptic drugs and associated medical resource utilization in the United States.

    PubMed

    Labiner, D M; Paradis, P E; Manjunath, R; Duh, M S; Lafeuille, M-H; Latrémouille-Viau, D; Lefebvre, P; Helmers, S L

    2010-05-18

    To evaluate whether generic substitution was associated with any difference in medical resource utilization for 5 widely used antiepileptic drugs (AEDs) in the United States. Health insurance claims from PharMetrics Database, representing over 90 health plans between January 2000 and October 2007, were analyzed. Adult patients with epilepsy, continuously treated with carbamazepine, gabapentin, phenytoin, primidone, or zonisamide, were selected. An open-cohort design was used to classify patients into mutually exclusive periods of brand vs generic use of AEDs. Pharmacy and medical utilization were compared between the 2 periods with multivariate regression analyses. Results were stratified into epilepsy-related medical services, and stable (< or = 2 outpatient visits per year and no emergency room visit) vs unstable epilepsy. Time-to-event analyses were also performed for all services and epilepsy-related endpoints. A total of 18,125 patients were observed in the stable group and 15,500 patients in the unstable group. After adjustment of covariates, periods of generic AED treatment were associated with increased use of all prescription drugs (incidence rate ratio [IRR] [95% confidence interval (CI)] = 1.13 [1.13-1.14]) and higher epilepsy-related medical utilization rates (hospitalizations: IRR [95% CI] = 1.24 [1.19-1.30]; outpatient visits: IRR [95% CI] = 1.14 [1.13-1.16]; lengths of hospital stays: IRR [95% CI] = 1.29 [1.27-1.32]). Generic-use periods were associated with increased utilization rates in stable and unstable patients and with 20% increased risk of injury, compared to periods with brand use of AEDs. Generic antiepileptic drug use was associated with significantly greater medical utilization and risk of epilepsy-related medical events, compared to brand use. This relationship was observed even in patients characterized as stable. AED = antiepileptic drug; CI = confidence interval; ER = emergency room; HR = hazard ratio; ICD = International Classification of Diseases; IRR = incidence rate ratio.

  2. Using Rasch rating scale model to reassess the psychometric properties of the Persian version of the PedsQL™ 4.0 Generic Core Scales in school children.

    PubMed

    Jafari, Peyman; Bagheri, Zahra; Ayatollahi, Seyyed Mohamad Taghi; Soltani, Zahra

    2012-03-13

    Item response theory (IRT) is extensively used to develop adaptive instruments of health-related quality of life (HRQoL). However, each IRT model has its own function to estimate item and category parameters, and hence different results may be found using the same response categories with different IRT models. The present study used the Rasch rating scale model (RSM) to examine and reassess the psychometric properties of the Persian version of the PedsQL™ 4.0 Generic Core Scales. The PedsQL™ 4.0 Generic Core Scales was completed by 938 Iranian school children and their parents. Convergent, discriminant and construct validity of the instrument were assessed by classical test theory (CTT). The RSM was applied to investigate person and item reliability, item statistics and ordering of response categories. The CTT method showed that the scaling success rate for convergent and discriminant validity were 100% in all domains with the exception of physical health in the child self-report. Moreover, confirmatory factor analysis supported a four-factor model similar to its original version. The RSM showed that 22 out of 23 items had acceptable infit and outfit statistics (<1.4, >0.6), person reliabilities were low, item reliabilities were high, and item difficulty ranged from -1.01 to 0.71 and -0.68 to 0.43 for child self-report and parent proxy-report, respectively. Also the RSM showed that successive response categories for all items were not located in the expected order. This study revealed that, in all domains, the five response categories did not perform adequately. It is not known whether this problem is a function of the meaning of the response choices in the Persian language or an artifact of a mostly healthy population that did not use the full range of the response categories. The response categories should be evaluated in further validation studies, especially in large samples of chronically ill patients.

  3. [Vertical integration and contracting-out in generic hospital services in Spain].

    PubMed

    Puig-Junoy, J; Pérez-Sust, P

    2002-01-01

    This study examines the factors that influence make or buy decisions corresponding to four generic services (housekeeping, laundry, food services, and maintenance and security) in Spanish hospitals (3,160 transactions in 790 hospitals). The empirical estimation of a logistic model based on hospital utility maximization is presented. Factors included in the model are not only those related to transaction costs, but also those related to public intervention and the political dimension. A total of 55.7% of hospitals contracted-out at least one of the generic services. The services most frequently contracted-out were housekeeping and maintenance and security(45.1 and 32.5%, respectively). In contrast, the services (94.3% and 80.1%, respectively). Hospital size (economies of scale), measured by the number of beds, was one of the most important factors influencing make or buy decisions. We find evidence that economies of scale are related to a higher level of vertical integration, while specialization and for-profit objectives favor the decision to contract-out. The choice of organizational model for laundry services presents a different pattern from that of the other three services. Empirical results show that some asset specificity could be present in laundry services.

  4. Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: A computational pore-scale approach

    NASA Astrophysics Data System (ADS)

    Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos

    2018-05-01

    Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during unstable flows. This scaling procedure allows us to describe the temporal variation of mixing length using a generalized curve for various combinations of the flow conditions and porous medium properties.

  5. Structure and non-structure of centrosomal proteins.

    PubMed

    Dos Santos, Helena G; Abia, David; Janowski, Robert; Mortuza, Gulnahar; Bertero, Michela G; Boutin, Maïlys; Guarín, Nayibe; Méndez-Giraldez, Raúl; Nuñez, Alfonso; Pedrero, Juan G; Redondo, Pilar; Sanz, María; Speroni, Silvia; Teichert, Florian; Bruix, Marta; Carazo, José M; Gonzalez, Cayetano; Reina, José; Valpuesta, José M; Vernos, Isabelle; Zabala, Juan C; Montoya, Guillermo; Coll, Miquel; Bastolla, Ugo; Serrano, Luis

    2013-01-01

    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.

  6. Longitudinal aerodynamic characteristics of a generic fighter model with a wing designed for sustained transonic maneuver conditions

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1986-01-01

    A wind-tunnel investigation was made to determine the longitudinal aerodynamic characteristics of a fixed-wing generic fighter model with a wing designed for sustained transonic maneuver conditions. The airfoil sections on the wing were designed with a two-dimensional nonlinear computer code, and the root and tip section were modified with a three-dimensional code. The wing geometric characteristics were as follows: a leading-edge sweep of 45 degrees, a taper ratio of 0.2141, an aspect ratio of 3.30, and a thickness ratio of 0.044. The model was investigated at Mach numbers from 0.600 to 1.200, at Reynolds numbers, based on the model reference length, from 2,560,000 to 3,970,000, and through a model angle-of-attack range from -5 to +18 degrees.

  7. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  8. The cost-effectiveness of temozolomide in the adjuvant treatment of newly diagnosed glioblastoma in the United States

    PubMed Central

    Messali, Andrew; Hay, Joel W.; Villacorta, Reginald

    2013-01-01

    Background The objective of this work was to determine the cost-effectiveness of temozolomide compared with that of radiotherapy alone in the adjuvant treatment of newly diagnosed glioblastoma. Temozolomide is the only chemotherapeutic agent to have demonstrated a significant survival benefit in a randomized clinical trial. Our analysis builds on earlier work by incorporating caregiver time costs and generic temozolomide availability. It is also the first analysis applicable to the US context. Methods A systematic literature review was conducted to collect relevant data. Transition probabilities were calculated from randomized controlled trial data comparing temozolomide plus radiotherapy with radiotherapy alone. Direct costs were calculated from charges reported by the Mayo Clinic. Utilities were obtained from a previous cost-utility analysis. Using these data, a Markov model with a 1-month cycle length and 5-year time horizon was constructed. Results The addition of brand Temodar and generic temozolomide to the standard radiotherapy regimen was associated with base-case incremental cost-effectiveness ratios of $102 364 and $8875, respectively, per quality-adjusted life-year. The model was most sensitive to the progression-free survival associated with the use of only radiotherapy. Conclusions Both the brand and generic base-case estimates are cost-effective under a willingness-to-pay threshold of $150 000 per quality-adjusted life-year. All 1-way sensitivity analyses produced incremental cost-effectiveness ratios below this threshold. We conclude that both the brand Temodar and generic temozolomide are cost-effective treatments for newly diagnosed glioblastoma within the US context. However, assuming that the generic product produces equivalent quality of life and survival benefits, it would be significantly more cost-effective than the brand option. PMID:23935155

  9. Musculoskeletal Simulation Model Generation from MRI Data Sets and Motion Capture Data

    NASA Astrophysics Data System (ADS)

    Schmid, Jérôme; Sandholm, Anders; Chung, François; Thalmann, Daniel; Delingette, Hervé; Magnenat-Thalmann, Nadia

    Today computer models and computer simulations of the musculoskeletal system are widely used to study the mechanisms behind human gait and its disorders. The common way of creating musculoskeletal models is to use a generic musculoskeletal model based on data derived from anatomical and biomechanical studies of cadaverous specimens. To adapt this generic model to a specific subject, the usual approach is to scale it. This scaling has been reported to introduce several errors because it does not always account for subject-specific anatomical differences. As a result, a novel semi-automatic workflow is proposed that creates subject-specific musculoskeletal models from magnetic resonance imaging (MRI) data sets and motion capture data. Based on subject-specific medical data and a model-based automatic segmentation approach, an accurate modeling of the anatomy can be produced while avoiding the scaling operation. This anatomical model coupled with motion capture data, joint kinematics information, and muscle-tendon actuators is finally used to create a subject-specific musculoskeletal model.

  10. Investigation of Aerodynamics Scale Effects for a Generic Fighter Configuration in the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Tomek, W. G.; Wahls, R. A.; Owens, L. R.; Burner, A. B.; Graves, S. S.; Luckring, J. M.

    2003-01-01

    Two wind tunnel tests of a generic fighter configuration have been completed in the National Transonic Facility. The primary purpose of the tests was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The tests included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: 1) Fuselage / Wing, 2) Fuselage / Wing / Centerline Vertical Tail / Horizontal Tail, and 3) Fuselage / Wing / Trailing-Edge Extension / Twin Vertical Tails. Reynolds number effects on the lateral-directional aerodynamic characteristics are presented herein, along with longitudinal data demonstrating the effects of fixing the boundary layer transition location for low Reynolds number conditions. In addition, an improved model videogrammetry system and results are discussed.

  11. Some psychometric properties of the Pediatric Quality of Life Inventory™ Version 4.0 Generic Core Scales (PedsQL™) in the general Serbian population.

    PubMed

    Stevanović, Dejan; Lakić, Aneta; Damnjanović, Maja

    2011-08-01

    The aim of this study was to evaluate the general measurement properties of the Serbian version of the Pediatric Quality of Life Inventory™ Version 4.0 Generic Core Scales (PedsQL™) self-report versions for children and adolescents (8-18 years). The PedsQL™ was completed by 238 children and adolescents. The version was descriptively analyzed first. Afterward, internal consistency and construct and convergent validity were analyzed using the classic test theory psychometrical procedures. The PedsQL™ scale score means ranged 70.65-88.34, with the total score was 80.74. Scale internal consistency reliability determined by Cronbach's coefficient was above 0.7 for all except the School, 0.65, and Emotional Functioning Scale, 0.69. The statistics assessing the adequacy of the model in confirmatory factor analysis revealed poor model fit for the current structure of the PedsQL™. Finally, the PedsQL™ total and psychosocial health showed convincing negative correlations with emotional and conduct problems, hyperactivity/inattention, and peer relationship problems. The Serbian PedsQL™ scales have appropriate internal consistency reliability, sufficient for group evaluations, and good convergent validity against psychological constructs. However, there are problems regarding its current construct validity (factorial validity).

  12. Anomalous pinch of turbulent plasmas driven by the magnetic-drift-induced Lorentz force through the Stokes-Einstein relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaojie, E-mail: wangsj@ustc.edu.cn

    It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.

  13. Choosing Tense in English.

    DTIC Science & Technology

    1984-11-01

    about the length of duration before or after the zero point". The generalization about snow being white holds at PRESENT. If the generic ...tense, serial tense, system network, systemic grammar, tense grammar, tense semantics, text generation , text production, verbal group * 4- •S 20...purposeful way, as a subprocess of the process of generating text. First, a systemic grammar of English tense (based on work by M A.K. Halliday) is

  14. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    NASA Astrophysics Data System (ADS)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  15. Mesoscopic length scale controls the rheology of dense suspensions.

    PubMed

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-03

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  16. The role of plasma density scale length on the laser pulse propagation and scattering in relativistic regime

    NASA Astrophysics Data System (ADS)

    Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin

    2017-10-01

    The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.

  17. Quasi-Continuum Reduction of Field Theories: A Route to Seamlessly Bridge Quantum and Atomistic Length-Scales with Continuum

    DTIC Science & Technology

    2016-04-01

    AFRL-AFOSR-VA-TR-2016-0145 Quasi-continuum reduction of field theories: A route to seamlessly bridge quantum and atomistic length-scales with...field theories: A route to seamlessly bridge quantum and atomistic length-scales with continuum Principal Investigator: Vikram Gavini Department of...calculations on tens of thousands of atoms, and enable continuing efforts towards a seamless bridging of the quantum and continuum length-scales

  18. The Work-Related Quality of Life Scale for Higher Education Employees

    ERIC Educational Resources Information Center

    Edwards, Julian A.; Van Laar, Darren; Easton, Simon; Kinman, Gail

    2009-01-01

    Previous research suggests that higher education employees experience comparatively high levels of job stress. A range of instruments, both generic and job-specific, has been used to measure stressors and strains in this occupational context. The Work-related Quality of Life (WRQoL) scale is a measure designed to capture perceptions of the working…

  19. Comparing Tolerability and Efficacy of Generic versus Brand Alendronate: A Randomized Clinical Study in Postmenopausal Women with a Recent Fracture

    PubMed Central

    van den Bergh, Joop P. W.; Bouts, Marian E.; van der Veer, Eveline; van der Velde, Robert Y.; Janssen, Marcel J. W.; Geusens, Piet P.; Winkens, Bjorn; Oldenhof, Nico J. J.; van Geel, Tineke A. C. M.

    2013-01-01

    Introduction An increasing number of generic alendronate formulations have become available. Although expected to have the same tolerability and efficacy, head-to head comparison of generic and brand alendronate was never performed. Therefore, we compared the tolerability and efficacy of generic and brand alendronate. Methods In a randomized double-blinded single centre cross-over study in 37 postmenopausal women (mean age 65.4±6.4 years) with osteoporosis were treated with generic and branded alendronate during 24 (2x12) weeks. Tolerance was evaluated by the Gastro intestinal Symptom Rating Scale (GSRS) and self-reported side effects. Efficacy was assessed by serum bone turnover markers, carboxy terminal telopeptide (CTX) and procollagen type I N-terminal propeptide (PINP). No wash out period was allowed (ethical reasons). Because of possible carry over effect only data of the first 12 weeks were analyzed using linear mixed models. Results There were no significant differences in overall tolerance (GSRS) between treatment groups. However, for subscale abdominal pain, patients using generic had a significantly higher mean GSRS score at week 4 (estimated mean difference (B): 0.40; 95%CI: 0.05 to 0.74, p = 0.024). The level of bone turnover markers significantly decreased over 12 weeks of follow-up for generic and branded alendronate (p < 0.001). Mean level of CTX was significantly lower with branded at week 4 (B: 121.3; 95%CI: 52.0 to 190.5), but not at week 12 (B: 53.6; 95%CI:-3.7 to 110.9). No significant differences were found for PINP at week 4 or 12. Conclusions Bone turnover markers were significantly reduced with branded and generic alendronate. With branded, CTX was significantly lower at 4 weeks. Generic caused significantly higher abdominal pain scores in the first 4 weeks of treatment. Therefore, generic alendronate may not have the same tolerability and efficacy as branded alendronate in the first weeks after starting treatment in patients with a recent fracture. Trial Registration Dutch Trial Register NTR number 1867 http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1867 PMID:24205135

  20. Fabrication of oriented crystals as force measurement tips via focused ion beam and microlithography methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhigang; Chun, Jaehun; Chatterjee, Sayandev

    Detailed knowledge of the forces between nanocrystals is very crucial for understanding many generic (e.g., random aggregation/assembly and rheology) and specific (e.g., oriented attachment) phenomena at macroscopic length scales, especially considering the additional complexities involved in nanocrystals such as crystal orientation and corresponding orientation-dependent physicochemical properties. Because there are a limited number of methods to directly measure the forces, little is known about the forces that drive the various emergent phenomena. Here we report on two methods of preparing crystals as force measurement tips used in an atomic force microscope (AFM): the focused ion beam method and microlithography method. Themore » desired crystals are fabricated using these two methods and are fixed to the AFM probe using platinum deposition, ultraviolet epoxy, or resin, which allows for the orientation-dependent force measurements. These two methods can be used to attach virtually any solid particles (from the size of a few hundreds of nanometers to millimeters). We demonstrate the force measurements between aqueous media under different conditions such as pH.« less

  1. RANS study of flow Characteristics Over flight deck of Simplified frigate Ship

    NASA Astrophysics Data System (ADS)

    Shukla, Shrish; Singh, Sidh Nath; Srinivasan, Balaji

    2014-11-01

    The combined operation of a ship and helicopter is ubiquitous in every naval organization. The operation of ship with the landing and takeoff of a helicopter over sea results in very complex flow phenomena due to presence of ship air wakes, strong velocity gradients and widely varying turbulence length scales. This complexity of flow is increased with the addition of helicopter downwash during landing and takeoff. The resultant flow is therefore very complicated and accurate prediction represents a computational challenge. We present Reynolds-averaged-Navier-Stokes (RANS) of turbulent flow over a simple frigate ship to gain insight into the flow phenomena over a flight deck. Flow conditions analysis is carried out numerically over the generic simplified frigate ship. Profiles of mean velocity across longitudinal and transverse plane have been analyzed along the ship. Further, we propose some design modifications in order to reduce pilot load and increase the ship helicopter operation limit (SHOL). Computational results for these modified designs are also presented and their efficacy in reducing the turbulence levels and recirculation zone in the ship air wakes is discussed. Graduate student.

  2. Local control of globally competing patterns in coupled Swift-Hohenberg equations

    NASA Astrophysics Data System (ADS)

    Becker, Maximilian; Frenzel, Thomas; Niedermayer, Thomas; Reichelt, Sina; Mielke, Alexander; Bär, Markus

    2018-04-01

    We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift-Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left- and right-traveling waves. In particular, these complex Ginzburg-Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.

  3. General gauge mediation in five dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGarrie, Moritz; Russo, Rodolfo

    2010-08-01

    We use the ''general gauge mediation'' (GGM) formalism to describe a five-dimensional setup with an S{sup 1}/Z{sub 2} orbifold. We first consider a model independent supersymmetry breaking hidden sector on one boundary and generic chiral matter on another. Using the definition of GGM, the effects of the hidden sector are contained in a set of global symmetry current correlator functions and is mediated through the bulk. We find the gaugino, sfermion and hyperscalar mass formulas for minimal and generalized messengers in different regimes of a large, small and intermediate extra dimension. Then we use the five-dimensional GGM formalism to constructmore » a model in which an SU(5) Intriligator, Seiberg and Shih (ISS) model is located on the hidden boundary. We weakly gauge a global symmetry of the ISS model and associate it with the bulk vector superfield. Compared to four-dimensional GGM, there is a natural way to adjust the gaugino versus sfermion mass ratio by a factor (Ml){sup 2}, where M is a characteristic mass scale of the supersymmetry breaking sector and l is the length of the extra dimension.« less

  4. Uncovering molecular processes in crystal nucleation and growth by using molecular simulation.

    PubMed

    Anwar, Jamshed; Zahn, Dirk

    2011-02-25

    Exploring nucleation processes by molecular simulation provides a mechanistic understanding at the atomic level and also enables kinetic and thermodynamic quantities to be estimated. However, whilst the potential for modeling crystal nucleation and growth processes is immense, there are specific technical challenges to modeling. In general, rare events, such as nucleation cannot be simulated using a direct "brute force" molecular dynamics approach. The limited time and length scales that are accessible by conventional molecular dynamics simulations have inspired a number of advances to tackle problems that were considered outside the scope of molecular simulation. While general insights and features could be explored from efficient generic models, new methods paved the way to realistic crystal nucleation scenarios. The association of single ions in solvent environments, the mechanisms of motif formation, ripening reactions, and the self-organization of nanocrystals can now be investigated at the molecular level. The analysis of interactions with growth-controlling additives gives a new understanding of functionalized nanocrystals and the precipitation of composite materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Retrofitted supersymmetric models

    NASA Astrophysics Data System (ADS)

    Bose, Manatosh

    This thesis explores several models of metastable dynamic supersymmetry breaking (MDSB) and a supersymmetric model of hybrid inflation. All of these models possess discrete R-symmetries. We specially focus on the retrofitted models for supersymmetry breaking models. At first we construct retrofitted models of gravity mediation. In these models we explore the genericity of the so-called "split supersymmetry." We show that with the simplest models, where the goldstino multiplet is neutral under the discrete R-symmetry, a split spectrum is not generic. However if the goldstino superfield is charged under some symmetry other than the R-symmetry, then a split spectrum is achievable but not generic. We also present a gravity mediated model where the fine tuning of the Z-boson mass is dictated by a discrete choice rather than a continuous tuning. Then we construct retrofitted models of gauge mediated SUSY breaking. We show that, in these models, if the approximate R-symmetry of the theory is spontaneously broken, the messenger scale is fixed; if explicitly broken by retrofitted couplings, a very small dimensionless number is required; if supergravity corrections are responsible for the symmetry breaking, at least two moderately small couplings are required, and that there is a large range of possible messenger scales. Finally we switch our attention to small field hybrid inflation. We construct a model that yields a spectral index ns = 0.96. Here, we also briefly discuss the possibility of relating the scale of inflation with the dynamics responsible for supersymmetry breaking.

  6. Health related quality of life assessment in Pakistani paediatric cancer patients using PedsQL™ 4.0 generic core scale and PedsQL™ cancer module.

    PubMed

    Chaudhry, Zainab; Siddiqui, Salma

    2012-05-18

    The purpose of the study was to evaluate and compare the HRQOL of paediatric cancer in comparison to the healthy children across age groups, using PedsQLTM 4.0 Generic Core Scales and the PedsQL™ Cancer Module. The PedsQLTM 4.0 Generic Core Scales and PedsQL Cancer Module 3.0 were administered on 56 children including 26 cancer patients and 30 healthy children while employing self and proxy report forms. Furthermore, the results were compared with their healthy comparison group. The results indicated a significant relationship between HRQOL reports of cancer patients and their parents. However, the mean of paediatric cancer patients is significantly lower as compare to their healthy comparison group. The mean of proxy report is lower overall on both PedsQL and PedsQL cancer module reports. Conclusively, overall HRQOL of cancer patients was lower than healthy children but it is quite similar to their parents' perception. Whereas, the parental mean on PedsQL and PedsQL 3.0 Cancer Module are significantly low. The study indicated a marked difference between cancer patients and healthy children's HRQOL perception and unfortunately in country like Pakistan where cancer is on increase, no significant work has yet been done to explore this area of research. The present study highlighted the need to focus on the particular psychological health services required to serve the physically challenged population.

  7. Rapid reductions in prices for generic sofosbuvir and daclatasvir to treat hepatitis C.

    PubMed

    Hill, Andrew; Simmons, Bryony; Gotham, Dzintars; Fortunak, Joseph

    2016-01-01

    Novel treatments for hepatitis C demonstrate high cure rates, but current high prices can be a barrier to rapid global treatment scale-up. Generic competition can rapidly lower drug prices. Using data on exports of raw materials in 2015, we calculated currently feasible generic prices of sofosbuvir and daclatasvir. Data on per-kilogram prices of sofosbuvir and daclatasvir active pharmaceutical ingredients (API) exported from India were extracted from an online database. To the cost of the amount of API needed for a 12-week treatment course, we added cost estimates for formulation (40%), packaging (US$0.35/month), and a mark-up (50%). Between 1 January and 15 October 2015, over 5 tons of sofosbuvir were exported, with prices decreasing by US$702/kg/month, and observed prices of US$2501/kg in early September. Over the same period, 84 kg of daclatasvir were exported, with prices decreasing by US$1664/kg/month to US$1897/kg. Using the price estimation algorithm, we estimated the price of a generic sofosbuvir-daclatasvir combination regimen at US$200 per patient for a 12-week treatment course. The costs of generic production of sofosbuvir and daclatasvir are rapidly decreasing. Sofosbuvir-daclatasvir combination treatment could be produced for US$200 per patient per 12-week course.

  8. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations.

    PubMed

    Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

  9. Inherent length-scales of periodic solar wind number density structures

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Kepko, L.; Spence, H. E.

    2008-07-01

    We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.

  10. The generic drug user fee amendments: an economic perspective

    PubMed Central

    Berndt, Ernst R; Murphy, Stephen J

    2018-01-01

    Abstract Since the vast majority of prescription drugs consumed by Americans are off patent (‘generic’), their regulation and supply is of wide interest. We describe events leading up to the US Congress's 2012 passage of the Generic Drug User Fee Amendments (GDUFA I) as part of the Food and Drug Administration Safety and Innovation Act (FDASIA). Under GDUFA I, generic manufacturers agreed to pay approximately $300 million in fees each year of the five-year program. In exchange, the US Food and Drug Administration (FDA) committed to performance goals. We describe GDUFA I’s FDA commitments, provisions, goals, and annual fee structure and compare it to that entailed in the authorization and implementation of GDUFA II on October 1, 2017. We explain how user fees required under GDUFA I erected barriers to entry and created scale and scope economies for incumbent manufacturers. Congress changed user fees under GDUFA II in part to lessen these incentives. In order to initiate and sustain user fees under GDUFA legislation, FDA requires the submission of self-reported data on generic manufacturers including domestic and foreign facilities. These data are public and our examination of them provides an unprecedented window into the recent organization of generic drug manufacturers supplying the US market. Our results suggest that generic drug manufacturing is increasingly concentrated and foreign. We discuss the implications of this observed market structure for GDUFA II’s implementation among other outcomes. PMID:29707218

  11. Dubinectes infirmus, a new species of deep-water Munnopsidae (Crustacea, Isopoda, Asellota) from the Argentine Basin, South Atlantic Ocean

    PubMed Central

    Malyutina, Marina; Brandt, Angelika

    2011-01-01

    Abstract Dubinectes infirmus sp. n., Munnopsidae, is described from the Argentine Basin, southwest Atlantic, at depths between 4586–4607 m. The new species is distinguished by a narrow rim of the pleotelson posterior margin which is not raising over its dorsal surface; article 3 of the antennula is subequal in length to article 2; distomedial lobes of male pleopod 1 are of same size as distolateral lobes; stylet of male pleopod 2 is subequal in length to protopod; uropod exopod is more than a half of endopod length. Some generic characters which are weakly pronounced in the new species or have different state are defined more precisely in the revised diagnosis of Dubinectes. The modified diagnosis of the genus, a key to the species of Dubinectes as well as the distribution of the genus are presented. PMID:22207784

  12. Measuring health literacy in individuals with diabetes: a systematic review and evaluation of available measures.

    PubMed

    Al Sayah, Fatima; Williams, Beverly; Johnson, Jeffrey A

    2013-02-01

    To identify instruments used to measure health literacy and numeracy in people with diabetes; evaluate their use, measurement scope, and properties; discuss their strengths and weaknesses; and propose the most useful, reliable, and applicable measure for use in research and practice settings. A systematic literature review was conducted to identify the instruments. Nutbeam's domains of health literacy and a diabetes health literacy skill set were used to evaluate the measurement scope of the identified instruments and to evaluate their applicability in people with diabetes. Fifty-six studies were included, from which one diabetes-specific (LAD) and eight generic measures of health literacy (REALM, REALM-R, TOFHLA, s-TOFHLA, NVS, 3-brief SQ, 3-level HL Scale, SILS) and one diabetes-specific (DNT) and two generic measures of numeracy (SNS, WRAT) were identified. These instruments were categorized into direct measures, that is, instruments that assess the performance of individuals on health literacy skills and indirect measures that rely on self-report of these skills. The most commonly used instruments measure selective domains of health literacy, focus mainly on reading and writing skills, and do not address other important skills such as verbal communication, health care system navigation, health-related decision making, and numeracy. The structure, mode, and length of administration and measurement properties were found to affect the applicability of these instruments in clinical and research settings. Indirect self- or clinician-administered measures are the most useful in both clinical and research settings. This review provides an evaluation of available health literacy measures and guidance to practitioners and researchers for selecting the appropriate measures for use in clinical settings and research applications.

  13. Assessment of knowledge and perceptions toward generic medicines among basic science undergraduate medical students at Aruba.

    PubMed

    Shankar, P Ravi; Herz, Burton L; Dubey, Arun K; Hassali, Mohamed A

    2016-10-01

    Use of generic medicines is important to reduce rising health-care costs. Proper knowledge and perception of medical students and doctors toward generic medicines are important. Xavier University School of Medicine in Aruba admits students from the United States, Canada, and other countries to the undergraduate medical (MD) program. The present study was conducted to study the knowledge and perception about generic medicines among basic science MD students. The cross-sectional study was conducted among first to fifth semester students during February 2015. A previously developed instrument was used. Basic demographic information was collected. Respondent's agreement with a set of statements was noted using a Likert-type scale. The calculated total score was compared among subgroups of respondents. One sample Kolmogorov-Smirnov test was used to study the normality of distribution, Independent samples t -test to compare the total score for dichotomous variables, and analysis of variance for others were used for statistical analysis. Fifty-six of the 85 students (65.8%) participated. Around 55% of respondents were between 20 and 25 years of age and of American nationality. Only three respondents (5.3%) provided the correct value of the regulatory bioequivalence limits. The mean total score was 43.41 (maximum 60). There was no significant difference in scores among subgroups. There was a significant knowledge gap with regard to the regulatory bioequivalence limits for generic medicines. Respondents' level of knowledge about other aspects of generic medicines was good but could be improved. Studies among clinical students in the institution and in other Caribbean medical schools are required. Deficiencies were noted and we have strengthened learning about generic medicines during the basic science years.

  14. Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.

    2013-11-01

    Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.

  15. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and geographic information systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated in ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  16. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and Geographic Information Systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  17. Length-Two Representations of Quantum Affine Superalgebras and Baxter Operators

    NASA Astrophysics Data System (ADS)

    Zhang, Huafeng

    2018-03-01

    Associated to quantum affine general linear Lie superalgebras are two families of short exact sequences of representations whose first and third terms are irreducible: the Baxter TQ relations involving infinite-dimensional representations; the extended T-systems of Kirillov-Reshetikhin modules. We make use of these representations over the full quantum affine superalgebra to define Baxter operators as transfer matrices for the quantum integrable model and to deduce Bethe Ansatz Equations, under genericity conditions.

  18. The Snakelike Chain Character of Unstructured RNA

    PubMed Central

    Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.

    2013-01-01

    In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087

  19. Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik

    2002-11-01

    The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.

  20. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    PubMed

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  1. Scaling Effects on Materials Tribology: From Macro to Micro Scale

    PubMed Central

    Stoyanov, Pantcho; Chromik, Richard R.

    2017-01-01

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale. PMID:28772909

  2. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  3. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact

    NASA Astrophysics Data System (ADS)

    Frérot, Lucas; Aghababaei, Ramin; Molinari, Jean-François

    2018-05-01

    Sliding contact between solids leads to material detaching from their surfaces in the form of debris particles, a process known as wear. According to the well-known Archard wear model, the wear volume (i.e. the volume of detached particles) is proportional to the load and the sliding distance, while being inversely proportional to the hardness. The influence of other parameters are empirically merged into a factor, referred to as wear coefficient, which does not stem from any theoretical development, thus limiting the predictive capacity of the model. Based on a recent understanding of a critical length-scale controlling wear particle formation, we present two novel derivations of the wear coefficient: one based on Archard's interpretation of the wear coefficient as the probability of wear particle detachment and one that follows naturally from the up-scaling of asperity-level physics into a generic multi-asperity wear model. As a result, the variation of wear rate and wear coefficient are discussed in terms of the properties of the interface, surface roughness parameters and applied load for various rough contact situations. Both new wear interpretations are evaluated analytically and numerically, and recover some key features of wear observed in experiments. This work shines new light on the understanding of wear, potentially opening a pathway for calculating the wear coefficient from first principles.

  4. How much a galaxy knows about its large-scale environment?: An information theoretic perspective

    NASA Astrophysics Data System (ADS)

    Pandey, Biswajit; Sarkar, Suman

    2017-05-01

    The small-scale environment characterized by the local density is known to play a crucial role in deciding the galaxy properties but the role of large-scale environment on galaxy formation and evolution still remain a less clear issue. We propose an information theoretic framework to investigate the influence of large-scale environment on galaxy properties and apply it to the data from the Galaxy Zoo project that provides the visual morphological classifications of ˜1 million galaxies from the Sloan Digital Sky Survey. We find a non-zero mutual information between morphology and environment that decreases with increasing length-scales but persists throughout the entire length-scales probed. We estimate the conditional mutual information and the interaction information between morphology and environment by conditioning the environment on different length-scales and find a synergic interaction between them that operates up to at least a length-scales of ˜30 h-1 Mpc. Our analysis indicates that these interactions largely arise due to the mutual information shared between the environments on different length-scales.

  5. Evolving faceted surfaces: From continuum modeling, to geometric simulation, to mean-field theory

    NASA Astrophysics Data System (ADS)

    Norris, Scott A.

    We first consider the directional solidification, in two dimensions, of a dilute binary alloy having a large anisotropy of surface energy, where the sample is pulled in a high-energy direction such that the planar state is thermodynamically prohibited. Analyses including reduction of dynamics, matched asymptotic analysis, and energy minimization are used to show that the interface assumes a faceted profile with small wavelength. Questions on stability and other dynamic behavior lead to the derivation of a facet-velocity law. This shows the that faceted steady solutions are stable in the absence of constitutional supercooling, while in its presence, coarsening replaces cell formation as the mechanism of instability. We next proceed to introduce a computational-geometry tool which, given a facet-velocity law, performs large-scale simulations of fully-faceted coarsening surfaces, first in the special case with only three allowed facet orientations (threefold symmetry), and then for arbitrary surfaces. Topological events including coarsening are comprehensively considered, and are treated explicitly by our method using both a priori knowledge of event outcomes and a novel graph-rewriting algorithm. While careful attention must be paid to both non-unique topological events and the imposition of a discrete time-stepping scheme, the resulting method allows rapid simulation of large surfaces and easy extraction of statistical data. Example statistics are provided for the threefold case based on simulations totaling one million facets. Finally, a mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the LSW theory of Ostwald ripening in two-phase systems, but the mechanism of coarsening in faceted surfaces requires the derivation of additional terms to model the coalescence of facets. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a generic framework for the investigation of faceted surfaces evolving under arbitrary dynamics.

  6. Scaling Limits and Generic Bounds for Exploration Processes

    NASA Astrophysics Data System (ADS)

    Bermolen, Paola; Jonckheere, Matthieu; Sanders, Jaron

    2017-12-01

    We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.

  7. Why fast magnetic reconnection is so prevalent

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2018-02-01

    Evolving magnetic fields are shown to generically reach a state of fast magnetic reconnection in which magnetic field line connections change and magnetic energy is released at an Alfvénic rate. This occurs even in plasmas with zero resistivity; only the finiteness of the mass of the lightest charged particle, an electron, is required. The speed and prevalence of Alfvénic or fast magnetic reconnection imply that its cause must be contained within the ideal evolution equation for magnetic fields, , where is the velocity of the magnetic field lines. For a generic , neighbouring magnetic field lines develop a separation that increases exponentially, as \\unicode[STIX]{x1D70E(\\ell ,t)}$ with the distance along a line. This exponentially enhances the sensitivity of the evolution to non-ideal effects. An analogous effect, the importance of stirring to produce a large-scale flow and enhance mixing, has been recognized by cooks through many millennia, but the importance of the large-scale flow to reconnection is customarily ignored. In part this is due to the sixty-year focus of recognition theory on two-coordinate models, which eliminate the exponential enhancement that is generic with three coordinates. A simple three-coordinate model is developed, which could be used to address many unanswered questions.

  8. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    PubMed

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Implementation of a flow-dependent background error correlation length scale formulation in the NEMOVAR OSTIA system

    NASA Astrophysics Data System (ADS)

    Fiedler, Emma; Mao, Chongyuan; Good, Simon; Waters, Jennifer; Martin, Matthew

    2017-04-01

    OSTIA is the Met Office's Operational Sea Surface Temperature (SST) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. Work is currently being undertaken to replace the original OI (Optimal Interpolation) data assimilation scheme with NEMOVAR, a 3D-Var data assimilation method developed for use with the NEMO ocean model. A dual background error correlation length scale formulation is used for SST in OSTIA, as implemented in NEMOVAR. Short and long length scales are combined according to the ratio of the decomposition of the background error variances into short and long spatial correlations. The pre-defined background error variances vary spatially and seasonally, but not on shorter time-scales. If the derived length scales applied to the daily analysis are too long, SST features may be smoothed out. Therefore a flow-dependent component to determining the effective length scale has also been developed. The total horizontal gradient of the background SST field is used to identify regions where the length scale should be shortened. These methods together have led to an improvement in the resolution of SST features compared to the previous OI analysis system, without the introduction of spurious noise. This presentation will show validation results for feature resolution in OSTIA using the OI scheme, the dual length scale NEMOVAR scheme, and the flow-dependent implementation.

  10. Naturalness of Electroweak Symmetry Breaking while Waiting for the LHC

    NASA Astrophysics Data System (ADS)

    Espinosa, J. R.

    2007-06-01

    After revisiting the hierarchy problem of the Standard Model and its implications for the scale of New Physics, I consider the finetuning problem of electroweak symmetry breaking in several scenarios beyond the Standard Model: SUSY, Little Higgs and "improved naturalness" models. The main conclusions are that: New Physics should appear on the reach of the LHC; some SUSY models can solve the hierarchy problem with acceptable residual tuning; Little Higgs models generically suffer from large tunings, many times hidden; and, finally, that "improved naturalness" models do not generically improve the naturalness of the SM.

  11. Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Tomek, W. G.; Hall, R. M.; Wahls, R. A.; Luckring, J. M.; Owens, L. R.

    2002-01-01

    A wind tunnel test of a generic fighter configuration was tested in the National Transonic Facility through a cooperative agreement between NASA Langley Research Center and McDonnell Douglas. The primary purpose of the test was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The test included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: (1) Fuselage/Wing; (2) Fuselage/Wing/Centerline Vertical Tail/Horizontal Tail; and (3) Fuselage/Wing/Trailing-Edge Extension/Twin Vertical Tails. Reynolds number effects on the longitudinal aerodynamic characteristics are presented herein.

  12. Implications of scaled δ15N fractionation for community predator-prey body mass ratio estimates in size-structured food webs.

    PubMed

    Reum, Jonathan C P; Jennings, Simon; Hunsicker, Mary E

    2015-11-01

    Nitrogen stable isotope ratios (δ(15) N) may be used to estimate community-level relationships between trophic level (TL) and body size in size-structured food webs and hence the mean predator to prey body mass ratio (PPMR). In turn, PPMR is used to estimate mean food chain length, trophic transfer efficiency and rates of change in abundance with body mass (usually reported as slopes of size spectra) and to calibrate and validate food web models. When estimating TL, researchers had assumed that fractionation of δ(15) N (Δδ(15) N) did not change with TL. However, a recent meta-analysis indicated that this assumption was not as well supported by data as the assumption that Δδ(15) N scales negatively with the δ(15) N of prey. We collated existing fish community δ(15) N-body size data for the Northeast Atlantic and tropical Western Arabian Sea with new data from the Northeast Pacific. These data were used to estimate TL-body mass relationships and PPMR under constant and scaled Δδ(15) N assumptions, and to assess how the scaled Δδ(15) N assumption affects our understanding of the structure of these food webs. Adoption of the scaled Δδ(15) N approach markedly reduces the previously reported differences in TL at body mass among fish communities from different regions. With scaled Δδ(15) N, TL-body mass relationships became more positive and PPMR fell. Results implied that realized prey size in these size-structured fish communities are less variable than previously assumed and food chains potentially longer. The adoption of generic PPMR estimates for calibration and validation of size-based fish community models is better supported than hitherto assumed, but predicted slopes of community size spectra are more sensitive to a given change or error in realized PPMR when PPMR is small. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  13. Generic expansion of the Jastrow correlation factor in polynomials satisfying symmetry and cusp conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüchow, Arne, E-mail: luechow@rwth-aachen.de; Jülich Aachen Research Alliance; Sturm, Alexander

    2015-02-28

    Jastrow correlation factors play an important role in quantum Monte Carlo calculations. Together with an orbital based antisymmetric function, they allow the construction of highly accurate correlation wave functions. In this paper, a generic expansion of the Jastrow correlation function in terms of polynomials that satisfy both the electron exchange symmetry constraint and the cusp conditions is presented. In particular, an expansion of the three-body electron-electron-nucleus contribution in terms of cuspless homogeneous symmetric polynomials is proposed. The polynomials can be expressed in fairly arbitrary scaling function allowing a generic implementation of the Jastrow factor. It is demonstrated with a fewmore » examples that the new Jastrow factor achieves 85%–90% of the total correlation energy in a variational quantum Monte Carlo calculation and more than 90% of the diffusion Monte Carlo correlation energy.« less

  14. A generic, cost-effective, and scalable cell lineage analysis platform

    PubMed Central

    Biezuner, Tamir; Spiro, Adam; Raz, Ofir; Amir, Shiran; Milo, Lilach; Adar, Rivka; Chapal-Ilani, Noa; Berman, Veronika; Fried, Yael; Ainbinder, Elena; Cohen, Galit; Barr, Haim M.; Halaban, Ruth; Shapiro, Ehud

    2016-01-01

    Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery. PMID:27558250

  15. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    PubMed

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.

  16. "Hi Mommy": Parental Preferences of Greetings by Medical Staff.

    PubMed

    Wilks-Gallo, Lisa; Aron, Chaim Zev; Messina, Catherine R

    2018-04-01

    The therapeutic alliance between pediatricians and parents begins at the initial encounter. The manner in which pediatricians greet family members influences this relationship. This study evaluated whether parents are addressed using generic titles and investigated perceptions of parents regarding how they are addressed by medical staff. Written surveys of 137 parents of pediatric inpatients collected opinions about greetings during medical encounters. Parents were asked if they have been addressed as Mom/Dad/Mommy/Daddy during past medical encounters and which generic titles they would prefer. Using a Likert-type scale, the parents' perceptions of various salutations were assessed and compared. In this sample, 86% of parents were previously called Mom/Dad/Mommy/Daddy. Parents preferred to be addressed as Mom or Dad over other generic titles. Many disliked being addressed as Mommy/Daddy, Ma'am/Sir, or without a name, suggesting that providers should avoid the use of these salutations.

  17. Mini-DNA barcode in identification of the ornamental fish: A case study from Northeast India.

    PubMed

    Dhar, Bishal; Ghosh, Sankar Kumar

    2017-09-05

    The ornamental fishes were exported under the trade names or generic names, thus creating problems in species identification. In this regard, DNA barcoding could effectively elucidate the actual species status. However, the problem arises if the specimen is having taxonomic disputes, falsified by trade/generic names, etc., On the other hand, barcoding the archival museum specimens would be of greater benefit to address such issues as it would create firm, error-free reference database for rapid identification of any species. This can be achieved only by generating short sequences as DNA from chemically preserved are mostly degraded. Here we aimed to identify a short stretch of informative sites within the full-length barcode segment, capable of delineating diverse group of ornamental fish species, commonly traded from NE India. We analyzed 287 full-length barcode sequences from the major fish orders and compared the interspecific K2P distance with nucleotide substitutions patterns and found a strong correlation of interspecies distance with transversions (0.95, p<0.001). We, therefore, proposed a short stretch of 171bp (transversion rich) segment as mini-barcode. The proposed segment was compared with the full-length barcodes and found to delineate the species effectively. Successful PCR amplification and sequencing of the 171bp segment using designed primers for different orders validated it as mini-barcodes for ornamental fishes. Thus, our findings would be helpful in strengthening the global database with the sequence of archived fish species as well as an effective identification tool of the traded ornamental fish species, as a less time consuming, cost effective field-based application. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Coarsening of stripe patterns: variations with quench depth and scaling.

    PubMed

    Tripathi, Ashwani K; Kumar, Deepak

    2015-02-01

    The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.

  19. Interactions between a fractal tree-like object and hydrodynamic turbulence: flow structure and characteristic mixing length

    NASA Astrophysics Data System (ADS)

    Meneveau, C. V.; Bai, K.; Katz, J.

    2011-12-01

    The vegetation canopy has a significant impact on various physical and biological processes such as forest microclimate, rainfall evaporation distribution and climate change. Most scaled laboratory experimental studies have used canopy element models that consist of rigid vertical strips or cylindrical rods that can be typically represented through only one or a few characteristic length scales, for example the diameter and height for cylindrical rods. However, most natural canopies and vegetation are highly multi-scale with branches and sub-branches, covering a wide range of length scales. Fractals provide a convenient idealization of multi-scale objects, since their multi-scale properties can be described in simple ways (Mandelbrot 1982). While fractal aspects of turbulence have been studied in several works in the past decades, research on turbulence generated by fractal objects started more recently. We present an experimental study of boundary layer flow over fractal tree-like objects. Detailed Particle-Image-Velocimetry (PIV) measurements are carried out in the near-wake of a fractal-like tree. The tree is a pre-fractal with five generations, with three branches and a scale reduction factor 1/2 at each generation. Its similarity fractal dimension (Mandelbrot 1982) is D ~ 1.58. Detailed mean velocity and turbulence stress profiles are documented, as well as their downstream development. We then turn attention to the turbulence mixing properties of the flow, specifically to the question whether a mixing length-scale can be identified in this flow, and if so, how it relates to the geometric length-scales in the pre-fractal object. Scatter plots of mean velocity gradient (shear) and Reynolds shear stress exhibit good linear relation at all locations in the flow. Therefore, in the transverse direction of the wake evolution, the Boussinesq eddy viscosity concept is appropriate to describe the mixing. We find that the measured mixing length increases with increasing streamwise locations. Conversely, the measured eddy viscosity and mixing length decrease with increasing elevation, which differs from eddy viscosity and mixing length behaviors of traditional boundary layers or canopies studied before. In order to find an appropriate length for the flow, several models based on the notion of superposition of scales are proposed and examined. One approach is based on spectral distributions. Another more practical approach is based on length-scale distributions evaluated using fractal geometry tools. These proposed models agree well with the measured mixing length. The results indicate that information about multi-scale clustering of branches as it occurs in fractals has to be incorporated into models of the mixing length for flows through canopies with multiple scales. The research is supported by National Science Foundation grant ATM-0621396 and AGS-1047550.

  20. The snakelike chain character of unstructured RNA.

    PubMed

    Jacobson, David R; McIntosh, Dustin B; Saleh, Omar A

    2013-12-03

    In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod "wormlike chain" (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a "snakelike chain," characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. PedsQL Neurofibromatosis Type 1 Module for children, adolescents and young adults: feasibility, reliability, and validity.

    PubMed

    Nutakki, Kavitha; Varni, James W; Swigonski, Nancy L

    2018-04-01

    The objective of the present study was to report on the measurement properties of the Pediatric Quality of Life Inventory (PedsQL) Neurofibromatosis Type 1 Module for pediatric patients ages 5-25 from the perspectives of patients and parents. The 104-item PedsQL NF1 Module and 23-item PedsQL Generic Core Scales were completed in a multi-site national study by 323 patients and 335 parents (343 families). Patients were diagnosed with NF1 using the National Institutes of Health diagnostic criteria. In addition to a Total Scale Score, 18 unidimensional scales were derived measuring skin itch bother, skin sensations, pain, pain impact, pain management, cognitive functioning, speech, fine motor, balance, vision, perceived physical appearance, communication, worry, treatment anxiety, medicines, stomach discomfort, constipation, and diarrhea. The PedsQL NF1 Module Scales evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.98; parent proxy-report α = 0.98), and good to excellent reliability for the 18 individual scales (patient self-report α = 0.71-0.96; parent proxy-report α = 0.73-0.98). Intercorrelations with the Generic Core Scales supported construct validity. Factor analysis supported the unidimensionality of the 18 individual scales. The PedsQL NF1 Module Scales demonstrated acceptable to excellent measurement properties, and may be utilized as standardized metrics to assess NF1-specific symptoms and problems in clinical research and practice in children, adolescents, and young adults.

  2. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K.; Chakraborty, S.

    2014-05-28

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different lengthmore » scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.« less

  3. Taming active turbulence with patterned soft interfaces.

    PubMed

    Guillamat, P; Ignés-Mullol, J; Sagués, F

    2017-09-15

    Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales.Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.

  4. Gastrointestinal symptoms predictors of health-related quality of life in pediatric patients with functional gastrointestinal disorders.

    PubMed

    Varni, James W; Shulman, Robert J; Self, Mariella M; Nurko, Samuel; Saps, Miguel; Saeed, Shehzad A; Patel, Ashish S; Dark, Chelsea Vaughan; Bendo, Cristiane B; Pohl, John F

    2017-04-01

    To investigate the patient-reported multidimensional gastrointestinal symptoms predictors of generic health-related quality of life (HRQOL) in pediatric patients with functional gastrointestinal disorders (FGIDs). The Pediatric Quality of Life Inventory™ (PedsQL™) Gastrointestinal Symptoms Scales and PedsQL™ 4.0 Generic Core Scales were completed in a 9-site study by 259 pediatric patients with functional constipation, functional abdominal pain (FAP), or irritable bowel syndrome (IBS). Gastrointestinal Symptoms Scales measuring stomach pain, stomach discomfort when eating, food and drink limits, trouble swallowing, heartburn and reflux, nausea and vomiting, gas and bloating, constipation, blood in poop, and diarrhea were identified as clinically important symptom differentiators from healthy controls based on prior findings, and subsequently tested for bivariate and multivariate linear associations with overall HRQOL. Gastrointestinal symptoms were differentially associated with decreased HRQOL in bivariate analyses for the three FGIDs. In predictive models utilizing hierarchical multiple regression analyses controlling for age, gender, and race/ethnicity, gastrointestinal symptoms differentially accounted for an additional 47, 40, and 60 % of the variance in patient-reported HRQOL for functional constipation, FAP, and IBS, respectively, reflecting large effect sizes. Significant individual gastrointestinal symptoms predictors were identified after controlling for the other gastrointestinal symptoms in the FGID-specific predictive models. Gastrointestinal symptoms represent potentially modifiable predictors of generic HRQOL in pediatric patients with FGIDs. Identifying the condition-specific gastrointestinal symptoms that are the most important predictors from the patient perspective facilitates a patient-centered approach to targeted interventions designed to ameliorate impaired overall HRQOL.

  5. Factorial invariance of child self-report across age subgroups: a confirmatory factor analysis of ages 5 to 16 years utilizing the PedsQL 4.0 Generic Core Scales.

    PubMed

    Limbers, Christine A; Newman, Daniel A; Varni, James W

    2008-01-01

    The utilization of health-related quality of life (HRQOL) measurement in an effort to improve pediatric health and well-being and determine the value of health care services has grown dramatically over the past decade. The paradigm shift toward patient-reported outcomes (PROs) in clinical trials has provided the opportunity to emphasize the value and essential need for pediatric patient self-report. In order for HRQOL/PRO comparisons to be meaningful for subgroup analyses, it is essential to demonstrate factorial invariance. This study examined age subgroup factorial invariance of child self-report for ages 5 to 16 years on more than 8,500 children utilizing the PedsQL 4.0 Generic Core Scales. Multigroup Confirmatory Factor Analysis (MGCFA) was performed specifying a five-factor model. Two multigroup structural equation models, one with constrained parameters and the other with unconstrained parameters, were proposed to compare the factor loadings across the age subgroups. Metric invariance (i.e., equal factor loadings) across the age subgroups was demonstrated based on stability of the Comparative Fit Index between the two models, and several additional indices of practical fit including the Root Mean Squared Error of Approximation, the Non-Normed Fit Index, and the Parsimony Normed Fit Index. The findings support an equivalent five-factor structure across the age subgroups. Based on these data, it can be concluded that children across the age subgroups in this study interpreted items on the PedsQL 4.0 Generic Core Scales in a similar manner regardless of their age.

  6. Reliability and validity of the Iranian version of the Pediatric Quality of Life Inventory™ 4.0 Generic Core Scales in adolescents.

    PubMed

    Amiri, Parisa; M Ardekani, Emad; Jalali-Farahani, Sara; Hosseinpanah, Farhad; Varni, James W; Ghofranipour, Fazlollah; Montazeri, Ali; Azizi, Fereidoun

    2010-12-01

    The objective of this study was to investigate the reliability and validity of the Iranian version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™ 4.0) Generic Core Scales in adolescents After linguistic validation, the Iranian version of the PedsQL™ 4.0 was completed by 848 healthy and 26 chronically ill adolescents aged 13-18 years and their parents. The internal consistency as measured by Cronbach's alpha coefficients exceeded the minimum reliability standard of .70. No floor effects were observed. Ceiling effects detected ranged from 1.5% for adolescent self-report total scale score to 42.2% for self-report social functioning. All monotrait-multimethod correlations were higher than multitrait-multimethod correlations. The intraclass correlation coefficients (ICC) between adolescent self-report and parent proxy-report showed good to excellent agreement. Exploratory factor analysis supported mainly comparable results with the original US English dialect version. The results of the confirmatory factor analysis for 5-factor models for both self-report and proxy-report indicated acceptable fit for the proposed models. Regarding gender and health status, as hypothesized from previous studies, girls reported lower health-related quality of life than boys on the total score, physical and emotional functioning, and healthy adolescents reported significantly higher health-related quality of life than those with chronic illnesses. The findings support the initial reliability and validity of the Iranian version of the PedsQL™ 4.0 as a generic instrument to measure HRQOL of adolescents in Iran.

  7. An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts

    NASA Technical Reports Server (NTRS)

    Rasmussen, M. L.; Emanuel, George

    1989-01-01

    The design of a unified aero-space plane based on waverider technology is analyzed. The overall aerodynamic design and performance of an aero-space plane are discussed in terms of the forebody, scramjet, and afterbody. Other subjects considered in the study are combustion/nozzle optimization, the idealized tip-to-tail waverider model, and the two-dimensional minimum length nozzle. Charts and graphs are provided to show the results of the preliminary investigations.

  8. PedsQL™ Multidimensional Fatigue Scale in sickle cell disease: feasibility, reliability, and validity.

    PubMed

    Panepinto, Julie A; Torres, Sylvia; Bendo, Cristiane B; McCavit, Timothy L; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W

    2014-01-01

    Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5-18 years and parent proxy-report for ages 2-18 years. This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77-0.84; parent proxy-report α = 0.90-0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. © 2013 Wiley Periodicals, Inc.

  9. PedsQL™ Multidimensional Fatigue Scale in Sickle Cell Disease: Feasibility, Reliability and Validity

    PubMed Central

    Panepinto, Julie A.; Torres, Sylvia; Bendo, Cristiane B.; McCavit, Timothy L.; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W.

    2013-01-01

    Background Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5–18 years and parent proxy-report for ages 2–18 years. Procedure This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. Results The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77–0.84; parent proxy-report α = 0.90–0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥ 0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. Conclusions The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. PMID:24038960

  10. The PESPERF Scale: An Instrument for Measuring Service Quality in the School of Physical Education and Sports Sciences (PESS)

    ERIC Educational Resources Information Center

    Yildiz, Suleyman M.; Kara, Ali

    2009-01-01

    Purpose: HEdPERF (Higher Education PERFormance) is one of the most recently developed scales in the literature to measure service quality in higher education. However, HEdPERF is designed to measure service quality at a macro level (university level) and may be considered as a more generic measurement instrument. In higher education, new scales…

  11. Using Rasch rating scale model to reassess the psychometric properties of the Persian version of the PedsQLTM 4.0 Generic Core Scales in school children

    PubMed Central

    2012-01-01

    Background Item response theory (IRT) is extensively used to develop adaptive instruments of health-related quality of life (HRQoL). However, each IRT model has its own function to estimate item and category parameters, and hence different results may be found using the same response categories with different IRT models. The present study used the Rasch rating scale model (RSM) to examine and reassess the psychometric properties of the Persian version of the PedsQLTM 4.0 Generic Core Scales. Methods The PedsQLTM 4.0 Generic Core Scales was completed by 938 Iranian school children and their parents. Convergent, discriminant and construct validity of the instrument were assessed by classical test theory (CTT). The RSM was applied to investigate person and item reliability, item statistics and ordering of response categories. Results The CTT method showed that the scaling success rate for convergent and discriminant validity were 100% in all domains with the exception of physical health in the child self-report. Moreover, confirmatory factor analysis supported a four-factor model similar to its original version. The RSM showed that 22 out of 23 items had acceptable infit and outfit statistics (<1.4, >0.6), person reliabilities were low, item reliabilities were high, and item difficulty ranged from -1.01 to 0.71 and -0.68 to 0.43 for child self-report and parent proxy-report, respectively. Also the RSM showed that successive response categories for all items were not located in the expected order. Conclusions This study revealed that, in all domains, the five response categories did not perform adequately. It is not known whether this problem is a function of the meaning of the response choices in the Persian language or an artifact of a mostly healthy population that did not use the full range of the response categories. The response categories should be evaluated in further validation studies, especially in large samples of chronically ill patients. PMID:22414135

  12. Fabricating Degradable Thermoresponsive Hydrogels on Multiple Length Scales via Reactive Extrusion, Microfluidics, Self-assembly, and Electrospinning.

    PubMed

    Sivakumaran, Daryl; Bakaic, Emilia; Campbell, Scott B; Xu, Fei; Mueller, Eva; Hoare, Todd

    2018-04-16

    While various smart materials have been explored for a variety of biomedical applications (e.g., drug delivery, tissue engineering, bioimaging, etc.), their ultimate clinical use has been hampered by the lack of biologically-relevant degradation observed for most smart materials. This is particularly true for temperature-responsive hydrogels, which are almost uniformly based on polymers that are functionally non-degradable (e.g., poly(N-isopropylacrylamide) (PNIPAM) or poly(oligoethylene glycol methacrylate) (POEGMA)). As such, to effectively translate the potential of thermoresponsive hydrogels to the challenges of remote-controlled or metabolism-regulated drug delivery, cell scaffolds with tunable cell-material interactions, theranostic materials with the potential for both imaging and drug delivery, and other such applications, a method is required to render the hydrogels (if not fully degradable) at least capable of renal clearance following the required lifetime of the material. To that end, this protocol describes the preparation of hydrolytically-degradable hydrazone-crosslinked hydrogels on multiple length scales based on the reaction between hydrazide and aldehyde-functionalized PNIPAM or POEGMA oligomers with molecular weights below the renal filtration limit. Specifically, methods to fabricate degradable thermoresponsive bulk hydrogels (using a double barrel syringe technique), hydrogel particles (on both the microscale through the use of a microfluidics platform facilitating simultaneous mixing and emulsification of the precursor polymers and the nanoscale through the use of a thermally-driven self-assembly and cross-linking method), and hydrogel nanofibers (using a reactive electrospinning strategy) are described. In each case, hydrogels with temperature-responsive properties similar to those achieved via conventional free radical cross-linking processes can be achieved, but the hydrazone cross-linked network can be degraded over time to re-form the oligomeric precursor polymers and enable clearance. As such, we anticipate these methods (which may be generically applied to any synthetic water-soluble polymer, not just smart materials) will enable easier translation of synthetic smart materials to clinical applications.

  13. Explaining parent-child (dis)agreement in generic and short stature-specific health-related quality of life reports: do family and social relationships matter?

    PubMed

    Quitmann, Julia; Rohenkohl, Anja; Sommer, Rachel; Bullinger, Monika; Silva, Neuza

    2016-10-21

    In the context of health-related quality of life (HrQoL) assessment in pediatric short stature, the present study aimed to examine the levels of agreement/disagreement between parents' and children's reports of generic and condition-specific HrQoL, and to identify socio-demographic, clinical and psychosocial variables associated with the extent and direction of parent-child discrepancies. This study was part of the retest phase of the QoLISSY project, which was a multicenter study conducted simultaneously in France, Germany, Spain, Sweden and UK. The sample comprised 137 dyads of children/adolescents between 8 and 18 years of age, diagnosed with growth hormone deficiency (GHD) or idiopathic short stature (ISS), and one of their parents. The participants completed child- and parent-reported questionnaires on generic (KIDSCREEN-10 Index) and condition-specific HrQoL (QoLISSY Core Module). Children/adolescents also reported on social support (Oslo 3-items Social Support Scale) and parents assessed the parent-child relationships (Parental Role subscale of the Social Adjustment Scale) and burden of short stature on parents (QoLISSY- additional module). The parent-child agreement on reported HrQoL was strong (intraclass correlation coefficients between .59 and .80). The rates of parent-child discrepancies were 61.5 % for generic and 35.2 % for condition-specific HrQoL, with the parents being more prone to report lower generic (42.3 %) and condition-specific HrQoL (23.7 %) than their children. The extent of discrepancies was better explained by family and social relationships than by clinical and socio-demographic variables: poorer parent-child relationships and better children's social support were associated with larger discrepancies in generic HrQoL, while more parental burden was associated with larger discrepancies in condition-specific HrQoL reports. Regarding the direction of discrepancies, higher parental burden was significantly associated with parents' underrating, and better children's social support was significantly associated with parents' overrating of condition-specific HrQoL. Routine assessment of pediatric HrQoL in healthcare and research contexts should include child- and parent-reported data as complementary sources of information, and also consider the family and social context.

  14. Performance of Renormalization Group Algebraic Turbulence Model on Boundary Layer Transition Simulation

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.

    1994-01-01

    The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.

  15. Turbulence Hazard Metric Based on Peak Accelerations for Jetliner Passengers

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    2005-01-01

    Calculations are made of the approximate hazard due to peak normal accelerations of an airplane flying through a simulated vertical wind field associated with a convective frontal system. The calculations are based on a hazard metric developed from a systematic application of a generic math model to 1-cosine discrete gusts of various amplitudes and gust lengths. The math model simulates the three degree-of- freedom longitudinal rigid body motion to vertical gusts and includes (1) fuselage flexibility, (2) the lag in the downwash from the wing to the tail, (3) gradual lift effects, (4) a simplified autopilot, and (5) motion of an unrestrained passenger in the rear cabin. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths. The airplane response contours are used to develop an approximate hazard metric of peak normal accelerations as a function of gust amplitude and gust length. The hazard metric is then applied to a two-dimensional simulated vertical wind field of a convective frontal system. The variations of the hazard metric with gust length and airplane heading are demonstrated.

  16. Comparing the Efficacy of 8 Weeks Treatment of Cipram® and its Generic Citalopram in Patients With Mixed Anxiety-Depressive Disorder.

    PubMed

    Khoonsari, Hasan; Oghazian, Mohammad Bagher; Kargar, Mona; Moin, Mahdiyeh; Khalili, Hossein; Alimadadi, Abbas; Torkamandi, Hassan; Ghaeli, Padideh

    2015-06-01

    Patients with mixed anxiety-depressive disorder (MADD) suffer both anxiety and depression. Antidepressants, especially, selective serotonin reuptake inhibitors are among agents of choice for treating this condition. This study compared the efficacy of Cipram® with its generic, citalopram. Forty adult outpatients (between 18 to 55 years of age) with a diagnosis of MADD who met the trial criteria, entered this double-blind, randomized study. Subjects were assigned to receive either generic citalopram or Cipram® for 8 weeks. Hamilton Rating Scale for Depression (HAM-D) and Hamilton Rating Scale for Anxiety (HAM-A) were utilized to assess depression and anxiety at baseline, weeks 4 and 8 of the study. Statistical analysis was performed using SPSS 14.0. Twenty patients received citalopram (mean dosages of 22 mg/day during the first 4 weeks and 33 mg/day during weeks 4 to 8) and 20 received Cipram® (mean dosages of 22 mg/day during the first 4 weeks and 29 mg/day during weeks 4 to 8). Both treatments were noted to be effective in improving the symptoms of MADD at weeks 4 and 8. The mean differences of HAM-D and HAM-A between Citalopram and Cipram® groups were significantly different at the end of week 4 (HAM-D: P = 0.038, HAM-A: P = 0.025), but not at the end of week 8 (HAM-D: P = 0.239, HAM-A: P = 0.204). Both medications were tolerated well by the patients. This study suggests that the efficacy of citalopram is similar to that of Cipram® in the treatment of MADD after 8 weeks. Meanwhile, Cipram® may reduce depression and anxiety quicker than its generic, citalopram.

  17. Smoke Flow Visualisation and Particle Image Velocimetry Measurements over a Generic Submarine Model

    DTIC Science & Technology

    2014-03-01

    Edisp), scaling uncertainty (Escale) and timing uncertainty (Etime), . tLX EEE u E t scale scaleX timescaledisp u u 222 222 2 2...this study may be calculated from [7] as, , EE upres λ=ω (C.3) UNCLASSIFIED DSTO-TR-2944 UNCLASSIFIED 46 where Eu is the total PIV velocity...uncertainty in the vorticity is calculated by, .22 biaspres EEE ωωω += (C.6) Where the total uncertainty in the vorticity is expressed as

  18. Analysis of magic lengths in growth of supported metallic nanowires

    NASA Astrophysics Data System (ADS)

    Han, Yong

    2014-12-01

    Metallic nanowires can exhibit fascinating physical properties. These unique properties often originate primarily from the quantum confinement of free electrons in a potential well, while electron-electron interactions do not play a decisive role. A recent experimental study shows that self-assembled Ir nanowires grown on Ge(001) surface have a strong length preference: the nanowire lengths are an integer multiple of 4.8 nm. In this paper, a free-electron-gas model for geometries corresponding to the nanowires is used to analyze the selection of these preferred or magic lengths. The model shows that the inclusion of even numbers of free electrons in an Ir nanowire produces these magic lengths once an electron spillage effect is taken into account. The model also shows that the stability of the nanowire diminishes with its increasing length, and consequently suggests why no long nanowires are observed in experiments. It is also shown that applying generic results for quantum size effects in a nanofilm geometry is not adequate to accurately describe the length selection in the rather different nanowire geometry, where the transverse dimensions are smaller than the electron Fermi wavelength. Finally, monatomic Au chain growth on Ge(001) surface is also analyzed. In contrast to Ir nanowires, the model shows that the stability of an Au chain depends strongly on the extent of electron spillage.

  19. Empirical scaling of the length of the longest increasing subsequences of random walks

    NASA Astrophysics Data System (ADS)

    Mendonça, J. Ricardo G.

    2017-02-01

    We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.

  20. Health-related quality of life in young adults in education, employment, or training: development of the Japanese version of Pediatric Quality of Life Inventory (PedsQL) Generic Core Scales Young Adult Version.

    PubMed

    Kaneko, Mei; Sato, Iori; Soejima, Takafumi; Kamibeppu, Kiyoko

    2014-09-01

    The purpose of the study is to develop a Japanese version of the Pediatric Quality of Life Inventory (PedsQL) Generic Core Scales Young Adult Version (PedsQL-YA-J) and determine the feasibility, reliability, and validity of the scales. Translation equivalence and content validity were verified using back-translation and cognitive debriefing tests. A total of 428 young adults recruited from one university, two vocational schools, or five companies completed questionnaires. We determined questionnaire feasibility, internal consistency, and test-retest reliability; checked concurrent validity against the Center for Epidemiologic Studies Depression Scale (CES-D); determined convergent and discriminant validity with the Medical Outcome Study 36-item Short Form Health Survey (SF-36); described known-groups validity with regard to subjective symptoms, illness or injury requiring regular medical visits, and depression; and verified factorial validity. All scales were internally consistent (Cronbach's coefficient alpha = 0.77-0.86); test-retest reliability was acceptable (intraclass correlation coefficient = 0.57-0.69); and all scales were concurrently valid with depression (Pearson's correlation coefficient = 0.43-0.57). The scales convergent and discriminant validity with the SF-36 and CES-D were acceptable. Evaluation of known-groups validity confirmed that the Physical Functioning scale was sensitive for subjective symptoms, the Emotional Functioning scale for depression, and the Work/School Functioning scale for illness or injury requiring regular medical visits. Exploratory factor analysis found a six-factor structure consistent with the assumed structure (cumulative proportion = 57.0%). The PedsQL-YA-J is suitable for assessing health-related quality of life in young adults in education, employment, or training, and for clinical trials and epidemiological research.

  1. Tip vortices in the actuator line model

    NASA Astrophysics Data System (ADS)

    Martinez, Luis; Meneveau, Charles

    2017-11-01

    The actuator line model (ALM) is a widely used tool to represent the wind turbine blades in computational fluid dynamics without the need to resolve the full geometry of the blades. The ALM can be optimized to represent the `correct' aerodynamics of the blades by choosing an appropriate smearing length scale ɛ. This appropriate length scale creates a tip vortex which induces a downwash near the tip of the blade. A theoretical frame-work is used to establish a solution to the induced velocity created by a tip vortex as a function of the smearing length scale ɛ. A correction is presented which allows the use of a non-optimal smearing length scale but still provides the downwash which would be induced using the optimal length scale. Thanks to the National Science Foundation (NSF) who provided financial support for this research via Grants IGERT 0801471, IIA-1243482 (the WINDINSPIRE project) and ECCS-1230788.

  2. Modeling of Ceiling Fire Spread and Thermal Radiation.

    DTIC Science & Technology

    1981-10-01

    under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8

  3. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  4. Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.

    2016-10-01

    X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.

  5. Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeni, Lorenzo; Hesselbæk, Bo; Bech, John

    This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.

  6. Gram-scale production of a basidiomycetous laccase in Aspergillus niger.

    PubMed

    Mekmouche, Yasmina; Zhou, Simeng; Cusano, Angela M; Record, Eric; Lomascolo, Anne; Robert, Viviane; Simaan, A Jalila; Rousselot-Pailley, Pierre; Ullah, Sana; Chaspoul, Florence; Tron, Thierry

    2014-01-01

    We report on the expression in Aspergillus niger of a laccase gene we used to produce variants in Saccharomyces cerevisiae. Grams of recombinant enzyme can be easily obtained. This highlights the potential of combining this generic laccase sequence to the yeast and fungal expression systems for large-scale productions of variants. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Health-Related Quality of Life and Cognitive Functioning from the Perspective of Parents of School-Aged Children with Asperger's Syndrome Utilizing the PedsQL[TM

    ERIC Educational Resources Information Center

    Limbers, Christine A.; Heffer, Robert W.; Varni, James W.

    2009-01-01

    HRQOL as a multidimensional construct has not been previously investigated in children with Asperger's Syndrome. The objective of the present study was to examine the initial feasibility, reliability, and validity of the PedsQL[TM] 4.0 Generic Core Scales and PedsQL[TM] Cognitive Functioning Scale parent proxy-report versions in school-aged…

  8. A systematic review of patient reported outcome measures (PROMs) used in child and adolescent burn research.

    PubMed

    Griffiths, C; Armstrong-James, L; White, P; Rumsey, N; Pleat, J; Harcourt, D

    2015-03-01

    Patient reported outcome measures (PROMs) can identify important information about patient needs and therapeutic progress. The aim of this review was to identify the PROMs that are being used in child and adolescent burn care and to determine the quality of such scales. Computerised and manual bibliographic searches of Medline, Social Sciences Index, Cinahl, Psychinfo, Psycharticles, AMED, and HAPI, were used to identify English-language articles using English-language PROMs from January 2001 to March 2013. The psychometric quality of the PROMs was assessed. 23 studies met the entry criteria and identified 32 different PROMs (31 generic, 1 burns-specific). Overall, the psychometric quality of the PROMs was low; only two generic scales (the Perceived Stigmatisation Questionnaire and the Social Comfort Scale) and only one burns-specific scale (the Children Burn Outcomes Questionnaire for children aged 5-18) had psychometric evidence relevant to this population. The majority of PROMs did not have psychometric evidence for their use with child or adolescent burn patients. To appropriately identify the needs and treatment progress of child and adolescent burn patients, new burns-specific PROMs need to be developed and validated to reflect issues that are of importance to this population. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. A fresh look at crater scaling laws for normal and oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Watts, A. J.; Atkinson, D. R.; Rieco, S. R.; Brandvold, J. B.; Lapin, S. L.; Coombs, C. R.

    1993-01-01

    With the concomitant increase in the amount of man-made debris and an ever increasing use of space satellites, the issue of accidental collisions with particles becomes more severe. While the natural micrometeoroid population is unavoidable and assumed constant, continued launches increase the debris population at a steady rate. Debris currently includes items ranging in size from microns to meters which originated from spent satellites and rocket cases. To understand and model these environments, impact damage in the form of craters and perforations must be analyzed. Returned spacecraft materials such as those from LDEF and Solar Max have provided such a testbed. From these space-aged samples various impact parameters (i.e., particle size, particle and target material, particle shape, relative impact speed, etc.) may be determined. These types of analyses require the use of generic analytic scaling laws which can adequately describe the impact effects. Currently, most existing analytic scaling laws are little more than curve-fits to limited data and are not based on physics, and thus are not generically applicable over a wide range of impact parameters. During this study, a series of physics-based scaling laws for normal and oblique crater and perforation formation has been generated into two types of materials: aluminum and Teflon.

  10. Campbell response in type-II superconductors under strong pinning conditions

    DOE PAGES

    Willa, R.; Geshkenbein, V. B.; Prozorov, R.; ...

    2015-11-11

    Measuring the ac magnetic response of a type II superconductor provides valuable information on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show that λ C is determined by the jump in the pinning force, in contrast to the critical current j c, which involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the latter situation. As a result, wemore » compare our findings with new experimental data and show the potential of this technique in providing information on the material’s pinscape.« less

  11. Campbell response in type-II superconductors under strong pinning conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willa, R.; Geshkenbein, V. B.; Prozorov, R.

    Measuring the ac magnetic response of a type II superconductor provides valuable information on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show that λ C is determined by the jump in the pinning force, in contrast to the critical current j c, which involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the latter situation. As a result, wemore » compare our findings with new experimental data and show the potential of this technique in providing information on the material’s pinscape.« less

  12. Estimating pesticide runoff in small streams.

    PubMed

    Schriever, Carola A; von der Ohe, Peter C; Liess, Matthias

    2007-08-01

    Surface runoff is one of the most important pathways for pesticides to enter surface waters. Mathematical models are employed to characterize its spatio-temporal variability within landscapes, but they must be simple owing to the limited availability and low resolution of data at this scale. This study aimed to validate a simplified spatially-explicit model that is developed for the regional scale to calculate the runoff potential (RP). The RP is a generic indicator of the magnitude of pesticide inputs into streams via runoff. The underlying runoff model considers key environmental factors affecting runoff (precipitation, topography, land use, and soil characteristics), but predicts losses of a generic substance instead of any one pesticide. We predicted and evaluated RP for 20 small streams. RP input data were extracted from governmental databases. Pesticide measurements from a triennial study were used for validation. Measured pesticide concentrations were standardized by the applied mass per catchment and the water solubility of the relevant compounds. The maximum standardized concentration per site and year (runoff loss, R(Loss)) provided a generalized measure of observed pesticide inputs into the streams. Average RP explained 75% (p<0.001) of the variance in R(Loss). Our results imply that the generic indicator can give an adequate estimate of runoff inputs into small streams, wherever data of similar resolution are available. Therefore, we suggest RP for a first quick and cost-effective location of potential runoff hot spots at the landscape level.

  13. Target prices for mass production of tyrosine kinase inhibitors for global cancer treatment

    PubMed Central

    Hill, Andrew; Gotham, Dzintars; Fortunak, Joseph; Meldrum, Jonathan; Erbacher, Isabelle; Martin, Manuel; Shoman, Haitham; Levi, Jacob; Powderly, William G; Bower, Mark

    2016-01-01

    Objective To calculate sustainable generic prices for 4 tyrosine kinase inhibitors (TKIs). Background TKIs have proven survival benefits in the treatment of several cancers, including chronic myeloid leukaemia, breast, liver, renal and lung cancer. However, current high prices are a barrier to treatment. Mass production of low-cost generic antiretrovirals has led to over 13 million people being on HIV/AIDS treatment worldwide. This analysis estimates target prices for generic TKIs, assuming similar methods of mass production. Methods Four TKIs with patent expiry dates in the next 5 years were selected for analysis: imatinib, erlotinib, lapatinib and sorafenib. Chemistry, dosing, published data on per-kilogram pricing for commercial transactions of active pharmaceutical ingredient (API), and quotes from manufacturers were used to estimate costs of production. Analysis included costs of excipients, formulation, packaging, shipping and a 50% profit margin. Target prices were compared with current prices. Global numbers of patients eligible for treatment with each TKI were estimated. Results API costs per kg were $347–$746 for imatinib, $2470 for erlotinib, $4671 for lapatinib, and $3000 for sorafenib. Basing on annual dose requirements, costs of formulation/packaging and a 50% profit margin, target generic prices per person-year were $128–$216 for imatinib, $240 for erlotinib, $1450 for sorafenib, and $4020 for lapatinib. Over 1 million people would be newly eligible to start treatment with these TKIs annually. Conclusions Mass generic production of several TKIs could achieve treatment prices in the range of $128–$4020 per person-year, versus current US prices of $75161–$139 138. Generic TKIs could allow significant savings and scaling-up of treatment globally, for over 1 million eligible patients. PMID:26817636

  14. Measuring the impact of cataract surgery on generic and vision-specific quality of life.

    PubMed

    Groessl, Erik J; Liu, Lin; Sklar, Marisa; Tally, Steven R; Kaplan, Robert M; Ganiats, Theodore G

    2013-08-01

    Cataracts are the leading cause of blindness worldwide and cause visual impairment for millions of adults in the United States. We compared the sensitivity of a vision-specific health-related quality of life (HRQOL) measure to that of multiple generic measures of HRQOL before and at 2 time points after cataract surgery. Participants completed 1 vision-specific and 5 generic quality of life measures before cataract surgery, and again 1 and 6 months after surgery. Random effects modeling was used to measure changes over the three assessment points. The NEI-VFQ25 total score and all 11 subscales showed significant improvements during the first interval (baseline and 1 month). During the second interval (1-6 months post-surgery), significant improvements were observed on the total score and 5 of 11 NEI-VFQ25 subscales. There were significant increases in HRQOL during the first interval on some preference-based generic HRQOL measures, though changes during the second interval were mostly non-significant. None of the SF-36v2™ or SF6D scales changed significantly between any of the assessment periods. The NEI-VFQ25 was sensitive to changes in vision-specific domains of QOL. Some preference-based generic HRQOL measures were also sensitive to change and showed convergence with the NEI-VFQ25, but the effects were small. The SF-36v2™ and SF-6D did not change in a similar manner, possibly reflecting a lack of vision-related content. Studies seeking to document both the vision-specific and generic HRQOL improvements of cataract surgery should consider these results when selecting measures.

  15. Internal structure of vortices in a dipolar spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne

    2017-04-01

    We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.

  16. Improved actions and asymptotic scaling in lattice Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langfeld, Kurt

    2007-11-01

    Improved actions in SU(2) and SU(3) lattice gauge theories are investigated with an emphasis on asymptotic scaling. A new scheme for tadpole improvement is proposed. The standard but heuristic tadpole improvement emerges from a mean field approximation from the new approach. Scaling is investigated by means of the large distance static quark potential. Both the generic and the new tadpole scheme yield significant improvements on asymptotic scaling when compared with loop improved actions. A study of the rotational symmetry breaking terms, however, reveals that only the new improvement scheme efficiently eliminates the leading irrelevant term from the action.

  17. Geomechanical Anisotropy and Rock Fabric in Shales

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Connolly, P.; Thornton, D. A.

    2017-12-01

    Digital rock physics (DRP) is an emerging area of qualitative and quantitative scientific analysis that has been employed on a variety of rock types at various scales to characterize petrophysical, mechanical, and hydraulic rock properties. This contribution presents a generic geomechanically focused DRP workflow involving image segmentation by geomechanical constituents, generation of finite element (FE) meshes, and application of various boundary conditions (i.e. at the edge of the domain and at boundaries of various components such as edges of individual grains). The generic workflow enables use of constituent geological objects and relationships in a computational based approach to address specific questions in a variety of rock types at various scales. Two examples are 1) modeling stress dependent permeability, where it occurs and why it occurs at the grain scale; 2) simulating the path and complexity of primary fractures and matrix damage in materials with minerals or intervals of different mechanical behavior. Geomechanical properties and fabric characterization obtained from 100 micron shale SEM images using the generic DRP workflow are presented. Image segmentation and development of FE simulation composed of relatively simple components (elastic materials, frictional contacts) and boundary conditions enable the determination of bulk static elastic properties. The procedure is repeated for co-located images at pertinent orientations to determine mechanical anisotropy. The static moduli obtained are benchmarked against lab derived measurements since material properties (esp. frictional ones) are poorly constrained at the scale of investigation. Once confidence in the input material parameters is gained, the procedure can be used to characterize more samples (i.e. images) than is possible from rock samples alone. Integration of static elastic properties with grain statistics and geologic (facies) conceptual models derived from core and geophysical logs enables quantification of the impact that variations in rock fabric and grain interactions have on bulk mechanical rock behavior. When considered in terms of the stratigraphic framework of two different shale reservoirs it is found that silica distribution, clay content and orientation play a first order role in mechanical anisotropy.

  18. Generic, Extensible, Configurable Push-Pull Framework for Large-Scale Science Missions

    NASA Technical Reports Server (NTRS)

    Foster, Brian M.; Chang, Albert Y.; Freeborn, Dana J.; Crichton, Daniel J.; Woollard, David M.; Mattmann, Chris A.

    2011-01-01

    The push-pull framework was developed in hopes that an infrastructure would be created that could literally connect to any given remote site, and (given a set of restrictions) download files from that remote site based on those restrictions. The Cataloging and Archiving Service (CAS) has recently been re-architected and re-factored in its canonical services, including file management, workflow management, and resource management. Additionally, a generic CAS Crawling Framework was built based on motivation from Apache s open-source search engine project called Nutch. Nutch is an Apache effort to provide search engine services (akin to Google), including crawling, parsing, content analysis, and indexing. It has produced several stable software releases, and is currently used in production services at companies such as Yahoo, and at NASA's Planetary Data System. The CAS Crawling Framework supports many of the Nutch Crawler's generic services, including metadata extraction, crawling, and ingestion. However, one service that was not ported over from Nutch is a generic protocol layer service that allows the Nutch crawler to obtain content using protocol plug-ins that download content using implementations of remote protocols, such as HTTP, FTP, WinNT file system, HTTPS, etc. Such a generic protocol layer would greatly aid in the CAS Crawling Framework, as the layer would allow the framework to generically obtain content (i.e., data products) from remote sites using protocols such as FTP and others. Augmented with this capability, the Orbiting Carbon Observatory (OCO) and NPP (NPOESS Preparatory Project) Sounder PEATE (Product Evaluation and Analysis Tools Elements) would be provided with an infrastructure to support generic FTP-based pull access to remote data products, obviating the need for any specialized software outside of the context of their existing process control systems. This extensible configurable framework was created in Java, and allows the use of different underlying communication middleware (at present, both XMLRPC, and RMI). In addition, the framework is entirely suitable in a multi-mission environment and is supporting both NPP Sounder PEATE and the OCO Mission. Both systems involve tasks such as high-throughput job processing, terabyte-scale data management, and science computing facilities. NPP Sounder PEATE is already using the push-pull framework to accept hundreds of gigabytes of IASI (infrared atmospheric sounding interferometer) data, and is in preparation to accept CRIMS (Cross-track Infrared Microwave Sounding Suite) data. OCO will leverage the framework to download MODIS, CloudSat, and other ancillary data products for use in the high-performance Level 2 Science Algorithm. The National Cancer Institute is also evaluating the framework for use in sharing and disseminating cancer research data through its Early Detection Research Network (EDRN).

  19. Correlation between the ripple phase and stripe domains in membranes.

    PubMed

    Bernchou, Uffe; Midtiby, Henrik; Ipsen, John Hjort; Simonsen, Adam Cohen

    2011-12-01

    We investigate the relationship between stripe domains and the ripple phase in membranes. These have previously been observed separately without being linked explicitly. Past results have demonstrated that solid and ripple phases exhibit rich textural patterns related to the orientational order of tilted lipids and the orientation of ripple corrugations. Here we reveal a highly complex network pattern of ripple and solid domains in DLPC, DPPC bilayers with structures covering length scales from 10 nm to 100 μm. Using spincoated double supported membranes we investigate domains by correlated AFM and fluorescence microscopy. Cooling experiments demonstrate the mode of nucleation and growth of stripe domains enriched in the fluorescent probe. Concurrent AFM imaging reveals that these stripe domains have a one-to-one correspondence with a rippled morphology running parallel to the stripe direction. Both thin and thick stripe domains are observed having ripple periods of 13.5±0.2 nm and 27.4±0.6 nm respectively. These are equivalent to previously observed asymmetric/equilibrium and symmetric/metastable ripple phases, respectively. Thin stripes grow from small solid domains and grow predominantly in length with a speed of ~3 times that of the thick stripes. Thick stripes grow by templating on the sides of thinner stripes or can emerge directly from the fluid phase. Bending and branching angles of stripes are in accordance with an underlying six fold lattice. We discuss mechanisms for the nucleation and growth of ripples and discuss a generic phase diagram that may partly rationalize the coexistence of metastable and stable phases. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Study of generic quality of life in patients operated on for post-prostatectomy incontinence.

    PubMed

    Holm, Henriette Veiby; Fosså, Sophie D; Hedlund, Hans; Dahl, Alv A

    2013-09-01

    The relationship between urological and psychosocial variables, and generic quality of life in patients operated on for post-prostatectomy incontinence has hardly been studied, and our aim was to investigate this relationship. Patients who had an artificial urinary sphincter AMS800 (n = 100) implanted between January 2002 and June 2010 were invited to complete a mailed questionnaire covering demographic data including work ability, urinary and sexual function, anxiety/depression, and generic quality of life. Poor quality of life was defined as a score <40 on either the physical or the mental Short Form 12 summary scales. Of 85 compliant patients, 30 (35%) reported poor generic quality of life and 55 (65%) reported better quality of life at a median follow-up time of 26 months (range 6-104 months). The poor quality of life group showed significantly more overall urinary and sexual problems, and more men had undergone surgical revisions compared with the better quality of life group. Levels of anxiety and depression were significantly higher, and work ability was lower in the poor quality of life group. In multivariate logistic regression models, increased level of depression and impaired work ability, inability to reach orgasm, and not recommending the operation remained significantly associated with poor quality of life. Poor generic quality of life after surgery for post-prostatectomy incontinence is more strongly associated with reduced work ability and depression rather than urinary and sexual problems. © 2013 The Japanese Urological Association.

  1. Falls in ambulatory non-demented patients with Parkinson's disease.

    PubMed

    Rascol, Olivier; Perez-Lloret, Santiago; Damier, Philippe; Delval, Arnaud; Derkinderen, Pascal; Destée, Alain; Meissner, Wassilios G; Tison, Francois; Negre-Pages, Laurence

    2015-10-01

    This study aimed at determining the prevalence of falling in PD patients, to assess generic and disease-specific clinical and pharmacological factors, relationship with health-related quality of life (HR-QoL) and changes in falls from OFF to ON in patients with motor fluctuations. Six-hundred and eighty-three PD patients of the COPARK survey were evaluated (11 had missing data and were excluded from the analysis). Patients with falls were identified as those with a UPDRS Item 13 ≥ 1 in the ON condition. All patients were assessed in a standardized manner [demographics, treatments, Unified PD Rating Scale (UPDRS), Hospital Anxiety and Depression Scale, Pittsburg questionnaire and HR-QoL scales (SF36, PDQ39)]. Falling was reported by 108/672 (16%) PD patients during the ON state and prevalence increased according to PD severity, from 5% in Hoehn and Yahr stage 1-60% in stage 4. Falling was significantly related to lower HR-QoL. Falling correlated with (1) generic factors such as female gender, age at the end of academic studies and diuretics consumption, (2) motor PD-specific factors including disease severity, frozen gait, difficulties when arising from a chair, dyskinesia and higher levodopa daily equivalent dose and (3) non-motor PD-specific factors such as orthostatic hypotension and hallucinations. Falling was more frequent in OFF than in ON in 48/74 (64%) patients with motor fluctuations and remained unchanged in 27 patients (36%). In summary, falling affected a significant proportion of PD patients, especially in advanced stages. It was associated with a variety of generic and PD-specific factors and was related to reduced HR-QoL.

  2. Λ(t)CDM model as a unified origin of holographic and agegraphic dark energy models

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Zhu, Zong-Hong; Xu, Lixin; Alcaniz, J. S.

    2011-04-01

    Motivated by the fact that any nonzero Λ can introduce a length scale or a time scale into Einstein's theory, r=ct=3/|Λ|. Conversely, any cosmological length scale or time scale can introduce a Λ(t), Λ(t)=3/rΛ2(t)=3/(c2tΛ2(t)). In this Letter, we investigate the time varying Λ(t) corresponding to the length scales, including the Hubble horizon, the particle horizon and the future event horizon, and the time scales, including the age of the universe and the conformal time. It is found out that, in this scenario, the Λ(t)CDM model can be taken as the unified origin of the holographic and agegraphic dark energy models with interaction between the matter and the dark energy, where the interacting term is determined by Q=-ρ. We place observational constraints on the Λ(t)CDM models originating from different cosmological length scales and time scales with the recently compiled “Union2 compilation” which consists of 557 Type Ia supernovae (SNIa) covering a redshift range 0.015⩽z⩽1.4. In conclusion, an accelerating expansion universe can be derived in the cases taking the Hubble horizon, the future event horizon, the age of the universe and the conformal time as the length scale or the time scale.

  3. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGES

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  4. Cooperativity of self-organized Brownian motors pulling on soft cargoes.

    PubMed

    Orlandi, Javier G; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  5. Electronic transport in two-dimensional high dielectric constant nanosystems.

    PubMed

    Ortuño, M; Somoza, A M; Vinokur, V M; Baturina, T I

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  6. Cooperativity of self-organized Brownian motors pulling on soft cargoes

    NASA Astrophysics Data System (ADS)

    Orlandi, Javier G.; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  7. High-resolution studies of the Majorana atomic chain platform

    NASA Astrophysics Data System (ADS)

    Feldman, Benjamin E.; Randeria, Mallika T.; Li, Jian; Jeon, Sangjun; Xie, Yonglong; Wang, Zhijun; Drozdov, Ilya K.; Andrei Bernevig, B.; Yazdani, Ali

    2017-03-01

    Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive `double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements.

  8. Hunting for ghosts in elastic snap-through

    NASA Astrophysics Data System (ADS)

    Gomez, Michael; Moulton, Derek E.; Vella, Dominic

    Elastic `snap-through' is a striking instability often seen when an elastic system loses bistability, e.g. due to a change in geometry or external loading. The switch from one state to another is generally rapid and hence is used to generate fast motions in biology and engineering. While the onset of instability has been well studied, the dynamics of the transition itself remain much less well understood. For example, the dynamics exhibited by children's jumping popper toys, or the leaves of the Venus flytrap plant, are much slower than would be expected based on a naive estimate of the elastic timescales. To explain this discrepancy, the natural conclusion has been drawn that some other effect, such as viscoelasticity, must play a role. We demonstrate here that purely elastic systems may show similar `slow' dynamics during snap-through. This behaviour is due to a remnant (or `ghost') of the snap-through bifurcation underlying the instability, analogously to bottleneck phenomena in 1-D dynamical systems. This slowness is a generic consequence of being close to bifurcation -- it does not require dissipation. We obtain scaling laws for the length of the delay and compare these to numerical simulations and experiments on real samples.

  9. Similarity and Scale Invariance of Velocity and Temperature Structure Functions within and above Dense Canopies

    NASA Astrophysics Data System (ADS)

    Ghannam, K.; Katul, G. G.; Chamecki, M.

    2016-12-01

    The scale-wise properties of turbulent flow statistics are conventionally quantified using the structure function D_ss (r)= <〖(Δs)〗^2 > describing velocity (s=u) or scalar (s=c) concentration increments Δs=s(x+r)-s(x) at various scales or separation distances r, where <.> is Reynolds averaging over coordinates of statistical homogeneity. For locally homogeneous and isotropic turbulence, the structure function can unfold statistical invariance of the form D_ss (βr)=β^p D_ss (r) as has been demonstrated by Kolmogorov's theory for the inertial subrange in the absence of intermittency corrections. For scales larger than inertial, scale invariance need not hold though universal scaling properties can still emerge provided an appropriate length and velocity scales are identified. One recent study on the structure function of the streamwise velocity (s=u) in smooth and rough wall-bounded flows argued that a logarithmic scaling of the form D_ss/(u_*^2 )=A+B ln(r/l_ɛ ) exists at any height z above the wall (or roughness elements), with,l_ɛ,〖 u〗_*, A and B being a dissipation length scale, the friction velocity, and two similarity constants to be determined. Whether this scaling is valid across all atmospheric stability regimes in the roughness sublayer (RSL) and the possible co-existence of length scales other than l_ɛ that collapse D_ss (r) for velocity and temperature frames the scope of this work. Using year-round field measurements within and above an Amazonian canopy, the work here explores the aforementioned scaling for the streamwise (s=u) and vertical velocity (s=w) components, along with its extension to active scalars (s=T, the air temperature) inside canopies and in the RSL above canopies. While the premise is that a length scale such as l_ɛ may serve as a master closure length scale for turbulent momentum and heat flux budgets, the role of the vorticity thickness, the Obukhov length, the adjustment length scale, and height z are also explored for various scale (or r) regimes. Because the RSL blends D_ss (r) from its form inside the canopy to its form in the well-studied atmospheric surface layer, the scaling laws derived here offer a new perspective on the thickness of the RSL for momentum and scalars and its variations with atmospheric stability.

  10. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.

  11. Constant Stress Drop Fits Earthquake Surface Slip-Length Data

    NASA Astrophysics Data System (ADS)

    Shaw, B. E.

    2011-12-01

    Slip at the surface of the Earth provides a direct window into the earthquake source. A longstanding controversy surrounds the scaling of average surface slip with rupture length, which shows the puzzling feature of continuing to increase with rupture length for lengths many times the seismogenic width. Here we show that a more careful treatment of how ruptures transition from small circular ruptures to large rectangular ruptures combined with an assumption of constant stress drop provides a new scaling law for slip versus length which (1) does an excellent job fitting the data, (2) gives an explanation for the large crossover lengthscale at which slip begins to saturate, and (3) supports constant stress drop scaling which matches that seen for small earthquakes. We additionally discuss how the new scaling can be usefully applied to seismic hazard estimates.

  12. Progress in Multi-Disciplinary Data Life Cycle Management

    NASA Astrophysics Data System (ADS)

    Jung, C.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Prabhune, A.; Rigoll, F.; Schwarz, K.; Streit, A.

    2015-12-01

    Modern science is most often driven by data. Improvements in state-of-the-art technologies and methods in many scientific disciplines lead not only to increasing data rates, but also to the need to improve or even completely overhaul their data life cycle management. Communities usually face two kinds of challenges: generic ones like federated authorization and authentication infrastructures and data preservation, and ones that are specific to their community and their respective data life cycle. In practice, the specific requirements often hinder the use of generic tools and methods. The German Helmholtz Association project ’’Large-Scale Data Management and Analysis” (LSDMA) addresses both challenges: its five Data Life Cycle Labs (DLCLs) closely collaborate with communities in joint research and development to optimize the communities data life cycle management, while its Data Services Integration Team (DSIT) provides generic data tools and services. We present most recent developments and results from the DLCLs covering communities ranging from heavy ion physics and photon science to high-throughput microscopy, and from DSIT.

  13. The generic danger and the idiosyncratic support

    NASA Astrophysics Data System (ADS)

    Temme, Arnaud; Nijp, Jelmer; van der Meij, Marijn; Samia, Jalal; Masselink, Rens

    2016-04-01

    This contribution argues two main points. First, that generic landscapes used in some modelling studies sometimes have properties or cause simulation results that are unrealistic. Such initially flat or straight-sloped landscapes, sometimes with minor random perturbations, e.g. form the backdrop for ecological simulations of vegetation growth and competition that predict catastrophic shifts. Exploratory results for semi-arid systems suggest that the results based on these generic landscapes are end-members from a distribution of results, rather than an unbiased, typical outcome. Apparently, the desire to avoid idiosyncrasy has unintended consequences. Second, we argue and illustrate that in fact new insights often come from close inspection of idiosyncratic case studies. Our examples from landslide systems, connectivity and soil formation show how a central role for the case study - either in empirical work or to provide model targets - has advanced our understanding. Both points contribute to the conclusion that it is dangerous to forget about annoying, small-scale, idiosyncratic and, indeed, perhaps bad-ass case studies in Earth Sciences.

  14. Overview of NASA Lewis Research Center free-piston Stirling engine activities

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1984-01-01

    A generic free-piston Stirling technology project is being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. A newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.

  15. Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanossi, A.; Ro''der, J.; Bishop, A. R.

    2001-01-01

    We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, wemore » postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain.« less

  16. Brillouin Scattering of Picosecond Laser Pulses in Preformed, Short-Scale-Length Plasmas

    NASA Astrophysics Data System (ADS)

    Gaeris, A. C.; Fisher, Y.; Delettrez, J. A.; Meyerhofer, D. D.

    1996-11-01

    Brillouin scattering (BS) has been studied in short-scale-length, preformed plasmas. The backscattered and specularly reflected light resulting from the interaction of high-power picosecond pulses with preformed silicon plasmas has been measured. A first laser pulse forms a short-scale-length plasma -- without significant BS -- while a second delayed pulse interacts with an expanded, drifting underdense region of the plasma with density scale length (0 <= Ln <= 600 λ _L). The pulses are generated at λ L = 1054 nm, with intensities up to 10^16 W/cm^2. The backscattered light spectra, threshold intensities, and enhanced reflectivities have been determined for different plasma-density scale lengths and are compared to Liu, Rosenbluth, and White's(C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).) WKB treatment of stimulated Brillouin scattering in inhomogeneous drifting plasmas. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  17. Experiments on integral length scale control in atmospheric boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Poddar, Kamal

    2011-11-01

    Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.

  18. A generic motif discovery algorithm for sequential data.

    PubMed

    Jensen, Kyle L; Styczynski, Mark P; Rigoutsos, Isidore; Stephanopoulos, Gregory N

    2006-01-01

    Motif discovery in sequential data is a problem of great interest and with many applications. However, previous methods have been unable to combine exhaustive search with complex motif representations and are each typically only applicable to a certain class of problems. Here we present a generic motif discovery algorithm (Gemoda) for sequential data. Gemoda can be applied to any dataset with a sequential character, including both categorical and real-valued data. As we show, Gemoda deterministically discovers motifs that are maximal in composition and length. As well, the algorithm allows any choice of similarity metric for finding motifs. Finally, Gemoda's output motifs are representation-agnostic: they can be represented using regular expressions, position weight matrices or any number of other models for any type of sequential data. We demonstrate a number of applications of the algorithm, including the discovery of motifs in amino acids sequences, a new solution to the (l,d)-motif problem in DNA sequences and the discovery of conserved protein substructures. Gemoda is freely available at http://web.mit.edu/bamel/gemoda

  19. Reynolds number scaling of straining motions in turbulence

    NASA Astrophysics Data System (ADS)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  20. How do subcritical cracking rates and styles influence rock erosion? A test case from the Blue Ridge Mountains of Virginia.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Hancock, G. S.; Dewers, T. A.; Chen, X.; Eichhubl, P.

    2017-12-01

    There is a disconnect between measured rates of rock erosion and regolith production and our understanding of the factors and processes that drive them. Here we examine the mechanical weathering (cracking) characteristics of natural, bare bedrock outcrops characterized by 10Be derived erosion rates that vary from 2 to 40 m/my in the Blue Ridge Mountains, VA. Observed erosion rate variance generally correlates with rock type; we seek to characterize and quantify to what extent the mechanical weathering properties of the different rock types drive erosion rates. We assert that subcritical cracking constitutes the primary mechanism by which the outcrops increase their porosity and subsequently weather and erode. We therefore hypothesize that rock parameters that control rates and styles of subcritical cracking set the outcrop erosion rates. For each outcrop, we measured crack characteristics along transects: for every crack >2 cm length, we measured its length, width, orientation, and weathering characteristics (rounded vs sharp edges); and we measured the thickness of all `steps' (spallation remnants) encountered in the transects. For most outcrops, we collected surface samples in order to characterize their mineralogy and microcracking characteristics through thin section analysis. For each rock type, we collected samples for which we measured fracture toughness, as well as the subcritical crack growth index under different moisture conditions. Preliminary analysis of the field crack data indicates that each rock type (granite, sandstone, quartzite) is characterized by unique macro- and micro-scale crack characteristics consistent with known generic subcritical cracking parameters for those rocks. Crack density and length correlate with erosion rates in faster eroding rock types, but not slowly eroding ones. Overall, we hope these data will help to shed light on the driving and limiting factors for the mechanical production of porosity in rock at and near Earth's surface.

  1. Gastrointestinal symptoms predictors of health-related quality of life in pediatric patients with functional gastrointestinal disorders

    USDA-ARS?s Scientific Manuscript database

    To investigate the patient-reported multidimensional gastrointestinal symptoms predictors of generic health-related quality of life (HRQOL) in pediatric patients with functional gastrointestinal disorders (FGIDs). The Pediatric Quality of Life Inventory (PedsQL) Gastrointestinal Symptoms Scales and ...

  2. Economic evaluation of pharmacological treatments for overactive bladder from the perspective of the UK National Health Service.

    PubMed

    Nazir, Jameel; Posnett, John; Walker, Anna; Odeyemi, Isaac A; Hakimi, Zalmai; Garnham, Andrew

    2015-05-01

    To evaluate the costs and outcomes associated with different sequences of oral anti-muscarinic agents and the selective β(3)-adrenoceptor agonist, mirabegron, for the treatment of overactive bladder (OAB). A Markov model with monthly cycle length and time horizon up to 3 years was designed to compare two different sequences of up to three lines of oral therapy for OAB. Patients who discontinued one oral medication could switch to another oral medication or could discontinue treatment. Patients whose symptoms were not controlled were considered for botulinum toxin or sacral nerve stimulation. Outcomes were measured by (a) number of patients with controlled symptoms (no incontinence episodes and <8 micturitions per 24 h); (b) patients with no incontinence episodes per 24 hours; and (c) patients with <8 micturitions per 24 h. Including a third-line oral medication before considering other treatment options improved all patient outcomes, irrespective of the specific drugs used. A three-line sequence including two generic (oxybutynin first line and tolterodine extended-release second line) and one branded drug (solifenacin 5 mg third line) resulted in inferior patient outcomes at costs similar to a sequence of branded drugs (mirabegron first line, solifenacin 5 mg second line, solifenacin 10 mg third line): controlled patients (generic 29.6/1000 vs branded 38.7/1000); patients with no incontinence episodes (103.6/1000 vs 123.7/1000); patients with <8 micturitions (228.7/1000 vs 262.1/1000). Annual treatment costs per patient were similar (generic £1299 vs branded £1385). In the treatment of OAB, low-cost generic treatments are not necessarily more cost-effective than branded drugs, primarily because a better efficacy and tolerability balance improves both symptom control and persistence.

  3. On generic obstructions to recovering correct statistics from climate simulations: Homogenization for deterministic maps and multiplicative noise

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg; Melbourne, Ian

    2013-04-01

    Whereas diffusion limits of stochastic multi-scale systems have a long and successful history, the case of constructing stochastic parametrizations of chaotic deterministic systems has been much less studied. We present rigorous results of convergence of a chaotic slow-fast system to a stochastic differential equation with multiplicative noise. Furthermore we present rigorous results for chaotic slow-fast maps, occurring as numerical discretizations of continuous time systems. This raises the issue of how to interpret certain stochastic integrals; surprisingly the resulting integrals of the stochastic limit system are generically neither of Stratonovich nor of Ito type in the case of maps. It is shown that the limit system of a numerical discretisation is different to the associated continuous time system. This has important consequences when interpreting the statistics of long time simulations of multi-scale systems - they may be very different to the one of the original continuous time system which we set out to study.

  4. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology.

    PubMed

    Zhang, Changlin; Oliaee, Shirin Norooz; Hwang, Sang Youp; Kong, Xiangkai; Peng, Zhenmeng

    2016-01-13

    Mass production of shape-controlled platinum group metal (PGM) and alloy nanoparticles is of high importance for their many fascinating properties in catalysis, electronics, and photonics. Despite of successful demonstrations at milligram scale using wet chemistry syntheses in many fundamental studies, there is still a big gap between the current methods and their real applications due to the complex synthetic procedures, scale-up difficulty, and surface contamination problem of the made particles. Here we report a generic wet impregnation method for facile, surfactant-free, and scalable preparation of nanoparticles of PGMs and their alloys on different substrate materials with controlled particle morphology and clean surface, which bridges the outstanding properties of these nanoparticles to practical important applications. The underlying particle growth and shape formation mechanisms were investigated using a combination of ex situ and in situ characterizations and were attributed to their different interactions with the applied gas molecules.

  5. Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.

  6. End-monomer Dynamics in Semiflexible Polymers

    PubMed Central

    Hinczewski, Michael; Schlagberger, Xaver; Rubinstein, Michael; Krichevsky, Oleg; Netz, Roland R.

    2009-01-01

    Spurred by an experimental controversy in the literature, we investigate the end-monomer dynamics of semiflexible polymers through Brownian hydrodynamic simulations and dynamic mean-field theory. Precise experimental observations over the last few years of end-monomer dynamics in the diffusion of double-stranded DNA have given conflicting results: one study indicated an unexpected Rouse-like scaling of the mean squared displacement (MSD) 〈r2(t)〉 ~ t1/2 at intermediate times, corresponding to fluctuations at length scales larger than the persistence length but smaller than the coil size; another study claimed the more conventional Zimm scaling 〈r2(t)〉 ~ t2/3 in the same time range. Using hydrodynamic simulations, analytical and scaling theories, we find a novel intermediate dynamical regime where the effective local exponent of the end-monomer MSD, α(t) = d log〈r2(t)〉/d log t, drops below the Zimm value of 2/3 for sufficiently long chains. The deviation from the Zimm prediction increases with chain length, though it does not reach the Rouse limit of 1/2. The qualitative features of this intermediate regime, found in simulations and in an improved mean-field theory for semiflexible polymers, in particular the variation of α(t) with chain and persistence lengths, can be reproduced through a heuristic scaling argument. Anomalously low values of the effective exponent α are explained by hydrodynamic effects related to the slow crossover from dynamics on length scales smaller than the persistence length to dynamics on larger length scales. PMID:21359118

  7. Least Squares Approach to the Alignment of the Generic High Precision Tracking System

    NASA Astrophysics Data System (ADS)

    de Renstrom, Pawel Brückman; Haywood, Stephen

    2006-04-01

    A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF's). We present a limited scale exercise exploring various aspects of the solution.

  8. Generic analysis of kinetically driven inflation

    NASA Astrophysics Data System (ADS)

    Saitou, Rio

    2018-04-01

    We perform a model-independent analysis of kinetically driven inflation (KDI) which (partially) includes generalized G-inflation and ghost inflation. We evaluate the background evolution splitting into the inflationary attractor and the perturbation around it. We also consider the quantum fluctuation of the scalar mode with a usual scaling and derive the spectral index, ignoring the contribution from the second-order products of slow-roll parameters. Using these formalisms, we find that within our generic framework the models of KDI which possess the shift symmetry of scalar field cannot create the quantum fluctuation consistent with the observation. Breaking the shift symmetry, we obtain a few essential conditions for viable models of KDI associated with the graceful exit.

  9. Rayleigh instability at small length scales.

    PubMed

    Gopan, Nandu; Sathian, Sarith P

    2014-09-01

    The Rayleigh instability (also called the Plateau-Rayleigh instability) of a nanosized liquid propane thread is investigated using molecular dynamics (MD). The validity of classical predictions at small length scales is verified by comparing the temporal evolution of liquid thread simulated by MD against classical predictions. Previous works have shown that thermal fluctuations become dominant at small length scales. The role and influence of the stochastic nature of thermal fluctuations in determining the instability at small length scale is also investigated. Thermal fluctuations are seen to dominate and accelerate the breakup process only during the last stages of breakup. The simulations also reveal that the breakup profile of nanoscale threads undergo modification due to reorganization of molecules by the evaporation-condensation process.

  10. Assessment methods for rehabilitation.

    PubMed

    Biefang, S; Potthoff, P

    1995-09-01

    Diagnostics and evaluation in medical rehabilitation should be based on methods that are as objective as possible. In this context quantitative methods are an important precondition. We conducted for the German Pensions Insurance Institutions (which are in charge of the medical and vocational rehabilitation of workers and employees) a survey on assessment methods for rehabilitation which included an evaluation of American literature, with the aim to indicate procedures that can be considered for adaptation in Germany and to define further research requirements. The survey identified: (1) standardized procedures and instrumented tests for the assessment of musculoskeletal, cardiopulmonary and neurophysiological function; (2) personality, intelligence, achievement, neuropsychological and alcoholism screening tests for the assessment of mental or cognitive function; (3) rating scales and self-administered questionnaires for the assessment of Activities of Daily Living and Instrumental Activities of Daily Living (ADL/IADL Scales); (4) generic profiles and indexes as well as disease-specific measures for the assessment of health-related quality of life and health status; and (5) rating scales for vocational assessment. German equivalents or German versions exist only for a part of the procedures identified. Translation and testing of Anglo-Saxon procedures should have priority over the development of new German methods. The following procedures will be taken into account: (a) instrumented tests for physical function, (b) IADL Scales, (c) generic indexes of health-related quality of life, (d) specific quality of life and health status measures for disorders of the circulatory system, metabolic system, digestive organs, respiratory tract and for cancer, and (e) vocational rating scales.

  11. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    PubMed

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  12. Development and preliminary validation of the 'Mind the Gap' scale to assess satisfaction with transitional health care among adolescents with juvenile idiopathic arthritis.

    PubMed

    Shaw, K L; Southwood, T R; McDonagh, J E

    2007-07-01

    To develop a scale to assess satisfaction with transitional health care among adolescents with a chronic illness and their parents. The 'Mind the Gap' scale was developed using evidence from a previous needs assessment, in three stages: (1) definition of the construct; (2) design of the scale items, response options and instructions; (3) full administration of the scale, item analysis and dimensionality analysis. The scale was administered to 308 adolescents with juvenile idiopathic arthritis (JIA) and 303 parents/guardians, prior to and 12 months after the implementation of an evaluation of a structured and co-ordinated programme of transitional care. The patient population involved adolescents with JIA and their parents recruited from 10 major UK rheumatology centres. A total of 301 (97.7%) adolescents and 286 (95.0%) parents chose to complete the questionnaire, with median item completion rates of 100.0% (0-100%) for both adolescents and parents thus confirming feasibility. Face and content validity were confirmed. Factor analyses revealed a three-factor structure which explained 49.5% and 56.1% of the variation in adolescent and parent scores respectively. The internal consistency of each subscale ('management of environment', 'provider characteristics' and 'process issues') was indicated by Cronbach's alphas of 0.71, 0.89 and 0.89 for adolescents, respectively, and 0.83, 0.91 and 0.92 for parents respectively. Cronbach's alphas for the entire scales were 0.91 and 0.94 for the adolescent and parent forms respectively. These preliminary results report the potential of the 'Mind the Gap' scale in evaluating transitional care for adolescents with JIA. In view of the generic nature of transitional care reflected in the scale, this scale has wider potential for use with adolescents with other chronic illness in view of the generic nature of transition. This development is particularly timely in the context of transitional care developments in the UK and further validation of the scale is in progress.

  13. Tidal Response to Sea-Level Rise in Different Types of Estuaries: The Importance of Length, Bathymetry, and Geometry

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian; Zhang, Yinglong J.; Ye, Fei; Liu, Zhuo; Wang, Zhengui; Wang, Ya Ping; Yu, Xin; Sisson, Mac; Wang, Harry V.

    2018-01-01

    Tidal response to sea-level rise (SLR) varies in different coastal systems. To provide a generic pattern of tidal response to SLR, a systematic investigation was conducted using numerical techniques applied to idealized and realistic estuaries, with model results cross-checked by analytical solutions. Our results reveal that the response of tidal range to SLR is nonlinear, spatially heterogeneous, and highly affected by the length and bathymetry of an estuary and weakly affected by the estuary convergence with an exception of strong convergence. Contrary to the common assumption that SLR leads to a weakened bottom friction, resulting in increased tidal amplitude, we demonstrate that tidal range is likely to decrease in short estuaries and in estuaries with a narrow channel and large low-lying shallow areas.

  14. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    PubMed Central

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  15. Genetic parameters for different growth scales in GIFT strain of Nile tilapia (Oreochromis niloticus).

    PubMed

    He, J; Gao, H; Xu, P; Yang, R

    2015-12-01

    Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.

  16. 1/50 Scale Model Of The 80x120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40x80 Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel. Model viewed from the west, mounted on a rotating ground board designed for this test. Ramp leading to ground board includes a generic building placed in front of the 80x120 inlet.

  17. A new constraint on mean-field galactic dynamo theory

    NASA Astrophysics Data System (ADS)

    Chamandy, Luke; Singh, Nishant K.

    2017-07-01

    Appealing to an analytical result from mean-field theory, we show, using a generic galaxy model, that galactic dynamo action can be suppressed by small-scale magnetic fluctuations. This is caused by the magnetic analogue of the Rädler or Ω × J effect, where rotation-induced corrections to the mean-field turbulent transport result in what we interpret to be an effective reduction of the standard α effect in the presence of small-scale magnetic fields.

  18. Desert bird associations with broad-scale boundary length: Applications in avian conservation

    USGS Publications Warehouse

    Gutzwiller, K.J.; Barrow, W.C.

    2008-01-01

    1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.

  19. Domain walls in the extensions of the Standard Model

    NASA Astrophysics Data System (ADS)

    Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł

    2018-05-01

    Our main interest is the evolution of domain walls of the Higgs field in the early Universe. The aim of this paper is to understand how dynamics of Higgs domain walls could be influenced by yet unknown interactions from beyond the Standard Model. We assume that the Standard Model is valid up to certain, high, energy scale Λ and use the framework of the effective field theory to describe physics below that scale. Performing numerical simulations with different values of the scale Λ we are able to extend our previous analysis [1]. Our recent numerical simulations show that evolution of Higgs domain walls is rather insensitive to interactions beyond the Standard Model as long as masses of new particles are grater than 1012 GeV. For lower values of Λ the RG improved effective potential is strongly modified at field strengths crucial to the evolution of domain walls. However, we find that even for low values of Λ, Higgs domain walls decayed shortly after their formation for generic initial conditions. On the other hand, in simulations with specifically chosen initial conditions Higgs domain walls can live longer and enter the scaling regime. We also determine the energy spectrum of gravitational waves produced by decaying domain walls of the Higgs field. For generic initial field configurations the amplitude of the signal is too small to be observed in planned detectors.

  20. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary S.

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less

  1. Effect of length scale on mechanical properties of Al-Cu eutectic alloy

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.

    2012-10-01

    This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.

  2. Energy Spectra of Higher Reynolds Number Turbulence by the DNS with up to 122883 Grid Points

    NASA Astrophysics Data System (ADS)

    Ishihara, Takashi; Kaneda, Yukio; Morishita, Koji; Yokokawa, Mitsuo; Uno, Atsuya

    2014-11-01

    Large-scale direct numerical simulations (DNS) of forced incompressible turbulence in a periodic box with up to 122883 grid points have been performed using K computer. The maximum Taylor-microscale Reynolds number Rλ, and the maximum Reynolds number Re based on the integral length scale are over 2000 and 105, respectively. Our previous DNS with Rλ up to 1100 showed that the energy spectrum has a slope steeper than - 5 / 3 (the Kolmogorov scaling law) by factor 0 . 1 at the wavenumber range (kη < 0 . 03). Here η is the Kolmogorov length scale. Our present DNS at higher resolutions show that the energy spectra with different Reynolds numbers (Rλ > 1000) are well normalized not by the integral length-scale but by the Kolmogorov length scale, at the wavenumber range of the steeper slope. This result indicates that the steeper slope is not inherent character in the inertial subrange, and is affected by viscosity.

  3. Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora

    2016-02-05

    Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion ismore » used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.« less

  4. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    NASA Astrophysics Data System (ADS)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (<0.1 µm) to stylus and optical profilometry in the micro- and mesoscales (0.1 µm-1 mm). This paper presents an experimental length scale study of the surface texture of ground stainless steel followed by an electropolishing process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  5. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features

    PubMed Central

    Gross, Joachim; Kayser, Christoph

    2018-01-01

    During online speech processing, our brain tracks the acoustic fluctuations in speech at different timescales. Previous research has focused on generic timescales (for example, delta or theta bands) that are assumed to map onto linguistic features such as prosody or syllables. However, given the high intersubject variability in speaking patterns, such a generic association between the timescales of brain activity and speech properties can be ambiguous. Here, we analyse speech tracking in source-localised magnetoencephalographic data by directly focusing on timescales extracted from statistical regularities in our speech material. This revealed widespread significant tracking at the timescales of phrases (0.6–1.3 Hz), words (1.8–3 Hz), syllables (2.8–4.8 Hz), and phonemes (8–12.4 Hz). Importantly, when examining its perceptual relevance, we found stronger tracking for correctly comprehended trials in the left premotor (PM) cortex at the phrasal scale as well as in left middle temporal cortex at the word scale. Control analyses using generic bands confirmed that these effects were specific to the speech regularities in our stimuli. Furthermore, we found that the phase at the phrasal timescale coupled to power at beta frequency (13–30 Hz) in motor areas. This cross-frequency coupling presumably reflects top-down temporal prediction in ongoing speech perception. Together, our results reveal specific functional and perceptually relevant roles of distinct tracking and cross-frequency processes along the auditory–motor pathway. PMID:29529019

  6. Length scales and pinning of interfaces

    PubMed Central

    Tan, Likun

    2016-01-01

    The pinning of interfaces and free discontinuities by defects and heterogeneities plays an important role in a variety of phenomena, including grain growth, martensitic phase transitions, ferroelectricity, dislocations and fracture. We explore the role of length scale on the pinning of interfaces and show that the width of the interface relative to the length scale of the heterogeneity can have a profound effect on the pinning behaviour, and ultimately on hysteresis. When the heterogeneity is large, the pinning is strong and can lead to stick–slip behaviour as predicted by various models in the literature. However, when the heterogeneity is small, we find that the interface may not be pinned in a significant manner. This shows that a potential route to making materials with low hysteresis is to introduce heterogeneities at a length scale that is small compared with the width of the phase boundary. Finally, the intermediate setting where the length scale of the heterogeneity is comparable to that of the interface width is characterized by complex interactions, thereby giving rise to a non-monotone relationship between the relative heterogeneity size and the critical depinning stress. PMID:27002068

  7. Current sheet extension and reconnection scaling in collisionless, hyperresistive, Hall MHD

    NASA Astrophysics Data System (ADS)

    Sullivan, B. P.; Bhattacharjee, A.; Huang, Y. M.

    2009-11-01

    We present Sweet-Parker type scaling arguments in the context of collisionless, hyper-resistive, Hall magnetohyrdodynamics (MHD). The predicted steady state scalings are consistent with those found by Chac'on et al. [PRL 99, 235001 (2007)], and Uzdensky, [PoP 16, 040702 (2009)], though our methods differ slightly. As with those studies, no prediction of electron dissipation region length is made. Numerical experiments confirm that both cusp like & extended geometries are realizable. Importantly, the length of the electron dissipation region (taken as a parameter by several recent studies) is found to depend on the level of hyper-resistivity. Although hyper-resistivity can produce modestly extended dissipation regions, the dissipation regions observed here are much shorter than those seen in many kinetic studies. The thickness of the dissipation region scales in a similar way as the length,so that the reconnection rate is not strongly sensitive to the level of hyperresistivity. The length of the electron dissipation region depends on electron inertia as well.The limitations of scaling theories that do not predict the length of the electron dissipation region are emphasized.

  8. String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals.

    PubMed

    Janiszewski, Stefan; Karch, Andreas

    2013-02-22

    We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.

  9. Response of a store with tunable natural frequencies in compressible cavity flow

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-01-07

    Fluid-structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.94 and 1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of 7. Similar to previous studies using a cylindrical store, the aerodynamic store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Moreover, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response was much more limited.

  10. Minimal Length Scale Scenarios for Quantum Gravity.

    PubMed

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  11. A new length scale for quantum gravity: A resolution of the black hole information loss paradox

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder P.

    We show why and how Compton wavelength and Schwarzschild radius should be combined into one single new length scale, which we call the Compton-Schwarzschild length. Doing so offers a resolution of the black hole information loss paradox, and suggests Planck mass remnant black holes as candidates for dark matter. It also compels us to introduce torsion, and identify the Dirac field with a complex torsion field. Dirac equation and Einstein equations, are shown to be mutually dual limiting cases of an underlying gravitation theory which involves the Compton-Schwarzschild length scale, and includes a complex torsion field.

  12. The electrostatic persistence length of polymers beyond the OSF limit.

    PubMed

    Everaers, R; Milchev, A; Yamakov, V

    2002-05-01

    We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.

  13. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  14. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  15. A plant cell division algorithm based on cell biomechanics and ellipse-fitting.

    PubMed

    Abera, Metadel K; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L A T M; Carmeliet, Jan; Nicolai, Bart M

    2014-09-01

    The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico.

  16. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation

    PubMed Central

    Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid

    2014-01-01

    Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687

  17. On the saturation of the refractive index structure function. II - Influence of the correlation length on astronomical 'seeing'

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, P.

    1987-01-01

    A physical length scale in the wavefront corresponding to the parameter (r sub 0) characterizing the loss in detail in a long exposure image is identified, and the influence of the correlation scale of turbulence as r sub 0 approaches this scale is shown. Allowing for the effect of 2-point correlations in the fluctuations of the refractive index, Venkatakrishnan and Chatterjee (1987) proposed a modified law for the phase structure function. It is suggested that the departure of the phase structure function from the 5/3 power law for length scales in the wavefront approaching the correlation scale of turbulence may lead to better 'seeing' at longer wavelengths.

  18. Solar potential scaling and the urban road network topology

    NASA Astrophysics Data System (ADS)

    Najem, Sara

    2017-01-01

    We explore the scaling of cities' solar potentials with their number of buildings and reveal a latent dependence between the solar potential and the length of the corresponding city's road network. This scaling is shown to be valid at the grid and block levels and is attributed to a common street length distribution. Additionally, we compute the buildings' solar potential correlation function and length in order to determine the set of critical exponents typifying the urban solar potential universality class.

  19. Scale effects between body size and limb design in quadrupedal mammals.

    PubMed

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.

  20. Scale Effects between Body Size and Limb Design in Quadrupedal Mammals

    PubMed Central

    Kilbourne, Brandon M.; Hoffman, Louwrens C.

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry. PMID:24260117

  1. The prospects of transition metal dichalcogenides for ultimately scaled CMOS

    NASA Astrophysics Data System (ADS)

    Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.

    2018-05-01

    MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.

  2. Lensing Constraints on the Mass Profile Shape and the Splashback Radius of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Umetsu, Keiichi; Diemer, Benedikt

    2017-02-01

    The lensing signal around galaxy clusters can, in principle, be used to test detailed predictions for their average mass profile from numerical simulations. However, the intrinsic shape of the profiles can be smeared out when a sample that spans a wide range of cluster masses is averaged in physical length units. This effect especially conceals rapid changes in gradient such as the steep drop associated with the splashback radius, a sharp edge corresponding to the outermost caustic in accreting halos. We optimize the extraction of such local features by scaling individual halo profiles to a number of spherical overdensity radii, and apply this method to 16 X-ray-selected, high-mass clusters targeted in the Cluster Lensing And Supernova survey with Hubble. By forward-modeling the weak- and strong-lensing data presented by Umetsu et al., we show that, regardless of the scaling overdensity, the projected ensemble density profile is remarkably well described by a Navarro-Frenk-White (NFW) or Einasto profile out to R˜ 2.5 {h}-1 {Mpc}, beyond which the profiles flatten. We constrain the NFW concentration to {c}200{{c}}=3.66+/- 0.11 at {M}200{{c}}≃ 1.0× {10}15 {h}-1 {M}⊙ , consistent with and improved from previous work that used conventionally stacked lensing profiles, and in excellent agreement with theoretical expectations. Assuming the profile form of Diemer & Kravtsov and generic priors calibrated from numerical simulations, we place a lower limit on the splashback radius of the cluster halos, if it exists, of {R}{sp}3{{D}}/{r}200{{m}}> 0.89 ({R}{sp}3{{D}}> 1.83 {h}-1 {Mpc}) at 68% confidence. The corresponding density feature is most pronounced when the cluster profiles are scaled by {r}200{{m}}, and smeared out when scaled to higher overdensities. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.

  3. Intervening in global markets to improve access to HIV/AIDS treatment: an analysis of international policies and the dynamics of global antiretroviral medicines markets

    PubMed Central

    2010-01-01

    Background Universal access to antiretroviral therapy (ART) in low- and middle-income countries faces numerous challenges: increasing numbers of people needing ART, new guidelines recommending more expensive antiretroviral (ARV) medicines, limited financing, and few fixed-dose combination (FDC) products. Global initiatives aim to promote efficient global ARV markets, yet little is known about market dynamics and the impact of global policy interventions. Methods We utilize several data sources, including 12,958 donor-funded, adult first-line ARV purchase transactions, to describe the market from 2002-2008. We examine relationships between market trends and: World Health Organization (WHO) HIV/AIDS treatment guidelines; WHO Prequalification Programme (WHO Prequal) and United States (US) Food and Drug Administration (FDA) approvals; and procurement policies of the Global Fund to Fight AIDS, Tuberculosis, and Malaria (GFATM), US President's Emergency Plan for AIDS Relief (PEPFAR) and UNITAID. Results WHO recommended 7, 4, 24, and 6 first-line regimens in 2002, 2003, 2006 and 2009 guidelines, respectively. 2009 guidelines replaced a stavudine-based regimen ($88/person/year) with more expensive zidovudine- ($154-260/person/year) or tenofovir-based ($244-465/person/year) regimens. Purchase volumes for ARVs newly-recommended in 2006 (emtricitabine, tenofovir) increased >15-fold from 2006 to 2008. Twenty-four generic FDCs were quality-approved for older regimens but only four for newer regimens. Generic FDCs were available to GFATM recipients in 2004 but to PEPFAR recipients only after FDA approval in 2006. Price trends for single-component generic medicines mirrored generic FDC prices. Two large-scale purchasers, PEPFAR and UNITAID, together accounted for 53%, 84%, and 77% of market volume for abacavir, emtricitabine, and tenofovir, respectively, in 2008. PEPFAR and UNITAID purchases were often split across two manufacturers. Conclusions Global initiatives facilitated the creation of fairly efficient markets for older ARVs, but markets for newer ARVs are less competitive and slower to evolve. WHO guidelines shape demand, and their complexity may help or hinder achievement of economies of scale in pharmaceutical manufacturing. Certification programs assure ARV quality but can delay uptake of new formulations. Large-scale procurement policies may decrease the numbers of buyers and sellers, rendering the market less competitive in the longer-term. Global policies must be developed with consideration for their short- and long-term impact on market dynamics. PMID:20500827

  4. How young can children reliably and validly self-report their health-related quality of life?: an analysis of 8,591 children across age subgroups with the PedsQL 4.0 Generic Core Scales.

    PubMed

    Varni, James W; Limbers, Christine A; Burwinkle, Tasha M

    2007-01-03

    The last decade has evidenced a dramatic increase in the development and utilization of pediatric health-related quality of life (HRQOL) measures in an effort to improve pediatric patient health and well-being and determine the value of healthcare services. The emerging paradigm shift toward patient-reported outcomes (PROs) in clinical trials has provided the opportunity to further emphasize the value and essential need for pediatric patient self-reported outcomes measurement. Data from the PedsQL DatabaseSM were utilized to test the hypothesis that children as young as 5 years of age can reliably and validly report their HRQOL. The sample analyzed represented child self-report age data on 8,591 children ages 5 to 16 years from the PedsQL 4.0 Generic Core Scales DatabaseSM. Participants were recruited from general pediatric clinics, subspecialty clinics, and hospitals in which children were being seen for well-child checks, mild acute illness, or chronic illness care (n = 2,603, 30.3%), and from a State Children's Health Insurance Program (SCHIP) in California (n = 5,988, 69.7%). Items on the PedsQL 4.0 Generic Core Scales had minimal missing responses for children as young as 5 years old, supporting feasibility. The majority of the child self-report scales across the age subgroups, including for children as young as 5 years, exceeded the minimum internal consistency reliability standard of 0.70 required for group comparisons, while the Total Scale Scores across the age subgroups approached or exceeded the reliability criterion of 0.90 recommended for analyzing individual patient scale scores. Construct validity was demonstrated utilizing the known groups approach. For each PedsQL scale and summary score, across age subgroups, including children as young as 5 years, healthy children demonstrated a statistically significant difference in HRQOL (better HRQOL) than children with a known chronic health condition, with most effect sizes in the medium to large effect size range. The results demonstrate that children as young as the 5 year old age subgroup can reliably and validly self-report their HRQOL when given the opportunity to do so with an age-appropriate instrument. These analyses are consistent with recent FDA guidelines which require instrument development and validation testing for children and adolescents within fairly narrow age groupings and which determine the lower age limit at which children can provide reliable and valid responses across age categories.

  5. A variable mixing-length ratio for convection theory

    NASA Technical Reports Server (NTRS)

    Chan, K. L.; Wolff, C. L.; Sofia, S.

    1981-01-01

    It is argued that a natural choice for the local mixing length in the mixing-length theory of convection has a value proportional to the local density scale height of the convective bubbles. The resultant variable mixing-length ratio (the ratio between the mixing length and the pressure scale height) of this theory is enhanced in the superadiabatic region and approaches a constant in deeper layers. Numerical tests comparing the new mixing length successfully eliminate most of the density inversion that typically plagues conventional results. The new approach also seems to indicate the existence of granular motion at the top of the convection zone.

  6. Assessing self-care and social function using a computer adaptive testing version of the pediatric evaluation of disability inventory.

    PubMed

    Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A

    2008-04-01

    To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.

  7. The dynamics of oceanic fronts. Part 1: The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1970-01-01

    The establishment and maintenance of the mean hydrographic properties of large scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density. The full time dependent diffusion and Navier-Stokes equations for a constant Coriolis parameter are used in this study. Scaling analysis reveals three independent length scales of the problem, namely a radius of deformation or inertial length scale, Lo, a buoyance length scale, ho, and a diffusive length scale, hv. Two basic dimensionless parameters are then formed from these length scales, the thermal (or more precisely, the densimetric) Rossby number, Ro = Lo/ho and the Ekman number, E = hv/ho. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on E alone for problems of oceanic interest. Under this scaling, the solutions are similar for all Ro. It is also shown that 1/Ro is a measure of the frontal slope. The governing equations are solved numerically and the scaling analysis is confirmed. The solution indicates that an equilibrium state is established. The front can then be rendered stationary by a barotropic current from a larger scale along-front pressure gradient. In that quasisteady state, and for small values of E, the main thermocline and the inclined isopycnics forming the front have evolved, together with the along-front jet. Conservation of potential vorticity is also obtained in the light water pool. The surface jet exhibits anticyclonic shear in the light water pool and cyclonic shear across the front.

  8. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database

    PubMed Central

    Coppard, Nicholas; Cooper, Jonathon M.; Delatycki, Martin B.; Dürr, Alexandra; Di Prospero, Nicholas A.; Giunti, Paola; Lynch, David R.; Schulz, J. B.; Rummey, Christian; Meier, Thomas

    2013-01-01

    The aim of this cross-sectional study was to analyse disease progression in Friedreich’s ataxia as measured by the International Cooperative Ataxia Rating Scale. Single ratings from 603 patients with Friedreich’s ataxia were analysed as a function of disease duration, age of onset and GAA repeat lengths. The relative contribution of items and subscales to the total score was studied as a function of disease progression. In addition, the scaling properties were assessed using standard statistical measures. Average total scale progression per year depends on the age of disease onset, the time since diagnosis and the GAA repeat length. The age of onset inversely correlates with increased GAA repeat length. For patients with an age of onset ≤14 years associated with a longer repeat length, the average yearly rate of decline was 2.5 ± 0.18 points in the total International Cooperative Ataxia Rating Scale for the first 20 years of disease duration, whereas patients with a later onset progress more slowly (1.8 ± 0.27 points/year). Ceiling effects in posture, gait and lower limb scale items lead to a reduced sensitivity of the scale in the severely affected population with a total score of >60 points. Psychometric scaling analysis shows generally favourable properties for the total scale, but the subscale grouping could be improved. This cross-sectional study provides a detailed characterization of the International Cooperative Ataxia Rating Scale. The analysis further provides rates of change separated for patients with early and late disease onset, which is driven by the GAA repeat length. Differences in the subscale dynamics merit consideration in the design of future clinical trials applying this scale as a neurological assessment instrument in Friedreich’s ataxia. PMID:23365101

  9. SC'11 Poster: A Highly Efficient MGPT Implementation for LAMMPS; with Strong Scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oppelstrup, T; Stukowski, A; Marian, J

    2011-12-07

    The MGPT potential has been implemented as a drop in package to the general molecular dynamics code LAMMPS. We implement an improved communication scheme that shrinks the communication layer thickness, and increases the load balancing. This results in unprecedented strong scaling, and speedup continuing beyond 1/8 atom/core. In addition, we have optimized the small matrix linear algebra with generic blocking (for all processors) and specific SIMD intrinsics for vectorization on Intel, AMD, and BlueGene CPUs.

  10. Canada's Patented Medicine Notice of Compliance regulations: balancing the scales or tipping them?

    PubMed Central

    2011-01-01

    Background In order to comply with the provisions of the North American Free Trade Agreement, in 1993 the Canadian federal government introduced the Patented Medicine Notice of Compliance Linkage Regulations. These regulations were meant to achieve a balance between the timely entry of generic medicines and the rights of patent holders. The regulations tied the regulatory approval of generic medicines to the patent status of the original brand-name product. Discussion Since their introduction the regulations have been a source of contention between the generic and the brand-name industry. While the regulations have generated a considerable amount of work for the Federal Court of Canada both sides dispute the interpretation of the "win rate" in the court cases. Similarly, there is no agreement on whether multiple patents on single drugs represent a legitimate activity by the brand-name industry or an "evergreening" tactic. The generic industry's position is that the regulations are being abused leading to the delay in the introduction of lower cost generic products by as much as 8 years. The brand-name companies counter that the regulations are necessary because injunctions against the introduction of generic products are frequently unavailable to them. The regulations were amended in 2006 and again in 2008 but both sides continue to claim that the regulations favour the other party. The battle around the regulations also has an international dimension with interventions by PhRMA, the trade association representing the United States based multinational companies, arguing that the regulations are not stringent enough and that Canada needs to be placed on the U.S. Priority Watch List of countries. Finally, there are multiple costs to Canadian society as a result of the NOC regulations. Summary Despite the rhetoric there has been almost no empiric academic research done into the effect of the regulations. In order to develop rational policy in this area a number of key research questions have been formulated. PMID:21435247

  11. Target prices for mass production of tyrosine kinase inhibitors for global cancer treatment.

    PubMed

    Hill, Andrew; Gotham, Dzintars; Fortunak, Joseph; Meldrum, Jonathan; Erbacher, Isabelle; Martin, Manuel; Shoman, Haitham; Levi, Jacob; Powderly, William G; Bower, Mark

    2016-01-27

    To calculate sustainable generic prices for 4 tyrosine kinase inhibitors (TKIs). TKIs have proven survival benefits in the treatment of several cancers, including chronic myeloid leukaemia, breast, liver, renal and lung cancer. However, current high prices are a barrier to treatment. Mass production of low-cost generic antiretrovirals has led to over 13 million people being on HIV/AIDS treatment worldwide. This analysis estimates target prices for generic TKIs, assuming similar methods of mass production. Four TKIs with patent expiry dates in the next 5 years were selected for analysis: imatinib, erlotinib, lapatinib and sorafenib. Chemistry, dosing, published data on per-kilogram pricing for commercial transactions of active pharmaceutical ingredient (API), and quotes from manufacturers were used to estimate costs of production. Analysis included costs of excipients, formulation, packaging, shipping and a 50% profit margin. Target prices were compared with current prices. Global numbers of patients eligible for treatment with each TKI were estimated. API costs per kg were $347-$746 for imatinib, $2470 for erlotinib, $4671 for lapatinib, and $3000 for sorafenib. Basing on annual dose requirements, costs of formulation/packaging and a 50% profit margin, target generic prices per person-year were $128-$216 for imatinib, $240 for erlotinib, $1450 for sorafenib, and $4020 for lapatinib. Over 1 million people would be newly eligible to start treatment with these TKIs annually. Mass generic production of several TKIs could achieve treatment prices in the range of $128-$4020 per person-year, versus current US prices of $75161-$139,138. Generic TKIs could allow significant savings and scaling-up of treatment globally, for over 1 million eligible patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. JACOB: an enterprise framework for computational chemistry.

    PubMed

    Waller, Mark P; Dresselhaus, Thomas; Yang, Jack

    2013-06-15

    Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.

  13. Image processing in biodosimetry: A proposal of a generic free software platform.

    PubMed

    Dumpelmann, Matthias; Cadena da Matta, Mariel; Pereira de Lemos Pinto, Marcela Maria; de Salazar E Fernandes, Thiago; Borges da Silva, Edvane; Amaral, Ademir

    2015-08-01

    The scoring of chromosome aberrations is the most reliable biological method for evaluating individual exposure to ionizing radiation. However, microscopic analyses of chromosome human metaphases, generally employed to identify aberrations mainly dicentrics (chromosome with two centromeres), is a laborious task. This method is time consuming and its application in biological dosimetry would be almost impossible in case of a large scale radiation incidents. In this project, a generic software was enhanced for automatic chromosome image processing from a framework originally developed for the Framework V project Simbio, of the European Union for applications in the area of source localization from electroencephalographic signals. The platforms capability is demonstrated by a study comparing automatic segmentation strategies of chromosomes from microscopic images.

  14. Evolving Relationship Structures in Multi-sourcing Arrangements: The Case of Mission Critical Outsourcing

    NASA Astrophysics Data System (ADS)

    Heitlager, Ilja; Helms, Remko; Brinkkemper, Sjaak

    Information Technology Outsourcing practice and research mainly considers the outsourcing phenomenon as a generic fulfilment of the IT function by external parties. Inspired by the logic of commodity, core competencies and economies of scale; assets, existing departments and IT functions are transferred to external parties. Although the generic approach might work for desktop outsourcing, where standardisation is the dominant factor, it does not work for the management of mission critical applications. Managing mission critical applications requires a different approach where building relationships is critical. The relationships involve inter and intra organisational parties in a multi-sourcing arrangement, called an IT service chain, consisting of multiple (specialist) parties that have to collaborate closely to deliver high quality services.

  15. Generic features of the wealth distribution in ideal-gas-like markets.

    PubMed

    Mohanty, P K

    2006-07-01

    We provide an exact solution to the ideal-gas-like models studied in econophysics to understand the microscopic origin of Pareto law. In these classes of models the key ingredient necessary for having a self-organized scale-free steady-state distribution is the trading or collision rule where agents or particles save a definite fraction of their wealth or energy and invest the rest for trading. Using a Gibbs ensemble approach we could obtain the exact distribution of wealth in this model. Moreover we show that in this model (a) good savers are always rich and (b) every agent poor or rich invests the same amount for trading. Nonlinear trading rules could alter the generic scenario observed here.

  16. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  17. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  18. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  19. PedsQLTM 4.0 Generic Core Scales for adolescents in the Yoruba language: translation and general psychometric properties.

    PubMed

    Atilola, Olayinka; Stevanović, Dejan

    2014-04-01

    Quality of life (QOL) is a universally accepted concept for measuring the impact of different aspects of life on general well-being. Adaptation of existing QOL instruments to local cultures has been identified as a better strategy than development of new ones. To translate and adapt the Paediatric Quality of Life Inventory™ Version 4.0 Generic Core Scales (PedsQL™) to the Yoruba language and culture and to test the psychometric properties of the adapted instrument among adolescents. Psychometric properties including internal consistency reliability, construct and factorial validity of the Yoruba version of PedsQL™ were evaluated using standard procedures. The self report and proxy scales of the Yoruba PedsQL™ were developed with good cultural relevance and semantic/conceptual equivalence. Results from 527 adolescents revealed a Cronbach's coefficient which exceeded 0.7 for internal consistency reliability for all scores. The healthy subjects reported higher PedsQL™ scores than those with mental health and physical problems, which confirmed construct validity. Confirmatory factor analysis revealed a good model fit for the Psychosocial Health score, but not for the other measures. The Yoruba PedsQL™ is culturally appropriate and with good internal consistency, reliability and construct validity. More work is needed regarding its factorial validity.

  20. Nonlinear surge motions of a ship in bi-chromatic following waves

    NASA Astrophysics Data System (ADS)

    Spyrou, Kostas J.; Themelis, Nikos; Kontolefas, Ioannis

    2018-03-01

    Unintended motions of a ship operating in steep and long following waves are investigated. A well-known such case is ;surf-riding; where a ship is carried forward by a single wave, an event invoking sometimes lateral instability and even capsize. The dynamics underlying this behavior has been clarified earlier for monochromatic waves. However, the unsteadiness of the phase space associated with ship behavior in a multichromatic sea, combined with the intrinsically strong system nonlinearity, pose new challenges. Here, current theory is extended to cover surging and surf-riding behavior in unidirectional bi-chromatic waves encountering a ship from the stern. Excitation is provided by two unidirectional harmonic wave components having their lengths comparable to the ship length and their frequencies in rational ratio. The techniques applied include (a) continuation analysis; (b) tracking of Lagrangian coherent structures in phase space, approximated through a finite-time Lyapunov exponents' calculation; and (c) large scale simulation. A profound feature of surf-riding in bi-chromatic waves is that it is turned oscillatory. Initially it appears as a frequency-locked motion, ruled by the harmonic wave component dominating the excitation. Transformations of oscillatory surf-riding are realized as the waves become steeper. In particular, heteroclinic tanglings are identified, governing abrupt transitions between qualitatively different motions. Chaotic transients, as well as long-term chaotic motions, exist near to these events. Some extraordinary patterns of ship motion are discovered. These include a counterintuitive low speed motion at very high wave excitation level; and a hybrid motion characterized by a wildly fluctuating velocity. Due to the quite generic nature of the core mathematical model of our investigation, the current results are believed to offer clues about the behavior of a class of nonlinear dynamical systems having in their modeling some analogy with a perturbed pendulum with bias.

  1. Semiclassical electron transport at the edge of a two-dimensional topological insulator: Interplay of protected and unprotected modes

    NASA Astrophysics Data System (ADS)

    Khalaf, E.; Skvortsov, M. A.; Ostrovsky, P. M.

    2016-03-01

    We study electron transport at the edge of a generic disordered two-dimensional topological insulator, where some channels are topologically protected from backscattering. Assuming the total number of channels is large, we consider the edge as a quasi-one-dimensional quantum wire and describe it in terms of a nonlinear sigma model with a topological term. Neglecting localization effects, we calculate the average distribution function of transmission probabilities as a function of the sample length. We mainly focus on the two experimentally relevant cases: a junction between two quantum Hall (QH) states with different filling factors (unitary class) and a relatively thick quantum well exhibiting quantum spin Hall (QSH) effect (symplectic class). In a QH sample, the presence of topologically protected modes leads to a strong suppression of diffusion in the other channels already at scales much shorter than the localization length. On the semiclassical level, this is accompanied by the formation of a gap in the spectrum of transmission probabilities close to unit transmission, thereby suppressing shot noise and conductance fluctuations. In the case of a QSH system, there is at most one topologically protected edge channel leading to weaker transport effects. In order to describe `topological' suppression of nearly perfect transparencies, we develop an exact mapping of the semiclassical limit of the one-dimensional sigma model onto a zero-dimensional sigma model of a different symmetry class, allowing us to identify the distribution of transmission probabilities with the average spectral density of a certain random-matrix ensemble. We extend our results to other symmetry classes with topologically protected edges in two dimensions.

  2. The relationship between perceived stigma, disclosure patterns, support and distress in new attendees at an infertility clinic.

    PubMed

    Slade, P; O'Neill, C; Simpson, A J; Lashen, H

    2007-08-01

    A model suggesting that high perception of stigma is associated with reduced disclosure to others, leading to lower social support and higher distress in new attendees at an infertility clinic is tested. Questionnaires measuring stigmatization (Stigma consciousness questionnaire), disclosure of fertility difficulties (Disclosure questionnaire), social support (Duke-UNC Functional Social Support Questionnaire) and fertility-related [Fertility Problem Inventory (FPI)] and generic distress [Hospital Anxiety and Depression Scale (HADS)] were completed by 87 women and 64 men. Data were analysed by gender comparisons, correlations and path analysis. Women reported higher stigma and disclosure than men. For women, stigma and disclosure were unrelated but in men higher stigma was associated with lower disclosure. Perceptions of stigma were related to low social support for both genders. Social support was negatively related to anxiety, depression and overall infertility distress and showed greater predictive capacity than satisfaction with partner relationship. Testing the model showed that, for men, stigma was linked to lower disclosure and support and higher fertility-related and generic distress. Disclosure itself did not link to support. For women, greater disclosure linked only to higher generic distress. Stigma was directly linked to fertility-related distress and to low perceived support which mediated a relationship with generic distress. Stigma and the wider social context should be considered when supporting people with fertility problems. Greater disclosure may be associated with higher distress in women.

  3. Microphase separation of comb copolymers with two different lengths of side chains

    NASA Astrophysics Data System (ADS)

    Aliev, M. A.; Kuzminyh, N. Yu.

    2009-10-01

    The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.

  4. Radial distribution of dust, stars, gas, and star-formation rate in DustPedia⋆ face-on galaxies

    NASA Astrophysics Data System (ADS)

    Casasola, V.; Cassarà, L. P.; Bianchi, S.; Verstocken, S.; Xilouris, E.; Magrini, L.; Smith, M. W. L.; De Looze, I.; Galametz, M.; Madden, S. C.; Baes, M.; Clark, C.; Davies, J.; De Vis, P.; Evans, R.; Fritz, J.; Galliano, F.; Jones, A. P.; Mosenkov, A. V.; Viaene, S.; Ysard, N.

    2017-09-01

    Aims: The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods: This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results: Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3-9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity gradient. DustPedia is a project funded by the EU under the heading "Exploitation of space science and exploration data". It has the primary goal of exploiting existing data in the Herschel Space Observatory and Planck Telescope databases.

  5. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  6. 78 FR 37783 - Proposed Information Collection; Comment Request; Generic Clearance for Internet Nonprobability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... design of a survey or a release of a Census Bureau data dissemination product with a feedback mechanism... encompass both methodological and subject matter research questions that can be tested on a medium-scale... comments to determine optimal interface designs and to obtain feedback from respondents. For the initial...

  7. High flexibility of DNA on short length scales probed by atomic force microscopy.

    PubMed

    Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C

    2006-11-01

    The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.

  8. The case for a generic phytosanitary irradiation dose of 250 Gy for Lepidoptera eggs and larvae

    NASA Astrophysics Data System (ADS)

    Hallman, Guy J.; Arthur, Valter; Blackburn, Carl M.; Parker, Andrew G.

    2013-08-01

    The literature on ionizing irradiation of Lepidoptera is critically examined for a dose that could serve as a generic phytosanitary treatment for all eggs and larvae of that order, which contains many quarantine pests that inhibit trade in fresh agricultural commodities. The measure of efficacy used in deriving this dose is the prevention of emergence of normal-looking adults that are assumed not able to fly. A dose of 250 Gy is supported by many studies comprising 34 species in 11 lepidopteran families, including those of significant quarantine importance. Two studies with two different species found that doses >250 Gy were necessary, but both of these are contradicted by other studies showing that <250 Gy is adequate. There is a lack of large-scale (>10,000 individuals) testing for families other than Tortricidae (the most important quarantine family in the Lepidoptera). Because several large-scale studies have been done with tortricids a dose of 250 Gy could be justifiable for Tortricidae if it is not acceptable for the entire Lepidoptera at this time.

  9. Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-08-01

    An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1 /N n-1. This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.

  10. Scale effects in crystal plasticity

    NASA Astrophysics Data System (ADS)

    Padubidri Janardhanachar, Guruprasad

    The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the scale of analysis is intermediate between a fully discretized (e.g. atomistic) and fully continuum is used for this study. This mesoscale tool allows to address all the stated objectives of this study within a single framework. Within this framework, the effect of structural and the material length scales are naturally accounted for in the simulations and need not be specified in an ad hoc manner, as in some continuum models. It holds the promise of connecting the evolution of the defect microstructure to the effective response of the crystal. Further, it provides useful information to develop physically motivated continuum models to model size effects in materials. The contributions of this study are: (a) provides a new interpretation of mechanical size effect due to only dimensional constraint using DDD; (b) a development of an experimentally validated DDD simulation methodology to model Cu micropillars; (c) a coarse graining technique using DDD to develop a phenomenological model to capture size effect on strain hardening; and (d) a development of a DDD framework for polycrystals to investigate grain size effect on yield strength and strain hardening.

  11. Pancreatitis Quality of Life Instrument: A Psychometric Evaluation.

    PubMed

    Wassef, Wahid; DeWitt, John; McGreevy, Kathleen; Wilcox, Mel; Whitcomb, David; Yadav, Dhiraj; Amann, Stephen; Mishra, Girish; Alkaade, Samer; Romagnuolo, Joseph; Stevens, Tyler; Vargo, John; Gardner, Timothy; Singh, Vikesh; Park, Walter; Hartigan, Celia; Barton, Bruce; Bova, Carol

    2016-08-01

    Chronic pancreatitis is a significant medical problem that impacts a large number of patients worldwide. In 2014, we developed a disease-specific instrument for the evaluation of quality of life in this group of patients: pancreatitis quality of life instrument (PANQOLI). The goal of this study was to evaluate its psychometric properties: its reliability and its construct validity. This is a cross-sectional multi-center study that involved 12 pancreatic disease centers. Patients who met the inclusion/exclusion criteria for chronic pancreatitis were invited to participate. Those who accepted were asked to complete seven questionnaires/instruments. Only patients who completed the PANQOLI were included in the study. Its reliability and its construct validity were tested. A total of 159 patients completed the PANQOLI and were included in the study. They had a mean age of 49.03, 49% were male, and 84% were Caucasian. Six of the 24 items on the scale were removed because of lack of inter-item correlation, redundancy, or lack of correlation to quality of life issues. The final 18-item scale had excellent reliability (Cronbach's alpha coefficient: 0.914) and excellent construct validity with good correlation to generic quality of life instruments (SF-12 and EORTC QLQ-C30/QLQ-PAN26) and lack of correlation to non-quality of life instruments (MAST and DAST). Through exploratory factor analysis, the PANQOLI was found to consist of four subscales: emotional function scale, role function scale, physical function scale, and "self-worth" scale. PANQOLI is the first disease-specific instrument to be developed and validated for the evaluation of quality of life in chronic pancreatitis patients. It has a unique subscale for "self-worth" that differentiates it from other generic instruments. Studies are currently under way to evaluate its use in other populations not included in this study.

  12. RNA circularization reveals terminal sequence heterogeneity in a double-stranded RNA virus.

    PubMed

    Widmer, G

    1993-03-01

    Double-stranded RNA viruses (dsRNA), termed LRV1, have been found in several strains of the protozoan parasite Leishmania. With the aim of constructing a full-length cDNA copy of the viral genome, including its terminal sequences, a protocol based on PCR amplification across the 3'-5' junction of circularized RNA was developed. This method proved to be applicable to dsRNA. It provided a relatively simple alternative to one-sided PCR, without loss of specificity inherent in the use of generic primers. LRV1 terminal nucleotide sequences obtained by this method showed a considerable variation in length, particularly at the 5' end of the positive strand, as well as the potential for forming 3' overhangs. The opposite genomic end terminates in 0, 1, or 2 TCA trinucleotide repeats. These results are compared with terminal sequences derived from one-sided PCR experiments.

  13. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    NASA Astrophysics Data System (ADS)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  14. Accurate aging of juvenile salmonids using fork lengths

    USGS Publications Warehouse

    Sethi, Suresh; Gerken, Jonathon; Ashline, Joshua

    2017-01-01

    Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging.

  15. Measurements of forces, moments, and pressures on a generic store separating from a box cavity at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.; Forrest, Dana K.

    1991-01-01

    An experimental investigation was conducted to measure the forces, moments, and pressure distributions on the generic store separating from a rectangular box cavity contained in a flat plate surface at supersonic speeds. Pressure distributions inside the cavity and oil flow and vapor-screen photographs of the cavity flow field were also obtained. The measurements were obtained for the store separating from a flat plate surface, from two shallow cavities having length to depth ratios (L/h) of 16.778 and 12.073, and from a deep cavity having L/h = 6.730. Measurements for the shallow cavities were obtained both with and without rectangular doors attached to sides of the cavities. The tests were conducted at free stream Mach numbers of 1.69, 2.00 and 2.65 for a free stream Reynolds number per foot of 2 x 10(exp 6). Presented here are a discussion of the results, a complete tabulation of the pressure data, figures of both the pressure and force and moment data, and representative oil flow and vapor screen photographs.

  16. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    PubMed

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  17. Influence of leading edge bluntness on hypersonic flow in a generic internal-compression inlet

    NASA Astrophysics Data System (ADS)

    Borovoy, V.; Egorov, I.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.

    2015-06-01

    Flow and heat transfer inside a generic inlet are investigated experimentally. The cross section of the inlet is rectangular. The inlet is installed on a flat plat at a significant distance from the leading edge. The experiments are performed in TsAGI wind tunnel UT-1M working in the Ludwieg tube mode at Mach number M∞ = 5 and Reynolds numbers (based on the plate length L = 320 mm) Re∞L = 23 · 106 and 13 · 106. Steady flow duration is 40 ms. Optical panoramic methods are used for investigation of flow outside and inside the inlet as well. For this purpose, the cowl and one of two compressing wedges are made of a transparent material. Heat flux distribution is measured by thin luminescent Temperature Sensitive Paint (TSP). Surface flow and shear stress visualization is performed by viscous oil containing luminophor particles. The investigation shows that at high contraction ratio of the inlet, an increase of plate or cowl bluntness to some critical value leads to sudden change of the flow structure.

  18. New generic primer system targeting mucosal/genital and cutaneous human papillomaviruses leads to the characterization of HPV 115, a novel Beta-papillomavirus species 3

    PubMed Central

    Chouhy, Diego; Gorosito, Mario; Sánchez, Adriana; Serra, Esteban C; Bergero, Adriana; Bussy, Ramón Fernandez; Giri, Adriana A

    2009-01-01

    We explored the cutaneotropic HPV genetic diversity in 71 subjects from Argentina. New generic primers (CUT) targeting 88 mucosal/cutaneous HPV were designed and compared to FAP primers. Overall, 69 different HPV types/putative types were identified, being 17 of them novel putative types. Phylogenetic analysis of partial L1 sequences grouped 2 novel putative types in the Beta-PV, 14 in the Gamma-PV and 1 in the Mu-PV genera. CUT primers showed broader capacity than FAP primers in detecting different genera/species and novel putative types (p<0.01). Using overlapping PCR, the full-length genome of a Beta-PV putative type was amplified and cloned. The new virus, designated HPV 115, encodes 5 early genes and 2 late genes. Phylogenetic analysis indicated HPV 115 as the most divergent type within the genus Beta-PV species 3. This report is the first providing data on cutaneous HPVs circulating in South America and expands our knowledge of the Papillomaviridae family. PMID:19948351

  19. Audio-video feature correlation: faces and speech

    NASA Astrophysics Data System (ADS)

    Durand, Gwenael; Montacie, Claude; Caraty, Marie-Jose; Faudemay, Pascal

    1999-08-01

    This paper presents a study of the correlation of features automatically extracted from the audio stream and the video stream of audiovisual documents. In particular, we were interested in finding out whether speech analysis tools could be combined with face detection methods, and to what extend they should be combined. A generic audio signal partitioning algorithm as first used to detect Silence/Noise/Music/Speech segments in a full length movie. A generic object detection method was applied to the keyframes extracted from the movie in order to detect the presence or absence of faces. The correlation between the presence of a face in the keyframes and of the corresponding voice in the audio stream was studied. A third stream, which is the script of the movie, is warped on the speech channel in order to automatically label faces appearing in the keyframes with the name of the corresponding character. We naturally found that extracted audio and video features were related in many cases, and that significant benefits can be obtained from the joint use of audio and video analysis methods.

  20. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  1. Assessing self-care and social function using a computer adaptive testing version of the Pediatric Evaluation of Disability Inventory Accepted for Publication, Archives of Physical Medicine and Rehabilitation

    PubMed Central

    Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.

    2009-01-01

    Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991

  2. Towards a method to characterize temporary groundwater dynamics during droughts

    NASA Astrophysics Data System (ADS)

    Heudorfer, Benedikt; Stahl, Kerstin

    2016-04-01

    In order to improve our understanding of the complex mechanisms involved in the development, propagation and termination of drought events, a major challenge is to grasp the role of groundwater systems. Research on how groundwater responds to meteorological drought events (i.e. short-term climate anomalies) is still limited. Part of the problem is that there is as yet no generic method to characterize the response of different groundwater systems to extreme climate anomalies. In order to explore possibilities for such a methodology, we evaluate two statistical approaches to characterize groundwater dynamics on short time scales by applying them on observed groundwater head data from different pre- and peri-mountainous groundwater systems in humid central Europe (Germany). The first method is based on the coefficient of variation in moving windows of various lengths, the second method is based on streamflow recession characteristics applied on groundwater data. With these methods, the gauges behavior during low head events and its response to precipitation was explored. Findings regarding the behavior of the gauges make it possible to distinguish between gauges with a dominance of cyclic patterns, and gauges with a dominance of patterns on seasonal or event scale (commonly referred to as slow/fast responding gauges, respectively). While some clues on what factors that might control these patterns are present, the specific controls are general unclear for the gauges in this study. However as the key conclusion stands the question if the variety of manifestations of groundwater dynamics, as they occur in real systems, is subsumable with one unique method. Further studies on the topic are in progress.

  3. Longitudinal Assessment of Health-Related Quality of Life following Adolescent Sports-Related Concussion.

    PubMed

    Russell, Kelly; Selci, Erin; Chu, Stephanie; Fineblit, Samuel; Ritchie, Lesley; Ellis, Michael J

    2017-07-01

    To examine initial and longitudinal health-related quality of life (HRQOL) in adolescent sports-related concussion (SRC) patients, a prospective observational case-series study was conducted among adolescent SRC patients who were evaluated at a multi-disciplinary pediatric concussion program. Health-related quality of life was measured using the child self-report Pediatric Quality of Life Inventory (PedsQL) generic score scale (age 13-18 version) and the PedsQL Cognitive Functioning scale. Initial and longitudinal HRQOL outcomes were compared between patients who did and did not develop post-concussion syndrome (PCS). A total of 63 patients met the inclusion criteria during the study period. The mean age of the cohort was 14.57 years (standard deviation, 1.17) and 61.9% were male. The median time from injury to initial consultation was 6.5 days (interquartile range, 5, 11). At initial consultation, impairments in physical and cognitive HRQOL but not social or emotional HRQOL were observed. Initial symptom burden and length of recovery were associated with greater impairment in physical and cognitive HRQOL. Patients who went on to develop PCS had significantly worse physical and cognitive HRQOL at initial consultation and demonstrated a slower rate of recovery in these domains, compared with those who recovered in less than 30 days. Adolescent SRC was associated with HRQOL impairments that correlated with clinical outcomes. No persistent impairments in HRQOL were detected among patients who achieved physician-documented clinical recovery. Future studies are needed to evaluate the clinical utility of HRQOL measurement in the longitudinal management of adolescent SRC and PCS patients.

  4. Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene

    2011-11-01

    The importance of superhydrophobic substrates (contact angle >150° with sliding angle <10°) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1 μm, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.

  5. On the physics of electron ejection from laser-irradiated overdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thévenet, M.; Vincenti, H.; Faure, J.

    2016-06-15

    Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less

  6. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    PubMed

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so.

  7. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds

    PubMed Central

    2014-01-01

    Introduction In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses – thigh, shank, pes, tarsometatarsal segment, and digits – from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel’s λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. Results All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel’s λ) and increasing or decreasing rates of trait change over time (i.e., Pagel’s δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. Conclusions The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so. PMID:24876886

  8. Neandertal clavicle length

    PubMed Central

    Trinkaus, Erik; Holliday, Trenton W.; Auerbach, Benjamin M.

    2014-01-01

    The Late Pleistocene archaic humans from western Eurasia (the Neandertals) have been described for a century as exhibiting absolutely and relatively long clavicles. This aspect of their body proportions has been used to distinguish them from modern humans, invoked to account for other aspects of their anatomy and genetics, used in assessments of their phylogenetic polarities, and used as evidence for Late Pleistocene population relationships. However, it has been unclear whether the usual scaling of Neandertal clavicular lengths to their associated humeral lengths reflects long clavicles, short humeri, or both. Neandertal clavicle lengths, along with those of early modern humans and latitudinally diverse recent humans, were compared with both humeral lengths and estimated body masses (based on femoral head diameters). The Neandertal do have long clavicles relative their humeri, even though they fall within the ranges of variation of early and recent humans. However, when scaled to body masses, their humeral lengths are relatively short, and their clavicular lengths are indistinguishable from those of Late Pleistocene and recent modern humans. The few sufficiently complete Early Pleistocene Homo clavicles seem to have relative lengths also well within recent human variation. Therefore, appropriately scaled clavicular length seems to have varied little through the genus Homo, and it should not be used to account for other aspects of Neandertal biology or their phylogenetic status. PMID:24616525

  9. The case for a generic phytosanitary irradiation dose of 400 Gy for Lepidoptera that infest shipped commodities as pupae.

    PubMed

    Hallman, Guy J; Parker, Andrew C; Blackburn, Carl M

    2013-04-01

    The pros and cons of a generic phytosanitary irradiation dose against all Lepidoptera pupae on all commodities are discussed. The measure of efficacy is to prevent the F1 generation from hatching (F1 egg hatch) when late pupae are irradiated. More data exist for this measure than for others studied, and it is also commercially tenable (i.e., prevention of adult emergence would require a high dose not tolerated by fresh commodities). The dose required to prevent F1 egg hatch provides a liberal margin of security for various reasons. A point at issue is that correctly irradiated adults could be capable of flight and thus be found in survey traps in importing countries resulting in costly and unnecessary regulatory action. However, this possibility would be rare and should not be a barrier to the adoption of this generic treatment. The literature was thoroughly examined and only studies that could reasonably satisfy criteria of acceptable irradiation and evaluation methodology, proper age of pupae, and adequate presentation of raw data were accepted. Based on studies with 34 species in nine families, we suggest an efficacious dose of 400 Gy. However, large-scale confirmatory testing (> or = 30,000 individuals) has only been reported for one species. A dose as low as 350 Gy might suffice if results of more large-scale studies were available or the measure of efficacy were extended beyond prevention of F1 egg hatch, but data to defend measures of efficacy beyond F1 egg hatch are scarce and more would need to be generated.

  10. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M. Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes oneand two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4. The low-energy constantsmore » multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS) = (1.2, 0.8) fm down to (0.8, 0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  11. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam; Yu, Young-Sang; Shapiro, David A.; Liao, Hong-Gang; Liang, Wen-I.; Chu, Ying-Hao; Zheng, Haimei

    2017-02-01

    We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.

  12. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    NASA Astrophysics Data System (ADS)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  13. The role of local interaction mechanics in fiber optic smart structures

    NASA Astrophysics Data System (ADS)

    Sirkis, J. S.; Dasgupta, A.

    1993-04-01

    The concept of using 'smart' composite materials/structures with built-in self-diagnostic capabilities for health monitoring involves embedding discrete and/or distributed sensory networks in the host composite material, along with a central and/or distributed artificial intelligence capability for signal processing, data collection, interpretation and diagnostic evaluations. This article concentrates on the sensory functions in 'smart' structure applications and concentrates in particular on optical fiber sensors. Specifically, we present an overview of recent research dealing with the basic mechanics of local interactions between the embedded optical fiber sensors and the surrounding host composite. The term 'local' is defined by length scales on the order of several optical fiber diameters. We examine some generic issues, such as the 'calibration' and 'obtrusivity' of the sensor, and the inherent damage caused by the sensor inclusions to the surrounding host and vice-versa under internal and/or external applied loads. Analytical, numerical and experimental results are presented regarding the influence of local strain concentrations caused by the sensory inclusions on sensor and host performance. The important issues examined are the local mechanistic effects of optical fiber coatings on the behavior of the sensor and the host, and mechanical survivability of optical fibers experiencing quasi-static and time-varying thermomechanical loading.

  14. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wallmore » was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.« less

  15. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam

    We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. Wemore » found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.« less

  16. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces

    DOE PAGES

    Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam; ...

    2017-02-10

    We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. Wemore » found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.« less

  17. Global-to-local incompatibility, monogamy of entanglement, and ground-state dimerization: Theory and observability of quantum frustration in systems with competing interactions

    NASA Astrophysics Data System (ADS)

    Giampaolo, S. M.; Hiesmayr, B. C.; Illuminati, F.

    2015-10-01

    Frustration in quantum many-body systems is quantified by the degree of incompatibility between the local and global orders associated, respectively, with the ground states of the local interaction terms and the global ground state of the total many-body Hamiltonian. This universal measure is bounded from below by the ground-state bipartite block entanglement. For many-body Hamiltonians that are sums of two-body interaction terms, a further inequality relates quantum frustration to the pairwise entanglement between the constituents of the local interaction terms. This additional bound is a consequence of the limits imposed by monogamy on entanglement shareability. We investigate the behavior of local pair frustration in quantum spin models with competing interactions on different length scales and show that valence bond solids associated with exact ground state dimerization correspond to a transition from generic frustration, i.e., geometric, common to classical and quantum systems alike, to genuine quantum frustration, i.e., solely due to the noncommutativity of the different local interaction terms. We discuss how such frustration transitions separating genuinely quantum orders from classical-like ones are detected by observable quantities such as the static structure factor and the interferometric visibility.

  18. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces.

    PubMed

    Wu, Yimin A; Yin, Zuwei; Farmand, Maryam; Yu, Young-Sang; Shapiro, David A; Liao, Hong-Gang; Liang, Wen-I; Chu, Ying-Hao; Zheng, Haimei

    2017-02-10

    We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.

  19. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces

    PubMed Central

    Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam; Yu, Young-Sang; Shapiro, David A.; Liao, Hong-Gang; Liang, Wen-I; Chu, Ying-Hao; Zheng, Haimei

    2017-01-01

    We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems. PMID:28186175

  20. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow

    PubMed Central

    Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi

    2017-01-01

    Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076

  1. Polymer Physics Prize Talk

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.

  2. A new species of the genus Capoeta Valenciennes, 1842 from the Caspian Sea basin in Iran (Teleostei, Cyprinidae)

    PubMed Central

    Jouladeh-Roudbar, Arash; Eagderi, Soheil; Ghanavi, Hamid Reza; Doadrio, Ignacio

    2017-01-01

    Abstract A new species of algae-scraping cyprinid of the genus Capoeta Valenciennes, 1842 is described from the Kheyroud River, located in the southern part of the Caspian Sea basin in Iran. The species differs from other members of this genus by a combination of the following characters: one pair of barbels; predorsal length equal to postdorsal length; maxillary barbel slightly smaller than eye’s horizontal diameter and reach to posterior margin of orbit; intranasal length slightly shorter than snout length; lateral line with 46–54 scales; 7–9 scales between dorsal-fin origin and lateral line, and 6–7 scales between anal-fin origin and lateral line. PMID:28769726

  3. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    PubMed Central

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; Zolnierczuk, Piotr A.; Ohl, Michael E.

    Using neutron spin-echo and backscattering spectroscopy, we have found that at low temperatures water molecules in an aqueous solution engage in center-of-mass dynamics that are different from both the main structural relaxations and the well-known localized motions in the transient cages of the nearest neighbor molecules. While the latter localized motions are known to take place on the picosecond time scale and Angstrom length scale, the slower motions that we have observed are found on the nanosecond time scale and nanometer length scale. They are associated with the slow secondary relaxations, or excess wing dynamics, in glass-forming liquids. Our approach,more » therefore, can be applied to probe the characteristic length scale of the dynamic entities associated with slow dynamics in glass-forming liquids, which presently cannot be studied by other experimental techniques.« less

  5. Correlation lengths in hydrodynamic models of active nematics.

    PubMed

    Hemingway, Ewan J; Mishra, Prashant; Marchetti, M Cristina; Fielding, Suzanne M

    2016-09-28

    We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstrophy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.

  6. The length of the glaciers in the world - a straightforward method for the automated calculation of glacier center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-05-01

    Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.

  7. The length of the world's glaciers - a new approach for the global calculation of center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-09-01

    Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.

  8. Long lived light scalars as probe of low scale seesaw models

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2017-10-01

    We point out that in generic TeV scale seesaw models for neutrino masses with local B- L symmetry breaking, there is a phenomenologically allowed range of parameters where the Higgs field responsible for B- L symmetry breaking leaves a physical real scalar field with mass around GeV scale. This particle (denoted here by H3) is weakly mixed with the Standard Model Higgs field (h) with mixing θ1 ≲mH3 /mh, barring fine-tuned cancellation. In the specific case when the B- L symmetry is embedded into the TeV scale left-right seesaw scenario, we show that the bounds on the h-H3 mixing θ1 become further strengthened due to low energy flavor constraints, thus forcing the light H3 to be long lived, with displaced vertex signals at the LHC. The property of left-right TeV scale seesaw models are such that they make the H3 decay to two photons as the dominant mode. This is in contrast with a generic light scalar that mixes with the SM Higgs boson, which could also have leptonic and hadronic decay modes with comparable or larger strength. We discuss the production of this new scalar field at the LHC and show that it leads to testable displaced vertex signals of collimated photon jets, which is a new distinguishing feature of the left-right seesaw model. We also study a simpler version of the model where the SU(2)R breaking scale is much higher than the O(TeV) U(1) B- L breaking scale, in which case the production and decay of H3 proceed differently, but its long lifetime feature is still preserved for a large range of parameters. Thus, the search for such long-lived light scalar particles provides a new way to probe TeV scale seesaw models for neutrino masses at colliders.

  9. Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial

    PubMed Central

    Vinks, Alexander A.; Fukuda, Tsuyoshi; King, Eileen C.; Zou, Yuanshu; Jiang, Wenlei; Klawitter, Jelena; Christians, Uwe

    2017-01-01

    Background Although the generic drug approval process has a long-term successful track record, concerns remain for approval of narrow therapeutic index generic immunosuppressants, such as tacrolimus, in transplant recipients. Several professional transplant societies and publications have generated skepticism of the generic approval process. Three major areas of concern are that the pharmacokinetic properties of generic products and the innovator (that is, “brand”) product in healthy volunteers may not reflect those in transplant recipients, bioequivalence between generic and innovator may not ensure bioequivalence between generics, and high-risk patients may have specific bioequivalence concerns. Such concerns have been fueled by anecdotal observations and retrospective and uncontrolled published studies, while well-designed, controlled prospective studies testing the validity of the regulatory bioequivalence testing approach for narrow therapeutic index immunosuppressants in transplant recipients have been lacking. Thus, the present study prospectively assesses bioequivalence between innovator tacrolimus and 2 generics in individuals with a kidney or liver transplant. Methods and findings From December 2013 through October 2014, a prospective, replicate dosing, partially blinded, randomized, 3-treatment, 6-period crossover bioequivalence study was conducted at the University of Cincinnati in individuals with a kidney (n = 35) or liver transplant (n = 36). Abbreviated New Drug Applications (ANDA) data that included manufacturing and healthy individual pharmacokinetic data for all generics were evaluated to select the 2 most disparate generics from innovator, and these were named Generic Hi and Generic Lo. During the 8-week study period, pharmacokinetic studies assessed the bioequivalence of Generic Hi and Generic Lo with the Innovator tacrolimus and with each other. Bioequivalence of the major tacrolimus metabolite was also assessed. All products fell within the US Food and Drug Administration (FDA) average bioequivalence (ABE) acceptance criteria of a 90% confidence interval contained within the confidence limits of 80.00% and 125.00%. Within-subject variability was similar for the area under the curve (AUC) (range 12.11–15.81) and the concentration maximum (Cmax) (range 17.96–24.72) for all products. The within-subject variability was utilized to calculate the scaled average bioequivalence (SCABE) 90% confidence interval. The calculated SCABE 90% confidence interval was 84.65%–118.13% and 80.00%–125.00% for AUC and Cmax, respectively. The more stringent SCABE acceptance criteria were met for all product comparisons for AUC and Cmax in both individuals with a kidney transplant and those with a liver transplant. European Medicines Agency (EMA) acceptance criteria for narrow therapeutic index drugs were also met, with the only exception being in the case of Brand versus Generic Lo, in which the upper limits of the 90% confidence intervals were 111.30% (kidney) and 112.12% (liver). These were only slightly above the upper EMA acceptance criteria limit for an AUC of 111.11%. SCABE criteria were also met for the major tacrolimus metabolite 13-O-desmethyl tacrolimus for AUC, but it failed the EMA criterion. No acute rejections, no differences in renal function in all individuals, and no differences in liver function were observed in individuals with a liver transplant using the Tukey honest significant difference (HSD) test for multiple comparisons. Fifty-two percent and 65% of all individuals with a kidney or liver transplant, respectively, reported an adverse event. The Exact McNemar test for paired categorical data with adjustments for multiple comparisons was used to compare adverse event rates among the products. No statistically significant differences among any pairs of products were found for any adverse event code or for adverse events overall. Limitations of this study include that the observations were made under strictly controlled conditions that did not allow for the impact of nonadherence or feeding on the possible pharmacokinetic differences. Generic Hi and Lo were selected based upon bioequivalence data in healthy volunteers because no pharmacokinetic data in recipients were available for all products. The safety data should be interpreted in light of the small number of participants and the short observation periods. Lastly, only the 1 mg tacrolimus strength was utilized in this study. Conclusions Using an innovative, controlled bioequivalence study design, we observed equivalence between tacrolimus innovator and 2 generic products as well as between 2 generic products in individuals after kidney or liver transplantation following current FDA bioequivalence metrics. These results support the position that bioequivalence for the narrow therapeutic index drug tacrolimus translates from healthy volunteers to individuals receiving a kidney or liver transplant and provides evidence that generic products that are bioequivalent with the innovator product are also bioequivalent to each other. Trial registration ClinicalTrials.gov NCT01889758. PMID:29135993

  10. Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial.

    PubMed

    Alloway, Rita R; Vinks, Alexander A; Fukuda, Tsuyoshi; Mizuno, Tomoyuki; King, Eileen C; Zou, Yuanshu; Jiang, Wenlei; Woodle, E Steve; Tremblay, Simon; Klawitter, Jelena; Klawitter, Jost; Christians, Uwe

    2017-11-01

    Although the generic drug approval process has a long-term successful track record, concerns remain for approval of narrow therapeutic index generic immunosuppressants, such as tacrolimus, in transplant recipients. Several professional transplant societies and publications have generated skepticism of the generic approval process. Three major areas of concern are that the pharmacokinetic properties of generic products and the innovator (that is, "brand") product in healthy volunteers may not reflect those in transplant recipients, bioequivalence between generic and innovator may not ensure bioequivalence between generics, and high-risk patients may have specific bioequivalence concerns. Such concerns have been fueled by anecdotal observations and retrospective and uncontrolled published studies, while well-designed, controlled prospective studies testing the validity of the regulatory bioequivalence testing approach for narrow therapeutic index immunosuppressants in transplant recipients have been lacking. Thus, the present study prospectively assesses bioequivalence between innovator tacrolimus and 2 generics in individuals with a kidney or liver transplant. From December 2013 through October 2014, a prospective, replicate dosing, partially blinded, randomized, 3-treatment, 6-period crossover bioequivalence study was conducted at the University of Cincinnati in individuals with a kidney (n = 35) or liver transplant (n = 36). Abbreviated New Drug Applications (ANDA) data that included manufacturing and healthy individual pharmacokinetic data for all generics were evaluated to select the 2 most disparate generics from innovator, and these were named Generic Hi and Generic Lo. During the 8-week study period, pharmacokinetic studies assessed the bioequivalence of Generic Hi and Generic Lo with the Innovator tacrolimus and with each other. Bioequivalence of the major tacrolimus metabolite was also assessed. All products fell within the US Food and Drug Administration (FDA) average bioequivalence (ABE) acceptance criteria of a 90% confidence interval contained within the confidence limits of 80.00% and 125.00%. Within-subject variability was similar for the area under the curve (AUC) (range 12.11-15.81) and the concentration maximum (Cmax) (range 17.96-24.72) for all products. The within-subject variability was utilized to calculate the scaled average bioequivalence (SCABE) 90% confidence interval. The calculated SCABE 90% confidence interval was 84.65%-118.13% and 80.00%-125.00% for AUC and Cmax, respectively. The more stringent SCABE acceptance criteria were met for all product comparisons for AUC and Cmax in both individuals with a kidney transplant and those with a liver transplant. European Medicines Agency (EMA) acceptance criteria for narrow therapeutic index drugs were also met, with the only exception being in the case of Brand versus Generic Lo, in which the upper limits of the 90% confidence intervals were 111.30% (kidney) and 112.12% (liver). These were only slightly above the upper EMA acceptance criteria limit for an AUC of 111.11%. SCABE criteria were also met for the major tacrolimus metabolite 13-O-desmethyl tacrolimus for AUC, but it failed the EMA criterion. No acute rejections, no differences in renal function in all individuals, and no differences in liver function were observed in individuals with a liver transplant using the Tukey honest significant difference (HSD) test for multiple comparisons. Fifty-two percent and 65% of all individuals with a kidney or liver transplant, respectively, reported an adverse event. The Exact McNemar test for paired categorical data with adjustments for multiple comparisons was used to compare adverse event rates among the products. No statistically significant differences among any pairs of products were found for any adverse event code or for adverse events overall. Limitations of this study include that the observations were made under strictly controlled conditions that did not allow for the impact of nonadherence or feeding on the possible pharmacokinetic differences. Generic Hi and Lo were selected based upon bioequivalence data in healthy volunteers because no pharmacokinetic data in recipients were available for all products. The safety data should be interpreted in light of the small number of participants and the short observation periods. Lastly, only the 1 mg tacrolimus strength was utilized in this study. Using an innovative, controlled bioequivalence study design, we observed equivalence between tacrolimus innovator and 2 generic products as well as between 2 generic products in individuals after kidney or liver transplantation following current FDA bioequivalence metrics. These results support the position that bioequivalence for the narrow therapeutic index drug tacrolimus translates from healthy volunteers to individuals receiving a kidney or liver transplant and provides evidence that generic products that are bioequivalent with the innovator product are also bioequivalent to each other. ClinicalTrials.gov NCT01889758.

  11. Multi-Scale Structure of Coacervates formed by Oppositely Charged Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Rubinstein, Michael

    We develop a scaling model of coacervates formed by oppositely charged polyelectrolytes and demonstrate that they self-organize into multi-scale structures. The intramolecular electrostatic interactions in dilute polyanion or polycation solutions are characterized by the electrostatic blobs with size D- and D+ respectively, that repel neighboring blobs on the same chains with electrostatic energy on the order of thermal energy kT . After mixing, electrostatic intramolecular repulsion of polyelectrolytes with higher charged density, say polyanions, keeps these polyanions in coacervates aligned into stretched arrays of electrostatic blobs of size D-

  12. Perspectives on integrated modeling of transport processes in semiconductor crystal growth

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1992-01-01

    The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.

  13. Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.

  14. Use of the International Classification of Functioning, Disability and Health Generic-30 Set for the characterization of outpatients: Italian Society of Physical and Rehabilitative Medicine Residents Section Project.

    PubMed

    Gimigliano, Francesca; De Sire, Alessandro; Gastaldo, Marco; Maghini, Irene; Paoletta, Marco; Pasquini, Andrea; Boldrini, Paolo; Selb, Melissa; Prodinger, Birgit

    2018-06-11

    The International Classification of Functioning, Disability and Health (ICF) Generic- 30 Set (previously referred to as Rehabilitation Set) is a minimal set of ICF categories for reporting and assessing functioning and disability in clinical populations with different health conditions along the continuum of care. Recently, the Italian Society of Physical and Rehabilitation Medicine (SIMFER) developed an Italian modification of the simple and intuitive descriptions (SID) of these categories. This study was the first one to implement the use of the SID in practice. 1) To implement the use of the ICF in clinical practice and research among Italian Residents in PRM. 2) To verify if the SID made the application of ICF Generic 30 Set more user-friendly than the original descriptions. 3) To examine the prevalence of functioning problems of patients accessing Rehabilitation Services to serve as reference for the development of an ICF-based clinical data collection tool. Multicenter cross-sectional study. Italian Physical Medicine and Rehabilitation (PRM) outpatient rehabilitation services. Patients referring to Italian PRM outpatient rehabilitation services and Italian Residents in PRM. Each School of Specialization involved, randomly, received the ICF Generic-30 Set with the original descriptions or with the SID. Residents collected over a 4-month period (April-July 2016) patients data related to the ICF Generic-30 Set categories. Moreover, the residents self- assessed their difficulty in using the ICF Generic-30 Set with the original descriptions or with the SID, through a Numeric Rating Scale (NRS). Ninety-three residents collected functioning data of 864 patients (mean aged 57.7±19.3) with ICF Generic-30 Set: 304 with the original descriptions and 560 with SID. The difficulty in using the ICF Generic-30 Set with SID was rated as lower than using the original descriptions (NRS = 2.8±2.5 vs 3.5±3.1; p<0.001). The most common disease was the back pain (9.6%) and the most common altered ICF categories were b280 (76.3%) and b710 (72.9%). This multicenter cross-sectional study shown that the ICF Generic-30 Set is a valuable instrument for reporting and assessing functioning and disability in clinical populations with different health conditions and along the continuum of care and that SID facilitate the understanding of the ICF categories and therefore their use in clinical practice. This National survey, improving the knowledge of ICF among Italian PRM residents, represents an important step towards the system-wide implementation of ICF in the healthcare system.

  15. First report of Potorolepis spassky, 1994 (Eucestoda: Hymenolepididae) from China, with description of a new species in bats (Chiroptera: Rhinolophidae).

    PubMed

    Makarikova, Tatiana A; Makarikov, Arseny A

    2012-12-01

    Potorolepis gulyaevi sp. n. (Cestoda: Hymenolepididae) is described from the Chinese horseshoe bat, Rhinolophus sinicus Andersen (Chiroptera: Rhinolophidae), from southern China. The new species differs from known species of the genus by the shape, number and size of rostellar hooks, the relative position and length of the cirrus-sac and the morphology of gravid uterus. This is the first report of a member of the genus from non-marsupial mammals and the first record of a Potorolepis Spassky, 1994 from eastern Asia. The generic diagnosis of Potorolepis is amended.

  16. Persistence length of collagen molecules based on nonlocal viscoelastic model.

    PubMed

    Ghavanloo, Esmaeal

    2017-12-01

    Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.

  17. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  18. Generic solar photovoltaic system dynamic simulation model specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intendedmore » to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.« less

  19. The Resilience Questionnaire for Bipolar Disorder: Development and validation.

    PubMed

    Echezarraga, Ainara; Las Hayas, Carlota; González-Pinto, Ana María; Jones, Steven

    2017-08-01

    The goal of this research project was to develop a new questionnaire to assess resilience in Bipolar Disorder (BD), the Resilience Questionnaire for Bipolar Disorder (RBD). To examine its psychometric properties, a sample of 125 patients diagnosed with BD and a comparison sample of 107 people completed the new RBD and established measures of generic resilience and health-related outcomes. Exploratory factor analysis for the RBD yielded a 23-item 5-factor solution, and confirmatory factor analysis indicated adequate fit indices. Internal consistency, stability, concurrent validation and known-groups' validity were also supported. The RBD obtained higher responsiveness (6-month follow-up) than the generic resilience scale (BD sample). The RBD is a robust measure to monitor resilience in BD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A numerical and experimental comparison of human head phantoms for compliance testing of mobile telephone equipment.

    PubMed

    Christ, Andreas; Chavannes, Nicolas; Nikoloski, Neviana; Gerber, Hans-Ulrich; Poković, Katja; Kuster, Niels

    2005-02-01

    A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.

  1. Comparison of Outcomes Following a Switch From a Brand to an Authorized Versus Independent Generic Drug.

    PubMed

    Hansen, R A; Qian, J; Berg, R L; Linneman, J G; Seoane-Vazquez, E; Dutcher, S; Raofi, S; Page, C D; Peissig, P L

    2018-02-01

    Authorized generics are identical in formulation to brand drugs, manufactured by the brand company but marketed as a generic. Generics, marketed by generic manufacturers, are required to demonstrate pharmaceutical and bioequivalence to the brand drug, but repetition of clinical trials is not required. This retrospective cohort study compared outcomes for generics and authorized generics, which serves as a generic vs. brand proxy that minimizes bias against generics. For the seven drugs studied between 1999 and 2014, 5,234 unique patients were on brand drugs prior to generic entry and 4,900 (93.6%) switched to a generic. During the 12 months following the brand-to-generic switch, patients using generics vs. authorized generics were similar in terms of outpatient visits, urgent care visits, hospitalizations, and medication discontinuation. The likelihood of emergency department (ED) visits was slightly higher for authorized generics compared with generics. These data suggest that generics were clinically no worse than their proxy brand comparators. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  2. Phase and vortex correlations in superconducting Josephson-junction arrays at irrational magnetic frustration.

    PubMed

    Granato, Enzo

    2008-07-11

    Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.

  3. Thermal diffusivity study of aged Li-ion batteries using flash method

    NASA Astrophysics Data System (ADS)

    Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim

    Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.

  4. Parallel-vector solution of large-scale structural analysis problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1989-01-01

    A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.

  5. The Department of Defense Very High Speed Integrated Circuit (VHSIC) Technology Availability Program Plan for the Committees on Armed Services United States Congress.

    DTIC Science & Technology

    1986-06-30

    features of computer aided design systems and statistical quality control procedures that are generic to chip sets and processes. RADIATION HARDNESS -The...System PSP Programmable Signal Processor SSI Small Scale Integration ." TOW Tube Launched, Optically Tracked, Wire Guided TTL Transistor Transitor Logic

  6. Lead Scales for X-Radiographs

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Adams, James F.

    1987-01-01

    Indentations made by typing on lead tape. Lead scales for inclusion in x-radiographs as length and position references created by repeatedly imprinting character like upper-case I, L, or V, or lower-case L into lead tape with typewriter. Character pitch of typewriter serves as length reference for scale. Thinning of tape caused by impacts of type shows up dark in radiograph.

  7. Length and area equivalents for interpreting wildland resource maps

    Treesearch

    Elliot L. Amidon; Marilyn S. Whitfield

    1969-01-01

    Map users must refer to an appropriate scale in interpreting wildland resource maps. Length and area equivalents for nine map scales commonly used have been computed. For each scale a 1-page table consists of map-to-ground equivalents, buffer strip or road widths, and cell dimensions required for a specified acreage. The conversion factors are stored in a Fortran...

  8. Fall risk assessment: retrospective analysis of Morse Fall Scale scores in Portuguese hospitalized adult patients.

    PubMed

    Sardo, Pedro Miguel Garcez; Simões, Cláudia Sofia Oliveira; Alvarelhão, José Joaquim Marques; Simões, João Filipe Fernandes Lindo; Melo, Elsa Maria de Oliveira Pinheiro de

    2016-08-01

    The Morse Fall Scale is used in several care settings for fall risk assessment and supports the implementation of preventive nursing interventions. Our work aims to analyze the Morse Fall Scale scores of Portuguese hospitalized adult patients in association with their characteristics, diagnoses and length of stay. Retrospective cohort analysis of Morse Fall Scale scores of 8356 patients hospitalized during 2012. Data were associated to age, gender, type of admission, specialty units, length of stay, patient discharge, and ICD-9 diagnosis. Elderly patients, female, with emergency service admission, at medical units and/or with longer length of stays were more frequently included in the risk group for falls. ICD-9 diagnosis may also be an important risk factor. More than a half of hospitalized patients had "medium" to "high" risk of falling during the length of stay, which determines the implementation and maintenance of protocoled preventive nursing interventions throughout hospitalization. There are several fall risk factors not assessed by Morse Fall Scale. There were no statistical differences in Morse Fall Scale score between the first and the last assessment. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  10. Progress in long scale length laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Arnold, P.; Bardsley, G.; Berger, R. L.; Bonanno, G.; Borger, T.; Bower, D. E.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S. C.; Campbell, K.; Chrisp, M. P.; Cohen, B. I.; Constantin, C.; Cooper, F.; Cox, J.; Dewald, E.; Divol, L.; Dixit, S.; Duncan, J.; Eder, D.; Edwards, J.; Erbert, G.; Felker, B.; Fornes, J.; Frieders, G.; Froula, D. H.; Gardner, S. D.; Gates, C.; Gonzalez, M.; Grace, S.; Gregori, G.; Greenwood, A.; Griffith, R.; Hall, T.; Hammel, B. A.; Haynam, C.; Heestand, G.; Henesian, M.; Hermes, G.; Hinkel, D.; Holder, J.; Holdner, F.; Holtmeier, G.; Hsing, W.; Huber, S.; James, T.; Johnson, S.; Jones, O. S.; Kalantar, D.; Kamperschroer, J. H.; Kauffman, R.; Kelleher, T.; Knight, J.; Kirkwood, R. K.; Kruer, W. L.; Labiak, W.; Landen, O. L.; Langdon, A. B.; Langer, S.; Latray, D.; Lee, A.; Lee, F. D.; Lund, D.; MacGowan, B.; Marshall, S.; McBride, J.; McCarville, T.; McGrew, L.; Mackinnon, A. J.; Mahavandi, S.; Manes, K.; Marshall, C.; Menapace, J.; Mertens, E.; Meezan, N.; Miller, G.; Montelongo, S.; Moody, J. D.; Moses, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Ng, E.; Niemann, C.; Nikitin, A.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rekow, V.; Rinnert, R.; Riordan, B.; Rhodes, M.; Roberts, V.; Robey, H.; Ross, G.; Sailors, S.; Saunders, R.; Schmitt, M.; Schneider, M. B.; Shiromizu, S.; Spaeth, M.; Stephens, A.; Still, B.; Suter, L. J.; Tietbohl, G.; Tobin, M.; Tuck, J.; Van Wonterghem, B. M.; Vidal, R.; Voloshin, D.; Wallace, R.; Wegner, P.; Whitman, P.; Williams, E. A.; Williams, K.; Winward, K.; Work, K.; Young, B.; Young, P. E.; Zapata, P.; Bahr, R. E.; Seka, W.; Fernandez, J.; Montgomery, D.; Rose, H.

    2004-12-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 × 1015 W cm-2. The targets were filled with 1 atm of CO2 producing up to 7 mm long homogeneously heated plasmas with densities of ne = 6 × 1020 cm-3 and temperatures of Te = 2 keV. The high energy in an NIF quad of beams of 16 kJ, illuminating the target from one direction, creates unique conditions for the study of laser-plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x-rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ~1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 3% for the smallest length (~2 mm), increasing to 10-12% for ~7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modelling of the laser-plasma interactions at ignition-size scale lengths.

  11. Fundamental Scaling Laws in Nanophotonics

    PubMed Central

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-01-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159

  12. Fundamental Scaling Laws in Nanophotonics.

    PubMed

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J

    2016-11-21

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  13. Fundamental Scaling Laws in Nanophotonics

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  14. Porting LAMMPS to GPUs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, William Michael; Plimpton, Steven James; Wang, Peng

    2010-03-01

    LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.

  15. Vertical length scale selection for pancake vortices in strongly stratified viscous fluids

    NASA Astrophysics Data System (ADS)

    Godoy-Diana, Ramiro; Chomaz, Jean-Marc; Billant, Paul

    2004-04-01

    The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio alpha_0 = L_v/L_h (where L_v and L_h are vertical and horizontal length scales, respectively) of alpha_0 = 0.4 (case I) and alpha_0 = 1.2 (case II). In the first case, the usual decay scenario is observed where the dipole diffuses slowly with a growing thickness and a decaying circulation. In case II, we observed a regime where the thickness of the dipole decreases and the circulation in the horizontal mid-plane of the vortices remains constant. We show that this regime where the vertical length scale decreases can be explained by the shedding of two boundary layers at the top and bottom of the dipole that literally peel off vorticity layers. Horizontal advection and vertical diffusion cooperate in this regime and the decrease towards the viscous vertical length scale delta = L_hRe(-1/2) occurs on a time scale alpha_0 Re(1/2) T_A, T_A being the advection time L_h/U. From a scaling analysis of the equations for a stratified viscous fluid in the Boussinesq approximation, two dominant balances depending on the parameter R = ReF_h(2) are discussed, where F_h = U/NL_h is the horizontal Froude number and Re = UL_h/nu is the Reynolds number, U, N and nu being, respectively, the translation speed of the dipole, the Brunt Väisälä frequency and the kinematic viscosity. When R≫ 1 the vertical length scale is determined by buoyancy effects to be of order L_b = U/N. The experiments presented in this paper pertain to the case of small R, where viscous effects govern the selection of the vertical length scale. We show that if initially L_v ≤ delta, the flow diffuses on the vertical (case I), while if L_v ≫ delta (case II), vertically sheared horizontal advection decreases the vertical length scale down to delta. This viscous regime may explain results from experiments and numerical simulations on the late evolution of stratified flows where the decay is observed to be independent of the buoyancy frequency N.

  16. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  17. Generic Superconducting Inhomogeneity in Single Crystal Fe(Te1-xSex) Probed by Nanostructure-transport

    NASA Astrophysics Data System (ADS)

    Yue, Chunlei; Hu, Jin; Liu, Xue; Mao, Zhiqiang; Wei, Jiang

    2015-03-01

    We have investigated the nano-scale electronic properties of the iron-based unconventional superconductor Fe(Te1-xSex) with optimal Se content x = 0.5. Using the microexfoliation method and ion milling thinning, we successfully produced Fe(Te1-xSex) devices with thickness varying from 90nm down to 12nm. Our transport measurements revealed a suppression of superconductivity coinciding with the loss of normal state metallicity. Through the simulation of the formation of superconducting region in nano-scale thin flakes, we show that our observation is in line with the nano-scale inhomogeneity proposed for this material; therefore it provides a more direct evidence for the nano-scale inhomogeneous superconductivity in Fe(Te1-xSex) .

  18. No-scale inflation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-05-01

    Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.

  19. Aspects of string phenomenology in particle physics and cosmology

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    2017-12-01

    I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  20. A modification in the technique of computing average lengths from the scales of fishes

    USGS Publications Warehouse

    Van Oosten, John

    1953-01-01

    In virtually all the studies that employ scales, otollths, or bony structures to obtain the growth history of fishes, it has been the custom to compute lengths for each individual fish and from these data obtain the average growth rates for any particular group. This method involves a considerable amount of mathematical manipulation, time, and effort. Theoretically it should be possible to obtain the same information simply by averaging the scale measurements for each year of life and the length of the fish employed and computing the average lengths from these data. This method would eliminate all calculations for individual fish. Although Van Oosten (1929: 338) pointed out many years ago the validity of this method of computation, his statements apparently have been overlooked by subsequent investigators.

  1. Phase Transitions and Scaling in Systems Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Täuber, Uwe C.

    2017-03-01

    Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.

  2. A nomograph for the computation of the growth of fish from scale measurements

    USGS Publications Warehouse

    Hile, Ralph

    1950-01-01

    Directions are given for the construction and operation of a nomograph that can be employed for the computation of the growth of fish from scale measurements regardless of the nature of the body-scale relationship, so long as that relationship is known. The essential feature of the nomograph that makes rapid calculations possible is a ruler on which the graduations are in terms of length with the distance of each length graduation from the O graduation equal to the corresponding theoretical scale measurement. The chief advantage of the nomograph lies in the fact that the calculation of the lengths for all years of life of an individual fish requires only one setting of the single movable part.

  3. Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR

    NASA Astrophysics Data System (ADS)

    Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon

    2009-05-01

    Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.

  4. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    NASA Astrophysics Data System (ADS)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  5. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.

    PubMed

    Fried, Eliot; Gurtin, Morton E

    2007-05-01

    We present a continuum-mechanical formulation and generalization of the Navier-Stokes alpha theory based on a general framework for fluid-dynamical theories with gradient dependencies. Our flow equation involves two additional problem-dependent length scales alpha and beta. The first of these scales enters the theory through the internal kinetic energy, per unit mass, alpha2|D|2, where D is the symmetric part of the gradient of the filtered velocity. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity. When alpha and beta are equal, our flow equation reduces to the Navier-Stokes alpha equation. In contrast to the original derivation of the Navier-Stokes alpha equation, which relies on Lagrangian averaging, our formulation delivers boundary conditions. For a confined flow, our boundary conditions involve an additional length scale l characteristic of the eddies found near walls. Based on a comparison with direct numerical simulations for fully developed turbulent flow in a rectangular channel of height 2h, we find that alphabeta approximately Re(0.470) and lh approximately Re(-0.772), where Re is the Reynolds number. The first result, which arises as a consequence of identifying the internal kinetic energy with the turbulent kinetic energy, indicates that the choice alpha=beta required to reduce our flow equation to the Navier-Stokes alpha equation is likely to be problematic. The second result evinces the classical scaling relation eta/L approximately Re(-3/4) for the ratio of the Kolmogorov microscale eta to the integral length scale L . The numerical data also suggests that l < or = beta . We are therefore led to conjecture a tentative hierarchy, l < or = beta < alpha , involving the three length scales entering our theory.

  6. Generating and controlling homogeneous air turbulence using random jet arrays

    NASA Astrophysics Data System (ADS)

    Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo

    2016-12-01

    The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.

  7. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  8. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Tonks, M. R.; Chockalingam, K.

    2015-03-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed.more » This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.« less

  9. Computed tomography-based diagnosis of diffuse compensatory enlargement of coronary arteries using scaling power laws.

    PubMed

    Huo, Yunlong; Choy, Jenny Susana; Wischgoll, Thomas; Luo, Tong; Teague, Shawn D; Bhatt, Deepak L; Kassab, Ghassan S

    2013-04-06

    Glagov's positive remodelling in the early stages of coronary atherosclerosis often results in plaque rupture and acute events. Because positive remodelling is generally diffused along the epicardial coronary arterial tree, it is difficult to diagnose non-invasively. Hence, the objective of the study is to assess the use of scaling power law for the diagnosis of positive remodelling of coronary arteries based on computed tomography (CT) images. Epicardial coronary arterial trees were reconstructed from CT scans of six Ossabaw pigs fed on a high-fat, high-cholesterol, atherogenic diet for eight months as well as the same number of body-weight-matched farm pigs fed on a lean chow (101.9±16.1 versus 91.5±13.1 kg). The high-fat diet Ossabaw pig model showed diffuse positive remodelling of epicardial coronary arteries. Good fit of measured coronary data to the length-volume scaling power law ( where L(c) and V(c) are crown length and volume) were found for both the high-fat and control groups (R(2) = 0.95±0.04 and 0.99±0.01, respectively). The coefficient, K(LV), decreased significantly in the high-fat diet group when compared with the control (14.6±2.6 versus 40.9±5.6). The flow-length scaling power law, however, was nearly unaffected by the positive remodelling. The length-volume and flow-length scaling power laws were preserved in epicardial coronary arterial trees after positive remodelling. K(LV) < 18 in the length-volume scaling relation is a good index of positive remodelling of coronary arteries. These findings provide a clinical rationale for simple, accurate and non-invasive diagnosis of positive remodelling of coronary arteries, using conventional CT scans.

  10. HIV-related stigma and health-related quality of life among children living with HIV in Sweden.

    PubMed

    Rydström, Lise-Lott; Wiklander, Maria; Navér, Lars; Ygge, Britt-Marie; Eriksson, Lars E

    2016-01-01

    The relationship between HIV-related stigma and health-related quality of life (HRQoL) among children living with HIV infection is unknown. The objectives of this study were to describe HIV-related stigma and HRQoL among children with perinatal HIV living in Sweden, and to investigate the relationship between these two factors in the same infection group. In a cross-sectional nationwide survey, HIV-related stigma was measured with the 8-item HIV Stigma Scale for Children. HRQoL was measured with the 37-item DISABKIDS Chronic Generic Module. Structural equation modeling was used to explore the relationship between HIV-related stigma and HRQoL. Fifty-eight children participated, age 9-18 years (mean = 13.9). The HIV stigma general scale showed a mean score of 17.6 (SD = 5.0; possible range 8-32). DISABKIDS Chronic Generic Module general scale showed a mean score of 80.7 (SD = 14.1; possible range 0-100). HIV-related stigma was negatively associated with HRQoL (standardized β = -0.790, p = .017). The results indicate that children's concerns related to disclosure of their HIV infection seem to be common (i.e. 75% agreed) which, together with the negative association between ratings of HIV-relatively stigma and HRQoL, might indicate that disclosure concerns would be a relevant target for interventions to decrease HIV-related stigma and increase HRQoL.

  11. Measuring health-related quality of life in children living in HIV/AIDS-affected families in rural areas in Yunnan, China: Preliminary reliability and validity of the Chinese version of PedsQL 4.0 generic core scales.

    PubMed

    Xu, Tao; Wu, Zunyou; Yan, Zhihua; Rou, Keming; Duan, Song

    2010-02-01

    To investigate the preliminary reliability and validity of the Chinese Mandarin version of the Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Scales in a sample of general children and children living in HIV/AIDS-affected families. The PedsQL 4.0 was administered to 116 children aged 8-18 years from HIV/AIDS-affected families and 115 of their caregivers. The questionnaire was also administered to a control group of 109 children and 107 of their caregivers. Most of the self-report and proxy-report scales in both groups exceeded the reliability standard of 0.70, whereas the self-report emotional functioning and school functioning subscales were slightly less than 0.70. On average, children living in HIV/AIDS-affected families scored significantly lower than the control group. The level of agreement between self-reports and proxy reports was low. Correlations were higher on average for the younger age group than for the older age group. The Chinese Mandarin version of PedsQL 4.0 is a valid and reliable instrument for use with children living in HIV families. The health-related quality of life for children living in HIV families is lower than children from ordinary families.

  12. Outcome instruments to assess scoliosis surgery.

    PubMed

    Bagó, Juan; Climent, Jose Ma; Pérez-Grueso, Francisco J S; Pellisé, Ferran

    2013-03-01

    To review and summarize the current knowledge regarding the outcome measures used to evaluate scoliosis surgery. Literature review. Outcome instruments should be tested to ensure that they have adequate metric characteristics: content and construct validity, reliability, and responsiveness. In the evaluation of scoliosis, generic instruments to assess health-related quality of life (HRQL) have been used, such as the SF-36 questionnaire and the EuroQol5D instrument. Nonetheless, it is preferable to use disease-specific instruments for this purpose, such as the SRS-22 Patient Questionnaire and the quality of life profile for spinal deformities (QLPSD). More recently, these generic and disease-specific instruments have been complemented with the use of super-specific instruments; i.e., those assessing a single aspect of the condition or specific populations with the condition. The patients' perception of their trunk deformity and body image has received particular attention, and several instruments are available to evaluate these aspects, such as the Walter-Reed Visual Assessment Scale (WRVAS), the Spinal Appearance Questionnaire (SAQ), and the Trunk Appearance Perception Scale (TAPS). The impacts of brace use can also be measured with specific scales, including the Bad Sobernheim Stress Questionnaire (BSSQ) and the Brace Questionnaire (BrQ). The available instruments to evaluate the treatment for non-idiopathic scoliosis have not been sufficiently validated and analyzed. Evaluation of scoliosis treatment should include the patient's perspective, which can be obtained with the use of patient-reported outcome measures.

  13. Comparison of generic-to-brand switchback patterns for generic and authorized generic drugs

    PubMed Central

    Hansen, Richard A.; Qian, Jingjing; Berg, Richard; Linneman, James; Seoane-Vazquez, Enrique; Dutcher, Sarah K.; Raofi, Saeid; Page, C. David; Peissig, Peggy

    2018-01-01

    Background While generic drugs are therapeutically equivalent to brand drugs, some patients and healthcare providers remain uncertain about whether they produce identical outcomes. Authorized generics, which are identical in formulation to corresponding brand drugs but marketed as a generic, provide a unique post-marketing opportunity to study whether utilization patterns are influenced by perceptions of generic drugs. Objectives To compare generic-to-brand switchback rates between generics and authorized generics. Methods A retrospective cohort study was conducted using claims and electronic health records data from a regional U.S. healthcare system. Ten drugs with authorized generics and generics marketed between 1999 and 2014 were evaluated. Eligible adult patients received a brand drug during the 6 months preceding generic entry, and then switched to a generic or authorized generic. Patients in this cohort were followed for up to 30 months from the index switch date to evaluate occurrence of generic-to-brand switchbacks. Switchback rates were compared between patients on authorized generics versus generics using Kaplan-Meier curves and Cox proportional hazards models, controlling for individual drug effects, age, sex, Charlson comorbidity score, pre-index drug use characteristics, and pre-index healthcare utilization. Results Among 5,542 unique patients that switched from brand-to-generic or brand-to-authorized generic, 264 (4.8%) switched back to the brand drug. Overall switchback rates were similar for authorized generics compared with generics (HR=0.86; 95% CI 0.65-1.15). The likelihood of switchback was higher for alendronate (HR=1.64; 95% CI 1.20-2.23) and simvastatin (HR=1.81; 95% CI 1.30-2.54) and lower for amlodipine (HR=0.27; 95% CI 0.17-0.42) compared with other drugs in the cohort. Conclusions Overall switchback rates were similar between authorized generic and generic drug users, indirectly supporting similar efficacy and tolerability profiles for brand and generic drugs. Reasons for differences in switchback rates among specific products need to be further explored. PMID:28152215

  14. High prevalence of body dysmorphic disorder symptoms in patients seeking rhinoplasty.

    PubMed

    Picavet, Valerie A; Prokopakis, Emmanuel P; Gabriëls, Lutgardis; Jorissen, Mark; Hellings, Peter W

    2011-08-01

    Nasal aesthetic deformities may be associated with significant body image dissatisfaction. The only diagnostic category in the current list of psychiatric disorders that directly addresses these concerns is body dysmorphic disorder. This large-scale study determined the prevalence of body dysmorphic disorder and its symptoms in patients seeking rhinoplasty and evaluated the clinical profile of these patients. Two hundred twenty-six patients were given questionnaires including demographic characteristics, visual analogue scales for nasal shape, the Yale-Brown Obsessive Compulsive Scale modified for body dysmorphic disorder to assess severity of symptoms, a generic quality-of-life questionnaire, and the Derriford Appearance Scale 59, to assess appearance-related disruption of everyday living. Independent observers scored the nasal shape. Thirty-three percent of patients showed at least moderate symptoms of body dysmorphic disorder. Aesthetic goals (p < 0.001), revision rhinoplasty (p = 0.003), and psychiatric history (p = 0.031) were associated with more severe symptoms. There was no correlation between the objective and subjective scoring of the nasal shape. Yale-Brown scale modified for body dysmorphic disorder scores correlated inversely with the subjective nasal scoring (n = 210, p < 0.001), without relation to the objective deformity of the nose. Body dysmorphic disorder symptoms significantly reduced the generic quality of life (n = 160, p < 0.001) and led to significant appearance-related disruption of everyday living (n = 161, p < 0.001). The prevalence of moderate to severe body dysmorphic disorder symptoms in an aesthetic rhinoplasty population is high. Patients undergoing revision rhinoplasty and with psychiatric history are particularly at risk. Body dysmorphic disorder symptoms significantly reduce the quality of life and cause significant appearance-related disruption of everyday living. Risk, III.

  15. Targeting, out-scaling and prioritising climate-smart interventions in agricultural systems: Lessons from applying a generic framework to the livestock sector in sub-Saharan Africa.

    PubMed

    Notenbaert, An; Pfeifer, Catherine; Silvestri, Silvia; Herrero, Mario

    2017-02-01

    As a result of population growth, urbanization and climate change, agricultural systems around the world face enormous pressure on the use of resources. There is a pressing need for wide-scale innovation leading to development that improves the livelihoods and food security of the world's population while at the same time addressing climate change adaptation and mitigation. A variety of promising climate-smart interventions have been identified. However, what remains is the prioritization of interventions for investment and broad dissemination. The suitability and adoption of interventions depends on a variety of bio-physical and socio-economic factors. Also their impacts, when adopted and out-scaled, are likely to be highly heterogeneous. This heterogeneity expresses itself not only spatially and temporally but also in terms of the stakeholders affected, some might win and some might lose. A mechanism that can facilitate a systematic, holistic assessment of the likely spread and consequential impact of potential interventions is one way of improving the selection and targeting of such options. In this paper we provide climate smart agriculture (CSA) planners and implementers at all levels with a generic framework for evaluating and prioritising potential interventions. This entails an iterative process of mapping out recommendation domains, assessing adoption potential and estimating impacts. Through examples, related to livestock production in sub-Saharan Africa, we demonstrate each of the steps and how they are interlinked. The framework is applicable in many different forms, scales and settings. It has a wide applicability beyond the examples presented and we hope to stimulate readers to integrate the concepts in the planning process for climate-smart agriculture, which invariably involves multi-stakeholder, multi-scale and multi-objective decision-making.

  16. Stable Isotope Profiling of Internet-Sourced Viagra® and 'generic- Viagra' Tablets

    NASA Astrophysics Data System (ADS)

    Kemp, Helen; Meier-Augenstein, Wolfram

    2013-04-01

    Viagra® manufactured by Pfizer was the first prescription drug for the treatment of erectile dysfunction (ED), a condition that is estimated to affect 1 in 10 men at some stage in their lives (1). Viagra® contains the active pharmaceutical ingredient (API) sildenafil, as the citrate salt. Sildenafil, along with Tadalafil and Vardenafil belong to a class of drugs known as phosphodiesterase type 5 (PDE5) inhibitors. Since its first production in 1998, Viagra® has generated well in excess of 10 billion US dollars in sales (2) and with Pfizers' patent extended to April 2020 (3) it still remains the only sildenafil-based treatment option for sufferers of ED in the US. There are no legal 'generic-Viagra' formulations available in the US. However, formulations containing sildenafil citrate as API are widely available over the internet and often sold as 'generic Viagra'. These cheaper alternatives are often manufactured under less than ideal conditions with little or no QA/QC procedures in place. The World Health Organisation recognised the scale of the problem in its 2010 bulletin "Growing threat from counterfeit medicines" (4) and quotes a Dutch study cited in the International Journal of Clinical Practice in which from a cohort of 370 seized Viagra® samples, only 10 were genuine. We sourced a variety of tablets sold for the treatment of ED which claimed to have sildenafil citrate as API. Viagra®, 'generic-Viagra', Kamagra, Silagra and Filagra tablets were ordered via the internet and supplied from both UK-based pharmacies as well as overseas suppliers (Hong Kong, India, Vanuata). In this small-scale pilot study, we present results from bulk 2H/18O and 13C/15N stable isotope analysis performed on crushed tablets from 23 samples of internet-sourced tablets sold for the treatment of ED and purported to contain sildenafil citrate as API. References 1. www.healthcare.org.uk 2. www.moneynews.com 3. US Patent & trademark office (www.uspto.gov) 4. WHO bulletin 2010; 88:247-248

  17. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    DTIC Science & Technology

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  18. Many-body localization transition: Schmidt gap, entanglement length, and scaling

    NASA Astrophysics Data System (ADS)

    Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl

    2018-05-01

    Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.

  19. High magnetic field theory for the local density of states in graphene with smooth arbitrary potential landscapes

    NASA Astrophysics Data System (ADS)

    Champel, Thierry; Florens, Serge

    2010-07-01

    We study theoretically the energy and spatially resolved local density of states (LDoS) in graphene at high perpendicular magnetic field. For this purpose, we extend from the Schrödinger to the Dirac case a semicoherent-state Green’s-function formalism, devised to obtain in a quantitative way the lifting of the Landau-level degeneracy in the presence of smooth confinement and smooth disordered potentials. Our general technique, which rigorously describes quantum-mechanical motion in a magnetic field beyond the semiclassical guiding center picture of vanishing magnetic length (both for the ordinary two-dimensional electron gas and graphene), is connected to the deformation (Weyl) quantization theory in phase space developed in mathematical physics. For generic quadratic potentials of either scalar (i.e., electrostatic) or mass (i.e., associated with coupling to the substrate) types, we exactly solve the regime of large magnetic field (yet at finite magnetic length, formally, this amounts to considering an infinite Fermi velocity) where Landau-level mixing becomes negligible. Hence, we obtain a closed-form expression for the graphene Green’s function in this regime, providing analytically the discrete energy spectra for both cases of scalar and mass parabolic confinement. Furthermore, the coherent-state representation is shown to display a hierarchy of local energy scales ordered by powers of the magnetic length and successive spatial derivatives of the local potential, which allows one to devise controlled approximation schemes at finite temperature for arbitrary and possibly disordered potential landscapes. As an application, we derive general analytical nonperturbative expressions for the LDoS, which may serve as a good starting point for interpreting experimental studies. For instance, we are able to account for many puzzling features of the LDoS recently observed by high magnetic field scanning tunneling spectroscopy experiments on graphene, such as a roughly m increase in the mth Landau-level linewidth in the LDoS peaks at low temperatures, together with a flattening of the spatial variations in the Landau-level effective energies at increasing m .

  20. Pre-Big-Bang bubbles from the gravitational instability of generic string vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1999-03-01

    We formulate the basic postulate of pre-Big-Bang cosmology as one of ``asymptotic past triviality", by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.

  1. Protecting the patient by promoting end-user competence in health informatics systems-moves towards a generic health computer user "driving license".

    PubMed

    Rigby, Michael

    2004-03-18

    The effectiveness and quality of health informatics systems' support to healthcare delivery are largely determined by two factors-the suitability of the system installed, and the competence of the users. However, the profile of users of large-scale clinical health systems is significantly different from the profile of end-users in other enterprises such as the finance sector, insurance, travel or retail sales. Work with a mental health provider in Ireland, who was introducing a customized electronic patient record (EPR) system, identified the strong legal and ethical importance of adequately skills for the health professionals and others, who would be the system users. The experience identified the need for a clear and comprehensive generic user qualification at a basic but robust level. The European computer driving license (ECDL) has gained wide recognition as a basic generic qualification for users of computer systems. However, health systems and data have a series of characteristics that differentiate them from other data systems. The logical conclusion was the recognition of a need for an additional domain-specific qualification-an "ECDL Health Supplement". Development of this is now being progressed.

  2. Assessment of behavioral mechanisms maintaining encopresis: Virginia Encopresis-Constipation Apperception Test.

    PubMed

    Cox, Daniel J; Ritterband, Lee M; Quillian, Warren; Kovatchev, Boris; Morris, James; Sutphen, James; Borowitz, Stephen

    2003-09-01

    To develop and test a scale for parent and child, evaluating theoretical and clinical parameters relevant to children with encopresis. Encopretic children were hypothesized to have more bowel-specific, but not more generic, psychological problems, as compared with nonsymptomatic control children. In addition, mothers were also believed to be more discerning than children. The Virginia Encopresis-Constipation Apperception Test (VECAT) consists of 9 pairs of bowel-specific and 9 parallel generic drawings. Respondents selected the picture in each pair that best described them/their child. It was administered to encopretic children (N = 87), nonsymptomatic siblings (N = 27), and nonsymptomatic nonsiblings (N = 35). The mothers of all the participants also completed the VECAT. Encopretic children were retested 6 and 12 months posttreatment with Enhanced Toilet Training. The VECAT demonstrated good test-retest reliability and internal consistency. Encopretic children and their mothers reported more bowel-specific, but not more generic, problems. Bowel-specific scores improved significantly posttreatment only for those patients who demonstrated significant symptom improvement. Mothers were significantly more discerning than children. The VECAT is a reliable, valid, discriminating, and sensitive test. Bowel-specific problems appear to best differentiate children with and without encopresis.

  3. Pressurization System Modeling for a Generic Bimese Two- Stage-to-Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Nguyen, Han

    2005-01-01

    A pressurization system model was developed for a generic bimese Two-Stage-to-orbit Reusable Launch Vehicle using a cross-feed system and operating with densified propellants. The model was based on the pressurization system model for a crossfeed subscale water test article and was validated with test data obtained from the test article. The model consists of the liquid oxygen and liquid hydrogen pressurization models, each made up of two submodels, Booster and Orbiter tank pressurization models. The tanks are controlled within a 0.2-psi band and pressurized on the ground with ambient helium and autogenously in flight with gaseous oxygen and gaseous hydrogen. A 15-psi pressure difference is maintained between the Booster and Orbiter tanks to ensure crossfeed check valve closure before Booster separation. The analysis uses an ascent trajectory generated for a generic bimese vehicle and a tank configuration based on the Space Shuttle External Tank. It determines the flow rates required to pressurize the tanks on the ground and in flight, and demonstrates the model's capability to analyze the pressurization system performance of a full-scale bimese vehicle with densified propellants.

  4. A phenomenological description of space-time noise in quantum gravity.

    PubMed

    Amelino-Camelia, G

    2001-04-26

    Space-time 'foam' is a geometric picture of the smallest size scales in the Universe, which is characterized mainly by the presence of quantum uncertainties in the measurement of distances. All quantum-gravity theories should predict some kind of foam, but the description of the properties of this foam varies according to the theory, thereby providing a possible means of distinguishing between such theories. I previously showed that foam-induced distance fluctuations would introduce a new source of noise to the measurements of gravity-wave interferometers, but the theories are insufficiently developed to permit detailed predictions that would be of use to experimentalists. Here I propose a phenomenological approach that directly describes space-time foam, and which leads naturally to a picture of distance fluctuations that is independent of the details of the interferometer. The only unknown in the model is the length scale that sets the overall magnitude of the effect, but recent data already rule out the possibility that this length scale could be identified with the 'string length' (10-34 m < Ls < 10-33 m). Length scales even smaller than the 'Planck length' (LP approximately 10-35 m) will soon be probed experimentally.

  5. Geostatistics and the representative elementary volume of gamma ray tomography attenuation in rocks cores

    USGS Publications Warehouse

    Vogel, J.R.; Brown, G.O.

    2003-01-01

    Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.

  6. Adult Chinese as a Second Language Learners' Willingness to Communicate in Chinese: Effects of Cultural, Affective, and Linguistic Variables.

    PubMed

    Liu, Meihua

    2017-06-01

    The present research explored the effects of cultural, affective, and linguistic variables on adult Chinese as a second language learners' willingness to communicate in Chinese. One hundred and sixty-two Chinese as a second language learners from a Chinese university answered the Willingness to Communicate in Chinese Scale, the Intercultural Sensitivity Scale, Chinese Speaking Anxiety Scale, Chinese Learning Motivation Scale, Use of Chinese Profile, as well as the Background Questionnaire. The major findings were as follows: (1) the Willingness to Communicate in Chinese Scales were significantly negatively correlated with Chinese Speaking Anxiety Scale but positively correlated with length of stay in China and (2) Chinese Speaking Anxiety Scale was a powerful negative predictor for the overall willingness to communicate in Chinese and the Willingness to Communicate in Chinese Scales, followed by length of stay in China, Chinese Learning Motivation Scale, interaction attentiveness, and Chinese proficiency level. Apparently, students' willingness to communicate in Chinese is largely determined by their Chinese Speaking Anxiety Scale level and length of stay in China, mediated by other variables such as Chinese proficiency level and intercultural communication sensitivity level.

  7. Magnesite Dissolution Rates Across Scales: Role of Spatial Heterogeneity, Equilibrium Lengths, and Reactive Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, H.; Li, L.

    2017-12-01

    This work develops a general rate law for magnesite dissolution in heterogeneous media under variable flow and length conditions, expanding the previous work under one particular flow and length conditions (Wen and Li, 2017). We aim to answer: 1) How does spatial heterogeneity influence the time and length scales to reach equilibrium? 2) How do relative timescales of advection, diffusion/dispersion, and reactions influence dissolution rates under variable flow and length conditions? We carried out 640 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix with heterogeneity characterized by permeability variance and correlation length under a range of length and flow velocity. A rate law Rhete = kAT(1-exp(τeq,m/τa))(1-exp(- Lβ))^α was developed. The former part is rates in equivalent homogeneous media kAT(1-exp(τeq,m/τa)), depending on rate constant k, magnesite surface area AT, and relative timescales of reactions τeq,m and advection τa. The latter term (1-exp(- Lβ))^α is the heterogeneity factor χ that quantifies the deviation of heterogeneous media from its homogeneous counterpart. The term has a scaling factor, called reactive transport number β=τa/(τad,r+τeq,m), for domain length L, and the geostatistical characteristics of heterogeneity α. The β quantifies the relative timescales of advection at the domain scale τa versus the advective-diffusive-dispersive transport time out of reactive zones τad,r and reaction time τeq,m. The χ is close to 1 and is insignificant under long residence time conditions (low flow velocity and / or long length) where the residence time is longer than the time needed for Mg to dissolve and transport out of reactive zones (τad,r+τeq,m) so that equilibrium is reached and homogenization occurs. In contrast, χ deviates from 1 and is significant only when β is small, which occurs at short length or fast flow where timescales of reactive transport in reactive zones are much longer than the global residence time so that reactive transport is the limiting step. These findings demonstrate that dissolution rates in heterogeneous media reach asymptotic values in homogeneous media at "sufficiently" long lengths. Wen, H. and Li, L. (2017) An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica et Cosmochimica Acta 210, 289-305.

  8. Hydrodynamic simulations of long-scale-length two-plasmon-decay experiments at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.

    2013-03-01

    Direct-drive-ignition designs with plastic CH ablators create plasmas of long density scale lengths (Ln ≥ 500 μm) at the quarter-critical density (Nqc) region of the driving laser. The two-plasmon-decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation-hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of Ln approaching ˜400 μm have been created; (2) the density scale length at Nqc scales as Ln(μm)≃(RDPP×I1/4/2); and (3) the electron temperature Te at Nqc scales as Te(keV)≃0.95×√I , with the incident intensity (I) measured in 1014 W/cm2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (RDPP) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons fhot is found to have a similar behavior for both configurations: a rapid growth [fhot≃fc×(Gc/4)6 for Gc < 4] followed by a saturation of the form, fhot≃fc×(Gc/4)1.2 for Gc ≥ 4, with the common wave gain is defined as Gc=3 × 10-2×IqcLnλ0/Te, where the laser intensity contributing to common-wave gain Iqc, Ln, Te at Nqc, and the laser wavelength λ0 are, respectively, measured in [1014 W/cm2], [μm], [keV], and [μm]. The saturation level fc is observed to be fc ≃ 10-2 at around Gc ≃ 4. The hot-electron temperature scales roughly linear with Gc. Furthermore, to mitigate TPD instability in long-scale-length plasmas, different ablator materials such as saran and aluminum have been investigated on OMEGA EP. Hot-electron generation has been reduced by a factor of 3-10 for saran and aluminum plasmas, compared to the CH case at the same incident laser intensity. draco simulations suggest that saran might be a better ablator for direct-drive-ignition designs as it balances TPD mitigation with an acceptable hydro-efficiency.

  9. Challenges for Australia's Bio/Nanopharma Policies: trade deals, public goods and reference pricing in sustainable industrial renewal

    PubMed Central

    Faunce, Thomas A

    2007-01-01

    Industrial renewal in the bio/nanopharma sector is important for the long term strength of the Australian economy and for the health of its citizens. A variety of factors, however, may have caused inadequate attention to focus on systematically promoting domestic generic and small biotechnology manufacturers in Australian health policy. Despite recent clarifications of 'springboarding' capacity in intellectual property legislation, federal government requirements for specific generic price reductions on market entry and the potential erosion of reference pricing through new F1 and F2 categories for the purposes of Pharmaceutical Benefits Scheme (PBS) assessments, do not appear to be coherently designed to sustainably position this industry sector in 'biologics,' nanotherapeutics and pharmacogenetics. There also appears to have been little attention paid in this context to policies fostering industry sustainability and public affordability (as encouraged by the National Medicines Policy). One notable example includes that failure to consider facilitating mutual exchanges on regulatory assessment of health technology safety and cost-effectiveness (including reference pricing) in the context of ongoing free trade negotiations between Australia and China (the latter soon to possess the world's largest generic pharmaceutical manufacturing capacity). The importance of a thriving Australian domestic generic pharmaceutical and bio/nano tech industry in terms of biosecurity, similarly appears to have been given insufficient policy attention. Reasons for such policy oversights may relate to increasing interrelationships between generic and 'brand-name' manufacturers and the scale of investment required for the Australian generics and bio/nano technology sector to be a significant driver of local production. It might also result from singularly effective lobbying pressure exerted by Medicines Australia, the 'brand-name' pharmaceutical industry association, utilising controversial interpretations of reward of pharmaceutical 'innovation' provisions in the Australia-US Free Trade Agreement (AUSFTA) through the policy-development mechanisms of the AUSFTA Medicines Working Group and most recently an Innovative Medicines Working Group with the Department of Health and Ageing. This paper critically analyses such arguments in the context of emerging challenges for sustainable industrial renewal in Australia's bio/nanopharma sector. PMID:17543114

  10. Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry

    NASA Technical Reports Server (NTRS)

    El-Gabry, Lamyaa A.; Thurman, Douglas R.; Poinsatte, Philip E.

    2014-01-01

    Hotwire anemometers are used to measure instantaneous velocity from which the mean velocity and the velocity fluctuation can be determined. Using a hotwire system, it is possible to deduce not only the velocity components and their fluctuation but to also analyze the energy spectra and from that the turbulence length scales. In this experiment, hotwire anemometry is used to measure the flow field turbulence for an array of film cooling holes. The objective of this paper is to document the procedure that is used to reduce the instantaneous velocity measurements to determine the turbulence length scales using data from the film-cooling experiments to illustrate the procedure.

  11. Factors affecting length of stay in forensic hospital setting: need for therapeutic security and course of admission.

    PubMed

    Davoren, Mary; Byrne, Orla; O'Connell, Paul; O'Neill, Helen; O'Reilly, Ken; Kennedy, Harry G

    2015-11-23

    Patients admitted to a secure forensic hospital are at risk of a long hospital stay. Forensic hospital beds are a scarce and expensive resource and ability to identify the factors predicting length of stay at time of admission would be beneficial. The DUNDRUM-1 triage security scale and DUNDRUM-2 triage urgency scale are designed to assess need for therapeutic security and urgency of that need while the HCR-20 predicts risk of violence. We hypothesized that items on the DUNDRUM-1 and DUNDRUM-2 scales, rated at the time of pre-admission assessment, would predict length of stay in a medium secure forensic hospital setting. This is a prospective study. All admissions to a medium secure forensic hospital setting were collated over a 54 month period (n = 279) and followed up for a total of 66 months. Each patient was rated using the DUNDRUM-1 triage security scale and DUNDRUM-2 triage urgency scale as part of a pre-admission assessment (n = 279) and HCR-20 within 2 weeks of admission (n = 187). Episodes of harm to self, harm to others and episodes of seclusion whilst an in-patient were collated. Date of discharge was noted for each individual. Diagnosis at the time of pre-admission assessment (adjustment disorder v other diagnosis), predicted legal status (sentenced v mental health order) and items on the DUNDRUM-1 triage security scale and the DUNDRUM-2 triage urgency scale, also rated at the time of pre-admission assessment, predicted length of stay in the forensic hospital setting. Need for seclusion following admission also predicted length of stay. These findings may form the basis for a structured professional judgment instrument, rated prior to or at time of admission, to assist in estimating length of stay for forensic patients. Such a tool would be useful to clinicians, service planners and commissioners given the high cost of secure psychiatric care.

  12. Recent assimilation developments of FOAM the Met Office ocean forecast system

    NASA Astrophysics Data System (ADS)

    Lea, Daniel; Martin, Matthew; Waters, Jennifer; Mirouze, Isabelle; While, James; King, Robert

    2015-04-01

    FOAM is the Met Office's operational ocean forecasting system. This system comprises a range of models from a 1/4 degree resolution global to 1/12 degree resolution regional models and shelf seas models at 7 km resolution. The system is made up of the ocean model NEMO (Nucleus for European Modeling of the Ocean), the Los Alomos sea ice model CICE and the NEMOVAR assimilation run in 3D-VAR FGAT mode. Work is ongoing to transition to both a higher resolution global ocean model at 1/12 degrees and to run FOAM in coupled models. The FOAM system generally performs well. One area of concern however is the performance in the tropics where spurious oscillations and excessive vertical velocity gradients are found after assimilation. NEMOVAR includes a balance operator which in the extra-tropics uses geostrophic balance to produce velocity increments which balance the density increments applied. In the tropics, however, the main balance is between the pressure gradients produced by the density gradient and the applied wind stress. A scheme is presented which aims to maintain this balance when increments are applied. Another issue in FOAM is that there are sometimes persistent temperature and salinity errors which are not effectively corrected by the assimilation. The standard NEMOVAR has a single correlation length scale based on the local Rossby radius. This means that observations in the extra tropics have influence on the model only on short length-scales. In order to maximise the information extracted from the observations and to correct large scale model biases a multiple correlation length-scale scheme has been developed. This includes a larger length scale which spreads observation information further. Various refinements of the scheme are also explored including reducing the longer length scale component at the edge of the sea ice and in areas with high potential vorticity gradients. A related scheme which varies the correlation length scale in the shelf seas is also described.

  13. Comparing the Incidence of Febrile Neutropenia Resulting in Hospital Admission Between the Branded Docetaxel and the Generic Formulations.

    PubMed

    Faqeer, Nour Al; Mashni, Ola; Dawoud, Rawan; Rumman, Asma; Hanoun, Esraa; Nazer, Lama

    2017-02-01

    Studies have raised concern about the safety of generic compared with branded drugs. Febrile neutropenia (FN) resulting in hospital admission was compared between the branded docetaxel (Taxotere®, Sanofi) and 2 generic formulations (docetaxel Ebewe and docetaxel Hospira) in patients with breast cancer. This was a retrospective study that included patients with breast cancer who received docetaxel between January 2012 and December 2014. Patients who had an admission diagnosis of FN and had received docetaxel within 14 days prior to admission were evaluated. The docetaxel brand and dose, patient characteristics, hospital length of stay, admission to the intensive care unit (ICU), and mortality were recorded. During the study period, 2904 cycles of docetaxel were given for 876 patients (1519 cycles of docetaxel Sanofi, 811 cycles of docetaxel Hospira, and 574 cycles of docetaxel Ebewe). Among the cycles given, 130 cycles were associated with FN that required hospital admission. The overall incidence of FN resulting in hospital admission was significantly higher in patients who had received docetaxel Hospira, compared with patients who had received docetaxel Sanofi (47[5.8%] cycles vs 53 [3.5%] cycles, P = .009), but there was no significant difference between docetaxel Ebewe and docetaxel Sanofi (30[5.2%] cycles vs 53 [3.5%] cycles, P = .069). All cases of FN resolved except for 1 patient who died in the ICU after receiving docetaxel Ebewe. There was a significant difference in the incidence of FN between docetaxel Sanofi and docetaxel Hospira, but all cases in both groups resolved completely. © 2016, The American College of Clinical Pharmacology.

  14. Storybooks aren't just for fun: narrative and non-narrative picture books foster equal amounts of generic language during mother-toddler book sharing

    PubMed Central

    Nyhout, Angela; O'Neill, Daniela K.

    2014-01-01

    Parents and children encounter a variety of animals and objects in the early picture books they share, but little is known about how the context in which these entities are presented influences talk about them. The present study investigated how the presence or absence of a visual narrative context influences mothers' tendency to refer to animals as individual characters or as members of a kind when sharing picture books with their toddlers (mean age 21.3 months). Mother-child dyads shared both a narrative and a non-narrative book, each featuring six animals and matched in terms of length and quantity of text. Mothers made more specific (individual-referring) statements about animals in the narrative books, whereas they provided more labels for animals in the non-narrative books. But, of most interest, the frequency and proportion of mothers' use of generic (kind-referring) utterances did not differ across the two different types of books. Further coding of the content of the utterances revealed that mothers provided more story-specific descriptions of states and actions of the animals when sharing narrative books and more physical descriptions of animals when sharing non-narrative books. However, the two books did not differ in terms of their elicitation of natural facts about the animals. Overall, although the two types of books encouraged different types of talk from mothers, they stimulated generic language and talk about natural facts to an equal degree. Implications for learning from picture storybooks and book genre selection in classrooms and home reading are discussed. PMID:24795675

  15. Storybooks aren't just for fun: narrative and non-narrative picture books foster equal amounts of generic language during mother-toddler book sharing.

    PubMed

    Nyhout, Angela; O'Neill, Daniela K

    2014-01-01

    Parents and children encounter a variety of animals and objects in the early picture books they share, but little is known about how the context in which these entities are presented influences talk about them. The present study investigated how the presence or absence of a visual narrative context influences mothers' tendency to refer to animals as individual characters or as members of a kind when sharing picture books with their toddlers (mean age 21.3 months). Mother-child dyads shared both a narrative and a non-narrative book, each featuring six animals and matched in terms of length and quantity of text. Mothers made more specific (individual-referring) statements about animals in the narrative books, whereas they provided more labels for animals in the non-narrative books. But, of most interest, the frequency and proportion of mothers' use of generic (kind-referring) utterances did not differ across the two different types of books. Further coding of the content of the utterances revealed that mothers provided more story-specific descriptions of states and actions of the animals when sharing narrative books and more physical descriptions of animals when sharing non-narrative books. However, the two books did not differ in terms of their elicitation of natural facts about the animals. Overall, although the two types of books encouraged different types of talk from mothers, they stimulated generic language and talk about natural facts to an equal degree. Implications for learning from picture storybooks and book genre selection in classrooms and home reading are discussed.

  16. Universality from disorder in the random-bond Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.

    2018-04-01

    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.

  17. Correspondence: Reply to ‘Phantom phonon localization in relaxors’

    DOE PAGES

    Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.

    2017-12-05

    The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less

  18. Correspondence: Reply to ‘Phantom phonon localization in relaxors’

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.

    The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less

  19. Flexible chain molecules in the marginal and concentrated regimes: universal static scaling laws and cross-over predictions.

    PubMed

    Laso, Manuel; Karayiannis, Nikos Ch

    2008-05-07

    We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.

  20. Whose quality of life? Ethical implications in patient-reported health outcome measurement.

    PubMed

    Hagell, Peter; Reimer, Jan; Nyberg, Per

    2009-06-01

    Patient-reported health status questionnaires intend to assess illness and therapy from the patients' perspective. To provide fair and valid assessments, they should be equally relevant to major subsets of respondents. Furthermore, disease-specific measures are assumed to be perceived as more relevant than generic ones. This study assessed these assumptions among people with Parkinson's disease. Cross-sectional data from 202 people with Parkinson's disease (54% men; mean age, 70) were analyzed regarding patient-rated relevance and predictors of patient-rated poor relevance of two generic [the 36-item Short Form Health Survey (SF-36) and Nottingham Health Profile (NHP)] and one disease-specific [Parkinson's Disease Questionnaire (PDQ-39)] health status questionnaire. There were no differences in relevance ratings across the questionnaires. Poorer overall quality of life [odds ratio (OR), 2.459] and mental health (OR, 1.023) were associated with poorer patient-rated relevance of the SF-36, and higher age was associated with poorer patient-rated relevance of the PDQ-39 (OR, 1.040). No significant predictors were found for the NHP. The PDQ-39 failed to meet the assumption that disease-specific scales are more relevant than generic ones. Nevertheless, the most important implication of this study is an ethical one. Because the relevance of the SF-36 and PDQ-39 is perceived as poorer by those who fare least well and by older people, these scales may not reflect the perspectives of these groups. This challenges bioethical principles and threatens scientific validity. Perceived relevance of patient-centered outcomes needs to be considered, or the voice of vulnerable groups may be silenced, fair inferences prohibited, and opportunities for improved care lost.

Top