NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2010-01-01
New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.
Scene Context Dependency of Pattern Constancy of Time Series Imagery
NASA Technical Reports Server (NTRS)
Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur
2008-01-01
A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.
Simulation of Biomimetic Recognition between Polymers and Surfaces
NASA Astrophysics Data System (ADS)
Golumbfskie, Aaron J.; Pande, Vijay S.; Chakraborty, Arup K.
1999-10-01
Many biological processes, such as transmembrane signaling and pathogen-host interactions, are initiated by a protein recognizing a specific pattern of binding sites on part of a membrane or cell surface. By recognition, we imply that the polymer quickly finds and then adsorbs strongly on the pattern-matched region and not on others. The development of synthetic systems that can mimic such recognition between polymers and surfaces could have significant impact on advanced applications such as the development of sensors, molecular-scale separation processes, and synthetic viral inhibition agents. Attempting to affect recognition in synthetic systems by copying the detailed chemistries to which nature has been led over millenia of evolution does not seem practical for most applications. This leads us to the following question: Are there any universal strategies that can affect recognition between polymers and surfaces? Such generic strategies may be easier to implement in abiotic applications. We describe results that suggest that biomimetic recognition between synthetic polymers and surfaces is possible by exploiting certain generic strategies, and we elucidate the kinetic mechanisms by which this occurs. Our results suggest convenient model systems for experimental studies of dynamics in free energy landscapes characteristic of frustrated systems.
ERIC Educational Resources Information Center
Freudenburg, William R.; Gramling, Robert; Laska, Shirley; Erikson, Kai T.
2008-01-01
Disaster studies have made important progress in recognizing the unequally distributed consequences of disasters, but there has been less progress in analyzing social factors that help create "natural" disasters. Even well-known patterns of hazard-creation tend to be interpreted generically--as representing "economic development" or…
Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos
2016-05-18
Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance.
Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos
2016-01-01
Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375
V2S: Voice to Sign Language Translation System for Malaysian Deaf People
NASA Astrophysics Data System (ADS)
Mean Foong, Oi; Low, Tang Jung; La, Wai Wan
The process of learning and understand the sign language may be cumbersome to some, and therefore, this paper proposes a solution to this problem by providing a voice (English Language) to sign language translation system using Speech and Image processing technique. Speech processing which includes Speech Recognition is the study of recognizing the words being spoken, regardless of whom the speaker is. This project uses template-based recognition as the main approach in which the V2S system first needs to be trained with speech pattern based on some generic spectral parameter set. These spectral parameter set will then be stored as template in a database. The system will perform the recognition process through matching the parameter set of the input speech with the stored templates to finally display the sign language in video format. Empirical results show that the system has 80.3% recognition rate.
Characterizing Learning Environments Capable of Nurturing Generic Capabilities in Higher Education
ERIC Educational Resources Information Center
Kember, David; Leung, Doris Y. P.; Ma, Rosa S. F.
2007-01-01
There has been wide recognition that today's graduates need the type of generic capabilities necessary for lifelong learning. However, the mechanism by which universities can develop these generic skills is not clearly established. This study aimed to investigate the mechanism for their development. Structural equation modeling (SEM) was used to…
A Generic multi-dimensional feature extraction method using multiobjective genetic programming.
Zhang, Yang; Rockett, Peter I
2009-01-01
In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.
Optical implementation of neocognitron and its applications to radar signature discrimination
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1991-01-01
A feature-extraction-based optoelectronic neural network is introduced. The system implementation approach applies the principle of the neocognitron paradigm first introduced by Fukushima et al. (1983). A multichannel correlator is used as a building block of a generic single layer of the neocognitron for shift-invariant feature correlation. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator. Successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved using this optoelectronic neocognitron. Detailed system analysis is described. Experimental demonstration of radar signature processing is also provided.
Fire flame detection based on GICA and target tracking
NASA Astrophysics Data System (ADS)
Rong, Jianzhong; Zhou, Dechuang; Yao, Wei; Gao, Wei; Chen, Juan; Wang, Jian
2013-04-01
To improve the video fire detection rate, a robust fire detection algorithm based on the color, motion and pattern characteristics of fire targets was proposed, which proved a satisfactory fire detection rate for different fire scenes. In this fire detection algorithm: (a) a rule-based generic color model was developed based on analysis on a large quantity of flame pixels; (b) from the traditional GICA (Geometrical Independent Component Analysis) model, a Cumulative Geometrical Independent Component Analysis (C-GICA) model was developed for motion detection without static background and (c) a BP neural network fire recognition model based on multi-features of the fire pattern was developed. Fire detection tests on benchmark fire video clips of different scenes have shown the robustness, accuracy and fast-response of the algorithm.
Competition in prescription drug markets: the roles of trademarks, advertising, and generic names.
Feldman, Roger; Lobo, Félix
2013-08-01
We take on two subjects of controversy among economists-advertising and trademarks-in the context of the market for generic drugs. We outline a model in which trademarks for drug names reduce search costs but increase product differentiation. In this particular framework, trademarks may not benefit consumers. In contrast, the generic names of drugs or "International Nonproprietary Names" (INN) have unquestionable benefits in both economic theory and empirical studies. We offer a second model where advertising of a brand-name drug creates recognition for the generic name. The monopoly patent-holder advertises less than in the absence of a competitive spillover.
Alatawi, Y; Rahman, Md M; Cheng, N; Qian, J; Peissig, P L; Berg, R L; Page, C D; Hansen, R A
2018-06-01
Some public scepticism exists about generics in terms of whether brand and generic drugs produce identical outcomes. This study explores whether adverse event (AE) reporting patterns are similar between brand and generic drugs, using authorized generics (AGs) as a control for possible generic drug perception biases. Events reported to the FDA Adverse Event Reporting System from the years 2004-2015 were analysed. Drugs were classified as brand, AG or generic based on drug and manufacturer names. Reports were included if amlodipine, losartan, metoprolol extended release (ER) or simvastatin were listed as primary or secondary suspect drugs. Disproportionality analyses using the reporting odds ratio (ROR) assessed the relative rate of reporting labelled AEs compared to reporting these AEs with all other drugs. The Breslow-Day test compared RORs across brand, AG and generic. Interrupted time series analysis evaluated the impact of generic entry on reporting trends. Generics accounted for significant percentages of total U.S. reports, but AGs accounted for smaller percentages of reports, including for amlodipine (14.26%), losartan (1.48%), metoprolol ER (0.35%) and simvastatin (0.70%). Whereas the RORs were significantly different for multiple brand vs generic comparisons, the AG vs generic comparisons yielded fewer statistically significant findings. Namely, only the ROR for AG differed from generic for amlodipine with peripheral oedema (P < .01). Inconsistent reporting patterns were observed more between brand and generic compared with AG and generic. Use of AGs as a control for perception biases against generics is useful, but this approach can be limited by small AG report numbers. Requiring the manufacturer name to be printed on the prescription bottle or packaging could improve the accuracy of assignment for products being reported. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Knasel, T. Michael
1996-01-01
The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.
NASA Astrophysics Data System (ADS)
Zhao, Wenhui
2018-04-01
Generic sentences are simple and intuitive recognition and objective description to the external world in terms of "class". In the long evolutionary process of human being's language, the concepts represented by generic sentences has been internalized to be the defaulted knowledge in people's minds. In Chinese, some rhetorical expressions supported by corresponding generic sentences can be accepted by people. The derivation of these rhetorical expressions from the corresponding generic sentences is an important way for language to evolution, which reflects human's creative cognitive competence. From the perspective of conceptual blend theory and the theory of categorization of the cognitive linguistics, the goal of this paper is to analysis the process of the derivation of the rhetorical expressions from the corresponding generic sentences, which can facilitate the Chinese metaphorical information processing and the corpus construction of Chinese emotion metaphors.
A generic coding approach for the examination of meal patterns.
Woolhead, Clara; Gibney, Michael J; Walsh, Marianne C; Brennan, Lorraine; Gibney, Eileen R
2015-08-01
Meal pattern analysis can be complex because of the large variability in meal consumption. The use of aggregated, generic meal data may address some of these issues. The objective was to develop a meal coding system and use it to explore meal patterns. Dietary data were used from the National Adult Nutrition Survey (2008-2010), which collected 4-d food diary information from 1500 healthy adults. Self-recorded meal types were listed for each food item. Common food group combinations were identified to generate a number of generic meals for each meal type: breakfast, light meals, main meals, snacks, and beverages. Mean nutritional compositions of the generic meals were determined and substituted into the data set to produce a generic meal data set. Statistical comparisons were performed against the original National Adult Nutrition Survey data. Principal component analysis was carried out by using these generic meals to identify meal patterns. A total of 21,948 individual meals were reduced to 63 generic meals. Good agreement was seen for nutritional comparisons (original compared with generic data sets mean ± SD), such as fat (75.7 ± 29.4 and 71.7 ± 12.9 g, respectively, P = 0.243) and protein (83.3 ± 26.9 and 80.1 ± 13.4 g, respectively, P = 0.525). Similarly, Bland-Altman plots demonstrated good agreement (<5% outside limits of agreement) for many nutrients, including protein, saturated fat, and polyunsaturated fat. Twelve meal types were identified from the principal component analysis ranging in meal-type inclusion/exclusion, varying in energy-dense meals, and differing in the constituents of the meals. A novel meal coding system was developed; dietary intake data were recoded by using generic meal consumption data. Analysis revealed that the generic meal coding system may be appropriate when examining nutrient intakes in the population. Furthermore, such a coding system was shown to be suitable for use in determining meal-based dietary patterns. © 2015 American Society for Nutrition.
Hippocampal contributions to recollection in retrograde and anterograde amnesia.
Gilboa, Asaf; Winocur, Gordon; Rosenbaum, R Shayna; Poreh, Amir; Gao, Fuqiang; Black, Sandra E; Westmacott, Robyn; Moscovitch, Morris
2006-01-01
Lesions restricted to the hippocampal formation and/or extended hippocampal system (hippocampal formation, fornix, mammillary bodies, and anterior thalamic nuclei) can disrupt conscious recollection in anterograde amnesia, while leaving familiarity-based memory relatively intact. Familiarity may be supported by extra-hippocampal medial temporal lobe (MTL) structures. Within-task dissociations in recognition memory best exemplify this distinction in anterograde amnesia. The authors report for the first time comparable dissociations within recognition memory in retrograde amnesia. An amnesic patient (A.D.) with bilateral fornix and septal nuclei lesions failed to recognize details pertaining to personal past events only when recollection was required, during recognition of episodic details. His intact recognition of generic and semantic details pertaining to the same events was ascribed to intact familiarity processes. Recollective processes in the controls were reflected by asymmetrical Receiver's Operating Characteristic curves, whereas the patient's Receiver's Operating Characteristic was symmetrical, suggesting that his inferior recognition performance on episodic details was reliant on familiarity processes. Anterograde and retrograde memories were equally affected, with no temporal gradient for retrograde memories. By comparison, another amnesic person (K.C.) with extensive MTL damage (involving extra-hippocampal MTL structures in addition to hippocampal and fornix lesions) had very poor recognition and no recollection of either episodic or generic/semantic details. These data suggest that the extended hippocampal system is required to support recollection for both anterograde and retrograde memories, regardless of their age.
A handheld computer-aided diagnosis system and simulated analysis
NASA Astrophysics Data System (ADS)
Su, Mingjian; Zhang, Xuejun; Liu, Brent; Su, Kening; Louie, Ryan
2016-03-01
This paper describes a Computer Aided Diagnosis (CAD) system based on cellphone and distributed cluster. One of the bottlenecks in building a CAD system for clinical practice is the storage and process of mass pathology samples freely among different devices, and normal pattern matching algorithm on large scale image set is very time consuming. Distributed computation on cluster has demonstrated the ability to relieve this bottleneck. We develop a system enabling the user to compare the mass image to a dataset with feature table by sending datasets to Generic Data Handler Module in Hadoop, where the pattern recognition is undertaken for the detection of skin diseases. A single and combination retrieval algorithm to data pipeline base on Map Reduce framework is used in our system in order to make optimal choice between recognition accuracy and system cost. The profile of lesion area is drawn by doctors manually on the screen, and then uploads this pattern to the server. In our evaluation experiment, an accuracy of 75% diagnosis hit rate is obtained by testing 100 patients with skin illness. Our system has the potential help in building a novel medical image dataset by collecting large amounts of gold standard during medical diagnosis. Once the project is online, the participants are free to join and eventually an abundant sample dataset will soon be gathered enough for learning. These results demonstrate our technology is very promising and expected to be used in clinical practice.
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2017-12-01
The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recognition memory for vibrotactile rhythms: an fMRI study in blind and sighted individuals.
Sinclair, Robert J; Dixit, Sachin; Burton, Harold
2011-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned "old" and "new" rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.
Recognition memory for vibrotactile rhythms: An fMRI study in blind and sighted individuals
SINCLAIR, ROBERT J.; DIXIT, SACHIN; BURTON, HAROLD
2014-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned “old” and “new” rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes. PMID:21846300
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.; Jutamulia, Suganda
2008-10-01
Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.
Combining spiral and target wave detection to analyze excitable media dynamics
NASA Astrophysics Data System (ADS)
Geberth, Daniel; Hütt, Marc-Thorsten
2010-01-01
Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.
Comparison of generic-to-brand switchback patterns for generic and authorized generic drugs
Hansen, Richard A.; Qian, Jingjing; Berg, Richard; Linneman, James; Seoane-Vazquez, Enrique; Dutcher, Sarah K.; Raofi, Saeid; Page, C. David; Peissig, Peggy
2018-01-01
Background While generic drugs are therapeutically equivalent to brand drugs, some patients and healthcare providers remain uncertain about whether they produce identical outcomes. Authorized generics, which are identical in formulation to corresponding brand drugs but marketed as a generic, provide a unique post-marketing opportunity to study whether utilization patterns are influenced by perceptions of generic drugs. Objectives To compare generic-to-brand switchback rates between generics and authorized generics. Methods A retrospective cohort study was conducted using claims and electronic health records data from a regional U.S. healthcare system. Ten drugs with authorized generics and generics marketed between 1999 and 2014 were evaluated. Eligible adult patients received a brand drug during the 6 months preceding generic entry, and then switched to a generic or authorized generic. Patients in this cohort were followed for up to 30 months from the index switch date to evaluate occurrence of generic-to-brand switchbacks. Switchback rates were compared between patients on authorized generics versus generics using Kaplan-Meier curves and Cox proportional hazards models, controlling for individual drug effects, age, sex, Charlson comorbidity score, pre-index drug use characteristics, and pre-index healthcare utilization. Results Among 5,542 unique patients that switched from brand-to-generic or brand-to-authorized generic, 264 (4.8%) switched back to the brand drug. Overall switchback rates were similar for authorized generics compared with generics (HR=0.86; 95% CI 0.65-1.15). The likelihood of switchback was higher for alendronate (HR=1.64; 95% CI 1.20-2.23) and simvastatin (HR=1.81; 95% CI 1.30-2.54) and lower for amlodipine (HR=0.27; 95% CI 0.17-0.42) compared with other drugs in the cohort. Conclusions Overall switchback rates were similar between authorized generic and generic drug users, indirectly supporting similar efficacy and tolerability profiles for brand and generic drugs. Reasons for differences in switchback rates among specific products need to be further explored. PMID:28152215
Use of Biometrics within Sub-Saharan Refugee Communities
2013-12-01
fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is
Apperly, Ian A; Williams, Emily; Williams, Joelle
2004-01-01
In 4 experiments 120 three- to four-year-old nonreaders were asked the identity of a symbolic representation as it appeared with different objects. Consistent with Bialystok (2000), many children judged the identity of written words to vary according to the object with which they appeared but few made such errors with recognizable pictures. Children also made few errors when the symbols were unrecognizable pictures. In Experiments 2 to 4 this pattern of responses was preserved in conditions that made it unlikely or impossible for children to answer correctly by taking the symbol to refer to one of the objects with which it appeared. Instead, correct answers required children to appreciate that the symbol had a generic, abstract meaning.
Golden, Hannah L; Clark, Camilla N; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Foulkes, Alexander J M; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D
2017-01-01
Despite much recent interest in music and dementia, music perception has not been widely studied across dementia syndromes using an information processing approach. Here we addressed this issue in a cohort of 30 patients representing major dementia syndromes of typical Alzheimer's disease (AD, n = 16), logopenic aphasia (LPA, an Alzheimer variant syndrome; n = 5), and progressive nonfluent aphasia (PNFA; n = 9) in relation to 19 healthy age-matched individuals. We designed a novel neuropsychological battery to assess perception of musical patterns in the dimensions of pitch and temporal information (requiring detection of notes that deviated from the established pattern based on local or global sequence features) and musical scene analysis (requiring detection of a familiar tune within polyphonic harmony). Performance on these tests was referenced to generic auditory (timbral) deviance detection and recognition of familiar tunes and adjusted for general auditory working memory performance. Relative to healthy controls, patients with AD and LPA had group-level deficits of global pitch (melody contour) processing while patients with PNFA as a group had deficits of local (interval) as well as global pitch processing. There was substantial individual variation within syndromic groups. Taking working memory performance into account, no specific deficits of musical temporal processing, timbre processing, musical scene analysis, or tune recognition were identified. The findings suggest that particular aspects of music perception such as pitch pattern analysis may open a window on the processing of information streams in major dementia syndromes. The potential selectivity of musical deficits for particular dementia syndromes and particular dimensions of processing warrants further systematic investigation.
Rotation-invariant neural pattern recognition system with application to coin recognition.
Fukumi, M; Omatu, S; Takeda, F; Kosaka, T
1992-01-01
In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.
Rigby, Michael
2004-03-18
The effectiveness and quality of health informatics systems' support to healthcare delivery are largely determined by two factors-the suitability of the system installed, and the competence of the users. However, the profile of users of large-scale clinical health systems is significantly different from the profile of end-users in other enterprises such as the finance sector, insurance, travel or retail sales. Work with a mental health provider in Ireland, who was introducing a customized electronic patient record (EPR) system, identified the strong legal and ethical importance of adequately skills for the health professionals and others, who would be the system users. The experience identified the need for a clear and comprehensive generic user qualification at a basic but robust level. The European computer driving license (ECDL) has gained wide recognition as a basic generic qualification for users of computer systems. However, health systems and data have a series of characteristics that differentiate them from other data systems. The logical conclusion was the recognition of a need for an additional domain-specific qualification-an "ECDL Health Supplement". Development of this is now being progressed.
Consumer choice between common generic and brand medicines in a country with a small generic market.
Fraeyman, Jessica; Peeters, Lies; Van Hal, Guido; Beutels, Philippe; De Meyer, Guido R Y; De Loof, Hans
2015-04-01
Generic medicines offer an opportunity for governments to contain pharmaceutical expenditures, since generics are generally 10%-80% lower in price than brand medicines. Belgium has a small generic market that takes up 15% of the total pharmaceutical market in packages sold. To determine the knowledge of consumers about the different available packages of a common over-the-counter medicine (acetaminophen) with regard to price advantage, quality, and effectiveness in a country with a small generic market. We conducted an online survey in the general Flemish population using a questionnaire with 25 statements. The questionnaire also contained 2 informative interventions. First, we showed the price per package and per tablet that the patient would pay in the pharmacy. Second, we provided the respondent with general information about generic medication (equivalence, effectiveness, price, and recognition). Before and after the interventions, we probed for preferences and knowledge about the different packages. Multivariate logistic models were used to examine the independent effects of consumer characteristics on responses to the survey statements. We obtained a sample of 1,636 respondents. The general attitude towards generic medication was positive-only 5% would rather not use a generic. Nevertheless, only 17% of the respondents were able to recognize a generic medicine. Older consumers (aged 60 years and above) were more often confused about the different packages (OR = 2.59, 95% CI = 1.76-3.80, P ≤ 0.001). Consumers without a higher education degree tended to be more doubtful about the difference in effectiveness and quality between the different brands (OR = 0.59, 95% CI = 0.44-0.79, P ≤ 0.001). Consumer recognition of the name of the active substance of acetaminophen was poor. When different brands were displayed, possible price advantage seemed to be an important motive to switch to a cheaper brand. Consumers generally found medicines to be too expensive; however, consumers with medical or paramedical training had a different opinion. Two main recommendations can be made to increase the knowledge and enhance the trust in cheaper equivalent medicines. First, highlighting the name of the active substance on the label of medicine packages can reduce confusion and avoid health risks, especially among older consumers. Second, new investments or reallocation of budgets should be considered in order to provide consumers with authoritative information on the bioequivalence and price differences between the different available brands. This would be a cost-effective and potentially cost-saving investment for health care payers.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-12-08
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-01-01
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system. PMID:25494350
NASA Astrophysics Data System (ADS)
Hobson, Michael; Graff, Philip; Feroz, Farhan; Lasenby, Anthony
2014-05-01
Machine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, called SkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. The SkyNet and BAMBI packages, which are fully parallelised using MPI, are available at http://www.mrao.cam.ac.uk/software/.
Tian, Shu; Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei
2015-01-01
The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness.
Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei
2015-01-01
The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness. PMID:26693249
NASA Astrophysics Data System (ADS)
Yellen, H. W.
1983-03-01
Literature pertaining to Voice Recognition abounds with information relevant to the assessment of transitory speech recognition devices. In the past, engineering requirements have dictated the path this technology followed. But, other factors do exist that influence recognition accuracy. This thesis explores the impact of Human Factors on the successful recognition of speech, principally addressing the differences or variability among users. A Threshold Technology T-600 was used for a 100 utterance vocubalary to test 44 subjects. A statistical analysis was conducted on 5 generic categories of Human Factors: Occupational, Operational, Psychological, Physiological and Personal. How the equipment is trained and the experience level of the speaker were found to be key characteristics influencing recognition accuracy. To a lesser extent computer experience, time or week, accent, vital capacity and rate of air flow, speaker cooperativeness and anxiety were found to affect overall error rates.
Fraser, Lisa-Ann; Albaum, Jordan M; Tadrous, Mina; Burden, Andrea M; Shariff, Salimah Z; Cadarette, Suzanne M
2015-01-01
Bisphosphonates are the first-line therapy for the treatment of osteoporosis. In the province of Ontario, the Ontario Drug Benefit Program funds medications for patients aged 65 years and older. The Ontario Drug Benefit Program has a generic substitution policy that requires lower-cost generic drugs to be dispensed when they are available. However, there is controversy surrounding the efficacy and tolerability of generic bisphosphonates. The objective of this study was to describe patterns in the use of brand-name versus generic formulations when dispensing oral bisphosphonate over a 13-year period. We identified all osteoporotic preparations for alendronate and risedronate that were dispensed through the Ontario Drug Benefit Program from 2001 to 2014. We stratified our sample into community-dwelling residents and residents in long-term care facilities. The number of prescriptions dispensed per month were plotted to illustrate trends over time. We found a rapid switch from brand-name to generic bisphosphonate equivalents immediately after the generic became available on the Ontario Drug Benefit formulary, with generics accounting for > 88% of dispensed drug within 2 months. We also observed a reduction in the number of generic drugs dispensed each time a new brand-name alternative (e.g., monthly risedronate, weekly alendronate plus vitamin D) was introduced to the formulary. The dispensing trends were similar in the community and long-term care settings. The Ontario Drug Benefit Program generic substitution policy resulted in rapid uptake of generic oral bisphosphonates among seniors in Ontario. However, there was a switch away from generic medications to new brand-name alternatives whenever they were introduced to the formulary. Therefore, some patients continued to use brand-name bisphosphonate despite the availability of generic options.
NASA Technical Reports Server (NTRS)
Uldomkesmalee, Suraphol; Suddarth, Steven C.
1997-01-01
VIGILANTE is an ultrafast smart sensor testbed for generic Automatic Target Recognition (ATR) applications with a series of capability demonstration focussed on cruise missile defense (CMD). VIGILANTE's sensor/processor architecture is based on next-generation UV/visible/IR sensors and a tera-operations per second sugar-cube processor, as well as supporting airborne vehicle. Excellent results of efficient ATR methodologies that use an eigenvectors/neural network combination and feature-based precision tracking have been demonstrated in the laboratory environment.
Face recognition system and method using face pattern words and face pattern bytes
Zheng, Yufeng
2014-12-23
The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.
Physicians’ generic drug prescribing behavior in district hospitals: a case of Phitsanulok, Thailand
Plianbangchang, Pinyupa; Jetiyanon, Kanchalee; Suttaloung, Charawee; Khumchuen, Lalida
2010-01-01
Generic prescribing is a sound approach to contain health care costs. However, little is known about physicians’ prescribing patterns in the Thai context. Objective: To explore physicians’ generic prescription patterns in district hospitals. Methods: Data was collected from three of the eight district hospitals between January and December 2008 (final response rate 37.5%). All participating hospitals were between 30 and 60-bed capacity. The researchers reviewed 10% of total outpatient prescriptions in each hospital. Results: A total of 14,500 prescriptions were evaluated. The majority of patients were under universal health coverage (4,367; 30.1%), followed by senior citizens’ health insurance (2,734; 18.9%), and civil servant medical benefit schemes (2,419; 16.7%). Ten thousand six hundred and seventy-one prescriptions (73.6% of total prescriptions) had at least one medication. Among these, each prescription contained 2.85 (SD=1.69) items. The majority of prescriptions (7,886; 73.9%) were prescribed by generic name only. Drugs prescribed by brand names varied in their pharmacological actions. They represented both innovator and branded-generic items. Interestingly, a large number of them were fixed-dose combination drugs. All brand name prescriptions were off patented. In addition, none of the brand-name drugs prescribed were categorized as narrow therapeutic range or any other drug that had been reported to have had problems with generic substitution. Conclusion: The majority of prescriptions in this sample were written by generic names. There is room for improvement in brand name prescribing patterns. PMID:25126136
Pattern Recognition Using Artificial Neural Network: A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.
Generic decoding of seen and imagined objects using hierarchical visual features.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-05-22
Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.
Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.
Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin
2016-04-14
Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.
Safety Case Patterns: Theory and Applications
NASA Technical Reports Server (NTRS)
Denney, Ewen W.; Pai, Ganesh J.
2015-01-01
We develop the foundations for a theory of patterns of safety case argument structures, clarifying the concepts involved in pattern specification, including choices, labeling, and well-founded recursion. We specify six new patterns in addition to those existing in the literature. We give a generic way to specify the data required to instantiate patterns and a generic algorithm for their instantiation. This generalizes earlier work on generating argument fragments from requirements tables. We describe an implementation of these concepts in AdvoCATE, the Assurance Case Automation Toolset, showing how patterns are defined and can be instantiated. In particular, we describe how our extended notion of patterns can be specified, how they can be instantiated in an interactive manner, and, finally, how they can be automatically instantiated using our algorithm.
Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders
ERIC Educational Resources Information Center
Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia
2006-01-01
Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
Understanding eye movements in face recognition using hidden Markov models.
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2014-09-16
We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.
Factors influencing the pattern of self-medication in an adult Nigerian population.
Afolabi, A O
2008-09-01
Despite the growing research interest in self-medication, little information has been available about its major determinants especially in developing countries. This informed the conduct of this study to determine the major factors that influence the pattern of self medication in a population of market women in Ifako-Ijaiye area of Lagos, Nigeria. Interviewer administered pretested semistructured questionnaire was used to collect data from 205 market women selected by multistage sampling technique. The patent medicine dealers were the commonest source of information on medications (31.4%) and where they were obtained (52.2%). The exceptions were the educated (62.5%) respondents who obtained theirs from hospitals and pharmacies. Trade and generic names (61.1%) were common means of drug recognition especially among the educated respondents (P<.05). Education of the respondents was the major factor influencing the practice of self-medication though the pattern was descriptively associated with the marital status and educational level of the respondents (P<.05). Benefits of the practice includes in the order: curing of ailments (58.0%), saving time and money (32.0%) and independence of care (7.0%). Literacy and public health education were the major factors influencing the pattern of self-medication among market women. Recommendations on the role of education of market women, patent medicine dealers and the importance of community pharmacy were suggested.
Pattern activation/recognition theory of mind
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228
Pattern activation/recognition theory of mind.
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.
Miller, J
1997-01-01
The domain of inquiry for this study was the influence of the American political environmental context on professional and generic care patterns, expressions, and meanings of Czech American immigrants. The purpose of the research was to document, describe, interpret, and analyze the diversities and universalities of professional and generic care for this cultural group, to provide culturally congruent care to Czech Americans, and to explicate the role of politics as an influence on care patterns, health, and well being. The researcher's former transcultural ethnonursing study in Prague, Czechoslovakia in 1991 served as a stimulus for this in-depth study on politics and care. Twelve key and twenty general informants were interviewed. Five major themes were identified. The researcher discovered that the capitalist economic market structure of the United States influenced informant lifeways in all dimensions of Leininger's Theory of Culture Care Diversity and Universality, as depicted in the Sunrise Model. Specific care patterns discovered included care as choice, care as responsibility, and care as helping each other. Findings related to professional and generic care supported researcher predictions that generic culture care patterns would be important to immigrants. Provisions for culturally congruent nursing care were articulated based on research findings.
NASA Astrophysics Data System (ADS)
Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik
2016-03-01
A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Online Collaborative Communities of Learning for Pre-Service Teachers of Languages
ERIC Educational Resources Information Center
Morgan, Anne-Marie
2015-01-01
University programs for preparing preservice teachers of languages for teaching in schools generally involve generic pedagogy, methodology, curriculum, programming and issues foci, that provide a bridge between the study of languages (or recognition of existing language proficiency) and the teaching of languages. There is much territory to cover…
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Robust autoassociative memory with coupled networks of Kuramoto-type oscillators
NASA Astrophysics Data System (ADS)
Heger, Daniel; Krischer, Katharina
2016-08-01
Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.
Sorted Index Numbers for Privacy Preserving Face Recognition
NASA Astrophysics Data System (ADS)
Wang, Yongjin; Hatzinakos, Dimitrios
2009-12-01
This paper presents a novel approach for changeable and privacy preserving face recognition. We first introduce a new method of biometric matching using the sorted index numbers (SINs) of feature vectors. Since it is impossible to recover any of the exact values of the original features, the transformation from original features to the SIN vectors is noninvertible. To address the irrevocable nature of biometric signals whilst obtaining stronger privacy protection, a random projection-based method is employed in conjunction with the SIN approach to generate changeable and privacy preserving biometric templates. The effectiveness of the proposed method is demonstrated on a large generic data set, which contains images from several well-known face databases. Extensive experimentation shows that the proposed solution may improve the recognition accuracy.
Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms
Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan
2017-01-01
Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909
Art critic: Multisignal vision and speech interaction system in a gaming context.
Reale, Michael J; Liu, Peng; Yin, Lijun; Canavan, Shaun
2013-12-01
True immersion of a player within a game can only occur when the world simulated looks and behaves as close to reality as possible. This implies that the game must correctly read and understand, among other things, the player's focus, attitude toward the objects/persons in focus, gestures, and speech. In this paper, we proposed a novel system that integrates eye gaze estimation, head pose estimation, facial expression recognition, speech recognition, and text-to-speech components for use in real-time games. Both the eye gaze and head pose components utilize underlying 3-D models, and our novel head pose estimation algorithm uniquely combines scene flow with a generic head model. The facial expression recognition module uses the local binary patterns with three orthogonal planes approach on the 2-D shape index domain rather than the pixel domain, resulting in improved classification. Our system has also been extended to use a pan-tilt-zoom camera driven by the Kinect, allowing us to track a moving player. A test game, Art Critic, is also presented, which not only demonstrates the utility of our system but also provides a template for player/non-player character (NPC) interaction in a gaming context. The player alters his/her view of the 3-D world using head pose, looks at paintings/NPCs using eye gaze, and makes an evaluation based on the player's expression and speech. The NPC artist will respond with facial expression and synthetic speech based on its personality. Both qualitative and quantitative evaluations of the system are performed to illustrate the system's effectiveness.
A new generic system for the pantropical Caesalpinia group (Leguminosae).
Gagnon, Edeline; Bruneau, Anne; Hughes, Colin E; de Queiroz, Luciano Paganucci; Lewis, Gwilym P
2016-01-01
The Caesalpinia group is a large pantropical clade of ca. 205 species in subfamily Caesalpinioideae (Leguminosae) in which generic delimitation has been in a state of considerable flux. Here we present new phylogenetic analyses based on five plastid and one nuclear ribosomal marker, with dense taxon sampling including 172 (84%) of the species and representatives of all previously described genera in the Caesalpinia group. These analyses show that the current classification of the Caesalpinia group into 21 genera needs to be revised. Several genera ( Poincianella , Erythrostemon , Cenostigma and Caesalpinia sensu Lewis, 2005) are non-monophyletic and several previously unclassified Asian species segregate into clades that merit recognition at generic rank. In addition, the near-completeness of our taxon sampling identifies three species that do not belong in any of the main clades and these are recognised as new monospecific genera. A new generic classification of the Caesalpinia group is presented including a key for the identification of genera, full generic descriptions, illustrations (drawings and photo plates of all genera), and (for most genera) the nomenclatural transfer of species to their correct genus. We recognise 26 genera, with reinstatement of two previously described genera ( Biancaea Tod., Denisophytum R. Vig.), re-delimitation and expansion of several others ( Moullava , Cenostigma , Libidibia and Erythrostemon ), contraction of Caesalpinia s.s. and description of four new ones ( Gelrebia , Paubrasilia , Hererolandia and Hultholia ), and make 75 new nomenclatural combinations in this new generic system.
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2018-01-01
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors
NASA Astrophysics Data System (ADS)
Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.;
2017-09-01
The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.
On the particular vulnerability of face recognition to aging: a review of three hypotheses
Boutet, Isabelle; Taler, Vanessa; Collin, Charles A.
2015-01-01
Age-related face recognition deficits are characterized by high false alarms to unfamiliar faces, are not as pronounced for other complex stimuli, and are only partially related to general age-related impairments in cognition. This paper reviews some of the underlying processes likely to be implicated in theses deficits by focusing on areas where contradictions abound as a means to highlight avenues for future research. Research pertaining to the three following hypotheses is presented: (i) perceptual deterioration, (ii) encoding of configural information, and (iii) difficulties in recollecting contextual information. The evidence surveyed provides support for the idea that all three factors are likely to contribute, under certain conditions, to the deficits in face recognition seen in older adults. We discuss how these different factors might interact in the context of a generic framework of the different stages implicated in face recognition. Several suggestions for future investigations are outlined. PMID:26347670
Real Time Large Memory Optical Pattern Recognition.
1984-06-01
AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical
Classification and machine recognition of severe weather patterns
NASA Technical Reports Server (NTRS)
Wang, P. P.; Burns, R. C.
1976-01-01
Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.
RFID: A Revolution in Automatic Data Recognition
ERIC Educational Resources Information Center
Deal, Walter F., III
2004-01-01
Radio frequency identification, or RFID, is a generic term for technologies that use radio waves to automatically identify people or objects. There are several methods of identification, but the most common is to store a serial number that identifies a person or object, and perhaps other information, on a microchip that is attached to an antenna…
Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
New Optical Transforms For Statistical Image Recognition
NASA Astrophysics Data System (ADS)
Lee, Sing H.
1983-12-01
In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
A segmentation-free approach to Arabic and Urdu OCR
NASA Astrophysics Data System (ADS)
Sabbour, Nazly; Shafait, Faisal
2013-01-01
In this paper, we present a generic Optical Character Recognition system for Arabic script languages called Nabocr. Nabocr uses OCR approaches specific for Arabic script recognition. Performing recognition on Arabic script text is relatively more difficult than Latin text due to the nature of Arabic script, which is cursive and context sensitive. Moreover, Arabic script has different writing styles that vary in complexity. Nabocr is initially trained to recognize both Urdu Nastaleeq and Arabic Naskh fonts. However, it can be trained by users to be used for other Arabic script languages. We have evaluated our system's performance for both Urdu and Arabic. In order to evaluate Urdu recognition, we have generated a dataset of Urdu text called UPTI (Urdu Printed Text Image Database), which measures different aspects of a recognition system. The performance of our system for Urdu clean text is 91%. For Arabic clean text, the performance is 86%. Moreover, we have compared the performance of our system against Tesseract's newly released Arabic recognition, and the performance of both systems on clean images is almost the same.
The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.
Marée, Raphaël
2017-01-01
Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.
Pattern recognition: A basis for remote sensing data analysis
NASA Technical Reports Server (NTRS)
Swain, P. H.
1973-01-01
The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.
Optical Pattern Recognition With Self-Amplification
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1994-01-01
In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.
Summers, Alexander; Ruderman, Carly; Leung, Fok-Han; Slater, Morgan
2017-09-22
Studies in the United States have shown that physicians commonly use brand names when documenting medications in an outpatient setting. However, the prevalence of prescribing and documenting brand name medication has not been assessed in a clinical teaching environment. The purpose of this study was to describe the use of generic versus brand names for a select number of pharmaceutical products in clinical documentation in a large, urban academic family practice centre. A retrospective chart review of the electronic medical records of the St. Michael's Hospital Academic Family Health Team (SMHAFHT). Data for twenty commonly prescribed medications were collected from the Cumulative Patient Profile as of August 1, 2014. Each medication name was classified as generic or trade. Associations between documentation patterns and physician characteristics were assessed. Among 9763 patients prescribed any of the twenty medications of interest, 45% of patient charts contained trade nomenclature exclusively. 32% of charts contained only generic nomenclature, and 23% contained a mix of generic and trade nomenclature. There was large variation in use of generic nomenclature amongst physicians, ranging from 19% to 93%. Trade names in clinical documentation, which likely reflect prescribing habits, continue to be used abundantly in the academic setting. This may become part of the informal curriculum, potentially facilitating undue bias in trainees. Further study is needed to determine characteristics which influence use of generic or trade nomenclature and the impact of this trend on trainees' clinical knowledge and decision-making.
NASA Astrophysics Data System (ADS)
Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise
2018-01-01
Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.
ERIC Educational Resources Information Center
Annett, John
An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…
Degraded character recognition based on gradient pattern
NASA Astrophysics Data System (ADS)
Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash
2010-02-01
Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.
Automatic Target Recognition Based on Cross-Plot
Wong, Kelvin Kian Loong; Abbott, Derek
2011-01-01
Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Acciarri, R.; Adams, C.; An, R.; ...
2018-01-29
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Mechanisms and neural basis of object and pattern recognition: a study with chess experts.
Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-11-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.
Finger Vein Recognition Based on Local Directional Code
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-01-01
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194
Finger vein recognition based on local directional code.
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-11-05
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
The recognition of graphical patterns invariant to geometrical transformation of the models
NASA Astrophysics Data System (ADS)
Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian
2010-11-01
In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.
NASA Technical Reports Server (NTRS)
Hong, J. P.
1971-01-01
Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.
Knowledge Acquisition of Generic Queries for Information Retrieval
Seol, Yoon-Ho; Johnson, Stephen B.; Cimino, James J.
2002-01-01
Several studies have identified clinical questions posed by health care professionals to understand the nature of information needs during clinical practice. To support access to digital information sources, it is necessary to integrate the information needs with a computer system. We have developed a conceptual guidance approach in information retrieval, based on a knowledge base that contains the patterns of information needs. The knowledge base uses a formal representation of clinical questions based on the UMLS knowledge sources, called the Generic Query model. To improve the coverage of the knowledge base, we investigated a method for extracting plausible clinical questions from the medical literature. This poster presents the Generic Query model, shows how it is used to represent the patterns of clinical questions, and describes the framework used to extract knowledge from the medical literature.
A new generic system for the pantropical Caesalpinia group (Leguminosae)
Gagnon, Edeline; Bruneau, Anne; Hughes, Colin E.; de Queiroz, Luciano Paganucci; Lewis, Gwilym P.
2016-01-01
Abstract The Caesalpinia group is a large pantropical clade of ca. 205 species in subfamily Caesalpinioideae (Leguminosae) in which generic delimitation has been in a state of considerable flux. Here we present new phylogenetic analyses based on five plastid and one nuclear ribosomal marker, with dense taxon sampling including 172 (84%) of the species and representatives of all previously described genera in the Caesalpinia group. These analyses show that the current classification of the Caesalpinia group into 21 genera needs to be revised. Several genera (Poincianella, Erythrostemon, Cenostigma and Caesalpinia sensu Lewis, 2005) are non-monophyletic and several previously unclassified Asian species segregate into clades that merit recognition at generic rank. In addition, the near-completeness of our taxon sampling identifies three species that do not belong in any of the main clades and these are recognised as new monospecific genera. A new generic classification of the Caesalpinia group is presented including a key for the identification of genera, full generic descriptions, illustrations (drawings and photo plates of all genera), and (for most genera) the nomenclatural transfer of species to their correct genus. We recognise 26 genera, with reinstatement of two previously described genera (Biancaea Tod., Denisophytum R. Vig.), re-delimitation and expansion of several others (Moullava, Cenostigma, Libidibia and Erythrostemon), contraction of Caesalpinia s.s. and description of four new ones (Gelrebia, Paubrasilia, Hererolandia and Hultholia), and make 75 new nomenclatural combinations in this new generic system. PMID:28814915
2014-01-01
Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
Mitosis detection using generic features and an ensemble of cascade adaboosts.
Tek, F Boray
2013-01-01
Mitosis count is one of the factors that pathologists use to assess the risk of metastasis and survival of the patients, which are affected by the breast cancer. We investigate an application of a set of generic features and an ensemble of cascade adaboosts to the automated mitosis detection. Calculation of the features rely minimally on object-level descriptions and thus require minimal segmentation. The proposed work was developed and tested on International Conference on Pattern Recognition (ICPR) 2012 mitosis detection contest data. We plotted receiver operating characteristics curves of true positive versus false positive rates; calculated recall, precision, F-measure, and region overlap ratio measures. WE TESTED OUR FEATURES WITH TWO DIFFERENT CLASSIFIER CONFIGURATIONS: 1) An ensemble of single adaboosts, 2) an ensemble of cascade adaboosts. On the ICPR 2012 mitosis detection contest evaluation, the cascade ensemble scored 54, 62.7, and 58, whereas the non-cascade version scored 68, 28.1, and 39.7 for the recall, precision, and F-measure measures, respectively. Mostly used features in the adaboost classifier rules were a shape-based feature, which counted granularity and a color-based feature, which relied on Red, Green, and Blue channel statistics. The features, which express the granular structure and color variations, are found useful for mitosis detection. The ensemble of adaboosts performs better than the individual adaboost classifiers. Moreover, the ensemble of cascaded adaboosts was better than the ensemble of single adaboosts for mitosis detection.
Murata, Kyoko; Hinotsu, Shiro; Hamada, Shota; Ezoe, Yasumasa; Muto, Manabu; Kawakami, Koji
2015-02-27
Despite rising healthcare costs, generic drugs are less frequently dispensed in Japan compared with other developed countries. This study aimed to describe changes in dispensing of branded and generic drugs and to explore possible factors that promote the use of generic drugs. We conducted a retrospective cohort study using a Japanese medical and pharmacy claims database. All proton pump inhibitors (PPIs) and histamine H2-receptor antagonists (H2RAs) with indications for gastroesophageal reflux disease (GERD) described on Japanese labels were included. Patterns of dispensing branded and generic drugs for the treatment of GERD between 2006 and 2011 were analyzed. Multivariate logistic regression was applied to investigate factors associated with receiving generic drugs. The study cohort included 14,590 patients (male: 50.2%, mean age: 43.1 years). Branded drugs for GERD were still frequently dispensed despite an increase in the share of generic drugs. Only 4.3% of patients who initially received branded drugs switched to generic drugs. The percentage of patients who received only generic drugs increased over time (6.5% to 22.1%). The frequency of generic drug dispensing was the highest in the setting where both prescription and dispensing were implemented in clinics (43.3%), while the lowest in the setting where both prescription and dispensing were implemented in hospitals (11.5%). Factors associated with receiving generic drugs included year of dispensing (adjusted OR 2.22, 95% CI 1.94 to 2.55 for 2009-11 v 2006-8), prescription and dispensing setting (OR 1.81, 95% CI 1.44 to 2.26 for prescription in hospitals and dispensing in community pharmacies; OR 2.21, 95% CI 1.80 to 2.72 for prescription in clinics and dispensing in community pharmacies; and OR 4.55, 95% CI 3.68 to 5.62 for prescription and dispensing in clinics v prescription and dispensing in hospitals) and H2RAs (OR 1.64, 95% CI 1.49 to 1.81 compared to PPIs). The share of generic drugs for the treatment of GERD increased over time although branded drugs for GERD were still dispensed frequently. The use of generic drugs for GERD was influenced not only by government policies but also by changes in treatment approach and the setting of prescription and dispensing.
On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information
NASA Astrophysics Data System (ADS)
Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.
Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.
Basics of identification measurement technology
NASA Astrophysics Data System (ADS)
Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.
2018-01-01
All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.
Pattern recognition neural-net by spatial mapping of biology visual field
NASA Astrophysics Data System (ADS)
Lin, Xin; Mori, Masahiko
2000-05-01
The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.
Patterns in spontaneous adverse event reporting among branded and generic antiepileptic drugs.
Bohn, J; Kortepeter, C; Muñoz, M; Simms, K; Montenegro, S; Dal Pan, G
2015-05-01
Spontaneous adverse event reports constitute an important source of information on previously unknown adverse reactions to marketed medicines. However, the dynamics of such reporting following generic introduction are poorly understood. Using adverse event reports on five antiepileptic drugs from the US Food and Drug Administration's Adverse Event Reporting System, we describe temporal trends in adverse event reporting before and after generic introduction, and survey the quality of product-identifying information contained therein. The majority of reports were sent by innovator drug manufacturers while few were sent by generic manufacturers, even when generics accounted for >90% of dispensed prescriptions. We manually reviewed narratives from 2,500 reports and found that the suspect product type (brand or generic) could not be determined in 84% of reports, while generic products (16%) were identified more often than brand-name products (<1%). These results suggest that pharmacovigilance stakeholders should act to promote more detailed reporting practices. © 2015 American Society for Clinical Pharmacology and Therapeutics.
33 CFR 106.215 - Company or OCS facility personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...
33 CFR 106.215 - Company or OCS facility personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...
Facial expression recognition based on improved local ternary pattern and stacked auto-encoder
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.
Package Design Affects Accuracy Recognition for Medications.
Endestad, Tor; Wortinger, Laura A; Madsen, Steinar; Hortemo, Sigurd
2016-12-01
Our aim was to test if highlighting and placement of substance name on medication package have the potential to reduce patient errors. An unintentional overdose of medication is a large health issue that might be linked to medication package design. In two experiments, placement, background color, and the active ingredient of generic medication packages were manipulated according to best human factors guidelines to reduce causes of labeling-related patient errors. In two experiments, we compared the original packaging with packages where we varied placement of the name, dose, and background of the active ingredient. Age-relevant differences and the effect of color on medication recognition error were tested. In Experiment 1, 59 volunteers (30 elderly and 29 young students), participated. In Experiment 2, 25 volunteers participated. The most common error was the inability to identify that two different packages contained the same active ingredient (young, 41%, and elderly, 68%). This kind of error decreased with the redesigned packages (young, 8%, and elderly, 16%). Confusion errors related to color design were reduced by two thirds in the redesigned packages compared with original generic medications. Prominent placement of substance name and dose with a band of high-contrast color support recognition of the active substance in medications. A simple modification including highlighting and placing the name of the active ingredient in the upper right-hand corner of the package helps users realize that two different packages can contain the same active substance, thus reducing the risk of inadvertent medication overdose. © 2016, Human Factors and Ergonomics Society.
Package Design Affects Accuracy Recognition for Medications
Endestad, Tor; Wortinger, Laura A.; Madsen, Steinar; Hortemo, Sigurd
2016-01-01
Objective: Our aim was to test if highlighting and placement of substance name on medication package have the potential to reduce patient errors. Background: An unintentional overdose of medication is a large health issue that might be linked to medication package design. In two experiments, placement, background color, and the active ingredient of generic medication packages were manipulated according to best human factors guidelines to reduce causes of labeling-related patient errors. Method: In two experiments, we compared the original packaging with packages where we varied placement of the name, dose, and background of the active ingredient. Age-relevant differences and the effect of color on medication recognition error were tested. In Experiment 1, 59 volunteers (30 elderly and 29 young students), participated. In Experiment 2, 25 volunteers participated. Results: The most common error was the inability to identify that two different packages contained the same active ingredient (young, 41%, and elderly, 68%). This kind of error decreased with the redesigned packages (young, 8%, and elderly, 16%). Confusion errors related to color design were reduced by two thirds in the redesigned packages compared with original generic medications. Conclusion: Prominent placement of substance name and dose with a band of high-contrast color support recognition of the active substance in medications. Application: A simple modification including highlighting and placing the name of the active ingredient in the upper right-hand corner of the package helps users realize that two different packages can contain the same active substance, thus reducing the risk of inadvertent medication overdose. PMID:27591209
Circular harmonic filters for the recognition of marine microorganisms
NASA Astrophysics Data System (ADS)
Zavala-Hamz, Victor Antonio; Alvarez-Borrego, Josué
1997-01-01
We present an application of circular-harmonic filters (CHF s) for the recognition of planktonic microorganisms. CHF s discriminated both genera Acartia and Calanus . The symmetry of genus Acartia permitted discrimination to the species and sex levels, whereas the asymmetry of the genus Calanus permitted discrimination only to the generic level. The differences among organisms of different sex of the genus Calanus could not be detected by these particular CHF s. More research needs to be carried out with more complex CHF s to enhance their performance and to permit the implementation of an automated optodigital system to identify and count marine microorganisms.
Patterns recognition of electric brain activity using artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
NASA Astrophysics Data System (ADS)
Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.
2017-01-01
In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.
A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales).
Kepler, Ryan M; Luangsa-Ard, J Jennifer; Hywel-Jones, Nigel L; Quandt, C Alisha; Sung, Gi-Ho; Rehner, Stephen A; Aime, M Catherine; Henkel, Terry W; Sanjuan, Tatiana; Zare, Rasoul; Chen, Mingjun; Li, Zhengzhi; Rossman, Amy Y; Spatafora, Joseph W; Shrestha, Bhushan
2017-12-01
The ending of dual nomenclatural systems for pleomorphic fungi in 2011 requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic systematics of Hypocreales and its many genera have received extensive study in the last two decades, however resolution of competing names in Cordycipitaceae has not yet been addressed. Here we present a molecular phylogenetic investigation of Cordycipitaceae that enables identification of competing names in this family, and provides the basis upon which these names can be maintained or suppressed. The taxonomy presented here seeks to harmonize competing names by principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa. In total, we propose maintaining nine generic names, Akanthomyces, Ascopolyporus, Beauveria, Cordyceps, Engyodontium, Gibellula, Hyperdermium, Parengyodontium, and Simplicillium and the rejection of eight generic names, Evlachovaea , Granulomanus , Isaria , Lecanicillium, Microhilum, Phytocordyceps, Synsterigmatocystis, and Torrubiella . Two new generic names, Hevansia and Blackwellomyces , and a new species, Beauveria blattidicola , are described. New combinations are also proposed in the genera Akanthomyces, Beauveria, Blackwellomyces, and Hevansia.
ICPR-2016 - International Conference on Pattern Recognition
Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and
Hopfield's Model of Patterns Recognition and Laws of Artistic Perception
NASA Astrophysics Data System (ADS)
Yevin, Igor; Koblyakov, Alexander
The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.
USDA-ARS?s Scientific Manuscript database
Polyclonal antibody (PAb) with broad-specificity for O,O-diethyl organophosphorus pesticides (OPs) against a generic hapten, 4-(diethoxyphosphoro thioyloxy) benzoic acid, was produced. The obtained PAb showed high sensitivity to seven commonly used O,O-diethyl OPs in a competitive indirect enzyme-l...
Computer discrimination procedures applicable to aerial and ERTS multispectral data
NASA Technical Reports Server (NTRS)
Richardson, A. J.; Torline, R. J.; Allen, W. A.
1970-01-01
Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Rahman, Md Motiur; Alatawi, Yasser; Cheng, Ning; Qian, Jingjing; Peissig, Peggy L; Berg, Richard L; Page, David C; Hansen, Richard A
2017-12-01
The US Food and Drug Administration Adverse Event Reporting System (FAERS), a post-marketing safety database, can be used to differentiate brand versus generic safety signals. To explore the methods for identifying and analyzing brand versus generic adverse event (AE) reports. Public release FAERS data from January 2004 to March 2015 were analyzed using alendronate and carbamazepine as examples. Reports were classified as brand, generic, and authorized generic (AG). Disproportionality analyses compared reporting odds ratios (RORs) of selected known labeled serious adverse events stratifying by brand, generic, and AG. The homogeneity of these RORs was compared using the Breslow-Day test. The AG versus generic was the primary focus since the AG is identical to brand but marketed as a generic, therefore minimizing generic perception bias. Sensitivity analyses explored how methodological approach influenced results. Based on 17,521 US event reports involving alendronate and 3733 US event reports involving carbamazepine (immediate and extended release), no consistently significant differences were observed across RORs for the AGs versus generics. Similar results were obtained when comparing reporting patterns over all time and just after generic entry. The most restrictive approach for classifying AE reports yielded smaller report counts but similar results. Differentiation of FAERS reports as brand versus generic requires careful attention to risk of product misclassification, but the relative stability of findings across varying assumptions supports the utility of these approaches for potential signal detection.
Encouraging the use of generic medicines: implications for transition economies.
King, Derek R; Kanavos, Panos
2002-08-01
Generic drugs have a key role to play in the efficient allocation of financial resources for pharmaceutical medicines. Policies implemented in the countries with a high rate of generic drug use, such as Canada, Denmark, Germany, the Netherlands, the United Kingdom, and the United States, are reviewed, with consideration of the market structures that facilitate strong competition. Savings in these countries are realized through increases in the volume of generic drugs used and the frequently significant differences in the price between generic medicines and branded originator medicines. Their policy tools include the mix of supply-side measures and demand-side measures that are relevant for generic promotion and higher generic use. On the supply-side, key policy measures include generic drug marketing regulation that facilitates market entry soon after patent expiration, reference pricing, the pricing of branded originator products, and the degree of price competition in pharmaceutical markets. On the demand-side, measures typically encompass influencing prescribing and dispensing patterns as well as introducing a co-payment structure for consumers/patients that takes into consideration the difference in cost between branded and generic medicines. Quality of generic medicines is a pre-condition for all other measures discussed to take effect. The paper concludes by offering a list of policy options for decision-makers in Central and Eastern European economies in transition.
Pattern association--a key to recognition of shark attacks.
Cirillo, G; James, H
2004-12-01
Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre
2017-06-01
We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.
Finger vein recognition based on personalized weight maps.
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-09-10
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.
Finger Vein Recognition Based on Personalized Weight Maps
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-01-01
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-22
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-01-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
NASA Astrophysics Data System (ADS)
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
NASA Technical Reports Server (NTRS)
Mogford, Richard H.; Bridges, Wayne; Gujarl, Vimmy; Lee, Paul U.; Preston, William
2013-01-01
This paper reports on an extension of generic airspace research to explore the amount of memorization and specialized skills required to manage sectors with specific characteristics or factors. Fifty-five retired controllers were given an electronic survey where they rated the amount of memorization or specialized skills needed for sixteen generic airspace factors. The results suggested similarities in the pattern of ratings between different areas of the US (East, Central, and West). The average of the ratings for each area also showed some differences between regions, with ratings being generally higher in the East area. All sixteen factors were rated as moderately to highly important and may be useful for future research on generic airspace, air traffic controller workload, etc.
A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation
USDA-ARS?s Scientific Manuscript database
Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2011 CFR
2011-07-01
... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2010 CFR
2010-07-01
... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...
Infrared face recognition based on LBP histogram and KW feature selection
NASA Astrophysics Data System (ADS)
Xie, Zhihua
2014-07-01
The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).
2D DOST based local phase pattern for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.
Economic aspects of drug substitution
Salehi, Hossein; Schweitzer, Stuart O.
1985-01-01
One of the major directions of health policy is the attempt to contain expenditures on pharmaceuticals by encouraging substitution of generic for brand name drug products. Yet, a major marketing survey of prescribing and dispensing patterns in California in 1977 found relatively little drug substitution occurring, and in fact substitution of more expensive products occurred more frequently than did substitution of less expensive products. This article tests alternative models of pharmacy dispensing behavior to better explain substitution patterns and it estimates price functions to measure the extent to which cost savings on generic products are passed on to consumers. PMID:10311162
Optical Pattern Recognition for Missile Guidance.
1982-11-15
directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec
Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?
ERIC Educational Resources Information Center
Howe, Christine; Taylor Tavares, Joana; Devine, Amy
2016-01-01
Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…
33 CFR 105.210 - Facility personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...
33 CFR 105.210 - Facility personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...
Face recognition using an enhanced independent component analysis approach.
Kwak, Keun-Chang; Pedrycz, Witold
2007-03-01
This paper is concerned with an enhanced independent component analysis (ICA) and its application to face recognition. Typically, face representations obtained by ICA involve unsupervised learning and high-order statistics. In this paper, we develop an enhancement of the generic ICA by augmenting this method by the Fisher linear discriminant analysis (LDA); hence, its abbreviation, FICA. The FICA is systematically developed and presented along with its underlying architecture. A comparative analysis explores four distance metrics, as well as classification with support vector machines (SVMs). We demonstrate that the FICA approach leads to the formation of well-separated classes in low-dimension subspace and is endowed with a great deal of insensitivity to large variation in illumination and facial expression. The comprehensive experiments are completed for the facial-recognition technology (FERET) face database; a comparative analysis demonstrates that FICA comes with improved classification rates when compared with some other conventional approaches such as eigenface, fisherface, and the ICA itself.
NASA Astrophysics Data System (ADS)
Sato, Ayuko; Iwasaki, Akiko
2004-11-01
Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection
A Scientific Workflow Platform for Generic and Scalable Object Recognition on Medical Images
NASA Astrophysics Data System (ADS)
Möller, Manuel; Tuot, Christopher; Sintek, Michael
In the research project THESEUS MEDICO we aim at a system combining medical image information with semantic background knowledge from ontologies to give clinicians fully cross-modal access to biomedical image repositories. Therefore joint efforts have to be made in more than one dimension: Object detection processes have to be specified in which an abstraction is performed starting from low-level image features across landmark detection utilizing abstract domain knowledge up to high-level object recognition. We propose a system based on a client-server extension of the scientific workflow platform Kepler that assists the collaboration of medical experts and computer scientists during development and parameter learning.
Generation of Dynamic Combinatorial Libraries Using Hydrazone‐Functionalized Surface Mimetics
Hewitt, Sarah H.
2018-01-01
Dynamic combinatorial chemistry (DCC) represents an approach, whereby traditional supramolecular scaffolds used for protein surface recognition might be exploited to achieve selective high affinity target recognition. Synthesis, in situ screening and amplification under selection pressure allows the generation of ligands, which bear different moieties capable of making multivalent non‐covalent interactions with target proteins. Generic tetracarboxyphenyl porphyrin scaffolds bearing four hydrazide moieties have been used to form dynamic combinatorial libraries (DCLs) using aniline‐catalyzed reversible hydrazone exchange reactions, in 10 % DMSO, 5 mm NH4OAc, at pH 6.75. High resolution mass spectrometry (HRMS) was used to monitor library composition and establish conditions under which equilibria were established.
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
Repetition and lag effects in movement recognition.
Hall, C R; Buckolz, E
1982-03-01
Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.
Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D
2016-03-01
In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.
Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition
Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan
2017-01-01
Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273
Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition
Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan
2017-11-26
Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Seth; Chen Bin; Holbrook, Kristen
CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less
NASA Astrophysics Data System (ADS)
Liu, Zexi; Cohen, Fernand
2017-11-01
We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.
Fault Diagnosis in HVAC Chillers
NASA Technical Reports Server (NTRS)
Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann
2005-01-01
Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.
Coelho, Ana Carolina; de Mattos, Thais Lemos; Viana, Patrik; Terencio, Maria Leandra; Schneider, Carlos Henrique; Menin, Marcelo; Gross, Maria Claudia
2016-02-01
The genera Leptodactylus and Adenomera comprise 92 species distributed throughout the Neotropical region. These species have a modal diploid chromosome number 2n = 22. However, chromosome rearrangements are evident in the differentiation of five intra-generic groups in the genus Leptodactylus (L. fuscus, L. latrans, L. marmoratus (formally composed by the species of the genus Adenomera), L. melanonotus, L. pentadactylus), yet it is not clear if there is a karyotype pattern for each group. Aiming to understand the intra-generic and interspecific karyotype patterns of Leptodactylus and Adenomera, cytogenetic analyses were performed in A. andreae, L. macrosternum, L. pentadactylus, L. petersii, and L. riveroi using conventional staining, C-banding, nucleolus organizer region (NOR) and hybridization in situ fluorescent (FISH). The karyotype of Leptodactylus riveroi was described for the first time. Adenomera andreae had 2n = 26, while the remaining species 2n = 22. The NOR was found on pair No. 8 of A. andreae, L. macrosternum, L. pentadactylus, and L. riveroi, whereas L. petersii had it on pairs Nos. 6 and 10. These locations were confirmed by the FISH with 18S rDNA probe, except for pair No. 10 of L. petersii. The C-banding pattern was evident at the centromeres of chromosomes of all species and some interspecific variations were also observed. 2n = 22 was observed in the species of the L. latrans group, as well as in the intra-generic groups L. fuscus and L. pentadactylus; in the L. melanonotus group there were three diploid chromosome numbers 2n = 20, 22 and 24; and a larger variation in 2n was also evident in the L. marmoratus group.
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
Optical character recognition based on nonredundant correlation measurements.
Braunecker, B; Hauck, R; Lohmann, A W
1979-08-15
The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.
ERIC Educational Resources Information Center
Tucker, Gloria J.
2016-01-01
This generic qualitative study investigated the experiences of counselors who use cognitive behavioral therapy with middle school students who were bullied. Counselors can play a significant role in the life of an adolescent when tools are offered to help the adolescent recognize negative thought patterns and help them work towards attaining…
Self-organizing neural network models for visual pattern recognition.
Fukushima, K
1987-01-01
Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.
Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David
2017-11-01
Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.
A strip chart recorder pattern recognition tool kit for Shuttle operations
NASA Technical Reports Server (NTRS)
Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.
1993-01-01
During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.
A dynamical pattern recognition model of gamma activity in auditory cortex
Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.
2012-01-01
This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049
Visual cluster analysis and pattern recognition methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
2001-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1984-01-01
Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.
Proceedings of the NASA/MPRIA Workshop: Pattern Recognition
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1983-01-01
Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.
NASA Astrophysics Data System (ADS)
Intriligator, M.
2011-12-01
Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.
Running Improves Pattern Separation during Novel Object Recognition.
Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef
2015-10-09
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
A Compact Prototype of an Optical Pattern Recognition System
NASA Technical Reports Server (NTRS)
Jin, Y.; Liu, H. K.; Marzwell, N. I.
1996-01-01
In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.
Comparison of Generic-to-Brand Switchback Rates Between Generic and Authorized Generic Drugs.
Hansen, Richard A; Qian, Jingjing; Berg, Richard; Linneman, James; Seoane-Vazquez, Enrique; Dutcher, Sarah K; Raofi, Saeid; Page, C David; Peissig, Peggy
2017-04-01
Generic drugs contain identical active ingredients as their corresponding brand drugs and are pharmaceutically equivalent and bioequivalent, whereas authorized generic drugs (AGs) contain both identical active and inactive ingredients as their corresponding brand drugs but are marketed as generics. This study compares generic-to-brand switchback rates between generic and AGs. Retrospective cohort study. Claims and electronic health record data from a regional U.S. health care system. The full cohort consisted of 5542 unique patients who received select branded drugs during the 6 months prior to their generic drug market availability (between 1999 and 2014) and then were switched to an AG or generic drug within 30 months of generic drug entry. For these patients, 5929 unique patient-drug combinations (867 with AGs and 5062 with generic drugs) were evaluated. Ten drugs with AGs and generics marketed between 1999 and 2014 were evaluated. The date of the first generic prescription was considered the index date for each drug, and it marked the beginning of follow-up to evaluate the occurrence of generic-to-brand switchback patterns over the subsequent 30 months. Switchback rates were compared between patients receiving AGs versus those receiving generics using multivariable Cox proportional hazards models, controlling for individual drug effects, age, sex, Charlson Comorbidity Score, pre-index drug use characteristics, and pre-index health care utilization. Among the 5542 unique patients who switched from brand to generic or brand to AG, 264 (4.8%) switched back to the brand drug. Overall switchback rates were similar for AGs compared with generics (hazard ratio [HR] 0.86, 95% confidence interval [CI] 0.65-1.15). The likelihood of switchback was higher for alendronate (HR 1.64, 95% CI 1.20-2.23) and simvastatin (HR 1.81, 95% CI 1.30-2.54) and lower for amlodipine (HR 0.27, 95% CI 0.17-0.42) compared with the other drugs evaluated. Overall switchback rates were similar between AG and generic drug users, indirectly supporting similar efficacy and tolerability profiles for brand and generic drugs. Reasons for differences in switchback rates among specific products need to be explored further. © 2017 Pharmacotherapy Publications, Inc.
Andersson, Karolina A; Petzold, Max G; Allebeck, Peter; Carlsten, Anders
2008-02-29
Mandatory generic substitution was introduced in Sweden in October 2002 in order to try to curb escalating pharmaceutical expenditure. The aim of this study was to investigate how sales patterns for substitutable and non-substitutable pharmaceuticals have developed since the introduction of mandatory generic substitution; furthermore, to compare sales patterns in different groups of the population, based on patients' age and gender. Five therapeutic groups comprising both substitutable and non-substitutable pharmaceuticals were included. The study period was from January 2000 to June 2005. National sales data were used, covering volumes of dispensed prescription medicines (expressed in defined daily doses per 1000 inhabitants and day) of each pharmacological substance in the therapeutic groups for each age and gender group. Sales patterns for substitutable and non-substitutable pharmaceuticals were compared using a descriptive approach. In most therapeutic groups there has been an increase in the volumes of substitutable pharmaceuticals sold since the introduction of the reform, ranging from one third to three times the initial volume; whereas the volumes of non-substitutable pharmaceuticals have levelled out or declined. There were few gender differences in sales patterns of substitutable and non-substitutable drugs. In three therapeutic groups, sales patterns differed across different age groups, and there was a tendency for volumes of recently introduced non-substitutable pharmaceuticals to be proportionally higher in the youngest age groups. Since the introduction of the reform, there has been a proportionally larger increase in sales of substitutable pharmaceuticals compared with sales of non-substitutable pharmaceuticals. This indicates that the reform might have contributed to larger sales of less expensive pharmaceuticals.
NASA Astrophysics Data System (ADS)
Duclos, D.; Lonnoy, J.; Guillerm, Q.; Jurie, F.; Herbin, S.; D'Angelo, E.
2008-04-01
The last five years have seen a renewal of Automatic Target Recognition applications, mainly because of the latest advances in machine learning techniques. In this context, large collections of image datasets are essential for training algorithms as well as for their evaluation. Indeed, the recent proliferation of recognition algorithms, generally applied to slightly different problems, make their comparisons through clean evaluation campaigns necessary. The ROBIN project tries to fulfil these two needs by putting unclassified datasets, ground truths, competitions and metrics for the evaluation of ATR algorithms at the disposition of the scientific community. The scope of this project includes single and multi-class generic target detection and generic target recognition, in military and security contexts. From our knowledge, it is the first time that a database of this importance (several hundred thousands of visible and infrared hand annotated images) has been publicly released. Funded by the French Ministry of Defence (DGA) and by the French Ministry of Research, ROBIN is one of the ten Techno-vision projects. Techno-vision is a large and ambitious government initiative for building evaluation means for computer vision technologies, for various application contexts. ROBIN's consortium includes major companies and research centres involved in Computer Vision R&D in the field of defence: Bertin Technologies, CNES, ECA, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES. This paper, which first gives an overview of the whole project, is focused on one of ROBIN's key competitions, the SAGEM Defence Security database. This dataset contains more than eight hundred ground and aerial infrared images of six different vehicles in cluttered scenes including distracters. Two different sets of data are available for each target. The first set includes different views of each vehicle at close range in a "simple" background, and can be used to train algorithms. The second set contains many views of the same vehicle in different contexts and situations simulating operational scenarios.
Visual cluster analysis and pattern recognition template and methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
1999-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
Photonic correlator pattern recognition: Application to autonomous docking
NASA Technical Reports Server (NTRS)
Sjolander, Gary W.
1991-01-01
Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.
Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.
Finger Vein Recognition Based on a Personalized Best Bit Map
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735
Finger vein recognition based on a personalized best bit map.
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.
Large-memory real-time multichannel multiplexed pattern recognition
NASA Technical Reports Server (NTRS)
Gregory, D. A.; Liu, H. K.
1984-01-01
The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.
Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.
2010-01-01
Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073
Auditory orientation in crickets: Pattern recognition controls reactive steering
NASA Astrophysics Data System (ADS)
Poulet, James F. A.; Hedwig, Berthold
2005-10-01
Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis
Bolton, James M; Dahl, Matthew; Sareen, Jitender; Enns, Murray W; Leslie, William D; Collins, David M; Alessi-Severini, Silvia
2012-04-01
Generic drugs are less expensive than their branded equivalents, but receive limited promotion. This study sought to examine how user rates of individual selective serotonin reuptake inhibitors (SSRIs) changed after the introduction of their generic equivalents. Administrative health and census data were used to examine the rates of use of all 6 SSRIs from 1996 to 2009 in the province of Manitoba (population of 1.2 million). The primary outcome measure was a comparison of the rates of use in the pre- and post-generic periods, using generalized estimating equations. Secondary analyses were stratified by specialty of physician prescriber. Escalating rates of use of branded SSRIs in the pre-generic period significantly decreased after generic versions became available (all Ps < 0.001). Incident use of sertraline and paroxetine continued to decrease throughout the post-generic period (1.5% and 1.9% quarterly decreasing rates, respectively). During the years when generic sertraline, fluoxetine, and fluvoxamine were available, their use declined while branded paroxetine and citalopram use continued to increase. Use of branded citalopram, sertraline, and paroxetine prescribed by general practitioners (GPs) increased at rates significantly higher than when prescribed by psychiatrists (all Ps < 0.001). The introduction of cheaper generic alternatives of SSRIs paradoxically resulted in their use diminishing rather than increasing. With the exception of escitalopram, branded SSRIs tended to be preferentially used, compared with available less expensive generic SSRIs. These patterns were more pronounced for prescriptions by GPs.
Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu
2013-10-01
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.
Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1983-01-01
The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.
ERIC Educational Resources Information Center
Mhlolo, Michael Kainose
2016-01-01
The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.
2017-01-01
The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.
Jung, Jaehoon; Yoon, Inhye; Paik, Joonki
2016-01-01
This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978
Postprocessing for character recognition using pattern features and linguistic information
NASA Astrophysics Data System (ADS)
Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi
1993-04-01
We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).
Facial emotion recognition in patients with focal and diffuse axonal injury.
Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita
2017-01-01
Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2011 CFR
2011-07-01
... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2010 CFR
2010-07-01
... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...
Visual cluster analysis and pattern recognition template and methods
Osbourn, G.C.; Martinez, R.F.
1999-05-04
A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.
Multiple degree of freedom optical pattern recognition
NASA Technical Reports Server (NTRS)
Casasent, D.
1987-01-01
Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.
Ultrasonography of ovarian masses using a pattern recognition approach
Jung, Sung Il
2015-01-01
As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108
Application of pattern recognition techniques to crime analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.
1976-08-15
The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, B.H.; Narasimhan, R.
1963-01-01
The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)
Fraser, D A; Tenner, A J
2008-02-01
Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.
Visual scanning behavior is related to recognition performance for own- and other-age faces
Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela
2015-01-01
It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056
CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern
NASA Astrophysics Data System (ADS)
Gong, Qian; Qu, Zhiyi; Hao, Kun
2017-07-01
Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns
Noh, Soo Rim; Isaacowitz, Derek M.
2014-01-01
While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713
Comparing the visual spans for faces and letters
He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.
2015-01-01
The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858
Scheme, Erik; Englehart, Kevin
2013-01-01
The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224
Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters.
Gagniuc, Paul; Ionescu-Tirgoviste, Constantin
2012-09-28
The main function of gene promoters appears to be the integration of different gene products in their biological pathways in order to maintain homeostasis. Generally, promoters have been classified in two major classes, namely TATA and CpG. Nevertheless, many genes using the same combinatorial formation of transcription factors have different gene expression patterns. Accordingly, we tried to ask ourselves some fundamental questions: Why certain genes have an overall predisposition for higher gene expression levels than others? What causes such a predisposition? Is there a structural relationship of these sequences in different tissues? Is there a strong phylogenetic relationship between promoters of closely related species? In order to gain valuable insights into different promoter regions, we obtained a series of image-based patterns which allowed us to identify 10 generic classes of promoters. A comprehensive analysis was undertaken for promoter sequences from Arabidopsis thaliana, Drosophila melanogaster, Homo sapiens and Oryza sativa, and a more extensive analysis of tissue-specific promoters in humans. We observed a clear preference for these species to use certain classes of promoters for specific biological processes. Moreover, in humans, we found that different tissues use distinct classes of promoters, reflecting an emerging promoter network. Depending on the tissue type, comparisons made between these classes of promoters reveal a complementarity between their patterns whereas some other classes of promoters have been observed to occur in competition. Furthermore, we also noticed the existence of some transitional states between these classes of promoters that may explain certain evolutionary mechanisms, which suggest a possible predisposition for specific levels of gene expression and perhaps for a different number of factors responsible for triggering gene expression. Our conclusions are based on comprehensive data from three different databases and a new computer model whose core is using Kappa index of coincidence. To fully understand the connections between gene promoters and gene expression, we analyzed thousands of promoter sequences using our Kappa Index of Coincidence method and a specialized Optical Character Recognition (OCR) neural network. Under our criteria, 10 classes of promoters were detected. In addition, the existence of "transitional" promoters suggests that there is an evolutionary weighted continuum between classes, depending perhaps upon changes in their gene products.
DOT National Transportation Integrated Search
2015-11-01
One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Intelligent multi-sensor integrations
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Jain, Ramesh; Weymouth, Terry
1989-01-01
Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration.
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
Quantum pattern recognition with multi-neuron interactions
NASA Astrophysics Data System (ADS)
Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.
2018-03-01
We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.
Word Recognition in Auditory Cortex
ERIC Educational Resources Information Center
DeWitt, Iain D. J.
2013-01-01
Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Ferrari, José A.
2017-05-01
Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.
33 CFR 104.220 - Company or vessel personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...
33 CFR 104.220 - Company or vessel personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...
Genetic dissection of the maize (Zea mays L.) MAMP response
USDA-ARS?s Scientific Manuscript database
Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...
The Functional Architecture of Visual Object Recognition
1991-07-01
different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying
DOT National Transportation Integrated Search
2009-01-01
This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...
Spatial pattern recognition of seismic events in South West Colombia
NASA Astrophysics Data System (ADS)
Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber
2013-09-01
Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.
Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri
2014-05-01
Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.
Chao, Jingdong; Skup, Martha; Alexander, Emily; Tundia, Namita; Macaulay, Dendy; Wu, Eric; Mulani, Parvez
2015-03-01
The purpose of the present study was to investigate the traceability of adverse events (AEs) for branded and generic drugs with identical nonproprietary names and to consider potential implications for the traceability of AEs for branded and biosimilar biologics. Adverse event reports in the Food and Drug Administration AE Reporting System (FAERS) were compared with those in a commercial insurance claims database (Truven Health MarketScan(®)) for 2 drugs (levetiracetam and enoxaparin sodium) with manufacturing or prescribing considerations potentially analogous to those of some biosimilars. Monthly rates of branded- and generic-attributed AEs were estimated pre- and post-generic entry. Post-entry branded-to-generic AE relative rate ratios were calculated. In FAERS, monthly AE rate ratios during the post-generic period showed a pattern in which AE rates for the branded products were greater than for the generic products. Differences in rates of brand- and generic-attributed AEs were statistically significant for both study drugs; the AE rate for the branded products peaked at approximately 10 times that of the generic levetiracetam products and approximately 4 times that of the generic enoxaparin sodium products. In contrast, monthly ratios for the MarketScan data were relatively constant over time. Use of the same nonproprietary name for generic and branded products may contribute to poor traceability of AEs reported in the FAERS database due to the significant misattribution of AEs to branded products (when those AEs were in fact associated with patient use of generic products). To ensure accurate and robust safety surveillance and traceability for biosimilar products in the United States, improved product identification mechanisms, such as related but distinguishable nonproprietary names for biosimilars and reference biologics, should be considered.
Computer Vision for Artificially Intelligent Robotic Systems
NASA Astrophysics Data System (ADS)
Ma, Chialo; Ma, Yung-Lung
1987-04-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
NASA Astrophysics Data System (ADS)
Ma, Yung-Lung; Ma, Chialo
1987-03-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
Study and response time for the visual recognition of 'similarity' and identity
NASA Technical Reports Server (NTRS)
Derks, P. L.; Bauer, T. M.
1974-01-01
Four subjects compared successively presented pairs of line patterns for a match between any lines in the pattern (similarity) and for a match between all lines (identity). The encoding or study times for pattern recognition from immediate memory and the latency in responses to comparison stimuli were examined. Qualitative differences within and between subjects were most evident in study times.
Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition
NASA Technical Reports Server (NTRS)
Amador, Jose J (Inventor)
2007-01-01
A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.
Beneath the Surface: Understanding Patterns of Intra-Domain Orientational Order
NASA Astrophysics Data System (ADS)
Prasad, Ishan; Seo, Youngmi; Hall, Lisa; Grason, Gregory
Block copolymers (BCP) self assemble into a rich spectrum of ordered phases due to asymmetry in copolymer architecture. Despite extensive study of spatially-ordered composition patterns of BCP, knowledge of orientational order of chain segments that underlie these spatial patterns is evidently missing. We show using self consistent field (SCF) theory and coarse-grained molecular dynamics (MD) simulations that, even without explicit orientational interactions between segments, BCP exhibit generic patterns of intra-domain segment orientation, which vary both within a given morphology and from morphology to morphology. We find that segment alignment is usually both normal and parallel to the interface within different local regions of a BCP sub-domain. We describe principles that control relative strength and directionality of alignment in different morphologies and report a surprising yet generic emergence of biaxial segment order in morphologies with anisotropic curved interfaces, such as cylinders and gyroid phases. Finally, we focus our study on cholesteric textures that pervade mesochiral BCP morphologies, specifically alternating double gyroid (aDG) and helical cylinder (H*) phases, and analyze patterns of twisted (nematic and polar) segment order within these domains.
The chemical structure of DNA sequence signals for RNA transcription
NASA Technical Reports Server (NTRS)
George, D. G.; Dayhoff, M. O.
1982-01-01
The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.
2003-01-01
A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.
Fourier transform magnitudes are unique pattern recognition templates.
Gardenier, P H; McCallum, B C; Bates, R H
1986-01-01
Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.
Detection and recognition of analytes based on their crystallization patterns
Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA
2008-05-06
The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.
Recognition of neural brain activity patterns correlated with complex motor activity
NASA Astrophysics Data System (ADS)
Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.
2018-04-01
In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.
Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit
2015-01-01
Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927
Peptidoglycan recognition proteins in Drosophila immunity.
Kurata, Shoichiro
2014-01-01
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kohli, Erol; Buller, Allison
2013-02-01
US consumers spend more than $20 billion/year on over-the-counter (OTC) drugs. Although generic and brand name OTC drugs share the same active ingredients and undergo the same rigorous Food and Drug Administration approval process, brand name formulations continue to lead the OTC drug market with a higher market share. There is a limited amount of publicly available information regarding consumer perceptions and awareness about generic and brand name OTC drugs. The main objective of this research was to understand what factors influence US consumers to purchase generic versus brand name OTC drugs. The researchers used a 20-question, self-administered, multiple-choice survey to collect data on the factors influencing consumers' preferences for generic versus brand name OTC drugs. Results revealed that the single most influential factor for participants when purchasing OTC drugs was lower cost. Although economic factors play an important role in influencing consumers to choose generic formulations, a variety of other factors including advertisements, duration of the OTC effectiveness, severity of sickness, preferable form of OTC medication, safety of the OTC, relief of multiple symptoms, and preferred company will persuade others to pay more for brand name drugs. Ultimately, increased awareness and use of generic OTC drugs may result in substantial cost savings for consumers.
Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition
NASA Astrophysics Data System (ADS)
Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.
1993-03-01
The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.
Age-related increases in false recognition: the role of perceptual and conceptual similarity.
Pidgeon, Laura M; Morcom, Alexa M
2014-01-01
Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.
Age-related increases in false recognition: the role of perceptual and conceptual similarity
Pidgeon, Laura M.; Morcom, Alexa M.
2014-01-01
Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576
Higher cigarette prices influence cigarette purchase patterns.
Hyland, A; Bauer, J E; Li, Q; Abrams, S M; Higbee, C; Peppone, L; Cummings, K M
2005-04-01
To examine cigarette purchasing patterns of current smokers and to determine the effects of cigarette price on use of cheaper sources, discount/generic cigarettes, and coupons. Higher cigarette prices result in decreased cigarette consumption, but price sensitive smokers may seek lower priced or tax-free cigarette sources, especially if they are readily available. This price avoidance behaviour costs states excise tax money and dampens the health impact of higher cigarette prices. Telephone survey data from 3602 US smokers who were originally in the COMMIT (community intervention trial for smoking cessation) study were analysed to assess cigarette purchase patterns, use of discount/generic cigarettes, and use of coupons. 59% reported engaging in a high price avoidance strategy, including 34% who regularly purchase from a low or untaxed venue, 28% who smoke a discount/generic cigarette brand, and 18% who report using cigarette coupons more frequently that they did five years ago. The report of engaging in a price avoidance strategy was associated with living within 40 miles of a state or Indian reservation with lower cigarette excise taxes, higher average cigarette consumption, white, non-Hispanic race/ethnicity, and female sex. Data from this study indicate that most smokers are price sensitive and seek out measures to purchase less expensive cigarettes, which may decrease future cessation efforts.
Image-based automatic recognition of larvae
NASA Astrophysics Data System (ADS)
Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai
2010-08-01
As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.
Enemy at the gates: traffic at the plant cell pathogen interface.
Hoefle, Caroline; Hückelhoven, Ralph
2008-12-01
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
DOT National Transportation Integrated Search
2009-04-28
A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...
USDA-ARS?s Scientific Manuscript database
The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941
Gama, Helena; Torre, Carla; Guerreiro, José Pedro; Azevedo, Ana; Costa, Suzete; Lunet, Nuno
2017-06-29
The successful control of cardiovascular diseases at the lowest possible cost requires the use of the most effective and affordable medicines. We aimed to describe the trends in the ambulatory use of medicines for prevention and treatment of cardiovascular diseases [Anatomic Therapeutic Chemical classification system (ATC): C and B01A] in Portugal, between 2004 and 2012, and to estimate the potential for expenditure reduction through changes in patterns of use. We analysed sell-out data, expressed as defined daily doses (DDD) and pharmacy retail price (€), from a nationwide database. We estimated potential reduction in expenditures through the increase, up to 90% of the volume of DDD, in the use of generic and essential medicines; the latter were defined according to guidelines from Portugal and another European country. Overall consumption increased by approximately 50% from 2004 to 2012, reaching nearly 2400 million DDD, whereas expenditure decreased to 753 million € (-31.3% since 2006). Use of generics and essential medicines increased, representing 43.6 and 39.9% of DDD consumption in 2012, respectively. The 40 most used groups of medicines in 2012 accounted for just over 80% of overall consumption; among these, increase in use of generics and essential medicines would have contributed to a saving of 275 million €. Changes in patterns of consumption of medicines towards a more frequent use of generics, a preferential use of essential medicines and a more rational use of fixed-dose combinations may contribute to a more efficient use of health resources.
Godman, Brian; Petzold, Max; Bennett, Kathleen; Bennie, Marion; Bucsics, Anna; Finlayson, Alexander E; Martin, Andrew; Persson, Marie; Piessnegger, Jutta; Raschi, Emanuel; Simoens, Steven; Zara, Corinne; Barbui, Corrado
2014-06-13
Generic atypical antipsychotic drugs offer health authorities opportunities for considerable savings. However, schizophrenia and bipolar disorders are complex diseases that require tailored treatments. Consequently, generally there have been limited demand-side measures by health authorities to encourage the preferential prescribing of generics. This is unlike the situation with hypertension, hypercholaesterolaemia or acid-related stomach disorders.The objectives of this study were to compare the effect of the limited demand-side measures in Western European countries and regions on the subsequent prescribing of risperidone following generics; to utilise the findings to provide future guidance to health authorities; and where possible, to investigate the utilisation of generic versus originator risperidone and the prices for generic risperidone. Principally, this was a segmented regression analysis of retrospective time-series data of the effect of the various initiatives in Belgium, Ireland, Scotland and Sweden following the introduction of generic risperidone. The study included patients prescribed at least one atypical antipsychotic drug up to 20 months before and up to 20 months after generic risperidone. In addition, retrospective observational studies were carried out in Austria and Spain (Catalonia) from 2005 to 2011 as well as one English primary care organisation (Bury Primary Care Trust (PCT)). There was a consistent steady reduction in risperidone as a percentage of total selected atypical antipsychotic utilisation following generics. A similar pattern was seen in Austria and Spain, with stable utilisation in one English PCT. However, there was considerable variation in the utilisation of generic risperidone, ranging from 98% of total risperidone in Scotland to only 14% in Ireland. Similarly, the price of generic risperidone varied considerably. In Scotland, generic risperidone was only 16% of pre-patent loss prices versus 72% in Ireland. Consistent findings of no increased prescribing of risperidone post generics with limited specific demand-side measures suggests no 'spillover' effect from one class to another encouraging the preferential prescribing of generic atypical antipsychotic drugs. This is exacerbated by the complexity of the disease area and differences in the side-effects between treatments. There appeared to be no clinical issues with generic risperidone, and prices inversely reflected measures to enhance their utilisation.
ERIC Educational Resources Information Center
Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.
2014-01-01
Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…
Summary of 1971 pattern recognition program development
NASA Technical Reports Server (NTRS)
Whitley, S. L.
1972-01-01
Eight areas related to pattern recognition analysis at the Earth Resources Laboratory are discussed: (1) background; (2) Earth Resources Laboratory goals; (3) software problems/limitations; (4) operational problems/limitations; (5) immediate future capabilities; (6) Earth Resources Laboratory data analysis system; (7) general program needs and recommendations; and (8) schedule and milestones.
Pattern Recognition by Retina-Like Devices.
ERIC Educational Resources Information Center
Weiman, Carl F. R.; Rothstein, Jerome
This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…
Cognitive Development and Reading Processes. Developmental Program Report Number 76.
ERIC Educational Resources Information Center
West, Richard F.
In discussing the relationship between cognitive development (perception, pattern recognition, and memory) and reading processes, this paper especially emphasizes developmental factors. After an overview of some issues that bear on how written language is processed, the paper presents a discussion of pattern recognition, including general pattern…
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)
1987-01-01
The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.
NASA Astrophysics Data System (ADS)
Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.
2017-03-01
In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Gregory; Hoff, James; Jindariani, Sergo
Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
Ordóñez, Francisco Javier; Roggen, Daniel
2016-01-18
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters' influence on performance to provide insights about their optimisation.
Do pattern recognition skills transfer across sports? A preliminary analysis.
Smeeton, Nicholas J; Ward, Paul; Williams, A Mark
2004-02-01
The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.
Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin
2016-01-01
With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053
STANFORD ARTIFICIAL INTELLIGENCE PROJECT.
ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.
Face Recognition Using Local Quantized Patterns and Gabor Filters
NASA Astrophysics Data System (ADS)
Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.
2015-05-01
The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.
Analyzing generic and branded substitution patterns in the Netherlands using prescription data.
Pechlivanoglou, Petros; van der Veen, Willem Jan; Bos, Jens H; Postma, Maarten J
2011-04-27
As in other societies, pharmaceutical expenditures in the Netherlands are rising every year. As a consequence, needs for cost control are often expressed. One possible solution for cost control could come through increasing generic substitution by pharmacists. We aim to analyse the extent and nature of substitution in recent years and estimate the likelihood of generic or branded substitution in Dutch pharmacies in relation to various characteristics. We utilized a linked prescription dataset originating from a general practitioner (GP) and a pharmacy database, both from the northern Netherlands. We selected specific drugs of interest, containing about 55,000 prescriptions from 15 different classes. We used a crossed generalized linear mixed model to estimate the effects that certain patient and pharmacy characteristics as well as timing have on the likelihood that a prescription will eventually be substituted by the pharmacist. Generic substitution occurred at 25% of the branded prescriptions. Generic substitution was more likely to occur earlier in time after patent expiry and to patients that were older and more experienced in their drug use. Individually owned pharmacies had a lower probability of generic substitution compared to chain pharmacies. Oppositely, branded substitution occurred in 10% of generic prescriptions and was positively related to the patients' experience in branded use. Individually owned pharmacies were more likely to substitute a generic drug to a branded compared to other pharmacies. Antidepressant and PPI prescriptions were less prone to generic and more prone to branded substitution. Analysis of prescription substitution by the pharmacist revealed strong relations between substitution and patient experience on drug use, pharmacy status and timing. These findings can be utilised to design further strategies to enhance generic substitution.
Speaker normalization for chinese vowel recognition in cochlear implants.
Luo, Xin; Fu, Qian-Jie
2005-07-01
Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.
Patscanui: an intuitive web interface for searching patterns in DNA and protein data.
Blin, Kai; Wohlleben, Wolfgang; Weber, Tilmann
2018-05-02
Patterns in biological sequences frequently signify interesting features in the underlying molecule. Many tools exist to search for well-known patterns. Less support is available for exploratory analysis, where no well-defined patterns are known yet. PatScanUI (https://patscan.secondarymetabolites.org/) provides a highly interactive web interface to the powerful generic pattern search tool PatScan. The complex PatScan-patterns are created in a drag-and-drop aware interface allowing researchers to do rapid prototyping of the often complicated patterns useful to identifying features of interest.
Habibi, Ruth; Khurana, Beena
2012-01-01
Facial recognition is key to social interaction, however with unfamiliar faces only generic information, in the form of facial stereotypes such as gender and age is available. Therefore is generic information more prominent in unfamiliar versus familiar face processing? In order to address the question we tapped into two relatively disparate stages of face processing. At the early stages of encoding, we employed perceptual masking to reveal that only perception of unfamiliar face targets is affected by the gender of the facial masks. At the semantic end; using a priming paradigm, we found that while to-be-ignored unfamiliar faces prime lexical decisions to gender congruent stereotypic words, familiar faces do not. Our findings indicate that gender is a more salient dimension in unfamiliar relative to familiar face processing, both in early perceptual stages as well as later semantic stages of person construal. PMID:22389697
Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging
Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice
2012-01-01
Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800
Vortex lattices and defect-mediated viscosity reduction in active liquids
NASA Astrophysics Data System (ADS)
Slomka, Jonasz; Dunkel, Jorn
2016-11-01
Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.
Digoxin: use pattern in Estonia and bioavailability of the local market leader.
Pähkla, R; Irs, A; Oselin, K; Rootslane, L
1999-10-01
In comparison with neighbouring Scandinavian countries, the use of digoxin in Estonia is high. The present study was carried out to determine the use pattern of digoxin in Estonia and bioavailability of the local market leader preparation in comparison with Lanoxin. Drug use data were evaluated from the annual reports of wholesale companies. For the bioequivalence study, a single-blind cross-over randomised two-way single-dose comparative bioavailability study was performed using 14 healthy volunteers. Digoxin concentrations in serum samples and urine were measured by chemiluminescent competitive immunoassay. The use of digoxin in Estonia has increased by 35% during the period 1994-97. The steady market leader was the local generic drug. No statistically significant differences were found in any pharmacokinetic parameter between the generic preparation and Lanoxin. All parameters showed considerable variability. The total amount of drug excreted was the parameter with lowest inter- individual variation. The present study indicates that the generic digoxin preparation studied is bioequivalent to Lanoxin. The increasing use of digoxin in Estonia is not caused by low bioavailability of the local market leader but by therapeutic traditions.
Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques
NASA Technical Reports Server (NTRS)
Melhorn, W. N.; Sinnock, S.
1973-01-01
Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.
Infrared Ship Classification Using A New Moment Pattern Recognition Concept
NASA Astrophysics Data System (ADS)
Casasent, David; Pauly, John; Fetterly, Donald
1982-03-01
An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.
Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements
NASA Astrophysics Data System (ADS)
Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo
1999-05-01
Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.
Medicare Part D payments for neurologist-prescribed drugs
Burke, James F.; Kerber, Kevin A.; Skolarus, Lesli E.; Callaghan, Brian C.
2016-01-01
Objective: To describe neurologists' Medicare Part D prescribing patterns and the potential effect of generic substitutions and price negotiation, which is currently prohibited. Methods: The 2013 Medicare Part D Prescriber Public Use and Summary files were used. Payments for medications were aggregated by provider and drug (brand or generic). Payment, proportion of generic claims or day's supply, and median payment per monthly supply of medication were calculated by physician specialty and drug. Savings from generic substitution were estimated for brand drugs with a generic available. Medicare prices were compared to drug prices negotiated by the federal government with pharmaceutical manufacturers for the Veterans Administration (VA). Results: Neurologists comprised 13,060 (1.2%) providers with $5.0 billion (4.8%) in total payments, third highest of all specialties, with a median monthly payment of $141 (interquartile range $85–225). Multiple sclerosis drugs had the highest payments ($1.8 billion). Within neurologic disease groups ($3.4 billion in payments), 54.2%–91.8% of monthly supplies were generic, but 11.9%–71.3% of the payment was for generic medications. Generic substitution resulted in a $269 million (6.5%) payment decrease. VA pricing resulted in $1.5 billion (44.5% of $3.4 billion) in savings. Conclusions: High payment per monthly supply of medication underlies the high total neurology drug payments and is driven by multiple sclerosis drugs. Lowering drug expenditures by Medicare should focus on drug prices. PMID:27009256
Interactive design of generic chemical patterns.
Schomburg, Karen T; Wetzer, Lars; Rarey, Matthias
2013-07-01
Every medicinal chemist has to create chemical patterns occasionally for querying databases, applying filters or describing functional groups. However, the representations of chemical patterns have been so far limited to languages with highly complex syntax, handicapping the application of patterns. Graphic pattern editors similar to chemical editors can facilitate the work with patterns. In this article, we review the interfaces of frequently used web search engines for chemical patterns. We take a look at pattern editing concepts of standalone chemical editors and finally present a completely new, unpublished graphical approach to pattern design, the SMARTSeditor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Foundations for a syntatic pattern recognition system for genomic DNA sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searles, D.B.
1993-03-01
The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.
The time course of individual face recognition: A pattern analysis of ERP signals.
Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian
2016-05-15
An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus
2014-02-01
In crime scene forensics latent fingerprints are found on various substrates. Nowadays primarily physical or chemical preprocessing techniques are applied for enhancing the visibility of the fingerprint trace. In order to avoid altering the trace it has been shown that contact-less sensors offer a non-destructive acquisition approach. Here, the exploitation of fingerprint or substrate properties and the utilization of signal processing techniques are an essential requirement to enhance the fingerprint visibility. However, especially the optimal sensory is often substrate-dependent. An enhanced generic pattern recognition based contrast enhancement approach for scans of a chromatic white light sensor is introduced in Hildebrandt et al.1 using statistical, structural and Benford's law2 features for blocks of 50 micron. This approach achieves very good results for latent fingerprints on cooperative, non-textured, smooth substrates. However, on textured and structured substrates the error rates are very high and the approach thus unsuitable for forensic use cases. We propose the extension of the feature set with semantic features derived from known Gabor filter based exemplar fingerprint enhancement techniques by suggesting an Epsilon-neighborhood of each block in order to achieve an improved accuracy (called fingerprint ridge orientation semantics). Furthermore, we use rotation invariant Hu moments as an extension of the structural features and two additional preprocessing methods (separate X- and Y Sobel operators). This results in a 408-dimensional feature space. In our experiments we investigate and report the recognition accuracy for eight substrates, each with ten latent fingerprints: white furniture surface, veneered plywood, brushed stainless steel, aluminum foil, "Golden-Oak" veneer, non-metallic matte car body finish, metallic car body finish and blued metal. In comparison to Hildebrandt et al.,1 our evaluation shows a significant reduction of the error rates by 15.8 percent points on brushed stainless steel using the same classifier. This also allows for a successful biometric matching of 3 of the 8 latent fingerprint samples with the corresponding exemplar fingerprint on this particular substrate. For contrast enhancement analysis of classification results we suggest to use known Visual Quality Indexes (VQI)3 as a contrast enhancement quality indicator and discuss our first preliminary results using the exemplary chosen VQI Edge Similarity Score (ESS),4 showing a tendency that higher image differences between a substrate containing a fingerprint and a substrate with a blank surface correlate with a higher recognition accuracy between a latent fingerprint and an exemplar fingerprint. Those first preliminary results support further research into VQIs as contrast enhancement quality indicator for a given feature space.
Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts
ERIC Educational Resources Information Center
Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-01-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…
ERIC Educational Resources Information Center
Welk, Dorette Sugg
2002-01-01
Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…
PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,
A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)
Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.
Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M
2018-05-31
Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.
Classifier dependent feature preprocessing methods
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M., II; Peterson, Gilbert L.
2008-04-01
In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.
Complex auditory behaviour emerges from simple reactive steering
NASA Astrophysics Data System (ADS)
Hedwig, Berthold; Poulet, James F. A.
2004-08-01
The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.
Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm. PMID:27711125
Cadavid, Sara; Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm.
Felisberti, Fatima; Terry, Philip
2015-09-01
The study compared alcohol's effects on the recognition of briefly displayed facial expressions of emotion (so-called microexpressions) with expressions presented for a longer period. Using a repeated-measures design, we tested 18 participants three times (counterbalanced), after (i) a placebo drink, (ii) a low-to-moderate dose of alcohol (0.17 g/kg women; 0.20 g/kg men) and (iii) a moderate-to-high dose of alcohol (0.52 g/kg women; 0.60 g/kg men). On each session, participants were presented with stimuli representing six emotions (happiness, sadness, anger, fear, disgust and contempt) overlaid on a generic avatar in a six-alternative forced-choice paradigm. A neutral expression (1 s) preceded and followed a target expression presented for 200 ms (microexpressions) or 400 ms. Participants mouse clicked the correct answer. The recognition of disgust was significantly better after the high dose of alcohol than after the low dose or placebo drinks at both durations of stimulus presentation. A similar profile of effects was found for the recognition of contempt. There were no effects on response latencies. Alcohol can increase sensitivity to expressions of disgust and contempt. Such effects are not dependent on stimulus duration up to 400 ms and may reflect contextual modulation of alcohol's effects on emotion recognition. Copyright © 2015 John Wiley & Sons, Ltd.
Talker variability in audio-visual speech perception
Heald, Shannon L. M.; Nusbaum, Howard C.
2014-01-01
A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker’s face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker’s face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker’s face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred. PMID:25076919
Talker variability in audio-visual speech perception.
Heald, Shannon L M; Nusbaum, Howard C
2014-01-01
A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker's face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker's face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker's face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred.
St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.
2012-01-01
There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in response to sleep loss. PMID:22959616
Imaging in gynaecology: How good are we in identifying endometriomas?
Van Holsbeke, C.; Van Calster, B.; Guerriero, S.; Savelli, L.; Leone, F.; Fischerova, D; Czekierdowski, A.; Fruscio, R.; Veldman, J.; Van de Putte, G.; Testa, A.C.; Bourne, T.; Valentin, L.; Timmerman, D.
2009-01-01
Aim: To evaluate the performance of subjective evaluation of ultrasound findings (pattern recognition) to discriminate endometriomas from other types of adnexal masses and to compare the demographic and ultrasound characteristics of the true positive cases with those cases that were presumed to be an endometrioma but proved to have a different histology (false positive cases) and the endometriomas missed by pattern recognition (false negative cases). Methods: All patients in the International Ovarian Tumor Analysis (IOTA ) studies were included for analysis. In the IOTA studies, patients with an adnexal mass that were preoperatively examined by expert sonologists following the same standardized ultrasound protocol were prospectively included in 21 international centres. Sensitivity and specificity to discriminate endometriomas from other types of adnexal masses using pattern recognition were calculated. Ultrasound and some demographic variables of the masses presumed to be an endometrioma were analysed (true positives and false positives) and compared with the variables of the endometriomas missed by pattern recognition (false negatives) as well as the true negatives. Results: IOTA phase 1, 1b and 2 included 3511 patients of which 2560 were benign (73%) and 951 malignant (27%). The dataset included 713 endometriomas. Sensitivity and specificity for pattern recognition were 81% (577/713) and 97% (2723/2798). The true positives were more often unilocular with ground glass echogenicity than the masses in any other category. Among the 75 false positive cases, 66 were benign but 9 were malignant (5 borderline tumours, 1 rare primary invasive tumour and 3 endometrioid adenocarcinomas). The presumed diagnosis suggested by the sonologist in case of a missed endometrioma was mostly functional cyst or cystadenoma. Conclusion: Expert sonologists can quite accurately discriminate endometriomas from other types of adnexal masses, but in this dataset 1% of the masses that were classified as endometrioma by pattern recognition proved to be malignancies. PMID:25478066
Remote Video Monitor of Vehicles in Cooperative Information Platform
NASA Astrophysics Data System (ADS)
Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan
Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.
NASA Astrophysics Data System (ADS)
Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2017-04-01
A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
NASA Astrophysics Data System (ADS)
Kirst, Christoph
It is astonishing how the sub-parts of a brain co-act to produce coherent behavior. What are mechanism that coordinate information processing and communication and how can those be changed flexibly in order to cope with variable contexts? Here we show that when information is encoded in the deviations around a collective dynamical reference state of a recurrent network the propagation of these fluctuations is strongly dependent on precisely this underlying reference. Information here 'surfs' on top of the collective dynamics and switching between states enables fast and flexible rerouting of information. This in turn affects local processing and consequently changes in the global reference dynamics that re-regulate the distribution of information. This provides a generic mechanism for self-organized information processing as we demonstrate with an oscillatory Hopfield network that performs contextual pattern recognition. Deep neural networks have proven to be very successful recently. Here we show that generating information channels via collective reference dynamics can effectively compress a deep multi-layer architecture into a single layer making this mechanism a promising candidate for the organization of information processing in biological neuronal networks.
Kersnik, J; Peklar, J
2006-12-01
Over the recent years there has been a steady 7% yearly increase in prescribing costs, which accounts for 17% of the Slovene national health care budget. Substitution of branded products by generic equivalents can offer savings. General practitioners (GPs) are often concerned about the quality of generic products and possible legal liabilities associated with their use. We wanted to examine the attitudes of GPs in Slovenia towards generic drug prescribing. We conducted a postal survey of a random sample of 200 out of 800 GPs in Slovenia from the National Health Insurance Institute database. GPs were asked 21 questions regarding their knowledge on generic drugs, awareness of prescribing costs, prices of generic drugs relative to brand name drugs and their attitude towards use of generic drugs. The 117 (58.5%) replies we received represent 15% of the GP population in Slovenia. 66.1% of GPs considered rising costs of medicines to be a serious problem for the health care budget. Each week, over 50% of GPs experienced demands from patients for specific drugs and the majority of GPs usually met their patients' demands or requests from hospital consultants for branded products. 38.3% of GPs did not take price into consideration when prescribing drugs. The majority of GPs (88.9%) perceived generics to have the same effectiveness as branded drugs. One quarter of GPs would prescribe more generics if additional clinical trials were presented. 37.3% would follow advice of academic detailers and 30.3% expected the generics to be even cheaper than they were. Independent detailing was welcomed by 63.8% of GPs because of the big influence of the pharmaceutical industry on the prescribing habits. 15.5% thought that the industry had a tremendous impact on their prescribing patterns. Slovene GPs are aware of the cost of prescribed drugs. They are willing to accept independent academic detailing to improve their prescribing and are willing to increase generic drugs under certain conditions.
Generic Friedberg-Lee symmetry of Dirac neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo Shu; Xing Zhizhong; Li Xin
2008-12-01
We write out the generic Dirac neutrino mass operator which possesses the Friedberg-Lee symmetry and find that its corresponding neutrino mass matrix is asymmetric. Following a simple way to break the Friedberg-Lee symmetry, we calculate the neutrino mass eigenvalues and show that the resultant neutrino mixing pattern is nearly tri-bimaximal. Imposing the Hermitian condition on the neutrino mass matrix, we also show that the simplified ansatz is consistent with current experimental data and favors the normal neutrino mass hierarchy.
Conformal Predictions in Multimedia Pattern Recognition
ERIC Educational Resources Information Center
Nallure Balasubramanian, Vineeth
2010-01-01
The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…
ERIC Educational Resources Information Center
Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.
2012-01-01
Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…
Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology
ERIC Educational Resources Information Center
Suresh, Rahul; Mosser, David M.
2013-01-01
Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…
Machine Learning Through Signature Trees. Applications to Human Speech.
ERIC Educational Resources Information Center
White, George M.
A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…
NASA Astrophysics Data System (ADS)
Poryvkina, Larisa; Aleksejev, Valeri; Babichenko, Sergey M.; Ivkina, Tatjana
2011-04-01
The NarTest fluorescent technique is aimed at the detection of analyte of interest in street samples by recognition of its specific spectral patterns in 3-dimentional Spectral Fluorescent Signatures (SFS) measured with NTX2000 analyzer without chromatographic or other separation of controlled substances from a mixture with cutting agents. The illicit drugs have their own characteristic SFS features which can be used for detection and identification of narcotics, however typical street sample consists of a mixture with cutting agents: adulterants and diluents. Many of them interfere the spectral shape of SFS. The expert system based on Artificial Neural Networks (ANNs) has been developed and applied for such pattern recognition in SFS of street samples of illicit drugs.
Real-Time Pattern Recognition - An Industrial Example
NASA Astrophysics Data System (ADS)
Fitton, Gary M.
1981-11-01
Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.
Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J
2011-02-26
HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.
Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition[OPEN
2017-01-01
Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to “hide” microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis. PMID:28302675
Developing Signal-Pattern-Recognition Programs
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Hammen, David
2006-01-01
Pattern Interpretation and Recognition Application Toolkit Environment (PIRATE) is a block-oriented software system that aids the development of application programs that analyze signals in real time in order to recognize signal patterns that are indicative of conditions or events of interest. PIRATE was originally intended for use in writing application programs to recognize patterns in space-shuttle telemetry signals received at Johnson Space Center's Mission Control Center: application programs were sought to (1) monitor electric currents on shuttle ac power busses to recognize activations of specific power-consuming devices, (2) monitor various pressures and infer the states of affected systems by applying a Kalman filter to the pressure signals, (3) determine fuel-leak rates from sensor data, (4) detect faults in gyroscopes through analysis of system measurements in the frequency domain, and (5) determine drift rates in inertial measurement units by regressing measurements against time. PIRATE can also be used to develop signal-pattern-recognition software for different purposes -- for example, to monitor and control manufacturing processes.
Document Form and Character Recognition using SVM
NASA Astrophysics Data System (ADS)
Park, Sang-Sung; Shin, Young-Geun; Jung, Won-Kyo; Ahn, Dong-Kyu; Jang, Dong-Sik
2009-08-01
Because of development of computer and information communication, EDI (Electronic Data Interchange) has been developing. There is OCR (Optical Character Recognition) of Pattern recognition technology for EDI. OCR contributed to changing many manual in the past into automation. But for the more perfect database of document, much manual is needed for excluding unnecessary recognition. To resolve this problem, we propose document form based character recognition method in this study. Proposed method is divided into document form recognition part and character recognition part. Especially, in character recognition, change character into binarization by using SVM algorithm and extract more correct feature value.
Detecting Rumors Through Modeling Information Propagation Networks in a Social Media Environment.
Liu, Yang; Xu, Songhua; Tourassi, Georgia
2015-01-01
In the midst of today's pervasive influence of social media content and activities, information credibility has increasingly become a major issue. Accordingly, identifying false information, e.g. rumors circulated in social media environments, attracts expanding research attention and growing interests. Many previous studies have exploited user-independent features for rumor detection. These prior investigations uniformly treat all users relevant to the propagation of a social media message as instances of a generic entity. Such a modeling approach usually adopts a homogeneous network to represent all users, the practice of which ignores the variety across an entire user population in a social media environment. Recognizing this limitation of modeling methodologies, this study explores user-specific features in a social media environment for rumor detection. The new approach hypothesizes that whether a user tends to spread a rumor is dependent upon specific attributes of the user in addition to content characteristics of the message itself. Under this hypothesis, information propagation patterns of rumors versus those of credible messages in a social media environment are systematically differentiable. To explore and exploit this hypothesis, we develop a new information propagation model based on a heterogeneous user representation for rumor recognition. The new approach is capable of differentiating rumors from credible messages through observing distinctions in their respective propagation patterns in social media. Experimental results show that the new information propagation model based on heterogeneous user representation can effectively distinguish rumors from credible social media content.
Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.
Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui
2016-01-01
Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.
Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.
Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin
2018-03-12
Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.
Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals
Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin
2018-01-01
Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515
Associative Pattern Recognition In Analog VLSI Circuits
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1995-01-01
Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.
Environmental modeling and recognition for an autonomous land vehicle
NASA Technical Reports Server (NTRS)
Lawton, D. T.; Levitt, T. S.; Mcconnell, C. C.; Nelson, P. C.
1987-01-01
An architecture for object modeling and recognition for an autonomous land vehicle is presented. Examples of objects of interest include terrain features, fields, roads, horizon features, trees, etc. The architecture is organized around a set of data bases for generic object models and perceptual structures, temporary memory for the instantiation of object and relational hypotheses, and a long term memory for storing stable hypotheses that are affixed to the terrain representation. Multiple inference processes operate over these databases. Researchers describe these particular components: the perceptual structure database, the grouping processes that operate over this, schemas, and the long term terrain database. A processing example that matches predictions from the long term terrain model to imagery, extracts significant perceptual structures for consideration as potential landmarks, and extracts a relational structure to update the long term terrain database is given.
Behavioral pattern identification for structural health monitoring in complex systems
NASA Astrophysics Data System (ADS)
Gupta, Shalabh
Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special-purpose fatigue test apparatus, equipped with multiple sensing devices (e.g., ultrasonics and optical microscope) for damage analysis, has been used to experimentally validate the STSA method for early detection of anomalous behavior. The sensor information is integrated with a software module consisting of the STSA algorithm for real-time monitoring of fatigue damage. Experiments have been conducted under different loading conditions on specimens constructed from the ductile aluminium alloy 7075 - T6. The dissertation has also investigated the application of the STSA method for early detection of anomalies in other engineering disciplines. Two primary applications include combustion instability in a generic thermal pulse combustor model and whirling phenomenon in a typical misaligned shaft.
Quantum Mechanics, Pattern Recognition, and the Mammalian Brain
NASA Astrophysics Data System (ADS)
Chapline, George
2008-10-01
Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.
Mining sequential patterns for protein fold recognition.
Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I
2008-02-01
Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
Fuzzy tree automata and syntactic pattern recognition.
Lee, E T
1982-04-01
An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.
Complex Event Recognition Architecture
NASA Technical Reports Server (NTRS)
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
Neves, Maila de Castro Lourenço das; Tremeau, Fabien; Nicolato, Rodrigo; Lauar, Hélio; Romano-Silva, Marco Aurélio; Correa, Humberto
2011-09-01
A large body of evidence suggests that several aspects of face processing are impaired in autism and that this impairment might be hereditary. This study was aimed at assessing facial emotion recognition in parents of children with autism and its associations with a functional polymorphism of the serotonin transporter (5HTTLPR). We evaluated 40 parents of children with autism and 41 healthy controls. All participants were administered the Penn Emotion Recognition Test (ER40) and were genotyped for 5HTTLPR. Our study showed that parents of children with autism performed worse in the facial emotion recognition test than controls. Analyses of error patterns showed that parents of children with autism over-attributed neutral to emotional faces. We found evidence that 5HTTLPR polymorphism did not influence the performance in the Penn Emotion Recognition Test, but that it may determine different error patterns. Facial emotion recognition deficits are more common in first-degree relatives of autistic patients than in the general population, suggesting that facial emotion recognition is a candidate endophenotype for autism.
An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Mcvey, E. S.
1977-01-01
The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.
Gouya, Ghazaleh; Reichardt, Berthold; Bidner, Anja; Weissenfels, Robert; Wolzt, Michael
2008-01-01
Rising costs of pharmaceuticals are a challenge to the public health care system. In collaboration with a company health insurance with 3143 members we analysed the economic benefit of reduced prescription fees for generic drugs in a 12-month period. Within the observation period 1 euro per prescription of a generic drug was reimbursed to the insurants. On the basis of 5 drug classes the prescribed proportion of generic drugs and the change in prescription pattern was computed. The acceptance of the intervention by the insurants was assessed using anonymous questionnaires. 42,219 drug prescriptons for insurants of the health insurance company were registered, with an overall cost of euro 843,954.95. In the observation period there was a 45% increase of the proportion of overall costs spent for generic drugs, from euro 78,325.65 to euro 110,419.90, together with a 38% increase of prescriptions of generic drugs. The expenditures for reimbursements of prescription payments amounted to euro 9,984 (euro 1-74 to insurants). In the 5 selected drug classes the proportion of generic drugs increased from 23% before the observation period to 40%, whereby a cost reduction of euro 2.47 per prescription was achieved. Taking into account an overall increase of prescriptions of the selected drugs, a cost reduction from euro 188,811.45 to euro 173,677.15 was accomplished. This intervention was considered useful by 84% of all insurants. Financial incentives for insurants by partial reimbursement of prescription charges are effective for increasing the proportion of generic substitutes and for controlling drug costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searles, D.B.
1993-03-01
The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.
Discriminant WSRC for Large-Scale Plant Species Recognition.
Zhang, Shanwen; Zhang, Chuanlei; Zhu, Yihai; You, Zhuhong
2017-01-01
In sparse representation based classification (SRC) and weighted SRC (WSRC), it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC) is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.
Toward retail product recognition on grocery shelves
NASA Astrophysics Data System (ADS)
Varol, Gül; Kuzu, Rıdvan S.
2015-03-01
This paper addresses the problem of retail product recognition on grocery shelf images. We present a technique for accomplishing this task with a low time complexity. We decompose the problem into detection and recognition. The former is achieved by a generic product detection module which is trained on a specific class of products (e.g. tobacco packages). Cascade object detection framework of Viola and Jones [1] is used for this purpose. We further make use of Support Vector Machines (SVMs) to recognize the brand inside each detected region. We extract both shape and color information; and apply feature-level fusion from two separate descriptors computed with the bag of words approach. Furthermore, we introduce a dataset (available on request) that we have collected for similar research purposes. Results are presented on this dataset of more than 5,000 images consisting of 10 tobacco brands. We show that satisfactory detection and classification can be achieved on devices with cheap computational power. Potential applications of the proposed approach include planogram compliance control, inventory management and assisting visually impaired people during shopping.
NASA Technical Reports Server (NTRS)
Mellstrom, J. A.; Smyth, P.
1991-01-01
The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.
Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman
2014-01-01
Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230
Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman
2014-01-01
Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.
Põder, Endel
2014-11-06
Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.
Huo, Guanying
2017-01-01
As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614
Apparatus for detecting and recognizing analytes based on their crystallization patterns
Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam
2010-12-14
The invention contemplates apparatuses for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization patterns") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. Changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. Also, changes in the crystallization patterns, as well as the character of such changes, can be used as recognition elements in analysis of protein molecules.
Tibbetts, Elizabeth A; Injaian, Allison; Sheehan, Michael J; Desjardins, Nicole
2018-05-01
Research on individual recognition often focuses on species-typical recognition abilities rather than assessing intraspecific variation in recognition. As individual recognition is cognitively costly, the capacity for recognition may vary within species. We test how individual face recognition differs between nest-founding queens (foundresses) and workers in Polistes fuscatus paper wasps. Individual recognition mediates dominance interactions among foundresses. Three previously published experiments have shown that foundresses (1) benefit by advertising their identity with distinctive facial patterns that facilitate recognition, (2) have robust memories of individuals, and (3) rapidly learn to distinguish between face images. Like foundresses, workers have variable facial patterns and are capable of individual recognition. However, worker dominance interactions are muted. Therefore, individual recognition may be less important for workers than for foundresses. We find that (1) workers with unique faces receive amounts of aggression similar to those of workers with common faces, indicating that wasps do not benefit from advertising their individual identity with a unique appearance; (2) workers lack robust memories for individuals, as they cannot remember unique conspecifics after a 6-day separation; and (3) workers learn to distinguish between facial images more slowly than foundresses during training. The recognition differences between foundresses and workers are notable because Polistes lack discrete castes; foundresses and workers are morphologically similar, and workers can take over as queens. Overall, social benefits and receiver capacity for individual recognition are surprisingly plastic.
NASA Astrophysics Data System (ADS)
Lhamon, Michael Earl
A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.
Variability in the impairment of recognition memory in patients with frontal lobe lesions.
Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric
2006-10-01
Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.
Effects of Cooperative Group Work Activities on Pre-School Children's Pattern Recognition Skills
ERIC Educational Resources Information Center
Tarim, Kamuran
2015-01-01
The aim of this research is twofold; to investigate the effects of cooperative group-based work activities on children's pattern recognition skills in pre-school and to examine the teachers' opinions about the implementation process. In line with this objective, for the study, 57 children (25 girls and 32 boys) were chosen from two private schools…
VLSI Microsystem for Rapid Bioinformatic Pattern Recognition
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Lue, Jaw-Chyng
2009-01-01
A system comprising very-large-scale integrated (VLSI) circuits is being developed as a means of bioinformatics-oriented analysis and recognition of patterns of fluorescence generated in a microarray in an advanced, highly miniaturized, portable genetic-expression-assay instrument. Such an instrument implements an on-chip combination of polymerase chain reactions and electrochemical transduction for amplification and detection of deoxyribonucleic acid (DNA).
NASA Astrophysics Data System (ADS)
Cyganek, Boguslaw; Smolka, Bogdan
2015-02-01
In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.
Training Spiking Neural Models Using Artificial Bee Colony
Vazquez, Roberto A.; Garro, Beatriz A.
2015-01-01
Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644
Multiclassifier information fusion methods for microarray pattern recognition
NASA Astrophysics Data System (ADS)
Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Herzig-Marx, Rachel
2004-04-01
This paper addresses automatic recognition of microarray patterns, a capability that could have a major significance for medical diagnostics, enabling development of diagnostic tools for automatic discrimination of specific diseases. The paper presents multiclassifier information fusion methods for microarray pattern recognition. The input space partitioning approach based on fitness measures that constitute an a-priori gauging of classification efficacy for each subspace is investigated. Methods for generation of fitness measures, generation of input subspaces and their use in the multiclassifier fusion architecture are presented. In particular, two-level quantification of fitness that accounts for the quality of each subspace as well as the quality of individual neighborhoods within the subspace is described. Individual-subspace classifiers are Support Vector Machine based. The decision fusion stage fuses the information from mulitple SVMs along with the multi-level fitness information. Final decision fusion stage techniques, including weighted fusion as well as Dempster-Shafer theory based fusion are investigated. It should be noted that while the above methods are discussed in the context of microarray pattern recognition, they are applicable to a broader range of discrimination problems, in particular to problems involving a large number of information sources irreducible to a low-dimensional feature space.
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2018-01-01
Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.
Conditional random fields for pattern recognition applied to structured data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, Tom; Skurikhin, Alexei
In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less
Kafkas, Alexandros; Montaldi, Daniela
2011-10-01
Thirty-five healthy participants incidentally encoded a set of man-made and natural object pictures, while their pupil response and eye movements were recorded. At retrieval, studied and new stimuli were rated as novel, familiar (strong, moderate, or weak), or recollected. We found that both pupil response and fixation patterns at encoding predict later recognition memory strength. The extent of pupillary response accompanying incidental encoding was found to be predictive of subsequent memory. In addition, the number of fixations was also predictive of later recognition memory strength, suggesting that the accumulation of greater visual detail, even for single objects, is critical for the creation of a strong memory. Moreover, fixation patterns at encoding distinguished between recollection and familiarity at retrieval, with more dispersed fixations predicting familiarity and more clustered fixations predicting recollection. These data reveal close links between the autonomic control of pupil responses and eye movement patterns on the one hand and memory encoding on the other. Moreover, the data illustrate quantitative as well as qualitative differences in the incidental visual processing of stimuli, which are differentially predictive of the strength and the kind of memory experienced at recognition.
Ponomarev, S A; Berendeeva, T A; Kalinin, S A; Muranova, A V
The system of signaling pattern recognition receptors was studied in 8 cosmonauts aged 35 to 56 years before and after (R+) long-duration missions to the International space station. Peripheral blood samples were analyzed for the content of monocytes and granulocytes that express the signaling pattern recognition Toll- like (TLR) receptors localized as on cell surface (TLR1, TLR2, TLR4, TLR5, TLR6), so inside cells (TLR3, TLR8, TLR9). In parallel, serum concentrations of TLR2 (HSP60) and TLR4 ligands (HSP70, HMGB1) were measured. The results of investigations showed growth of HSP60, HSP70 and HMGB1 concentrations on R+1. In the;majority of cosmonauts increases in endogenous ligands were followed by growth in the number of both monocytes and granulocytes that express TLR2 1 TLR4. This consistency gives ground to assume that changes in the system of signaling pattern recognition receptors can stem .from the predominantly endogenous ligands' response to the effects of long-duration space flight on human organism.
Conditional random fields for pattern recognition applied to structured data
Burr, Tom; Skurikhin, Alexei
2015-07-14
In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less
Neonatal Recognition Processes and Attachment: The Masking Experiment.
ERIC Educational Resources Information Center
Cassel, Thomas Z. K.; Sander, Louis W.
This research project was designed to determine whether 1-week-old neonates would indicate biological recognition of their mothers. Biological recognition is defined as the particular configuration of sensory, kinesthetic, and motor cues and the temporal patterning of these cues which characterizes infants' exchange processes with their…
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-08-01
Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.
Bashir, K; Blizard, B; Bosanquet, A; Bosanquet, N; Mann, A; Jenkins, R
2000-08-01
Facilitation uses personal contact between the facilitator and the professional to encourage good practice and better service organisation. The model has been applied to physical illness but not to psychiatric disorders. To determine if a non-specialist facilitator can improve the recognition, management, and outcome of psychiatric illness presenting to general practitioners (GPs). Six practices were visited over an 18-month period by a facilitator whose activities included providing guidelines and organising training initiatives. Six other practices acted as controls. Recognition (identification index of family doctors), management (psychotropic prescribing, psychological consultations with the GP, specialist mental health treatment, and the use of medical interventions and investigations), and patient outcome at four months were assessed before and after intervention. The mean identification index of facilitator GPs rose from 0.51 to 0.64 following intervention, while that of the control GPs fell from 0.67 to 0.59 (P = 0.046). The facilitator had no detectable effect on management or patient outcome. The facilitator improved recognition of psychiatric illness by GPs. Generic facilitators can be trained to take on a mental health role; however, the failure to achieve more fundamental changes in treatment and outcome implies that facilitator intervention requires development.
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
Ordóñez, Francisco Javier; Roggen, Daniel
2016-01-01
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation. PMID:26797612
Abuelkhair, Mohammed; Abdu, Shajahan; Godman, Brian; Fahmy, Sahar; Malmström, Rickard E; Gustafsson, Lars L
2012-02-01
Pharmaceutical expenditure has risen rapidly in Abu Dhabi, resulting in policies surrounding generics. However, various circumstances will reduce potential savings, including pharmacists still being free to dispense either originator or branded generics and be fully reimbursed. To research the changes in utilization patterns of proton pump inhibitors (PPIs) and lipid-lowering drugs before and after combined reforms on generics; and subsequently, calculate potential savings based on 'best practices' among Western European countries. An uncontrolled before-and-after observational study of utilization and expenditure of PPIs, statins and ezetimibe between 2004 and 2010, as well as up to 12 months before the first generic policy, to 1 year after the second generic policy, was carried out. Utilization was converted to defined daily doses (DDDs; 2011 DDDs) and DDDs/1000 inhabitants per day. Expenditure/DDD was calculated for omeprazole and simvastatin. PPI utilization rose by 6.5-fold from 2004 to 2010, principally driven by increased utilization of patent-protected PPIs, although more recently stabilization in esomperazole utilization has occurred. Similar changes were seen for statins. Introduction of best practices would reduce PPI expenditure in 2010 by 32.8 million United Arab Emirates dirham (AED; €6.26 million) and statins by over 27 million AED (€5.15 million). Limited demand-side measures led to increased utilization of patent-protected products in Abu Dhabi following the generic reforms. Successful measures will release considerable resources.
Numerical analysis of tangential slot blowing on a generic chined forebody
NASA Technical Reports Server (NTRS)
Agosta, Roxana M.
1994-01-01
A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.
Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Zhang, Y; Kundu, S J
2004-03-29
This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.
Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm
2008-01-01
There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.
A new approach for cancelable iris recognition
NASA Astrophysics Data System (ADS)
Yang, Kai; Sui, Yan; Zhou, Zhi; Du, Yingzi; Zou, Xukai
2010-04-01
The iris is a stable and reliable biometric for positive human identification. However, the traditional iris recognition scheme raises several privacy concerns. One's iris pattern is permanently bound with him and cannot be changed. Hence, once it is stolen, this biometric is lost forever as well as all the applications where this biometric is used. Thus, new methods are desirable to secure the original pattern and ensure its revocability and alternatives when compromised. In this paper, we propose a novel scheme which incorporates iris features, non-invertible transformation and data encryption to achieve "cancelability" and at the same time increases iris recognition accuracy.
NASA Astrophysics Data System (ADS)
He, Xianjin; Zhang, Xinchang; Xin, Qinchuan
2018-02-01
Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.
Why fast magnetic reconnection is so prevalent
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
2018-02-01
Evolving magnetic fields are shown to generically reach a state of fast magnetic reconnection in which magnetic field line connections change and magnetic energy is released at an Alfvénic rate. This occurs even in plasmas with zero resistivity; only the finiteness of the mass of the lightest charged particle, an electron, is required. The speed and prevalence of Alfvénic or fast magnetic reconnection imply that its cause must be contained within the ideal evolution equation for magnetic fields, , where is the velocity of the magnetic field lines. For a generic , neighbouring magnetic field lines develop a separation that increases exponentially, as \\unicode[STIX]{x1D70E(\\ell ,t)}$ with the distance along a line. This exponentially enhances the sensitivity of the evolution to non-ideal effects. An analogous effect, the importance of stirring to produce a large-scale flow and enhance mixing, has been recognized by cooks through many millennia, but the importance of the large-scale flow to reconnection is customarily ignored. In part this is due to the sixty-year focus of recognition theory on two-coordinate models, which eliminate the exponential enhancement that is generic with three coordinates. A simple three-coordinate model is developed, which could be used to address many unanswered questions.
Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K
2016-01-01
Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.
Neural network-based system for pattern recognition through a fiber optic bundle
NASA Astrophysics Data System (ADS)
Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.
2001-04-01
A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.
Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.
Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando
2016-08-01
Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.
Shi, Xiao-Wen; Qiu, Ling; Nie, Zhen; Xiao, Ling; Payne, Gregory F; Du, Yumin
2013-12-01
Many applications in proteomics and lab-on-chip analysis require methods that guide proteins to assemble at surfaces with high spatial and temporal control. Electrical inputs are particularly convenient to control, and there has been considerable effort to discover simple and generic mechanisms that allow electrical inputs to trigger protein assembly on-demand. Here, we report the electroaddressing of a protein to a patterned surface by coupling two generic electroaddressing mechanisms. First, we electrodeposit the stimuli-responsive film-forming aminopolysaccharide chitosan to form a hydrogel matrix at the electrode surface. After deposition, the matrix is chemically functionalized with alkyne groups. Second, we ''electro-click' an azide-tagged protein to the functionalized matrix using electrical signals to trigger conjugation by Huisgen 1,3-dipolar cycloadditions. Specifically, a cathodic potential is applied to the matrix-coated electrode to reduce Cu(II) to Cu(I) which is required for the click reaction. Using fluorescently-labeled bovine serum albumin as our model, we demonstrate that protein conjugation can be controlled spatially and temporally. We anticipate that the coupling of polysaccharide electrodeposition and electro-click chemistry will provide a simple and generic approach to electroaddress proteins within compatible hydrogel matrices.
United States Homeland Security and National Biometric Identification
2002-04-09
security number. Biometrics is the use of unique individual traits such as fingerprints, iris eye patterns, voice recognition, and facial recognition to...technology to control access onto their military bases using a Defense Manpower Management Command developed software application. FACIAL Facial recognition systems...installed facial recognition systems in conjunction with a series of 200 cameras to fight street crime and identify terrorists. The cameras, which are
The Wireless Ubiquitous Surveillance Testbed
2003-03-01
c. Eye Patterns.............................................................................17 d. Facial Recognition ..................................................................19...27). ...........................................98 Table F.4. Facial Recognition Products. (After: Polemi, p. 25 and BiometriTech, 15 May 2002...it applies to homeland security. C. RESEARCH TASKS The main goals of this thesis are to: • Set up the biometric sensors and facial recognition surveillance
33 CFR 106.220 - Security training for all other OCS facility personnel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; and (e) Recognition of techniques used to circumvent security measures. (f) Familiarity with all relevant aspects of...
33 CFR 106.220 - Security training for all other OCS facility personnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; and (e) Recognition of techniques used to circumvent security measures. (f) Familiarity with all relevant aspects of...
Asymmetries in Early Word Recognition: The Case of Stops and Fricatives
ERIC Educational Resources Information Center
Altvater-Mackensen, Nicole; van der Feest, Suzanne V. H.; Fikkert, Paula
2014-01-01
Toddlers' discrimination of native phonemic contrasts is generally unproblematic. Yet using those native contrasts in word learning and word recognition can be more challenging. In this article, we investigate perceptual versus phonological explanations for asymmetrical patterns found in early word recognition. We systematically investigated the…
Inconsistent emotion recognition deficits across stimulus modalities in Huntington׳s disease.
Rees, Elin M; Farmer, Ruth; Cole, James H; Henley, Susie M D; Sprengelmeyer, Reiner; Frost, Chris; Scahill, Rachael I; Hobbs, Nicola Z; Tabrizi, Sarah J
2014-11-01
Recognition of negative emotions is impaired in Huntington׳s Disease (HD). It is unclear whether these emotion-specific problems are driven by dissociable cognitive deficits, emotion complexity, test cue difficulty, or visuoperceptual impairments. This study set out to further characterise emotion recognition in HD by comparing patterns of deficits across stimulus modalities; notably including for the first time in HD, the more ecologically and clinically relevant modality of film clips portraying dynamic facial expressions. Fifteen early HD and 17 control participants were tested on emotion recognition from static facial photographs, non-verbal vocal expressions and one second dynamic film clips, all depicting different emotions. Statistically significant evidence of impairment of anger, disgust and fear recognition was seen in HD participants compared with healthy controls across multiple stimulus modalities. The extent of the impairment, as measured by the difference in the number of errors made between HD participants and controls, differed according to the combination of emotion and modality (p=0.013, interaction test). The largest between-group difference was seen in the recognition of anger from film clips. Consistent with previous reports, anger, disgust and fear were the most poorly recognised emotions by the HD group. This impairment did not appear to be due to task demands or expression complexity as the pattern of between-group differences did not correspond to the pattern of errors made by either group; implicating emotion-specific cognitive processing pathology. There was however evidence that the extent of emotion recognition deficits significantly differed between stimulus modalities. The implications in terms of designing future tests of emotion recognition and care giving are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
1993-06-18
the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991
Pattern recognition for Space Applications Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Singley, M. E.
1984-01-01
Results and conclusions are presented on the application of recent developments in pattern recognition to spacecraft star mapping systems. Sensor data for two representative starfields are processed by an adaptive shape-seeking version of the Fc-V algorithm with good results. Cluster validity measures are evaluated, but not found especially useful to this application. Recommendations are given two system configurations worthy of additional study,
Method of synthesized phase objects for pattern recognition with rotation invariance
NASA Astrophysics Data System (ADS)
Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.
2015-11-01
We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.
NASA Astrophysics Data System (ADS)
Poock, G. K.; Martin, B. J.
1984-02-01
This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.
Das, Soumita; Owen, Katherine A.; Ly, Kim T.; Park, Daeho; Black, Steven G.; Wilson, Jeffrey M.; Sifri, Costi D.; Ravichandran, Kodi S.; Ernst, Peter B.; Casanova, James E.
2011-01-01
Bacterial recognition by host cells is essential for initiation of infection and the host response. Bacteria interact with host cells via multiple pattern recognition receptors that recognize microbial products or pathogen-associated molecular patterns. In response to this interaction, host cell signaling cascades are activated that lead to inflammatory responses and/or phagocytic clearance of attached bacteria. Brain angiogenesis inhibitor 1 (BAI1) is a receptor that recognizes apoptotic cells through its conserved type I thrombospondin repeats and triggers their engulfment through an ELMO1/Dock/Rac1 signaling module. Because thrombospondin repeats in other proteins have been shown to bind bacterial surface components, we hypothesized that BAI1 may also mediate the recognition and clearance of pathogenic bacteria. We found that preincubation of bacteria with recombinant soluble BAI1 ectodomain or knockdown of endogenous BAI1 in primary macrophages significantly reduced binding and internalization of the Gram-negative pathogen Salmonella typhimurium. Conversely, overexpression of BAI1 enhanced attachment and engulfment of Salmonella in macrophages and in heterologous nonphagocytic cells. Bacterial uptake is triggered by the BAI1-mediated activation of Rac through an ELMO/Dock-dependent mechanism, and inhibition of the BAI1/ELMO1 interaction prevents both Rac activation and bacterial uptake. Moreover, inhibition of ELMO1 or Rac function significantly impairs the proinflammatory response to infection. Finally, we show that BAI1 interacts with a variety of Gram-negative, but not Gram-positive, bacteria through recognition of their surface lipopolysaccharide. Together these findings identify BAI1 as a pattern recognition receptor that mediates nonopsonic phagocytosis of Gram-negative bacteria by macrophages and directly affects the host response to infection. PMID:21245295
Brand Medications and Medicare Part D: How Eye Care Providers' Prescribing Patterns Influence Costs.
Newman-Casey, Paula Anne; Woodward, Maria A; Niziol, Leslie M; Lee, Paul P; De Lott, Lindsey B
2018-03-01
To quantify costs of eye care providers' Medicare Part D prescribing patterns for ophthalmic medications and to estimate the potential savings of generic or therapeutic drug substitutions and price negotiation. Retrospective cross-sectional study. Eye care providers prescribing medications through Medicare Part D in 2013. Medicare Part D 2013 prescriber public use file and summary file were used to calculate medication costs by physician specialty and drug. Savings from generic or therapeutic drug substitutions were estimated for brand drugs. The potential savings from price negotiation was estimated using drug prices negotiated by the United States Veterans Administration (USVA). Total cost of brand and generic medications prescribed by eye care providers. Eye care providers accounted for $2.4 billion in total Medicare part D prescription drug costs and generated the highest percentage of brand name medication claims compared with all other providers. Brand medications accounted for a significantly higher proportion of monthly supplies by volume, and therefore, also by total cost for eye care providers compared with all other providers (38% vs. 23% by volume, P < 0.001; 79% vs. 56% by total cost, P < 0.001). The total cost attributable to eye care providers is driven by glaucoma medications, accounting for $1.2 billion (54% of total cost; 72% of total volume). The second costliest category, dry eye medications, was attributable mostly to a single medication, cyclosporine ophthalmic emulsion (Restasis, Allergan, Irvine, CA), which has no generic alternative, accounting for $371 million (17% of total cost; 4% of total volume). If generic medications were substituted for brand medications when available, $148 million would be saved (7% savings); if generic and therapeutic substitutions were made, $882 million would be saved (42% savings). If Medicare negotiated the prices for ophthalmic medications at USVA rates, $1.09 billion would be saved (53% savings). Eye care providers prescribe more brand medications by volume than any other provider group. Efforts to reduce prescription expenditures by eye care providers should focus on increasing the use of generic medications, primarily through therapeutic substitutions. Policy changes enabling Medicare to negotiate prescription drug prices could decrease costs to Medicare. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?
Ashkenazi, Sarit; Mark-Zigdon, Nitza; Henik, Avishai
2013-01-01
The abilities of children diagnosed with developmental dyscalculia (DD) were examined in two types of object enumeration: subitizing, and small estimation (5-9 dots). Subitizing is usually defined as a fast and accurate assessment of a number of small dots (range 1 to 4 dots), and estimation is an imprecise process to assess a large number of items (range 5 dots or more). Based on reaction time (RT) and accuracy analysis, our results indicated a deficit in the subitizing and small estimation range among DD participants in relation to controls. There are indications that subitizing is based on pattern recognition, thus presenting dots in a canonical shape in the estimation range should result in a subitizing-like pattern. In line with this theory, our control group presented a subitizing-like pattern in the small estimation range for canonically arranged dots, whereas the DD participants presented a deficit in the estimation of canonically arranged dots. The present finding indicates that pattern recognition difficulties may play a significant role in both subitizing and subitizing deficits among those with DD. © 2012 Blackwell Publishing Ltd.
Beyond sensory images: Object-based representation in the human ventral pathway
Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.
2004-01-01
We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396
Firm- and drug-specific patterns of generic drug payments by US medicaid programs: 1991-2008.
Kelton, Christina M L; Chang, Lenisa V; Guo, Jeff J; Yu, Yan; Berry, Edmund A; Bian, Boyang; Heaton, Pamela C
2014-04-01
The entry of generic drugs into markets previously monopolized by patented, branded drugs often represents large potential savings for healthcare payers in the USA. Our objectives were to describe and explain the trends in drug reimbursement by public Medicaid programmes post-generic entry for as many drug markets and for as long a time period as possible. The data were the Medicaid State Drug Utilization Data maintained by the Centers for Medicare and Medicaid Services. Quarterly utilization and expenditure data from 1991 to 2008 were extracted for 83 drugs, produced by 229 firms, that experienced initial generic entry between 1992 and 2004. A relative 'price' for a specific drug, firm and quarter was constructed as Medicaid reimbursement per unit (e.g. tablet, capsule or vial) divided by average reimbursement per unit for the branded drug the year before entry. Fixed-effects models controlling for time-, firm- and drug-specific differences were estimated to explain reimbursement. Twelve quarters after generic entry, 18 % of drugs had average per-unit reimbursement less than 50 % of the original branded-drug reimbursement. For each additional firm manufacturing the drug, reimbursement per unit, relative to the pre-generic-entry branded-drug reimbursement, was estimated to fall by 17 (p < 0.01) and 3 (p < 0.01) percentage points for generic and branded-drug companies, respectively. Each additional quarter post-generic entry brought a 2 (p < 0.01) percentage point drop in relative reimbursement. State Medicaid programmes generally have been able to obtain relief from high drug prices following patent expirations for many branded-drug medications by adjusting reimbursement following the expanded competition in the pharmaceutical market.
Moon, James C; Godman, Brian; Petzold, Max; Alvarez-Madrazo, Samantha; Bennett, Kathleen; Bishop, Iain; Bucsics, Anna; Hesse, Ulrik; Martin, Andrew; Simoens, Steven; Zara, Corinne; Malmström, Rickard E
2014-01-01
There is an urgent need for health authorities across Europe to fully realize potential savings from increased use of generics to sustain their healthcare systems. A variety of strategies were used across Europe following the availability of generic losartan, the first angiotensin receptor blocker (ARB) to be approved and marketed, to enhance its prescribing vs. single-sourced drugs in the class. Demand-side strategies ranged from 100% co-payment for single-sourced ARBs in Denmark to no specific measures. We hypothesized this heterogeneity of approaches would provide opportunities to explore prescribing in a class following patent expiry. Contrast the impact of the different approaches among European countries and regions to the availability of generic losartan to provide future guidance. Retrospective segmented regression analyses applying linear random coefficient models with country specific intercepts and slopes were used to assess the impact of the various initiatives across Europe following the availability of generic losartan. Utilization measured in defined daily doses (DDDs). Price reductions for generic losartan were also measured. Utilization of losartan was over 90% of all ARBs in Denmark by the study end. Multiple measures in Sweden and one English primary care group also appreciably enhanced losartan utilization. Losartan utilization actually fell in some countries with no specific demand-side measures. Considerable differences were seen in the prices of generic losartan. Delisting single-sourced ARBs produced the greatest increase in losartan utilization. Overall, multiple demand-side measures are needed to change physician prescribing habits to fully realize savings from generics. There is no apparent "spill over" effect from one class to another to influence future prescribing patterns even if these are closely related.
Moon, James C.; Godman, Brian; Petzold, Max; Alvarez-Madrazo, Samantha; Bennett, Kathleen; Bishop, Iain; Bucsics, Anna; Hesse, Ulrik; Martin, Andrew; Simoens, Steven; Zara, Corinne; Malmström, Rickard E.
2014-01-01
Introduction: There is an urgent need for health authorities across Europe to fully realize potential savings from increased use of generics to sustain their healthcare systems. A variety of strategies were used across Europe following the availability of generic losartan, the first angiotensin receptor blocker (ARB) to be approved and marketed, to enhance its prescribing vs. single-sourced drugs in the class. Demand-side strategies ranged from 100% co-payment for single-sourced ARBs in Denmark to no specific measures. We hypothesized this heterogeneity of approaches would provide opportunities to explore prescribing in a class following patent expiry. Objective: Contrast the impact of the different approaches among European countries and regions to the availability of generic losartan to provide future guidance. Methodology: Retrospective segmented regression analyses applying linear random coefficient models with country specific intercepts and slopes were used to assess the impact of the various initiatives across Europe following the availability of generic losartan. Utilization measured in defined daily doses (DDDs). Price reductions for generic losartan were also measured. Results: Utilization of losartan was over 90% of all ARBs in Denmark by the study end. Multiple measures in Sweden and one English primary care group also appreciably enhanced losartan utilization. Losartan utilization actually fell in some countries with no specific demand-side measures. Considerable differences were seen in the prices of generic losartan. Conclusion: Delisting single-sourced ARBs produced the greatest increase in losartan utilization. Overall, multiple demand-side measures are needed to change physician prescribing habits to fully realize savings from generics. There is no apparent “spill over” effect from one class to another to influence future prescribing patterns even if these are closely related. PMID:25339902
Pattern recognition and feature extraction with an optical Hough transform
NASA Astrophysics Data System (ADS)
Fernández, Ariel
2016-09-01
Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.
Reading recognition of pointer meter based on pattern recognition and dynamic three-points on a line
NASA Astrophysics Data System (ADS)
Zhang, Yongqiang; Ding, Mingli; Fu, Wuyifang; Li, Yongqiang
2017-03-01
Pointer meters are frequently applied to industrial production for they are directly readable. They should be calibrated regularly to ensure the precision of the readings. Currently the method of manual calibration is most frequently adopted to accomplish the verification of the pointer meter, and professional skills and subjective judgment may lead to big measurement errors and poor reliability and low efficiency, etc. In the past decades, with the development of computer technology, the skills of machine vision and digital image processing have been applied to recognize the reading of the dial instrument. In terms of the existing recognition methods, all the parameters of dial instruments are supposed to be the same, which is not the case in practice. In this work, recognition of pointer meter reading is regarded as an issue of pattern recognition. We obtain the features of a small area around the detected point, make those features as a pattern, divide those certified images based on Gradient Pyramid Algorithm, train a classifier with the support vector machine (SVM) and complete the pattern matching of the divided mages. Then we get the reading of the pointer meter precisely under the theory of dynamic three points make a line (DTPML), which eliminates the error caused by tiny differences of the panels. Eventually, the result of the experiment proves that the proposed method in this work is superior to state-of-the-art works.
Pattern recognition monitoring of PEM fuel cell
Meltser, M.A.
1999-08-31
The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.
Pattern recognition monitoring of PEM fuel cell
Meltser, Mark Alexander
1999-01-01
The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.
Symbol Recognition Using a Concept Lattice of Graphical Patterns
NASA Astrophysics Data System (ADS)
Rusiñol, Marçal; Bertet, Karell; Ogier, Jean-Marc; Lladós, Josep
In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.
Kwong, Winghan Jacqueline; Kamat, Siddhesh; Fang, Christy
2012-12-01
Despite the uncertainty surrounding the safety of switching warfarin formulations, limited data exist on the resource use and costs associated with this switching pattern. To evaluate health care resource use and costs associated with switching warfarin formulations among patients with atrial fibrillation (AF) in a managed care organization. Patients diagnosed with AF (ICD-9 427.31) between July 2004 and August 2008 and who received warfarin therapy were identified in the HealthCore Integrated Research Database and categorized into 3 groups: users of generic warfarin formulations from a single drug manufacturer (generic-only group), users of branded warfarin formulations only (brand-only group), and patients who used generic and branded warfarin therapy interchangeably or who may have used generic drugs from 1 or more manufacturers (generic/brand switching group). Patients were followed 12 months or longer after their index warfarin prescription date to compare all-cause resource use and costs using multivariable regression analysis. The analysis included 12,908 patients: 71.82% were in the genericonly group, 9.61% were in the brand-only group, and 18.57% were in the generic/brand switching group. Patients in the generic/brand switching group were more likely to be hospitalized (relative risk [RR] = 1.43, p < 0.0001) or to use emergency department services (RR = 1.20, p < 0.01), compared to the brand-only users. Hospitalizations were more likely (RR = 1.26, p < 0.001) to occur among generic-only users versus brand-only users. Adjusted mean pharmacy costs per member per month were lower in the generic/brand switching group compared to the brand-only group ($257 vs $273, p = 0.038), but inpatient costs were higher ($1250 vs $972, p < 0.001), resulting in higher ($2125 vs $1847, p < 0.001) total costs. Generic-only users had lower pharmacy costs compared to brand-only users ($246 vs $273, p < 0.001), but total health care costs trended to be higher in the generic-only group ($1957 vs $1847, p = 0.053). The use of both generic and branded formulations of warfarin interchangeably, or the use of generics from more than 1 manufacturer, was associated with increased use of all-cause health care resources and total costs in patients with AF.
Gottschlich, Carsten
2016-01-01
We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by comparing pairs of two DCT coefficients. These patterns are summarized into one or more histograms per image. Each histogram comprises the relative frequencies of pattern occurrences. Multiple histograms are concatenated and the resulting feature vector is used for image classification. We name this novel type of descriptor convolution comparison pattern (CCP). Experimental results show the usefulness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms other local image descriptors such as LBP, LPQ and WLD on the LivDet 2013 benchmark. The CCP descriptor is a general type of local image descriptor which we expect to prove useful in areas beyond fingerprint liveness detection such as biological and medical image processing, texture recognition, face recognition and iris recognition, liveness detection for face and iris images, and machine vision for surface inspection and material classification. PMID:26844544
An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.
Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten
2015-10-05
Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.
Model driven mobile care for patients with type 1 diabetes.
Skrøvseth, Stein Olav; Arsand, Eirik; Godtliebsen, Fred; Joakimsen, Ragnar M
2012-01-01
We gathered a data set from 30 patients with type 1 diabetes by giving the patients a mobile phone application, where they recorded blood glucose measurements, insulin injections, meals, and physical activity. Using these data as a learning data set, we describe a new approach of building a mobile feedback system for these patients based on periodicities, pattern recognition, and scale-space trends. Most patients have important patterns for periodicities and trends, though better resolution of input variables is needed to provide useful feedback using pattern recognition.
Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.
Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung
2007-05-01
This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.
Sensor-based activity recognition using extended belief rule-based inference methodology.
Calzada, A; Liu, J; Nugent, C D; Wang, H; Martinez, L
2014-01-01
The recently developed extended belief rule-based inference methodology (RIMER+) recognizes the need of modeling different types of information and uncertainty that usually coexist in real environments. A home setting with sensors located in different rooms and on different appliances can be considered as a particularly relevant example of such an environment, which brings a range of challenges for sensor-based activity recognition. Although RIMER+ has been designed as a generic decision model that could be applied in a wide range of situations, this paper discusses how this methodology can be adapted to recognize human activities using binary sensors within smart environments. The evaluation of RIMER+ against other state-of-the-art classifiers in terms of accuracy, efficiency and applicability was found to be significantly relevant, specially in situations of input data incompleteness, and it demonstrates the potential of this methodology and underpins the basis to develop further research on the topic.
Multiscale deep features learning for land-use scene recognition
NASA Astrophysics Data System (ADS)
Yuan, Baohua; Li, Shijin; Li, Ning
2018-01-01
The features extracted from deep convolutional neural networks (CNNs) have shown their promise as generic descriptors for land-use scene recognition. However, most of the work directly adopts the deep features for the classification of remote sensing images, and does not encode the deep features for improving their discriminative power, which can affect the performance of deep feature representations. To address this issue, we propose an effective framework, LASC-CNN, obtained by locality-constrained affine subspace coding (LASC) pooling of a CNN filter bank. LASC-CNN obtains more discriminative deep features than directly extracted from CNNs. Furthermore, LASC-CNN builds on the top convolutional layers of CNNs, which can incorporate multiscale information and regions of arbitrary resolution and sizes. Our experiments have been conducted using two widely used remote sensing image databases, and the results show that the proposed method significantly improves the performance when compared to other state-of-the-art methods.
The effect of inversion on face recognition in adults with autism spectrum disorder.
Hedley, Darren; Brewer, Neil; Young, Robyn
2015-05-01
Face identity recognition has widely been shown to be impaired in individuals with autism spectrum disorders (ASD). In this study we examined the influence of inversion on face recognition in 26 adults with ASD and 33 age and IQ matched controls. Participants completed a recognition test comprising upright and inverted faces. Participants with ASD performed worse than controls on the recognition task but did not show an advantage for inverted face recognition. Both groups directed more visual attention to the eye than the mouth region and gaze patterns were not found to be associated with recognition performance. These results provide evidence of a normal effect of inversion on face recognition in adults with ASD.
Egocentric Temporal Action Proposals.
Shao Huang; Weiqiang Wang; Shengfeng He; Lau, Rynson W H
2018-02-01
We present an approach to localize generic actions in egocentric videos, called temporal action proposals (TAPs), for accelerating the action recognition step. An egocentric TAP refers to a sequence of frames that may contain a generic action performed by the wearer of a head-mounted camera, e.g., taking a knife, spreading jam, pouring milk, or cutting carrots. Inspired by object proposals, this paper aims at generating a small number of TAPs, thereby replacing the popular sliding window strategy, for localizing all action events in the input video. To this end, we first propose to temporally segment the input video into action atoms, which are the smallest units that may contain an action. We then apply a hierarchical clustering algorithm with several egocentric cues to generate TAPs. Finally, we propose two actionness networks to score the likelihood of each TAP containing an action. The top ranked candidates are returned as output TAPs. Experimental results show that the proposed TAP detection framework performs significantly better than relevant approaches for egocentric action detection.
Gail A. Vander Stoep
1992-01-01
Resource managers can apply group-specific rather than generic communications and management strategies to different public land user groups. This study compares use patterns of one user group, Boy Scout troops, from two regions of the United States. It identifies their public land use patterns, activities, needs, and motivations. Results can be used by resource...
iLab 20M: A Large-scale Controlled Object Dataset to Investigate Deep Learning
2016-07-01
and train) and anno - tate them with rotation labels. Alexnet is fine tuned on the training set. We set the learning rate for all the layers to 0.001...Azizpour, A. Razavian, J . Sullivan, A. Maki, and S. Carls- son. From generic to specific deep representations for visual recognition. In CVPR...113–120. IEEE, 2014. 2 [5] J . Bromley, J . W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and R. Shah. Signature verifica- tion using
Recognition without Awareness: Encoding and Retrieval Factors
ERIC Educational Resources Information Center
Craik, Fergus I. M.; Rose, Nathan S.; Gopie, Nigel
2015-01-01
The article reports 4 experiments that explore the notion of recognition without awareness using words as the material. Previous work by Voss and associates has shown that complex visual patterns were correctly selected as targets in a 2-alternative forced-choice (2-AFC) recognition test although participants reported that they were guessing. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burse, V.W.; Groce, D.F.; Caudill, S.P.
1994-01-01
Gas chromatographic patterns of polychlorinated biophenyls (PCBs) found in the serum of New Bedford, MA residents with high serum PCBs were compared to patterns found in lobsters and bluefish taken from local waters, and goats fed selected technical Aroclors (e.g., Aroclors 1016, 1242, 1254, or 1260) using Jaccard measures of similarity and Principal Component Analysis. Pattern in humans were silimar to patterns in lobsters and both were more similar to those in the goat fed Aroclor 1254 as demonstrated by both pattern recognition techniques. However, patterns observed in humans, lobsters and bluefish all exhibited some presence of PCBs more characteristicmore » of Aroclors 1016 and/or 1242 or 1260.« less
Parallel and orthogonal stimulus in ultradiluted neural networks
NASA Astrophysics Data System (ADS)
Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.
2006-10-01
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .
Multi-texture local ternary pattern for face recognition
NASA Astrophysics Data System (ADS)
Essa, Almabrok; Asari, Vijayan
2017-05-01
In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobral, G. A. Jr.; Vieira, V. M.; Lyra, M. L.
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonalmore » to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0.« less
Artificial Immune System for Recognizing Patterns
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2005-01-01
A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.
Collocation and Pattern Recognition Effects on System Failure Remediation
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Press, Hayes N.
2007-01-01
Previous research found that operators prefer to have status, alerts, and controls located on the same screen. Unfortunately, that research was done with displays that were not designed specifically for collocation. In this experiment, twelve subjects evaluated two displays specifically designed for collocating system information against a baseline that consisted of dial status displays, a separate alert area, and a controls panel. These displays differed in the amount of collocation, pattern matching, and parameter movement compared to display size. During the data runs, subjects kept a randomly moving target centered on a display using a left-handed joystick and they scanned system displays to find a problem in order to correct it using the provided checklist. Results indicate that large parameter movement aided detection and then pattern recognition is needed for diagnosis but the collocated displays centralized all the information subjects needed, which reduced workload. Therefore, the collocated display with large parameter movement may be an acceptable display after familiarization because of the possible pattern recognition developed with training and its use.
NASA Technical Reports Server (NTRS)
Hinton, Yolanda L.
1999-01-01
Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
33 CFR 104.225 - Security training for all other vessel personnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (MARSEC) Levels, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
33 CFR 104.225 - Security training for all other vessel personnel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (MARSEC) Levels, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
Effects of age and hearing loss on recognition of unaccented and accented multisyllabic words.
Gordon-Salant, Sandra; Yeni-Komshian, Grace H; Fitzgibbons, Peter J; Cohen, Julie I
2015-02-01
The effects of age and hearing loss on recognition of unaccented and accented words of varying syllable length were investigated. It was hypothesized that with increments in length of syllables, there would be atypical alterations in syllable stress in accented compared to native English, and that these altered stress patterns would be sensitive to auditory temporal processing deficits with aging. Sets of one-, two-, three-, and four-syllable words with the same initial syllable were recorded by one native English and two Spanish-accented talkers. Lists of these words were presented in isolation and in sentence contexts to younger and older normal-hearing listeners and to older hearing-impaired listeners. Hearing loss effects were apparent for unaccented and accented monosyllabic words, whereas age effects were observed for recognition of accented multisyllabic words, consistent with the notion that altered syllable stress patterns with accent are sensitive for revealing effects of age. Older listeners also exhibited lower recognition scores for moderately accented words in sentence contexts than in isolation, suggesting that the added demands on working memory for words in sentence contexts impact recognition of accented speech. The general pattern of results suggests that hearing loss, age, and cognitive factors limit the ability to recognize Spanish-accented speech.
Effects of age and hearing loss on recognition of unaccented and accented multisyllabic words
Gordon-Salant, Sandra; Yeni-Komshian, Grace H.; Fitzgibbons, Peter J.; Cohen, Julie I.
2015-01-01
The effects of age and hearing loss on recognition of unaccented and accented words of varying syllable length were investigated. It was hypothesized that with increments in length of syllables, there would be atypical alterations in syllable stress in accented compared to native English, and that these altered stress patterns would be sensitive to auditory temporal processing deficits with aging. Sets of one-, two-, three-, and four-syllable words with the same initial syllable were recorded by one native English and two Spanish-accented talkers. Lists of these words were presented in isolation and in sentence contexts to younger and older normal-hearing listeners and to older hearing-impaired listeners. Hearing loss effects were apparent for unaccented and accented monosyllabic words, whereas age effects were observed for recognition of accented multisyllabic words, consistent with the notion that altered syllable stress patterns with accent are sensitive for revealing effects of age. Older listeners also exhibited lower recognition scores for moderately accented words in sentence contexts than in isolation, suggesting that the added demands on working memory for words in sentence contexts impact recognition of accented speech. The general pattern of results suggests that hearing loss, age, and cognitive factors limit the ability to recognize Spanish-accented speech. PMID:25698021
Ultrafast learning in a hard-limited neural network pattern recognizer
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
1996-03-01
As we published in the last five years, the supervised learning in a hard-limited perceptron system can be accomplished in a noniterative manner if the input-output mapping to be learned satisfies a certain positive-linear-independency (or PLI) condition. When this condition is satisfied (for most practical pattern recognition applications, this condition should be satisfied,) the connection matrix required to meet this mapping can be obtained noniteratively in one step. Generally, there exist infinitively many solutions for the connection matrix when the PLI condition is satisfied. We can then select an optimum solution such that the recognition of any untrained patterns will become optimally robust in the recognition mode. The learning speed is very fast and close to real-time because the learning process is noniterative and one-step. This paper reports the theoretical analysis and the design of a practical charter recognition system for recognizing hand-written alphabets. The experimental result is recorded in real-time on an unedited video tape for demonstration purposes. It is seen from this real-time movie that the recognition of the untrained hand-written alphabets is invariant to size, location, orientation, and writing sequence, even the training is done with standard size, standard orientation, central location and standard writing sequence.
Pattern recognition for passive polarimetric data using nonparametric classifiers
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.
2005-08-01
Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.
Image processing and recognition for biological images
Uchida, Seiichi
2013-01-01
This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. PMID:23560739
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-01-01
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-06-13
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).
Consonant-recognition patterns and self-assessment of hearing handicap.
Hustedde, C G; Wiley, T L
1991-12-01
Two companion experiments were conducted with normal-hearing subjects and subjects with high-frequency, sensorineural hearing loss. In Experiment 1, the validity of a self-assessment device of hearing handicap was evaluated in two groups of hearing-impaired listeners with significantly different consonant-recognition ability. Data for the Hearing Performance Inventory--Revised (Lamb, Owens, & Schubert, 1983) did not reveal differences in self-perceived handicap for the two groups of hearing-impaired listeners; it was sensitive to perceived differences in hearing abilities for listeners who did and did not have a hearing loss. Experiment 2 was aimed at evaluation of consonant error patterns that accounted for observed group differences in consonant-recognition ability. Error patterns on the Nonsense-Syllable Test (NST) across the two subject groups differed in both degree and type of error. Listeners in the group with poorer NST performance always demonstrated greater difficulty with selected low-frequency and high-frequency syllables than did listeners in the group with better NST performance. Overall, the NST was sensitive to differences in consonant-recognition ability for normal-hearing and hearing-impaired listeners.
Syntactic/semantic techniques for feature description and character recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, R.C.
1983-01-01
The Pattern Analysis Branch, Mapping, Charting and Geodesy (MC/G) Division, of the Naval Ocean Research and Development Activity (NORDA) has been involved over the past several years in the development of algorithms and techniques for computer recognition of free-form handprinted symbols as they appear on the Defense Mapping Agency (DMA) maps and charts. NORDA has made significant contributions to the automation of MC/G through advancing the state of the art in such information extraction techniques. In particular, new concepts in character (symbol) skeletonization, rugged feature measurements, and expert system-oriented decision logic have allowed the development of a very high performancemore » Handprinted Symbol Recognition (HSR) system for identifying depth soundings from naval smooth sheets (accuracies greater than 99.5%). The study reported in this technical note is part of NORDA's continuing research and development in pattern and shape analysis as it applies to Navy and DMA ocean/environment problems. The issue addressed in this technical note deals with emerging areas of syntactic and semantic techniques in pattern recognition as they might apply to the free-form symbol problem.« less
Higher-order neural network software for distortion invariant object recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly
1991-01-01
The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.
Star Pattern Recognition and Spacecraft Attitude Determination.
1978-10-01
Mr. Lawrence D. Ziems, Computer Programuer Prepared For: ,ti U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060 Contract No...CONTENTS PORIVAD i SIMARY iii 1.0 Introduction and System Overviev 1 2.0 Reference Frames Geometry and Kinematics 9 3.0 Star Pattern Recognition/Attitude...Laboratories (USAETL). The authors appreciate the capable guidance of Mr. L. A. Gambino, Director of the Computer Science Laboratory (USAETL), who served as
Linear Programming and Its Application to Pattern Recognition Problems
NASA Technical Reports Server (NTRS)
Omalley, M. J.
1973-01-01
Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.
Learning and Inductive Inference
1982-07-01
a set of graph grammars to describe visual scenes . Other researchers have applied graph grammars to the pattern recognition of handwritten characters...345 1. Issues / 345 2. Mostows’ operationalizer / 350 0. Learning from ezamples / 360 1. Issues / 3t60 2. Learning in control and pattern recognition ...art.icleis on rote learntinig and ailvice- tAik g. K(ennieth Clarkson contributed Ltte article on grmvit atical inference, anid Geoff’ lroiney wrote
DYNAMIC PATTERN RECOGNITION BY MEANS OF THRESHOLD NETS,
A method is expounded for the recognition of visual patterns. A circuit diagram of a device is described which is based on a multilayer threshold ...structure synthesized in accordance with the proposed method. Coded signals received each time an image is displayed are transmitted to the threshold ...circuit which distinguishes the signs, and from there to the layers of threshold resolving elements. The image at each layer is made to correspond
Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye
Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael
2017-01-01
Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847
Katagiri, Fumiaki; Glazebrook, Jane
2003-01-01
A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data. PMID:12960373
VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,
In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less
An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.
Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A
2016-04-01
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.
An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control
Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.
2015-01-01
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth
2016-01-01
Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.
Bee, Mark A
2004-12-01
Acoustic signals provide a basis for social recognition in a wide range of animals. Few studies, however, have attempted to relate the patterns of individual variation in signals to behavioral discrimination thresholds used by receivers to discriminate among individuals. North American bullfrogs (Rana catesbeiana) discriminate among familiar and unfamiliar individuals based on individual variation in advertisement calls. The sources, patterns, and magnitudes of variation in eight acoustic properties of multiple-note advertisement calls were examined to understand how patterns of within-individual variation might either constrain, or provide additional cues for, vocal recognition. Six of eight acoustic properties exhibited significant note-to-note variation within multiple-note calls. Despite this source of within-individual variation, all call properties varied significantly among individuals, and multivariate analyses indicated that call notes were individually distinct. Fine-temporal and spectral call properties exhibited less within-individual variation compared to gross-temporal properties and contributed most toward statistically distinguishing among individuals. Among-individual differences in the patterns of within-individual variation in some properties suggest that within-individual variation could also function as a recognition cue. The distributions of among-individual and within-individual differences were used to generate hypotheses about the expected behavioral discrimination thresholds of receivers.
Liu, Chung-Tse; Chan, Chia-Tai
2016-08-19
Sufficient physical activity can reduce many adverse conditions and contribute to a healthy life. Nevertheless, inactivity is prevalent on an international scale. Improving physical activity is an essential concern for public health. Reminders that help people change their health behaviors are widely applied in health care services. However, timed-based reminders deliver periodic prompts suffer from flexibility and dependency issues which may decrease prompt effectiveness. We propose a fuzzy logic prompting mechanism, Accumulated Activity Effective Index Reminder (AAEIReminder), based on pattern recognition and activity effective analysis to manage physical activity. AAEIReminder recognizes activity levels using a smartphone-embedded sensor for pattern recognition and analyzing the amount of physical activity in activity effective analysis. AAEIReminder can infer activity situations such as the amount of physical activity and days spent exercising through fuzzy logic, and decides whether a prompt should be delivered to a user. This prompting system was implemented in smartphones and was used in a short-term real-world trial by seventeenth participants for validation. The results demonstrated that the AAEIReminder is feasible. The fuzzy logic prompting mechanism can deliver prompts automatically based on pattern recognition and activity effective analysis. AAEIReminder provides flexibility which may increase the prompts' efficiency.
Koelkebeck, Katja; Kohl, Waldemar; Luettgenau, Julia; Triantafillou, Susanna; Ohrmann, Patricia; Satoh, Shinji; Minoshita, Seiko
2015-07-30
A novel emotion recognition task that employs photos of a Japanese mask representing a highly ambiguous stimulus was evaluated. As non-Asians perceive and/or label emotions differently from Asians, we aimed to identify patterns of task-performance in non-Asian healthy volunteers with a view to future patient studies. The Noh mask test was presented to 42 adult German participants. Reaction times and emotion attribution patterns were recorded. To control for emotion identification abilities, a standard emotion recognition task was used among others. Questionnaires assessed personality traits. Finally, results were compared to age- and gender-matched Japanese volunteers. Compared to other tasks, German participants displayed slowest reaction times on the Noh mask test, indicating higher demands of ambiguous emotion recognition. They assigned more positive emotions to the mask than Japanese volunteers, demonstrating culture-dependent emotion identification patterns. As alexithymic and anxious traits were associated with slower reaction times, personality dimensions impacted on performance, as well. We showed an advantage of ambiguous over conventional emotion recognition tasks. Moreover, we determined emotion identification patterns in Western individuals impacted by personality dimensions, suggesting performance differences in clinical samples. Due to its properties, the Noh mask test represents a promising tool in the differential diagnosis of psychiatric disorders, e.g. schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
33 CFR 105.215 - Security training for all other facility personnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... apply to them, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
33 CFR 105.215 - Security training for all other facility personnel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apply to them, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...
The software peculiarities of pattern recognition in track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkov, N.
The different kinds of nuclear track recognition algorithms are represented. Several complicated samples of use them in physical experiments are considered. The some processing methods of complicated images are described.
A multimodal approach to emotion recognition ability in autism spectrum disorders.
Jones, Catherine R G; Pickles, Andrew; Falcaro, Milena; Marsden, Anita J S; Happé, Francesca; Scott, Sophie K; Sauter, Disa; Tregay, Jenifer; Phillips, Rebecca J; Baird, Gillian; Simonoff, Emily; Charman, Tony
2011-03-01
Autism spectrum disorders (ASD) are characterised by social and communication difficulties in day-to-day life, including problems in recognising emotions. However, experimental investigations of emotion recognition ability in ASD have been equivocal, hampered by small sample sizes, narrow IQ range and over-focus on the visual modality. We tested 99 adolescents (mean age 15;6 years, mean IQ 85) with an ASD and 57 adolescents without an ASD (mean age 15;6 years, mean IQ 88) on a facial emotion recognition task and two vocal emotion recognition tasks (one verbal; one non-verbal). Recognition of happiness, sadness, fear, anger, surprise and disgust were tested. Using structural equation modelling, we conceptualised emotion recognition ability as a multimodal construct, measured by the three tasks. We examined how the mean levels of recognition of the six emotions differed by group (ASD vs. non-ASD) and IQ (≥ 80 vs. < 80). We found no evidence of a fundamental emotion recognition deficit in the ASD group and analysis of error patterns suggested that the ASD group were vulnerable to the same pattern of confusions between emotions as the non-ASD group. However, recognition ability was significantly impaired in the ASD group for surprise. IQ had a strong and significant effect on performance for the recognition of all six emotions, with higher IQ adolescents outperforming lower IQ adolescents. The findings do not suggest a fundamental difficulty with the recognition of basic emotions in adolescents with ASD. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.
The Boundaries of Hemispheric Processing in Visual Pattern Recognition
1989-11-01
Allen, M. W. (1968). Impairment in facial recognition in patients cerebral disease. Cortex, 4, 344-358. Bogen, J. E. (1969). The other side of the brain...effects on a facial recognition task in normal subjects. Cortex, 9, 246-258. tliscock, M. (1988). Behavioral asymmetries in normal children. In D. L... facial recognition . Neuropsychologia, 22, 471-477. Ross-Kossak, P., & Turkewitz, G. (1986). A micro and macro developmental view of the nature of changes
Control of antiviral immunity by pattern recognition and the microbiome
Pang, Iris K.; Iwasaki, Akiko
2013-01-01
Summary Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential link between viruses, microbiota and the host immune system. Further, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease, and speculate on the benefit for probiotic therapies against such diseases. PMID:22168422
Human activities recognition by head movement using partial recurrent neural network
NASA Astrophysics Data System (ADS)
Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.
2003-06-01
Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.
Gesture recognition for smart home applications using portable radar sensors.
Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip
2014-01-01
In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.
NASA Astrophysics Data System (ADS)
El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy
2011-04-01
Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.
2007-04-19
define the patterns and are better at analyzing behavior. SPQR (System for Pattern Query and Recognition) [18, 58] can recognize pattern vari- ants...Stotts. SPQR : Flexible automated design pattern extraction from source code. ase, 00:215, 2003. ISSN 1527-1366. doi: http://doi.ieeecomputersociety. org
Infrared sensing of non-observable human biometrics
NASA Astrophysics Data System (ADS)
Willmore, Michael R.
2005-05-01
Interest and growth of biometric recognition technologies surged after 9/11. Once a technology mainly used for identity verification in law enforcement, biometrics are now being considered as a secure means of providing identity assurance in security related applications. Biometric recognition in law enforcement must, by necessity, use attributes of human uniqueness that are both observable and vulnerable to compromise. Privacy and protection of an individual's identity is not assured during criminal activity. However, a security system must rely on identity assurance for access control to physical or logical spaces while not being vulnerable to compromise and protecting the privacy of an individual. The solution resides in the use of non-observable attributes of human uniqueness to perform the biometric recognition process. This discussion will begin by presenting some key perspectives about biometric recognition and the characteristic differences between observable and non-observable biometric attributes. An introduction to the design, development, and testing of the Thermo-ID system will follow. The Thermo-ID system is an emerging biometric recognition technology that uses non-observable patterns of infrared energy naturally emanating from within the human body. As with all biometric systems, the infrared patterns recorded and compared within the Thermo-ID system are unique and individually distinguishable permitting a link to be confirmed between an individual and a claimed or previously established identity. The non-observable characteristics of infrared patterns of human uniqueness insure both the privacy and protection of an individual using this type of biometric recognition system.
Facial expression recognition based on improved deep belief networks
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to improve the robustness of facial expression recognition, a method of face expression recognition based on Local Binary Pattern (LBP) combined with improved deep belief networks (DBNs) is proposed. This method uses LBP to extract the feature, and then uses the improved deep belief networks as the detector and classifier to extract the LBP feature. The combination of LBP and improved deep belief networks is realized in facial expression recognition. In the JAFFE (Japanese Female Facial Expression) database on the recognition rate has improved significantly.
Terrain type recognition using ERTS-1 MSS images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1973-01-01
For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.
Italians Use Abstract Knowledge about Lexical Stress during Spoken-Word Recognition
ERIC Educational Resources Information Center
Sulpizio, Simone; McQueen, James M.
2012-01-01
In two eye-tracking experiments in Italian, we investigated how acoustic information and stored knowledge about lexical stress are used during the recognition of tri-syllabic spoken words. Experiment 1 showed that Italians use acoustic cues to a word's stress pattern rapidly in word recognition, but only for words with antepenultimate stress.…
ERIC Educational Resources Information Center
Golan, Ofer; Gordon, Ilanit; Fichman, Keren; Keinan, Giora
2018-01-01
Children with ASD show emotion recognition difficulties, as part of their social communication deficits. We examined facial emotion recognition (FER) in intellectually disabled children with ASD and in younger typically developing (TD) controls, matched on mental age. Our emotion-matching paradigm employed three different modalities: facial, vocal…
Distribution pattern of public transport passenger in Yogyakarta, Indonesia
NASA Astrophysics Data System (ADS)
Narendra, Alfa; Malkhamah, Siti; Sopha, Bertha Maya
2018-03-01
The arrival and departure distribution pattern of Trans Jogja bus passenger is one of the fundamental model for simulation. The purpose of this paper is to build models of passengers flows. This research used passengers data from January to May 2014. There is no policy that change the operation system affecting the nature of this pattern nowadays. The roads, buses, land uses, schedule, and people are relatively still the same. The data then categorized based on the direction, days, and location. Moreover, each category was fitted into some well-known discrete distributions. Those distributions are compared based on its AIC value and BIC. The chosen distribution model has the smallest AIC and BIC value and the negative binomial distribution found has the smallest AIC and BIC value. Probability mass function (PMF) plots of those models were compared to draw generic model from each categorical negative binomial distribution models. The value of accepted generic negative binomial distribution is 0.7064 and 1.4504 of mu. The minimum and maximum passenger vector value of distribution are is 0 and 41.
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K W
2016-10-01
Origami-based design holds promise for developing new mechanical metamaterials whose overall kinematic and mechanical properties can be programmed using purely geometric criteria. In this article, we demonstrate that the deformation of a generic degree-four vertex (4-vertex) origami cell is a combination of contracting, shearing, bending, and facet-binding. The last three deformation mechanisms are missing in the current rigid-origami metamaterial investigations, which focus mainly on conventional Miura-ori patterns. We show that these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns as well as extraordinary kinematical and mechanical properties, including self-locking, tridirectional negative Poisson's ratios, flipping of stiffness profiles, and emerging shearing stiffness. This study reveals that the 4-vertex cells offer a better platform and greater design space for developing origami-based mechanical metamaterials than the conventional Miura-ori cell.
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.
2016-10-01
Origami-based design holds promise for developing new mechanical metamaterials whose overall kinematic and mechanical properties can be programmed using purely geometric criteria. In this article, we demonstrate that the deformation of a generic degree-four vertex (4-vertex) origami cell is a combination of contracting, shearing, bending, and facet-binding. The last three deformation mechanisms are missing in the current rigid-origami metamaterial investigations, which focus mainly on conventional Miura-ori patterns. We show that these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns as well as extraordinary kinematical and mechanical properties, including self-locking, tridirectional negative Poisson's ratios, flipping of stiffness profiles, and emerging shearing stiffness. This study reveals that the 4-vertex cells offer a better platform and greater design space for developing origami-based mechanical metamaterials than the conventional Miura-ori cell.
Quantum Model of Emerging Grammars
NASA Technical Reports Server (NTRS)
Zak, M.
1999-01-01
A special class of quantum recurrent nets simulating Markov chains with absorbing states is introduced. The absorbing states are exploited for pattern recognition: each class of patterns, each combination of patterns acquires its own meaning.
NASA Astrophysics Data System (ADS)
Feller, Jens; Feller, Sebastian; Mauersberg, Bernhard; Mergenthaler, Wolfgang
2009-09-01
Many applications in plant management require close monitoring of equipment performance, in particular with the objective to prevent certain critical events. At each point in time, the information available to classify the criticality of the process, is represented through the historic signal database as well as the actual measurement. This paper presents an approach to detect and predict critical events, based on pattern recognition and discriminance analysis.
NASA Astrophysics Data System (ADS)
Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.
1990-09-01
The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.
NASA Technical Reports Server (NTRS)
Heydorn, R. D.
1984-01-01
The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.
CNN: a speaker recognition system using a cascaded neural network.
Zaki, M; Ghalwash, A; Elkouny, A A
1996-05-01
The main emphasis of this paper is to present an approach for combining supervised and unsupervised neural network models to the issue of speaker recognition. To enhance the overall operation and performance of recognition, the proposed strategy integrates the two techniques, forming one global model called the cascaded model. We first present a simple conventional technique based on the distance measured between a test vector and a reference vector for different speakers in the population. This particular distance metric has the property of weighting down the components in those directions along which the intraspeaker variance is large. The reason for presenting this method is to clarify the discrepancy in performance between the conventional and neural network approach. We then introduce the idea of using unsupervised learning technique, presented by the winner-take-all model, as a means of recognition. Due to several tests that have been conducted and in order to enhance the performance of this model, dealing with noisy patterns, we have preceded it with a supervised learning model--the pattern association model--which acts as a filtration stage. This work includes both the design and implementation of both conventional and neural network approaches to recognize the speakers templates--which are introduced to the system via a voice master card and preprocessed before extracting the features used in the recognition. The conclusion indicates that the system performance in case of neural network is better than that of the conventional one, achieving a smooth degradation in respect of noisy patterns, and higher performance in respect of noise-free patterns.
Extracting semantics from audio-visual content: the final frontier in multimedia retrieval.
Naphade, M R; Huang, T S
2002-01-01
Multimedia understanding is a fast emerging interdisciplinary research area. There is tremendous potential for effective use of multimedia content through intelligent analysis. Diverse application areas are increasingly relying on multimedia understanding systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, pattern recognition, multimedia databases, and smart sensors. We review the state-of-the-art techniques in multimedia retrieval. In particular, we discuss how multimedia retrieval can be viewed as a pattern recognition problem. We discuss how reliance on powerful pattern recognition and machine learning techniques is increasing in the field of multimedia retrieval. We review the state-of-the-art multimedia understanding systems with particular emphasis on a system for semantic video indexing centered around multijects and multinets. We discuss how semantic retrieval is centered around concepts and context and the various mechanisms for modeling concepts and context.
Learning pattern recognition and decision making in the insect brain
NASA Astrophysics Data System (ADS)
Huerta, R.
2013-01-01
We revise the current model of learning pattern recognition in the Mushroom Bodies of the insects using current experimental knowledge about the location of learning, olfactory coding and connectivity. We show that it is possible to have an efficient pattern recognition device based on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning only in the connections from the Kenyon cells to the output neurons. We also show that despite the conventional wisdom that believes that artificial neural networks are the bioinspired model of the brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard Hebbian rules, and require inhibition in the output. A very particular prediction of the model is that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to recognize odorants previously learned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cen Haiyan; Bao Yidan; He Yong
2006-10-10
Visible and near-infrared reflectance (visible-NIR) spectroscopy is applied to discriminate different varieties of bayberry juices. The discrimination of visible-NIR spectra from samples is a matter of pattern recognition. By partial least squares (PLS), the spectrum is reduced to certain factors, which are then taken as the input of the backpropagation neural network (BPNN). Through training and prediction, three different varieties of bayberry juice are classified based on the output of the BPNN. In addition, a mathematical model is built and the algorithm is optimized. With proper parameters in the training set,100% accuracy is obtained by the BPNN. Thus it ismore » concluded that the PLS analysis combined with the BPNN is an alternative for pattern recognition based on visible and NIR spectroscopy.« less
Photonics: From target recognition to lesion detection
NASA Technical Reports Server (NTRS)
Henry, E. Michael
1994-01-01
Since 1989, Martin Marietta has invested in the development of an innovative concept for robust real-time pattern recognition for any two-dimensioanal sensor. This concept has been tested in simulation, and in laboratory and field hardware, for a number of DOD and commercial uses from automatic target recognition to manufacturing inspection. We have now joined Rose Health Care Systems in developing its use for medical diagnostics. The concept is based on determining regions of interest by using optical Fourier bandpassing as a scene segmentation technique, enhancing those regions using wavelet filters, passing the enhanced regions to a neural network for analysis and initial pattern identification, and following this initial identification with confirmation by optical correlation. The optical scene segmentation and pattern confirmation are performed by the same optical module. The neural network is a recursive error minimization network with a small number of connections and nodes that rapidly converges to a global minimum.
Speech therapy and voice recognition instrument
NASA Technical Reports Server (NTRS)
Cohen, J.; Babcock, M. L.
1972-01-01
Characteristics of electronic circuit for examining variations in vocal excitation for diagnostic purposes and in speech recognition for determiniog voice patterns and pitch changes are described. Operation of the circuit is discussed and circuit diagram is provided.
Protein classification using sequential pattern mining.
Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I
2006-01-01
Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.
Infrared and visible fusion face recognition based on NSCT domain
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan
2018-01-01
Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In this paper, a novel fusion algorithm in non-subsampled contourlet transform (NSCT) domain is proposed for Infrared and visible face fusion recognition. Firstly, NSCT is used respectively to process the infrared and visible face images, which exploits the image information at multiple scales, orientations, and frequency bands. Then, to exploit the effective discriminant feature and balance the power of high-low frequency band of NSCT coefficients, the local Gabor binary pattern (LGBP) and Local Binary Pattern (LBP) are applied respectively in different frequency parts to obtain the robust representation of infrared and visible face images. Finally, the score-level fusion is used to fuse the all the features for final classification. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. Experiments results show that the proposed method extracts the complementary features of near-infrared and visible-light images and improves the robustness of unconstrained face recognition.
Impaired Word and Face Recognition in Older Adults with Type 2 Diabetes.
Jones, Nicola; Riby, Leigh M; Smith, Michael A
2016-07-01
Older adults with type 2 diabetes mellitus (DM2) exhibit accelerated decline in some domains of cognition including verbal episodic memory. Few studies have investigated the influence of DM2 status in older adults on recognition memory for more complex stimuli such as faces. In the present study we sought to compare recognition memory performance for words, objects and faces under conditions of relatively low and high cognitive load. Healthy older adults with good glucoregulatory control (n = 13) and older adults with DM2 (n = 24) were administered recognition memory tasks in which stimuli (faces, objects and words) were presented under conditions of either i) low (stimulus presented without a background pattern) or ii) high (stimulus presented against a background pattern) cognitive load. In a subsequent recognition phase, the DM2 group recognized fewer faces than healthy controls. Further, the DM2 group exhibited word recognition deficits in the low cognitive load condition. The recognition memory impairment observed in patients with DM2 has clear implications for day-to-day functioning. Although these deficits were not amplified under conditions of increased cognitive load, the present study emphasizes that recognition memory impairment for both words and more complex stimuli such as face are a feature of DM2 in older adults. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Toward an automated signature recognition toolkit for mission operations
NASA Technical Reports Server (NTRS)
Cleghorn, T.; Laird, P; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.
1994-01-01
Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.
Toward an automated signature recognition toolkit for mission operations
NASA Astrophysics Data System (ADS)
Cleghorn, T.; Laird, P.; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.
1994-10-01
Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.
NASA Astrophysics Data System (ADS)
Schutte, Klamer; Burghouts, Gertjan; van der Stap, Nanda; Westerwoudt, Victor; Bouma, Henri; Kruithof, Maarten; Baan, Jan; ten Hove, Johan-Martijn
2016-10-01
The bottleneck in situation awareness is no longer in the sensing domain but rather in the data interpretation domain, since the number of sensors is rapidly increasing and it is not affordable to increase human data-analysis capacity at the same rate. Automatic image analysis can assist a human analyst by alerting when an event of interest occurs. However, common state-of-the-art image recognition systems learn representations in high-dimensional feature spaces, which makes them less suitable to generate a user-comprehensive message. Such data-driven approaches rely on large amounts of training data, which is often not available for quite rare but high-impact incidents in the security domain. The key contribution of this paper is that we present a novel real-time system for image understanding based on generic instantaneous low-level processing components (symbols) and flexible user-definable and user-understandable combinations of these components (sentences) at a higher level for the recognition of specific relevant events in the security domain. We show that the detection of an event of interest can be enhanced by utilizing recognition of multiple short-term preparatory actions.
Martínez-Castilla, Pastora; Burt, Michael; Borgatti, Renato; Gagliardi, Chiara
2015-01-01
In this study both the matching and developmental trajectories approaches were used to clarify questions that remain open in the literature on facial emotion recognition in Williams syndrome (WS) and Down syndrome (DS). The matching approach showed that individuals with WS or DS exhibit neither proficiency for the expression of happiness nor specific impairments for negative emotions. Instead, they present the same pattern of emotion recognition as typically developing (TD) individuals. Thus, the better performance on the recognition of positive compared to negative emotions usually reported in WS and DS is not specific of these populations but seems to represent a typical pattern. Prior studies based on the matching approach suggested that the development of facial emotion recognition is delayed in WS and atypical in DS. Nevertheless, and even though performance levels were lower in DS than in WS, the developmental trajectories approach used in this study evidenced that not only individuals with DS but also those with WS present atypical development in facial emotion recognition. Unlike in the TD participants, where developmental changes were observed along with age, in the WS and DS groups, the development of facial emotion recognition was static. Both individuals with WS and those with DS reached an early maximum developmental level due to cognitive constraints.
O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H
2015-09-01
Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.
Dynamic competition in pharmaceuticals. Patent expiry, generic penetration, and industry structure.
Magazzini, Laura; Pammolli, Fabio; Riccaboni, Massimo
2004-06-01
This paper investigates patterns of industrial dynamics and competition in the pharmaceutical industry, with particular reference to the consequences of patent expiry in different countries. We focus on the competition at the level of single chemical entities, distinguishing between original brands and generic products. Quarterly data, spanning from July 1987 to December 1998, on sales of pharmaceutical products in four countries (USA, UK, Germany, and France) constitute the basis of our analysis. All the products containing major molecules whose patent expiration date lies between 1986 and 1996 are included in our sample. We show how diffusion of generics is linked to the characteristics of the market and investigate how price dynamics of original products are affected by generic competition. Our empirical investigation shows that the dynamics of drug prices and the competition by generic drugs vary significantly across countries. This heterogeneity notwithstanding, a clear distinction seems to emerge. On the one hand, systems that rely on market-based competition in pharmaceuticals promote a clear distinction between firms that act as innovators and firms that act as imitators after patent expiry. Here, original products enjoy premium prices and exclusivity profits under patent protection, and face fierce price competition after patent expiry. On the other hand, in systems that rely on administered prices, penetration by generic drugs tends to be rather limited. Its descriptive and preliminary nature notwithstanding, our analysis seems to have relevant implications at different levels of generality, especially for Europe.
Willams, A Mark; Hodges, Nicola J; North, Jamie S; Barton, Gabor
2006-01-01
The perceptual-cognitive information used to support pattern-recognition skill in soccer was examined. In experiment 1, skilled players were quicker and more accurate than less-skilled players at recognising familiar and unfamiliar soccer action sequences presented on film. In experiment 2, these action sequences were converted into point-light displays, with superficial display features removed and the positions of players and the relational information between them made more salient. Skilled players were more accurate than less-skilled players in recognising sequences presented in point-light form, implying that each pattern of play can be defined by the unique relations between players. In experiment 3, various offensive and defensive players were occluded for the duration of each trial in an attempt to identify the most important sources of information underpinning successful performance. A decrease in response accuracy was observed under occluded compared with non-occluded conditions and the expertise effect was no longer observed. The relational information between certain key players, team-mates and their defensive counterparts may provide the essential information for effective pattern-recognition skill in soccer. Structural feature analysis, temporal phase relations, and knowledge-based information are effectively integrated to facilitate pattern recognition in dynamic sport tasks.
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision
Kwon, MiYoung; Legge, Gordon E.
2011-01-01
It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800
Vajda, Szilárd; Rangoni, Yves; Cecotti, Hubert
2015-01-01
For training supervised classifiers to recognize different patterns, large data collections with accurate labels are necessary. In this paper, we propose a generic, semi-automatic labeling technique for large handwritten character collections. In order to speed up the creation of a large scale ground truth, the method combines unsupervised clustering and minimal expert knowledge. To exploit the potential discriminant complementarities across features, each character is projected into five different feature spaces. After clustering the images in each feature space, the human expert labels the cluster centers. Each data point inherits the label of its cluster’s center. A majority (or unanimity) vote decides the label of each character image. The amount of human involvement (labeling) is strictly controlled by the number of clusters – produced by the chosen clustering approach. To test the efficiency of the proposed approach, we have compared, and evaluated three state-of-the art clustering methods (k-means, self-organizing maps, and growing neural gas) on the MNIST digit data set, and a Lampung Indonesian character data set, respectively. Considering a k-nn classifier, we show that labeling manually only 1.3% (MNIST), and 3.2% (Lampung) of the training data, provides the same range of performance than a completely labeled data set would. PMID:25870463
A quantitative approach to evolution of music and philosophy
NASA Astrophysics Data System (ADS)
Vieira, Vilson; Fabbri, Renato; Travieso, Gonzalo; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano
2012-08-01
The development of new statistical and computational methods is increasingly making it possible to bridge the gap between hard sciences and humanities. In this study, we propose an approach based on a quantitative evaluation of attributes of objects in fields of humanities, from which concepts such as dialectics and opposition are formally defined mathematically. As case studies, we analyzed the temporal evolution of classical music and philosophy by obtaining data for 8 features characterizing the corresponding fields for 7 well-known composers and philosophers, which were treated with multivariate statistics and pattern recognition methods. A bootstrap method was applied to avoid statistical bias caused by the small sample data set, with which hundreds of artificial composers and philosophers were generated, influenced by the 7 names originally chosen. Upon defining indices for opposition, skewness and counter-dialectics, we confirmed the intuitive analysis of historians in that classical music evolved according to a master-apprentice tradition, while in philosophy changes were driven by opposition. Though these case studies were meant only to show the possibility of treating phenomena in humanities quantitatively, including a quantitative measure of concepts such as dialectics and opposition, the results are encouraging for further application of the approach presented here to many other areas, since it is entirely generic.
Artificial intelligence tools for pattern recognition
NASA Astrophysics Data System (ADS)
Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro
2017-06-01
In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.
Isaacowitz, Derek M.; Stanley, Jennifer Tehan
2011-01-01
Older adults perform worse on traditional tests of emotion recognition accuracy than do young adults. In this paper, we review descriptive research to date on age differences in emotion recognition from facial expressions, as well as the primary theoretical frameworks that have been offered to explain these patterns. We propose that this is an area of inquiry that would benefit from an ecological approach in which contextual elements are more explicitly considered and reflected in experimental methods. Use of dynamic displays and examination of specific cues to accuracy, for example, may reveal more nuanced age-related patterns and may suggest heretofore unexplored underlying mechanisms. PMID:22125354
Biopharmaceuticals and biosimilars in psoriasis: what the dermatologist needs to know.
Strober, Bruce E; Armour, Katherine; Romiti, Ricardo; Smith, Catherine; Tebbey, Paul W; Menter, Alan; Leonardi, Craig
2012-02-01
The entry of biosimilar forms of biopharmaceutical therapies for the treatment of psoriasis and other immune-mediated disorders has provoked considerable interest. Although dermatologists are accustomed to the use of a wide range of generic topical agents, recognition of key differences between original agent (ie, the name brand) and the generic or biosimilar agent is necessary to support optimal therapy management and patient care. In this review we have summarized the current state of the art related to the impending introduction of biosimilars into dermatology. Biosimilars represent important interventions that are less expensive and hence offer the potential to deliver benefit to large numbers of patients who may not currently be able to access these therapies. But the development of biosimilars is not equivalent to that of small molecule generic therapies because of differences in molecular structure and processes of manufacture. The planned regulatory guidelines and path to approval may not encompass all of these potentially important differences and this may have clinical relevance to the prescriber and patient. Consequently, we have identified a series of key issues that should be considered to support the full potential of biosimilars for the treatment of psoriasis; ie, that of increased access to appropriate therapy for the psoriasis population worldwide. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1984-01-01
The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.
Interface Prostheses With Classifier-Feedback-Based User Training.
Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai
2017-11-01
It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.
Bridge Health Monitoring Using a Machine Learning Strategy
DOT National Transportation Integrated Search
2017-01-01
The goal of this project was to cast the SHM problem within a statistical pattern recognition framework. Techniques borrowed from speaker recognition, particularly speaker verification, were used as this discipline deals with problems very similar to...
ERIC Educational Resources Information Center
Dopkins, Stephen; Nordlie, Johanna
2011-01-01
Recognition judgments to the non-antecedents of a repeated-noun anaphor are slower and less accurate after than before the processing of the anaphor. Disagreement exists as to whether this pattern of performance reflects a bias shift carried out by a memory process associated with the recognition of a word that has previously occurred in the…
Artificially intelligent recognition of Arabic speaker using voice print-based local features
NASA Astrophysics Data System (ADS)
Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz
2016-11-01
Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.
Facial and prosodic emotion recognition in social anxiety disorder.
Tseng, Huai-Hsuan; Huang, Yu-Lien; Chen, Jian-Ting; Liang, Kuei-Yu; Lin, Chao-Cheng; Chen, Sue-Huei
2017-07-01
Patients with social anxiety disorder (SAD) have a cognitive preference to negatively evaluate emotional information. In particular, the preferential biases in prosodic emotion recognition in SAD have been much less explored. The present study aims to investigate whether SAD patients retain negative evaluation biases across visual and auditory modalities when given sufficient response time to recognise emotions. Thirty-one SAD patients and 31 age- and gender-matched healthy participants completed a culturally suitable non-verbal emotion recognition task and received clinical assessments for social anxiety and depressive symptoms. A repeated measures analysis of variance was conducted to examine group differences in emotion recognition. Compared to healthy participants, SAD patients were significantly less accurate at recognising facial and prosodic emotions, and spent more time on emotion recognition. The differences were mainly driven by the lower accuracy and longer reaction times for recognising fearful emotions in SAD patients. Within the SAD patients, lower accuracy of sad face recognition was associated with higher severity of depressive and social anxiety symptoms, particularly with avoidance symptoms. These findings may represent a cross-modality pattern of avoidance in the later stage of identifying negative emotions in SAD. This pattern may be linked to clinical symptom severity.
A Formal Basis for Safety Case Patterns
NASA Technical Reports Server (NTRS)
Denney, Ewen; Pai, Ganesh
2013-01-01
By capturing common structures of successful arguments, safety case patterns provide an approach for reusing strategies for reasoning about safety. In the current state of the practice, patterns exist as descriptive specifications with informal semantics, which not only offer little opportunity for more sophisticated usage such as automated instantiation, composition and manipulation, but also impede standardization efforts and tool interoperability. To address these concerns, this paper gives (i) a formal definition for safety case patterns, clarifying both restrictions on the usage of multiplicity and well-founded recursion in structural abstraction, (ii) formal semantics to patterns, and (iii) a generic data model and algorithm for pattern instantiation. We illustrate our contributions by application to a new pattern, the requirements breakdown pattern, which builds upon our previous work
NASA Astrophysics Data System (ADS)
Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn
2013-03-01
There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.
Motion Based Target Acquisition and Evaluation in an Adaptive Machine Vision System
1995-05-01
paths in facial recognition and learning. Annals of Neurology, 22, 41-45. Tolman, E.C. (1932) Purposive behavior in Animals and Men. New York: Appleton...Learned scan paths are the active processes of perception. Rizzo et al. (1987) studied the fixation patterns of two patients with impaired facial ... recognition and learning and found an increase in the randomness of the scan patterns compared to controls, indicating that the cortex was failing to direct
Simulation and performance of an artificial retina for 40 MHz track reconstruction
Abba, A.; Bedeschi, F.; Citterio, M.; ...
2015-03-05
We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-05-21
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.
Pattern recognition tool based on complex network-based approach
NASA Astrophysics Data System (ADS)
Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir
2013-02-01
This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
NASA Astrophysics Data System (ADS)
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image
NASA Astrophysics Data System (ADS)
Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI
2017-01-01
This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.
Automatic recognition of postural allocations.
Sazonov, Edward; Krishnamurthy, Vidya; Makeyev, Oleksandr; Browning, Ray; Schutz, Yves; Hill, James
2007-01-01
A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.
Layered recognition networks that pre-process, classify, and describe
NASA Technical Reports Server (NTRS)
Uhr, L.
1971-01-01
A brief overview is presented of six types of pattern recognition programs that: (1) preprocess, then characterize; (2) preprocess and characterize together; (3) preprocess and characterize into a recognition cone; (4) describe as well as name; (5) compose interrelated descriptions; and (6) converse. A computer program (of types 3 through 6) is presented that transforms and characterizes the input scene through the successive layers of a recognition cone, and then engages in a stylized conversation to describe the scene.
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Jorgensen, Charles
2000-01-01
This paper presents recent results in neuroelectric pattern recognition of electromyographic (EMG) signals used to control virtual computer input devices. The devices are designed to substitute for the functions of both a traditional joystick and keyboard entry method. We demonstrate recognition accuracy through neuroelectric control of a 757 class simulation aircraft landing at San Francisco International Airport using a virtual joystick as shown. This is accomplished by a pilot closing his fist in empty air and performing control movements that are captured by a dry electrode array on the arm which are then analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. We then demonstrate finer grain motor pattern recognition through a virtual keyboard by having a typist tap his traders on a typical desk in a touch typist position. The EMG signals are then translated to keyboard presses and displayed. The paper describes the bioelectric pattern recognition methodology common to both examples. Figure 2 depicts raw EMG data from typing, the numeral '8' and the numeral '9'. These two gestures are very close in appearance and statistical properties yet are distinguishable by our hidden Kharkov model algorithms. Extensions of this work to NASA emissions and robotic control are considered.
Image processing and recognition for biological images.
Uchida, Seiichi
2013-05-01
This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Neural network classification technique and machine vision for bread crumb grain evaluation
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.; Chung, O. K.; Caley, M.
1995-10-01
Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.
Artificial neural network detects human uncertainty
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.
2018-03-01
Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.
New pattern recognition system in the e-nose for Chinese spirit identification
NASA Astrophysics Data System (ADS)
Hui, Zeng; Qiang, Li; Yu, Gu
2016-02-01
This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance (QCM) principle, and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an 8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value (A), root-mean-square value (RMS), shape factor value (Sf), crest factor value (Cf), impulse factor value (If), clearance factor value (CLf), kurtosis factor value (Kv) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis (PCA) method. Finally the back propagation (BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-14-120A2).
NASA Astrophysics Data System (ADS)
Hagita, Norihiro; Sawaki, Minako
1995-03-01
Most conventional methods in character recognition extract geometrical features such as stroke direction, connectivity of strokes, etc., and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs, stains and the graphical background designs used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is completely accurate. This paper proposes a method for recognizing degraded characters and characters printed on graphical background designs. This method is based on the binary image feature method and uses binary images as features. A new similarity measure, called the complementary similarity measure, is used as a discriminant function. It compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2 which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, an special characters. The results show that this method is much more robust against noise than the conventional geometrical feature method. It also achieves high recognition rates of over 92% for characters with textured foregrounds, over 98% for characters with textured backgrounds, over 98% for outline fonts, and over 99% for reverse contrast characters.
Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A
2011-02-01
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Sequential Learning and Recognition of Comprehensive Behavioral Patterns Based on Flow of People
NASA Astrophysics Data System (ADS)
Gibo, Tatsuya; Aoki, Shigeki; Miyamoto, Takao; Iwata, Motoi; Shiozaki, Akira
Recently, surveillance cameras have been set up everywhere, for example, in streets and public places, in order to detect irregular situations. In the existing surveillance systems, as only a handful of surveillance agents watch a large number of images acquired from surveillance cameras, there is a possibility that they may miss important scenes such as accidents or abnormal incidents. Therefore, we propose a method for sequential learning and the recognition of comprehensive behavioral patterns in crowded places. First, we comprehensively extract a flow of people from input images by using optical flow. Second, we extract behavioral patterns on the basis of change-point detection of the flow of people. Finally, in order to recognize an observed behavioral pattern, we draw a comparison between the behavioral pattern and previous behavioral patterns in the database. We verify the effectiveness of our approach by placing a surveillance camera on a campus.
1990-07-27
sorptionpiezoelectric sorption 63 detector, surface acoustic wave, pattern recognition, array, 16. PRICE CODE molecular recognition , 17. SECURITY...1 PIEZOELECTRIC SORPTION DETECTORS ........................................................... 6 SOLUBILITY... SORPTION AND LINEAR SOLVATION ENERGY RELATIONSHIPS (LSER) ................................................................................... 9
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Methods of conducting audits, inspection, control, and monitoring; and (7) Techniques for security... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral...
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Methods of conducting audits, inspection, control, and monitoring; and (7) Techniques for security... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral...
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Methods of conducting audits, inspection, control, and monitoring; and (7) Techniques for security... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral...
Transformations in the Recognition of Visual Forms
ERIC Educational Resources Information Center
Charness, Neil; Bregman, Albert S.
1973-01-01
In a study which required college students to learn to recognize four flexible plastic shapes photographed on different backgrounds from different angles, the importance of a context-rich environment for the learning and recognition of visual patterns was illustrated. (Author)
An investigative framework to facilitate epidemiological thinking during herd problem-solving.
More, Simon J; Doherty, Michael L; O'Grady, Luke
2017-01-01
Veterinary clinicians and students commonly use diagnostic approaches appropriate for individual cases when conducting herd problem-solving. However, these approaches can be problematic, in part because they make limited use of epidemiological principles and methods, which has clear application during the investigation of herd problems. In this paper, we provide an overview of diagnostic approaches that are used when investigating individual animal cases, and the challenges faced when these approaches are directly translated from the individual to the herd. Further, we propose an investigative framework to facilitate epidemiological thinking during herd problem-solving. A number of different approaches are used when making a diagnosis on an individual animal, including pattern recognition, hypothetico-deductive reasoning, and the key abnormality method. Methods commonly applied to individuals are often adapted for herd problem-solving: 'comparison with best practice' being a herd-level adaptation of pattern recognition, and 'differential diagnoses' a herd-level adaptation of hypothetico-deductive reasoning. These approaches can be effective, however, challenges can arise. Herds are complex; a collection of individual cows, but also additional layers relating to environment, management, feeding etc. It is unrealistic to expect seamless translation of diagnostic approaches from the individual to the herd. Comparison with best practice is time-consuming and prioritisation of actions can be problematic, whereas differential diagnoses can lead to 'pathogen hunting', particularly in complex cases. Epidemiology is the science of understanding disease in populations. The focus is on the population, underpinned by principles and utilising methods that seek to allow us to generate solid conclusions from apparently uncontrolled situations. In this paper, we argue for the inclusion of epidemiological principles and methods as an additional tool for herd problem-solving, and outline an investigative framework, with examples, to effectively incorporate these principles and methods with other diagnostic approaches during herd problem-solving. Relevant measures of performance are identified, and measures of case frequencies are calculated and compared across time, in space and among animal groupings, to identify patterns, clues and plausible hypotheses, consistent with potential biological processes. With this knowledge, the subsequent investigation (relevant on-farm activities, diagnostic testing and other examinations) can be focused, and actions prioritised (specifically, those actions that are likely to make the greatest difference in addressing the problem if enacted). In our experience, this investigative framework is an effective teaching tool, facilitating epidemiological thinking among students during herd problem-solving. It is a generic and robust process, suited to many herd-based problems.
NASA Astrophysics Data System (ADS)
Sarparandeh, Mohammadali; Hezarkhani, Ardeshir
2017-12-01
The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed methods and geological studies leads to finding some hidden information, and this approach has the best results compared to using only one of them.
Approximate string matching algorithms for limited-vocabulary OCR output correction
NASA Astrophysics Data System (ADS)
Lasko, Thomas A.; Hauser, Susan E.
2000-12-01
Five methods for matching words mistranslated by optical character recognition to their most likely match in a reference dictionary were tested on data from the archives of the National Library of Medicine. The methods, including an adaptation of the cross correlation algorithm, the generic edit distance algorithm, the edit distance algorithm with a probabilistic substitution matrix, Bayesian analysis, and Bayesian analysis on an actively thinned reference dictionary were implemented and their accuracy rates compared. Of the five, the Bayesian algorithm produced the most correct matches (87%), and had the advantage of producing scores that have a useful and practical interpretation.
Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing
2015-07-27
Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.
Does an Ability to Pattern Indicate That Our Thinking Is Mathematical?
ERIC Educational Resources Information Center
McCluskey, Catherine; Mitchelmore, Michael; Mulligan, Joanne
2013-01-01
Research affirms that pattern and structure underlie the development of a broad range of mathematical concepts. However, the concept of pattern also occurs in other fields. This theoretical paper explores pattern recognition, a neurological construct based on the world of Goldberg (2005), and pattern as defined in the field of mathematics to…
Structural Pattern Recognition Techniques for Data Retrieval in Massive Fusion Databases
NASA Astrophysics Data System (ADS)
Vega, J.; Murari, A.; Rattá, G. A.; Castro, P.; Pereira, A.; Portas, A.
2008-03-01
Diagnostics of present day reactor class fusion experiments, like the Joint European Torus (JET), generate thousands of signals (time series and video images) in each discharge. There is a direct correspondence between the physical phenomena taking place in the plasma and the set of structural shapes (patterns) that they form in the signals: bumps, unexpected amplitude changes, abrupt peaks, periodic components, high intensity zones or specific edge contours. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behavior, i.e. discharges with "similar" patterns. Pattern recognition techniques are efficient tools to search for similar structural forms within the database in a fast an intelligent way. To this end, classification systems must be developed to be used as indexation methods to directly fetch the more similar patterns.
Orthogonal Patterns In A Binary Neural Network
NASA Technical Reports Server (NTRS)
Baram, Yoram
1991-01-01
Report presents some recent developments in theory of binary neural networks. Subject matter relevant to associate (content-addressable) memories and to recognition of patterns - both of considerable importance in advancement of robotics and artificial intelligence. When probed by any pattern, network converges to one of stored patterns.
RIG-I in RNA virus recognition
Kell, Alison M.; Gale, Michael
2015-01-01
Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy. PMID:25749629
Recent progress in invariant pattern recognition
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar
1996-12-01
We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.
System integration of pattern recognition, adaptive aided, upper limb prostheses
NASA Technical Reports Server (NTRS)
Lyman, J.; Freedy, A.; Solomonow, M.
1975-01-01
The requirements for successful integration of a computer aided control system for multi degree of freedom artificial arms are discussed. Specifications are established for a system which shares control between a human amputee and an automatic control subsystem. The approach integrates the following subsystems: (1) myoelectric pattern recognition, (2) adaptive computer aiding; (3) local reflex control; (4) prosthetic sensory feedback; and (5) externally energized arm with the functions of prehension, wrist rotation, elbow extension and flexion and humeral rotation.
2001-10-25
wavelet decomposition of signals and classification using neural network. Inputs to the system are the heart sound signals acquired by a stethoscope in a...Proceedings. pp. 415–418, 1990. [3] G. Ergun, “An intelligent diagnostic system for interpretation of arterpartum fetal heart rate tracings based on ANNs and...AN INTELLIGENT PATTERN RECOGNITION SYSTEM BASED ON NEURAL NETWORK AND WAVELET DECOMPOSITION FOR INTERPRETATION OF HEART SOUNDS I. TURKOGLU1, A