Science.gov

Sample records for genes accompanies differentiation

  1. High-dose intravenous immunoglobulin therapy for rapidly progressive interstitial pneumonitis accompanied by anti-melanoma differentiation-associated gene 5 antibody-positive amyopathic dermatomyositis

    PubMed Central

    Hamada-Ode, Kazu; Taniguchi, Yoshinori; Kimata, Takahito; Kawaguchi, Yasushi; Shimamura, Yoshiko; Kuwana, Masataka; Fujimoto, Shimpei; Terada, Yoshio

    2015-01-01

    Anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive amyopathic dermatomyositis (ADM) associated with rapidly progressive interstitial pneumonitis (RPIP) frequently has a poor prognosis and optimal treatment is not well defined. Here, we report a 62-year-old Japanese man with anti-MDA5 antibody-positive ADM associated with RPIP presented with progressive shortness of breath, Heliotrope rash, Gottron’s papules, arthralgia, and fatigue but no sign of muscle weakness. Laboratory investigation revealed serum levels of the following biomarkers: ferritin, 1393 ng/mL; Krebs von der Lungen-6, 1880 U/mL; and creatine kinase, 85 U/L. Computed tomography (CT) images showed diffuse ground-glass opacity in both lung fields. Because anti-MDA5 was positive, we made a diagnosis of ADM associated with RPIP and initiated treatment. Following five courses of combination therapy with prednisolone, cyclosporine A, and intravenous cyclophosphamide (IVCY), IVCY treatment was switched to high-dose intravenous immunoglobulin therapy (IVIg) because of the reactivation of interstitial pneumonia with an increased serum ferritin level. Additional treatment with IVIg improved RPIP, with normalization of anti-ADM antibody levels. Therefore, IVIg mayt be a new candidate treatment for anti-MDA5 antibody-positive ADM associated with RPIP. PMID:27708934

  2. Histone acetylation accompanied with promoter sequences displaying differential expression profiles of B-class MADS-box genes for phalaenopsis floral morphogenesis.

    PubMed

    Hsu, Chia-Chi; Wu, Pei-Shan; Chen, Tien-Chih; Yu, Chun-Wei; Tsai, Wen-Chieh; Wu, Keqiang; Wu, Wen-Luan; Chen, Wen-Huei; Chen, Hong-Hwa

    2014-01-01

    Five B-class MADS-box genes, including four APETALA3 (AP3)-like PeMADS2∼5 and one PISTILLATA (PI)-like PeMADS6, specify the spectacular flower morphology in orchids. The PI-like PeMADS6 ubiquitously expresses in all floral organs. The four AP3-like genes, resulted from two duplication events, express ubiquitously at floral primordia and early floral organ stages, but show distinct expression profiles at late floral organ primordia and floral bud stages. Here, we isolated the upstream sequences of PeMADS2∼6 and studied the regulatory mechanism for their distinct gene expression. Phylogenetic footprinting analysis of the 1.3-kb upstream sequences of AP3-like PeMADS2∼5 showed that their promoter regions have sufficiently diverged and contributed to their subfunctionalization. The amplified promoter sequences of PeMADS2∼6 could drive beta-glucuronidase (GUS) gene expression in all floral organs, similar to their expression at the floral primordia stage. The promoter sequence of PeMADS4, exclusively expressed in lip and column, showed a 1.6∼3-fold higher expression in lip/column than in sepal/petal. Furthermore, we noted a 4.9-fold increase in histone acetylation (H3K9K14ac) in the translation start region of PeMADS4 in lip as compared in petal. All these results suggest that the regulation via the upstream sequences and increased H3K9K14ac level may act synergistically to display distinct expression profiles of the AP3-like genes at late floral organ primordia stage for Phalaenopsis floral morphogenesis. PMID:25501842

  3. [Differential radiodiagnosis of odontogenic mandibular osteomyelitis accompanied by trigeminal neuropathy].

    PubMed

    Solonskaia, N S; Zorina, I S

    2011-01-01

    This paper deals with the results of radiation examination in 43 patients with clinical manifestations of mandibular osteomyelitis. In 13 of them, the disease was accompanied by trigeminal neuropathy. The radiation semiotics of the changes occurring in the mandibular bone and its adjacent soft tissues in different phases of osteomyelitis is described. Comparative analysis of orthopantomograms and the images obtained by multislice spiral computed tomography has revealed the advantage of the latter in identifying insignificant changes in bone tissue and damages to the mandibular canal. Ultrasound study is of more informative value in detecting soft tissue changes in this area. High-technology radiodiagnostic techniques play a leading role in the differentiation of odontogenic and non-odontogenic trigeminal neuropathies.

  4. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation.

    PubMed

    Ayer, D E; Eisenman, R N

    1993-11-01

    Mad is a basic-helix-loop-helix-zipper protein that heterodimerizes with Max in vitro. Mad:Max heterodimers recognize the same E-box-related DNA-binding sites as Myc:Max heterodimers. However, in transient transfection assays Myc and Mad influence transcription in opposite ways through interaction with Max; Myc activates while Mad represses transcription. Here, we demonstrate that Mad protein is induced rapidly upon differentiation of cells of the myeloid lineage. The Mad protein is synthesized in human cells as a 35-kD nuclear phosphoprotein with an extremely short half-life (t1/2 = 15-30 min) and can be detected in vivo in a complex with Max. In the undifferentiated U937 monocyte cell line Max was found complexed with Myc but not Mad. However, Mad:Max complexes began to accumulate as early as 2 hr after induction of macrophage differentiation with TPA. By 48 hr following TPA treatment only Mad:Max complexes were detectable. These data show that differentiation is accompanied by a change in the composition of Max heterocomplexes. We speculate that this switch in heterocomplexes results in a change in the transcriptional regulation of Myc:Max target genes required for cell proliferation.

  5. Genes and Gene Networks Involved in Sodium Fluoride-Elicited Cell Death Accompanying Endoplasmic Reticulum Stress in Oral Epithelial Cells

    PubMed Central

    Tabuchi, Yoshiaki; Yunoki, Tatsuya; Hoshi, Nobuhiko; Suzuki, Nobuo; Kondo, Takashi

    2014-01-01

    Here, to understand the molecular mechanisms underlying cell death induced by sodium fluoride (NaF), we analyzed gene expression patterns in rat oral epithelial ROE2 cells exposed to NaF using global-scale microarrays and bioinformatics tools. A relatively high concentration of NaF (2 mM) induced cell death concomitant with decreases in mitochondrial membrane potential, chromatin condensation and caspase-3 activation. Using 980 probe sets, we identified 432 up-regulated and 548 down-regulated genes, that were differentially expressed by >2.5-fold in the cells treated with 2 mM of NaF and categorized them into 4 groups by K-means clustering. Ingenuity® pathway analysis revealed several gene networks from gene clusters. The gene networks Up-I and Up-II included many up-regulated genes that were mainly associated with the biological function of induction or prevention of cell death, respectively, such as Atf3, Ddit3 and Fos (for Up-I) and Atf4 and Hspa5 (for Up-II). Interestingly, knockdown of Ddit3 and Hspa5 significantly increased and decreased the number of viable cells, respectively. Moreover, several endoplasmic reticulum (ER) stress-related genes including, Ddit3, Atf4 and Hapa5, were observed in these gene networks. These findings will provide further insight into the molecular mechanisms of NaF-induced cell death accompanying ER stress in oral epithelial cells. PMID:24853129

  6. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    PubMed

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  7. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  8. Gene flow and population differentiation.

    PubMed

    Endler, J A

    1973-01-19

    There are many possible spatial patterns of selection and gene flow that can produce a given cline structure; the actual geography of natural selection and gene flow must be worked out before an attempt is made to explain a given natural cline in terms of a model. The results of experimental and theoretical models show that it is possible for local differentiation to evolve parapatrically in spite of considerable gene flow if the selection gradients are relatively uniform. Irregularities in environmental gradients increase the sensitivity of clines to the effects of gene flow in proportion to the increase in the differences in gene frequencies between the emigrants and the demes receiving the immigrants. It is not necessary for a sharp spatial environmental change to be present for distinct differentiation to occur. In some cases even a gentle environmental gradient can give rise to marked spatial differentiation along a genetically continuous series of demes; such environmental differences may be below the practical limits of resolution in field studies. Any asymmetry in gene flow does not lead to dedifferentiation if the environmental gradient is smooth; it merely shifts the position of the transition zone between the differentiated areas from that which would be expected if there were no asymmetry. Abrupt geographic differences in gene, genotype, or morph frequencies should not, therefore, be interpreted as evidence for environmental changes in the immediate vicinity of the steepest part of the cline; neither should they be interpreted as evidence for geographic barriers, sharp environmental differences, or sexual isolation among the differentiated groups of populations when there are no other sources of evidence for these phenomena. Gene flow may be unimportant in the differentiation of populations along environmental gradients.

  9. Biochemical and cytological changes accompanying growth and differentiation in the roots of Zea mays.

    PubMed

    LUND, H A; VATTER, A E; HANSON, J B

    1958-01-25

    The apical meristem of the root affords an excellent material with which to study changes in cellular components accompanying growth and differentiation. The ontogeny of cytoplasmic particles can be followed, since the younger cells are constantly dividing and reforming new cytoplasm. Electron microscope pictures of these newly formed cells reveal a dense background of microsomal granules and small, thin walled vesicles of the endoplasmic reticulum. Two types of mitochondria are noted and, as the cells enlarge, mitochondria regarded as immature can no longer be seen, but only mitochondria with well developed cristae. The development of these cristae was found to be associated with an increase in respiration of the tissue as well as with increased rates of oxidation and phosphorylation of isolated mitochondria. As the cells grow and mature, the mitochondria make up an increasing percentage of the total cytoplasmic protein, and this increase probably accounts to a great extent for the increase in tissue respiration. Concomitantly, there is a decrease in microsomal granules. All these changes have been verified by electron microscope pictures of cells in situ, chemical analysis of isolated particulates, and metabolic studies of tissue and isolated fractions.

  10. Differential expression of receptor protein tyrosine phosphatases accompanies the reorganisation of the retina upon laser lesion.

    PubMed

    Besser, Manuela; Horvat-Bröcker, Andrea; Eysel, Ulf T; Faissner, Andreas

    2009-09-01

    The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.

  11. Confluence-Induced Squamous Differentiation Is Not Accompanied by Changes in H3K27me3 Repressive Epigenetic Mark.

    PubMed

    Gannon, Orla M; de Long, Lilia Merida; Hazar-Rethinam, Mehlika; Topkas, Eleni; Endo-Munoz, Liliana B; Thomas, Gethin P; Zhang, Ping; Saunders, Nicholas A

    2015-10-01

    Recent studies have reported that epigenetic mechanisms may regulate the initiation and progress of squamous differentiation in normal and transformed keratinocytes. In particular, the role of the repressive H3K27me3 mark in the regulation of squamous differentiation has been prominent. However, there is conflicting literature showing that squamous differentiation may be dependent upon or independent of changes in H3K27me3 status. In this study we have examined the binding of trimethylated H3K27 to the promoters of proliferation or differentiation genes in keratinocytes undergoing squamous differentiation in vitro and in vivo. Initially, we examined the expression levels for EZH1, EZH2, and H3K27me3 in differentiating keratinocytes in vitro and in vivo. We extended this to include H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq). Based on these studies, we could find no evidence for an association between widespread gain or loss of H3K27me3 on the promoters of proliferation-specific or differentiation-specific target genes, respectively, during squamous differentiation in adult human keratinocytes. These data suggest that squamous differentiation may occur independent of regulation by H3K27me3 on proliferation and differentiation genes of normal adult human keratinocytes.

  12. Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription.

    PubMed

    Chia, Dennis J; Rotwein, Peter

    2010-10-01

    Many of the long-term physiological effects of GH require hormone-mediated changes in gene expression. The transcription factor signal transducer and activator of transcription 5b (Stat5b) plays a critical role in the actions of GH on growth and metabolism by regulating a large number of GH-dependent genes by incompletely understood mechanisms. Here we have assessed the impact of GH-initiated and Stat5b-mediated signaling on the chromatin landscape of hormone-regulated genes in the liver of pituitary-deficient young adult male rats. In the absence of GH there was minimal ongoing transcription at the Socs2, Cish, Igfals, and Spi 2.1 promoters, minimal occupancy of Stat5b at proximal promoter sites, and relatively closed chromatin, as evidenced by low levels of core histone acetylation. In contrast, transcriptionally silent Igf1 promoter 1 appeared poised to be activated, based on binding of coactivators p300 and Med1/Trap220, high levels of histone acetylation, and the presence of RNA polymerase II. GH treatment led to a 8- to 20-fold rise in transcriptional activity of all five genes within 30-60 min and was accompanied by binding of Stat5b to the proximal Socs2, Cish, Igfals, and Spi 2.1 promoters and to seven distal Igf1 Stat5b elements, by enhanced histone acetylation at all five promoters, by recruitment of RNA polymerase II to the Socs2, Cish, Igfals, and Spi 2.1 promoters, and by loss of the transcriptional repressor Bcl6 from Socs2, Cish, and Igfals Stat5b sites, but not from two Igf1 Stat5b domains. We conclude that GH actions induce rapid and dramatic changes in hepatic chromatin at target promoters and propose that the chromatin signature of Igf1 differs from other GH-and Stat5b-dependent genes. PMID:20702579

  13. Morc3 mutant mice exhibit reduced cortical area and thickness, accompanied by altered haematopoietic stem cells niche and bone cell differentiation

    PubMed Central

    Jadhav, Gaurav; Teguh, Dian; Kenny, Jacob; Tickner, Jennifer; Xu, Jiake

    2016-01-01

    Morc3, a member of a highly conserved nuclear matrix protein super-family plays an important part in chromatin remodeling, DNA repair, epigenetic regulation and cellular senescence. However, its role in bone homeostasis is not known. In the present study, a phenotype-driven ENU mouse mutagenesis screen revealed that Morc3mut +/− mice exhibit reduced cortical area and thickness with increased cortical porosity. Morc3mut +/− mice displayed reduced osteoclast numbers and surface per bone surface as well as osteocyte numbers, concomitant with altered gene expressions such as Rankl/Opg and Sost in ex vivo long bones. In vitro experiments revealed a significant increase in the number of Sca-1+/c-kit+ haematopoietic stem cells (HSCs), and a significant reduction in senescence associated β-galactosidase activity in bone marrow macrophages (BMMs). In addition, we observed a decrease in osteoclastogenesis and bone resorption accompanied by upregulation of STAT1 expression in osteoclast lineage cells. Strikingly, Morc3 protein localization within the nuclear membrane was shifted to the cytoplasm in Morc3mut +/− osteoclasts. Further, Morc3mut +/− mice displayed increased osteoblast differentiation and altered gene expression. Collectively, our data show that Morc3 is a previously unreported regulator of cortical bone homeostasis and haematopoietic stem cells niche, accompanied by altered bone cell differentiation. PMID:27188231

  14. Mathematical study of pattern formation accompanied by heterocyst differentiation in multicellular cyanobacterium.

    PubMed

    Ishihara, Jun-ichi; Tachikawa, Masashi; Iwasaki, Hideo; Mochizuki, Atsushi

    2015-04-21

    The filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest models of a multicellular system showing cellular differentiation. In nitrogen-deprived culture, undifferentiated vegetative cells differentiate into heterocysts at ~10-cell intervals along the cellular filament. As undifferentiated cells divide, the number of cells between heterocysts (segment length) increases, and a new heterocyst appears in the intermediate region. To understand how the heterocyst pattern is formed and maintained, we constructed a one-dimensional cellular automaton (CA) model of the heterocyst pattern formation. The dynamics of vegetative cells is modeled by a stochastic transition process including cell division, differentiation and increase of cell age (maturation). Cell division and differentiation depend on the time elapsed after the last cell division, the "cell age". The model dynamics was mathematically analyzed by a two-step Markov approximation. In the first step, we determined steady state of cell age distribution among vegetative cell population. In the second step, we determined steady state distribution of segment length among segment population. The analytical solution was consistent with the results of numerical simulations. We then compared the analytical solution with the experimental data, and quantitatively estimated the immeasurable intercellular kinetics. We found that differentiation is initially independent of cellular maturation, but becomes dependent on maturation as the pattern formation evolves. Our mathematical model and analysis enabled us to quantify the internal cellular dynamics at various stages of the heterocyst pattern formation. PMID:25665721

  15. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  16. Myogenic differentiation of the muscle clonal cell line BC3H-1 is accompanied by changes in its lipid composition.

    PubMed

    Pediconi, M F; Politi, L E; Bouzat, C B; De Los Santos, E B; Barrantes, F J

    1992-09-01

    Phospholipid and neutral lipid composition was studied in the course of myogenic differentiation of the clonal cell line BC3H-1. Total phospholipid content increased during differentiation, predominantly in the major classes of choline and ethanolamine glycerophospholipids. The contents of other lipids, such as triacylglycerols, diminished more than 50% during this period. The content and distribution of fatty acids also underwent marked differentiation-dependent changes. The polyunsaturated (tetrapenta- and hexaenoic) fatty acid species of several phospholipid classes diminished during differentiation, especially those in choline, serine and inositol glycerophospholipids. Most noticeable were the changes in phosphatidylserine; long-chain fatty acids having 20 to 22 carbon atoms and 4 to 6 double bonds decreased from about 30 to about 10 mol%. Although increased levels of saturation in other phospholipid fatty acyl chains appear to accompany the myogenic changes of BC3H-1 cells, some unsaturated fatty acids, such as oleic acid (18:1), increased by as much as 80% during the same period, suggesting the activation of a delta 9 desaturase. Sphingomyelin contained only saturated and monoenoic fatty acids and exhibited a four- to five-fold decrease in its content of monoenoic acyl groups. Diacylglycerols became enriched in arachidonate and docosahexaenoate. The amount of cholesterol and its esters increased slightly during differentiation of BC3H-1 cells. The data show that several metabolic pathways change during myogenic differentiation of the BC3H-1 clonal cell line, particularly de novo biosynthetic pathways, elongation/desaturation reactions, and acyl chain turnover.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  18. Cancer gene discovery using digital differential display.

    PubMed

    Scheurle, D; DeYoung, M P; Binninger, D M; Page, H; Jahanzeb, M; Narayanan, R

    2000-08-01

    The Cancer Gene Anatomy Project database of the National Cancer Institute has thousands of expressed sequences, both known and novel, in the form of expressed sequence tags (ESTs). These ESTs, derived from diverse normal and tumor cDNA libraries, offer an attractive starting point for cancer gene discovery. Using a data-mining tool called Digital Differential Display (DDD) from the Cancer Gene Anatomy Project database, ESTs from six different solid tumor types (breast, colon, lung, ovary, pancreas, and prostate) were analyzed for differential expression. An electronic expression profile and chromosomal map position of these hits were generated from the Unigene database. The hits were categorized into major classes of genes including ribosomal proteins, enzymes, cell surface molecules, secretory proteins, adhesion molecules, and immunoglobulins and were found to be differentially expressed in these tumorderived libraries. Genes known to be up-regulated in prostate, breast, and pancreatic carcinomas were discovered by DDD, demonstrating the utility of this technique. Two hundred known genes and 500 novel sequences were discovered to be differentially expressed in these select tumor-derived libraries. Test genes were validated for expression specificity by reverse transcription-PCR, providing a proof of concept for gene discovery by DDD. A comprehensive database of hits can be accessed at http:// www.fau.edu/cmbb/publications/cancergenes. htm. This solid tumor DDD database should facilitate target identification for cancer diagnostics and therapeutics.

  19. Bayesian modeling of differential gene expression.

    PubMed

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  20. Rearrangements of immunoglobulin genes during differentiation and evolution.

    PubMed

    Honjo, T; Nakai, S; Nishida, Y; Kataoka, T; Yamawaki-Kataoka, Y; Takahashi, N; Obata, M; Shimizu, A; Yaoita, Y; Nikaido, T; Ishida, N

    1981-01-01

    Immunoglobulin genes are shown to undergo dynamic rearrangements during differentiation as well as evolution. We have demonstrated that a complete immunoglobulin heavy chain gene is formed by at least two types of DNA rearrangement during B cell differentiation. The first type of rearrangement is V-D-J recombination to complete a variable region sequence and the second type is S-S recombination to switch a constant region sequence. Both types of recombination are accompanied by deletion of the intervening DNA segment. Structure and organization of CH genes are elucidated by molecular cloning and nucleotide sequence determination. Organization of H chain genes is summarized as VH-(unknown distance)-JH-(6.5 kb)-C mu-(4.5 kb)-C delta-(unknown distance)-C gamma 3-(34 kb)-C gamma 1-(21 kb)-C gamma 2b-(15 kb)-C gamma 2a-(14.5 kb)-C epsilon-(12.5 kb)-C alpha. The S-S recombination takes place at the S region which is located at the 5' side of each CH gene. Nucleotide sequence of the S region comprises tandem repetition of closely related sequences. The S-S recombination seems to be mediated by short common sequences shared among S regions. A sister chromatid exchange model was proposed as a mechanism for S-S recombination. Comparison of nucleotide sequences of CH genes indicates that immunoglobulin genes have scrambled by intervening sequence-mediated domain transfer during their evolution.

  1. Phenotypically distinct subtypes of psychosis accompany novel or rare variants in four different signaling genes

    PubMed Central

    Kranz, Thorsten M.; Berns, Adam; Shields, Jerry; Rothman, Karen; Walsh-Messinger, Julie; Goetz, Raymond R.; Chao, Moses V.; Malaspina, Dolores

    2016-01-01

    Background Rare gene variants are important sources of schizophrenia vulnerability that likely interact with polygenic susceptibility loci. This study examined if novel or rare missense coding variants in any of four different signaling genes in sporadic schizophrenia cases were associated with clinical phenotypes in an exceptionally well-characterized sample. Method Structured interviews, cognition, symptoms and life course features were assessed in 48 ethnically-diverse cases with psychosis who underwent targeted exome sequencing of PTPRG (Protein Tyrosine Phosphatase, Receptor Type G), SLC39A13 (Solute Carrier Family 39 (Zinc Transporter) Member 13), TGM5 (transglutaminase 5) and ARMS/KIDINS220 (Ankyrin repeat-rich membrane spanning protein or Kinase D-Interacting Substrate of 220 kDa). Cases harboring rare missense coding polymorphisms or novel mutations in one or more of these genes were compared to other cases not carrying any rare missense coding polymorphisms or novel mutations in these genes and healthy controls. Findings Fifteen of 48 cases (31.25%) carried rare or novel missense coding variants in one or more of these genes. The subgroups significantly differed in important features, including specific working memory deficits for PTPRG (n = 5); severe negative symptoms, global cognitive deficits and poor educational attainment, suggesting a developmental disorder, for SLC39A13 (n = 4); slow processing speed, childhood attention deficit disorder and milder symptoms for TGM5 (n = 4); and global cognitive deficits with good educational attainment suggesting neurodegeneration for ARMS/KIDINS220 (n = 5). Case vignettes are included in the appendix. Interpretation Genes prone to missense coding polymorphisms and/or mutations in sporadic cases may highlight influential genes for psychosis and illuminate heterogeneous pathways to schizophrenia. Ethnicity appears less important at the level of genetic variability. The sequence variations that potentially

  2. Altered expression of key cellular gene products accompanies development of resistance to nitric oxide.

    PubMed

    Aguilar-Santelises, Miguel; Mozart, Marlene; Scuderi, Richard; Celsing, Fredrik

    2006-12-01

    NALM-6 is a pre-B leukemia cell line sensitive to exogenous nitric oxide (NO), which enters into apoptosis during 24 h of exposure to low doses of the NO donors SNAP (100 microM) or DETA-NO (250 microM). By culturing NALM-6 with repeated and increasing concentrations of SNAP, we obtained a variant (NALM-6R) that retains >95% viability and does not enter into apoptosis during 24 h culture in the presence of up to 500 microM SNAP or 750 microM DETA-NO. A power blot screen performed with 277 antibodies on cell lysates from NALM-6 and NALM-6R cultured without NO donors served to determine the altered constitutive expression of 19 proteins in NALM-6R. Proteins affected in the less sensitive cell line NALM6-R are involved in the regulation of apoptosis, the cell cycle, cell interactions, signal transduction, cell morphology, and cell motility. This model shows that repeated exposure of tumor cells to NO may either select NO-resistant cells or contribute to NO-sensitive conversion into NO-resistant cells. The identification of the proteins that are affected during this transition may help us to define the mechanisms that are involved in cell resistance to NO-cytotoxicity which often accompany clinical progression.

  3. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory.

    PubMed

    Halder, Rashi; Hennion, Magali; Vidal, Ramon O; Shomroni, Orr; Rahman, Raza-Ur; Rajput, Ashish; Centeno, Tonatiuh Pena; van Bebber, Frauke; Capece, Vincenzo; Garcia Vizcaino, Julio C; Schuetz, Anna-Lena; Burkhardt, Susanne; Benito, Eva; Navarro Sala, Magdalena; Javan, Sanaz Bahari; Haass, Christian; Schmid, Bettina; Fischer, Andre; Bonn, Stefan

    2016-01-01

    The ability to form memories is a prerequisite for an organism's behavioral adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes in two distinct mouse brain regions, two cell types and three time points before and after contextual learning. We found that histone modifications predominantly changed during memory acquisition and correlated surprisingly little with changes in gene expression. Although long-lasting changes were almost exclusive to neurons, learning-related histone modification and DNA methylation changes also occurred in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning. Finally, our data provide evidence for a molecular framework of memory acquisition and maintenance, wherein DNA methylation could alter the expression and splicing of genes involved in functional plasticity and synaptic wiring.

  4. Restricted Immunoglobulin Variable Region (Ig V) Gene Expression Accompanies Secondary Rearrangements of Light Chain Ig V Genes in Mouse Plasmacytomas

    PubMed Central

    Diaw, Lena; Siwarski, David; Coleman, Allen; Kim, Jennifer; Jones, Gary M.; Dighiero, Guillaume; Huppi, Konrad

    1999-01-01

    The many binding studies of monoclonal immunoglobulin (Ig) produced by plasmacytomas have found no universally common binding properties, but instead, groups of plasmacytomas with specific antigen-binding activities to haptens such as phosphorylcholine, dextrans, fructofuranans, or dinitrophenyl. Subsequently, it was found that plasmacytomas with similar binding chain specificities not only expressed the same idiotype, but rearranged the same light (VL) and heavy (VH) variable region genes to express a characteristic monoclonal antibody. In this study, we have examined by enzyme-linked immunosorbent assay five antibodies secreted by silicone-induced mouse plasmacytomas using a broader panel of antigens including actin, myosin, tubulin, single-stranded DNA, and double-stranded DNA. We have determined the Ig heavy and light chain V gene usage in these same plasmacytomas at the DNA and RNA level. Our studies reveal: (a) antibodies secreted by plasmacytomas bind to different antigens in a manner similar to that observed for natural autoantibodies; (b) the expressed Ig heavy genes are restricted in V gene usage to the VH-J558 family; and (c) secondary rearrangements occur at the light chain level with at least three plasmacytomas expressing both κ and λ light chain genes. These results suggest that plasmacytomas use a restricted population of B cells that may still be undergoing rearrangement, thereby bypassing the allelic exclusion normally associated with expression of antibody genes. PMID:10562316

  5. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells

    PubMed Central

    Guglielmi, L; Cinnella, C; Nardella, M; Maresca, G; Valentini, A; Mercanti, D; Felsani, A; D'Agnano, I

    2014-01-01

    Neuroblastoma is an embryonic tumour of the sympathetic nervous system and is one of the most common cancers in childhood. A high differentiation stage has been associated with a favourable outcome; however, the mechanisms governing neuroblastoma cell differentiation are not completely understood. The MYCN gene is considered the hallmark of neuroblastoma. Even though it has been reported that MYCN has a role during embryonic development, it is needed its decrease so that differentiation can be completed. We aimed to better define the role of MYCN in the differentiation processes, particularly during the early stages. Considering the ability of MYCN to regulate non-coding RNAs, our hypothesis was that N-Myc protein might be necessary to activate differentiation (mimicking embryonic development events) by regulating miRNAs critical for this process. We show that MYCN expression increased in embryonic cortical neural precursor cells at an early stage after differentiation induction. To investigate our hypothesis, we used human neuroblastoma cell lines. In LAN-5 neuroblastoma cells, MYCN was upregulated after 2 days of differentiation induction before its expected downregulation. Positive modulation of various differentiation markers was associated with the increased MYCN expression. Similarly, MYCN silencing inhibited such differentiation, leading to negative modulation of various differentiation markers. Furthermore, MYCN gene overexpression in the poorly differentiating neuroblastoma cell line SK-N-AS restored the ability of such cells to differentiate. We identified three key miRNAs, which could regulate the onset of differentiation programme in the neuroblastoma cells in which we modulated MYCN. Interestingly, these effects were accompanied by changes in the apoptotic compartment evaluated both as expression of apoptosis-related genes and as fraction of apoptotic cells. Therefore, our idea is that MYCN is necessary during the activation of neuroblastoma

  6. Fish oil increases raft size and membrane order of B cells accompanied by differential effects on function.

    PubMed

    Rockett, Benjamin Drew; Teague, Heather; Harris, Mitchel; Melton, Mark; Williams, Justin; Wassall, Stephen R; Shaikh, Saame Raza

    2012-04-01

    Fish oil (FO) targets lipid microdomain organization to suppress T-cell and macrophage function; however, little is known about this relationship with B cells, especially at the animal level. We previously established that a high FO dose diminished mouse B-cell lipid raft microdomain clustering induced by cross-linking GM1. To establish relevance, here we tested a FO dose modeling human intake on B-cell raft organization relative to a control. Biochemical analysis revealed more docosahexaenoic acid (DHA) incorporated into phosphatidylcholines than phosphatidylethanolamines of detergent-resistant membranes, consistent with supporting studies with model membranes. Subsequent imaging experiments demonstrated that FO increased raft size, GM1 expression, and membrane order upon cross-linking GM1 relative to no cross-linking. Comparative in vitro studies showed some biochemical differences from in vivo measurements but overall revealed that DHA, but not eicosapentaenoic acid (EPA), increased membrane order. Finally, we tested the hypothesis that disrupting rafts with FO would suppress B-cell responses ex vivo. FO enhanced LPS-induced B-cell activation but suppressed B-cell stimulation of transgenic naive CD4(+) T cells. Altogether, our studies with B cells support an emerging model that FO increases raft size and membrane order accompanied by functional changes; furthermore, the results highlight differences in EPA and DHA bioactivity.

  7. Fish oil increases raft size and membrane order of B cells accompanied by differential effects on function[S

    PubMed Central

    Rockett, Benjamin Drew; Teague, Heather; Harris, Mitchel; Melton, Mark; Williams, Justin; Wassall, Stephen R.; Shaikh, Saame Raza

    2012-01-01

    Fish oil (FO) targets lipid microdomain organization to suppress T-cell and macrophage function; however, little is known about this relationship with B cells, especially at the animal level. We previously established that a high FO dose diminished mouse B-cell lipid raft microdomain clustering induced by cross-linking GM1. To establish relevance, here we tested a FO dose modeling human intake on B-cell raft organization relative to a control. Biochemical analysis revealed more docosahexaenoic acid (DHA) incorporated into phosphatidylcholines than phosphatidylethanolamines of detergent-resistant membranes, consistent with supporting studies with model membranes. Subsequent imaging experiments demonstrated that FO increased raft size, GM1 expression, and membrane order upon cross-linking GM1 relative to no cross-linking. Comparative in vitro studies showed some biochemical differences from in vivo measurements but overall revealed that DHA, but not eicosapentaenoic acid (EPA), increased membrane order. Finally, we tested the hypothesis that disrupting rafts with FO would suppress B-cell responses ex vivo. FO enhanced LPS-induced B-cell activation but suppressed B-cell stimulation of transgenic naive CD4+ T cells. Altogether, our studies with B cells support an emerging model that FO increases raft size and membrane order accompanied by functional changes; furthermore, the results highlight differences in EPA and DHA bioactivity. PMID:22315394

  8. Epigenetic Modifications Unlock the Milk Protein Gene Loci during Mouse Mammary Gland Development and Differentiation

    PubMed Central

    Rijnkels, Monique; Freeman-Zadrowski, Courtneay; Hernandez, Joseph; Potluri, Vani; Wang, Liguo; Li, Wei; Lemay, Danielle G.

    2013-01-01

    Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the

  9. Differential network analysis from cross-platform gene expression data

    PubMed Central

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  10. Differential network analysis from cross-platform gene expression data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-09-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes.

  11. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Robbins, Charles J.; Sang, Qing-Xiang Amy

    2015-01-01

    Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis. PMID:26683658

  12. Crucial Genes and Pathways in Chicken Germ Stem Cell Differentiation

    PubMed Central

    Zhang, Zhentao; Elsayed, Ahmed Kamel; Shi, Qingqing; Zhang, Yani; Zuo, Qisheng; Li, Dong; Lian, Chao; Tang, Beibei; Xiao, Tianrong; Xu, Qi; Chang, Guobin; Chen, Guohong; Zhang, Lei; Wang, Kehua; Wang, Yingjie; Jin, Kai; Wang, Yilin; Song, Jiuzhou; Cui, Hengmi; Li, Bichun

    2015-01-01

    Male germ cell differentiation is a subtle and complex regulatory process. Currently, its regulatory mechanism is still not fully understood. In our experiment, we performed the first comprehensive genome and transcriptome-wide analyses of the crucial genes and signaling pathways in three kinds of crucial cells (embryonic stem cells, primordial germ cell, and spermatogonial stem cells) that are associated with the male germ cell differentiation. We identified thousands of differentially expressed genes in this process, and from these we chose 173 candidate genes, of which 98 genes were involved in cell differentiation, 19 were involved in the metabolic process, and 56 were involved in the differentiation and metabolic processes, like GAL9, AMH, PLK1, and PSMD7 and so on. In addition, we found that 18 key signaling pathways were involved mainly in cell proliferation, differentiation, and signal transduction processes like TGF-β, Notch, and Jak-STAT. Further exploration found that the candidate gene expression patterns were the same between in vitro induction experiments and transcriptome results. Our results yield clues to the mechanistic basis of male germ cell differentiation and provide an important reference for further studies. PMID:25847247

  13. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion.

    PubMed Central

    Kant, J A; Fornace, A J; Saxe, D; Simon, M I; McBride, O W; Crabtree, G R

    1985-01-01

    Human fibrinogen cDNA probes for the alpha-, beta-, and gamma-polypeptide chains have been used to isolate the corresponding genes from human genomic libraries. There is a single copy of each gene. Restriction endonuclease analysis of isolated genomic clones and human genomic DNA indicates that the human alpha-, beta-, and gamma-fibrinogen genes are closely linked in a 50-kilobase region of a single human chromosome: the alpha-gene in the middle flanked by the beta-gene on one side and the gamma-gene on the other. The alpha- and gamma-chain genes are oriented in tandem and transcribed toward the beta-chain gene. The beta-chain gene is transcribed from the opposite DNA strand toward the gamma- and alpha-chain genes. The three genes have been localized to the distal third of the long arm of chromosome 4, bands q23-q32, by in situ hybridization with fibrinogen cDNAs and by examination of DNA from multiple rodent-human somatic cell hybrids. Alternative explanations for the present arrangement of the three fibrinogen genes involve either a three-step mechanism with inversion of the alpha/gamma-region or a two-step mechanism involving remote transposition and inversion. The second more simple mechanism has a precedent in the origin of repeated regions of the fibrinogen and immunoglobulin genes. Images PMID:2986113

  14. Role of Hox genes in stem cell differentiation

    PubMed Central

    Seifert, Anne; Werheid, David F; Knapp, Silvana M; Tobiasch, Edda

    2015-01-01

    Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative

  15. Differential Gene Action in Neurospora crassa

    PubMed Central

    Bhagwat, A. S.; Mahadevan, P. R.

    1973-01-01

    Molecular hybridization experiments with pulse-labeled total ribonucleic acid (RNA) or isolated nonribosomal rapidly labeled RNA species and deoxyribonucleic acid from growth periods of 8, 16, and 24 hr of Neurospora crassa showed differential transcription. Hybridization competition experiments between RNA species isolated from 8, 16, and 24 hr of growth showed qualitative differences in the types of RNA synthesized during these periods. PMID:4266171

  16. Impaired barrier function by dietary fructo-oligosaccharides (FOS) in rats is accompanied by increased colonic mitochondrial gene expression

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Vink, Carolien; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2008-01-01

    Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS) increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as well as three other peptide

  17. Clock gene variants differentiate mood disorders.

    PubMed

    Dmitrzak-Weglarz, Monika Paulina; Pawlak, Joanna Maria; Maciukiewicz, Malgorzata; Moczko, Jerzy; Wilkosc, Monika; Leszczynska-Rodziewicz, Anna; Zaremba, Dorota; Hauser, Joanna

    2015-01-01

    Genetic variations in clock-related genes were hypothesized to be involved to in the susceptibility of mood disorders MD (both unipolar (UPD) and bipolar (BPD) disorders). In our work we investigated role of gene variants form four core period proteins: CLOCK, ARNTL, TIM and PER3. The total sample comprised from 744 mood disorders inpatients (UPD = 229, BPD = 515) and 635 healthy voluntary controls. The 42 SNPs from four genes of interest were genotyped. We used single polymorphisms, haplotypes, SNPs interactions and prediction analysis using classical statistical and machine learning methods. We observed association between two polymorphisms of CLOCK (rs1801260 and rs11932595) with BPDII and two polymorphisms of TIM (rs2291739, rs11171856) with UPD. We also detected ARNTL haplotype variant (rs1160996C/rs11022779G/rs1122780T) to be associated with increased risk of MD, BPD (both types). We established significant epistatic interaction between PER3 (rs2172563) and ARNTL (rs4146388 and rs7107287) in case of BPD. Additionally relation between PER3 (rs2172563) and CLOCK (rs1268271 and rs3805148) appeared in case of UPD. Classification and Regression Trees (C and RT) showed significant predictive value for 10 polymorphisms in all analyzed genes. However we failed to obtain model with sufficient predictive power. During analyses of sleep disturbances sample, we found carriers of homozygote variants (ARNTL: rs11022778 TT, rs1562438 TT, rs1982350 AA and PER3: rs836755 CC) showing more frequent falling asleep difficulties when compare to other genotypes carriers. Our study suggested a putative role of the CLOCK, TIM, ARNTL and PER3 and polymorphisms in MD susceptibility. In our analyses we showed association of specific gene variants with particular types of MD. We also confirmed necessity of performing separate analyzes for BPD and UPD patients. Comprehensive statistical approach is required even with individual symptoms analyses.

  18. Repression of genes involved in melanocyte differentiation in uveal melanoma

    PubMed Central

    Bergeron, Marjorie-Allison; Champagne, Sophie; Gaudreault, Manon; Deschambeault, Alexandre

    2012-01-01

    Purpose Uveal melanoma (UM) has been the subject of intense interest due to its distinctive metastatic pattern, which involves hematogenous dissemination of cancerous cells toward the liver in 50% of patients. To search for new UM prognostic markers, the Suppressive Subtractive Hybridization (SSH) technique was used to isolate genes that are differentially expressed between UM primary tumors and normal uveal melanocytes (UVM). Methods A subtracted cDNA library was prepared using cDNA from uncultured UM primary tumors and UVM. The expression level of selected genes was further validated by cDNA microarray, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence analyses. Results One hundred-fifteen genes were identified using the SSH technique. Microarray analyses comparing the gene expression profiles of UM primary tumors to UVM validated a significant differential expression for 48% of these genes. The expression pattern of selected genes was then analyzed by semi-quantitative RT–PCR and was found to be consistent with the SSH and cDNA microarray findings. A down-regulation of genes associated with melanocyte differentiation was confirmed in UM primary tumors. Presence of undifferentiated cells in the UM was demonstrated by the expression of stem cell markers ATP-binding cassette sub-family G member 2 (ABCG2) and octamer-binding protein 4 (OCT4). Conclusions We demonstrated that the SSH technique is efficient to detect differentially expressed genes between UM and UVM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor. In addition, deregulation of the melanocyte differentiation pathway revealed the presence of UM cells exhibiting a stem cell-like phenotype. PMID:22815634

  19. Differential Bacterial Gene Expression During Experimental Pneumococcal Endophthalmitis

    PubMed Central

    Thornton, Justin A.; Tullos, Nathan A.; Sanders, Melissa E.; Ridout, Granger; Wang, Yong-Dong; Taylor, Sidney D.; McDaniel, Larry S.; Marquart, Mary E.

    2015-01-01

    Streptococcus pneumoniae (pneumococcus) is a potential cause of bacterial endophthalmitis in humans that can result in ocular morbidity. We sought to identify pneumococcal genes that are differentially expressed during growth in the vitreous humor of the eye in an experimental endophthalmitis model. Microarray analysis was used to identify genes that were differentially expressed when pneumococci replicated in the vitreous of rabbit eyes as compared with bacteria grown in vitro in Todd Hewitt medium. Array results were verified by quantitative real-time PCR analysis of representative genes. Select genes potentially playing a role in virulence during endophthalmitis were deleted and mutants were tested for reduced eye pathogenesis and altered adhesion to host cells. Array analysis identified 134 genes that were differentially expressed during endophthalmitis. 112 genes demonstrated increased expression during growth in the eye whereas 22 were down-regulated. Real-time analysis verified increased expression of neuraminidase A (SP1693), neuraminidase B (SP1687), and serine protease (SP1954), and decreased expression of RlrA (SP0461) and choline transporter (SP1861). Mutation of neuraminidases A and B had no major effect on pathogenesis. Loss of SP1954 led to increased adherence to host cells. S. pneumoniae enhances and represses expression of a variety of genes during endophthalmitis. While some of these genes reflect changes in metabolic requirements, some appear to play a role in immune evasion and pathogenesis in the eye. PMID:25791614

  20. Identifying gene regulatory network rewiring using latent differential graphical models.

    PubMed

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  1. Identifying gene regulatory network rewiring using latent differential graphical models

    PubMed Central

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-01-01

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions. PMID:27378774

  2. Pyriform cell differentiation in Podarcis sicula is accompanied by the appearance of surface glycoproteins bearing alpha-galNAc terminated chains.

    PubMed

    Andreuccetti, P; Famularo, C; Gualtieri, R; Prisco, M

    2001-05-01

    The present histochemical and cytochemical study using a lectin panel (WGA, GSI-A4, GSI-B4, PSA UEA-I, PNA, LCA, Con-A, DBA, MPA, BPA) has demonstrated that, in Podarcis sicula, the differentiation of small follicle cells into pyriform cells by means of intermediate cells is accompanied by the appearance of glycoproteins bearing alpha-GalNAc terminated O-linked side chains on the cell surface. The distribution of DBA- and MPA-binding sites over the follicular epithelium changed during the different stages of oocyte growth. DBA- and MPA-binding sites first appeared at the beginning of folliculogenesis within the zona pellucida (ZP) and on the surface of small cells, i.e., the stem cells of pyriform cells. Afterward, labeling was evident on the cell surfaces of intermediate cells and, later on, also of pyriform cells. On the other hand, no labeling was detected on the small cells located under the basal lamina, which, reportedly, do not differentiate into pyriform cells (Filosa et al. J. Embryol. Exp. Morphol., 1979; 15:297-316). Once pyriform cells were differentiated, the distribution of DBA- and MPA-binding sites over the follicular epithelium remained unchanged until intermediate and pyriform cells underwent apoptosis (Motta et al. J. Exp. Zool., 1996; 276:233-241) and the follicular epithelium transformed into a monolayer composed of small follicle cells only (Filosa Mon. Zool. Ital., 1973; 7:151-165). During this stage of oocyte growth, DBA and MPA labeling gradually decreased to completely disappear in the follicular epithelium of vitellogenic follicles. It is noteworthy that the observed changes in the distribution of DBA- and MPA-binding sites represent the first evidence recognized by lectins of a gradual modification of surface glycoprotein distribution over the follicular epithelium in the ovarian follicles of nonmammalian vertebrates so far studied. Finally, the zona pellucida (ZP), characterized by the presence of GalNAc, GluNAc, Man, and Gal, was

  3. Intermediate filament genes as differentiation markers in the leech Helobdella

    PubMed Central

    Kuo, Dian-Han

    2011-01-01

    The intermediate filament (IF) cytoskeleton is a general feature of differentiated cells. Its molecular components, IF proteins, constitute a large family including the evolutionarily conserved nuclear lamins and the more diverse collection of cytoplasmic intermediate filament (CIF) proteins. In vertebrates, genes encoding CIFs exhibit cell/tissue type-specific expression profiles and are thus useful as differentiation markers. The expression of invertebrate CIFs, however, is not well documented. Here, we report a whole-genome survey of IF genes and their developmental expression patterns in the leech Helobdella, a lophotrochozoan model for developmental biology research. We found that, as in vertebrates, each of the leech CIF genes is expressed in a specific set of cell/tissue types. This allows us to detect earliest points of differentiation for multiple cell types in leech development and to use CIFs as molecular markers for studying cell fate specification in leech embryos. In addition, to determine the feasibility of using CIFs as universal metazoan differentiation markers, we examined phylogenetic relationships of IF genes from various species. Our results suggest that CIFs, and thus their cell/tissue-specific expression patterns, have expanded several times independently during metazoan evolution. Moreover, comparing the expression patterns of CIF orthologs between two leech species suggests that rapid evolutionary changes in the cell or tissue specificity of CIFs have occurred among leeches. Hence, CIFs are not suitable for identifying cell or tissue homology except among very closely related species, but they are nevertheless useful species-specific differentiation markers. PMID:21938507

  4. Endosymbiotic origin and differential loss of eukaryotic genes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Sousa, Filipa L; Lockhart, Peter J; Bryant, David; Hazkani-Covo, Einat; McInerney, James O; Landan, Giddy; Martin, William F

    2015-08-27

    Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.

  5. Regulation of tyrosine hydroxylase gene expression during differentiation of neuroblastoma cells.

    PubMed

    Summerhill, E M; Wood, K; Fishman, M C

    1987-07-01

    Differentiation of N1E-115 neuroblastoma cells into neuron-like cells, with extension of neurites and acquisition of excitable membranes, can be induced by dimethyl sulfoxide (DMSO). We have found this differentiation to be accompanied by an increase in tyrosine hydroxylase (TH) mRNA, an increase disproportionate to changes in mRNAs for other measured, non-neuron-specific genes. The mRNA increases slowly over several days and falls gradually after removal of DMSO. Nuclear run-on studies suggest that a change in the rate of transcription cannot explain the increase in steady-state mRNA levels. TH mRNA half-life does, however, increase. This suggests that regulation is exerted in this case not at the level of transcription but rather at that of mRNA stability. PMID:2887236

  6. Rrp6 is recruited to transcribed genes and accompanies the spliced mRNA to the nuclear pore.

    PubMed

    Hessle, Viktoria; von Euler, Anne; González de Valdivia, Ernesto; Visa, Neus

    2012-08-01

    Rrp6 is an exoribonuclease involved in the quality control of mRNA biogenesis. We have analyzed the association of Rrp6 with the Balbiani ring pre-mRNPs of Chironomus tentans to obtain insight into the role of Rrp6 in splicing surveillance. Rrp6 is recruited to transcribed genes and its distribution along the genes does not correlate with the positions of exons and introns. In the nucleoplasm, Rrp6 is bound to both unspliced and spliced transcripts. Rrp6 is released from the mRNPs in the vicinity of the nuclear pore before nucleo-cytoplasmic translocation. We show that Rrp6 is associated with newly synthesized transcripts during all the nuclear steps of gene expression and is associated with the transcripts independently of their splicing status. These observations suggest that the quality control of pre-mRNA splicing is not based on the selective recruitment of the exoribonuclease Rrp6 to unprocessed mRNAs.

  7. Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in tomato gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Post-transcriptional gene silencing appears to play a key role in viroid pathogenicity. To better understand the biogenesis of viroid-specific small RNAs and their possible role in disease induction, we have examined the accumulation of these small RNAs in the leaves and stems of potato spindle tub...

  8. Differential selection after duplication in mammalian developmental genes.

    PubMed

    Dermitzakis, E T; Clark, A G

    2001-04-01

    Gene duplication provides the opportunity for subsequent refinement of distinct functions of the duplicated copies. Either through changes in coding sequence or changes in regulatory regions, duplicate copies appear to obtain new or tissue-specific functions. If this divergence were driven by natural selection, we would expect duplicated copies to have differentiated patterns of substitutions. We tested this hypothesis using genes that duplicated before the human/mouse split and whose orthologous relations were clear. The null hypothesis is that the number of amino acid changes between humans and mice was distributed similarly across different paralogs. We used a method modified from Tang and Lewontin to detect heterogeneity in the amino acid substitution pattern between those different paralogs. Our results show that many of the paralogous gene pairs appear to be under differential selection in the human/mouse comparison. The properties that led to diversification appear to have arisen before the split of the human and mouse lineages. Further study of the diverged genes revealed insights regarding the patterns of amino acid substitution that resulted in differences in function and/or expression of these genes. This approach has utility in the study of newly identified members of gene families in genomewide data mining and for contrasting the merits of alternative hypotheses for the evolutionary divergence of function of duplicated genes. PMID:11264407

  9. Characterization of Sex Determination and Sex Differentiation Genes in Latimeria

    PubMed Central

    Forconi, Mariko; Canapa, Adriana; Barucca, Marco; Biscotti, Maria A.; Capriglione, Teresa; Buonocore, Francesco; Fausto, Anna M.; Makapedua, Daisy M.; Pallavicini, Alberto; Gerdol, Marco; De Moro, Gianluca; Scapigliati, Giuseppe

    2013-01-01

    Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique “living fossils”, could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development. PMID:23634199

  10. Temperature-driven differential gene expression by RNA thermosensors.

    PubMed

    Krajewski, Stefanie Sandra; Narberhaus, Franz

    2014-10-01

    Many prokaryotic genes are organized in operons. Genes organized in such transcription units are co-transcribed into a polycistronic mRNA. Despite being clustered in a single mRNA, individual genes can be subjected to differential regulation, which is mainly achieved at the level of translation depending on initiation and elongation. Efficiency of translation initiation is primarily determined by the structural accessibility of the ribosome binding site (RBS). Structured cis-regulatory elements like RNA thermometers (RNATs) can contribute to differential regulation of individual genes within a polycistronic mRNA. RNATs are riboregulators that mediate temperature-responsive regulation of a downstream gene by modulating the accessibility of its RBS. At low temperature, the RBS is trapped by intra-molecular base pairing prohibiting translation initiation. The secondary structure melts with increasing temperature thus liberating the RBS. Here, we present an overview of different RNAT types and specifically highlight recently discovered RNATs. The main focus of this review is on RNAT-based differential control of polycistronic operons. Finally, we discuss the influence of temperature on other riboregulators and the potential of RNATs in synthetic RNA biology. This article is part of a Special Issue entitled: Riboswitches.

  11. Genetic basis of differential opsin gene expression in cichlid fishes.

    PubMed

    Carleton, K L; Hofmann, C M; Klisz, C; Patel, Z; Chircus, L M; Simenauer, L H; Soodoo, N; Albertson, R C; Ser, J R

    2010-04-01

    Visual sensitivity can be tuned by differential expression of opsin genes. Among African cichlid fishes, seven cone opsin genes are expressed in different combinations to produce diverse visual sensitivities. To determine the genetic architecture controlling these adaptive differences, we analysed genetic crosses between species expressing different complements of opsin genes. Quantitative genetic analyses suggest that expression is controlled by only a few loci with correlations among some genes. Genetic mapping identifies clear evidence of trans-acting factors in two chromosomal regions that contribute to differences in opsin expression as well as one cis-regulatory region. Therefore, both cis and trans regulation are important. The simple genetic architecture suggested by these results may explain why opsin gene expression is evolutionarily labile, and why similar patterns of expression have evolved repeatedly in different lineages.

  12. The SCL gene product: a positive regulator of erythroid differentiation.

    PubMed Central

    Aplan, P D; Nakahara, K; Orkin, S H; Kirsch, I R

    1992-01-01

    The SCL (tal-1, TCL5) gene is a member of the basic domain, helix-loop-helix (bHLH) class of putative transcription factors. We found that (i) the SCL promoter for exon Ia contains a potential recognition site for GATA-binding transcription factors, (ii) SCL mRNA is expressed in all erythroid tissues and cell lines examined, and (iii) SCL mRNA increases upon induced differentiation of murine erythroleukemia (MEL) cells, and inferred that SCL may play a physiologic role in erythroid differentiation. We used gel shift and transfection assays to demonstrate that the GATA motif in the SCL promoter binds GATA-1 (and GATA-2), and also mediates transcriptional transactivation. To identify a role for SCL in erythroid differentiation, we generated stable transfectants of MEL and K562 (a human chronic myelogenous leukemia cell line that can differentiate along the erythroid pathway) cells overexpressing wild-type, antisense or mutant SCL cDNA. Increasing the level of SCL expression in two independent MEL lines (F4-6 and C19, a 745 derivative) and K562 cells increased the rate of spontaneous (i.e. in the absence of inducer) erythroid differentiation. Conversely, induced differentiation was inhibited in MEL transfectants expressing either antisense SCL cDNA or a mutant SCL lacking the basic domain. Our experiments suggest that the SCL gene can be a target for the erythroid transcription factor GATA-1 and that the SCL gene product serves as a positive regulator of erythroid differentiation. Images PMID:1396592

  13. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

    PubMed

    Goode, Debbie K; Obier, Nadine; Vijayabaskar, M S; Lie-A-Ling, Michael; Lilly, Andrew J; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-03-01

    Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  14. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation

    PubMed Central

    Goode, Debbie K.; Obier, Nadine; Vijayabaskar, M.S.; Lie-A-Ling, Michael; Lilly, Andrew J.; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A.; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R.; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-01-01

    Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  15. Utilization of digital differential display to identify differentially expressed genes related to rumen development.

    PubMed

    Kato, Daichi; Suzuki, Yutaka; Haga, Satoshi; So, KyoungHa; Yamauchi, Eri; Nakano, Miwa; Ishizaki, Hiroshi; Choi, Kichoon; Katoh, Kazuo; Roh, Sang-Gun

    2016-04-01

    This study aimed to identify the genes associated with the development of the rumen epithelium by screening for candidate genes by digital differential display (DDD) in silico. Using DDD in NCBI's UniGene database, expressed sequence tag (EST)-based gene expression profiles were analyzed in rumen, reticulum, omasum, abomasum and other tissues in cattle. One hundred and ten candidate genes with high expression in the rumen were derived from a library of all tissues. The expression levels of 11 genes in all candidate genes were analyzed in the rumen, reticulum, omasum and abomasum of nine Japanese Black male calves (5-week-old pre-weaning: n = 3; 15-week-old weaned calves: n = 6). Among the 11 genes, only 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), aldo-keto reductase family 1, member C1-like (AKR1C1), and fatty acid binding protein 3 (FABP3) showed significant changes in the levels of gene expression in the rumen between the pre- and post-weaning of calves. These results indicate that DDD analysis in silico can be useful for screening candidate genes related to rumen development, and that the changes in expression levels of three genes in the rumen may have been caused by weaning, aging or both.

  16. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    SciTech Connect

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K. )

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis.

  17. Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi).

    PubMed

    Tian, Changxu; Li, Ling; Liang, Xu-Fang; He, Shan; Guo, Wenjie; Lv, Liyuan; Wang, Qingchao; Song, Yi

    2016-08-01

    Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P < 0.05). 2171 and 2014 differentially expressed genes were identified between small-size and big-size fish at 30 and 180 dph, respectively. RT quantitative PCR (qPCR) analysis showed that the differential expression of 10 selected genes in mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research. PMID:27393605

  18. Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi).

    PubMed

    Tian, Changxu; Li, Ling; Liang, Xu-Fang; He, Shan; Guo, Wenjie; Lv, Liyuan; Wang, Qingchao; Song, Yi

    2016-08-01

    Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P < 0.05). 2171 and 2014 differentially expressed genes were identified between small-size and big-size fish at 30 and 180 dph, respectively. RT quantitative PCR (qPCR) analysis showed that the differential expression of 10 selected genes in mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research.

  19. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-01-01

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  20. Differential Gene Expression in HIV-Infected Individuals Following ART

    PubMed Central

    Massanella, Marta; Singhania, Akul; Beliakova-Bethell, Nadejda; Pier, Rose; Lada, Steven; White, Cory H.; Pérez-Santiago, Josué; Blanco, Julià; Richman, Douglas D.; Little, Susan J.; Woelk, Christopher H.

    2013-01-01

    Previous studies of the effect of ART on gene expression in HIV-infected individuals have identified small numbers of modulated genes. Since these studies were underpowered or cross-sectional in design, a paired analysis of peripheral blood mononuclear cells (PBMCs), isolated before and after ART, from a robust number of HIV-infected patients (N=32) was performed. Gene expression was assayed by microarray and 4,157 differentially expressed genes (DEGs) were identified following ART using multivariate permutation tests. Pathways and Gene Ontology (GO) terms over-represented for DEGs reflected the transition from a period of active virus replication before ART to one of viral suppression (e.g., repression of JAK-STAT signaling) and possible prolonged drug exposure (e.g. oxidative phosphorylation pathway) following ART. CMYC was the DEG whose product made the greatest number of interactions at the protein level in protein interaction networks (PINs), which has implications for the increased incidence of Hodgkin’s lymphoma (HL) in HIV-infected patients. The differential expression of multiple genes was confirmed by RT-qPCR including well-known drug metabolism genes (e.g., ALOX12 and CYP2S1). Targets not confirmed by RT-qPCR (i.e., GSTM2 and RPL5) were significantly confirmed by droplet digital (ddPCR), which may represent a superior method when confirming DEGs with low fold changes. In conclusion, a paired design revealed that the number of genes modulated following ART was an order of magnitude higher than previously recognized. PMID:23933117

  1. Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells.

    PubMed

    Yeo, Seungeun; Jeong, Sangkyun; Kim, Janghwan; Han, Jee-Soo; Han, Yong-Mahn; Kang, Yong-Kook

    2007-08-01

    Pluripotent human embryonic stem cells (hESCs) have the distinguishing feature of innate capacity to allow indefinite self-renewal. This attribute continues until specific constraints or restrictions, such as DNA methylation, are imposed on the genome, usually accompanied by differentiation. With the aim of utilizing DNA methylation as a sign of early differentiation, we probed the genomic regions of hESCs, particularly focusing on stem cell marker (SCM) genes to identify regulatory sequences that display differentiation-sensitive alterations in DNA methylation. We show that the promoter regions of OCT4 and NANOG, but not SOX2, REX1 and FOXD3, undergo significant methylation during hESCs differentiation in which SCM genes are substantially repressed. Thus, following exposure to differentiation stimuli, OCT4 and NANOG gene loci are modified relatively rapidly by DNA methylation. Accordingly, we propose that the DNA methylation states of OCT4 and NANOG sequences may be utilized as barometers to determine the extent of hESC differentiation.

  2. Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells.

    PubMed

    Yeo, Seungeun; Jeong, Sangkyun; Kim, Janghwan; Han, Jee-Soo; Han, Yong-Mahn; Kang, Yong-Kook

    2007-08-01

    Pluripotent human embryonic stem cells (hESCs) have the distinguishing feature of innate capacity to allow indefinite self-renewal. This attribute continues until specific constraints or restrictions, such as DNA methylation, are imposed on the genome, usually accompanied by differentiation. With the aim of utilizing DNA methylation as a sign of early differentiation, we probed the genomic regions of hESCs, particularly focusing on stem cell marker (SCM) genes to identify regulatory sequences that display differentiation-sensitive alterations in DNA methylation. We show that the promoter regions of OCT4 and NANOG, but not SOX2, REX1 and FOXD3, undergo significant methylation during hESCs differentiation in which SCM genes are substantially repressed. Thus, following exposure to differentiation stimuli, OCT4 and NANOG gene loci are modified relatively rapidly by DNA methylation. Accordingly, we propose that the DNA methylation states of OCT4 and NANOG sequences may be utilized as barometers to determine the extent of hESC differentiation. PMID:17548060

  3. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  4. An excitable gene regulatory circuit induces transient cellular differentiation

    NASA Astrophysics Data System (ADS)

    Süel, Gürol M.; Garcia-Ojalvo, Jordi; Liberman, Louisa M.; Elowitz, Michael B.

    2006-03-01

    Certain types of cellular differentiation are probabilistic and transient. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes and proteins underlying differentiation into the competent state have been identified, but it has been unclear how these genes interact dynamically in individual cells to control both spontaneous entry into competence and return to vegetative growth. Here we show that this behaviour can be understood in terms of excitability in the underlying genetic circuit. Using quantitative fluorescence time-lapse microscopy, we directly observed the activities of multiple circuit components simultaneously in individual cells, and analysed the resulting data in terms of a mathematical model. We find that an excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state. We further tested this model by analysing initiation in sister cells, and by re-engineering the gene circuit to specifically block exit. Excitable dynamics driven by noise naturally generate stochastic and transient responses, thereby providing an ideal mechanism for competence regulation.

  5. Differential gene expression in skeletal muscle cells after membrane depolarization.

    PubMed

    Juretić, Nevenka; Urzúa, Ulises; Munroe, David J; Jaimovich, Enrique; Riveros, Nora

    2007-03-01

    Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells. PMID:17146758

  6. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    PubMed Central

    Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa; Schenk, A. Katrin; Tecott, Laurence H.; Volden, Tiffany A.

    2016-01-01

    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits. PMID:27689748

  7. Reference genes for accessing differential expression among developmental stages and analysis of differential expression of OBP genes in Anastrepha obliqua

    PubMed Central

    Nakamura, Aline Minali; Chahad-Ehlers, Samira; Lima, André Luís A.; Taniguti, Cristiane Hayumi; Sobrinho Jr., Iderval; Torres, Felipe Rafael; de Brito, Reinaldo Alves

    2016-01-01

    The West Indian fruit fly, Anastrepha obliqua, is an important agricultural pest in the New World. The use of pesticide-free methods to control invasive species such as this reinforces the search for genes potentially useful in their genetic control. Therefore, the study of chemosensory proteins involved with a range of responses to the chemical environment will help not only on the understanding of the species biology but may also help the development of environmentally friendly pest control strategies. Here we analyzed the expression patterns of three OBP genes, Obp19d_2, Obp56a and Obp99c, across different phases of A. obliqua development by qPCR. In order to do so, we tested eight and identified three reference genes for data normalization, rpl17, rpl18 and ef1a, which displayed stability for the conditions here tested. All OBPs showed differential expression on adults and some differential expression among adult stages. Obp99c had an almost exclusive expression in males and Obp56a showed high expression in virgin females. Thereby, our results provide relevant data not only for other gene expression studies in this species, as well as for the search of candidate genes that may help in the development of new pest control strategies. PMID:26818909

  8. Reference genes for accessing differential expression among developmental stages and analysis of differential expression of OBP genes in Anastrepha obliqua.

    PubMed

    Nakamura, Aline Minali; Chahad-Ehlers, Samira; Lima, André Luís A; Taniguti, Cristiane Hayumi; Sobrinho, Iderval; Torres, Felipe Rafael; de Brito, Reinaldo Alves

    2016-01-01

    The West Indian fruit fly, Anastrepha obliqua, is an important agricultural pest in the New World. The use of pesticide-free methods to control invasive species such as this reinforces the search for genes potentially useful in their genetic control. Therefore, the study of chemosensory proteins involved with a range of responses to the chemical environment will help not only on the understanding of the species biology but may also help the development of environmentally friendly pest control strategies. Here we analyzed the expression patterns of three OBP genes, Obp19d_2, Obp56a and Obp99c, across different phases of A. obliqua development by qPCR. In order to do so, we tested eight and identified three reference genes for data normalization, rpl17, rpl18 and ef1a, which displayed stability for the conditions here tested. All OBPs showed differential expression on adults and some differential expression among adult stages. Obp99c had an almost exclusive expression in males and Obp56a showed high expression in virgin females. Thereby, our results provide relevant data not only for other gene expression studies in this species, as well as for the search of candidate genes that may help in the development of new pest control strategies.

  9. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  10. Differential rates of gene expression monitored by green fluorescent protein.

    PubMed

    Lu, Canghai; Albano, C Renee; Bentley, William E; Rao, Govind

    2002-08-20

    The use of green fluorescent protein (GFP) as a reporter gene has made a broad impact in several areas, especially in studies of protein trafficking, localization, and expression analysis. GFP's many advantages are that it is small, autocatalytic, and does not require fixation, cell disruption, or the addition of cofactors or substrates. Two characteristics of GFP, extreme stability and chromophore cyclization lag time, pose a hindrance to the application of GFP as a real-time gene expression reporter in bioprocess applications. In this report, we present analytical methods that overcome these problems and enable the temporal visualization of discrete gene regulatory events. The approach we present measures the rate of change in GFP fluorescence, which in turn reflects the rate of gene expression. We conducted fermentation and microplate experiments using a protein synthesis inhibitor to illustrate the feasibility of this system. Additional experiments using the classic gene regulation of the araBAD operon show the utility of GFP as a near real-time indicator of gene regulation. With repetitive induction and repression of the arabinose promoter, the differential rate of GFP fluorescence emission shows corresponding cyclical changes during the culture.

  11. Changes in differential gene expression during a fatal stroke.

    PubMed

    Stone, Shelley F; Armstrong, Christopher; van Eeden, Pauline E; Arendts, Glenn; Hankey, Graeme J; Brown, Simon G A; Fatovich, Daniel M

    2016-01-01

    We present a young woman (with an identical twin sister) who arrived at the Emergency Department (ED) within 1 hour of her initial stroke symptoms. Previous microarray studies have demonstrated differential expression of multiple genes between stroke patients and healthy controls. However, for many of these studies there is a significant delay between the initial symptoms and collection of blood samples, potentially leaving the important early activators/regulators of the inflammatory response unrecognised. Blood samples were collected from the patient for an analysis of differential gene expression over time during the evolution of a fatal stroke. The time points for blood collection were ED arrival (T0) and 1, 3 and 24 hours post ED arrival (T1, T3 and T24). This was compared to her identical twin and an additional two age and sex-matched healthy controls. When compared to the controls, the patient had 12 mRNA that were significantly upregulated at T0, and no downregulated mRNA (with a cut off fold change value ±1.5). Of the 12 upregulated mRNA at T0, granzyme B demonstrated the most marked upregulation on arrival, with expression steadily declining over time, whereas S100 calcium-binding protein A12 (S100A12) gene expression increased from T0 to T24, remaining >two-fold above that in the healthy controls at T24. Other genes, such as matrix metalloproteinase 9, high mobility group box 2 and interleukin-18 receptor I were not upregulated at T0, but they demonstrated clear upregulation from T1–T3, with gene expression declining by T24. A greater understanding of the underlying immunopathological mechanisms that are involved during the evolution of ischaemic stroke may help to distinguish between patients with stroke and stroke mimics. PMID:27088144

  12. Differentially regulated gene expression associated with hepatitis C virus clearance

    PubMed Central

    Grimes, Carolyn Z.; Hwang, Lu-Yu; Wei, Peng; Shah, Dimpy P.; Volcik, Kelly A.

    2013-01-01

    Human chronic hepatitis C virus (HCV) infections pose a significant public health threat, necessitating the development of novel treatments and vaccines. HCV infections range from spontaneous resolution to end-stage liver disease. Approximately 10–30 % of HCV infections undergo spontaneous resolution independent of treatment by yet-to-be-defined mechanisms. These individuals test positive for anti-HCV antibodies in the absence of detectable viral serum RNA. To identify genes associated with HCV clearance, this study compared gene expression profiles between current drug users chronically infected with HCV and drug users who cleared their HCV infection. This analysis identified 91 differentially regulated (up- or downregulated by twofold or more) genes potentially associated with HCV clearance. The majority of genes identified were associated with immune function, with the remaining genes categorized either as cancer related or ‘other’. Identification of factors and pathways that may influence virus clearance will be essential to the development of novel treatment strategies. PMID:23152368

  13. Transcriptional activation of the H-ferritin gene in differentiated Caco-2 cells parallels a change in the activity of the nuclear factor Bbf.

    PubMed Central

    Bevilacqua, M A; Faniello, M C; D'Agostino, P; Quaresima, B; Tiano, M T; Pignata, S; Russo, T; Cimino, F; Costanzo, F

    1995-01-01

    In this paper, we examine the mechanisms that regulate the expression of the heavy (H) ferritin subunit in the colon carcinoma Caco-2 cell line allowed to differentiate spontaneously in vitro. The differentiation process of these cells in continuous culture is accompanied by an accumulation of the mRNA coding for the apoferritin H chain. The analysis of Caco-2 subclones stably transfected with an H-chain promoter-chloramphenicol acetyltransferase (CAT) construct revealed that the mRNA increase is paralleled by an enhanced transcription of the H gene, driven by the -100 to +4 region of the H promoter. The H gene transcriptional activation seems to be a specific feature of differentiated Caco-2 cells, since the activity of other promoters did not change upon differentiation. The -100 to +4 region of the H promoter binds a transcription factor called Bbf (B-box binding factor); electrophoretic-mobility-shift-assay analyses showed that the retarded complex due to Bbf-H promoter interaction is significantly increased in the differentiated cells. We propose that the activation of H-ferritin gene expression may be associated with the establishment of a differentiated phenotype in Caco-2 cells, and that the H-ferritin gene transcriptional up-regulation is accompanied by a modification in the activity of the transcription factor Bbf. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7487931

  14. Host differentially expressed genes during association with its defensive endosymbiont.

    PubMed

    Mathew, Meril; Lopanik, Nicole B

    2014-04-01

    Mutualism, a beneficial relationship between two species, often requires intimate interaction between the host and symbiont to establish and maintain the partnership. The colonial marine bryozoan Bugula neritina harbors an as yet uncultured endosymbiont, "Candidatus Endobugula sertula," throughout its life stages. The bacterial symbiont is the putative source of bioactive complex polyketide metabolites, the bryostatins, which chemically defend B. neritina larvae from predation. Despite the presence of "Ca. Endobugula sertula" in all life stages of the host, deterrent bryostatins appear to be concentrated in reproductive portions of the host colony, suggesting an interaction between the two partners to coordinate production and distribution of the metabolites within the colony. In this study, we identified host genes that were differentially expressed in control colonies and in colonies cured of the symbiont. Genes that code for products similar to glycosyl hydrolase family 9 and family 20 proteins, actin, and a Rho-GDP dissociation inhibitor were significantly downregulated (more than twice) in antibiotic-cured non-reproductive zooids compared to control symbiotic ones. Differential expression of these genes leads us to hypothesize that the host B. neritina may regulate the distribution of the symbiont within the colony via mechanisms of biofilm degradation and actin rearrangement, and consequently, influences bryostatin localization to bestow symbiont-associated protection to larvae developing in the reproductive zooids.

  15. Host differentially expressed genes during association with its defensive endosymbiont.

    PubMed

    Mathew, Meril; Lopanik, Nicole B

    2014-04-01

    Mutualism, a beneficial relationship between two species, often requires intimate interaction between the host and symbiont to establish and maintain the partnership. The colonial marine bryozoan Bugula neritina harbors an as yet uncultured endosymbiont, "Candidatus Endobugula sertula," throughout its life stages. The bacterial symbiont is the putative source of bioactive complex polyketide metabolites, the bryostatins, which chemically defend B. neritina larvae from predation. Despite the presence of "Ca. Endobugula sertula" in all life stages of the host, deterrent bryostatins appear to be concentrated in reproductive portions of the host colony, suggesting an interaction between the two partners to coordinate production and distribution of the metabolites within the colony. In this study, we identified host genes that were differentially expressed in control colonies and in colonies cured of the symbiont. Genes that code for products similar to glycosyl hydrolase family 9 and family 20 proteins, actin, and a Rho-GDP dissociation inhibitor were significantly downregulated (more than twice) in antibiotic-cured non-reproductive zooids compared to control symbiotic ones. Differential expression of these genes leads us to hypothesize that the host B. neritina may regulate the distribution of the symbiont within the colony via mechanisms of biofilm degradation and actin rearrangement, and consequently, influences bryostatin localization to bestow symbiont-associated protection to larvae developing in the reproductive zooids. PMID:24797097

  16. Gene expression in TGFbeta-induced epithelial cell differentiation in a three-dimensional intestinal epithelial cell differentiation model

    PubMed Central

    Juuti-Uusitalo, Kati M; Kaukinen, Katri; Mäki, Markku; Tuimala, Jarno; Kainulainen, Heikki

    2006-01-01

    Background The TGFβ1-induced signal transduction processes involved in growth and differentiation are only partly known. The three-dimensional epithelial differentiation model, in which T84 epithelial cells are induced to differentiate either with TGFβ1 or IMR-90 mesenchymal cell-secreted soluble factors, is previously shown to model epithelial cell differentiation seen in intestine. That model has not been used for large scale gene expression studies, such as microarray method. Therefore the gene expression changes were studied in undifferentiated and differentiated three-dimensional T84 cultures with cDNA microarray method in order to study the molecular changes and find new players in epithelial cell differentiation. Results The expression of 372 genes out of 5188 arrayed sequences was significantly altered, and 47 of them were altered by both mediators. The data were validated and the altered genes are presented in ontology classes. For the genes tested the expressions in protein level were in accordance with the mRNA results. We also found 194 genes with no known function to be potentially important in epithelial cell differentiation. The mRNA expression changes induced by TGFβ1 were bigger than changes induced by soluble factors secreted by IMR-90 mesenchymal cells. The gene expression data was depicted in already known signaling pathway routes. Conclusion Our results reveal potential new signaling pathways and several new genes affected by TGFβ in epithelial cell differentiation. The differentiation induced by TGFβ1 appears to be more potent than the differentiation induced by mesenchymal cells. This study indicates that our cell culture model is a suitable tool in studying regulatory mechanisms during epithelial cell differentiation in intestine. Furthermore the present results indicate that our model is a good tool for finding new players acting in the differentiation of epithelial cells. PMID:17074098

  17. Differentially expressed regulatory genes in honey bee caste development

    NASA Astrophysics Data System (ADS)

    Hepperle, C.; Hartfelder, K.

    2001-03-01

    In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.

  18. DNA methylation and differential gene regulation in photoreceptor cell death

    PubMed Central

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  19. PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes

    PubMed Central

    Kanakasabai, Saravanan; Pestereva, Ecaterina; Chearwae, Wanida; Gupta, Sushil K.; Ansari, Saif; Bright, John J.

    2012-01-01

    Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases. PMID:23185633

  20. Decreased sucrase and lactase activity in iron deficiency is accompanied by reduced gene expression and upregulation of the transcriptional repressor PDX-1.

    PubMed

    West, Adrian R; Oates, Phillip S

    2005-12-01

    Disaccharidases are important digestive enzymes whose activities can be reduced by iron deficiency. We hypothesise that this is due to reduced gene expression, either by impairment to enterocyte differentiation or by iron-sensitive mechanisms that regulate mRNA levels in enterocytes. Iron-deficient Wistar rats were generated by dietary means. The enzyme activities and kinetics of sucrase and lactase were tested as well as the activity of intestinal alkaline phosphatase (IAP)-II because it is unrelated to carbohydrate digestion. mRNA levels of beta-actin, sucrase, lactase, and the associated transcription factors pancreatic duodenal homeobox (PDX)-1, caudal-related homeobox (CDX)-2, GATA-binding protein (GATA)-4, and hepatocyte nuclear factor (HNF)-1 were measured by real-time PCR. Spatial patterns of protein and gene expression were assessed by immunofluorescence and in situ hybridization, respectively. It was found that iron-deficient rats had significantly lower sucrase (19.5% lower) and lactase (56.8% lower) but not IAP-II activity than control rats. Kinetic properties of both enzymes remained unchanged from controls, suggesting a decrease in the quantity of enzyme present. Sucrase and lactase mRNA levels were reduced by 44.5% and 67.9%, respectively, by iron deficiency, suggesting that enzyme activity is controlled primarily by gene expression. Iron deficiency did not affect the pattern of protein and gene expression along the crypt to villus axis. Expression of PDX-1, a repressor of sucrase and lactase promoters, was 4.5-fold higher in iron deficiency, whereas CDX-2, GATA-4, and HNF-1 levels were not significantly different. These data suggest that decreases in sucrase and lactase activities result from a reduction in gene expression, following from increased levels of the transcriptional repressor PDX-1.

  1. Differential Shannon entropy and differential coefficient of variation: alternatives and augmentations to differential expression in the search for disease-related genes

    PubMed Central

    Wang, Kai; Phillips, Charles A.; Rogers, Gary L.; Barrenas, Fredrik; Benson, Mikael; Langston, Michael A.

    2014-01-01

    Differential expression has been a standard tool for analysing case-control transcriptomic data since the advent of microarray technology. It has proved invaluable in characterising the molecular mechanisms of disease. Nevertheless, the expression profile of a gene across samples can be perturbed in ways that leave the expression level unaltered, while a biological effect is nonetheless present. This paper describes and analyses differential Shannon entropy and differential coefficient of variation, two alternate techniques for identifying genes of interest. Ontological analysis across 16 human disease datasets demonstrates that these alternatives are effective at identifying disease-related genes not found by mere differential expression alone. Because the two alternate techniques are based on somewhat different mathematical formulations, they tend to produce somewhat different gene lists. Moreover, each may pinpoint genes completely overlooked by the other. Thus, measures of entropy and variation can be used to replace or better yet augment standard differential expression computations. PMID:24878729

  2. Differential Shannon entropy and differential coefficient of variation: alternatives and augmentations to differential expression in the search for disease-related genes.

    PubMed

    Wang, Kai; Phillips, Charles A; Rogers, Gary L; Barrenas, Fredrik; Benson, Mikael; Langston, Michael A

    2014-01-01

    Differential expression has been a standard tool for analysing case-control transcriptomic data since the advent of microarray technology. It has proved invaluable in characterising the molecular mechanisms of disease. Nevertheless, the expression profile of a gene across samples can be perturbed in ways that leave the expression level unaltered, while a biological effect is nonetheless present. This paper describes and analyses differential Shannon entropy and differential coefficient of variation, two alternate techniques for identifying genes of interest. Ontological analysis across 16 human disease datasets demonstrates that these alternatives are effective at identifying disease-related genes not found by mere differential expression alone. Because the two alternate techniques are based on somewhat different mathematical formulations, they tend to produce somewhat different gene lists. Moreover, each may pinpoint genes completely overlooked by the other. Thus, measures of entropy and variation can be used to replace or better yet augment standard differential expression computations.

  3. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation

    PubMed Central

    Parikh, Abhirath; Wu, Jincheng; Blanton, Robert M.

    2015-01-01

    Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies. PMID:25813860

  4. Identification of Genes to Differentiate Closely Related Salmonella Lineages

    PubMed Central

    Zou, Qing-Hua; Li, Ren-Qing; Wang, Ye-Jun; Liu, Shu-Lin

    2013-01-01

    Background Salmonella are important human and animal pathogens. Though highly related, the Salmonella lineages may be strictly adapted to different hosts or cause different diseases, from mild local illness like gastroenteritis to fatal systemic infections like typhoid. Therefore, rapid and accurate identification of Salmonella is essential for timely and correct diagnosis of Salmonella infections. The current identification methods such as 16S rRNA sequencing and multilocus sequence typing are expensive and time consuming. Additionally, these methods often do not have sufficient distinguishing resolution among the Salmonella lineages. Methodologies/Principal Findings We compared 27 completely sequenced Salmonella genomes to identify possible genomic features that could be used for differentiation of individual lineages. We concatenated 2372 core genes in each of the 27 genomes and constructed a neighbor-joining tree. On the tree, strains of each serotype were clustered tightly together and different serotypes were unambiguously separated with clear genetic distances, demonstrating systematic genomic divergence among the Salmonella lineages. We made detailed comparisons among the 27 genomes and identified distinct sets of genomic differences, including nucleotide variations and genomic islands (GIs), among the Salmonella lineages. Two core genes STM4261 and entF together could unambiguously distinguish all Salmonella lineages compared in this study. Additionally, strains of a lineage have a common set of GIs and closely related lineages have similar sets of GIs. Conclusions Salmonella lineages have accumulated distinct sets of mutations and laterally acquired DNA (e.g., GIs) in evolution. Two genes entF and STM4261 have diverged sufficiently among the Salmonella lineages to be used for their differentiation. Further investigation of the distinct sets of mutations and GIs will lead to novel insights into genomic evolution of Salmonella and greatly facilitate the

  5. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene.

    PubMed Central

    Erisman, M D; Rothberg, P G; Diehl, R E; Morse, C C; Spandorfer, J M; Astrin, S M

    1985-01-01

    The structure and expression of the c-myc oncogene were examined in 29 primary human colon adenocarcinomas. Dot blot hybridization of total RNA showed that 21 tumors (72%) had considerably elevated expression of c-myc (5- to 40-fold) relative to normal colonic mucosa. These data were corroborated by Northern blots of polyadenylated RNA, which showed a 2.3-kilobase transcript. Southern analysis of the c-myc locus in these tumors indicated the absence of amplification or DNA rearrangement in a 35-kilobase region encompassing the gene. In a parallel study, elevated expression of c-myc without amplification or DNA rearrangement was also observed in three of six colon carcinoma cell lines examined; in addition, unlike a normal colon cell line control, these three cell lines exhibited constitutive, high-level expression of the gene during their growth in cultures. These results indicate that elevated expression of the c-myc oncogene occurs frequently in primary human colon carcinomas and that the mechanism involved in the regulation of c-myc expression is altered in tumor-derived cell lines. Images PMID:3837853

  6. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells.

    PubMed

    Patnala, Radhika; Lee, Sung-Hun; Dahlstrom, Jane E; Ohms, Stephen; Chen, Long; Dheen, S Thameem; Rangasamy, Danny

    2014-01-01

    Long Interspersed Elements (L1 elements) are biologically active retrotransposons that are capable of autonomous replication using their own reverse transcriptase (RT) enzyme. Expression of the normally repressed RT has been implicated in cancer cell growth. However, at present, little is known about the expression of L1-encoded RT activity or the molecular changes that are associated with RT activity in the development of breast cancer. Here, we report that RT activity is widespread in breast cancer cells. The expression of RT protein decreased markedly in breast cancer cells after treatment with the antiretroviral drug, efavirenz. While the majority of cells showed a significant reduction in proliferation, inhibition of RT was also accompanied by cell-specific differences in morphology. MCF7 cells displayed elongated microtubule extensions that adhered tightly to their substrate, while a large fraction of the T47D cells that we studied formed long filopodia projections. These morphological changes were reversible upon cessation of RT inhibition, confirming their dependence on RT activity. We also carried out gene expression profiling with microarrays and determined the genes that were differentially expressed during the process of cellular differentiation. Genes involved in proliferation, cell migration, and invasive activity were repressed in RT-inhibited cells. Concomitantly, genes involved in cell projection, formation of vacuolar membranes, and cell-to-cell junctions were significantly upregulated in RT-inhibited cells. qRT-PCR examination of the mRNA expression of these genes in additional cell lines yielded close correlation between their differential expression and the degree of cellular differentiation. Our study demonstrates that the inhibition of L1-encoded RT can reduce the rate of proliferation and promote differentiation of breast cancer cells. Together, these results provide a direct functional link between the expression of L1 retrotransposons and

  7. Population differentiation and behavioural association of the two 'personality' genes DRD4 and SERT in dunnocks (Prunella modularis).

    PubMed

    Holtmann, B; Grosser, S; Lagisz, M; Johnson, S L; Santos, E S A; Lara, C E; Robertson, B C; Nakagawa, S

    2016-02-01

    Quantifying the variation in behaviour-related genes within and between populations provides insight into how evolutionary processes shape consistent behavioural traits (i.e. personality). Deliberate introductions of non-native species offer opportunities to investigate how such genes differ between native and introduced populations and how polymorphisms in the genes are related to variation in behaviour. Here, we compared the genetic variation of the two 'personality' genes, DRD4 and SERT, between a native (United Kingdom, UK) and an introduced (New Zealand, NZ) population of dunnocks, Prunella modularis. The NZ population showed a significantly lower number of single nucleotide polymorphisms (SNPs) compared to the UK population. Standardized F'st estimates of the personality genes and neutral microsatellites indicate that selection (anthropogenic and natural) probably occurred during and post the introduction event. Notably, the largest genetic differentiation was found in the intronic regions of the genes. In the NZ population, we also examined the association between polymorphisms in DRD4 and SERT and two highly repeatable behavioural traits: flight-initiation distance and mating status (promiscuous females and cobreeding males). We found 38 significant associations (for different allele effect models) between the two behavioural traits and the studied genes. Further, 22 of the tested associations showed antagonistic allele effects for males and females. Our findings illustrate how introduction events and accompanying ecological changes could influence the genetic diversity of behaviour-related genes. PMID:26669286

  8. Population differentiation and behavioural association of the two 'personality' genes DRD4 and SERT in dunnocks (Prunella modularis).

    PubMed

    Holtmann, B; Grosser, S; Lagisz, M; Johnson, S L; Santos, E S A; Lara, C E; Robertson, B C; Nakagawa, S

    2016-02-01

    Quantifying the variation in behaviour-related genes within and between populations provides insight into how evolutionary processes shape consistent behavioural traits (i.e. personality). Deliberate introductions of non-native species offer opportunities to investigate how such genes differ between native and introduced populations and how polymorphisms in the genes are related to variation in behaviour. Here, we compared the genetic variation of the two 'personality' genes, DRD4 and SERT, between a native (United Kingdom, UK) and an introduced (New Zealand, NZ) population of dunnocks, Prunella modularis. The NZ population showed a significantly lower number of single nucleotide polymorphisms (SNPs) compared to the UK population. Standardized F'st estimates of the personality genes and neutral microsatellites indicate that selection (anthropogenic and natural) probably occurred during and post the introduction event. Notably, the largest genetic differentiation was found in the intronic regions of the genes. In the NZ population, we also examined the association between polymorphisms in DRD4 and SERT and two highly repeatable behavioural traits: flight-initiation distance and mating status (promiscuous females and cobreeding males). We found 38 significant associations (for different allele effect models) between the two behavioural traits and the studied genes. Further, 22 of the tested associations showed antagonistic allele effects for males and females. Our findings illustrate how introduction events and accompanying ecological changes could influence the genetic diversity of behaviour-related genes.

  9. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene

    SciTech Connect

    Sternberg, E.A.; Spizz, G.; Perry, W.M.; Vizard, D.; Weil, T.; Olson, E.N.

    1988-07-01

    Terminal differentiation of skeletal myobalsts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzymte of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers.

  10. Protein kinase A inhibition of macrophage maturation is accompanied by an increase in DNA methylation of the colony-stimulating factor 1 receptor gene.

    PubMed

    Zasłona, Zbigniew; Scruggs, Anne M; Peters-Golden, Marc; Huang, Steven K

    2016-10-01

    Macrophage colony-stimulating factor 1 (CSF-1) plays a critical role in the differentiation of mononuclear phagocytes from bone marrow precursors, and maturing monocytes and macrophages exhibit increased expression of the CSF-1 receptor, CSF1R. The expression of CSF1R is tightly regulated by transcription factors and epigenetic mechanisms. We previously showed that prostaglandin E2 and subsequent activation of protein kinase A (PKA) inhibited CSF1R expression and macrophage maturation. Here, we examine the DNA methylation changes that occur at the Csf1r locus during macrophage maturation in the presence or absence of activated PKA. Murine bone marrow cells were matured to macrophages by incubating cells with CSF-1-containing conditioned medium for up to 6 days in the presence or absence of the PKA agonist 6-bnz-cAMP. DNA methylation of Csf1r promoter and enhancer regions was assayed by bisulphite pyrosequencing. DNA methylation of Csf1r decreased during normal macrophage maturation in concert with an increase in Csf1r mRNA expression. Treatment with the PKA agonist inhibited Csf1r mRNA and protein expression, and increased DNA methylation at the Csf1r promoter. This was associated with decreased binding of the transcription factor PU.1 to the Csf1r promoter. Treatment with the PKA agonist inhibited the responsiveness of macrophages to CSF-1. Levels of endogenous PKA activity decreased during normal macrophage maturation, suggesting that attenuation of this signalling pathway contributes to the increase in CSF1R expression during macrophage maturation. Together, these results demonstrate that macrophage maturation is accompanied by Csf1r hypomethylation, and illustrates for the first time the ability of PKA to increase Csf1r DNA methylation.

  11. Protein kinase A inhibition of macrophage maturation is accompanied by an increase in DNA methylation of the colony-stimulating factor 1 receptor gene.

    PubMed

    Zasłona, Zbigniew; Scruggs, Anne M; Peters-Golden, Marc; Huang, Steven K

    2016-10-01

    Macrophage colony-stimulating factor 1 (CSF-1) plays a critical role in the differentiation of mononuclear phagocytes from bone marrow precursors, and maturing monocytes and macrophages exhibit increased expression of the CSF-1 receptor, CSF1R. The expression of CSF1R is tightly regulated by transcription factors and epigenetic mechanisms. We previously showed that prostaglandin E2 and subsequent activation of protein kinase A (PKA) inhibited CSF1R expression and macrophage maturation. Here, we examine the DNA methylation changes that occur at the Csf1r locus during macrophage maturation in the presence or absence of activated PKA. Murine bone marrow cells were matured to macrophages by incubating cells with CSF-1-containing conditioned medium for up to 6 days in the presence or absence of the PKA agonist 6-bnz-cAMP. DNA methylation of Csf1r promoter and enhancer regions was assayed by bisulphite pyrosequencing. DNA methylation of Csf1r decreased during normal macrophage maturation in concert with an increase in Csf1r mRNA expression. Treatment with the PKA agonist inhibited Csf1r mRNA and protein expression, and increased DNA methylation at the Csf1r promoter. This was associated with decreased binding of the transcription factor PU.1 to the Csf1r promoter. Treatment with the PKA agonist inhibited the responsiveness of macrophages to CSF-1. Levels of endogenous PKA activity decreased during normal macrophage maturation, suggesting that attenuation of this signalling pathway contributes to the increase in CSF1R expression during macrophage maturation. Together, these results demonstrate that macrophage maturation is accompanied by Csf1r hypomethylation, and illustrates for the first time the ability of PKA to increase Csf1r DNA methylation. PMID:27353657

  12. Differential hormonal and gene expression dynamics in two inbred sunflower lines with contrasting dormancy level.

    PubMed

    Roselló, Paula L; Vigliocco, Ana E; Andrade, Andrea M; Riera, Natalí V; Calafat, Mario; Molas, María L; Alemano, Sergio G

    2016-05-01

    Seed germination and dormancy are tightly regulated by hormone metabolism and signaling pathway. We investigated the endogenous content of abscisic acid (ABA), its catabolites, and gibberellins (GAs), as well as the expression level of certain ABA and GAs metabolic and signaling genes in embryo of dry and imbibed cypselas of inbred sunflower (Helianthus annuus L., Asteraceae) lines: B123 (dormant) and B91 (non-dormant). Under our experimental conditions, the expression of RGL2 gene might be related to the ABA peak in B123 line at 3 h of imbibition. Indeed, RGL2 transcripts are absent in dry and early embedded cypselas of the non-dormant line B91. ABA increase was accompanied by a significant ABA-Glucosyl ester (ABA-GE) and phaseic acid (PA) (two ABA catabolites) decrease in B123 line (3 h) which indicates that ABA metabolism seems to be more active in this line, and that it would be involved in the imposition and maintenance of sunflower seed dormancy, as it has been reported for many species. Finally, an increase of bioactive GAs (GA1 and GA3) occurs at 12 h of imbibition in both lines after a decrease in ABA content. This study shows the first report about the RGL2 tissue-specific gene expression in sunflower inbred lines with contrasting dormancy level. Furthermore, our results provide evidence that ABA and GAs content and differential expression of metabolism and signaling genes would be interacting in seed dormancy regulation through a mechanism of action related to embryo itself.

  13. Differential hormonal and gene expression dynamics in two inbred sunflower lines with contrasting dormancy level.

    PubMed

    Roselló, Paula L; Vigliocco, Ana E; Andrade, Andrea M; Riera, Natalí V; Calafat, Mario; Molas, María L; Alemano, Sergio G

    2016-05-01

    Seed germination and dormancy are tightly regulated by hormone metabolism and signaling pathway. We investigated the endogenous content of abscisic acid (ABA), its catabolites, and gibberellins (GAs), as well as the expression level of certain ABA and GAs metabolic and signaling genes in embryo of dry and imbibed cypselas of inbred sunflower (Helianthus annuus L., Asteraceae) lines: B123 (dormant) and B91 (non-dormant). Under our experimental conditions, the expression of RGL2 gene might be related to the ABA peak in B123 line at 3 h of imbibition. Indeed, RGL2 transcripts are absent in dry and early embedded cypselas of the non-dormant line B91. ABA increase was accompanied by a significant ABA-Glucosyl ester (ABA-GE) and phaseic acid (PA) (two ABA catabolites) decrease in B123 line (3 h) which indicates that ABA metabolism seems to be more active in this line, and that it would be involved in the imposition and maintenance of sunflower seed dormancy, as it has been reported for many species. Finally, an increase of bioactive GAs (GA1 and GA3) occurs at 12 h of imbibition in both lines after a decrease in ABA content. This study shows the first report about the RGL2 tissue-specific gene expression in sunflower inbred lines with contrasting dormancy level. Furthermore, our results provide evidence that ABA and GAs content and differential expression of metabolism and signaling genes would be interacting in seed dormancy regulation through a mechanism of action related to embryo itself. PMID:26934102

  14. A distance difference matrix approach to identifying transcription factors that regulate differential gene expression

    PubMed Central

    De Bleser, Pieter; Hooghe, Bart; Vlieghe, Dominique; van Roy, Frans

    2007-01-01

    We introduce a method that considers target genes of a transcription factor, and searches for transcription factor binding sites (TFBSs) of secondary factors responsible for differential responses among these targets. Based on the distance difference matrix concept, the method simultaneously integrates statistical overrepresentation and co-occurrence of TFBSs. Our approach is validated on datasets of differentially regulated human genes and is shown to be highly effective in detecting TFBSs responsible for the observed differential gene expression. PMID:17504544

  15. Differential effects of detergents on keratinocyte gene expression.

    PubMed

    van Ruissen, F; Le, M; Carroll, J M; van der Valk, P G; Schalkwijk, J

    1998-04-01

    We have studied the effect of various detergents on keratinocyte gene expression in vitro, using an anionic detergent (sodium dodecyl sulfate), a cationic detergent cetyltrimethylammoniumbromide (CTAB), and two nonionic detergents, Nonidet P-40 and Tween-20. We measured the effect of these detergents on direct cellular toxicity (lactate dehydrogenase release), on the expression of markers for normal differentiation (cytokeratin 1 and involucrin expression), and on disturbed keratinocyte differentiation (SKALP) by northern blot analysis. As reported in other studies, large differences were noted in direct cellular toxicity. In a culture model that mimics normal epidermal differentiation we found that low concentrations of sodium dodecyl sulfate could induce the expression of SKALP, a proteinase inhibitor that is not normally expressed in human epidermis but is found in hyperproliferative skin. Sodium dodecyl sulfate caused upregulation of involucrin and downregulation of cytokeratin 1 expression, which is associated with the hyperproliferative/inflammatory epidermal phenotype found in psoriasis, wound healing, and skin irritation. These changes were not induced after treatment of cultures with CTAB, Triton X-100, and Nonidet-P40. This effect appeared to be specific for the class of anionic detergents because sodium dodecyl benzene sulfonate and sodium laurate also induced SKALP expression. These in vitro findings showed only a partial correlation with the potential of different detergents to induce clinical, biophysical, and cell biologic changes in vivo in human skin. Both sodium dodecyl sulfate and CTAB were found to cause induction and upregulation of SKALP and involucrin at low doses following a 24 h patch test, whereas high concentrations of Triton X-100 did not. Sodium dodecyl sulfate induced higher rates of transepidermal water loss, whereas CTAB treated skin showed more signs of cellular toxicity. We conclude that the action of anionic detergents on

  16. Myc Inhibits p27-Induced Erythroid Differentiation of Leukemia Cells by Repressing Erythroid Master Genes without Reversing p27-Mediated Cell Cycle Arrest▿ ‡

    PubMed Central

    Acosta, Juan C.; Ferrándiz, Nuria; Bretones, Gabriel; Torrano, Verónica; Blanco, Rosa; Richard, Carlos; O'Connell, Brenda; Sedivy, John; Delgado, M. Dolores; León, Javier

    2008-01-01

    Inhibition of differentiation has been proposed as an important mechanism for Myc-induced tumorigenesis, but the mechanisms involved are unclear. We have established a genetically defined differentiation model in human leukemia K562 cells by conditional expression of the cyclin-dependent kinase (Cdk) inhibitor p27 (inducible by Zn2+) and Myc (activatable by 4-hydroxy-tamoxifen). Induction of p27 resulted in erythroid differentiation, accompanied by Cdk inhibition and G1 arrest. Interestingly, activation of Myc inhibited p27-mediated erythroid differentiation without affecting p27-mediated proliferation arrest. Microarray-based gene expression indicated that, in the presence of p27, Myc blocked the upregulation of several erythroid-cell-specific genes, including NFE2, JUNB, and GATA1 (transcription factors with a pivotal role in erythropoiesis). Moreover, Myc also blocked the upregulation of Mad1, a transcriptional antagonist of Myc that is able to induce erythroid differentiation. Cotransfection experiments demonstrated that Myc-mediated inhibition of differentiation is partly dependent on the repression of Mad1 and GATA1. In conclusion, this model demonstrates that Myc-mediated inhibition of differentiation depends on the regulation of a specific gene program, whereas it is independent of p27-mediated cell cycle arrest. Our results support the hypothesis that differentiation inhibition is an important Myc tumorigenic mechanism that is independent of cell proliferation. PMID:18838534

  17. Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes

    PubMed Central

    Thorell, Kaisa; Bergman, Annika; Carén, Helena; Nilsson, Staffan; Kogner, Per; Martinsson, Tommy; Abel, Frida

    2009-01-01

    Background One of the most striking features of the childhood malignancy neuroblastoma (NB) is its clinical heterogeneity. Although there is a great need for better clinical and biological markers to distinguish between tumours with different severity and to improve treatment, no clear-cut prognostic factors have been found. Also, no major NB tumour suppressor genes have been identified. Methods In this study we performed expression analysis by quantitative real-time PCR (QPCR) on primary NB tumours divided into two groups, of favourable and unfavourable outcome respectively. Candidate genes were selected on basis of lower expression in unfavourable tumour types compared to favourables in our microarray expression analysis. Selected genes were studied in two steps: (1) using TaqMan Low Density Arrays (TLDA) targeting 89 genes on a set of 12 NB tumour samples, and (2) 12 genes were selected from the TLDA analysis for verification using individual TaqMan assays in a new set of 13 NB tumour samples. Results By TLDA analysis, 81 out of 87 genes were found to be significantly differentially expressed between groups, of which 14 have previously been reported as having an altered gene expression in NB. In the second verification round, seven out of 12 transcripts showed significantly lower expression in unfavourable NB tumours, ATBF1, CACNA2D3, CNTNAP2, FUSIP1, GNB1, SLC35E2, and TFAP2B. The gene that showed the highest fold change in the TLDA analysis, POU4F2, was investigated for epigenetic changes (CpG methylation) and mutations in order to explore the cause of the differential expression. Moreover, the fragile site gene CNTNAP2 that showed the largest fold change in verification group 2 was investigated for structural aberrations by copy number analysis. However, the analyses of POU4F2 and CNTNAP2 showed no genetic alterations that could explain a lower expression in unfavourable NB tumours. Conclusion Through two steps of verification, seven transcripts were found to

  18. The APOE Gene is Differentially Methylated in Alzheimer's Disease.

    PubMed

    Foraker, Jessica; Millard, Steven P; Leong, Lesley; Thomson, Zachary; Chen, Sunny; Keene, C Dirk; Bekris, Lynn M; Yu, Chang-En

    2015-01-01

    The ɛ4 allele of the human apolipoprotein E gene (APOE) is a well-proven genetic risk factor for the late onset form of Alzheimer's disease (AD). However, the biological mechanisms through which the ɛ4 allele contributes to disease pathophysiology are incompletely understood. The three common alleles of APOE, ɛ2, ɛ3 and ɛ4, are defined by two single nucleotide polymorphisms (SNPs) that reside in the coding region of exon 4, which overlaps with a well-defined CpG island (CGI). Both SNPs change not only the protein codon but also the quantity of CpG dinucleotides, primary sites for DNA methylation. Thus, we hypothesize that the presence of an ɛ4 allele changes the DNA methylation landscape of the APOE CGI and that such epigenetic alteration contributes to AD susceptibility. To explore the relationship between APOE genotype, AD risk, and DNA methylation of the APOE CGI, we applied bisulfite pyrosequencing and evaluated methylation profiles of postmortem brain from 15 AD and 10 control subjects. We observed a tissue-specific decrease in DNA methylation with AD and identified two AD-specific differentially methylated regions (DMRs), which were also associated with APOE genotype. We further demonstrated that one DMR was completely un-methylated in a sub-population of genomes, possibly due to a subset of brain cells carrying deviated APOE methylation profiles. These data suggest that the APOE CGI is differentially methylated in AD brain in a tissue- and APOE-genotype-specific manner. Such epigenetic alteration might contribute to neural cell dysfunction in AD brain. PMID:26402071

  19. Divergent fructokinase genes are differentially expressed in tomato.

    PubMed

    Kanayama, Y; Dai, N; Granot, D; Petreikov, M; Schaffer, A; Bennett, A B

    1997-04-01

    Two cDNA clones (Frk1 and Frk2) encoding fructokinase (EC 2.7.1.4) were isolated from tomato (Lycopersicon esculentum). The Frk2 cDNA encoded a deduced protein of 328 amino acids that was more than 90% identical with a previously characterized potato (Solanum tuberosum) fructokinase. In contrast, the Frk1 cDNA encoded a deduced protein of 347 amino acids that shared only 55% amino acid identity with Frk2. Both deduced proteins possessed and ATP-binding motif and putative substrate recognition site sequences identified in bacterial fructokinases. The Frk1 cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line, which lacks the ability to phosphorylate glucose and fructose and is unable to grow on glucose or fructose. Mutant cells expressing Frk1 were complemented to grow on fructose but not glucose, indicating that Frk1 phosphorylates fructose but not glucose, and this activity was verified in extracts of transformed yeast. The mRNA corresponding to Frk2 accumulated to high levels in young, developing tomato fruit, whereas the Frk1 mRNA accumulated to higher levels late in fruit development. The results indicate that fructokinase in tomato is encoded by two divergent genes, which exhibit a differential pattern of expression during fruit development.

  20. Widespread DNA hypomethylation and differential gene expression in Turner syndrome

    PubMed Central

    Trolle, Christian; Nielsen, Morten Muhlig; Skakkebæk, Anne; Lamy, Philippe; Vang, Søren; Hedegaard, Jakob; Nordentoft, Iver; Ørntoft, Torben Falck; Pedersen, Jakob Skou; Gravholt, Claus Højbjerg

    2016-01-01

    Adults with 45,X monosomy (Turner syndrome) reflect a surviving minority since more than 99% of fetuses with 45,X monosomy die in utero. In adulthood 45,X monosomy is associated with increased morbidity and mortality, although strikingly heterogeneous with some individuals left untouched while others suffer from cardiovascular disease, autoimmune disease and infertility. The present study investigates the leukocyte DNAmethylation profile by using the 450K-Illumina Infinium assay and the leukocyte RNA-expression profile in 45,X monosomy compared with karyotypically normal female and male controls. We present results illustrating that genome wide X-chromosome RNA-expression profile, autosomal DNA-methylation profile, and the X-chromosome methylation profile clearly distinguish Turner syndrome from controls. Our results reveal genome wide hypomethylation with most differentially methylated positions showing a medium level of methylation. Contrary to previous studies, applying a single loci specific analysis at well-defined DNA loci, our results indicate that the hypomethylation extend to repetitive elements. We describe novel candidate genes that could be involved in comorbidity in TS and explain congenital urinary malformations (PRKX), premature ovarian failure (KDM6A), and aortic aneurysm formation (ZFYVE9 and TIMP1). PMID:27687697

  1. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.

    PubMed

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006

  2. Major temporal and spatial patterns of gene expression during differentiation of the sea urchin embryo.

    PubMed

    Kingsley, P D; Angerer, L M; Angerer, R C

    1993-01-01

    accumulate after the onset of gastrulation accumulate only in discrete subsets of cells. The results presented here illustrate much more extensive temporal regulation of gene expression during sea urchin embryogenesis than previously detected. This is accompanied by spatial regulation of expression of most genes which is itself temporally modulated as the cellular requirements for cell division and differentiation change during development. PMID:8416835

  3. Detecting the developmental toxicity of bFGF in the embryonic stem cell test using differential gene expression of differentiation-related genes.

    PubMed

    Deng, Shu-Qin; Xu, Hua; He, Qing; Jiang, Hai-Xiang; Su, Ben-Jin; Zhang, Qi-Hao

    2014-06-01

    Basic fibroblast growth factor (bFGF) is a mitogenic cytokine that can stimulate mesoderm-and neuroectoderm-originated cell proliferation. This study was performed to investigate the effects of bFGF on cell differentiation and the expression of specific markers at different embryonic developmental stages. We firstly evaluated the embryotoxic potential of bFGF in vitro using a modified EST protocol. Sequentially, we further investigated how bFGF impact the different tissue-special genes and proteins expressions during the differentiation of murine ES cells in vitro and attempt to reveal the effects of bFGF on differentiation processes. This analysis was focused on key tissue- and stage-specific genes involved in ectodermal, mesodermal, and endodermal differentiation, including ectodermal-specific gene Nestin, Oligo2 and Syn, mesodermal-specific gene MHC and MyoD, and endodermal-specific gene GATA6, TTR and ALB, as well as undifferentiated gene Sox-2 and Oct-4. The results demonstrate that bFGF could promote expression of ectodermal-specific genes and protein, but suppress the expressions of endoderm-specific and some mesoderm-specific gene and protein. A conclusion can be drawn that bFGF exhibits weak embryotoxicity and mainly promotes ES cell differentiation towards the ectodermal lineages but suppress differentiation into endoderm lineages. These opposing effects of bFGF on the embryonic development of the three germ layers may be related to its weak embryotoxic potential. More specifically, inhibition of expression of the endodermal-specific markers transthyretin (TTR), and albumin (ALB) by bFGF may be of more value in detecting the embryotoxic potential of bFGF.

  4. Characterization of Differentially Expressed Genes Involved in Pathways Associated with Gastric Cancer

    PubMed Central

    Li, Hao; Yu, Beiqin; Li, Jianfang; Su, Liping; Yan, Min; Zhang, Jun; Li, Chen; Zhu, Zhenggang; Liu, Bingya

    2015-01-01

    To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR) value was < 0.01, P-value was <0.01 and the fold change (FC) was >2. Subsequently, Gene Ontology (GO) categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease. PMID:25928635

  5. Microarray analysis of differential gene expression in sensitive and resistant pig to Escherichia coli F18.

    PubMed

    Bao, W B; Ye, L; Pan, Z Y; Zhu, J; Du, Z D; Zhu, G Q; Huang, X G; Wu, S L

    2012-10-01

    In this study, Agilent two-colour microarray-based gene expression profiling was used to detect differential gene expression in duodenal tissues collected from eight full-sib pairs of Sutai pigs differing in adhesion phenotype (sensitivity and resistance to Escherichia coli F18). Using a two-fold change minimum threshold, we found 18 genes that were differentially expressed (10 up-regulated and eight down-regulated) between the sensitive and resistant animal groups. Our gene ontology analysis revealed that these differentially expressed genes are involved in a variety of biological processes, including immune responses, extracellular modification (e.g. glycosylation), cell adhesion and signal transduction, all of which are related to the anabolic metabolism of glycolipids, as well as to inflammation- and immune-related pathways. Based on the genes identified in the screen and the pathway analysis results, real-time PCR was used to test the involvement of ST3GAL1 and A genes (of glycolipid-related pathways), SLA-1 and SLA-3 genes (of inflammation- and immune-related pathways), as well as the differential genes FUT1, TAP1 and SLA-DQA. Subsequently, real-time PCR was performed to validate seven differentially expressed genes screened out by the microarray approach, and sufficient consistency was observed between the two methods. The results support the conclusion that these genes are related to the E. coli F18 receptor and susceptibility to E. coli F18. PMID:22497274

  6. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate

  7. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  8. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes.

    PubMed

    Cho, Samuel Sunghwan; Kim, Yongkang; Yoon, Joon; Seo, Minseok; Shin, Su-Kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of

  9. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy.

    PubMed Central

    Mhashilkar, A. M.; Schrock, R. D.; Hindi, M.; Liao, J.; Sieger, K.; Kourouma, F.; Zou-Yang, X. H.; Onishi, E.; Takh, O.; Vedvick, T. S.; Fanger, G.; Stewart, L.; Watson, G. J.; Snary, D.; Fisher, P. B.; Saeki, T.; Roth, J. A.; Ramesh, R.; Chada, S.

    2001-01-01

    BACKGROUND: The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the anti-tumor efficacy of Ad-mda7 in a broad spectrum of cancer lines. MATERIALS AND METHODS: Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis). RESULTS: Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers. CONCLUSIONS: The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy. PMID:11471572

  10. Identification of differentially expressed genes induced by beet curly top virus infection in sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to beet curly top virus (BCTV) trait is crucial in Western USA. There is sparse public knowledge of genes regulating resistance. This research focused on gene expression profiling of resistance to the three BCTV strains: Cal/Logan (Cal), Worland (Wor), and severe. Differential gene exp...

  11. Initial description of primate-specific cystine-knot Prometheus genes and differential gene expansions of D-dopachrome tautomerase genes.

    PubMed

    Premzl, Marko

    2015-06-01

    Using eutherian comparative genomic analysis protocol and public genomic sequence data sets, the present work attempted to update and revise two gene data sets. The most comprehensive third party annotation gene data sets of eutherian adenohypophysis cystine-knot genes (128 complete coding sequences), and d-dopachrome tautomerases and macrophage migration inhibitory factor genes (30 complete coding sequences) were annotated. For example, the present study first described primate-specific cystine-knot Prometheus genes, as well as differential gene expansions of D-dopachrome tautomerase genes. Furthermore, new frameworks of future experiments of two eutherian gene data sets were proposed. PMID:25941635

  12. Cartilage Oligomeric Matrix Protein Gene Multilayers Inhibit Osteogenic Differentiation and Promote Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Peng; Shi, Zhong-Li; Liu, An; Lin, Tiao; Bi, Fang-Gang; Shi, Ming-Min; Yan, Shi-Gui

    2014-01-01

    There are still many challenges to acquire the optimal integration of biomedical materials with the surrounding tissues. Gene coatings on the surface of biomaterials may offer an effective approach to solve the problem. In order to investigate the gene multilayers mediated differentiation of mesenchymal stem cells (MSCs), gene functionalized films of hyaluronic acid (HA) and lipid-DNA complex (LDc) encoding cartilage oligomeric matrix protein (COMP) were constructed in this study via the layer-by-layer self-assembly technique. Characterizations of the HA/DNA multilayered films indicated the successful build-up process. Cells could be directly transfected by gene films and a higher expression could be obtained with the increasing bilayer number. The multilayered films were stable for a long period and DNA could be easily released in an enzymatic condition. Real-time polymerase chain reaction (RT-PCR) assay presented significantly higher (p < 0.01) COMP expression of MSCs cultured with HA/COMP multilayered films. Compared with control groups, the osteogenic gene expression levels of MSCs with HA/COMP multilayered films were down-regulated while the chondrogenic gene expression levels were up-regulated. Similarly, the alkaline phosphatase (ALP) staining and Alizarin red S staining of MSCs with HA/COMP films were weakened while the alcian blue staining was enhanced. These results demonstrated that HA/COMP multilayered films could inhibit osteogenic differentiation and promote chondrogenic differentiation of MSCs, which might provide new insight for physiological ligament-bone healing. PMID:25380520

  13. Global analysis of gene expression changes during retinoic acid-induced growth arrest and differentiation of melanoma: comparison to differentially expressed genes in melanocytes vs melanoma

    PubMed Central

    Estler, Mary; Boskovic, Goran; Denvir, James; Miles, Sarah; Primerano, Donald A; Niles, Richard M

    2008-01-01

    Background The incidence of malignant melanoma has significantly increased over the last decade. Some of these malignancies are susceptible to the growth inhibitory and pro-differentiating effects of all-trans-retinoic acid (RA). The molecular changes responsible for the biological activity of RA in melanoma are not well understood. Results In an analysis of sequential global gene expression changes during a 4–48 h RA treatment of B16 mouse melanoma cells, we found that RA increased the expression of 757 genes and decreased the expression of 737 genes. We also compared the gene expression profile (no RA treatment) between non-malignant melan-a mouse melanocytes and B16 melanoma cells. Using the same statistical test, we found 1495 genes whose expression was significantly higher in melan-a than in B16 cells and 2054 genes whose expression was significantly lower in melan-a than in B16 cells. By intersecting these two gene sets, we discovered a common set of 233 genes whose RNA levels were significantly different between B16 and melan-a cells and whose expression was altered by RA treatment. Within this set, RA treatment altered the expression of 203 (87%) genes toward the melan-a expression level. In addition, hierarchical clustering showed that after 48 h of RA treatment expression of the 203 genes was more closely related to the melan-a gene set than any other RA treatment time point. Functional analysis of the 203 gene set indicated that RA decreased expression of mRNAs that encode proteins involved in cell division/cell cycle, DNA replication, recombination and repair, and transcription regulation. Conversely, it stimulated genes involved in cell-cell signaling, cell adhesion and cell differentiation/embryonic development. Pathway analysis of the 203 gene set revealed four major hubs of connectivity: CDC2, CHEK1, CDC45L and MCM6. Conclusion Our analysis of common genes in the 48 h RA-treatment of B16 melanoma cells and untreated B16 vs. melan-a data set show

  14. Robust modeling of differential gene expression data using normal/independent distributions: a Bayesian approach.

    PubMed

    Ganjali, Mojtaba; Baghfalaki, Taban; Berridge, Damon

    2015-01-01

    In this paper, the problem of identifying differentially expressed genes under different conditions using gene expression microarray data, in the presence of outliers, is discussed. For this purpose, the robust modeling of gene expression data using some powerful distributions known as normal/independent distributions is considered. These distributions include the Student's t and normal distributions which have been used previously, but also include extensions such as the slash, the contaminated normal and the Laplace distributions. The purpose of this paper is to identify differentially expressed genes by considering these distributional assumptions instead of the normal distribution. A Bayesian approach using the Markov Chain Monte Carlo method is adopted for parameter estimation. Two publicly available gene expression data sets are analyzed using the proposed approach. The use of the robust models for detecting differentially expressed genes is investigated. This investigation shows that the choice of model for differentiating gene expression data is very important. This is due to the small number of replicates for each gene and the existence of outlying data. Comparison of the performance of these models is made using different statistical criteria and the ROC curve. The method is illustrated using some simulation studies. We demonstrate the flexibility of these robust models in identifying differentially expressed genes. PMID:25910040

  15. Differential gene expression in queen–worker caste determination in bumble-bees

    PubMed Central

    Pereboom, Jeffrey J. M; Jordan, William C; Sumner, Seirian; Hammond, Robert L; Bourke, Andrew F. G

    2005-01-01

    Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen–worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression. PMID:16024376

  16. RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1–4 genes in the developing cortex

    PubMed Central

    Hirai, Shinobu; Miwa, Akiko; Ohtaka-Maruyama, Chiaki; Kasai, Masataka; Okabe, Shigeo; Hata, Yutaka; Okado, Haruo

    2012-01-01

    Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here, we report that a transcriptional factor, RP58, negatively regulates all four Id genes (Id1–Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore, Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally, we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis. PMID:22234186

  17. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  18. Six family genes control the proliferation and differentiation of muscle satellite cells

    SciTech Connect

    Yajima, Hiroshi; Motohashi, Norio; Ono, Yusuke; Sato, Shigeru; Ikeda, Keiko; Masuda, Satoru; Yada, Erica; Kanesaki, Hironori; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Kawakami, Kiyoshi

    2010-10-15

    Muscle satellite cells are essential for muscle growth and regeneration and their morphology, behavior and gene expression have been extensively studied. However, the mechanisms involved in their proliferation and differentiation remain elusive. Six1 and Six4 proteins were expressed in the nuclei of myofibers of adult mice and the numbers of myoblasts positive for Six1 and Six4 increased during regeneration of skeletal muscles. Six1 and Six4 were expressed in quiescent, activated and differentiated muscle satellite cells isolated from adult skeletal muscle. Overexpression of Six4 and Six5 repressed the proliferation and differentiation of satellite cells. Conversely, knockdown of Six5 resulted in augmented proliferation, and that of Six4 inhibited differentiation. Muscle satellite cells isolated from Six4{sup +/-}Six5{sup -/-} mice proliferated to higher cell density though their differentiation was not altered. Meanwhile, overproduction of Six1 repressed proliferation and promoted differentiation of satellite cells. In addition, Six4 and Six5 repressed, while Six1 activated myogenin expression, suggesting that the differential regulation of myogenin expression is responsible for the differential effects of Six genes. The results indicated the involvement of Six genes in the behavior of satellite cells and identified Six genes as potential target for manipulation of proliferation and differentiation of muscle satellite cells for therapeutic applications.

  19. [Genome array on differentially expressed genes of muscle tissue in intact male and castrated Qinchuan cattle].

    PubMed

    Zhang, Ying-Ying; Zan, Lin-Sen; Wang, Hong-Bao

    2010-11-01

    Bovine genome array was used to construct gene expression profile to screen differentially expressed genes of the Longuissimus dorsi muscle (LDM) tissue between intact male and castrated Qinchuan cattle and investigate the molecular mechanism related to meat quality differences between the two groups. Significance Analysis of Microarray (SAM) methods was used to identify the differentially expressed genes. Go (gene ontology) and the pathway analyses were conducted on differentially expressed genes using a free web-based Molecular Annotation System 2.0 (MAS 2.0). About 11,000 probe sets represented about 10,000 genes were detected in LDM of 36 months old Qinchuan cattle. A total of 143 genes were identified to be differentially expressed genes. They were mainly involved in collagen fibril organization and synthesis, regulation of cell growth and development, ubiquitin-dependent protein catabolism, and striated muscle contraction etc. The enriched pathways mainly included ECM-receptor interaction, cell communication, and focal adhesion etc. Subsequently, real-time PCR was performed to validate eight differentially expressed genes screened out by the microarray approach and sufficient consistency was observed between the two methods. According to our study and published papers, the regulated pathways including ECM-receptor interaction, cell communication, focal adhesion, tight junction and genes including COL3A1, COL1A1, COL1A2, SPP1, FBN1, MMP2, ECM1, MYH3, MYH8, S100A4, ASPN, CFD etc were considered as the most important pathways and genes involved in meat quality differences between males and castrated Qinchuan cattle. Moreover, some genes had no annotation in GenBank were screened out, which were presumed to be unknown new genes. The roles that they may play in muscle metabolism need to be clarified in future.

  20. Characterizing differential gene expression in polyploid grasses lacking a reference transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basal transcriptome characterization and differential gene expression in response to varying conditions are often addressed through next generation sequencing (NGS) and data analysis techniques. While these strategies are commonly used, there are countless tools, pipelines, data analysis methods an...

  1. Identification and expression profiling analysis of goose melanoma differentiation associated gene 5 (MDA5) gene.

    PubMed

    Wei, L M; Jiao, P R; Song, Y F; Han, F; Cao, L; Yang, F; Ren, T; Liao, M

    2013-10-01

    Melanoma differentiation associated gene 5 (MDA5) is an important cytoplasmic receptor that recognizes long molecules of viral double-stranded RNA and single-stranded RNA with 5' triphosphate and mediates type I interferon secretion. In this study, the full-length MDA5 gene in the goose was identified and characterized. The cDNA of goose MDA5 was 3,306 bp in length with an open reading frame of 3,018 bp, which encoded a polypeptide of 1,005 amino acids. The deduced amino acid sequence contained 6 main structure domains including 2 caspase activation and recruitment domains, one DExD/H-box helicase domain, one type III restriction enzyme domain, one helicase conserved C-terminal domain, and one RIG-I C-terminal domain. Quantitative real-time PCR analysis indicated that goose MDA5 mRNA was constitutively expressed in all sampled tissues. It was highly expressed in the jejunum, trachea, ileum, colon, and kidney, and lowly expressed in the muscular stomach, glandular stomach, and muscle. A significant increase in the transcription of MDA5 was detected in the brain, spleen, and lungs of geese after infection with H5N1 highly pathogenic avian influenza virus compared with uninfected tissues. These findings indicated that goose MDA5 was an important receptor, involved in the antiviral innate immune defense to H5N1 highly pathogenic avian influenza virus in geese.

  2. Identification of differentially expressed genes and signalling pathways in bark of Hevea brasiliensis seedlings associated with secondary laticifer differentiation using gene expression microarray.

    PubMed

    Loh, Swee Cheng; Thottathil, Gincy P; Othman, Ahmad Sofiman

    2016-10-01

    The natural rubber of Para rubber tree, Hevea brasiliensis, is the main crop involved in industrial rubber production due to its superior quality. The Hevea bark is commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. The laticifer is well defined in the aspect of morphology; however, only some genes associated with its development have been reported. We successfully induced secondary laticifer in the jasmonic acid (JA)-treated and linolenic acid (LA)-treated Hevea bark but secondary laticifer is not observed in the ethephon (ET)-treated and untreated Hevea bark. In this study, we analysed 27,195 gene models using NimbleGen microarrays based on the Hevea draft genome. 491 filtered differentially expressed (FDE) transcripts that are common to both JA- and LA-treated bark samples but not ET-treated bark samples were identified. In the Eukaryotic Orthologous Group (KOG) analysis, 491 FDE transcripts belong to different functional categories that reflect the diverse processes and pathways involved in laticifer differentiation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and KOG analysis, the profile of the FDE transcripts suggest that JA- and LA-treated bark samples have a sufficient molecular basis for secondary laticifer differentiation, especially regarding secondary metabolites metabolism. FDE genes in this category are from the cytochrome (CYP) P450 family, ATP-binding cassette (ABC) transporter family, short-chain dehydrogenase/reductase (SDR) family, or cinnamyl alcohol dehydrogenase (CAD) family. The data includes many genes involved in cell division, cell wall synthesis, and cell differentiation. The most abundant transcript in FDE list was SDR65C, reflecting its importance in laticifer differentiation. Using the Basic Local Alignment Search Tool (BLAST) as part of annotation and functional prediction, several characterised as well as uncharacterized transcription factors and genes were found in the

  3. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression.

    PubMed

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree.

  4. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    PubMed

    Ganot, Philippe; Moya, Aurélie; Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-07-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  5. Adaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications

    PubMed Central

    Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-01-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K–dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  6. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose

    PubMed Central

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C–X–C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  7. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose.

    PubMed

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-09-22

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C-X-C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  8. An Exercise to Estimate Differential Gene Expression in Human Cells

    ERIC Educational Resources Information Center

    Chaudhry, M. Ahmad

    2006-01-01

    The expression of genes in cells of various tissue types varies considerably and is correlated with the function of a particular organ. The pattern of gene expression changes in diseased tissues, in response to therapy or infection and exposure to environmental mutagens, chemicals, ultraviolet light, and ionizing radiation. To better understand…

  9. Gene Expression During Drosophila Wing Morphogenesis and Differentiation

    PubMed Central

    Ren, Nan; Zhu, Chunming; Lee, Haeryun; Adler, Paul N.

    2005-01-01

    The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity. PMID:15998724

  10. Gene expression monitoring for gene discovery in models of peripheral and central nervous system differentiation, regeneration, and trauma.

    PubMed

    Farlow, D N; Vansant, G; Cameron, A A; Chang, J; Khoh-Reiter, S; Pham, N L; Wu, W; Sagara, Y; Nicholls, J G; Carlo, D J; Ill, C R

    2000-10-20

    Gene expression monitoring using gene expression microarrays represents an extremely powerful technology for gene discovery in a variety of systems. We describe the results of seven experiments using Incyte GEM technology to compile a proprietary portfolio of data concerning differential gene expression in six different models of neuronal differentiation and regeneration, and recovery from injury or disease. Our first two experiments cataloged genes significantly up- or down-regulated during two phases of the retinoic acid-induced differentiation of the embryonal carcinoma line Ntera-2. To identify genes involved in neuronal regeneration we performed three GEM experiments, which included changes in gene expression in rat dorsal root ganglia during the healing of experimentally injured sciatic nerve, in regenerating neonatal opossum spinal cord, and during lipopolysaccharide stimulation of primary cultures of rat Schwann cells. Finally we have monitored genes involved in the recovery phase of the inflammatory disease of the rat spinal cord, experimental allergic encephalomyelitis, as well as those responsible for protection from oxidative stress in a glutamate-resistant rat hippocampal cell line. Analysis of the results of the approximately 70,000 data points collected is presented. PMID:11074584

  11. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions.

    PubMed

    Davidson, Ben; Stavnes, Helene Tuft; Holth, Arild; Chen, Xu; Yang, Yanqin; Shih, Ie-Ming; Wang, Tian-Li

    2011-03-01

    Ovarian/primary peritoneal carcinoma and breast carcinoma are the gynaecological cancers that most frequently involve the serosal cavities.With the objective of improving on the limited diagnostic panel currently available for the differential diagnosis of these two malignancies,as well as to define tumour-specific biological targets, we compared their global gene expression patterns. Gene expression profiles of 10 serous ovarian/peritoneal and eight ductal breast carcinoma effusions were analysed using the HumanRef-8 BeadChip from Illumina.Differentially expressed candidate genes were validated using quantitative real-time PCR and immunohistochemistry. Unsupervised hierarchical clustering using all 54,675 genes in the array separated ovarian from breast carcinoma samples. We identified 288 unique probes that were significantly differentially expressed in the two cancers by greater than 3.5-fold, of which 81 and 207 were overexpressed in breast and ovarian/peritoneal carcinoma, respectively. SAM analysis identified 1078 differentially expressed probes with false discovery rate less than 0.05. Genes overexpressed in breast carcinoma included TFF1, TFF3, FOXA1, CA12, GATA3, SDC1, PITX1, TH, EHFD1, EFEMP1, TOB1 and KLF2. Genes overexpressed in ovarian/peritoneal carcinoma included SPON1, RBP1, MFGE8, TM4SF12, MMP7, KLK5/6/7, FOLR1/3,PAX8, APOL2 and NRCAM. The differential expression of 14 genes was validated by quantitative real-time PCR, and differences in 5 gene products were confirmed by immunohistochemistry. Expression profiling distinguishes ovarian/peritoneal carcinoma from breast carcinoma and identifies genes that are differentially expressed in these two tumour types. The molecular signatures unique to these cancers may facilitate their differential diagnosis and may provide a molecular basis for therapeutic target discovery.

  12. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    PubMed Central

    Bisognin, Andrea; Bortoluzzi, Stefania; Danieli, Gian Antonio

    2004-01-01

    Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers. PMID:15176974

  13. Gene expression profiling data of Schizosaccharomyces pombe under nitrosative stress using differential display.

    PubMed

    Biswas, Pranjal; Majumdar, Uddalak; Ghosh, Sanjay

    2016-03-01

    Excess production of nitric oxide (NO) and reactive nitrogen intermediates (RNIs) causes nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study nitrosative stress response. In the present data article, we have used differential display to identify the differentially expressed genes in the fission yeast under nitrosative stress conditions. We have used pure NO donor compound detaNONOate at final concentrations of 0.1 mM and 1 mM to treat the cells for 15 min alongside control before studying their gene expression profiles. At both the treated conditions, we identified genes which were commonly repressed while several genes were induced upon both 0.1 mM and 1 mM treatments. The differentially expressed genes were further analyzed in DAVID and categorized into several different pathways.

  14. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

    PubMed Central

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-01-01

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457

  15. Differential distribution improves gene selection stability and has competitive classification performance for patient survival.

    PubMed

    Strbenac, Dario; Mann, Graham J; Yang, Jean Y H; Ormerod, John T

    2016-07-27

    A consistent difference in average expression level, often referred to as differential expression (DE), has long been used to identify genes useful for classification. However, recent cancer studies have shown that when transcription factors or epigenetic signals become deregulated, a change in expression variability (DV) of target genes is frequently observed. This suggests that assessing the importance of genes by either differential expression or variability alone potentially misses sets of important biomarkers that could lead to improved predictions and treatments. Here, we describe a new approach for assessing the importance of genes based on differential distribution (DD), which combines information from differential expression and differential variability into a unified metric. We show that feature ranking and selection stability based on DD can perform two to three times better than DE or DV alone, and that DD yields equivalent error rates to DE and DV. Finally, assessing genes via differential distribution produces a complementary set of selected genes to DE and DV, potentially opening up new categories of biomarkers. PMID:27190235

  16. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Mullany, Lila E; Wolff, Roger K

    2015-01-01

    Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA) was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS) was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance). Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene), Lutein/Zeaxanthine (5 genes), and Vitamin E (4 genes) were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations. PMID:26230583

  17. Transcriptome-Wide Differential Gene Expression in Bicyclus anynana Butterflies: Female Vision-Related Genes Are More Plastic.

    PubMed

    Macias-Muñoz, Aide; Smith, Gilbert; Monteiro, Antónia; Briscoe, Adriana D

    2016-01-01

    Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.

  18. Variability-specific differential gene expression across reproductive stages in sows.

    PubMed

    Casellas, J; Martínez-Giner, M; Pena, R N; Balcells, I; Fernández-Rodríguez, A; Ibáñez-Escriche, N; Noguera, J L

    2013-03-01

    Differential gene expression analyses typically focus on departures across mathematical expectations (i.e. mean) from two or more groups of microarrays, without considering alternative patterns of departure. Nevertheless, recent studies in humans and great apes have suggested that differential gene expression could also be characterized in terms of heterogeneous dispersion patterns. This must be viewed as a very interesting genetic phenomenon clearly linked to the regulation mechanisms of gene transcription. Unfortunately, we completely lack information about the incidence and relevance of dispersion-specific differential gene expression in livestock species, although a specific Bayes factor (BF) for testing this kind of differential gene expression (i.e. within-probe heteroskedasticity) has been recently developed. Within this context, our main objective was to characterize the incidence of dispersion-specific differential gene expression in pigs and, if possible, providing the first evidence of this phenomenon in a livestock species. We evaluated dispersion-specific differential gene expression on ovary, uterus and hypophysis samples from 22 F2 Iberian × Meishan sows, where a total of 15,252 probes were interrogated. For each tissue, heteroskedasticity of probe-specific residual variances was evaluated by three pairwise comparisons involving three physiological stages, that is, heat, 15 days of pregnancy and 45 days of pregnancy. Between 2.9% and 37.4% of the analyzed probes provided statistical evidence of within-tissue across-physiological stages dispersion-specific differential gene expression (BF >1), and between 0.1% and 3.0% of them reported decisive evidence (BF >100). It is important to highlight that <8% of the heteroskedastic probes were also linked to differential gene expression in terms of departures among the probe-specific mathematical expectation of each physiological stage. This discarded the disturbance of scale effects in a high percentage of

  19. Differentially expressed genes in human peripheral blood as potential markers for statin response.

    PubMed

    Won, Hong-Hee; Kim, Suk Ran; Bang, Oh Young; Lee, Sang-Chol; Huh, Wooseong; Ko, Jae-Wook; Kim, Hyung-Gun; McLeod, Howard L; O'Connell, Thomas M; Kim, Jong-Won; Lee, Soo-Youn

    2012-02-01

    There is a considerable inter-individual variation in response to statin therapy and one third of patients do not meet their treatment goals. We aimed to identify differentially expressed genes that might be involved in the effects of statin treatment and to suggest potential markers to guide statin therapy. Forty-six healthy Korean subjects received atorvastatin; their whole-genome expression profiles in peripheral blood were analyzed before and after atorvastatin administration in relation with changes in lipid profiles. The expression patterns of the differentially expressed genes were also compared with the data of familial hypercholesterolemia (FH) patients and controls. Pairwise comparison analyses revealed differentially expressed genes involved in diverse biological processes and molecular functions related with immune responses. Atorvastain mainly affected antigen binding, immune or inflammatory response including interleukin pathways. Similar expression patterns of the genes were observed in patients with FH and controls. The Charcol-Leyden crystal (CLC), CCR2, CX3CR1, LRRN3, FOS, LDLR, HLA-DRB1, ERMN, and TCN1 genes were significantly associated with cholesterol levels or statin response. Interestingly, the CLC gene, which was significantly altered by atorvastatin administration and differentially expressed between FH patients and controls, showed much bigger change in high-responsive group than in low-responsive group. We identified differentially expressed genes that might be involved in mechanisms underlying the known pleiotropic effects of atorvastatin, baseline cholesterol levels, and drug response. Our findings suggest CLC as a new candidate marker for statin response, and further validation is needed.

  20. Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis.

    PubMed

    Qian, Zhongqing; Lv, Jingzhu; Kelly, Gabriel T; Wang, Hongtao; Zhang, Xiaojie; Gu, Wanjun; Yin, Xiaofeng; Wang, Ting; Zhou, Tong

    2016-07-01

    During infection and host defense, nuclear factor, erythroid 2-like 2 (Nrf2) dependent signaling is an efficient antioxidant defensive mechanism used by host cells to control the destructive effects of reactive oxygen species. This allows for effective defense responses against microbes while minimizing oxidative injury to the host cell itself. As a central regulator of antioxidant genes, Nrf2 has gained great attention in its pivotal role in infection, especially in tuberculosis (TB), the top infectious disease killer worldwide. To elucidate the genes potentially regulated by Nrf2 in TB, we conducted a meta-analysis on published gene expression datasets. Firstly, we compared the global gene expression profiles between control and Nrf2-deficient human cells. The differentially expressed genes were deemed as "Nrf2-mediated genes". Next, the whole blood gene expression pattern of TB patients was compared with that of healthy controls, pneumonia patients, and lung cancer patients. We found that the genes deregulated in TB significantly overlap with the Nrf2-mediated genes. Based on the intersection of Nrf2-mediated and TB-regulated genes, we identified an Nrf2-mediated 17-gene signature, which reflects a cluster of gene ontology terms highly related to TB physiology. We demonstrated that the 17-gene signature can be used to distinguish TB patients from healthy controls and patients with latent TB infection, pneumonia, or lung cancer. Also, the Nrf2-mediated gene signature can be used as an indicator of the anti-TB therapeutic response. More importantly, we confirmed that the predictive power of the Nrf2-mediated 17-gene signature is significantly better than the random gene sets selected from the human transcriptome. Also, the 17-gene signature performs even better than the random gene signatures selected from TB-associated genes. Our study confirms the central role of Nrf2 in TB pathogenesis and provides a novel and useful diagnostic method to differentiate TB

  1. Stage and Gene Specific Signatures Defined by Histones H3K4me2 and H3K27me3 Accompany Mammalian Retina Maturation In Vivo

    PubMed Central

    Popova, Evgenya Y.; Xu, Xuming; DeWan, Andrew T.; Salzberg, Anna C.; Berg, Arthur; Hoh, Josephine; Zhang, Samuel S.; Barnstable, Colin J.

    2012-01-01

    The epigenetic contribution to neurogenesis is largely unknown. There is, however, growing evidence that posttranslational modification of histones is a dynamic process that shows many correlations with gene expression. Here we have followed the genome-wide distribution of two important histone H3 modifications, H3K4me2 and H3K27me3 during late mouse retina development. The retina provides an ideal model for these studies because of its well-characterized structure and development and also the extensive studies of the retinal transcriptome and its development. We found that a group of genes expressed only in mature rod photoreceptors have a unique signature consisting of de-novo accumulation of H3K4me2, both at the transcription start site (TSS) and over the whole gene, that correlates with the increase in transcription, but no accumulation of H3K27me3 at any stage. By in silico analysis of this unique signature we have identified a larger group of genes that may be selectively expressed in mature rod photoreceptors. We also found that the distribution of H3K4me2 and H3K27me3 on the genes widely expressed is not always associated with their transcriptional levels. Different histone signatures for retinal genes with the same gene expression pattern suggest the diversities of epigenetic regulation. Genes without H3K4me2 and H3K27me3 accumulation at any stage represent a large group of transcripts never expressed in retina. The epigenetic signatures defined by H3K4me2 and H3K27me3 can distinguish cell-type specific genes from widespread transcripts and may be reflective of cell specificity during retina maturation. In addition to the developmental patterns seen in wild type retina, the dramatic changes of histone modification in the retinas of mutant animals lacking rod photoreceptors provide a tool to study the epigenetic changes in other cell types and thus describe a broad range of epigenetic events in a solid tissue in vivo. PMID:23056497

  2. Meta-analysis of differential gene co-expression: application to lupus.

    PubMed

    Makashir, Sumit B; Kottyan, Leah C; Weirauch, Matthew T

    2015-01-01

    We present a novel statistical framework for meta-analysis of differential gene co-expression. In contrast to standard methods, which identify genes that are over or under expressed in disease vs controls, differential co-expression identifies gene pairs with correlated expression profiles specific to one state. We apply our differential co-expression meta-analysis method to identify genes specifically mis-expressed in blood-derived cells of systemic lupus erythematosus (SLE) patients. The resulting network is strongly enriched for genes genetically associated with SLE, and effectively identifies gene modules known to play important roles in SLE etiology, such as increased type 1 interferon response and response to wounding. Our results also strongly support previous preliminary studies suggesting a role for dysregulation of neutrophil extracellular trap formation in SLE. Strikingly, two of the gene modules we identify contain SLE-associated transcription factors that have binding sites significantly enriched in the promoter regions of their respective gene modules, suggesting a possible mechanism underlying the mis-expression of the modules. Thus, our general method is capable of identifying specific dysregulated gene expression programs, as opposed to large global responses. We anticipate that methods such as ours will be more and more useful as gene expression monitoring becomes increasingly common in clinical settings.

  3. Diagnosis of Prostate Cancer Using Differentially Expressed Genes in Stroma

    PubMed Central

    Jia, Zhenyu; Wang, Yipeng; Sawyers, Anne; Yao, Huazhen; Rahmatpanah, Farahnaz; Xia, Xiao-Qin; Xu, Qiang; Pio, Rebecca; Turan, Tolga; Koziol, James A.; Goodison, Steve; Carpenter, Philip; Wang-Rodriquez, Jessica; Simoneau, Anne; Meyskens, Frank; Sutton, Manuel; Lernhardt, Waldemar; Beach, Thomas; Monforte, Joseph; McClelland, Michael; Mercola, Dan

    2011-01-01

    Over one million prostate biopsies are performed in the U.S. every year. A failure to find cancer is not definitive in a significant percentage of patients due to the presence of equivocal structures or continuing clinical suspicion. We have identified gene expression changes in stroma that can detect tumor nearby. We compared gene expression profiles of 13 biopsies containing stroma near tumor and 15 biopsies from volunteers without prostate cancer. About 3800 significant expression changes were found and thereafter filtered using independent expression profiles to eliminate possible age-related genes and genes expressed at detectable levels in tumor cells. A stroma-specific classifier for nearby tumor was constructed based on 114 candidate genes and tested on 364 independent samples, including 243 tumor-bearing samples and 121 non-tumor samples (normal biopsies, normal autopsies, remote stroma, as well as stroma within a few millimeters of tumor). The classifier predicted the tumor status of patients using tumor-free samples with an average accuracy of 97% (sensitivity = 98% and specificity = 88%) whereas classifiers trained with sets of 100 randomly generated genes had no diagnostic value. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for categorizing the presence of tumor in patients when a prostate sample is derived from near the tumor but does not contain any recognizable tumor. PMID:21459804

  4. Role of homeobox genes in the patterning, specification and differentiation of ectodermal appendages in mammals

    PubMed Central

    Duverger, Olivier; Morasso, Maria I.

    2008-01-01

    Homeobox genes are an evolutionarily conserved class of transcription factors that are key regulators during developmental processes such as regional specification, patterning and differentiation. In this review, we summarize the expression pattern, loss-and/or gain-of-function mouse models, and naturally occurring mouse and human mutations of known homeobox genes required for the development of ectodermal appendages. PMID:18459147

  5. Evaluation of new biomarker genes for differentiating Haemophilus influenzae from Haemophilus haemolyticus.

    PubMed

    Theodore, M Jordan; Anderson, Raydel D; Wang, Xin; Katz, Lee S; Vuong, Jeni T; Bell, Melissa E; Juni, Billie A; Lowther, Sara A; Lynfield, Ruth; MacNeil, Jessica R; Mayer, Leonard W

    2012-04-01

    PCR detecting the protein D (hpd) and fuculose kinase (fucK) genes showed high sensitivity and specificity for identifying Haemophilus influenzae and differentiating it from H. haemolyticus. Phylogenetic analysis using the 16S rRNA gene demonstrated two distinct groups for H. influenzae and H. haemolyticus. PMID:22301020

  6. EVE (external variance estimation) increases statistical power for detecting differentially expressed genes.

    PubMed

    Wille, Anja; Gruissem, Wilhelm; Bühlmann, Peter; Hennig, Lars

    2007-11-01

    Accurately identifying differentially expressed genes from microarray data is not a trivial task, partly because of poor variance estimates of gene expression signals. Here, after analyzing 380 replicated microarray experiments, we found that probesets have typical, distinct variances that can be estimated based on a large number of microarray experiments. These probeset-specific variances depend at least in part on the function of the probed gene: genes for ribosomal or structural proteins often have a small variance, while genes implicated in stress responses often have large variances. We used these variance estimates to develop a statistical test for differentially expressed genes called EVE (external variance estimation). The EVE algorithm performs better than the t-test and LIMMA on some real-world data, where external information from appropriate databases is available. Thus, EVE helps to maximize the information gained from a typical microarray experiment. Nonetheless, only a large number of replicates will guarantee to identify nearly all truly differentially expressed genes. However, our simulation studies suggest that even limited numbers of replicates will usually result in good coverage of strongly differentially expressed genes.

  7. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis

    PubMed Central

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  8. A Microarray Analysis for Differential Gene Expression in the Soybean Genome Using Bioconductor and R

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes specific procedures for conducting quality assessment of Affymetrix GeneChip® soybean genome data and performing analyses to determine differential gene expression using the open-source R language and environment in conjunction with the open-source Bioconductor package. Procedu...

  9. Differential Expression of Inflammation-Related Genes in Children with Down Syndrome

    PubMed Central

    Silva, Cláudia Regina Santos; Biselli-Périco, Joice Matos; Zampieri, Bruna Lancia; Silva, Wilson Araujo; de Souza, Jorge Estefano Santana; Bürger, Matheus Carvalho; Goloni-Bertollo, Eny Maria; Pavarino, Érika Cristina

    2016-01-01

    Objective. The aim of the study was to investigate the expression patterns of a specific set of genes involved in the inflammation process in children with Down Syndrome (DS) and children without the syndrome (control group) to identify differences that may be related to the immune abnormalities observed in DS individuals. Method. RNA samples were obtained from peripheral blood, and gene expression was quantified using the TaqMan® Array Plate Human Inflammation Kit, which facilitated the investigation into 92 inflammation-related genes and four reference genes using real-time polymerase chain reaction (qPCR). Results. Twenty genes showed differential expression in children with DS; 12 were overexpressed (PLA2G2D, CACNA1D, ALOX12, VCAM1, ICAM1, PLCD1, ADRB1, HTR3A, PDE4C, CASP1, PLA2G5, and PLCB4), and eight were underexpressed (LTA4H, BDKRB1, ADRB2, CD40LG, ITGAM, TNFRSF1B, ITGB1, and TBXAS1). After statistically correcting for the false discovery rate, only the genes BDKRB1 and LTA4H showed differential expression, and both were underexpressed within the DS group. Conclusion. DS children showed differential expression of inflammation-related genes that were not located on chromosome 21 compared with children without DS. The BDKRB1 and LTA4H genes may differentiate the case and control groups based on the inflammatory response, which plays an important role in DS pathogenesis. PMID:27293319

  10. Competitive hybridization: theory and application in isolation and quantification of differentially regulated genes.

    PubMed

    Zhong, G Y; Riov, J; Goren, R; Holland, D

    2000-06-15

    Competitive hybridization is a simple yet powerful method that was developed to screen cDNA libraries for differentially regulated genes. The method is based on competition between unlabeled cDNA from the mRNA of one sample and labeled cDNA from another sample. By manipulating the amount of competing unlabeled cDNA, background signals from the nonregulated genes can be increased or reduced, enabling the signals from differentially regulated genes to be contrasted and to be identified in a quantitative manner. To demonstrate the feasibility of the method, we screened a citrus cDNA library for ethylene-induced genes and identified three genes with different levels of ethylene induction. The mathematical basis of the method and its possible application in gene chip technology are discussed. PMID:10860509

  11. Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells.

    PubMed

    Nordin, Norshariza; Li, Meng; Mason, John O

    2008-03-01

    The Wnt family of secreted signaling proteins regulates many aspects of animal development and the behavior of several types of stem cells, including embryonic stem (ES) cells. Activation of canonical Wnt signaling has been shown to either inhibit or promote the differentiation of ES cells into neurons, depending on the stage of differentiation. Here, we describe the expression of all 19 mouse Wnt genes during this process. Using the well-established retinoic acid induction protocol we found that all Wnt genes except Wnt8b are expressed as ES cells differentiate into neurons, many of them in dynamic patterns. The expression pattern of 12 Wnt genes was analyzed quantitatively at 2-day intervals throughout neural differentiation, showing that multiple Wnt genes are expressed at each stage. A large proportion of these, including both canonical and noncanonical Wnts, are expressed at highest levels during later stages of differentiation. The complexity of the patterns observed indicates that disentangling specific roles for individual Wnt genes in the differentiation process will be a significant challenge.

  12. BRG1-Mediated Chromatin Remodeling Regulates Differentiation and Gene Expression of T Helper Cells▿ †

    PubMed Central

    Wurster, Andrea L.; Pazin, Michael J.

    2008-01-01

    During T helper cell differentiation, distinct programs of gene expression play a key role in defining the immune response to an environmental challenge. How chromatin remodeling events at the associated cytokine loci control differentiation is not known. We found that the ATP-dependent remodeling enzyme subunit BRG1 was required for T helper 2 (Th2) differentiation and Th2 cytokine transcription. BRG1 binding to cytokine genes was regulated by the extent of differentiation, the extent of activation, and cell fate. BRG1 was required for some features of the chromatin structure in target genes (DNase I hypersensitivity and histone acetylation), suggesting that BRG1 remodeling activity was directly responsible for changes in gene expression. NFAT and STAT6 activity were required for BRG1 recruitment to the Th2 locus control region, and STAT6 associated with BRG1 in a differentiation-inducible manner, suggesting direct recruitment of BRG1 to the bound loci. Together, these findings suggest BRG1 interprets differentiation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. PMID:18852284

  13. Identification of differentially expressed genes in microarray data in a principal component space.

    PubMed

    Ospina, Luis; López-Kleine, Liliana

    2013-12-01

    Microarray experiments are often conducted in order to compare gene expression between two conditions. Tests to detected mean differential expression of genes between conditions are conducted applying correction for multiple testing. Seldom, relationships between gene expression and microarray conditions are investigated in a multivariate approach. Here we propose determining the relationship between genes and conditions using a Principal Component Analysis (PCA) space and classifying genes to one of two biological conditions based on their position relative to a direction on the PC space representing each condition.

  14. Identification of stable reference genes in differentiating human pluripotent stem cells.

    PubMed

    Holmgren, Gustav; Ghosheh, Nidal; Zeng, Xianmin; Bogestål, Yalda; Sartipy, Peter; Synnergren, Jane

    2015-06-01

    Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.

  15. Differential Expression of Potato Tuber Protein Genes 1

    PubMed Central

    Hannapel, David J.

    1990-01-01

    Patatin and the 22-kilodalton protein complex make up more than 50% of the soluble protein present in potato (Solanum tuberosum) tubers and these two proteins are coordinately regulated during tuber development. Although genomic sequences related to these tuber genes exist in the genome of potato species that do not bear tubers, they cannot be induced into expression under the tested conditions. These genes are not expressed during substantial starch accumulation in petioles from a model petiole-leaf cutting system in nontuber-bearing plants, indicating that starch accumulation and synthesis of the major tuber proteins occur independently. Tuber protein gene expression also has been examined in hybrid potato plants that contain genomes from both tuberizing and nontuberizing species. One such triploid hybrid produced only stolons, whereas a pentaploid hybrid with an increased number of tuber genomes produced tubers. It was shown, using immunoblotting and Northern blot hybridization, that these two hybrids actively expressed both patatin and the 22-kilodalton tuber protein in induced petioles from the leaf-cutting system. The induced accumulation of patatin transcripts was consistent in all genotypes containing some tuberizing genome. The induced accumulation of the 22-kilodalton protein transcripts, however, was lower in genotypes containing some nontuberizing genome. Sucrose induction of these genes in leaves corroborates the induction patterns in petioles. A correlation exists between 22-kilodalton protein gene expression and a potato plant's ability to produce stolons or tubers. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:16667872

  16. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    PubMed

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. PMID:26919127

  17. Live-cell, temporal gene expression analysis of osteogenic differentiation in adipose-derived stem cells.

    PubMed

    Desai, Hetal V; Voruganti, Indu S; Jayasuriya, Chathuraka; Chen, Qian; Darling, Eric M

    2014-03-01

    Adipose-derived stem cells (ASCs) are a widely investigated type of mesenchymal stem cells with great potential for musculoskeletal regeneration. However, the use of ASCs is complicated by their cellular heterogeneity, which exists at both the population and single-cell levels. This study demonstrates a live-cell assay to investigate gene expression in ASCs undergoing osteogenesis using fluorescently tagged DNA hybridization probes called molecular beacons. A molecular beacon was designed to target the mRNA sequence for alkaline phosphatase (ALPL), a gene characteristically expressed during early osteogenesis. The percentage of cells expressing this gene in a population was monitored daily to quantify the uniformity of the differentiation process. Differentiating ASC populations were repeatedly measured in a nondestructive fashion over a 10-day period to obtain temporal gene expression data. Results showed consistent expression patterns for the investigated osteogenic genes in response to induction medium. Peak signal level, indicating when the most cells expressed ALPL at once, was observed on days 3-5. The differentiation response of sample populations was generally uniform when assessed on a well-by-well basis over time. The expression of alkaline phosphatase is consistent with previous studies of osteogenic differentiation, suggesting that molecular beacons are a viable means of monitoring the spatiotemporal gene expression of live, differentiating ASCs.

  18. Live-Cell, Temporal Gene Expression Analysis of Osteogenic Differentiation in Adipose-Derived Stem Cells

    PubMed Central

    Desai, Hetal V.; Voruganti, Indu S.; Jayasuriya, Chathuraka; Chen, Qian

    2014-01-01

    Adipose-derived stem cells (ASCs) are a widely investigated type of mesenchymal stem cells with great potential for musculoskeletal regeneration. However, the use of ASCs is complicated by their cellular heterogeneity, which exists at both the population and single-cell levels. This study demonstrates a live-cell assay to investigate gene expression in ASCs undergoing osteogenesis using fluorescently tagged DNA hybridization probes called molecular beacons. A molecular beacon was designed to target the mRNA sequence for alkaline phosphatase (ALPL), a gene characteristically expressed during early osteogenesis. The percentage of cells expressing this gene in a population was monitored daily to quantify the uniformity of the differentiation process. Differentiating ASC populations were repeatedly measured in a nondestructive fashion over a 10-day period to obtain temporal gene expression data. Results showed consistent expression patterns for the investigated osteogenic genes in response to induction medium. Peak signal level, indicating when the most cells expressed ALPL at once, was observed on days 3–5. The differentiation response of sample populations was generally uniform when assessed on a well-by-well basis over time. The expression of alkaline phosphatase is consistent with previous studies of osteogenic differentiation, suggesting that molecular beacons are a viable means of monitoring the spatiotemporal gene expression of live, differentiating ASCs. PMID:24367991

  19. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-01

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. PMID:27233607

  20. Selection of reliable reference genes during THP-1 monocyte differentiation into macrophages

    PubMed Central

    2010-01-01

    Background Reliable reference genes are a vital prerequisite for any functional study employing quantitative real-time RT-PCR (RT-qPCR) for analyzing gene expression. Yet a proper selection and assessment of the chosen reference genes is only rarely included into a study. To date, no reference genes have been validated for differentiation of THP-1 monocytes. Here we report on the selection of validated reference genes during differentiation of THP-1 monocytes into macrophages induced by phorbol 12-myristate 13-acetate (PMA). Results The mRNA expression of 21 preselected potential reference genes was measured by RT-qPCR at several time-points over six days of PMA-induced THP-1 monocyte-to-macrophage differentiation. A ranking according to expression stability was calculated. Calculations were performed using Microsoft Excel-based applets GeNorm, NormFinder and BestKeeper. Our results indicated ACTB (β-actin) (Cq ± SD, 14.1 ± 0.3) and RPL37A (ribosomal protein L37a) (14.5 ± 0.3) as the most stable genes. While other frequently used reference genes such as GAPDH (glycereraldehyde-3-phosphate dehydrogenase) (20.8 ± 0.8) or G6PD (glucose-6-phophate dehydrogenase) (16.1 ± 1.0) were found to be not as reliable and were therefore unsuited for use as reference genes. These findings were validated by investigating mRNA expression of macrophage scavenger receptor CD36, known to be regulated during monocyte-to-macrophage differentiation. Using ACTB and RPL37A as reference genes a profound and significant regulation of CD36 could be demonstrated, while use of G6PD resulted in a much less pronounced apparent regulation of CD36. Conclusion Consequently, it is recommended to normalize any real-time PCR-based expression data obtained during THP-1 monocyte differentiation using ACTB and RPL37A. PMID:21122122

  1. Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach

    PubMed Central

    Anjum, Arfa; Jaggi, Seema; Lall, Shwetank; Bhowmik, Arpan; Rai, Anil

    2016-01-01

    Abstract Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product, which may be proteins. A gene is declared differentially expressed if an observed difference or change in read counts or expression levels between two experimental conditions is statistically significant. To identify differentially expressed genes between two conditions, it is important to find statistical distributional property of the data to approximate the nature of differential genes. In the present study, the focus is mainly to investigate the differential gene expression analysis for sequence data based on compound distribution model. This approach was applied in RNA-seq count data of Arabidopsis thaliana and it has been found that compound Poisson distribution is more appropriate to capture the variability as compared with Poisson distribution. Thus, fitting of appropriate distribution to gene expression data provides statistically sound cutoff values for identifying differentially expressed genes. PMID:26949988

  2. Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.

    PubMed

    Glover, Clive H; Marin, Michael; Eaves, Connie J; Helgason, Cheryl D; Piret, James M; Bryan, Jennifer

    2006-11-24

    Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC) lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined, undifferentiated ESC in culture. In each dataset, we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets, despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest, we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728_at, 8430410A17Rik, Klf2, Nr0b1, Sox2, Tcl1, and Zfp42) showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis, this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.

  3. Gene duplication, population genomics, and species-level differentiation within a tropical mountain shrub.

    PubMed

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C

    2014-10-01

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767

  4. Gene differential coexpression analysis based on biweight correlation and maximum clique.

    PubMed

    Zheng, Chun-Hou; Yuan, Lin; Sha, Wen; Sun, Zhan-Li

    2014-01-01

    Differential coexpression analysis usually requires the definition of 'distance' or 'similarity' between measured datasets. Until now, the most common choice is Pearson correlation coefficient. However, Pearson correlation coefficient is sensitive to outliers. Biweight midcorrelation is considered to be a good alternative to Pearson correlation since it is more robust to outliers. In this paper, we introduce to use Biweight Midcorrelation to measure 'similarity' between gene expression profiles, and provide a new approach for gene differential coexpression analysis. Firstly, we calculate the biweight midcorrelation coefficients between all gene pairs. Then, we filter out non-informative correlation pairs using the 'half-thresholding' strategy and calculate the differential coexpression value of gene, The experimental results on simulated data show that the new approach performed better than three previously published differential coexpression analysis (DCEA) methods. Moreover, we use the maximum clique analysis to gene subset included genes identified by our approach and previously reported T2D-related genes, many additional discoveries can be found through our method.

  5. Differential gene expression in pulmonary artery endothelial cells exposed to sickle cell plasma.

    PubMed

    Klings, Elizabeth S; Safaya, Surinder; Adewoye, Adeboye H; Odhiambo, Adam; Frampton, Garrett; Lenburg, Marc; Gerry, Norman; Sebastiani, Paola; Steinberg, Martin H; Farber, Harrison W

    2005-05-11

    Clinical variability in sickle cell disease (SCD) suggests a role for extra-erythrocytic factors in the pathogenesis of vasoocclusion. We hypothesized that endothelial cell (EC) dysfunction, one possible modifier of disease variability, results from induction of phenotypic changes by circulating factors. Accordingly, we analyzed gene expression in cultured human pulmonary artery ECs (HPAEC) exposed to plasma from 1) sickle acute chest syndrome (ACS) patients, 2) SCD patients at steady state, 3) normal volunteers, and 4) serum-free media, using whole genome microarrays (U133A-B GeneChip, Affymetrix). Data were analyzed by Bayesian analysis of differential gene expression (BADGE). Differential expression was defined by the probability of >1.5 fold change in signal intensity greater than 0.999 and a predicted score of 70-100, measured by cross-validation. Compared with normal plasma, plasma from SCD patients (steady state) resulted in differential expression of 50 genes in HPAEC. Of these genes, molecules involved in cholesterol biosynthesis and lipid transport, the cellular stress response, and extracellular matrix proteins were most prominent. Another 58 genes were differentially expressed in HPAEC exposed to plasma from ACS patients. The pattern of altered gene expression suggests that plasma from SCD patients induces an EC phenotype which is anti-apoptotic and favors cholesterol biosynthesis. An altered EC phenotype elicited by SCD plasma may contribute to the pathogenesis of sickle vasoocclusion.

  6. Gene Duplication, Population Genomics, and Species-Level Differentiation within a Tropical Mountain Shrub

    PubMed Central

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H.; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C.

    2014-01-01

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767

  7. Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction.

    PubMed

    Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2013-06-01

    Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.

  8. DiGeorge Syndrome Gene tbx1 Functions through wnt11r to Regulate Heart Looping and Differentiation

    PubMed Central

    Choudhry, Priya; Trede, Nikolaus S.

    2013-01-01

    DiGeorge syndrome (DGS) is the most common microdeletion syndrome, and is characterized by congenital cardiac, craniofacial and immune system abnormalities. The cardiac defects in DGS patients include conotruncal and ventricular septal defects. Although the etiology of DGS is critically regulated by TBX1 gene, the molecular pathways underpinning TBX1's role in heart development are not fully understood. In this study, we characterized heart defects and downstream signaling in the zebrafish tbx1−/− mutant, which has craniofacial and immune defects similar to DGS patients. We show that tbx1−/− mutants have defective heart looping, morphology and function. Defective heart looping is accompanied by failure of cardiomyocytes to differentiate normally and failure to change shape from isotropic to anisotropic morphology in the outer curvatures of the heart. This is the first demonstration of tbx1's role in regulating heart looping, cardiomyocyte shape and differentiation, and may explain how Tbx1 regulates conotruncal development in humans. Next we elucidated tbx1's molecular signaling pathway guided by the cardiac phenotype of tbx1−/− mutants. We show for the first time that wnt11r (wnt11 related), a member of the non-canonical Wnt pathway, and its downstream effector gene alcama (activated leukocyte cell adhesion molecule a) regulate heart looping and differentiation similarly to tbx1. Expression of both wnt11r and alcama are downregulated in tbx1−/− mutants. In addition, both wnt11r−/− mutants and alcama morphants have heart looping and differentiation defects similar to tbx1−/− mutants. Strikingly, heart looping and differentiation in tbx1−/− mutants can be partially rescued by ectopic expression of wnt11r or alcama, supporting a model whereby heart looping and differentiation are regulated by tbx1 in a linear pathway through wnt11r and alcama. This is the first study linking tbx1 and non-canonical Wnt signaling and extends our

  9. MRI reporter genes: applications for imaging of cell survival, proliferation, migration and differentiation.

    PubMed

    Vandsburger, Moriel H; Radoul, Marina; Cohen, Batya; Neeman, Michal

    2013-07-01

    Molecular imaging strives to detect molecular events at the level of the whole organism. In some cases, the molecule of interest can be detected either directly or with targeted contrast media. However many genes and proteins and particularly those located in intracellular compartments are not accessible for targeted agents. The transcriptional regulation of these genes can nevertheless be detected, although indirectly, using reporter gene encoding for readily detectable proteins. Such reporter proteins can be expressed in the tissue of interest by genetically introducing the reporter gene in the target cells. Imaging of reporter genes has become a powerful tool in modern biomedical research. Typically, expression of fluorescent and bioluminescent proteins and the reaction product of expressed enzymes and exogenous substrates were examined using in vitro histological methods and in vivo whole body imaging methods. Recent advances in MRI reporter gene methods raised the possibility that MRI could become a powerful tool for concomitant high-resolution anatomical and functional imaging and for imaging of reporter gene activity. An immediate application of MRI reporter gene methods was by monitoring gene expression patterns in gene therapy and in vivo imaging of the survival, proliferation, migration and differentiation of pluripotent and multipotent cells used in cell-based regenerative therapies for cancer, myocardial infarction and neural degeneration. In this review, we characterized a variety of MRI reporter gene methods based on their applicability to report cell survival/proliferation, migration and differentiation. In particular, we discussed which methods were best suited for translation to clinical use in regenerative therapies.

  10. Stress response in tardigrades: differential gene expression of molecular chaperones.

    PubMed

    Reuner, Andy; Hengherr, Steffen; Mali, Brahim; Förster, Frank; Arndt, Detlev; Reinhardt, Richard; Dandekar, Thomas; Frohme, Marcus; Brümmer, Franz; Schill, Ralph O

    2010-07-01

    Semi-terrestrial tardigrades exhibit a remarkable tolerance to desiccation by entering a state called anhydrobiosis. In this state, they show a strong resistance against several kinds of physical extremes. Because of the probable importance of stress proteins during the phases of dehydration and rehydration, the relative abundance of transcripts coding for two alpha-crystallin heat-shock proteins (Mt-sHsp17.2 and Mt-sHsp19.5), as well for the heat-shock proteins Mt-sHsp10, Mt-Hsp60, Mt-Hsp70 and Mt-Hsp90, were analysed in active and anhydrobiotic tardigrades of the species Milnesium tardigradum. They were also analysed in the transitional stage (I) of dehydration, the transitional stage (II) of rehydration and in heat-shocked specimens. A variable pattern of expression was detected, with most candidates being downregulated. Gene transcripts of one Mt-hsp70 isoform in the transitional stage I and Mt-hsp90 in the anhydrobiotic stage were significantly upregulated. A high gene expression (778.6-fold) was found for the small alpha-crystallin heat-shock protein gene Mt-sHsp17.2 after heat shock. We discuss the limited role of the stress-gene expression in the transitional stages between the active and anhydrobiotic tardigrades and other mechanisms which allow tardigrades to survive desiccation.

  11. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    SciTech Connect

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru . E-mail: ogura@gpo.kumamoto-u.ac.jp; Yamanaka, Kunitoshi . E-mail: yamanaka@gpo.kumamoto-u.ac.jp

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.

  12. The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells.

    PubMed

    Fan, Jun; Sun, Zhongjie

    2016-06-01

    Klotho was originally discovered as an aging-suppressor gene. The purpose of this study was to investigate whether secreted Klotho (SKL) affects the proliferation and differentiation of adipose-derived stem cells (ADSCs). RT-PCR and Western blot analysis showed that short-form Klotho was expressed in mouse ADSCs. The Klotho gene mutation KL(-/-) significantly decreased proliferation of ADSCs and expression of pluripotent transcription factors (Nanog, Sox-2, and Oct-4) in mice. The adipogenic differentiation of ADSCs was also decreased in KL(-/-) mice. Incubation with Klotho-deficient medium decreased ADSC proliferation, pluripotent transcription factor levels, and adipogenic differentiation, which is similar to what was found in KL(-/-) mice. These results indicate that Klotho deficiency suppresses ADSC proliferation and differentiation. Interestingly, treatment with recombinant SKL protein rescued the Klotho deficiency-induced impairment in ADSC proliferation and adipogenic differentiation. SKL also regulated ADSCs' differentiation to other cell lineages (osteoblasts, myofibroblasts), indicating that SKL maintains stemness of ADSCs. It is intriguing that overexpression of SKL significantly increased PPAR-γ expression and lipid formation in ADSCs following adipogenic induction, indicating enhanced adipogenic differentiation. Overexpression of SKL inhibited expression of TGFβ1 and its downstream signaling mediator Smad2/3. This study demonstrates, for the first time, that SKL is essential to the maintenance of normal proliferation and differentiation in ADSCs. Klotho regulates adipogenic differentiation in ADSCs, likely via inhibition of TGFβ1 and activation of PPAR-γ. Stem Cells 2016;34:1615-1625. PMID:26865060

  13. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Winkler, Johannes; Wagh, Vilas; Hescheler, Jürgen; Kolde, Raivo; Vilo, Jaak; Schulz, Herbert; Sachinidis, Agapios

    2012-09-01

    Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.

  14. Identification of differentially expressed genes in hypothalamus of chicken during cold stress.

    PubMed

    Chen, X Y; Li, R; Wang, M; Geng, Z Y

    2014-01-01

    In order to discover the mechanism of cold stress and identify differentially expressed genes in hypothalamus during cold stress, 4 weeks of age Huainan partridge chickens, Chinese indigenous breed, were chosen for 24 h cold stress and then hypothalamus were isolated and labeled by reverse transcription reaction for cDNA. Labeled cDNA were hybridized with cDNA microarray. After scanning and image processing, the different gene expression profiling of hypothalamus and normal control was investigated. The differentially expressed genes included 334 down-regulated genes and 543 up-regulated genes. In these differentially regulated genes, myosin heavy chain polypeptide 11 (MYH11), light chain polypeptide 9 (MYL9) and tenascin-Y (TNXB), etc., which involved in muscle activity were significantly down-regulated. Genes like cholecystokinin (CCK), neuropeptide Y (NPY), neuropeptide Y receptor 5 (NPY5R), hypocretin receptor 2 (HCRTR2) and hypocretin neuropeptide precursor (HCRT) which responsible for regulation of feeding behavior were significantly up-regulated. In addition, genes responsible for lipid synthesis, like apolipoprotein (APOB) and agouti related protein homolog (AGRP), were also up-regulated. Through pathway analysis using the Kyoto Encyclopedia of Gene and Genomics, during 24 h cold stress, the neuroactive ligand-receptor interaction was firstly initiated in chickens for stimulation of central nervus for feed intake. Adipocytokine signaling pathway was in high activation for supplementation of body energy. Jak-STAT, Ca(2+) signaling pathway and other biological reactions were also initiated in response to cold stress. The biological pathways participated in cold stress would provide important information for clarify the mechanism of cold stress and the differentially expressed genes would give much help for screening of candidate genes in breeding of cold stress resistant lines.

  15. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes.

    PubMed

    Pan, Hongmiao; Xu, Joshua; Kweon, Oh-Gew; Zou, Wen; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E; Chen, Huizhong

    2015-05-01

    We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes.

  16. Transcriptome Analysis of Differentially Expressed Genes Relevant to Variegation in Peach Flowers

    PubMed Central

    Yu, Faxin; Li, Shuxian; Yin, Tongming

    2014-01-01

    Background Variegation in flower color is commonly observed in many plant species and also occurs on ornamental peaches (Prunus persica f. versicolor [Sieb.] Voss). Variegated plants are highly valuable in the floricultural market. To gain a global perspective on genes differentially expressed in variegated peach flowers, we performed large-scale transcriptome sequencing of white and red petals separately collected from a variegated peach tree. Results A total of 1,556,597 high-quality reads were obtained, with an average read length of 445 bp. The ESTs were assembled into 16,530 contigs and 42,050 singletons. The resulting unigenes covered about 60% of total predicted genes in the peach genome. These unigenes were further subjected to functional annotation and biochemical pathway analysis. Digital expression analysis identified a total of 514 genes differentially expressed between red and white flower petals. Since peach flower coloration is determined by the expression and regulation of structural genes relevant to flavonoid biosynthesis, a detailed examination detected four key structural genes, including C4H, CHS, CHI and F3H, expressed at a significantly higher level in red than in white petal. Except for the structural genes, we also detected 11 differentially expressed regulatory genes relating to flavonoid biosynthesis. Using the differentially expressed structural genes as the test objects, we validated the digital expression results by using quantitative real-time PCR, and the differential expression of C4H, CHS and F3H were confirmed. Conclusion In this study, we generated a large EST collection from flower petals of a variegated peach. By digital expression analysis, we identified an informative list of candidate genes associated with variegation in peach flowers, which offered a unique opportunity to uncover the genetic mechanisms underlying flower color variegation. PMID:24603808

  17. Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis.

    PubMed

    Shimizu, Motoki; Fujimoto, Ryo; Ying, Hua; Pu, Zi-jing; Ebe, Yusuke; Kawanabe, Takahiro; Saeki, Natsumi; Taylor, Jennifer M; Kaji, Makoto; Dennis, Elizabeth S; Okazaki, Keiichi

    2014-06-01

    Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.

  18. Tescalcin is an essential factor in megakaryocytic differentiation associated with Ets family gene expression.

    PubMed

    Levay, Konstantin; Slepak, Vladlen Z

    2007-09-01

    We show here that the process of megakaryocytic differentiation requires the presence of the recently discovered protein tescalcin. Tescalcin is dramatically upregulated during the differentiation and maturation of primary megakaryocytes or upon PMA-induced differentiation of K562 cells. This upregulation requires sustained signaling through the ERK pathway. Overexpression of tescalcin in K562 cells initiates events of spontaneous megakaryocytic differentiation, such as expression of specific cell surface antigens, inhibition of cell proliferation, and polyploidization. Conversely, knockdown of this protein in primary CD34+ hematopoietic progenitors and cell lines by RNA interference suppresses megakaryocytic differentiation. In cells lacking tescalcin, the expression of Fli-1, Ets-1, and Ets-2 transcription factors, but not GATA-1 or MafB, is blocked. Thus, tescalcin is essential for the coupling of ERK cascade activation with the expression of Ets family genes in megakaryocytic differentiation.

  19. Population differences in olfaction accompany host shift in Drosophila mojavensis.

    PubMed

    Crowley-Gall, Amber; Date, Priya; Han, Clair; Rhodes, Nicole; Andolfatto, Peter; Layne, John E; Rollmann, Stephanie M

    2016-08-31

    Evolutionary shifts in plant-herbivore interactions provide a model for understanding the link among the evolution of behaviour, ecological specialization and incipient speciation. Drosophila mojavensis uses different host cacti across its range, and volatile chemicals emitted by the host are the primary cue for host plant identification. In this study, we show that changes in host plant use between distinct D. mojavensis populations are accompanied by changes in the olfactory system. Specifically, we observe differences in olfactory receptor neuron specificity and sensitivity, as well as changes in sensillar subtype abundance, between populations. Additionally, RNA-seq analyses reveal differential gene expression between populations for members of the odorant receptor gene family. Hence, alterations in host preference are associated with changes in development, regulation and function at the olfactory periphery. PMID:27581882

  20. Identification of differentially expressed genes in uveal melanoma using suppressive subtractive hybridization

    PubMed Central

    Landreville, Solange; Lupien, Caroline B.; Vigneault, Francois; Gaudreault, Manon; Mathieu, Mélissa; Rousseau, Alain P.; Guérin, Sylvain L.

    2011-01-01

    Purpose Uveal melanoma (UM) is the most common primary cancer of the eye, resulting not only in vision loss, but also in metastatic death. This study attempts to identify changes in the patterns of gene expression that lead to malignant transformation and proliferation of normal uveal melanocytes (UVM) using the Suppressive Subtractive Hybridization (SSH) technique. Methods The SSH technique was used to isolate genes that are differentially expressed in the TP31 cell line derived from a primary UM compared to UVM. The expression level of selected genes was further validated by microarray, semi-quantitative RT–PCR and western blot analyses. Results Analysis of the subtracted libraries revealed that 37 and 36 genes were, respectively, up- and downregulated in TP31 cells compared to UVM. Differential expression of the majority of these genes was confirmed by comparing UM cells with UVM by microarray. The expression pattern of selected genes was analyzed by semi-quantitative RT–PCR and western blot, and was found to be consistent with the SSH findings. Conclusions We demonstrated that the SSH technique is efficient to detect differentially expressed genes in UM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor. PMID:21647268

  1. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    PubMed

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. PMID:26952251

  2. Identification of Differentially Expressed Genes in the Pheromone Glands of Mated and Virgin Bombyx mori by Digital Gene Expression Profiling

    PubMed Central

    Zhu, Bin; Yin, Xinming; Du, Mengfang; Song, Qisheng; An, Shiheng

    2014-01-01

    Background Mating decreases female receptivity and terminates sex pheromone production in moths. Although significant progress has been made in elucidating the mating-regulated inactivation of pheromone biosynthesis-activating neuropeptide (PBAN) secretion, little is known about the mating induced gene expression profiles in pheromone glands (PGs). In this study, the associated genes involved in Bombyx mori mating were identified through digital gene expression (DGE) profiling and subsequent RNA interference (RNAi) to elucidate the molecular mechanisms underlying the mating-regulated gene expression in PGs. Results Eight DGE libraries were constructed from the PGs of mated and virgin females: 1 h mating (M1)/virgin (V1) PGs, 3 h mating (M3)/virgin (V3) PGs, 24 h mating (M24)/virgin (V24) PGs and 48 h mating (M48)/virgin (V48) PGs (M48 and V48). These libraries were used to investigate the gene expression profiles affected by mating. DGE profiling revealed a series of genes showing differential expression in each set of mated and virgin female samples, including immune-associated genes, sex pheromone synthesis-associated genes, juvenile hormone (JH) signal-associated genes, etc. Most interestingly, JH signal was found to be activated by mating. Application of the JH mimics, methoprene to the newly-emerged virgin females leaded to the significant reduction of sex pheromone production. RNAi-mediated knockdown of putative JH receptor gene, Methoprene tolerant 1 (Met1), in female pupa resulted in a significant decrease in sex pheromone production in mature females, suggesting the importance of JH in sex pheromone synthesis. Conclusion A series of differentially expressed genes in PGs in response to mating was identified. This study improves our understanding of the role of JH signaling on the mating-elicited termination of sex pheromone production. PMID:25330197

  3. Differential expression of three labial genes during earthworm head regeneration.

    PubMed

    Cho, Sung-Jin; Koh, Ki Seok; Lee, Eun; Park, Soon Cheol

    2009-12-01

    The earthworm provides an excellent model for investigating regeneration. Here we report the full-length cloning of three labial genes (Pex-lab01, Pex-lab02, and Pex-lab03) in the earthworm Perionyx excavatus. To analyze their expression pattern during head and tail regeneration, we used the reverse transcription-polymerase chain reaction. Our results indicate that the three labial genes were expressed only in the head-regenerating tissues. Also, we found that the expression of Pex-lab01 and Pex-lab02 is up-regulated, and this indicates their involvement in wound healing and the blastema formation processes during early head regeneration. PMID:19966495

  4. Prediction of disease-gene-drug relationships following a differential network analysis.

    PubMed

    Zickenrott, S; Angarica, V E; Upadhyaya, B B; del Sol, A

    2016-01-01

    Great efforts are being devoted to get a deeper understanding of disease-related dysregulations, which is central for introducing novel and more effective therapeutics in the clinics. However, most human diseases are highly multifactorial at the molecular level, involving dysregulation of multiple genes and interactions in gene regulatory networks. This issue hinders the elucidation of disease mechanism, including the identification of disease-causing genes and regulatory interactions. Most of current network-based approaches for the study of disease mechanisms do not take into account significant differences in gene regulatory network topology between healthy and disease phenotypes. Moreover, these approaches are not able to efficiently guide database search for connections between drugs, genes and diseases. We propose a differential network-based methodology for identifying candidate target genes and chemical compounds for reverting disease phenotypes. Our method relies on transcriptomics data to reconstruct gene regulatory networks corresponding to healthy and disease states separately. Further, it identifies candidate genes essential for triggering the reversion of the disease phenotype based on network stability determinants underlying differential gene expression. In addition, our method selects and ranks chemical compounds targeting these genes, which could be used as therapeutic interventions for complex diseases.

  5. Dose-dependent differential effects of risedronate on gene expression in osteoblasts.

    PubMed

    Wang, J; Stern, P H

    2011-04-15

    Bisphosphonates have multiple effects on bone. Their actions on osteoclasts lead to inhibition of bone resorption, at least partially through apoptosis. Effects on osteoblasts vary, with modifications in the molecule and concentration both resulting in qualitatively different responses. To understand the mechanism of the differential effects of high and low bisphosphonate concentrations on osteoblast activity, we compared the effects of 10⁻⁸ M and 10⁻⁴ M risedronate on gene expression in UMR-106 rat osteoblastic cells. Two targeted arrays, an 84-gene signaling array and an 84-gene osteogeneic array were used. Gene expression was measured at 1 and 24 h. Although some genes were regulated similarly by low and high concentrations of the drug, there was also differential regulation. At 1 h, 11 genes (1 signaling and 10 osteogenesis) were solely regulated by the low concentration, and 7 genes (3 signaling, 4 osteogenesis) were solely regulated by the high concentration. At 24 h, 8 genes (3 signaling, 5 osteogenesis) were solely regulated by the low concentration and 30 genes (16 signaling and 14 osteogenesis) were solely regulated by the high concentration. Interestingly, the low, but not the high concentration of risedronate transiently and selectively upregulated several genes associated with cell differentiation. A number of genes related to apoptosis were regulated, and could be involved in effects of bisphosphonates to promote osteoblast apoptosis. Also, observed gene changes associated with decreased angiogenesis and decreased metastasis could, if they occur in other cell types, provide a basis for the effectiveness of bisphosphonates in the prevention of cancer metastases.

  6. EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes

    PubMed Central

    Nabavi, Sheida; Schmolze, Daniel; Maitituoheti, Mayinuer; Malladi, Sadhika; Beck, Andrew H.

    2016-01-01

    Motivation: A major goal of biomedical research is to identify molecular features associated with a biological or clinical class of interest. Differential expression analysis has long been used for this purpose; however, conventional methods perform poorly when applied to data with high within class heterogeneity. Results: To address this challenge, we developed EMDomics, a new method that uses the Earth mover’s distance to measure the overall difference between the distributions of a gene’s expression in two classes of samples and uses permutations to obtain q-values for each gene. We applied EMDomics to the challenging problem of identifying genes associated with drug resistance in ovarian cancer. We also used simulated data to evaluate the performance of EMDomics, in terms of sensitivity and specificity for identifying differentially expressed gene in classes with high within class heterogeneity. In both the simulated and real biological data, EMDomics outperformed competing approaches for the identification of differentially expressed genes, and EMDomics was significantly more powerful than conventional methods for the identification of drug resistance-associated gene sets. EMDomics represents a new approach for the identification of genes differentially expressed between heterogeneous classes and has utility in a wide range of complex biomedical conditions in which sample classes show within class heterogeneity. Availability and implementation: The R package is available at http://www.bioconductor.org/packages/release/bioc/html/EMDomics.html Contact: abeck2@bidmc.harvard.edu Supplementary information: supplementary data are available at Bioinformatics online. PMID:26515818

  7. Fully Bayesian mixture model for differential gene expression: simulations and model checks.

    PubMed

    Lewin, Alex; Bochkina, Natalia; Richardson, Sylvia

    2007-01-01

    We present a Bayesian hierarchical model for detecting differentially expressed genes using a mixture prior on the parameters representing differential effects. We formulate an easily interpretable 3-component mixture to classify genes as over-expressed, under-expressed and non-differentially expressed, and model gene variances as exchangeable to allow for variability between genes. We show how the proportion of differentially expressed genes, and the mixture parameters, can be estimated in a fully Bayesian way, extending previous approaches where this proportion was fixed and empirically estimated. Good estimates of the false discovery rates are also obtained. Different parametric families for the mixture components can lead to quite different classifications of genes for a given data set. Using Affymetrix data from a knock out and wildtype mice experiment, we show how predictive model checks can be used to guide the choice between possible mixture priors. These checks show that extending the mixture model to allow extra variability around zero instead of the usual point mass null fits the data better. A software package for R is available.

  8. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. PMID:25058012

  9. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress.

  10. Age-related decrease in the proportion of germinal center B cells from mouse Peyer's patches is accompanied by an accumulation of somatic mutations in their immunoglobulin genes.

    PubMed

    González-Fernández, A; Gilmore, D; Milstein, C

    1994-11-01

    Somatic hypermutation of immunoglobulin genes and the generation of memory B cells seems to take place in germinal centers, which are chronically present in Peyer's patches. Age-associated changes in the germinal center B cell compartment of Peyer's patches and in the mutations of a kappa light chain transgene were analyzed in unimmunized mice. Somatic mutations accumulate in germinal center B cells slowly and continuously to reach an apparent plateau when the animals are around 5 months old. In contrast, the proportion of germinal center B cells reaches a maximum in very young mice (about 2 months old) and decreases progressively thereafter. These results suggest that the highly mutated B cells in older mice arise by the successive accumulation of mutations in memory cells. The data also show that the optimum time for the analysis of hypermutation of transgenes in Peyer's patches is when the mice are about 5 months old.

  11. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype.

    PubMed

    Branco, Ana F; Pereira, Susana P; Gonzalez, Susana; Gusev, Oleg; Rizvanov, Albert A; Oliveira, Paulo J

    2015-01-01

    H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays. PMID:26121149

  12. Dynamic and physical clustering of gene expression during epidermal barrier formation in differentiating keratinocytes.

    PubMed

    Taylor, Jennifer M; Street, Teresa L; Hao, Lizhong; Copley, Richard; Taylor, Martin S; Hayden, Patrick J; Stolper, Gina; Mott, Richard; Hein, Jotun; Moffatt, Miriam F; Cookson, William O C M

    2009-01-01

    The mammalian epidermis is a continually renewing structure that provides the interface between the organism and an innately hostile environment. The keratinocyte is its principal cell. Keratinocyte proteins form a physical epithelial barrier, protect against microbial damage, and prepare immune responses to danger. Epithelial immunity is disordered in many common diseases and disordered epithelial differentiation underlies many cancers. In order to identify the genes that mediate epithelial development we used a tissue model of the skin derived from primary human keratinocytes. We measured global gene expression in triplicate at five times over the ten days that the keratinocytes took to fully differentiate. We identified 1282 gene transcripts that significantly changed during differentiation (false discovery rate <0.01%). We robustly grouped these transcripts by K-means clustering into modules with distinct temporal expression patterns, shared regulatory motifs, and biological functions. We found a striking cluster of late expressed genes that form the structural and innate immune defences of the epithelial barrier. Gene Ontology analyses showed that undifferentiated keratinocytes were characterised by genes for motility and the adaptive immune response. We systematically identified calcium-binding genes, which may operate with the epidermal calcium gradient to control keratinocyte division during skin repair. The results provide multiple novel insights into keratinocyte biology, in particular providing a comprehensive list of known and previously unrecognised major components of the epidermal barrier. The findings provide a reference for subsequent understanding of how the barrier functions in health and disease. PMID:19888454

  13. Differential Gene Expression in the Laccase Gene Family from Basidiomycete I-62 (CECT 20197)

    PubMed Central

    Mansur, Mariana; Suárez, Teresa; González, Aldo E.

    1998-01-01

    A family of genes encoding laccases has recently been described for the basidiomycete I-62 (CECT 20197). Transcript levels of genes lcc1, lcc2, and lcc3 were analyzed under four different culture conditions to study their expression patterns. Two of the laccase genes were clearly inducible by veratryl alcohol: the lcc1 gene is inducible in early stages of growth, and the lcc2 gene is also inducible but only when the organism reaches the stationary phase. Transcript levels for the third gene, lcc3, were uninduced by veratryl alcohol and repressed by glucose. PMID:16349507

  14. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    SciTech Connect

    Robinson, Claire; Kolb, Andreas F.

    2009-02-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A {beta}-galactosidase reporter gene was inserted in place of the {beta}-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the {beta}-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal {beta}-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the {beta}-casein gene.

  15. Proof-reading signal accuracy of gene expression by binary differential display.

    PubMed

    Cho, Yong-jig; Meade, Jonathan D; Shester, Blake R; Walden, Jamie C; Guo, Zhen; Liang, Peng

    2010-08-01

    Differential display (DD) is commonly used for identifying differentially expressed genes. However, each cDNA species identified by DD must be verified so a "real difference" can be differentiated from false positives. Although Northern blot analysis is the gold standard it is labor intensive, time-consuming and requires a significant amount of RNA. To speed up and streamline the confirmation process, we developed a new strategy: binary differential display (BDD) based on the binding kinetics of the arbitrary primers in DD. After determining a cDNA sequence of interest from a DD screen, two more 13mer primers derived from the original arbitrary primer used can be designed to target a corresponding cDNA sequence of interest: one with perfect 5'-base matches and the other with additional mismatches at the 5'-base to the corresponding mRNA being confirmed. A separate reverse transcription and FDD are then performed with the same RNA samples being compared. BDD can quickly and accurately determine if a cDNA sequence identified by DD corresponds to a truly differentially expressed gene. In addition, the method is especially useful when more than one cDNA sequence was recovered from a DD band where the masking effect of false-positives can be clearly resolved. Given its simplicity and limited RNA sample required, BDD can be used as a general strategy for rapid confirmation of differentially expressed genes discovered by DD.

  16. Detection of differentially expressed genes and association with clinicopathological features in laryngeal squamous cell carcinoma.

    PubMed

    Ni, Rong Sheng; Shen, Xiaohui; Qian, Xiaoyun; Yu, Chenjie; Wu, Haiyan; Gao, Xia

    2012-12-01

    Head and neck cancer is a significant health problem worldwide. Early detection and prediction of prognosis will improve patient survival and quality of life. The aim of this study was to identify genes differentially expressed between laryngeal cancer and the corresponding normal tissues as potential biomarkers. A total of 36 patients with laryngeal squamous cell carcinoma were recruited. Four of these cases were randomly selected for cDNA microarray analysis of the entire genome. Using semi-quantitative RT-PCR and western blot analysis, the differential expression of genes and their protein products, respectively, between laryngeal cancer tissues and corresponding adjacent normal tissues was verified in the remaining 32 cases. The expression levels of these genes and proteins were investigated for associations with clinicopathological parameters taken from patient data. The cDNA microarray analysis identified 349 differentially expressed genes between tumor and normal tissues, 112 of which were upregulated and 237 were downregulated in tumors. Seven genes and their protein products were then selected for validation using RT-PCR and western blot analysis, respectively. The data demonstrated that the expression of SENP1, CD109, CKS2, LAMA3, ITGAV and ITGB8 was increased, while LAMA2 was downregulated in laryngeal cancer compared with the corresponding normal tissues. Associations between the expression of these genes and clinicopathological data from the patients were also established, including age, tumor classification, stage, differentiation and lymph node metastasis. Our current study provides the first evidence that these seven genes may be differentially expressed in laryngeal squamous cell carcinoma and also associated with clinicopathological data. Future study is required to further confirm whether detection of their expression can be used as biomarkers for prediction of patient survival or potential treatment targets. PMID:23226807

  17. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    PubMed

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  18. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    PubMed

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-01-01

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development. PMID:27194808

  19. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling

    PubMed Central

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-01-01

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development. PMID:27194808

  20. Expression of the HMGI(Y) gene products in human neuroblastic tumours correlates with differentiation status

    PubMed Central

    Giannini, G; Kim, C J; Marcotullio, L Di; Manfioletti, G; Cardinali, B; Cerignoli, F; Ristori, E; Zani, M; Frati, L; Screpanti, I; Gulino, A

    2000-01-01

    HMGI and HMGY are splicing variants of the HMGI(Y) gene and together with HMGI-C, belong to a family of DNA binding proteins involved in maintaining active chromatin conformation and in the regulation of gene transcription. The expression of the HMGI(Y) gene is maximal during embryonic development, declines in adult differentiated tissues and is reactivated in most transformed cells in vitro and in many human cancers in vivo. The HMGI(Y) genomic locus is frequently rearranged in mesenchymal tumours, suggesting a biological role for HMGI(Y) gene products in tumour biology. HMGIs are both target and modulators of retinoic acid activity. In fact, HMGI(Y) gene expression is differentially regulated by retinoic acid in retinoid-sensitive and -resistant neuroblastoma cells, while HMGI-C participates in conferring retinoic acid resistance in some neuroblastoma cells. In this paper we show that HMGI and HMGY isoforms are equally regulated by retinoic acid in neuroblastoma cell lines at both RNA and protein levels. More importantly our immunohistochemical analysis shows that, although HMGI(Y) is expressed in all neuroblastic tumours, consistently higher levels are observed in less differentiated neuroblastomas compared to more differentiated ganglioneuromas, indicating that HMGI(Y) expression should be evaluated as a potential diagnostic and prognostic marker in neuroblastic tumours. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11076660

  1. Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens

    PubMed Central

    Zhou, Xiaohong; Wang, Ke; Lv, Dongwen; Wu, Chengjun; Li, Jiarui; Zhao, Pei; Lin, Zhishan; Du, Lipu; Yan, Yueming; Ye, Xingguo

    2013-01-01

    Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops. PMID:24278131

  2. Jarid1b targets genes regulating development and is involved in neural differentiation

    PubMed Central

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina; Morey, Lluis; Johansen, Jens V; Bak, Mads; Tommerup, Niels; Abarrategui, Iratxe; Helin, Kristian

    2011-01-01

    H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation, Jarid1b-depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation. PMID:22020125

  3. RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes

    PubMed Central

    Jiang, Hongping; Kang, Dong-chul; Alexandre, Deborah; Fisher, Paul B.

    2000-01-01

    Human melanoma cells growth-arrest irreversibly and terminally differentiate on treatment with a combination of fibroblast interferon and the protein kinase C activator mezerein. This experimental protocol also results in a loss of tumorigenic potential and profound changes in gene expression. Various cloning and cDNA microarray strategies are being used to determine the complete spectrum of gene expression changes underlying these alterations in human melanoma cells. An efficient approach, Rapid Subtraction Hybridization (RaSH), has been developed that is permitting the identification of genes of potential relevance to cancer growth control and terminal cell differentiation. RaSH cDNA libraries are prepared from double-stranded cDNAs that are enzymatically digested into small fragments, ligated to adapters, and PCR amplified followed by incubation of tester and driver PCR fragments. This subtraction hybridization scheme is technically simple and results in the identification of a high proportion of differentially expressed sequences, including known genes and those not described in current DNA databases. The RaSH approach represents an efficient methodology for identifying and cloning genes displaying differential expression that associate with and potentially regulate complex biological processes. PMID:11058161

  4. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  5. Physical mapping of a functional cluster of epidermal differentiation genes on chromosome 1q21

    SciTech Connect

    Volz, A.; Ziegler, A.; Mischke, D. ); Korge, B.P.; Compton, J.G.; Steinert, P.M. )

    1993-10-01

    Genes of three protein families, which are in part specifically expressed in the course of terminal differentiation of human epidermis, have previously been mapped to chromosome 1q21. Here, the authors show that these genes are physically linked within 2.05 Mb of DNA. The order is calpactin I light chain, trichohyalin, profilaggrin, involucrin/small proline-rich protein, loricrin, and calcyclin. The colocalization in the 1q21 region together with their functional interdependence during epidermal differentiation raises the question whether these genes share regulatory elements which control their transcriptional activities. As several of them are potential candidate genes for dyskeratotic skin diseases, this physical map should be of great value for genetic linkage analyses. 55 refs., 3 figs., 1 tab.

  6. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung

  7. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease

    PubMed Central

    Moran, Corey S.; Schreurs, Charlotte; Lindeman, Jan H. N.; Walker, Philip J.; Nataatmadja, Maria; West, Malcolm; Holdt, Lesca M.; Hinterseher, Irene; Pilarsky, Christian; Golledge, Jonathan

    2015-01-01

    Abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) represent common causes of morbidity and mortality in elderly populations which were previously believed to have common aetiologies. The aim of this study was to assess the gene expression in human AAA and AOD. We performed microarrays using aortic specimen obtained from 20 patients with small AAAs (≤ 55mm), 29 patients with large AAAs (> 55mm), 9 AOD patients, and 10 control aortic specimens obtained from organ donors. Some differentially expressed genes were validated by quantitative-PCR (qRT-PCR)/immunohistochemistry. We identified 840 and 1,014 differentially expressed genes in small and large AAAs, respectively. Immune-related pathways including cytokine-cytokine receptor interaction and T-cell-receptor signalling were upregulated in both small and large AAAs. Examples of validated genes included CTLA4 (2.01-fold upregulated in small AAA, P = 0.002), NKTR (2.37-and 2.66-fold upregulated in small and large AAA with P = 0.041 and P = 0.015, respectively), and CD8A (2.57-fold upregulated in large AAA, P = 0.004). 1,765 differentially expressed genes were identified in AOD. Pathways upregulated in AOD included metabolic and oxidative phosphorylation categories. The UCP2 gene was downregulated in AOD (3.73-fold downregulated, validated P = 0.017). In conclusion, the AAA and AOD transcriptomes were very different suggesting that AAA and AOD have distinct pathogenic mechanisms. PMID:25944698

  8. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.).

    PubMed

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  9. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.)

    PubMed Central

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M.; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  10. Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca.

    PubMed

    Li, Xiaoying; Korir, Nicholas Kibet; Liu, Lili; Shangguan, Lingfei; Wang, Yuzhu; Han, Jian; Chen, Ming; Fang, Jinggui

    2012-11-15

    Microarray analysis is a technique that can be employed to provide expression profiles of single genes and new insights to elucidate the biological mechanisms responsible for fruit development. To evaluate expression of genes mostly engaged in fruit development between Prunus mume and Prunus armeniaca, we first identified differentially expressed transcripts along the entire fruit life cycle by using microarrays spotted with 10,641 ESTs collected from P. mume and other Prunus EST sequences. A total of 1418 ESTs were selected after quality control of microarray spots and analysis for differential gene expression patterns during fruit development of P. mume and P. Armeniaca. From these, 707 up-regulated and 711 down-regulated genes showing more than two-fold differences in expression level were annotated by GO based on biological processes, molecular functions and cellular components. These differentially expressed genes were found to be involved in several important pathways of carbohydrate, galactose, and starch and sucrose metabolism as well as in biosynthesis of other secondary metabolites via KEGG. This could provide detailed information on the fruit quality differences during development and ripening of these two species. With the results obtained, we provide a practical database for comprehensive understanding of molecular events during fruit development and also lay a theoretical foundation for the cloning of genes regulating in a series of important rate-limiting enzymes involved in vital metabolic pathways during fruit development.

  11. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.).

    PubMed

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M; Liu, Liwang

    2016-02-23

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish.

  12. Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display.

    PubMed

    Li, Xiang; Bi, Zhenghong; Di, Rong; Liang, Peng; He, Qiguang; Liu, Wenbo; Miao, Weiguo; Zheng, Fucong

    2016-01-01

    Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant-pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew. PMID:26840302

  13. Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display

    PubMed Central

    Li, Xiang; Bi, Zhenghong; Di, Rong; Liang, Peng; He, Qiguang; Liu, Wenbo; Miao, Weiguo; Zheng, Fucong

    2016-01-01

    Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew. PMID:26840302

  14. Gene expression analysis by a competitive and differential PCR with antisense competitors.

    PubMed

    de Kant, E; Rochlitz, C F; Herrmann, R

    1994-11-01

    We report a sensitive method for the reproducible and accurate measurement of gene expression from small samples of RNA. This method is based on a combination of two PCR techniques: First, an endogenous reporter gene and the gene of interest are simultaneously amplified in one tube after random-primed reverse transcription (RT) of RNA (differential RT-PCR). Second, exogenous homologous fragments of both genes with artificially introduced mutations are added and coamplified in the same reaction (competitive PCR). The first-strand cDNA, and the mutated antisense homologues of the reporter as well as the target gene compete for their respective primers and are therefore amplified with equal efficiencies. After PCR, restriction enzyme digestion allows visualization of the quantitative differences between the four resulting reaction products. The ratios of products that competed during PCR provide the quantitative information. The initial amount of a specific cDNA can be calculated from any competitor/cDNA ratio of reliably measurable PCR product amounts. Extensive competitor titration to experimentally approach the equilibrium is therefore unnecessary. The differential counterpart of competitive and differential RT-PCR (CD-RT-PCR) allows expression of the levels in reference to a reporter gene. MDR1 expression was determined in tumor cells by CD-RT-PCR.

  15. Differentially expressed genes identified by cross-species microarray in the blind cavefish Astyanax.

    PubMed

    Strickler, Allen G; Jeffery, William R

    2009-03-01

    Changes in gene expression were examined by microarray analysis during development of the eyed surface dwelling (surface fish) and blind cave-dwelling (cavefish) forms of the teleost Astyanax mexicanus De Filippi, 1853. The cross-species microarray used surface and cavefish RNA hybridized to a DNA chip prepared from a closely related species, the zebrafish Danio rerio Hamilton, 1822. We identified a total of 67 differentially expressed probe sets at three days post-fertilization: six upregulated and 61 downregulated in cavefish relative to surface fish. Many of these genes function either in eye development and/or maintenance, or in programmed cell death. The upregulated probe set showing the highest mean fold change was similar to the human ubiquitin specific protease 53 gene. The downregulated probe sets showing some of the highest fold changes corresponded to genes with roles in eye development, including those encoding gamma crystallins, the guanine nucleotide binding proteins Gnat1 and Gant2, a BarH-like homeodomain transcription factor, and rhodopsin. Downregulation of gamma-crystallin and rhodopsin was confirmed by in situ hybridization and immunostaining with specific antibodies. Additional downregulated genes encode molecules that inhibit or activate programmed cell death. The results suggest that cross-species microarray can be used for identifying differentially expressed genes in cavefish, that many of these genes might be involved in eye degeneration via apoptotic processes, and that more genes are downregulated than upregulated in cavefish, consistent with the predominance of morphological losses over gains during regressive evolution.

  16. Differential co-expression analysis of venous thromboembolism based on gene expression profile data

    PubMed Central

    MING, ZHIBING; DING, WENBIN; YUAN, RUIFAN; JIN, JIE; LI, XIAOQIANG

    2016-01-01

    The aim of the present study was to screen differentially co-expressed genes and the involved transcription factors (TFs) and microRNAs (miRNAs) in venous thromboembolism (VTE). Microarray data of GSE19151 were downloaded from Gene Expression Omnibus, including 70 patients with VTE and 63 healthy controls. Principal component analysis (PCA) was performed using R software. Differential co-expression analysis was performed using R, followed by screening of modules using Cytoscape. Functional annotation was performed using Database for Annotation, Visualization, and Integrated Discovery. Moreover, Fisher test was used to screen key TFs and miRNAs for the modules. PCA revealed the disease and healthy samples could not be distinguished at the gene expression level. A total of 4,796 upregulated differentially co-expressed genes (e.g. zinc finger protein 264, electron-transfer-flavoprotein, beta polypeptide and Janus kinase 2) and 3,629 downregulated differentially co-expressed genes (e.g. adenylate cyclase 7 and single-stranded DNA binding protein 2) were identified, which were further mined to obtain 17 and eight modules separately. Functional annotation revealed that the largest upregulated module was primarily associated with acetylation and the largest downregulated module was mainly involved in mitochondrion. Moreover, 48 TFs and 62 miRNA families were screened for the 17 upregulated modules, such as E2F transcription factor 4, miR-30 and miR-135 regulating the largest module. Conversely, 35 TFs and 18 miRNA families were identified for the 8 downregulated modules, including mitochondrial ribosomal protein S12 and miR-23 regulating the largest module. Differentially co-expressed genes regulated by TFs and miRNAs may jointly contribute to the abnormal acetylation and mitochondrion presentation in the progression of VTE. PMID:27284300

  17. Cooperative Stimulation of Megakaryocytic Differentiation by Gfi1b Gene Targets Kindlin3 and Talin1

    PubMed Central

    Singh, Divya; Upadhyay, Ghanshyam; Sengupta, Ananya; Biplob, Mohammed A.; Chakyayil, Shaleen; George, Tiji; Saleque, Shireen

    2016-01-01

    Understanding the production and differentiation of megakaryocytes from progenitors is crucial for realizing the biology and functions of these vital cells. Previous gene ablation studies demonstrated the essential role of the transcriptional repressor Gfi1b (growth factor independence 1b) in the generation of both erythroid and megakaryocytic cells. However, our recent work has demonstrated the down-regulation of this factor during megakaryocytic differentiation. In this study we identify two new gene targets of Gfi1b, the cytoskeletal proteins Kindlin3 and Talin1, and demonstrate the inverse expression and functions of these cytoskeletal targets relative to Gfi1b, during megakaryocytic differentiation. Both kindlin3 and talin1 promoters exhibit dose dependent Gfi1b and LSD1 (lysine specific demethylase 1; a Gfi1b cofactor) enrichment in megakaryocytes and repression in non-hematopoietic cells. Accordingly the expression of these genes is elevated in gfi1b mutant and LSD1 inhibited hematopoietic cells, while during megakaryocytic differentiation, declining Gfi1b levels fostered the reciprocal upregulation of these cytoskeletal factors. Concordantly, manipulation of Kindlin3 and Talin1 expression demonstrated positive correlation with megakaryocytic differentiation with over-expression stimulating, and inhibition diminishing, this process. Co-operativity between these factors and integrins in promoting differentiation was further underscored by physical interactions between them and integrinβ3/CD61 and by stimulation of differentiation by the Talin1 head domain, which is necessary and sufficient for integrin activation. Therefore this study demonstrates the significance of Gfi1b regulated Kindlin3-Talin1 expression in driving megakaryocytic differentiation and highlights the contribution of cytoskeletal agents in the developmental progression of these platelet progenitors. PMID:27768697

  18. Differential regulation of two period genes in the Xenopus eye.

    PubMed

    Zhuang, M; Wang, Y; Steenhard, B M; Besharse, J C

    2000-10-20

    The recent identification and analysis of mammalian homologues of the well characterized Drosophila circadian clock gene, Period (Per), has led to the idea that key features of vertebrate circadian rhythmicity are conserved at the molecular level. The Xenopus laevis retina contains a circadian clock mechanism that can be studied in vitro. To study the rhythmic expression of Per in the Xenopus retina, we used a degenerate RT-PCR strategy to obtain cDNA clones covering the entire 1427 amino acid coding region of a Xenopus homologue of Per2 and a partial cDNA sequence for a Xenopus homologue of Per1. Northern blot analysis shows that xPer1 and xPer2 transcripts are expressed most abundantly in the eye and the brain. However, rhythmic expression of xPer2 transcripts in the retina and retinal pigment epithelium (RPE) is light dependent and occurs only under 12 h light/12 h dark (LD) conditions, not in constant dark (DD). In contrast, xPer1 mRNA accumulation is rhythmic under both LD and DD conditions. Light dependent regulation of xPer2 mRNA and circadian regulation of xPer1 mRNA in the Xenopus retina differs from that in Drosophila and mammals. Light dependence of xPer2 mRNA levels and the offset phase relationship of the xPer2 rhythm to that for xPer1 suggests a role for xPer2 in circadian entrainment. PMID:11042357

  19. Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Shoue, Douglas A; Schulz, Robert A

    2012-01-01

    Hematopoiesis occurs in two phases in Drosophila, with the first completed during embryogenesis and the second accomplished during larval development. The lymph gland serves as the venue for the final hematopoietic program, with this larval tissue well-studied as to its cellular organization and genetic regulation. While the medullary zone contains stem-like hematopoietic progenitors, the posterior signaling center (PSC) functions as a niche microenvironment essential for controlling the decision between progenitor maintenance versus cellular differentiation. In this report, we utilize a PSC-specific GAL4 driver and UAS-gene RNAi strains, to selectively knockdown individual gene functions in PSC cells. We assessed the effect of abrogating the function of 820 genes as to their requirement for niche cell production and differentiation. 100 genes were shown to be essential for normal niche development, with various loci placed into sub-groups based on the functions of their encoded protein products and known genetic interactions. For members of three of these groups, we characterized loss- and gain-of-function phenotypes. Gene function knockdown of members of the BAP chromatin-remodeling complex resulted in niche cells that do not express the hedgehog (hh) gene and fail to differentiate filopodia believed important for Hh signaling from the niche to progenitors. Abrogating gene function of various members of the insulin-like growth factor and TOR signaling pathways resulted in anomalous PSC cell production, leading to a defective niche organization. Further analysis of the Pten, TSC1, and TSC2 tumor suppressor genes demonstrated their loss-of-function condition resulted in severely altered blood cell homeostasis, including the abundant production of lamellocytes, specialized hemocytes involved in innate immune responses. Together, this cell-specific RNAi knockdown survey and mutant phenotype analyses identified multiple genes and their regulatory networks required for

  20. Differential Gene Expression in GPR40-Overexpressing Pancreatic β-cells Treated with Linoleic Acid

    PubMed Central

    Kim, In-Su; Yang, So-Young; Han, Joo-Hui; Jung, Sang-Hyuk; Park, Hyun-Soo

    2015-01-01

    "G protein-coupled receptor 40" (GPR40), a receptor for long-chain fatty acids, mediates the stimulation of glucose-induced insulin secretion. We examined the profiles of differential gene expression in GPR40-activated cells treated with linoleic acid, and finally predicted the integral pathways of the cellular mechanism of GPR40-mediated insulinotropic effects. After constructing a GPR40-overexpressing stable cell line (RIN-40) from the rat pancreatic β-cell line RIN-5f, we determined the gene expression profiles of RIN-5f and RIN-40. In total, 1004 genes, the expression of which was altered at least twofold, were selected in RIN-5f versus RIN-40. Moreover, the differential genetic profiles were investigated in RIN-40 cells treated with 30 µM linoleic acid, which resulted in selection of 93 genes in RIN-40 versus RIN-40 treated with linoleic acid. Based on the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/), sets of genes induced differentially by treatment with linoleic acid in RIN-40 cells were found to be related to mitogen-activated protein (MAP) kinase- and neuroactive ligand-receptor interaction pathways. A gene ontology (GO) study revealed that more than 30% of the genes were associated with signal transduction and cell proliferation. Thus, this study elucidated a gene expression pattern relevant to the signal pathways that are regulated by GPR40 activation during the acute period. Together, these findings increase our mechanistic understanding of endogenous molecules associated with GPR40 function, and provide information useful for identification of a target for the management of type 2 diabetes mellitus. PMID:25729276

  1. Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure.

    PubMed

    Ojo, Joseph O; Abdullah, Laila; Evans, James; Reed, Jon Mike; Montague, Hannah; Mullan, Michael J; Crawford, Fiona C

    2014-04-01

    Gulf War illness (GWI) is a currently untreatable multi-symptom disorder experienced by 1990-1991 Persian Gulf War (GW) veterans. The characteristic hallmarks of GWI include cognitive dysfunction, tremors, migraine, and psychological disturbances such as depression and anxiety. Meta-analyses of epidemiological studies have consistently linked these symptomatic profiles to the combined exposure of GW agents such as organophosphate-based and pyrethroid-based pesticides (e.g. chlorpyrifos (CPF) and permethrin (PER) respectively) and the prophylactic use of pyridostigmine bromide (PB) as a treatment against neurotoxins. Due to the multi-symptomatic presentation of this illness and the lack of available autopsy tissue from GWI patients, very little is currently known about the distinct early pathological profile implicated in GWI (including its influence on synaptic function and aspects of neurogenesis). In this study, we used preclinical models of GW agent exposure to investigate whether 6-month-old mice exposed to CPF alone, or a combined dose of CPF, PB and PER daily for 10 days, demonstrate any notable pathological changes in hippocampal, cortical (motor, piriform) or amygdalar morphometry. We report that at an acute post-exposure time point (after 3 days), both exposures resulted in the impairment of synaptic integrity (reducing synaptophysin levels) in the CA3 hippocampal region and altered neuronal differentiation in the dentate gyrus (DG), demonstrated by a significant reduction in doublecortin positive cells. Both exposures also significantly increased astrocytic GFAP immunoreactivity in the piriform cortex, motor cortex and the basolateral amygdala and this was accompanied by an increase in (basal) brain acetylcholine (ACh) levels. There was no evidence of microglial activation or structural deterioration of principal neurons in these regions following exposure to CPF alone or in combination with PB and PER. Evidence of subtle microvascular injury was

  2. Irx7, a Smarca4-regulated gene for retinal differentiation, regulates other genes controlled by Smarca4 in zebrafish retinas.

    PubMed

    Zhang, Yuqing; Bonilla, Sylvia; Chong, Leelyn; Leung, Yuk Fai

    2013-01-01

    The iroquois 7 (irx7) in zebrafish encodes a homeodomain transcription factor (TF) in the retinal differentiation network regulated by smarca4, a component of chromatin remodeling complex. The function of Irx7 on retinal development has recently been revealed by antisense morpholino knockdown experiments. In particular, the normal expression of irx7 in the inner nuclear layer (INL) is essential for the differentiation of cells in the INL and the outer nuclear layer (ONL), as well as the dendritic projection of GCs into the inner plexiform layer (IPL). Irx7 also exerts its effect on retinal differentiation through activating the expression of TFs that specify various retinal cell types. However, the relationship between irx7 and the other Smarca4-regulated genes for retinal differentiation was not clear. This study reports an investigation of the regulatory role of irx7 on 13 genes including aanat2, barhl2, bhlhe22, cdh11, ckmt1, gnat1, irx4a, ndrg1a, nme2l, pbx1a, rcv1, robo2 and tfap2a. These genes were originally used in a study that characterized the cellular expression pattern of Smarca4-regulated genes and had a diverse expression pattern in the retina. Their expression in the normal wild-type (WT), Irx7-knockdown and the injection control embryos was characterized by in situ hybridization at 52h post-fertilization (hpf). This is the stage when irx7's expression level is the highest in the developing retinas. The results indicate that the expression of 11 of the 13 genes was reduced and one was overexpressed in the Irx7-knockdown retinas. Consistent with a previous report, one of these 13 genes was not expressed in the retina. Among the 12 Irx7-regulated genes, 11 had an expression change in the Irx7-knockdown retinas similar to that in the smarca4 retinas, indicating that Smarca4 regulates the expression of these 11 genes at least in part through irx7. Interestingly, bhlhe22 was only over-expressed in the Irx7-knockdown but not the smarca4 retinas. These

  3. Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Ignatius Irudayam, Joseph; Contreras, Deisy; Spurka, Lindsay; Ren, Songyang; Kanagavel, Vidhya; Ramaiah, Arunachalam; Annamalai, Alagappan; French, Samuel W; Klein, Andrew S; Funari, Vincent; Arumugaswami, Vaithilingaraja

    2015-12-01

    Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs) to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells (day 21) were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21) had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins. Furthermore, hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3, 16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors, CXCR4 and CXCR7, than that of hepatic cells. Sirtuin family of genes involved in aging, inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF) family as well as downstream signaling factors TRAF2, TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed during hepatic differentiation. PMID:26702414

  4. Mutation of the TBCE gene causes disturbance of microtubules in the auditory nerve and cochlear outer hair cell degeneration accompanied by progressive hearing loss in the pmn/pmn mouse.

    PubMed

    Rak, Kristen; Frenz, Silke; Radeloff, Andreas; Groh, Janos; Jablonka, Sibylle; Martini, Rudolf; Hagen, Rudolf; Mlynski, Robert

    2013-12-01

    The progressive motor neuronopathy (pmn/pmn) mouse, an animal model for a fast developing human motor neuron disorder, is additionally characterized by simultaneous progressive sensorineural hearing loss. The gene defect in the pmn/pmn mouse is localized to a missense mutation in the tubulin-specific chaperone E (TBCE) gene on mouse chromosome 13, which is one of the five tubulin-specific chaperons involved in tubulin folding and dimerization. The missense mutation leads to a disturbance of tubulin structures in the auditory nerve and a progressive outer hair cell loss due to apoptosis, which is accompanied by highly elevated ABR-thresholds and loss of DPOAEs. In addition the TBCE protein is selectively expressed in the outer hair cells and the transcellular processes of the inner pillar cells in the cochlea of control and pmn/pmn mouse. We conclude from our study that the mutation of the TBCE gene affects the auditory nerve and the cochlear hair cells simultaneously, leading to progressive hearing loss. This animal model will give the chance to test possible therapeutic strategies in special forms of hearing loss, in which the auditory nerve and the cochlear hair cells are simultaneously affected. PMID:24120439

  5. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    PubMed

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  6. Differentiation of AFS cells derived from the EGFP gene transgenic porcine fetuses.

    PubMed

    Zheng, Yue-Mao; Dang, Yong-Hui; Xu, Yong-Ping; Sai, Wu-Jia-Fu; An, Zhi-Xing

    2011-08-01

    We have obtained the EGFP (enhanced green fluorescence protein) gene transgenic porcine fetuses before. The aims of this study were (i) to determine whether stem cells could be isolated from amniotic fluid of the transgenic porcine fetuses, and (ii) to determine if these stem cells could express EGFP and differentiate in vitro. The results demonstrated that stem cells could be isolated from amniotic fluid of the EGFP gene transgenic porcine fetuses and could express EGFP and differentiate in vitro. Undifferentiated AFSs (amniotic fluid-derived stem cells) expressed POU5F1, THY1 and SOX2, while the following differentiation cells expressed markers for chondrogenic (COL2A1), osteogenic (osteocalcin and osteonectin) and neurogenic cells such as astrocyte (GFAP), oligodendrocyte (GALC) and neuron (NF, ENO2 and MAP).

  7. Variable exon usage of differentially-expressed genes associated with resistance of sheep to Teladorsagia circumcincta.

    PubMed

    Wilkie, Hazel; Xu, Siyang; Gossner, Anton; Hopkins, John

    2015-09-15

    The resistance and susceptibility of sheep to the common abomasal nematode parasite, Teladorsagia circumcincta is strongly associated with the differential polarization of the immune response. Resistant animals control larval colonization by the production of a protective antibody response regulated by Th2 T cells. Susceptible sheep respond to infection by developing an inflammatory Th1/Th17 response that fails to control infection. Previous microarray analysis identified genes associated with T cell polarization that were differentially expressed between the resistant and susceptible sheep. RT-qPCR confirmed the microarray data for ALOX15 and IL13. Both ALOX15 exon 9 and IL13 exon 4 were significantly increased in resistant animals and copy number RT-qPCR showed that expression levels of these exons were significantly negatively correlated with quantitative phenotypic traits, including abomasal worm counts and faecal egg counts. Sequencing of the intronic regions 5' to these genes failed to identify any potential genetic links to differential exon usage.

  8. KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas

    PubMed Central

    Roost, Matthias S.; van Iperen, Liesbeth; Ariyurek, Yavuz; Buermans, Henk P.; Arindrarto, Wibowo; Devalla, Harsha D.; Passier, Robert; Mummery, Christine L.; Carlotti, Françoise; de Koning, Eelco J.P.; van Zwet, Erik W.; Goeman, Jelle J.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Summary Differentiated derivatives of human pluripotent stem cells in culture are generally phenotypically immature compared to their adult counterparts. Their identity is often difficult to determine with certainty because little is known about their human fetal equivalents in vivo. Cellular identity and signaling pathways directing differentiation are usually determined by extrapolating information from either human adult tissue or model organisms, assuming conservation with humans. To resolve this, we generated a collection of human fetal transcriptional profiles at different developmental stages. Moreover, we developed an algorithm, KeyGenes, which uses this dataset to quantify the extent to which next-generation sequencing or microarray data resemble specific cell or tissue types in the human fetus. Using KeyGenes combined with the human fetal atlas, we identified multiple cell and tissue samples unambiguously on a limited set of features. We thus provide a flexible and expandable platform to monitor and evaluate the efficiency of differentiation in vitro. PMID:26028532

  9. p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes

    PubMed Central

    Haines, Jeffery D.; Fulton, Debra L.; Richard, Stephane; Almazan, Guillermina

    2015-01-01

    We have previously shown that p38 mitogen-activated protein kinase (p38 MAPK) is important for oligodendrocyte (OLG) differentiation and myelination. However, the precise cellular mechanisms by which p38 regulates OLG differentiation remain largely unknown. To determine whether p38 functions in part through transcriptional events in regulating OLG identity, we performed microarray analysis on differentiating oligodendrocyte progenitors (OLPs) treated with a p38 inhibitor. Consistent with a role in OLG differentiation, pharmacological inhibition of p38 down-regulated the transcription of genes that are involved in myelin biogenesis, transcriptional control and cell cycle. Proliferation assays showed that OLPs treated with the p38 inhibitor retained a proliferative capacity which could be induced upon application of mitogens demonstrating that after two days of p38-inhibition OLGs remained poised to continue mitosis. Together, our results suggest that the p38 pathway regulates gene transcription which can coordinate OLG differentiation. Our microarray dataset will provide a useful resource for future studies investigating the molecular mechanisms by which p38 regulates oligodendrocyte differentiation and myelination. PMID:26714323

  10. Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells.

    PubMed Central

    Olah, E; Natsumeda, Y; Ikegami, T; Kote, Z; Horanyi, M; Szelenyi, J; Paulik, E; Kremmer, T; Hollan, S R; Sugar, J

    1988-01-01

    Tiazofurin (2-beta-D-ribofuranosyl-4-thiazole-carboxamide; NSC 286193), an antitumor carbon-linked nucleoside that inhibits IMP dehydrogenase (IMP:NAD+ oxidoreductase; EC 1.1.1.205) and depletes guanylate levels, can activate the erythroid differentiation program of K-562 human leukemia cells. Tiazofurin-mediated cell differentiation is a multistep process. The inducer initiates early (less than 6 hr) metabolic changes that precede commitment to differentiation; among these early changes are decreases in IMP dehydrogenase activity and in GTP concentration, as well as alterations in the expression of certain protooncogenes (c-Ki-ras). K-562 cells do express commitment-i.e., cells exhibit differentiation without tiazofurin. Guanosine was effective in preventing the action of tiazofurin, thus providing evidence that the guanine nucleotides are critically involved in tiazofurin-initiated differentiation. Activation of transcription of the erythroid-specific gene that encodes A gamma-globin is a late (48 hr) but striking effect of tiazofurin. Down-regulation of the c-ras gene appears to be part of the complex process associated with tiazofurin-induced erythroid differentiation and relates to the perturbations of GTP metabolism. Images PMID:2901100

  11. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  12. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    SciTech Connect

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-04-25

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-kappaB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1beta, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-kappaB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  13. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice.

    PubMed

    Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-15

    The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.

  14. Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: changes after pinealectomy.

    PubMed

    Coelho, L A; Peres, R; Amaral, F G; Reiter, R J; Cipolla-Neto, J

    2015-05-01

    This study investigated the maturational stage (immature and mature ovaries) differences of mRNA expression of melatonin-forming enzymes (Aanat and Asmt), melatonin membrane receptors (Mt1 and Mt2) and putative nuclear (Rorα) receptors, and clock genes (Clock, Bmal1, Per1, Per2, Cry1, Cry2) in cumulus-oocyte complexes (COC) from weaning Wistar rats. We also examined the effects of pinealectomy and of melatonin pharmacological replacement on the daily expression of these genes in COC. qRT-PCR analysis revealed that in oocytes, the mRNA expression of Asmt, Mt2, Clock, Bmal1, Per2, and Cry1 were higher (P < 0.05) in immature ovaries than in the mature ones. In cumulus cells, the same pattern of mRNA expression for Asmt, Aanat, Rorα, Clock, Per1, Cry1, and Cry2 genes was observed. In oocytes, pinealectomy altered the daily mRNA expression profiles of Asmt, Mt1, Mt2, Clock, Per1, Cry1, and Cry2 genes. In cumulus cells, removal of the pineal altered the mRNA expression profiles of Mt1, Mt2, Rorα, Aanat, Asmt, Clock, Bmal1, Per2, Cry1, and Cry2 genes. Melatonin treatment partially or completely re-established the daily mRNA expression profiles of most genes studied. The mRNA expression of melatonin-related genes and clock genes in rat COC varies with the maturational stage of the meiotic cellular cycle in addition to the hour of the day. This suggests that melatonin might act differentially in accordance with the maturational stage of cumulus/oocyte complex. In addition, it seems that circulating pineal melatonin is very important in the design of the daily profile of mRNA expression of COC clock genes and genes related to melatonin synthesis and action.

  15. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): Novel gene therapeutic for metastatic melanoma

    SciTech Connect

    Fisher, Paul B. Sarkar, Devanand; Lebedeva, Irina V.; Emdad, Luni; Gupta, Pankaj; Sauane, Moira; Su Zaozhong; Grant, Steven; Dent, Paul; Curiel, David T.; Senzer, Neil; Nemunaitis, John

    2007-11-01

    A potentially less toxic approach for cancer therapy comprises induction of tumor cells to lose growth potential irreversibly and terminally differentiate. Combining this scheme termed 'differentiation therapy of cancer' with subtraction hybridization to human melanoma cells resulted in the cloning of melanoma differentiation associated (mda) genes displaying elevated expression as a consequence of induction of terminal differentiation. One originally novel gene, mda-7, was found to display elevated expression in normal melanocytes and nevi with progressive loss of expression as a consequence of melanoma development and progression to metastasis. Based on structure, biochemical properties and chromosomal location, mda-7 has now been reclassified as interleukin (IL)-24, a member of the expanding IL-10 family of cytokines. In vitro cell culture and in vivo animal studies indicate that mda-7/IL-24 selectively induces programmed cell death (apoptosis) in multiple human cancers (including melanomas), without harming normal cells, and promotes profound anti-tumor activity in nude mice containing human tumor xenografts. Based on these remarkable properties, a Phase I clinical trial was conducted to test the safety of administration of mda-7/IL-24 by a replication incompetent adenovirus (Ad.mda-7; INGN 241) in patients with advanced solid cancers including melanoma. mda-7/IL-24 was found to be safe and to promote significant clinical activity, particularly in the context of patients with metastatic melanoma. These results provide an impetus for further clinical studies and document a central paradigm of cancer therapy, namely translation of basic science from the 'bench to the bedside.'.

  16. Differentiation in neutral genes and a candidate gene in the pied flycatcher: using biological archives to track global climate change

    PubMed Central

    Kuhn, Kerstin; Schwenk, Klaus; Both, Christiaan; Canal, David; Johansson, Ulf S; van der Mije, Steven; Töpfer, Till; Päckert, Martin

    2013-01-01

    Global climate change is one of the major driving forces for adaptive shifts in migration and breeding phenology and possibly impacts demographic changes if a species fails to adapt sufficiently. In Western Europe, pied flycatchers (Ficedula hypoleuca) have insufficiently adapted their breeding phenology to the ongoing advance of food peaks within their breeding area and consequently suffered local population declines. We address the question whether this population decline led to a loss of genetic variation, using two neutral marker sets (mitochondrial control region and microsatellites), and one potentially selectively non-neutral marker (avian Clock gene). We report temporal changes in genetic diversity in extant populations and biological archives over more than a century, using samples from sites differing in the extent of climate change. Comparing genetic differentiation over this period revealed that only the recent Dutch population, which underwent population declines, showed slightly lower genetic variation than the historic Dutch population. As that loss of variation was only moderate and not observed in all markers, current gene flow across Western and Central European populations might have compensated local loss of variation over the last decades. A comparison of genetic differentiation in neutral loci versus the Clock gene locus provided evidence for stabilizing selection. Furthermore, in all genetic markers, we found a greater genetic differentiation in space than in time. This pattern suggests that local adaptation or historic processes might have a stronger effect on the population structure and genetic variation in the pied flycatcher than recent global climate changes. PMID:24363905

  17. Genome-wide assessment of differential effector gene use in embryogenesis.

    PubMed

    Barsi, Julius C; Tu, Qiang; Calestani, Cristina; Davidson, Eric H

    2015-11-15

    Six different populations of cells were isolated by fluorescence-activated cell sorting from disaggregated late blastula- and gastrula-stage sea urchin embryos according to the regulatory states expressed in these cells, as reported by recombineered bacterial artificial chromosomes producing fluorochromes. Transcriptomes recovered from these embryonic cell populations revealed striking, early differential expression of large cohorts of effector genes. The six cell populations were presumptive pigment cells, presumptive neurogenic cells, presumptive skeletogenic cells, cells from the stomodeal region of the oral ectoderm, ciliated band cells and cells from the endoderm/ectoderm boundary that will give rise both to hindgut and to border ectoderm. Transcriptome analysis revealed that each of these domains specifically expressed several hundred effector genes at significant levels. Annotation indicated the qualitative individuality of the functional nature of each cell population, even though they were isolated from embryos only 1-2 days old. In no case was more than a tiny fraction of the transcripts enriched in one population also enriched in any other of the six populations studied. As was particularly clear in the cases of the presumptive pigment, neurogenic and skeletogenic cells, all three of which represent precociously differentiating cell types of this embryo, most specifically expressed genes of given cell types are not significantly expressed at all in the other cell types. Thus, at the effector gene level, a dramatic, cell type-specific pattern of differential gene regulation is established well before any significant embryonic morphogenesis has occurred.

  18. A novel gene, msa1, inhibits sexual differentiation in Schizosaccharomyces pombe.

    PubMed Central

    Jeong, Hee Tae; Ozoe, Fumiyo; Tanaka, Katsunori; Nakagawa, Tsuyoshi; Matsuda, Hideyuki; Kawamukai, Makoto

    2004-01-01

    Sexual differentiation in the fission yeast Schizosaccharomyces pombe is triggered by nutrient starvation or by the presence of mating pheromones. We identified a novel gene, msa1, which encodes a 533-aa putative RNA-binding protein that inhibits sexual differentiation. Disruption of the msa1 gene caused cells to hypersporulate. Intracellular levels of msa1 RNA and Msa1 protein diminished after several hours of nitrogen starvation. Genetic analysis suggested that the function of msa1 is independent of the cAMP pathway and stress-responsive pathway. Deletion of the ras1 gene in diploid cells inhibited sporulation and in haploid cells decreased expression of mating-pheromone-induced genes such as mei2, mam2, ste11, and rep1; simultaneous deletion of msa1 reversed both phenotypes. Overexpression of msa1 decreased activated Ras1(Val17)-induced expression of mam2. Phenotypic hypersporulation was similar between cells with deletion of only rad24 and both msa1 and rad24, but simultaneous deletion of msa1 and msa2/nrd1 additively increased hypersporulation. Therefore, we suggest that the primary function of Msa1 is to negatively regulate sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. PMID:15166138

  19. Detecting Splicing Variants in Idiopathic Pulmonary Fibrosis from Non-Differentially Expressed Genes

    PubMed Central

    Deng, Nan; Sanchez, Cecilia G.; Lasky, Joseph A.; Zhu, Dongxiao

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease of unknown cause that lacks a proven therapy for altering its high mortality rate. Microarrays have been employed to investigate the pathogenesis of IPF, but are presented mostly at the gene-expression level due to technologic limitations. In as much as, alternative RNA splicing isoforms are increasingly identified as potential regulators of human diseases, including IPF, we propose a new approach with the capacity to detect splicing variants using RNA-seq data. We conducted a joint analysis of differential expression and differential splicing on annotated human genes and isoforms, and identified 122 non-differentially expressed genes with a high degree of “switch” between major and minor isoforms. Three cases with variant mechanisms for alternative splicing were validated using qRT-PCR, among the group of genes in which expression was not significantly changed at the gene level. We also identified 35 novel transcripts that were unique to the fibrotic lungs using exon-exon junction evidence, and selected a representative for qRT-PCR validation. The results of our study are likely to provide new insight into the pathogenesis of pulmonary fibrosis and may eventuate in new treatment targets. PMID:23844188

  20. Weighted Change-Point Method for Detecting Differential Gene Expression in Breast Cancer Microarray Data

    PubMed Central

    Wang, Yao; Sun, Guang; Ji, Zhaohua; Xing, Chong; Liang, Yanchun

    2012-01-01

    In previous work, we proposed a method for detecting differential gene expression based on change-point of expression profile. This non-parametric change-point method gave promising result in both simulation study and public dataset experiment. However, the performance is still limited by the less sensitiveness to the right bound and the statistical significance of the statistics has not been fully explored. To overcome the insensitiveness to the right bound we modified the original method by adding a weight function to the Dn statistic. Simulation study showed that the weighted change-point statistics method is significantly better than the original NPCPS in terms of ROC, false positive rate, as well as change-point estimate. The mean absolute error of the estimated change-point by weighted change-point method was 0.03, reduced by more than 50% comparing with the original 0.06, and the mean FPR was reduced by more than 55%. Experiment on microarray Dataset I resulted in 3974 differentially expressed genes out of total 5293 genes; experiment on microarray Dataset II resulted in 9983 differentially expressed genes among total 12576 genes. In summary, the method proposed here is an effective modification to the previous method especially when only a small subset of cancer samples has DGE. PMID:22276133

  1. Developing a Predictive Gene Classifier for Autism Spectrum Disorders Based upon Differential Gene Expression Profiles of Phenotypic Subgroups

    PubMed Central

    Hu, Valerie W.; Lai, Yinglei

    2013-01-01

    Autism spectrum disorders (ASD) are neurodevelopmental disorders which are currently diagnosed solely on the basis of abnormal stereotyped behavior as well as observable deficits in communication and social functioning. Although a variety of candidate genes have been identified on the basis of genetic analyses and up to 20% of ASD cases can be collectively associated with a genetic abnormality, no single gene or genetic variant is applicable to more than 1–2 percent of the general ASD population. In this report, we apply class prediction algorithms to gene expression profiles of lymphoblastoid cell lines (LCL) from several phenotypic subgroups of idiopathic autism defined by cluster analyses of behavioral severity scores on the Autism Diagnostic Interview-Revised diagnostic instrument for ASD. We further demonstrate that individuals from these ASD subgroups can be distinguished from nonautistic controls on the basis of limited sets of differentially expressed genes with a predicted classification accuracy of up to 94% and sensitivities and specificities of ~90% or better, based on support vector machine analyses with leave-one-out validation. Validation of a subset of the “classifier” genes by high-throughput quantitative nuclease protection assays with a new set of LCL samples derived from individuals in one of the phenotypic subgroups and from a new set of controls resulted in an overall class prediction accuracy of ~82%, with ~90% sensitivity and 75% specificity. Although additional validation with a larger cohort is needed, and effective clinical translation must include confirmation of the differentially expressed genes in primary cells from cases earlier in development, we suggest that such panels of genes, based on expression analyses of phenotypically more homogeneous subgroups of individuals with ASD, may be useful biomarkers for diagnosis of subtypes of idiopathic autism. PMID:24363828

  2. Analysis of gene amplification in archival tissue by differential polymerase chain reaction.

    PubMed

    Neubauer, A; Neubauer, B; He, M; Effert, P; Iglehart, D; Frye, R A; Liu, E

    1992-05-01

    Oncogene amplification is found in many human tumors, and its detection may have important prognostic value. However, analysis of gene amplification may be hampered by inadequate tissue or poor DNA quality. We have previously described a polymerase chain reaction (PCR)-based procedure called differential PCR that can detect variations in gene dosage using miniscule amounts of tumor DNA [Frye, R.A., Benz, C.C. & Liu, E. (1989). Oncogene, 4, 1153-1157]. We now report the optimization of this technique for the analysis of oncogene amplification in paraffin-embedded archival tissues. We find that differential PCR is able to detect amplification of the HER2 (c-erbB-2) and the epidermal growth factor receptor (EGFR) genes and can be used to arrive at a semiquantitative estimate of gene dosage. Furthermore, our approach can determine gene amplification in samples in which the DNA is significantly degraded. Using differential PCR on paraffin-embedded tissues from cases previously investigated by standard DNA extraction and dot-blot procedures, good correlation between the two methods was found. Approaches are described to overcome technical problems posed by factors that affect the differential PCR, including the method of DNA extraction and extreme fragmentation of the DNA (less than 200 base pairs). Furthermore, the resulting analytical algorithm reported herein has proved effective in detecting oncogene amplification in archival breast cancer specimens from standard pathology laboratories. Thus, differential PCR will be particularly helpful in the analysis of tumor specimens that are archived, small in size or rare in occurrence.

  3. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth.

    PubMed Central

    Jiang, H; Su, Z Z; Lin, J J; Goldstein, N I; Young, C S; Fisher, P B

    1996-01-01

    Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8799171

  4. Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities.

    PubMed

    Cheng, Chuanmin; Nair, Arathy D S; Jaworski, Deborah C; Ganta, Roman R

    2015-01-01

    Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen's reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis. PMID:26186429

  5. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    PubMed

    Tsujimura, Taro; Hosoya, Tomohiro; Kawamura, Shoji

    2010-12-16

    A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio) have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs) in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC) clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR) upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  6. Differential gene expression between African American and European American colorectal cancer patients.

    PubMed

    Jovov, Biljana; Araujo-Perez, Felix; Sigel, Carlie S; Stratford, Jeran K; McCoy, Amber N; Yeh, Jen Jen; Keku, Temitope

    2012-01-01

    The incidence and mortality of colorectal cancer (CRC) is higher in African Americans (AAs) than other ethnic groups in the U. S., but reasons for the disparities are unknown. We performed gene expression profiling of sporadic CRCs from AAs vs. European Americans (EAs) to assess the contribution to CRC disparities. We evaluated the gene expression of 43 AA and 43 EA CRC tumors matched by stage and 40 matching normal colorectal tissues using the Agilent human whole genome 4x44K cDNA arrays. Gene and pathway analyses were performed using Significance Analysis of Microarrays (SAM), Ten-fold cross validation, and Ingenuity Pathway Analysis (IPA). SAM revealed that 95 genes were differentially expressed between AA and EA patients at a false discovery rate of ≤5%. Using IPA we determined that most prominent disease and pathway associations of differentially expressed genes were related to inflammation and immune response. Ten-fold cross validation demonstrated that following 10 genes can predict ethnicity with an accuracy of 94%: CRYBB2, PSPH, ADAL, VSIG10L, C17orf81, ANKRD36B, ZNF835, ARHGAP6, TRNT1 and WDR8. Expression of these 10 genes was validated by qRT-PCR in an independent test set of 28 patients (10 AA, 18 EA). Our results are the first to implicate differential gene expression in CRC racial disparities and indicate prominent difference in CRC inflammation between AA and EA patients. Differences in susceptibility to inflammation support the existence of distinct tumor microenvironments in these two patient populations.

  7. The cryptochrome gene family in pea includes two differentially expressed CRY2 genes.

    PubMed

    Platten, J Damien; Foo, Eloise; Foucher, Fabrice; Hecht, Valérie; Reid, James B; Weller, James L

    2005-11-01

    The cryptochromes are a family of blue light photoreceptors that play important roles in the control of plant development. We have characterised the cryptochrome gene family in the model legume garden pea (Pisum sativum L.). Pea contains three expressed cryptochrome genes; a single CRY1 orthologue, and two distinct CRY2 genes that we have termed CRY2a and CRY2b. Genomic southern blots indicate that there are unlikely to be more CRY genes in pea. Each of the three genes encodes a full-length CRY protein that contains all the major domains characteristic of other higher plant cryptochromes. Database searches have identified Medicago truncatula expressed sequence tags (ESTs) corresponding to all three genes, whereas only a single CRY2 is represented in EST collections from the more distantly related legumes soybean and Lotus japonicus. The proteins encoded by the pea and Medicago CRY2b genes are distinguished from other CRY2 proteins by their shorter C-terminus. Expression analyses have identified marked differences in the regulation of the three genes, with CRY2b expression in particular distinguished by high-amplitude diurnal cycling and rapid repression in seedlings transferred from darkness to blue light.

  8. Differential gene expression and epiregulation of alpha zein gene copies in maize haplotypes.

    PubMed

    Miclaus, Mihai; Xu, Jian-Hong; Messing, Joachim

    2011-06-01

    Multigenic traits are very common in plants and cause diversity. Nutritional quality is such a trait, and one of its factors is the composition and relative expression of storage protein genes. In maize, they represent a medium-size gene family distributed over several chromosomes and unlinked locations. Two inbreds, B73 and BSSS53, both from the Iowa Stiff Stock Synthetic collection, have been selected to analyze allelic and non-allelic variability in these regions that span between 80-500 kb of chromosomal DNA. Genes were copied to unlinked sites before and after allotetraploidization of maize, but before transposition enlarged intergenic regions in a haplotype-specific manner. Once genes are copied, expression of donor genes is reduced relative to new copies. Epigenetic regulation seems to contribute to silencing older copies, because some of them can be reactivated when endosperm is maintained as cultured cells, indicating that copy number variation might contribute to a reserve of gene copies. Bisulfite sequencing of the promoter region also shows different methylation patterns among gene clusters as well as differences between tissues, suggesting a possible position effect on regulatory mechanisms as a result of inserting copies at unlinked locations. The observations offer a potential paradigm for how different gene families evolve and the impact this has on their expression and regulation of their members. PMID:21731501

  9. Differential Gene Expression and Epiregulation of Alpha Zein Gene Copies in Maize Haplotypes

    PubMed Central

    Miclaus, Mihai; Xu, Jian-Hong; Messing, Joachim

    2011-01-01

    Multigenic traits are very common in plants and cause diversity. Nutritional quality is such a trait, and one of its factors is the composition and relative expression of storage protein genes. In maize, they represent a medium-size gene family distributed over several chromosomes and unlinked locations. Two inbreds, B73 and BSSS53, both from the Iowa Stiff Stock Synthetic collection, have been selected to analyze allelic and non-allelic variability in these regions that span between 80–500 kb of chromosomal DNA. Genes were copied to unlinked sites before and after allotetraploidization of maize, but before transposition enlarged intergenic regions in a haplotype-specific manner. Once genes are copied, expression of donor genes is reduced relative to new copies. Epigenetic regulation seems to contribute to silencing older copies, because some of them can be reactivated when endosperm is maintained as cultured cells, indicating that copy number variation might contribute to a reserve of gene copies. Bisulfite sequencing of the promoter region also shows different methylation patterns among gene clusters as well as differences between tissues, suggesting a possible position effect on regulatory mechanisms as a result of inserting copies at unlinked locations. The observations offer a potential paradigm for how different gene families evolve and the impact this has on their expression and regulation of their members. PMID:21731501

  10. Hydroxymethylcytosine and demethylation of the γ-globin gene promoter during erythroid differentiation

    PubMed Central

    Ruiz, Maria Armila; Rivers, Angela; Ibanez, Vinzon; Vaitkus, Kestis; Mahmud, Nadim; DeSimone, Joseph; Lavelle, Donald

    2015-01-01

    The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter. PMID:25932923

  11. [BMAL1 gene regulates the osteogenic differentiation of bone marrow mesenchymal stem cells].

    PubMed

    Xiaoguang, Li; Xiao-long, Guo; Bin, Guo

    2016-06-01

    Periodontitis is a chronic infective disease characterized as the destruction of the supporting tissues of the teeth. Bone marrow mesenchymal stem cells, which are ideal adult stem cells for the regeneration of supporting tissues, may play important roles in restoring the structure and function of the periodontium and in promoting the treatment of periodontal disease. As a consequence, the characteristics, especially osteogenic differentiation mechanism, of these stem cells have been extensively investigated. The regulation of the physiological behavior of these stem cells is associated with BMAL1 gene. This gene is a potential treatment target for periodontal disease, although the specific mechanism remains inconclusive. This study aimed to describe the characteristics of BMAL1 gene and its ability to regulate the osteogenic differentiation of stem cells. PMID:27526460

  12. Gene variation, population differentiation, and sociogenetic structure of nests of Partamona seridoensis (Hymenoptera: Apidae, Meliponini).

    PubMed

    Fernandes, Carlo Rivero Moura; Martins, Celso Feitosa; Ferreira, Kátia Maria; Del Lama, Marco Antonio

    2012-06-01

    Gene variation and the differentiation of two populations of Partamona seridoensis (Hymenoptera: Apidae: Meliponini) from the Caatinga biome, a semiarid ecosystem unique to Brazil, were estimated through allozymic and microsatellite analyses. These populations exhibited similar low degrees of enzyme gene variation. Observed genotype frequencies at the allozyme and microsatellite loci were in accordance with Hardy-Weinberg equilibrium in the two populations. Both markers demonstrated that the two populations are not genetically homogeneous and must be considered distinct populations. The occurrence of private alleles at the allozyme and microsatellite loci corroborates this differentiation, sustaining the hypothesis of a low level of interpopulation gene flow. The phenotypic segregations clearly demonstrated that the progeny inside each nest were the result of mating between the queen of the colony and only one male. PMID:21938561

  13. Differential gene expression in Aspergillus fumigatus induced by human platelets in vitro.

    PubMed

    Perkhofer, Susanne; Zenzmaier, Christoph; Frealle, Emilie; Blatzer, Michael; Hackl, Hubert; Sartori, Bettina; Lass-Flörl, Cornelia

    2015-05-01

    Invasive aspergillosis is characterized by vascular invasion and thrombosis. In order to determine the antifungal activity of human platelets, hyphal elongation and metabolic activity of a clinical A. fumigatus isolate were measured. Genome-wide identification of differentially expressed genes in A. fumigatus was performed after exposure to platelets for 15, 30, 60 and 180 min. Data were analyzed by gene ontology annotation as well as functional categories (FunCat) and KEGG enrichment analyses. Platelets attenuated hyphal elongation and viability of A. fumigatus and in total 584 differentially expressed genes were identified, many of which were associated with regulation of biological processes, stress response, transport and metabolism. FunCat and KEGG enrichment analyses showed stress response and metabolic adaptation to be increased in response to platelets. Our findings demonstrate that A. fumigatus displayed a specific transcriptional response when exposed to platelets, thus reflecting their antifungal activities.

  14. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress

    PubMed Central

    Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui

    2016-01-01

    Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459

  15. Microarray and differential display identify genes involved in jasmonate-dependent anther development.

    PubMed

    Mandaokar, Ajin; Kumar, V Dinesh; Amway, Matt; Browse, John

    2003-07-01

    Jasmonate (JA) is a signaling compound essential for anther development and pollen fertility in Arabidopsis. Mutations that block the pathway of JA synthesis result into male sterility. To understand the processes of anther and pollen maturation, we used microarray and differential display approaches to compare gene expression pattern in anthers of wild-type Arabidopsis and the male-sterile mutant, opr3. Microarray experiment revealed 25 genes that were up-regulated more than 1.8-fold in wild-type anthers as compared to mutant anthers. Experiments based on differential display identified 13 additional genes up-regulated in wild-type anthers compared to opr3 for a total of 38 differentially expressed genes. Searches of the Arabidopsis and non-redundant databases disclosed known or likely functions for 28 of the 38 genes identified, while 10 genes encode proteins of unknown function. Northern blot analysis of eight representative clones as probes confirmed low expression in opr3 anthers compared with wild-type anthers. JA responsiveness of these same genes was also investigated by northern blot analysis of anther RNA isolated from wild-type and opr3 plants, In these experiments, four genes were induced in opr3 anthers within 0.5-1 h of JA treatment while the remaining genes were up-regulated only 1-8 h after JA application. None of these genes was induced by JA in anthers of the coil mutant that is deficient in JA responsiveness. The four early-induced genes in opr3 encode lipoxygenase, a putative bHLH transcription factor, epithiospecifier protein and an unknown protein. We propose that these and other early components may be involved in JA signaling and in the initiation of developmental processes. The four late genes encode an extensin-like protein, a peptide transporter and two unknown proteins, which may represent components required later in anther and pollen maturation. Transcript profiling has provided a successful approach to identify genes involved in

  16. Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes

    PubMed Central

    Utheim, Tor Paaske; Islam, Rakibul; Fostad, Ida G.; Eidet, Jon R.; Sehic, Amer; Olstad, Ole K.; Dartt, Darlene A.; Messelt, Edward B.; Griffith, May; Pasovic, Lara

    2016-01-01

    Purpose Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed. Materials and Methods Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR. Results Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C. Conclusion HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell

  17. Differential expression of anti-angiogenic factors and guidance genes in the developing macula

    PubMed Central

    Kozulin, Peter; Natoli, Riccardo; O’Brien, Keely M. Bumsted; Madigan, Michele C.

    2009-01-01

    Purpose The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. Methods We used RNA from human fetal retinas at 19–20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip® microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek® Genomic Suite™ 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to “biological process.” The neural retina is fully differentiated at the macula at 19–20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (p<0.01) were then identified in a second round of clustering according to molecular/reaction (KEGG) pathway. Genes of interest were verified by quantitative PCR (QRT–PCR), and 2 genes were localized by in situ hybridization. Results We generated two lists of differentially regulated genes: “macula versus surround” and “macula versus nasal.” KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula

  18. Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment

    PubMed Central

    O’Grady, Eoin P.; Sokol, Pamela A.

    2011-01-01

    Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections. PMID:22919581

  19. Identification of mouse retinal genes differentially regulated by dim and bright cyclic light rearing.

    PubMed

    Huang, Hu; Frank, Mark Barton; Dozmorov, Igor; Cao, Wei; Cadwell, Craig; Knowlton, Nick; Centola, Michael; Anderson, Robert E

    2005-05-01

    Bright cyclic light rearing protects BALB/c mice from light-induced photoreceptor apoptosis compared to dim cyclic light rearing. We used a microarray approach to search for putative neuroprotection genes that were up- or down-regulated under these environmental conditions. Retinal protection by bright cyclic rearing was determined by quantitative histology and DNA fragmentation analysis. Total RNA was isolated from 5-week-old mice raised in bright (400 lux) or dim (5 lux) cyclic light and prepared for analysis on microarrays produced using a 70-mer oligonucleotide library that represented 16,463 mouse genes. Genes of interest were identified using statistically robust bioinformatics analysis methods that were developed in-house. Changes in some genes were confirmed with quantitative real time PCR. We found that 952 genes were up- or down-regulated by bright cyclic light rearing compared to dim cyclic light rearing. One hundred and eighty-four of them, having >/=2-fold differences, were grouped into 13 categories, and selected for further consideration. Eleven up-regulated and two down-regulated genes were confirmed by semi-quantitative PCR. Five neuroprotection-associated genes were up-regulated by bright cyclic light rearing as confirmed by real-time PCR. The human orthologue chromosomal location of 22 differentially expressed genes map to known retinal degeneration loci. Using PathwayAssist software, we modeled the pathway networks of up- and down-regulated genes that are functionally related to the retina. We identified retinal genes that are differentially regulated by environmental light history. Those that directly affect cell processes such as survival, apoptosis, and transcription are likely play a pivotal role in the regulation of retinal neuroprotection against light-induced photoreceptor apoptosis.

  20. Exome Analysis Reveals Differentially Mutated Gene Signatures of Stage, Grade and Subtype in Breast Cancers

    PubMed Central

    Li, You; Wang, Xiaosheng; Vural, Suleyman; Mishra, Nitish K.; Cowan, Kenneth H.; Guda, Chittibabu

    2015-01-01

    Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies. PMID:25803781

  1. Transcription in space--environmental vs. genetic effects on differential immune gene expression.

    PubMed

    Lenz, Tobias L

    2015-09-01

    Understanding how organisms adapt to their local environment is one of the key goals in molecular ecology. Adaptation can be achieved through qualitative changes in the coding sequence and/or quantitative changes in gene expression, where the optimal dosage of a gene's product in a given environment is being selected for. Differences in gene expression among populations inhabiting distinct environments can be suggestive of locally adapted gene regulation and have thus been studied in different species (Whitehead & Crawford ; Hodgins-Davis & Townsend ). However, in contrast to a gene's coding sequence, its expression level at a given point in time may depend on various factors, including the current environment. Although critical for understanding the extent of local adaptation, it is usually difficult to disentangle the heritable differences in gene regulation from environmental effects. In this issue of Molecular Ecology, Stutz et al. () describe an experiment in which they reciprocally transplanted three-spined sticklebacks (Gasterosteus aculeatus) between independent pairs of small and large lakes. Their experimental design allows them to attribute differences in gene expression among sticklebacks either to lake of origin or destination lake. Interestingly, they find that translocated sticklebacks show a pattern of gene expression more similar to individuals from the destination lake than to individuals from the lake of origin, suggesting that expression of the targeted genes is more strongly regulated by environmental effects than by genetics. The environmental effect by itself is not entirely surprising; however, the relative extent of it is. Especially when put in the context of local adaptation and population differentiation, as done here, these findings cast a new light onto the heritability of differential gene expression and specifically its relative importance during population divergence and ultimately ecological speciation.

  2. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation.

    PubMed

    Barwick, Benjamin G; Scharer, Christopher D; Bally, Alexander P R; Boss, Jeremy M

    2016-10-01

    The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.

  3. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field.

    PubMed

    Bailey, Bryan A; Melnick, Rachel L; Strem, Mary D; Crozier, Jayne; Shao, Jonathan; Sicher, Richard; Phillips-Mora, Wilberth; Ali, Shahin S; Zhang, Dapeng; Meinhardt, Lyndel

    2014-09-01

    Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms.

  4. Sexual differentiation in the developing mouse brain: contributions of sex chromosome genes.

    PubMed

    Wolstenholme, J T; Rissman, E F; Bekiranov, S

    2013-03-01

    Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X-chromosome and a unique second sex chromosome creating the following genotypes: XY(*x) , XX, XY(*) , XX(Y) (*) . This Y(*) mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X-chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X-chromosomes. We present data showing, in addition to genes reported to escape X-inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X-chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y(*) model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.

  5. Preservation of gene expression ratios among multiple complex cDNAs after PCR amplification: application to differential gene expression studies.

    PubMed

    Ji, W; Cai, L; Wright, M B; Walker, G; Salgam, P; Vater, A; Lindpaintner, K

    2000-01-01

    Comparative gene expression studies are often limited by low availability of tissue and poor quality of extractable mRNA. Collective PCR amplification of minute quantities of mRNA has great potential for overcoming these limitations. However, there remains significant concern about the effects of amplification on the absolute and relative abundance of individual mRNAs that could complicate subsequent gene expression studies. To address this problem, we systematically compared the relative abundance of many specific mRNAs from complex cDNA preparations (from tissue and cultured cells) both before and after amplification by PCR. Our results demonstrated that, as expected, the absolute abundance of different mRNAs in a cDNA library is altered in an unpredictable manner by PCR amplification. However, we found that the concentration ratios of specific mRNAs among different cDNA preparations were routinely well conserved after PCR amplification. Thus, for the purpose of comparative expression studies for specific mRNAs in two (or more) complex cDNAs, PCR-amplified cDNA is equally useful as unamplified cDNA. These results provide a rigorous experimental validation and offer a theoretical treatment to support the utility of PCR amplified cDNA for differential gene expression studies. We conclude that the inherent difficulties in performing differential screening studies such as gene chip and array analyses on limited amounts of biological materials can be overcome by a PCR amplification step without compromising data quality.

  6. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss.

    PubMed

    Schnable, James C; Springer, Nathan M; Freeling, Michael

    2011-03-01

    Ancient tetraploidies are found throughout the eukaryotes. After duplication, one copy of each duplicate gene pair tends to be lost (fractionate). For all studied tetraploidies, the loss of duplicated genes, known as homeologs, homoeologs, ohnologs, or syntenic paralogs, is uneven between duplicate regions. In maize, a species that experienced a tetraploidy 5-12 million years ago, we show that in addition to uneven ancient gene loss, the two complete genomes contained within maize are differentiated by ongoing fractionation among diverse inbreds as well as by a pattern of overexpression of genes from the genome that has experienced less gene loss. These expression differences are consistent over a range of experiments quantifying RNA abundance in different tissues. We propose that the universal bias in gene loss between the genomes of this ancient tetraploid, and perhaps all tetraploids, is the result of selection against loss of the gene responsible for the majority of total expression for a duplicate gene pair. Although the tetraploidy of maize is ancient, biased gene loss and expression continue today and explain, at least in part, the remarkable genetic diversity found among modern maize cultivars. PMID:21368132

  7. Identification of Differentially Expressed Gene after Femoral Fracture via Microarray Profiling

    PubMed Central

    Zhong, Donggen

    2014-01-01

    We aimed to investigate differentially expressed genes (DEGs) in different stages after femoral fracture based on rat models, providing the basis for the treatment of sport-related fractures. Gene expression data GSE3298 was downloaded from Gene Expression Omnibus (GEO), including 16 chips. All femoral fracture samples were classified into earlier fracture stage and later fracture stage. Total 87 DEGs simultaneously occurred in two stages, of which 4 genes showed opposite expression tendency. Out of the 4 genes, Rest and Cst8 were hub nodes in protein-protein interaction (PPI) network. The GO (Gene Ontology) function enrichment analysis verified that nutrition supply related genes were enriched in the earlier stage and neuron growth related genes were enriched in the later stage. Calcium signaling pathway was the most significant pathway in earlier stage; in later stage, DEGs were enriched into 2 neurodevelopment-related pathways. Analysis of Pearson's correlation coefficient showed that a total of 3,300 genes were significantly associated with fracture time, none of which was overlapped with identified DEGs. This study suggested that Rest and Cst8 might act as potential indicators for fracture healing. Calcium signaling pathway and neurodevelopment-related pathways might be deeply involved in bone healing after femoral fracture. PMID:25110652

  8. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

    PubMed Central

    McDowell, Ian C.; Zhao, Shiwen; Brown, Christopher D.; Engelhardt, Barbara E.

    2016-01-01

    Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526

  9. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.

    PubMed

    Gao, Chuan; McDowell, Ian C; Zhao, Shiwen; Brown, Christopher D; Engelhardt, Barbara E

    2016-07-01

    Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526

  10. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    SciTech Connect

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-03-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 {mu}M) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  11. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles

    PubMed Central

    Johnson, Kirby D.; Kim, Shin-Il; Bresnick, Emery H.

    2006-01-01

    Changes in transcription factor levels and activities dictate developmental fate. Such a change might affect the full ensemble of target genes for a factor or only uniquely sensitive targets. We investigated the relationship among activity of the hematopoietic transcription factor GATA-1, chromatin occupancy, and target gene sensitivity. Graded activation of GATA-1 in GATA-1-null cells revealed high-, intermediate-, and low-sensitivity targets. GATA-1 activity requirements for occupancy and transcription often correlated. A GATA-1 amino-terminal deletion mutant severely deregulated the low-sensitivity gene Tac-2. Thus, cells expressing different levels of a cell type-specific activator can have qualitatively distinct target gene expression patterns, and factor mutations preferentially deregulate low-sensitivity genes. Unlike other target genes, GATA-1-mediated Tac-2 regulation was bimodal, with activation followed by repression, and the coregulator Friend of GATA-1 (FOG-1) selectively mediated repression. A GATA-1 mutant defective in FOG-1 binding occupied a Tac-2 regulatory region at levels higher than wild-type GATA-1, whereas FOG-1 facilitated chromatin occupancy at a distinct target site. These results indicate that FOG-1 is a determinant of GATA factor target gene sensitivity by either facilitating or opposing chromatin occupancy. PMID:17043224

  12. Cone opsin genes of african cichlid fishes: tuning spectral sensitivity by differential gene expression.

    PubMed

    Carleton, K L; Kocher, T D

    2001-08-01

    Spectral tuning of visual pigments is typically accomplished through changes in opsin amino acid sequence. Within a given opsin class, changes at a few key sites control wavelength specificity. To investigate known differences in the visual pigment spectral sensitivity of the Lake Malawi cichlids, Metriaclima zebra (368, 488, and 533 nm) and Dimidiochromis compressiceps (447, 536, and 569 nm), we sequenced cone opsin genes from these species as well as Labeotropheus fuelleborni and Oreochromis niloticus. These cichlids have five distinct classes of cone opsin genes, including two unique SWS-2 genes. Comparisons of the inferred amino acid sequences from the five cone opsin genes of M. zebra, D. compressiceps, and L. fuelleborni show the sequences to be nearly identical. Therefore, evolution of key opsin sites cannot explain the differences in visual pigment sensitivities. Real-time PCR demonstrates that different cichlid species express different subsets of the available cone opsin genes. Metriaclima zebra and L. fuelleborni express a complement of genes which give them UV-shifted visual pigments, while D. compressiceps expresses a different set to produce a red-shifted visual system. Thus, variations in cichlid spectral sensitivity have arisen through evolution of gene regulation, rather than through changes in opsin amino acid sequence.

  13. Comparative study of gene expression during the differentiation of white and brown preadipocytes

    NASA Astrophysics Data System (ADS)

    Boeuf, Stéphane

    2002-08-01

    Introduction Mammals have two types of adipose tissue: the lipid storing white adipose tissue and the brown adipose tissue characterised by its capacity for non-shivering thermogenesis. White and brown adipocytes have the same origin in mesodermal stem cells. Yet nothing is known so far about the commitment of precursor cells to the white and brown adipose lineage. Several experimental approaches indicate that they originate from the differentiation of two distinct types of precursor cells, white and brown preadipocytes. Based on this hypothesis, the aim of this study was to analyse the gene expression of white and brown preadipocytes in a systematic approach. Experimental approach The white and brown preadipocytes to compare were obtained from primary cell cultures of preadipocytes from the Djungarian dwarf hamster. Representational difference analysis was used to isolate genes potentially differentially expressed between the two cell types. The thus obtained cDNA libraries were spotted on microarrays for a large scale gene expression analysis in cultured preadipocytes and adipocytes and in tissue samples. Results 4 genes with higher expression in white preadipocytes (3 members of the complement system and a fatty acid desaturase) and 8 with higher expression in brown preadipocytes were identified. From the latter 3 coded for structural proteins (fibronectin, metargidin and a actinin 4), 3 for proteins involved in transcriptional regulation (necdin, vigilin and the small nuclear ribonucleoprotein polypeptide A) and 2 are of unknown function. Cluster analysis was applied to the gene expression data in order to characterise them and led to the identification of four major typical expression profiles: genes up-regulated during differentiation, genes down-regulated during differentiation, genes higher expressed in white preadipocytes and genes higher expressed in brown preadipocytes. Conclusion This study shows that white and brown preadipocytes can be distinguished

  14. Differential gene expression in proximal and distal nerve segments of rats with sciatic nerve injury during Wallerian degeneration

    PubMed Central

    Jiang, Nan; Li, Huaiqin; Sun, Yi; Yin, Dexin; Zhao, Qin; Cui, Shusen; Yao, Dengbing

    2014-01-01

    Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immune response, myelin cell differentiation and dedifferentiation. Although gene expression responses in the distal segment of the sciatic nerve after peripheral nerve injury are known, differences in gene expression between the proximal and distal segments remain unclear. In the present study in rats, we used microarrays to analyze changes in gene expression, biological processes and signaling pathways in the proximal and distal segments of sciatic nerves undergoing Wallerian degeneration. More than 6,000 genes were differentially expressed and 20 types of expression tendencies were identified, mainly between proximal and distal segments at 7–14 days after injury. The differentially expressed genes were those involved in cell differentiation, cytokinesis, neuron differentiation, nerve development and axon regeneration. Furthermore, 11 biological processes were represented, related to responses to stimuli, cell apoptosis, inflammatory response, immune response, signal transduction, protein kinase activity, and cell proliferation. Using real-time quantitative PCR, western blot analysis and immunohistochemistry, microarray data were verified for four genes: aquaporin-4, interleukin 1 receptor-like 1, matrix metalloproteinase-12 and periaxin. Our study identifies differential gene expression in the proximal and distal segments of a nerve during Wallerian degeneration, analyzes dynamic biological changes of these genes, and provides a useful platform for the detailed study of nerve injury and repair during Wallerian degeneration. PMID:25206781

  15. Isolation and Characterization of Differentially Expressed Genes in the Mycelium and Fruit Body of Tuber borchii

    PubMed Central

    Lacourt, Isabelle; Duplessis, Sébastien; Abbà, Simona; Bonfante, Paola; Martin, Francis

    2002-01-01

    The transition from vegetative mycelium to fruit body in truffles requires differentiation processes which lead to edible fruit bodies (ascomata) consisting of different cell and tissue types. The identification of genes differentially expressed during these developmental processes can contribute greatly to a better understanding of truffle morphogenesis. A cDNA library was constructed from vegetative mycelium RNAs of the white truffle Tuber borchii, and 214 cDNAs were sequenced. Up to 58% of the expressed sequence tags corresponded to known genes. The majority of the identified sequences represented housekeeping proteins, i.e., proteins involved in gene or protein expression, cell wall formation, primary and secondary metabolism, and signaling pathways. We screened 171 arrayed cDNAs by using cDNA probes constructed from mRNAs of vegetative mycelium and ascomata to identify fruit body-regulated genes. Comparisons of signals from vegetative mycelium and fruit bodies bearing 15 or 70% mature spores revealed significant differences in the expression levels for up to 33% of the investigated genes. The expression levels for six highly regulated genes were confirmed by RNA blot analyses. The expression of glutamine synthetase, 5-aminolevulinic acid synthetase, isocitrate lyase, thioredoxin, glucan 1,3-β-glucosidase, and UDP-glucose:sterol glucosyl transferase was highly up-regulated, suggesting that amino acid biosynthesis, the glyoxylate cycle pathway, and cell wall synthesis are strikingly altered during morphogenesis. PMID:12200316

  16. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes.

    PubMed

    Santhanam, Parthasarathy; Thomma, Bart P H J

    2013-02-01

    The ascomycete fungus Verticillium dahliae causes vascular wilt diseases in hundreds of dicotyledonous plant species. However, thus far, only few V. dahliae effectors have been identified, and regulators of pathogenicity remain unknown. In this study, we investigated the role of the V. dahliae homolog of Sge1, a transcriptional regulator that was previously implicated in pathogenicity and effector gene expression in Fusarium oxysporum. We show that V. dahliae Sge1 (VdSge1) is required for radial growth and production of asexual conidiospores, because VdSge1 deletion strains display reduced radial growth and reduced conidia production. Furthermore, we show that VdSge1 deletion strains have lost pathogenicity on tomato. Remarkably, VdSge1 is not required for induction of Ave1, the recently identified V. dahliae effector that activates resistance mediated by the Ve1 immune receptor in tomato. Further assessment of the role of VdSge1 in the induction of the nine most highly in-planta-induced genes that encode putative effectors revealed differential activity. Although the expression of one putative effector gene in addition to Ave1 was not affected by VdSge1 deletion, VdSge1 appeared to be required for the expression of six putative effector genes, whereas two of the putative effectors genes were found to be negatively regulated by VdSge1. In conclusion, our data suggest that VdSge1 differentially regulates V. dahliae effector gene expression.

  17. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells

    PubMed Central

    Kucknoor, Ashwini; Mundodi, Vasanthakrishna; Alderete, John F.

    2007-01-01

    Summary Trichomonas vaginalis, an ancient protist, colonizes the vaginal mucosa causing trichomonosis, a vaginitis that sometimes leads to severe health complications. Preparatory to colonization of the vagina is the adhesion to vaginal epithelial cells (VECs) by trichomonads. We hypothesized that VECs alter the gene expression to form a complex signalling cascade in response to trichomonal adherence. In order to identify the genes that are upregulated, we constructed a subtraction cDNA library after contact with parasites that is enriched for differentially expressed genes from the immortalized MS-74 VECs. Sixty cDNA clones were sequenced and to our knowledge for the first time, differentially regulated genes were identified in response to early trichomonal infection. The identified genes were found to encode functional proteins with specific functions associated with cell structure maintenance and extracellular matrix components, proinflammatory molecules and apoptosis. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed expression of selected genes. Further, cyclooxygenase 2 (COX-2) protein expression was analysed using Western blot and immunofluorescence assays. Data suggest that p38 mitogen-activated protein (MAP) kinase and tyrosine kinases play a role in COX-2 induction. Finally, T. vaginalis and Tritrichomonas foetus but not Pentatrichomonas hominis induce expression of COX-2. This is a first attempt at elucidating the basis of interaction of trichomonads with host cells and the corresponding host responses triggered by the parasites. PMID:15888089

  18. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    PubMed Central

    Cantile, Monica; Scognamiglio, Giosuè; La Sala, Lucia; La Mantia, Elvira; Scaramuzza, Veronica; Valentino, Elena; Tatangelo, Fabiana; Losito, Simona; Pezzullo, Luciano; Chiofalo, Maria Grazia; Fulciniti, Franco; Franco, Renato; Botti, Gerardo

    2013-01-01

    Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13) in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers. PMID:24189220

  19. Differentially expressed protein-coding genes and long noncoding RNA in early-stage lung cancer.

    PubMed

    Li, Ming; Qiu, Mantang; Xu, Youtao; Mao, Qixing; Wang, Jie; Dong, Gaochao; Xia, Wenjia; Yin, Rong; Xu, Lin

    2015-12-01

    Due to the application of low-dose computed tomography screening, more and more early-stage lung cancers have been diagnosed. Thus, it is essential to characterize the gene expression profile of early-stage lung cancer to develop potential biomarkers for early diagnosis and therapeutic targets. Here, we analyzed microarray data of 181 early-stage lung cancer patients. By comparing gene expression between different tumor and lymph node metastasis stages, we identified various differentially expressed protein-coding genes and long noncoding RNA (lncRNA) in the comparisons of T2 vs. T2 and N1- vs. N0-stage lung cancer. Functional analyses revealed that these differentially expressed genes were enriched in various tumorigenesis or metastasis-related pathways. Survival analysis indicated that two protein-coding genes, C7 and SCN7A, were significantly associated survival of lung cancer. Notably, a novel lncRNA, LINC00313, was highly expressed in both T2- and N1-stage lung cancers. On the other hand, LINC00313 was also upregulated in lung cancer and metastasized lung cancer tissues, compared with adjacent lung tissues and primary lung cancer tissues. Additionally, higher expression level of LINC00313 indicated poor prognosis of lung cancer (hazard ratio = 0.658). Overall, we characterized the expression profiles of protein-coding genes and lncRNA in early-stage lung cancer and found that LINC00313 could be a biomarker for lung cancer.

  20. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    PubMed

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-01-01

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones. PMID:26593905

  1. Differential expression of genes and proteins associated with wool follicle cycling.

    PubMed

    Liu, Nan; Li, Hegang; Liu, Kaidong; Yu, Juanjuan; Cheng, Ming; De, Wei; Liu, Jifeng; Shi, Shuyan; He, Yanghua; Zhao, Jinshan

    2014-08-01

    Sheep are valuable resources for the wool industry. Wool growth of Aohan fine wool sheep has cycled during different seasons in 1 year. Therefore, identifying genes that control wool growth cycling might lead to ways for improving the quality and yield of fine wool. In this study, we employed Agilent sheep gene expression microarray and proteomic technology to compare the gene expression patterns of the body side skins at August and December time points in Aohan fine wool sheep (a Chinese indigenous breed). Microarray study revealed that 2,223 transcripts were differentially expressed, including 1,162 up-regulated and 1,061 down-regulated transcripts, comparing body side skin at the August time point to the December one (A/D) in Aohan fine wool sheep. Then seven differentially expressed genes were selected to validated the reliability of the gene chip data. The majority of the genes possibly related to follicle development and wool growth could be assigned into the categories including regulation of receptor binding, extracellular region, protein binding and extracellular space. Proteomic study revealed that 84 protein spots showed significant differences in expression levels. Of the 84, 63 protein spots were upregulated and 21 were downregulated in A/D. Finally, 55 protein points were determined through MALDI-TOF/MS analyses. Furthermore, the regulation mechanism of hair follicle might resemble that of fetation. PMID:24847760

  2. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    PubMed

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-11-18

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  3. Differentially expressed genes after viral haemorrhagic septicaemia virus infection in olive flounder (Paralichthys olivaceus).

    PubMed

    Hwang, Jee Youn; Kwon, Mun-Gyeong; Seo, Jung Soo; Do, Jung Wan; Park, Myoung-Ae; Jung, Sung-Hee; Ahn, Sang Jung

    2016-09-25

    A strain of viral haemorrhagic septicaemia virus (VHSV) was isolated from cultured olive flounder (Paralichthys olivaceus) during epizootics in South Korean. This strain showed high mortality to olive flounder in in vivo challenge experiment. The complete genomic RNA sequences were determined and phylogenetic analysis of the amino acid sequences of glycoprotein revealed that this isolate was grouped into genotype IVa of genus Novirhabdovirus. Expression profile of genes in olive flounder was analyzed at day 1 and day3 after infection with this VHSV isolate by using cDNA microarray containing olive flounder 13K cDNA clones. Microarray analysis revealed 785 up-regulated genes and 641 down-regulated genes by at least two-fold in virus-infected fish compared to healthy control groups. Among 785 up-regulated genes, we identified seven immune response-associated genes, including the interferon (IFN)-induced 56-kDa protein (IFI56), suppressor of cytokine signaling 1 (SOCS1), interleukin 8 (IL-8), cluster of differentiation 83 (CD83), α-globin (HBA), VHSV-induced protein-6 (VHSV6), and cluster of differentiation antigen 9 (CD9). Our results confirm previous reports that even virulent strain of VHSV induces expression of genes involved in protective immunity against VHSV. PMID:27599933

  4. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai

    PubMed Central

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-01-01

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones. PMID:26593905

  5. Identification of differentially expressed genes in the livers of chronically i-As-treated hamsters.

    PubMed

    Hernández, Alba; Sampayo-Reyes, Adriana; Marcos, Ricard

    2011-08-01

    Inorganic arsenic (i-As) is a human carcinogen causing skin, lung, urinary bladder, liver and kidney tumors. Chronic exposure to this naturally occurring contaminant, mainly via drinking water, is a significant worldwide environmental health concern. To explore the molecular mechanisms of arsenic hepatic injury, a differential display polymerase chain reaction (DD-PCR) screening was undertaken to identify genes with distinct expression patterns between the liver of low i-As-exposed and control animals. Golden Syrian hamsters (5-6 weeks of age) received drinking water containing 15 mg i-As/L as sodium arsenite, or unaltered water for 18 weeks. The in vivo MN test was carried out, and the frequency of micronucleated reticulocytes (MN-RETs) was scored as a measure of exposure and As-related genotoxic/carcinogenic risk. A total of 68 differentially expressed bands were identified in our initial screen, 41 of which could be assigned to specific genes. Differential level of expression of a selected number of genes was verified using real-time RT-PCR with gene-specific primers. Arsenic-altered gene expression included genes related to stress response, cellular metabolism, cell cycle regulation, telomere maintenance, cell-cell communication and signal transduction. Significant differences of MN-RET were found between treated (8.70 ± 0.02 MN/1000RETs) and control (2.5 ± 0.70 MN/1000RETs) groups (P<0.001), demonstrating both the exposure and the i-As genotoxic/carcinogenic risk. Overall, this paper reveals some possible networks involved in hepatic arsenic-related genotoxicity, carcinogenesis and diabetogenesis. Additional studies to explore further the potential implications of each candidate gene are of especial interest. The present work opens the door to new prospects for the study of i-As mechanisms taking place in the liver under chronic settings.

  6. Differential gene expression in colon cancer of the caecum versus the sigmoid and rectosigmoid

    PubMed Central

    Birkenkamp-Demtroder, K; Olesen, S H; Sørensen, F B; Laurberg, S; Laiho, P; Aaltonen, L A; Ørntoft, T F

    2005-01-01

    Background and aims: There are epidemiological, morphological, and molecular differences between normal mucosa as well as between adenocarcinomas of the right and left side of the large bowel. The aim of this study was to investigate differences in gene expression. Methods: Oligonucleotide microarrays (GeneChip) were used to compare gene expression in 45 single samples from normal mucosa and sporadic colorectal carcinomas (Dukes’ B and C) of the caecum compared with the sigmoid and rectosigmoid. Findings were validated by real time polymerase chain reaction. Results: Fifty eight genes were found to be differentially expressed between the normal mucosa of the caecum and the sigmoid and rectosigmoid (p<0.01), including pS2, S100P, and a sialyltransferase, all being expressed at higher levels in the caecum. A total of 118 and 186 genes were differentially expressed between normal and right or left sided tumours of the colon, showing more pronounced differences in Dukes’ C than B tumours. Thirty genes differentially expressed in tumour tissue were common to adenocarcinomas of both sides, including known tumour markers such as the matrix metalloproteinases. Keratins 8, 19, and 20 as well as carbonic anhydrases (II, IV, VII) showed side specific expression and were downregulated in left sided tumours whereas teratocarcinoma growth factor and cyclooxygenase 2 (COX-2) were upregulated in left sided adenocarcinomas. Immunohistochemical analysis confirmed differences in side specific expression for cytokeratin 20 and COX-2. Conclusions: Differences in gene expression between normal mucosa as well as between adenocarcinomas of the caecum and sigmoid or rectosigmoid exist and should be taken into account when examining new targeted therapeutic regimens. PMID:15710986

  7. Transcriptome Analysis of the Differentially Expressed Genes in the Male and Female Shrub Willows (Salix suchowensis)

    PubMed Central

    Liu, Jingjing; Yin, Tongming; Ye, Ning; Chen, Yingnan; Yin, Tingting; Liu, Min; Hassani, Danial

    2013-01-01

    Background The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes. Results Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies. Conclusions In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp. PMID:23560075

  8. Adipogenic differentiation state-specific gene expression as related to bovine carcass adiposity.

    PubMed

    Pickworth, C L; Loerch, S C; Velleman, S G; Pate, J L; Poole, D H; Fluharty, F L

    2011-02-01

    Genetic regulation of the site of fat deposition is not well defined. The objective of this study was to investigate adipogenic differentiation state-specific gene expression in feedlot cattle (>75% Angus; <25% Simmental parentage) of varying adipose accretion patterns. Four groups of 4 steers were selected via ultrasound for the following adipose tissue characteristics: low subcutaneous-low intramuscular (LSQ-LIM), low subcutaneous-high intramuscular (LSQ-HIM), high subcutaneous-low intramuscular (HSQ-LIM), and high subcutaneous-high intramuscular (HSQ-HIM). Adipose tissue from the subcutaneous (SQ) and intramuscular (IM) depots was collected at slaughter. The relative expression of adipogenic genes was evaluated using quantitative PCR. Data were analyzed using the mixed model of SAS, and gene expression data were analyzed using covariate analysis with ribosomal protein L19 as the covariate. No interactions (P > 0.10) were observed between IM and SQ adipose tissue depots for any of the variables measured. Therefore, only the main effects of high and low accretion within a depot and the effects of depot are reported. Steers with LIM had smaller mean diameter IM adipocytes (P < 0.001) than HIM steers. Steers with HSQ had larger mean diameter SQ adipocytes (P < 0.001) than LSQ. However, there were no differences (P > 0.10) in any of the genes measured due to high or low adipose accretion. Preadipogenic delta-like kinase1 mRNA was greater in the IM than the SQ adipose tissue; conversely, differentiating and adipogenic genes, lipoprotein lipase, PPARγ, fatty acid synthetase, and fatty acid binding protein 4 were greater (P < 0.001) in the SQ than the IM depot. Intramuscular adipocytes were smaller than SQ adipocytes and had greater expression of the preadipogenic gene, indicating that more hyperplasia was occurring. Meanwhile, SQ adipose tissue contained much larger (P < 0.001) adipocytes that had a greater expression (P < 0.001) of differentiating and adipogenic

  9. Conditional knockout of retinal determination genes in differentiating cells in Drosophila.

    PubMed

    Jin, Meng; Eblimit, Aiden; Pulikkathara, Merlyn; Corr, Stuart; Chen, Rui; Mardon, Graeme

    2016-08-01

    Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults. PMID:27257739

  10. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  11. Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer.

    PubMed

    Dressman, Marlene A; Baras, Alex; Malinowski, Rachel; Alvis, Lisa B; Kwon, Irene; Walz, Thomas M; Polymeropoulos, Mihael H

    2003-05-01

    Global gene expression analysis using microarrays has been used to characterize the molecular profile of tumors. Gene expression variability at the mRNA level can be caused by a number of different events, including novel signaling, downstream activation of transcription enhancers or silencers, somatic mutation, and genetic amplification or deletion. Genomic amplifications are commonly observed in cancer and often include known oncogenes. The tyrosine kinase-type cell surface receptor, ERBB2, is an oncogene located on chromosome 17q21.1 that is amplified in 10-40% of breast tumors. We report for the first time that phenylethanolamine N-methyltransferase (PNMT), proteasome subunit, beta type 3 (PSMB3), ribosomal protein L19 (RPL19), and nuclear receptor subfamily 1, group D, member 1 (NR1D1) are coexpressed with ERBB2 in 34 breast cancer biopsies and also mapped within the same chromosomal location as the ERBB2 gene. Consistent with previous reports, we also observed that the steroidogenic acute regulatory protein-related gene, MLN64, and growth factor receptor bound protein 7 were coexpressed with ERBB2. Coexpression and colocalization of PNMT and MLN64 with ERBB2 suggested that the amplification of ERBB2 includes the chromosomal region harboring these genes. This hypothesis was validated in a subset of 12 biopsies. Gene amplification of ERBB2, PNMT, and MLN64 significantly correlated with increased mRNA gene expression (P < 0.05). These results suggest that gene expression profiling of breast biopsies may become a valuable method for adequately characterizing and choosing treatment modality for patients with breast cancer. PMID:12727839

  12. Gene Coexpression Analyses Differentiate Networks Associated with Diverse Cancers Harboring TP53 Missense or Null Mutations

    PubMed Central

    Oros Klein, Kathleen; Oualkacha, Karim; Lafond, Marie-Hélène; Bhatnagar, Sahir; Tonin, Patricia N.; Greenwood, Celia M. T.

    2016-01-01

    In a variety of solid cancers, missense mutations in the well-established TP53 tumor suppressor gene may lead to the presence of a partially-functioning protein molecule, whereas mutations affecting the protein encoding reading frame, often referred to as null mutations, result in the absence of p53 protein. Both types of mutations have been observed in the same cancer type. As the resulting tumor biology may be quite different between these two groups, we used RNA-sequencing data from The Cancer Genome Atlas (TCGA) from four different cancers with poor prognosis, namely ovarian, breast, lung and skin cancers, to compare the patterns of coexpression of genes in tumors grouped according to their TP53 missense or null mutation status. We used Weighted Gene Coexpression Network analysis (WGCNA) and a new test statistic built on differences between groups in the measures of gene connectivity. For each cancer, our analysis identified a set of genes showing differential coexpression patterns between the TP53 missense- and null mutation-carrying groups that was robust to the choice of the tuning parameter in WGCNA. After comparing these sets of genes across the four cancers, one gene (KIR3DL2) consistently showed differential coexpression patterns between the null and missense groups. KIR3DL2 is known to play an important role in regulating the immune response, which is consistent with our observation that this gene's strongly-correlated partners implicated many immune-related pathways. Examining mutation-type-related changes in correlations between sets of genes may provide new insight into tumor biology. PMID:27536319

  13. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint.

    PubMed

    Hinton, R J; Serrano, M; So, S

    2009-08-01

    Our goal was to discover genes differentially expressed in the perichondrium (PC) of the mandibular condylar cartilage (MCC) that might enhance regenerative medicine or orthopaedic therapies directed at the tissues of the temporomandibular joint. We used targeted gene arrays (osteogenesis, stem cell) to identify genes preferentially expressed in the PC and the cartilaginous (C) portions of the MCC in 2-day-old mice. Genes with higher expression in the PC sample related to growth factor ligand-receptor interactions [FGF-13 (6.4x), FGF-18 (4x), NCAM (2x); PGDF receptors, transforming growth factor (TGF)-beta and IGF-1], the Notch isoforms (especially Notch 3 and 4) and their ligands or structural proteins/proteoglycans [collagen XIV (21x), collagen XVIII (4x), decorin (2.5x)]. Genes with higher expression in the C sample consisted mostly of known cartilage-specific genes [aggrecan (11x), procollagens X (33x), XI (14x), IX (4.5x), Sox 9 (4.4x) and Indian hedgehog (6.7x)]. However, the functional or structural roles of several genes that were expressed at higher levels in the PC sample are unclear [myogenic factor (Myf) 9 (9x), tooth-related genes such as tuftelin (2.5x) and dentin sialophosphoprotein (1.6x), VEGF-B (2x) and its receptors (3-4x) and sclerostin (1.7x)]. FGF, Notch and TGF-beta signalling may be important regulators of MCC proliferation and differentiation; the relatively high expression of genes such as Myf6 and VEGF-B and its receptors suggests a degree of unsuspected plasticity in PC cells. PMID:19627518

  14. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint

    PubMed Central

    Hinton, RJ; Serrano, M; So, S

    2009-01-01

    Objective To discover genes differentially expressed in the perichondrium of the mandibular condylar cartilage (MCC) that might enhance regenerative medicine or orthopedic therapies directed at the tissues of the temporomandibular joint Design We used targeted gene arrays (osteogenesis, stem cell) to identify genes preferentially expressed in the perichondrium (PC) and the cartilaginous (C) portions of the MCC in 2 day-old mice Results Genes with higher expression in the PC sample related to growth factor ligand-receptor interactions (FGF-13 (6.4X), FGF-18 (4X), NCAM (2X); PGDF receptors, TGF-β, and IGF-1), the Notch isoforms (especially Notch 3 and 4) and their ligands, or structural proteins/ proteoglycans (collagen XIV (21X), collagen XVIII (4X), decorin (2.5X)). Genes with higher expression in the C sample consisted mostly of known cartilage-specific genes (aggrecan (11X), procollagens X (33X), XI (14X), IX (4.5X), Sox 9 (4.4X), and Indian hedgehog (6.7X)). However, the functional or structural roles of several genes that were expressed at higher levels in the PC sample are unclear (myogenic factor 9 (9X), tooth-related genes such as tuftelin (2.5X) and dentin sialophosphoprotein (1.6X), VEGF–B (2X) and its receptors (3–4X), and sclerostin (1.7X)). Conclusions FGF, Notch, and TGF-β signaling may be important regulators of MCC proliferation and differentiation; the relatively high expression of genes such as myogenic factor 6 and VEGF–B and its receptors suggests a degree of unsuspected plasticity in PC cells. PMID:19627518

  15. Differential Effects of Three Canonical Toxoplasma Strains on Gene Expression in Human Neuroepithelial Cells ▿ †

    PubMed Central

    Xiao, Jianchun; Jones-Brando, Lorraine; Talbot, C. Conover; Yolken, Robert H.

    2011-01-01

    Strain type is one of the key factors suspected to play a role in determining the outcome of Toxoplasma infection. In this study, we examined the transcriptional profile of human neuroepithelioma cells in response to representative strains of Toxoplasma by using microarray analysis to characterize the strain-specific host cell response. The study of neural cells is of interest in light of the ability of Toxoplasma to infect the brain and to establish persistent infection within the central nervous system. We found that the extents of the expression changes varied considerably among the three strains. Neuroepithelial cells infected with Toxoplasma type I exhibited the highest level of differential gene expression, whereas type II-infected cells had a substantially smaller number of genes which were differentially expressed. Cells infected with type III exhibited intermediate effects on gene expression. The three strains also differed in the individual genes and gene pathways which were altered following cellular infection. For example, gene ontology (GO) analysis indicated that type I infection largely affects genes related to the central nervous system, while type III infection largely alters genes which affect nucleotide metabolism; type II infection does not alter the expression of a clearly defined set of genes. Moreover, Ingenuity Pathways Analysis (IPA) suggests that the three lineages differ in the ability to manipulate their host; e.g., they employ different strategies to avoid, deflect, or subvert host defense mechanisms. These observed differences may explain some of the variation in the neurobiological effects of different strains of Toxoplasma on infected individuals. PMID:21149591

  16. DDX3Y, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation.

    PubMed

    Vakilian, Haghighat; Mirzaei, Mehdi; Sharifi Tabar, Mehdi; Pooyan, Paria; Habibi Rezaee, Lida; Parker, Lindsay; Haynes, Paul A; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-01

    Although it is apparent that chromosome complement mediates sexually dimorphic expression patterns of some proteins that lead to functional differences, there has been insufficient evidence following the manipulation of the male-specific region of the Y chromosome (MSY) gene expression during neural development. In this study, we profiled the expression of 23 MSY genes and 15 of their X-linked homologues during neural cell differentiation of NTERA-2 human embryonal carcinoma cell line (NT2) cells in three different developmental stages using qRT-PCR, Western blotting, and immunofluorescence. The expression level of 12 Y-linked genes significantly increased over neural differentiation, including RBMY1, EIF1AY, DDX3Y, HSFY1, BPY2, PCDH11Y, UTY, RPS4Y1, USP9Y, SRY, PRY, and ZFY. We showed that siRNA-mediated knockdown of DDX3Y, a DEAD box RNA helicase enzyme, in neural progenitor cells impaired cell cycle progression and increased apoptosis, consequently interrupting differentiation. Label-free quantitative shotgun proteomics based on a spectral counting approach was then used to characterize the proteomic profile of the cells after DDX3Y knockdown. Among 917 reproducibly identified proteins detected, 71 proteins were differentially expressed following DDX3Y siRNA treatment compared with mock treated cells. Functional grouping indicated that these proteins were involved in cell cycle, RNA splicing, and apoptosis, among other biological functions. Our results suggest that MSY genes may play an important role in neural differentiation and demonstrate that DDX3Y could play a multifunctional role in neural cell development, probably in a sexually dimorphic manner.

  17. Isolation of genes involved in colorectal metastasis by differential display of mRNA species

    SciTech Connect

    Gustafson, C.; Chenevix-Trench, G.; Antalis, T.

    1994-09-01

    The genetic events that give rise to malignant colorectal tumors have been determined in some detail. Much less is known about the genes involved in metastasis of these neoplasms. A useful resource to study this process is the pair of cell lines, SW480 and SW620, which are derived from the primary and metastatic components, respectively, of the same colorectal tumor. We are using the method of differential display of mRNA species to isolate genes that are differentially expressed in these two cell lines. Differential display is carried out in triplicate, using three different RNA extractions from each cell line. Only fragments that are consistently up- or down-regulated in one cell line compared to another are examined further. Less than 1% of fragments are differentially expressed. These are cloned, sequenced, and used for Northern blot and reverse transcriptase-PCR in order to examine their differential expression further. The RNA sources for this expression analysis are (i) SW480 and SW620 cells, (ii) other pairs of primary and metastatic colorectal cell lines, (iii) primary and metastatic tissue from patients with colorectal cancer.

  18. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    PubMed

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity. PMID:24020304

  19. Scotin: A new p63 target gene expressed during epidermal differentiation

    SciTech Connect

    Zocchi, Loredana; Codispoti, Andrea; Lane, David P.; Melino, Gerry Terrinoni, Alessandro

    2008-03-07

    p63, a member of the p53 family, is transcribed from two different promoters giving rise to two different proteins: TAp63 that contains the N-terminal transactivation domain and {delta}N that lacks this domain. In this article we describe a new target gene Scotin induced by TAp63 during epithelial differentiation. This gene was previously isolated as a p53-inducible proapoptotic gene and the protein is located in the endoplasmic reticulum and in the nuclear membrane. Scotin expression is induced in response to endoplasmic reticulum (ER) stress in a p53 dependent or independent manner. We detected Scotin upregulation in primary keratinocyte cell lines committed to differentiate. In this paper we also show that Scotin is expressed in the supra basal layer of the epidermis in parallel with TAp63, but not {delta}Np63 expression. We conclude that Scotin is a new p63 target gene induced during epithelial differentiation, a complex process that also involves ER stress induction.

  20. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    PubMed

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity.

  1. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  2. Effect of microgrooves and fibronectin conjugation on the osteoblast marker gene expression and differentiation

    PubMed Central

    2015-01-01

    PURPOSE To determine the effect of fibronectin (FN)-conjugated, microgrooved titanium (Ti) on osteoblast differentiation and gene expression in human bone marrow-derived mesenchymal stem cells (MSCs). MATERIALS AND METHODS Photolithography was used to fabricate the microgrooved Ti, and amine functionalization (silanization) was used to immobilize fibronectin on the titanium surfaces. Osteoblast differentiation and osteoblast marker gene expression were analyzed by means of alkaline phosphatase activity assay, extracellular calcium deposition assay, and quantitative real-time PCR. RESULTS The conjugation of fibronectin on Ti significantly increased osteoblast differentiation in MSCs compared with non-conjugated Ti substrates. On the extracellular calcium deposition assays of MSCs at 21 days, an approximately two-fold increase in calcium concentration was observed on the etched 60-µm-wide/10-µm-deep microgrooved surface with fibronectin (E60/10FN) compared with the same surface without fibronectin (E60/10), and a more than four-fold increase in calcium concentration was observed on E60/10FN compared with the non-etched control (NE0) and etched control (E0) surfaces. Through a series of analyses to determine the expression of osteoblast marker genes, a significant increase in all the marker genes except type I collagen α1 mRNA was seen with E60/10FN more than with any of the other groups, as compared with NE0. CONCLUSION The FN-conjugated, microgrooved Ti substrate can provide an effective surface to promote osteoblast differentiation and osteoblast marker gene expression in MSCs. PMID:26816580

  3. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  4. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    PubMed Central

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  5. RNA Sequencing of Sessile Serrated Colon Polyps Identifies Differentially Expressed Genes and Immunohistochemical Markers

    PubMed Central

    Delker, Don A.; Pop, Stelian; Neklason, Deborah W.; Bronner, Mary P.; Burt, Randall W.; Hagedorn, Curt H.

    2014-01-01

    Background Sessile serrated adenomas/polyps (SSA/Ps) may account for 20–30% of colon cancers. Although large SSA/Ps are generally recognized phenotypically, small (<1 cm) or dysplastic SSA/Ps are difficult to differentiate from hyperplastic or small adenomatous polyps by endoscopy and histopathology. Our aim was to define the comprehensive gene expression phenotype of SSA/Ps to better define this cancer precursor. Results RNA sequencing was performed on 5′ capped RNA from seven SSA/Ps collected from patients with the serrated polyposis syndrome (SPS) versus eight controls. Highly expressed genes were analyzed by qPCR in additional SSA/Ps, adenomas and controls. The cellular localization and level of gene products were examined by immunohistochemistry in syndromic and sporadic SSA/Ps, adenomatous and hyperplastic polyps and controls. We identified 1,294 differentially expressed annotated genes, with 106 increased ≥10-fold, in SSA/Ps compared to controls. Comparing these genes with an array dataset for adenomatous polyps identified 30 protein coding genes uniquely expressed ≥10-fold in SSA/Ps. Biological pathways altered in SSA/Ps included mucosal integrity, cell adhesion, and cell development. Marked increased expression of MUC17, the cell junction protein genes VSIG1 and GJB5, and the antiapoptotic gene REG4 were found in SSA/Ps, relative to controls and adenomas, were verified by qPCR analysis of additional SSA/Ps (n = 21) and adenomas (n = 10). Immunohistochemical staining of syndromic (n≥11) and sporadic SSA/Ps (n≥17), adenomatous (n≥13) and hyperplastic (n≥10) polyps plus controls (n≥16) identified unique expression patterns for VSIG1 and MUC17 in SSA/Ps. Conclusion A subset of genes and pathways are uniquely increased in SSA/Ps, compared to adenomatous polyps, thus supporting the concept that cancer develops by different pathways in these phenotypically distinct polyps with markedly different gene expression profiles. Immunostaining

  6. A short upstream promoter region mediates transcriptional regulation of the mouse doublecortin gene in differentiating neurons

    PubMed Central

    2010-01-01

    Background Doublecortin (Dcx), a MAP (Microtubule-Associated Protein), is transiently expressed in migrating and differentiating neurons and thereby characterizes neuronal precursors and neurogenesis in developing and adult neurogenesis. In addition, reduced Dcx expression during development has been related to appearance of brain pathologies. Here, we attempt to unveil the molecular mechanisms controlling Dcx gene expression by studying its transcriptional regulation during neuronal differentiation. Results To determine and analyze important regulatory sequences of the Dcx promoter, we studied a putative regulatory region upstream from the mouse Dcx coding region (pdcx2kb) and several deletions thereof. These different fragments were used in vitro and in vivo to drive reporter gene expression. We demonstrated, using transient expression experiments, that pdcx2kb is sufficient to control specific reporter gene expression in cerebellar cells and in the developing brain (E14.5). We determined the temporal profile of Dcx promoter activity during neuronal differentiation of mouse embryonic stem cells (mESC) and found that transcriptional activation of the Dcx gene varies along with neuronal differentiation of mESC. Deletion experiments and sequence comparison of Dcx promoters across rodents, human and chicken revealed the importance of a highly conserved sequence in the proximal region of the promoter required for specific and strong expression in neuronal precursors and young neuronal cells. Further analyses revealed the presence in this short sequence of several conserved, putative transcription factor binding sites: LEF/TCF (Lymphoid Enhancer Factor/T-Cell Factor) which are effectors of the canonical Wnt pathway; HNF6/OC2 (Hepatocyte Nuclear Factor-6/Oncecut-2) members of the ONECUT family and NF-Y/CAAT (Nuclear Factor-Y). Conclusions Studies of Dcx gene regulatory sequences using native, deleted and mutated constructs suggest that fragments located upstream of the

  7. Differential gene expression according to race and host plant in the pea aphid.

    PubMed

    Eyres, Isobel; Jaquiéry, Julie; Sugio, Akiko; Duvaux, Ludovic; Gharbi, Karim; Zhou, Jing-Jiang; Legeai, Fabrice; Nelson, Michaela; Simon, Jean-Christophe; Smadja, Carole M; Butlin, Roger; Ferrari, Julia

    2016-09-01

    Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change. PMID:27474484

  8. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.)

    PubMed Central

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296

  9. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.).

    PubMed

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-05-11

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar 'EP6392' which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns.

  10. Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain

    PubMed Central

    Montoya, Julio Cesar; Fajardo, Dianora; Peña, Angela; Sánchez, Adalberto; Domínguez, Martha C; Satizábal, José María

    2014-01-01

    Background: The information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. Objective: To correlate the levels of transcription of 19 genes located in the Down Syndrome Critical Region (DSCR) with their expression in several substructures of normal human brain. Methods: There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences", (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Results: Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. Conclusion: The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognition. PMID:25767303

  11. Differential Gene Expression Analysis of the Epacromius coerulipes (Orthoptera: Acrididae) Transcriptome

    PubMed Central

    Jin, Yongling; Cong, Bin; Wang, Liyan; Gao, Yugang; Zhang, Haiyan; Dong, Hui; Lin, Zhiwei

    2016-01-01

    Epacromius coerulipes (Ivanov) is one of the most widely distributed locusts. To date, the main methods to kill locusts still rely on chemical controls, which can result in the selection of locusts with resistance to chemical pesticides. Butene-fipronil is a new pesticide that was discovered by the structural modification of fipronil. This pesticide has been used to control various agricultural pests and has become an important pesticide product to control pests that exhibit resistance to other pesticides, including locusts. To extend its useful half-life, studies of the initiation and progression of resistance to this pesticide are needed. Herein, two E. coerulipes strains, a pesticide-sensitive (PS) and a pesticide-resistant (PR) strain, were chosen to undergo de novo assembly by paired-end transcriptome Illumina sequencing. Overall, 63,033 unigenes were detected; the average gene length was 772 bp and the N50 was 1,589 bp. Among these unigenes, ∼25,132 (39.87% of the total) could be identified as known proteins in bioinformatic databases from national centers. A comparison of the PR and PS strains revealed that 2,568 genes were differentially expressed, including 1,646 and 922 genes that were up- and down-regulated, respectively. According to the Gene Ontology (GO) database, among biological processes the metabolic process group was the largest group (6,900 genes, 22.47%) and contained a high frequency of differentially expressed genes (544 genes, 27.54%). According to the Clusters of Orthologous Groups (COG) categories, 28 genes, representing 2.98% of all genes, belonged to the group of genes involved in the biosynthesis, transportation, and catabolism of secondary metabolites. The differentially expressed genes that we identified are involved in 50 metabolic pathways. Among these pathways, the metabolism pathway was the most represented. After enrichment analysis of differential gene expression pathways, six pathways—ribosome; starch, and sucrose

  12. LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation.

    PubMed

    Iturbide, Ane; Pascual-Reguant, Laura; Fargas, Laura; Cebrià, Joan Pau; Alsina, Berta; García de Herreros, Antonio; Peiró, Sandra

    2015-06-01

    Protein function is often regulated and controlled by posttranslational modifications, such as oxidation. Although oxidation has been mainly considered to be uncontrolled and nonenzymatic, many enzymatic oxidations occur on enzyme-selected lysine residues; for instance, LOXL2 oxidizes lysines by converting the ε-amino groups into aldehyde groups. Using an unbiased proteomic approach, we have identified methylated TAF10, a member of the TFIID complex, as a LOXL2 substrate. LOXL2 oxidation of TAF10 induces its release from its promoters, leading to a block in TFIID-dependent gene transcription. In embryonic stem cells, this results in the inactivation of the pluripotency genes and loss of the pluripotent capacity. During zebrafish development, the absence of LOXL2 resulted in the aberrant overexpression of the neural progenitor gene Sox2 and impaired neural differentiation. Thus, lysine oxidation of the transcription factor TAF10 is a controlled protein modification and demonstrates a role for protein oxidation in regulating pluripotency genes.

  13. Differential expression of duplicated opsin genes in two eyetypes of ostracod crustaceans.

    PubMed

    Oakley, Todd H; Huber, Daniel R

    2004-08-01

    In the first molecular study of ostracod (Crustacea) vision, we present partial cDNA sequences of ostracod visual pigment genes (opsins). We found strong support for differential expression of opsins in ostracod median and compound eyes and suggest that photoreceptor specific expression may be a general phenomenon in organisms with multiple receptors. We infer that eye-specific expression predates the divergence of the two species examined, Skogsbergia lerneri and Vargula hilgendorfii, because eye-specific opsin orthologs are present in both species. We found multiple opsin loci in ostracods, estimating that at least eight are present in Skogsbergia lerneri. All opsins from both ostracod species examined are more closely related to each other than to any other known opsin sequences. Because we find no evidence for gene conversion or alternative splicing, we suggest the occurrence of many recent gene duplications. Why ostracods may have retained multiple recent opsin gene duplicates is unknown, but we discuss several possible hypotheses.

  14. Isolation and analysis of differentially expressed genes during asexual sporulation in liquid static culture of Ganoderma lucidum by suppression subtractive hybridization.

    PubMed

    Xu, Jun-Wei; Zhao, Wei; Xu, Yi-Ning; Zhong, Jian-Jiang

    2012-04-01

    Ganoderma lucidum differentiates in liquid static culture by forming aerial mycelia and asexual spores, and this differentiation process is accompanied by higher production of anti-tumor compounds ganoderic acids. To gain an insight into the molecular events during asexual sporulation of G. lucidum, comparative transcriptome analysis using suppression subtractive hybridization (SSH) technique was performed to identify preferentially expressed genes in liquid static culture vs. in traditional shaking culture. After macroarray analysis of 1920 cDNAs from SSH library, 147 unigenes which exhibited high expression in static culture were identified. Among these sequences, putative translations of 88 unigenes possessed much similarity to known proteins involved in cell organization, signal transduction, cell metabolism, protein biosynthesis and transcription regulation; 13 had significant similarity to hypothetical proteins; the remaining 46 showed little or no similarity to GenBank sequences. RT-qPCR analysis confirmed increases in transcripts of selected genes under liquid static culture condition. The results of this study present the useful application of EST analysis on G. lucidum and provide preliminary indication of gene expression putatively involved in asexual sporulation process.

  15. The KNOTTED-like genes of peach (Prunus persica L. Batsch) are differentially expressed during drupe growth and the class 1 KNOPE1 contributes to mesocarp development.

    PubMed

    Testone, Giulio; Condello, Emiliano; Di Giacomo, Elisabetta; Nicolodi, Chiara; Caboni, Emilia; Rasori, Angela; Bonghi, Claudio; Bruno, Leonardo; Bitonti, Maria Beatrice; Giannino, Donato

    2015-08-01

    The Knotted-like transcription factors (KNOX) contribute to plant organ development. The expression patterns of peach KNOX genes showed that the class 1 members act precociously (S1-S2 stages) and differentially during drupe growth. Specifically, the transcription of KNOPE1 and 6 decreased from early (cell division) to late (cell expansion) S1 sub-stages, whilst that of STMlike1, 2, KNOPE2, 2.1 ceased at early S1. The KNOPE1 role in mesocarp was further addressed by studying the mRNA localization in the pulp cells and vascular net at early and late S1. The message signal was first diffuse in parenchymatous cells and then confined to hypodermal cell layers, showing that the gene down-tuning accompanied cell expansion. As for bundles, the mRNA mainly featured in the procambium/phloem of collateral open types and subsequently in the phloem side of complex structures (converging bundles, ducts). The KNOPE1 overexpression in Arabidopsis caused fruit shortening, decrease of mesocarp cell size, diminution of vascular lignification together with the repression of the major gibberellin synthesis genes AtGA20ox1 and AtGA3ox1. Negative correlation between the expression of KNOPE1 and PpGA3ox1 was observed in four cultivars at S1, suggesting that the KNOPE1 repression of PpGA3ox1 may regulate mesocarp differentiation by acting on gibberellin homeostasis.

  16. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells.

    PubMed

    Holkers, Maarten; Maggio, Ignazio; Liu, Jin; Janssen, Josephine M; Miselli, Francesca; Mussolino, Claudio; Recchia, Alessandra; Cathomen, Toni; Gonçalves, Manuel A F V

    2013-03-01

    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 'safe harbor' locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.

  17. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells

    PubMed Central

    Holkers, Maarten; Maggio, Ignazio; Liu, Jin; Janssen, Josephine M.; Miselli, Francesca; Mussolino, Claudio; Recchia, Alessandra; Cathomen, Toni; Gonçalves, Manuel A. F. V.

    2013-01-01

    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 ‘safe harbor’ locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform. PMID:23275534

  18. Gene expression dynamics during cell differentiation: Cell fates as attractors and cell fate decisions as bifurcations

    NASA Astrophysics Data System (ADS)

    Huang, Sui

    2006-03-01

    During development of multicellular organisms, multipotent stem and progenitor cells undergo a series of hierarchically organized ``somatic speciation'' processes consisting of binary branching events to achieve the diversity of discretely distinct differentiated cell types in the body. Current paradigms of genetic regulation of development do not explain this discreteness, nor the time-irreversibility of differentiation. Each cell contains the same genome with the same N (˜ 25,000) genes and each cell type k is characterized by a distinct stable gene activation pattern, expressed as the cell state vector Sk(t) = xk1(t) ,.. xki(t),.. xkN(t), where xki is the activation state of gene i in cell type k. Because genes are engaged in a network of mutual regulatory interactions, the movement of Sk(t) in the N-dimensional state space is highly constrained and the organism can only realize a tiny fraction of all possible configurations Sk. Then, the trajectories of Sk reflect the diversifying developmental paths and the mature cell types are high-dimensional attractor states. Experimental results based on gene expression profile measurements during blood cell differentiation using DNA microarrays are presented that support the old idea that cell types are attractors. This basic notion is extended to treat binary fate decisions as bifurcations in the dynamics of networks circuits. Specifically, during cell fate decision, the metastable progenitor attractor is destabilized, poising the cell on a `watershed state' so that it can stochastically or in response to deterministic perturbations enter either one of two alternative fates. Overall, the model and supporting experimental data provide an overarching conceptual framework that helps explain how the specifics of gene network architecture produces discreteness and robustness of cell types, allows for both stochastic and deterministic cell fate decision and ensures directionality of organismal development.

  19. Identification of differentially expressed genes in Mongolian sheep ovaries by suppression subtractive hybridization.

    PubMed

    He, Xiaolong; Li, Bei; Wang, Feng; Tian, Chunying; Rong, Weiheng; Liu, Yongbin

    2012-07-01

    Fecundity is an important trait in sheep. Because it is directly related to production costs and efficiency, it has great economic impact in sheep husbandry. Because Mongolian sheep are a longstanding, indigenous breed, they are genetically related to most other breeds of sheep in China. The study of genes related to reproductive traits is essential to improving the fecundity of Mongolian sheep. In the present study, suppression subtractive hybridization (SSH) was performed using forward and reverse nested primers on cDNA libraries from ovarian tissue of single-bearing (S) and biparous (B) Mongolian sheep (MS). This yielded 768 clones. The length of the inserted fragments ranged from 150 to 1000 bp. From these, dot blot hybridization followed by sequencing and homology blast search in GenBank resolved 373 differentially expressed clones, representing 185 gene sequences (homology >85% and length >200 bp), 10 expressed sequence tags (ESTs; homology >95% and length >100 bp), and 4 unknown ESTs. The analysis of the differentially expressed gene functions allowed these genes to be categorized into seven groups: cell/body or immune defense, metabolism, transportation, nucleic acid modification, cell development, signal transduction, and cell structure. Four differentially expressed genes, a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), inhibitor of DNA binding 3 (ID3), bone morphogenetic protein 6 (BMP6), and integrin beta 1 (ITGB1), were randomly selected and verified using relative quantitative real-time polymerase chain reaction (RQ-PCR). The expression of these genes in BMS ovaries was 30.06, 11.55, 0.82, and 1.12-fold that of SMS ovaries, respectively. PMID:22727452

  20. Hierarchical Clustering of Breast Cancer Methylomes Revealed Differentially Methylated and Expressed Breast Cancer Genes

    PubMed Central

    Lin, I-Hsuan; Chen, Dow-Tien; Chang, Yi-Feng; Lee, Yu-Ling; Su, Chia-Hsin; Cheng, Ching; Tsai, Yi-Chien; Ng, Swee-Chuan; Chen, Hsiao-Tan; Lee, Mei-Chen; Chen, Hong-Wei; Suen, Shih-Hui; Chen, Yu-Cheng; Liu, Tze-Tze; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2015-01-01

    Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation. PMID:25706888

  1. Identification of Differential Gene Expression in Brassica rapa Nectaries through Expressed Sequence Tag Analysis

    PubMed Central

    Hampton, Marshall; Xu, Wayne W.; Kram, Brian W.; Chambers, Emily M.; Ehrnriter, Jerad S.; Gralewski, Jonathan H.; Joyal, Teresa; Carter, Clay J.

    2010-01-01

    Background Nectaries are the floral organs responsible for the synthesis and secretion of nectar. Despite their central roles in pollination biology, very little is understood about the molecular mechanisms underlying nectar production. This project was undertaken to identify genes potentially involved in mediating nectary form and function in Brassica rapa. Methodology and Principal Findings Four cDNA libraries were created using RNA isolated from the median and lateral nectaries of B. rapa flowers, with one normalized and one non-normalized library being generated from each tissue. Approximately 3,000 clones from each library were randomly sequenced from the 5′ end to generate a total of 11,101 high quality expressed sequence tags (ESTs). Sequence assembly of all ESTs together allowed the identification of 1,453 contigs and 4,403 singleton sequences, with the Basic Localized Alignment Search Tool (BLAST) being used to identify 4,138 presumptive orthologs to Arabidopsis thaliana genes. Several genes differentially expressed between median and lateral nectaries were initially identified based upon the number of BLAST hits represented by independent ESTs, and later confirmed via reverse transcription polymerase chain reaction (RT PCR). RT PCR was also used to verify the expression patterns of eight putative orthologs to known Arabidopsis nectary-enriched genes. Conclusions/Significance This work provided a snapshot of gene expression in actively secreting B. rapa nectaries, and also allowed the identification of differential gene expression between median and lateral nectaries. Moreover, 207 orthologs to known nectary-enriched genes from Arabidopsis were identified through this analysis. The results suggest that genes involved in nectar production are conserved amongst the Brassicaceae, and also supply clones and sequence information that can be used to probe nectary function in B. rapa. PMID:20098697

  2. Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints

    PubMed Central

    David, Maude M.; Enard, David; Ozturk, Alp; Daniels, Jena; Jung, Jae-Yoon; Diaz-Beltran, Leticia; Wall, Dennis. P.

    2016-01-01

    The burden of comorbidity in Autism Spectrum Disorder (ASD) is substantial. The symptoms of autism overlap with many other human conditions, reflecting common molecular pathologies suggesting that cross-disorder analysis will help prioritize autism gene candidates. Genes in the intersection between autism and related conditions may represent nonspecific indicators of dysregulation while genes unique to autism may play a more causal role. Thorough literature review allowed us to extract 125 ICD-9 codes comorbid to ASD that we mapped to 30 specific human disorders. In the present work, we performed an automated extraction of genes associated with ASD and its comorbid disorders, and found 1031 genes involved in ASD, among which 262 are involved in ASD only, with the remaining 779 involved in ASD and at least one comorbid disorder. A pathway analysis revealed 13 pathways not involved in any other comorbid disorders and therefore unique to ASD, all associated with basal cellular functions. These pathways differ from the pathways associated with both ASD and its comorbid conditions, with the latter being more specific to neural function. To determine whether the sequence of these genes have been subjected to differential evolutionary constraints, we studied long term constraints by looking into Genomic Evolutionary Rate Profiling, and showed that genes involved in several comorbid disorders seem to have undergone more purifying selection than the genes involved in ASD only. This result was corroborated by a higher dN/dS ratio for genes unique to ASD as compare to those that are shared between ASD and its comorbid disorders. Short-term evolutionary constraints showed the same trend as the pN/pS ratio indicates that genes unique to ASD were under significantly less evolutionary constraint than the genes associated with all other disorders. PMID:27414027

  3. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment.

    PubMed

    Oh, J-E; Chambwe, N; Klein, S; Gal, J; Andrews, S; Gleason, G; Shaknovich, R; Melnick, A; Campagne, F; Toth, M

    2013-01-22

    Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20-80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety.

  4. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment

    PubMed Central

    Oh, J-e; Chambwe, N; Klein, S; Gal, J; Andrews, S; Gleason, G; Shaknovich, R; Melnick, A; Campagne, F; Toth, M

    2013-01-01

    Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20–80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety. PMID:23340501

  5. Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture.

    PubMed

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Renninger, Markus; Skutella, Thomas

    2014-01-01

    This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks) and long-term culture (up to more than 14 months) in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen(-)/laminin(+) matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the "spermatogonial" gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  6. Differentially expressed genes of Chenopodium amaranticolor in response to cymbidium mosaic virus infection.

    PubMed

    Kim, Su Min; Baek, Eseul; Ryu, Ki Hyun; Choi, Sun Hee

    2016-09-01

    Cymbidium mosaic virus (CymMV)-induced expressed sequence tag (EST) clones from Chenopodium amaranticolor were identified. CymMV was mechanically inoculated onto C. amaranticolor, and local lesion symptoms were observed. Inoculated leaves were collected on serial days post inoculation (dpi) to identify activated or suppressed genes. mRNA isolation and suppression subtractive hybridization (SSH) were then performed to identify differentially expressed genes related to the local lesion response. Fifty-three ESTs, including genes related to defense and stress responses (e.g., lipoxygenase, jasmonate-induced protein, and heat shock protein), were generated. In addition, a large proportion of the ESTs were found to be involved in photosynthesis, as determined by their functional categories. Expression levels of several EST genes were observed using quantitative real-time reverse transcription-polymerase chain reaction, and the evaluated genes showed varying levels of expression during the experimental period. In this study, differentially expressed sequences via SSH were identified from CymMV-infected C. amaranticolor, and profiling and annotation were carried out to determine the expression pattern of CymMV and its interaction with C. amaranticolor. PMID:27364083

  7. The Effects of Simulated Microgravity on Gene Expression in Human Bone Marrow MSC's Under Osteogenic Differentiation

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Gershovich, J. G.; Gershovich, P. M.; Grigoriev, A. I.

    2013-02-01

    In this work it was found that the expression level of 144 genes significantly changed in human mesenchymal stem cells during their osteogenic differentiation after 20 days of exposure to simulated microgravity: the expression of 30 genes significantly increased (from 1.7 to 11.9 fold), and 114 - decreased (from 0.2 to 0.6 fold). Most of the revealed genes were attributed to the 11 major groups corresponding to its biological role in the cells. Additional group was formed from the genes which did not belong to these categories, or did not have a description in the known databases (such as Pubmed). The greatest number of genes with altered expression was found in the group “Matrix and Adhesion", while the lowest - in the "Apoptosis and the response to external stimuli" group. These findings suggest that cultured hMSCs, placed in non-standard conditions, maintain a high level of viability, but have significantly altered functional properties which could affect their efficiency to differentiate towards osteogenic direction.

  8. Co-localization of growth QTL with differentially expressed candidate genes in rainbow trout.

    PubMed

    Kocmarek, Andrea L; Ferguson, Moira M; Danzmann, Roy G

    2015-09-01

    We tested whether genes differentially expressed between large and small rainbow trout co-localized with familial QTL regions for body size. Eleven chromosomes, known from previous work to house QTL for weight and length in rainbow trout, were examined for QTL in half-sibling families produced in September (1 XY male and 1 XX neomale) and December (1 XY male). In previous studies, we identified 108 candidate genes for growth expressed in the liver and white muscle in a subset of the fish used in this study. These gene sequences were BLASTN aligned against the rainbow trout and stickleback genomes to determine their location (rainbow trout) and inferred location based on synteny with the stickleback genome. Across the progeny of all three males used in the study, 63.9% of the genes with differential expression appear to co-localize with the QTL regions on 6 of the 11 chromosomes tested in these males. Genes that co-localized with QTL in the mixed-sex offspring of the two XY males primarily showed up-regulation in the muscle of large fish and were related to muscle growth, metabolism, and the stress response.

  9. Global analysis of gene expression by differential display: a mathematical model.

    PubMed

    Yang, Shitao; Liang, Peng

    2006-01-01

    Differential display (DD) is one of the most commonly used approaches for identifying differentially expressed genes. However, there has been lack of an accurate guidance on how many DD polymerase chain reaction (PCR) primer combinations are needed to display most of the genes expressed in a eukaryotic cell. This study critically evaluated the gene coverage by DD as a function of the number of arbitrary primers, the number of 3' bases of an arbitrary primer required to completely match an mRNA target sequence, the additional 5' base match(s) of arbitrary primers in first-strand cDNA recognition, and the length of mRNA tails being analyzed. The resulting new DD mathematical model predicts that 80-160 arbitrary 13mers, when used in combinations with three one-base anchored oligo-dT primers, would allow any given mRNA within a eukaryotic cell to be detected with a 74-93% probability, respectively. The prediction was supported by both computer simulation of the DD process and experimental data from a comprehensive fluorescent DD screening for target genes of tumor-suppressor p53. Thus, this work provides a theoretical foundation upon which global analysis of gene expression by DD can be pursued.

  10. Identification of Genes Differentially Expressed in Benign versus Malignant Thyroid Tumors

    PubMed Central

    Prasad, Nijaguna B.; Somervell, Helina; Tufano, Ralph P.; Dackiw, Alan P.B.; Marohn, Michael R.; Califano, Joseph A.; Wang, Yongchun; Westra, William H.; Clark, Douglas P.; Umbricht, Christopher B.; Libutti, Steven K.; Zeiger, Martha A.

    2011-01-01

    Purpose Although fine-needle aspiration biopsy is the most useful diagnostic tool in evaluating a thyroid nodule, preoperative diagnosis of thyroid nodules is frequently imprecise, with up to 30% of fine-needle aspiration biopsy cytology samples reported as “suspicious” or “indeterminate.” Therefore, other adjuncts, such as molecular-based diagnostic approaches are needed in the preoperative distinction of these lesions. Experimental Design In an attempt to identify diagnostic markers for the preoperative distinction of these lesions, we chose to study by microarray analysis the eight different thyroid tumor subtypes that can present a diagnostic challenge to the clinician. Results Our microarray-based analysis of 94 thyroid tumors identified 75 genes that are differentially expressed between benign and malignant tumor subtypes. Of these, 33 were overexpressed and 42 were underexpressed in malignant compared with benign thyroid tumors. Statistical analysis of these genes, using nearest-neighbor classification, showed a 73% sensitivity and 82% specificity in predicting malignancy. Real-time reverse transcription – PCR validation for 12 of these genes was confirmatory. Western blot and immunohistochemical analyses of one of the genes, high mobility group AT-hook 2, further validated the microarray and real-time reverse transcription – PCR data. Conclusions Our results suggest that these 12 genes could be useful in the development of a panel of markers to differentiate benign from malignant tumors and thus serve as an important first step in solving the clinical problem associated with suspicious thyroid lesions. PMID:18519760

  11. Identification of genes involved in the drought adaptation and recovery in Portulaca oleracea by differential display.

    PubMed

    D'Andrea, Rodrigo Matías; Triassi, Agustina; Casas, María Isabel; Andreo, Carlos Santiago; Lara, María Valeria

    2015-05-01

    Portulaca oleracea is one of the richest plant sources of ω-3 and ω-6 fatty acids and other compounds potentially valuable for nutrition. It is broadly established in arid, semiarid and well-watered fields, thus making it a promising candidate for research on abiotic stress resistance mechanisms. It is capable of withstanding severe drought and then of recovering upon rehydration. Here, the adaptation to drought and the posterior recovery was evaluated at transcriptomic level by differential display validated by qRT-PCR. Of the 2279 transcript-derived fragments amplified, 202 presented differential expression. Ninety of them were successfully isolated and sequenced. Selected genes were tested against different abiotic stresses in P. oleracea and the behavior of their orthologous genes in Arabidopsis thaliana was also explored to seek for conserved response mechanisms. In drought adapted and in recovered plants changes in expression of many protein metabolism-, lipid metabolism- and stress-related genes were observed. Many genes with unknown function were detected, which also respond to other abiotic stresses. Some of them are also involved in the seed desiccation/imbibition process and thus would be of great interest for further research. The potential use of candidate genes to engineer drought tolerance improvement and recovery is discussed.

  12. Differentially expressed genes of Chenopodium amaranticolor in response to cymbidium mosaic virus infection.

    PubMed

    Kim, Su Min; Baek, Eseul; Ryu, Ki Hyun; Choi, Sun Hee

    2016-09-01

    Cymbidium mosaic virus (CymMV)-induced expressed sequence tag (EST) clones from Chenopodium amaranticolor were identified. CymMV was mechanically inoculated onto C. amaranticolor, and local lesion symptoms were observed. Inoculated leaves were collected on serial days post inoculation (dpi) to identify activated or suppressed genes. mRNA isolation and suppression subtractive hybridization (SSH) were then performed to identify differentially expressed genes related to the local lesion response. Fifty-three ESTs, including genes related to defense and stress responses (e.g., lipoxygenase, jasmonate-induced protein, and heat shock protein), were generated. In addition, a large proportion of the ESTs were found to be involved in photosynthesis, as determined by their functional categories. Expression levels of several EST genes were observed using quantitative real-time reverse transcription-polymerase chain reaction, and the evaluated genes showed varying levels of expression during the experimental period. In this study, differentially expressed sequences via SSH were identified from CymMV-infected C. amaranticolor, and profiling and annotation were carried out to determine the expression pattern of CymMV and its interaction with C. amaranticolor.

  13. Differential expression of four soybean bZIP genes during Phakopsora pachyrhizi infection.

    PubMed

    Alves, Murilo S; Soares, Zamira G; Vidigal, Pedro M P; Barros, Everaldo G; Poddanosqui, Adriana M P; Aoyagi, Luciano N; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Fietto, Luciano G

    2015-11-01

    Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.

  14. Expression of chondrogenic genes by undifferentiated vs. differentiated human mesenchymal stem cells using array technology.

    PubMed

    Henrionnet, Christel; Roeder, Emilie; Gillet, Romain; Galois, Laurent; Bensoussan, Danièle; Mainard, Didier; Netter, Patrick; Gillet, Pierre; Pinzano, Astrid

    2010-01-01

    This study investigated the gene expression profile of human mesenchymal stem cells seeded in collagen sponge for 28 days in three different mediums: (1) basal medium as control containing ITS alone, (2) ITS+TGF-β1 alone or (3) ITS 1% supplemented sequentially by TGF-β1 (D3-D14) followed by BMP-2 (D15-D28). Differential expression of 84 genes implicated in chondrogenic and osteogenic differentiation of MSCs was analyzed at D28 by real-time RT-PCR array technology. TGF-β1 alone down-regulated two genes, CD36 and cathepsin K. Sixteen genes were significantly up-regulated, notably type 2 and type 10 collagens, COMP and Sox9. The sequential combination of TGF-β1 and BMP-2 produced a similar profile with prominent expression of type 2 collagen and the alkaline phosphatase gene. Interestingly, in this in vitro condition, RUNX2 was not up-regulated, suggesting that the sequential combination of TGF-β1/BMP2 enhances the hypertrophic chondrogenic profile without turning towards the osteoblastic pathway.

  15. Role of HuR in Skeletal Myogenesis through Coordinate Regulation of Muscle Differentiation Genes

    PubMed Central

    Figueroa, Angélica; Cuadrado, Ana; Fan, Jinshui; Atasoy, Ulus; Muscat, George E.; Muñoz-Canoves, Pura; Gorospe, Myriam; Muñoz, Alberto

    2003-01-01

    In this report, we investigate the role of the RNA-binding protein HuR during skeletal myogenesis. At the onset of myogenesis in differentiating C2C12 myocytes and in vivo in regenerating mouse muscle, HuR cytoplasmic abundance increased dramatically, returning to a predominantly nuclear presence upon completion of myogenesis. mRNAs encoding key regulators of myogenesis-specific transcription (myogenin and MyoD) and cell cycle withdrawal (p21), bearing AU-rich regions, were found to be targets of HuR in a differentiation-dependent manner. Accordingly, mRNA half-lives were highest during differentiation, declining when differentiation was completed. Importantly, HuR-overexpressing C2C12 cells displayed increased target mRNA expression and half-life and underwent precocious differentiation. Our findings underscore a critical function for HuR during skeletal myogenesis linked to HuR's coordinate regulation of muscle differentiation genes. PMID:12832484

  16. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    PubMed

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  17. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    PubMed

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  18. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms

    PubMed Central

    Leal, Walter S.; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S. B.; Ueira-Vieira, Carlos

    2013-01-01

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito’s main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, “plus-C” odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito. PMID:24167245

  19. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms.

    PubMed

    Leal, Walter S; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S B; Ueira-Vieira, Carlos

    2013-11-12

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito's main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, "plus-C" odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito.

  20. The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation

    PubMed Central

    Wheeler, Natalie A.; Lister, James A.

    2015-01-01

    During development, oligodendrocytes (OLGs), the myelinating cells of the CNS, undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well synchronized changes in morphology and gene expression patterns. The latter have been found to be particularly critical during the early stages of the lineage, and they have been well described to be regulated by epigenetic mechanisms, especially by the activity of the histone deacetylases HDAC1 and HDAC2. The data presented here identify the extracellular factor autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysophospholipase D (lysoPLD) activity, which has been well characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). More specifically, the lysoPLD activity of ATX was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. In contrast, HDAC1/2 regulated gene expression during the transition from neural stem/progenitor to OLG progenitor appeared unaffected by ATX and its lysoPLD activity. Thus, together, our data suggest that an ATX–LPA–HDAC1/2 axis regulates OLG differentiation specifically during the transition from OLG progenitor to early differentiating OLG and via a molecular mechanism that is evolutionarily conserved from at least zebrafish to rodent. SIGNIFICANCE STATEMENT The formation of the axon insulating and supporting myelin sheath by differentiating oligodendrocytes (OLGs) in the CNS is considered an essential step during vertebrate development. In addition, loss and/or dysfunction of the myelin sheath has

  1. Blue Genes: An Integrative Laboratory to Differentiate Genetic Transformation from Gene Mutation for Underclassmen

    ERIC Educational Resources Information Center

    Militello, Kevin T.; Chang, Ming-Mei; Simon, Robert D.; Lazatin, Justine C.

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by…

  2. Differential gene transfers and gene duplications in primary and secondary endosymbioses

    PubMed Central

    Zauner, Stefan; Lockhart, Peter; Stoebe-Maier, Bettina; Gilson, Paul; McFadden, Geoffrey I; Maier, Uwe G

    2006-01-01

    Background Most genes introduced into phototrophic eukaryotes during the process of endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL homologues are found in different genome compartments among phototrophic eukaryotes. Comparative sequence analyses of recently available genome data, have allowed us to reconstruct the evolutionary history of these genes and propose a hypothesis that explains the unusual genome distribution of groEL homologues. Results Our analyses indicate that while two distinct groEL genes were introduced into eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes of evolution involving deletion, duplication and targeting of groEL proteins. Conclusion The requirement of two groEL homologues for chaperon function in phototrophs has provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent evolutionary processes among eukaryotic lineages. PMID:16640777

  3. Stemness-Related Transcriptional Factors and Homing Gene Expression Profiles in Hepatic Differentiation and Cancer

    PubMed Central

    Toraih, Eman A; Fawzy, Manal S; El-Falouji, Abdullah I; Hamed, Elham O; Nemr, Nader A; Hussein, Mohammad H; Fadeal, Noha M Abd El

    2016-01-01

    Stem cell transcriptional signature activation is an essential event in the development of cancer. This study aimed to investigate the differential expression profiles of three pluripotency-associated genes, OCT4, NANOG and SOX2, G-protein-coupled chemokine receptor 4 (CXCR4) and the ligand CXCL2, and alpha-fetoprotein (AFP) in hepatogenic differentiated stem cells and in sera of hepatitis C virus (HCV) and HCV-induced hepatocellular carcinoma (HCC) patients. Mesenchymal stem cells derived from umbilical cord blood were differentiated using hepatogenic differentiation media. Serum specimens were collected from 96 patients (32 cirrhotic HCV, 32 early HCC and 32 late HCC) and 96 controls. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed for relative quantification of the six target genes using the Livak method. In silico network analysis was also executed to explore the pluripotency and tumorigenetic regulatory circuits in liver cancer. The expression levels of all genes declined gradually during the stages of stem cell differentiation. On univariate and multivariate analyses, NANOG, CXCR4 and AFP were significantly upregulated in late clinical stage HCC patients. In contrast, SOX2 and CXCL2 were markedly overexpressed in cirrhotic patients and could be used for clear demarcation between cirrhotic and HCC patients in our cases. In conclusion, our data highlight the potential role of the SOX2 stem cell marker and CXCL2 chemokine in liver cell degeneration and fibrogenesis in HCV-induced hepatic cirrhosis in our sample of the Egyptian population. In addition, the significant association of NANOG and CXCR4 high expression with late HCC could contribute to the acquisition of stem cell–like properties in hepatic cancer and dissemination in late stages, respectively. Taken together, our results could have potential application in HCC prognosis and treatment. PMID:27623812

  4. Differential expression of putative drug resistance genes in Mycobacterium tuberculosis clinical isolates.

    PubMed

    González-Escalante, Laura; Peñuelas-Urquides, Katia; Said-Fernández, Salvador; Silva-Ramírez, Beatriz; Bermúdez de León, Mario

    2015-12-01

    Understanding drug resistance in Mycobacterium tuberculosis requires an integrated analysis of strain lineages, mutations and gene expression. Previously, we reported the differential expression of esxG, esxH, infA, groES, rpmI, rpsA and lipF genes in a sensitive M. tuberculosis strain and in a multidrug-resistant clinical isolate. Here, we have evaluated the expression of these genes in 24 clinical isolates that belong to different lineages and have different drug resistance profiles. In vitro, growth kinetics analysis showed no difference in the growth of the clinical isolates, and thus drug resistance occurred without a fitness cost. However, a quantitative reverse transcription PCR analysis of gene expression revealed high variability among the clinical isolates, including those with similar drug resistance profiles. Due to the complexity of gene regulation pathways and the wide diversity of M. tuberculosis lineages, the use of gene expression as a molecular signature for drug resistance is not straightforward. Therefore, we recommend that the expression of M. tuberculosis genes be performed individually, and baseline expression levels should be verified among several different clinical isolates, before any further applications of these findings.

  5. Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants.

    PubMed

    Chen, Ming-Shun; Liu, Sanzhen; Wang, Haiyan; Cheng, Xiaoyan; El Bouhssini, Mustapha; Whitworth, R Jeff

    2016-01-01

    The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. In this study, we investigated the genes that were expressed differentially between larvae in resistant plants and those in susceptible plants through RNA sequencing on the Illumina platform. Informative genes were 11,832, 14,861, 15,708, and 15,071 for the comparisons between larvae in resistant versus susceptible plants for 0.5, 1, 3, and 5 days, respectively, after larvae had reached the feeding site. The transcript abundance corresponding to 5401, 6902, 8457, and 5202 of the informative genes exhibited significant differences (p ≤ 0.05) in the respective paired comparisons. Overall, genes involved in nutrient metabolism, RNA and protein synthesis exhibited lower transcript abundance in larvae from resistant plants, indicating that resistant plants inhibited nutrient metabolism and protein production in larvae. Interestingly, the numbers of cytochrome P450 genes with higher transcript abundance in larvae from resistant plants were comparable to, or higher than those with lower transcript abundance, indicating that toxic chemicals from resistant plants may have played important roles in Hessian fly larval death. Our study also identified several families of genes encoding secreted salivary gland proteins (SSGPs) that were expressed at early stage of 1(st) instar larvae and with more genes with higher transcript abundance in larvae from resistant plants. Those SSGPs are candidate effectors with important roles in plant manipulation. PMID:27529231

  6. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    PubMed Central

    2011-01-01

    Background Saccharomyces cerevisiae (Baker's yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms. PMID:21507216

  7. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter.

    PubMed

    Shaughnessy, Ronan G; Meade, Kieran G; Cahalane, Sarah; Allan, Brenda; Reiman, Carla; Callanan, John J; O'Farrelly, Cliona

    2009-12-15

    Salmonella enterica serovar Typhimurium and Campylobacter jejuni are major human pathogens, yet colonise chickens without causing pathology. The aim of this study was to compare intestinal innate immune responses to both bacterial species, in a 4-week-old broiler chicken model. Challenged and control birds were sacrificed and tissue samples taken for histopathology and RNA extraction. No significant clinical or pathological changes were observed in response to infection with either bacterial species. Expression of selected genes involved in pathogen detection and the innate immune response were profiled in caecal tissues by quantitative real-time PCR. TLR4 and TLR21 gene expression was transiently increased in response to both bacterial species (P<0.05). Significant increases in TLR5 and TLR15 gene expression were detected in response to S. Typhimurium but not to C. jejuni. Transient increases of proinflammatory cytokine (IL6 and IFNG) and chemokine (IL8 and K60) genes increased as early as 6h in response to S. Typhimurium. Minimal cytokine gene expression was detected in response to C. jejuni after 20h. IL8 gene expression however, was significantly increased by 24-fold (P<0.01). The differential expression profiles of innate immune genes in both infection models shed light on the tailored responses of the host immune system to specific microbes. It is further evidence that innate regulation of these responses is an important prerequisite to preventing development of disease.

  8. Sex differential in methylation patterns of selected genes in Singapore Chinese.

    PubMed

    Sarter, Barbara; Long, Tiffany I; Tsong, Wan H; Koh, Woon-Puay; Yu, Mimi C; Laird, Peter W

    2005-08-01

    To date there have been few reports of a gender difference in methylation levels of genes. When examining the methylation levels of four autosomal genes (ESR1, MTHFR, CALCA and MGMT) in the white blood cells of a random sample of Singapore Chinese Health Study cohort participants (n = 291), we encountered an unexpected gender differential. Using MethyLight technology, we calculated a gene-specific percentage of methylated reference (PMR) value, which quantified the relative level of gene methylation for each study subject (134 males and 157 females). Two summary methylation indices were constructed by assigning gene-specific rank scores. We then used ANCOVA to compare logarithmically transformed individual PMR values and summary methylation indices by age and gender simultaneously. Adjustment was made for plasma homocysteine. For ESR1, for which a large proportion of subjects were negative for methylation, we also used polytomous regression to compare methylation across age and gender. Increasing age and the male gender independently predicted increasing PMR values for CALCA and MGMT. For the MTHFR gene, male gender was associated with higher PMR values (P = 0.002), while age was not (P = 0.75). Neither age nor gender had any statistically significant influence on the PMR values for ESR1 (P = 0.13 and 0.96, respectively). Our data suggest that gender is at least as strong a predictor of methylation level in the four genes under study as age, with males showing higher PMRs.

  9. Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants

    PubMed Central

    Chen, Ming-Shun; Liu, Sanzhen; Wang, Haiyan; Cheng, Xiaoyan; El Bouhssini, Mustapha; Whitworth, R. Jeff

    2016-01-01

    The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. In this study, we investigated the genes that were expressed differentially between larvae in resistant plants and those in susceptible plants through RNA sequencing on the Illumina platform. Informative genes were 11,832, 14,861, 15,708, and 15,071 for the comparisons between larvae in resistant versus susceptible plants for 0.5, 1, 3, and 5 days, respectively, after larvae had reached the feeding site. The transcript abundance corresponding to 5401, 6902, 8457, and 5202 of the informative genes exhibited significant differences (p ≤ 0.05) in the respective paired comparisons. Overall, genes involved in nutrient metabolism, RNA and protein synthesis exhibited lower transcript abundance in larvae from resistant plants, indicating that resistant plants inhibited nutrient metabolism and protein production in larvae. Interestingly, the numbers of cytochrome P450 genes with higher transcript abundance in larvae from resistant plants were comparable to, or higher than those with lower transcript abundance, indicating that toxic chemicals from resistant plants may have played important roles in Hessian fly larval death. Our study also identified several families of genes encoding secreted salivary gland proteins (SSGPs) that were expressed at early stage of 1st instar larvae and with more genes with higher transcript abundance in larvae from resistant plants. Those SSGPs are candidate effectors with important roles in plant manipulation. PMID:27529231

  10. Identification of Differentially Expressed Genes in Pituitary Adenomas by Integrating Analysis of Microarray Data

    PubMed Central

    Zhao, Peng; Hu, Wei; Wang, Hongyun; Yu, Shengyuan; Li, Chuzhong; Bai, Jiwei; Gui, Songbai; Zhang, Yazhuo

    2015-01-01

    Pituitary adenomas, monoclonal in origin, are the most common intracranial neoplasms. Altered gene expression as well as somatic mutations is detected frequently in pituitary adenomas. The purpose of this study was to detect differentially expressed genes (DEGs) and biological processes during tumor formation of pituitary adenomas. We performed an integrated analysis of publicly available GEO datasets of pituitary adenomas to identify DEGs between pituitary adenomas and normal control (NC) tissues. Gene function analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) networks analysis was conducted to interpret the biological role of those DEGs. In this study we detected 3994 DEGs (2043 upregulated and 1951 downregulated) in pituitary adenoma through an integrated analysis of 5 different microarray datasets. Gene function analysis revealed that the functions of those DEGs were highly correlated with the development of pituitary adenoma. This integrated analysis of microarray data identified some genes and pathways associated with pituitary adenoma, which may help to understand the pathology underlying pituitary adenoma and contribute to the successful identification of therapeutic targets for pituitary adenoma. PMID:25642247

  11. Inositol Trisphosphate and Diacylglycerol Can Differentially Modulate Gene Expression in Dictyostelium

    NASA Astrophysics Data System (ADS)

    Ginsburg, Gail; Kimmel, Alan R.

    1989-12-01

    We have previously shown that several genes expressed during Dictyostelium development could be induced in shaking culture by exogenous cAMP, even though the accumulation of intracellular cAMP was inhibited. The use of selected cAMP analogs indicated that the exogenous cAMP functioned by activating the cell surface cAMP receptor and not by interacting with the regulatory subunit of the intracellular cAMP-dependent protein kinase. Although some genes in Dictyostelium appear to be regulated by intracellular cAMP, these data suggest that this is not the case for all genes regulated by cAMP. Intracellular second messengers other than cAMP may, therefore, promote the expression of these other genes. Here, we have examined inositol trisphosphate and diacylglycerol as candidates for such mediators of signal transduction. We have studied three genes that exhibit disparate modes of temporal and spatial expression during development of Dictyostelium. In shaking cultures, maximal levels of expression of each are dependent on the accumulation of or exposure to extracellular cAMP. We show that the addition of inositol trisphosphate and/or diacylglycerol to cells in shaking culture has distinct effects on the expression of each gene and, under specific conditions, can bypass the requirement for extracellular cAMP. These data suggest that extracellular cAMP interacting with its cell surface receptor may promote synthesis of inositol trisphosphate and diacylglycerol to regulate gene expression and aspects of differentiation in Dictyostelium.

  12. Transcriptional control of MHC class II gene expression during differentiation from B cells to plasma cells.

    PubMed

    Dellabona, P; Latron, F; Maffei, A; Scarpellino, L; Accolla, R S

    1989-04-15

    In this study we investigated the molecular mechanisms responsible for the extinction of the constitutive MHC class II gene expression of human B cells on somatic cell hybridization with murine plasmocytoma cells. We found that this event is due to trans-acting suppressor functions of mouse origin pre-existing in the plasmocytoma cells and acting at transcriptional level. Transcription of the entire family of human class II genes is suppressed, including genes as DO beta for which a distinct regulation of expression in B cells had been previously demonstrated. Suppression appears specific for class II genes because in the hybrids expression of MHC class I genes of mouse is unaffected and of human only partially reduced. Interestingly, also murine invariant chain gene is expressed in both parental plasmocytoma and hybrid cells although at reduced amounts as compared to a murine class II positive B cell line. The class II negative phenotype of hybrid cells and parental plasmocytoma cells is highly stable and unaffected by treatment with protein synthesis inhibitors, suggesting that the transcriptional suppressor function is not mediated by rapid, labile turning-over proteins. Possible mechanisms responsible for transcriptional regulation of MHC class II gene expression during terminal differentiation of B cells to plasma cells are discussed. PMID:2495328

  13. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH)

    PubMed Central

    Chaudhuri, Roy R; Allen, Andrew G; Owen, Paul J; Shalom, Gil; Stone, Karl; Harrison, Marcus; Burgis, Timothy A; Lockyer, Michael; Garcia-Lara, Jorge; Foster, Simon J; Pleasance, Stephen J; Peters, Sarah E; Maskell, Duncan J; Charles, Ian G

    2009-01-01

    Background In recent years there has been an increasing problem with Staphylococcus aureus strains that are resistant to treatment with existing antibiotics. An important starting point for the development of new antimicrobial drugs is the identification of "essential" genes that are important for bacterial survival and growth. Results We have developed a robust microarray and PCR-based method, Transposon-Mediated Differential Hybridisation (TMDH), that uses novel bioinformatics to identify transposon inserts in genome-wide libraries. Following a microarray-based screen, genes lacking transposon inserts are re-tested using a PCR and sequencing-based approach. We carried out a TMDH analysis of the S. aureus genome using a large random mariner transposon library of around a million mutants, and identified a total of 351 S. aureus genes important for survival and growth in culture. A comparison with the essential gene list experimentally derived for Bacillus subtilis highlighted interesting differences in both pathways and individual genes. Conclusion We have determined the first comprehensive list of S. aureus essential genes. This should act as a useful starting point for the identification of potential targets for novel antimicrobial compounds. The TMDH methodology we have developed is generic and could be applied to identify essential genes in other bacterial pathogens. PMID:19570206

  14. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  15. Profiling of Differentially Expressed Genes Using Suppression Subtractive Hybridization in an Equine Model of Chronic Asthma

    PubMed Central

    Lavoie, Jean-Pierre; Lefebvre-Lavoie, Josiane; Leclere, Mathilde; Lavoie-Lamoureux, Anouk; Chamberland, Annie; Laprise, Catherine; Lussier, Jacques

    2012-01-01

    Background Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma. Objective To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition. Methods Eleven adult horses (6 heaves-affected and 5 controls) were studied while horses with heaves were in clinical remission (Pasture), and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge). Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH), lung cDNAs of controls (Pasture and Challenge) and asymptomatic heaves-affected horses (Pasture) were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge). The differential expression of selected genes of interest was confirmed using quantitative PCR assay. Results Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways. Conclusions Pathways representing new possible targets for anti-inflammatory and anti-remodeling therapies for

  16. Identification, Classification and Differential Expression of Oleosin Genes in Tung Tree (Vernicia fordii)

    PubMed Central

    Cao, Heping; Zhang, Lin; Tan, Xiaofeng; Long, Hongxu; Shockey, Jay M.

    2014-01-01

    Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii), whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the “proline knot” motif (PX5SPX3P) shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach), Populus trichocarpa (poplar), Ricinus communis (castor bean), Theobroma cacao (cacao) and Vitis vinifera (grapevine). Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1) All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2) OLE mRNA levels were much higher in seeds than leaves or flowers; 3) OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4) OLE mRNA levels rapidly increased during seed development; and 5) OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1–3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants. PMID:24516650

  17. Identification of driving network of cellular differentiation from single sample time course gene expression data

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  18. Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene

    PubMed Central

    Czerwinska, Areta M.; Grabowska, Iwona; Archacka, Karolina; Bem, Joanna; Swierczek, Barbara; Helinska, Anita; Streminska, Wladyslawa; Fogtman, Anna; Iwanicka-Nowicka, Roksana; Koblowska, Marta

    2016-01-01

    The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs. PMID:26649785

  19. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    PubMed Central

    Jiao, Yang; Zhang, Jingying; Lu, Lunjie; Xu, Jiaying; Qin, Liqiang

    2016-01-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling. PMID:26907332

  20. Circadian Clock Genes Modulate Human Bone Marrow Mesenchymal Stem Cell Differentiation, Migration and Cell Cycle

    PubMed Central

    Boucher, Helene; Vanneaux, Valerie; Domet, Thomas; Parouchev, Alexandre; Larghero, Jerome

    2016-01-01

    Many of the components that regulate the circadian clock have been identified in organisms and humans. The influence of circadian rhythm (CR) on the regulation of stem cells biology began to be evaluated. However, little is known on the role of CR on human mesenchymal stem cell (hMSCs) properties. The objective of this study was to investigate the influence of CR on the differentiation capacities of bone marrow hMSCs, as well as the regulation of cell cycle and migration capabilities. To that, we used both a chemical approach with a GSK-3β specific inhibitor (2’E,3’Z-6-bromoindirubin-3’-oxime, BIO) and a knockdown of CLOCK and PER2, two of the main genes involved in CR regulation. In these experimental conditions, a dramatic inhibition of adipocyte differentiation was observed, while osteoblastic differentiation capacities were not modified. In addition, cell migration was decreased in PER2-/- cells. Lastly, downregulation of circadian clock genes induced a modification of the hMSCs cell cycle phase distribution, which was shown to be related to a change of the cyclin expression profile. Taken together, these data showed that CR plays a role in the regulation of hMSCs differentiation and division, and likely represent key factor in maintaining hMSCs properties. PMID:26741371

  1. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells

    PubMed Central

    Ren, Jiaqiang; Jin, Ping; Wang, Ena; Marincola, Francesco M; Stroncek, David F

    2009-01-01

    Background The unique features of human embryonic stem (hES) cells make them the best candidate resource for both cell replacement therapy and development research. However, the molecular mechanisms responsible for the simultaneous maintenance of their self-renewal properties and undifferentiated state remain unclear. Non-coding microRNAs (miRNA) which regulate mRNA cleavage and inhibit encoded protein translation exhibit temporal or tissue-specific expression patterns and they play an important role in development timing. Results In this study, we analyzed miRNA and gene expression profiles among samples from 3 hES cell lines (H9, I6 and BG01v), differentiated embryoid bodies (EB) derived from H9 cells at different time points, and 5 adult cell types including Human Microvascular Endothelial Cells (HMVEC), Human Umbilical Vein Endothelial Cells (HUVEC), Umbilical Artery Smooth Muscle Cells (UASMC), Normal Human Astrocytes (NHA), and Lung Fibroblasts (LFB). This analysis rendered 104 miRNAs and 776 genes differentially expressed among the three cell types. Selected differentially expressed miRNAs and genes were further validated and confirmed by quantitative real-time-PCR (qRT-PCR). Especially, members of the miR-302 cluster on chromosome 4 and miR-520 cluster on chromosome 19 were highly expressed in undifferentiated hES cells. MiRNAs in these two clusters displayed similar expression levels. The members of these two clusters share a consensus 7-mer seed sequence and their targeted genes had overlapping functions. Among the targeted genes, genes with chromatin structure modification function are enriched suggesting a role in the maintenance of chromatin structure. We also found that the expression level of members of the two clusters, miR-520b and miR-302c, were negatively correlated with their targeted genes based on gene expression analysis Conclusion We identified the expression patterns of miRNAs and gene transcripts in the undifferentiation of human embryonic

  2. TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier.

    PubMed

    Jackson, Ben; Brown, Stuart J; Avilion, Ariel A; O'Shaughnessy, Ryan F L; Sully, Katherine; Akinduro, Olufolake; Murphy, Mark; Cleary, Michael L; Byrne, Carolyn

    2011-05-15

    The epidermal barrier varies over the body surface to accommodate regional environmental stresses. Regional skin barrier variation is produced by site-dependent epidermal differentiation from common keratinocyte precursors and often manifests as site-specific skin disease or irritation. There is strong evidence for body-site-dependent dermal programming of epidermal differentiation in which the epidermis responds by altering expression of key barrier proteins, but the underlying mechanisms have not been defined. The LCE multigene cluster encodes barrier proteins that are differentially expressed over the body surface, and perturbation of LCE cluster expression is linked to the common regional skin disease psoriasis. LCE subclusters comprise genes expressed variably in either external barrier-forming epithelia (e.g. skin) or in internal epithelia with less stringent barriers (e.g. tongue). We demonstrate here that a complex of TALE homeobox transcription factors PBX1, PBX2 and Pknox (homologues of Drosophila Extradenticle and Homothorax) preferentially regulate external rather than internal LCE gene expression, competitively binding with SP1 and SP3. Perturbation of TALE protein expression in stratified squamous epithelia in mice produces external but not internal barrier abnormalities. We conclude that epidermal barrier genes, such as the LCE multigene cluster, are regulated by TALE homeodomain transcription factors to produce regional epidermal barriers.

  3. A new method for estimating the number of non-differentially expressed genes.

    PubMed

    Wu, J; Liu, C Y; Chen, W T; Ma, W Y; Ding, Y

    2016-01-01

    Control of the false discovery rate is a statistical method that is widely used when identifying differentially expressed genes in high-throughput sequencing assays. It is often calculated using an adaptive linear step-up procedure in which the number of non-differentially expressed genes should be estimated accurately. In this paper, we discuss the estimation of this parameter and point out defects in the original estimation method. We also propose a new estimation method and provide the error estimation. We compared the estimation results from the two methods in a simulation study that produced a mean, standard deviation, range, and root mean square error. The results revealed that there was little difference in the mean between the two methods, but the standard deviation, range, and root mean square error obtained using the new method were much smaller than those produced by the original method, which indicates that the new method is more accurate and robust. Furthermore, we used real microarray data to verify the conclusion. Finally we provide a suggestion when analyzing differentially expressed genes using statistical methods. PMID:27051004

  4. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    PubMed

    Mahajan, Gaurang; Mande, Shekhar C

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner. PMID:26562430

  5. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    PubMed

    Mahajan, Gaurang; Mande, Shekhar C

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner.

  6. Social Environmental Variation, Plasticity Genes, and Aggression: Evidence for the Differential Susceptibility Hypothesis

    PubMed Central

    Simons, Ronald L.; Lei, Man Kit; Beach, Steven R.H.; Brody, Gene H.; Philibert, Robert A.; Gibbons, Frederick X.

    2011-01-01

    Although G×E studies are typically based on the assumption that some individuals possess genetic variants that enhance their vulnerability to environmental adversity, the differential susceptibility perspective posits that these individuals are simply more susceptible to environmental influence than others. An important implication of this model is that those persons most vulnerable to adverse social environments are the same ones who reap the most benefit from environmental support. The present study tested several implications of this proposition. Using longitudinal data from a sample of several hundred African Americans, we found that relatively common variants of the dopamine receptor gene and the serotonin transporter gene interact with social environmental conditions to predict aggression in a manner consonant with differential susceptibility. When the social environment was adverse, individuals with these genetic variants manifested more aggression than other genotypes, whereas when the environment was supportive they demonstrated less aggression than other genotypes. Further, we found that these genetic variants interact with environmental conditions to foster various cognitive schemas and emotions in a manner consistent with differential susceptibility and that a latent construct formed by these schemas and emotions mediated the effect of gene by environment interaction on aggression. PMID:22199399

  7. Improved detection of differentially expressed genes in microarray experiments through multiple scanning and image integration

    PubMed Central

    Romualdi, Chiara; Trevisan, Silvia; Celegato, Barbara; Costa, Germano; Lanfranchi, Gerolamo

    2003-01-01

    The variability of results in microarray technology is in part due to the fact that independent scans of a single hybridised microarray give spot images that are not quite the same. To solve this problem and turn it to our advantage, we introduced the approach of multiple scanning and of image integration of microarrays. To this end, we have developed specific software that creates a virtual image that statistically summarises a series of consecutive scans of a microarray. We provide evidence that the use of multiple imaging (i) enhances the detection of differentially expressed genes; (ii) increases the image homogeneity; and (iii) reveals false-positive results such as differentially expressed genes that are detected by a single scan but not confirmed by successive scanning replicates. The increase in the final number of differentially expressed genes detected in a microarray experiment with this approach is remarkable; 50% more for microarrays hybridised with targets labelled by reverse transcriptase, and 200% more for microarrays developed with the tyramide signal amplification (TSA) technique. The results have been confirmed by semi-quantitative RT–PCR tests. PMID:14627839

  8. The Regulation of rRNA Gene Transcription during Directed Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Liu, Zhong; Zhao, Rui; Giles, Keith E.

    2016-01-01

    It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells. PMID:27299313

  9. Induction of a program gene expression during osteoblast differentiation with strontium ranelate

    SciTech Connect

    Zhu Lingling; Zaidi, Samir; Peng Yuanzhen; Zhou Hang; Moonga, Baljit S.; Blesius, Alexia; Dupin-Roger, Isabelle; Zaidi, Mone . E-mail: mone.zaidi@mssm.edu; Sun Li

    2007-04-06

    Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obs at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.

  10. Differential expression of the UGT1A family of genes in stomach cancer tissues.

    PubMed

    Cengiz, Beyhan; Yumrutas, Onder; Bozgeyik, Esra; Borazan, Ersin; Igci, Yusuf Ziya; Bozgeyik, Ibrahim; Oztuzcu, Serdar

    2015-08-01

    Uridine 5'-diphospho-glucuronosyltransferases (UGT) are the key players in the biotransformation of drugs, xenobiotics, and endogenous compounds. Particularly, UDP-glucuronosyltransferase 1A (UGT1A) participates in a wide range of biological and pharmacological processes and plays a critical role in the conjugation of endogenous and exogenous components. Thirteen alternative splicing products were produced from UGT1A gene locus designated as UGT1A1 and UGT1A3-10. A growing amount of evidence suggests that they have important roles in the carcinogenesis which is well documented by colon, liver, pancreas, and kidney cancer studies. Here, we report differential expressions of UGT1A genes in normal and tumor tissues of stomach cancer patients. Total numbers of 49 patients were enrolled for this study, and expression analysis of UGT1A genes was evaluated by the real-time PCR method. Accordingly, UGT1A1, UGT1A8, and UGT1A10 were found to be upregulated, and UGT1A3, UGT1A5, UGT1A7, and UGT1A9 were downregulated in stomach tumors. No expression changes were observed in UGT1A4. Also, UGT1A6 transcription variants were significantly upregulated in stomach cancer tissues compared to normal stomach tissue. Additionally, UGT1A7 gene showed highest expression in both normal and tumoral tissues, and interestingly, UGT1A7 gene expression was significantly reduced in stage II patients as compared to other patients. In conclusion, UGT1A genes are differentially expressed in normal and tumoral stomach tissues and expression changes of these genes may affect the development and progression of various types of cancer including the cancer of the stomach. PMID:25712374

  11. Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    PubMed Central

    2011-01-01

    Background Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages. Results A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism. Conclusions The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process. PMID:21396120

  12. Early osteoblastic differentiation induced by dexamethasone enhances adenoviral gene delivery to marrow stromal cells.

    PubMed

    Blum, Jeremy S; Parrott, M Brandon; Mikos, Antonios G; Barry, Michael A

    2004-03-01

    We investigated the implications of induced osteogenic differentiation on gene delivery in multipotent rat marrow stromal cells (MSCs). Prior to genetic manipulation cells were cultured with or without osteogenic supplements (5x10(-8) M dexamethasone, 160 microM l-ascorbic acid 2-phosphate, and 10 mM beta-glycerophosphate). Comparison of liposome, retroviral, and adenoviral vectors demonstrated that all three vectors could mediate gene delivery to primary rat MSCs. When these vectors were applied in the absence or presence of osteogenic supplements, we found that MSCs differentiated prior to transduction with adenovirus type 5 vectors produced a 300% increase in transgene expression compared to MSCs that were not exposed to osteogenic supplements. This differentiation effect appeared specific to adenoviral mediated gene delivery, since there was minimal increase in retroviral gene delivery and no increase in liposome gene delivery when MSCs were treated with osteogenic supplements. In addition, we also determined this increase in transgene production to occur at a higher concentration of dexamethasone (5x10(-8) M) in the culture medium of MSCs prior to adenoviral transduction. We found that this increased transgene production could be extended to the osteogenic protein, human bone morphogenetic protein 2 (hBMP-2). When delivered by an adenoviral vector, hBMP-2 transgene production could be increased from 1.4 ng/10(5) cells/3 days to 4.3 ng/10(5) cells/3 days by culture of MSCs with osteogenic supplements prior to transduction. These results indicate that the utility of MSCs as a therapeutic protein delivery mechanism through genetic manipulation can be enhanced by pre-culture of these cells with dexamethasone. PMID:15013104

  13. A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R.

    PubMed

    Gregory Alvord, W; Roayaei, Jean A; Quiñones, Octavio A; Schneider, Katherine T

    2007-11-01

    This article describes specific procedures for conducting quality assessment of Affymetrix GeneChip(R) soybean genome data and for performing analyses to determine differential gene expression using the open-source R programming environment in conjunction with the open-source Bioconductor software. We describe procedures for extracting those Affymetrix probe set IDs related specifically to the soybean genome on the Affymetrix soybean chip and demonstrate the use of exploratory plots including images of raw probe-level data, boxplots, density plots and M versus A plots. RNA degradation and recommended procedures from Affymetrix for quality control are discussed. An appropriate probe-level model provides an excellent quality assessment tool. To demonstrate this, we discuss and display chip pseudo-images of weights, residuals and signed residuals and additional probe-level modeling plots that may be used to identify aberrant chips. The Robust Multichip Averaging (RMA) procedure was used for background correction, normalization and summarization of the AffyBatch probe-level data to obtain expression level data and to discover differentially expressed genes. Examples of boxplots and MA plots are presented for the expression level data. Volcano plots and heatmaps are used to demonstrate the use of (log) fold changes in conjunction with ordinary and moderated t-statistics for determining interesting genes. We show, with real data, how implementation of functions in R and Bioconductor successfully identified differentially expressed genes that may play a role in soybean resistance to a fungal pathogen, Phakopsora pachyrhizi. Complete source code for performing all quality assessment and statistical procedures may be downloaded from our web source: http://css.ncifcrf.gov/services/download/MicroarraySoybean.zip.

  14. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  15. Differential Granulosa Cell Gene Expression in Young Women with Diminished Ovarian Reserve

    PubMed Central

    Greenseid, Keri; Jindal, Sangita; Hurwitz, Joshua; Santoro, Nanette; Pal, Lubna

    2011-01-01

    Objective: To investigate if a diagnosis of diminished ovarian reserve (DOR) is associated with a differential gene profile of ovarian granulosa cells (GCs) in infertile women undergoing in vitro fertilization (IVF). Design: Prospective Cohort Study. Setting: Academic IVF Program. Patients: Infertile women <38 years were prospectively enrolled into 2 groups: normal ovarian reserve (NOR, follicle-stimulating hormone [FSH] < 10 mIU/mL, n = 4) and DOR (FSH ≥ 10.0 mIU/mL, n = 4). Interventions: Cumulus (C) and mural (M) GCs were isolated at egg retrieval; messenger RNA was extracted and transcribed. Main Outcome Measure(s): Differential gene expression in cerebellar granule cells (CGCs) in the 2 groups was assessed by cDNA microarray. Microarray findings were validated by quantitative real-time polymerase chain reaction (qRTPCR) in CGCs and explored in multinucleated giant cells (MGCs). Results: Of the 1256 differentially regulated genes identified in CGCs of women with DOR, the insulin-like growth factor (IGF) family was a biologically relevant gene family of a priori interest. Downregulation of IGF1 and IGF2 ligands (−3.28- and −2.54–fold, respectively), and their receptors, (−3.53- and −1.32-fold downregulation of IGF1R and IGF2R, respectively) was identified in luteinized CGCs in women with DOR compared to those with NOR. Downregulation of both IGF1 and IGF 2 ligands (−4.35- and 3.89-fold, respectively) was furthermore observed in MGCs in women with DOR compared to those with NOR; no differences in the expression of respective receptors were however observed in MGCs in the 2 groups. Conclusions: Components of the IGF gene family are downregulated in GCs of women with DOR. These findings maybe contributory to the reproductive compromise observed in women with DOR, and merit further exploration. PMID:21846690

  16. Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in Arabidopsis thaliana

    PubMed Central

    Lovell, John T.; Mullen, Jack L.; Lowry, David B.; Awole, Kedija; Richards, James H.; Sen, Saunak; Verslues, Paul E.; Juenger, Thomas E.; McKay, John K.

    2015-01-01

    Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. PMID:25873386

  17. Transcription of histone gene cluster by differential core-promoter factors

    PubMed Central

    Isogai, Yoh; Keles, Sündüz; Prestel, Matthias; Hochheimer, Andreas; Tjian, Robert

    2007-01-01

    The 100 copies of tandemly arrayed Drosophila linker (H1) and core (H2A/B and H3/H4) histone gene cluster are coordinately regulated during the cell cycle. However, the molecular mechanisms that must allow differential transcription of linker versus core histones prevalent during development remain elusive. Here, we used fluorescence imaging, biochemistry, and genetics to show that TBP (TATA-box-binding protein)-related factor 2 (TRF2) selectively regulates the TATA-less Histone H1 gene promoter, while TBP/TFIID targets core histone transcription. Importantly, TRF2-depleted polytene chromosomes display severe chromosomal structural defects. This selective usage of TRF2 and TBP provides a novel mechanism to differentially direct transcription within the histone cluster. Moreover, genome-wide chromatin immunoprecipitation (ChIP)-on-chip analyses coupled with RNA interference (RNAi)-mediated functional studies revealed that TRF2 targets several classes of TATA-less promoters of >1000 genes including those driving transcription of essential chromatin organization and protein synthesis genes. Our studies establish that TRF2 promoter recognition complexes play a significantly more central role in governing metazoan transcription than previously appreciated. PMID:17978101

  18. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space.

    PubMed

    Ma, Xiao; Pietsch, Jessica; Wehland, Markus; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Bauer, Johann; Braun, Markus; Schwarzwälder, Achim; Segerer, Jürgen; Birlem, Maria; Horn, Astrid; Hemmersbach, Ruth; Waßer, Kai; Grosse, Jirka; Infanger, Manfred; Grimm, Daniela

    2014-02-01

    This study focuses on the effects of short-term [22 s, parabolic flight campaign (PFC)] and long-term (10 d, Shenzhou 8 space mission) real microgravity on changes in cytokine secretion and gene expression patterns in poorly differentiated thyroid cancer cells. FTC-133 cells were cultured in space and on a random positioning machine (RPM) for 10 d, to evaluate differences between real and simulated microgravity. Multianalyte profiling was used to evaluate 128 secreted cytokines. Microarray analysis revealed 63 significantly regulated transcripts after 22 s of microgravity during a PFC and 2881 after 10 d on the RPM or in space. Genes in several biological processes, including apoptosis (n=182), cytoskeleton (n=80), adhesion/extracellular matrix (n=98), proliferation (n=184), stress response (n=268), migration (n=63), angiogenesis (n=39), and signal transduction (n=429), were differentially expressed. Genes and proteins involved in the regulation of cancer cell proliferation and metastasis, such as IL6, IL8, IL15, OPN, VEGFA, VEGFD, FGF17, MMP2, MMP3, TIMP1, PRKAA, and PRKACA, were similarly regulated under RPM and spaceflight conditions. The resulting effect was mostly antiproliferative. Gene expression during the PFC was often regulated in the opposite direction. In summary, microgravity is an invaluable tool for exploring new targets in anticancer therapy and can be simulated in some aspects in ground-based facilities.

  19. Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation.

    PubMed

    Yang, Yawei J; Baltus, Andrew E; Mathew, Rebecca S; Murphy, Elisabeth A; Evrony, Gilad D; Gonzalez, Dilenny M; Wang, Estee P; Marshall-Walker, Christine A; Barry, Brenda J; Murn, Jernej; Tatarakis, Antonis; Mahajan, Muktar A; Samuels, Herbert H; Shi, Yang; Golden, Jeffrey A; Mahajnah, Muhammad; Shenhav, Ruthie; Walsh, Christopher A

    2012-11-21

    Microcephaly is a neurodevelopmental disorder causing significantly reduced cerebral cortex size. Many known microcephaly gene products localize to centrosomes, regulating cell fate and proliferation. Here, we identify and characterize a nuclear zinc finger protein, ZNF335/NIF-1, as a causative gene for severe microcephaly, small somatic size, and neonatal death. Znf335 null mice are embryonically lethal, and conditional knockout leads to severely reduced cortical size. RNA-interference and postmortem human studies show that ZNF335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. ZNF335 is a component of a vertebrate-specific, trithorax H3K4-methylation complex, directly regulating REST/NRSF, a master regulator of neural gene expression and cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF and provide the first direct genetic evidence that this pathway regulates human neurogenesis and neuronal differentiation. PMID:23178126

  20. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  1. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    PubMed

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  2. Differentially Expressed Genes in Hirudo medicinalis Ganglia after Acetyl-L-Carnitine Treatment

    PubMed Central

    Federighi, Giuseppe; Macchi, Monica; Bernardi, Rodolfo; Scuri, Rossana; Brunelli, Marcello; Durante, Mauro; Traina, Giovanna

    2013-01-01

    Acetyl-l-carnitine (ALC) is a naturally occurring substance that, when administered at supra-physiological concentration, is neuroprotective. It is involved in membrane stabilization and in enhancement of mitochondrial functions. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer’s disease and painful neuropathies. ALC is known to improve the cognitive capability of aged animals chronically treated with the drug and, recently, it has been reported that it impairs forms of non-associative learning in the leech. In the present study the effects of ALC on gene expression have been analyzed in the leech Hirudo medicinalis. The suppression subtractive hybridisation methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the leech nervous system after ALC treatment. The method detects differentially but also little expressed transcripts of genes whose sequence or identity is still unknown. We report that a single administration of ALC is able to modulate positively the expression of genes coding for functions that reveal a lasting effect of ALC on the invertebrate, and confirm the neuroprotective and neuromodulative role of the substance. In addition an important finding is the modulation of genes of vegetal origin. This might be considered an instance of ectosymbiotic mutualism. PMID:23308261

  3. Differential expression of alpha- and beta-expansin genes in the elongating leaf of Festuca pratensis.

    PubMed

    Reidy, B; McQueen-Mason, S; Nösberger, J; Fleming, A

    2001-07-01

    Grasses contain a number of genes encoding both alpha- and beta-expansins. These cell wall proteins are predicted to play a role in cell wall modifications, particularly during tissue elongation. We report here on the characterisation of five alpha- and three vegetative beta-expansins expressed in the leaf elongation zone (LEZ) of the forage grass, Festuca pratensis Huds. The expression of the predominant alpha-expansin (FpExp2) was localised to the vascular tissue, as was the beta-expansin FpExpB3. Expression of another beta-expansin (FpExpB2) was not localised to vascular tissue but was highly expressed in roots and initiating tillers. This is the first description of vegetative beta-expansin gene expression at the organ and tissue level and also the first evidence of differential expression between members of this gene family. In addition, an analysis of both alpha- and beta-expansin expression along the LEZ revealed no correlation with growth rate distribution, whereas we were able to identify a novel xyloglucan endotransglycosylase (FpXET1) whose expression profile closely mimicked leaf growth rate. These data suggest that alpha- and beta-expansin activities in the grass leaf are associated with tissue differentiation, that expansins involved in leaf growth may represent more minor components of the spectrum of expansin genes expressed in this tissue, and that XETs may be useful markers for the analysis of grass leaf growth.

  4. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  5. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera

    PubMed Central

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    ABSTRACT Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  6. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation

    PubMed Central

    Dillon, Laura A. L.; Okrah, Kwame; Hughitt, V. Keith; Suresh, Rahul; Li, Yuan; Fernandes, Maria Cecilia; Belew, A. Trey; Corrada Bravo, Hector; Mosser, David M.; El-Sayed, Najib M.

    2015-01-01

    Protozoan parasites of the genus Leishmania are the etiological agents of leishmaniasis, a group of diseases with a worldwide incidence of 0.9–1.6 million cases per year. We used RNA-seq to conduct a high-resolution transcriptomic analysis of the global changes in gene expression and RNA processing events that occur as L. major transforms from non-infective procyclic promastigotes to infective metacyclic promastigotes. Careful statistical analysis across multiple biological replicates and the removal of batch effects provided a high quality framework for comprehensively analyzing differential gene expression and transcriptome remodeling in this pathogen as it acquires its infectivity. We also identified precise 5′ and 3′ UTR boundaries for a majority of Leishmania genes and detected widespread alternative trans-splicing and polyadenylation. An investigation of possible correlations between stage-specific preferential trans-splicing or polyadenylation sites and differentially expressed genes revealed a lack of systematic association, establishing that differences in expression levels cannot be attributed to stage-regulated alternative RNA processing. Our findings build on and improve existing expression datasets and provide a substantially more detailed view of L. major biology that will inform the field and potentially provide a stronger basis for drug discovery and vaccine development efforts. PMID:26150419

  7. Differential Expression and Turnover of the Tomato Polyphenol Oxidase Gene Family during Vegetative and Reproductive Development.

    PubMed Central

    Thipyapong, P.; Joel, D. M.; Steffens, J. C.

    1997-01-01

    Polyphenol oxidases (PPOs) are encoded by a highly conserved, seven-member gene family clustered within a 165-kb locus on chromosome 8 of tomato (Lycopersicon esculentum). Using gene-specific probes capable of differentiating between PPO A/C, PPO B, PPO D, and PPO E/F, we examined the spatial and temporal expression of this gene family during vegetative and reproductive development. RNA blots and in situ hybridization using these probes showed that although PPO expression is primarily confined to early stages of development, the steady-state mRNA levels of these genes are subject to complex patterns of spatial and temporal regulation in vegetative and reproductive organs. Young tomato leaves and flowers possess the most abundant PPO transcripts. PPO B is the most abundant in young leaves, whereas in the inflorescence PPO B and E/F transcripts are dominant. Differential expression of PPOs is also observed in various trichome types. PPO A/C are specifically expressed in type I and type IV trichomes. In contrast, PPO D is only expressed in type VI trichomes. Type I, IV, and VI trichomes possess PPO E/F transcripts. Immunolocalization verified the translational activity of PPOs identified by in situ hybridization and suggested cell-type-specific, developmentally programmed PPO turnover. In addition, immunolocalization demonstrated the accumulation of PPO in specific idioblast cells of stems, leaves, and fruits. PMID:12223637

  8. A genetic analysis of intersex, a gene regulating sexual differentiation in Drosophila melanogaster females

    SciTech Connect

    Chase, B.A. |; Baker, B.S.

    1995-04-01

    Sex-type in Drosophila melanogaster is controlled by a hierarchically acting set of regulatory genes. At the terminus of this hierarchy lie those regulatory genes responsible for implementing sexual differentiation: genes that control the activity of target loci whose products give rise to sexually dimorphic phenotypes. The genetic analysis of the intersex (ix) gene presented here demonstrates that ix is such a terminally positioned regulatory locus. The ix locus has been localized to the cytogenetic interval between 47E3-6 and 47F11-18. A comparison of the morphological and behavioral phenotypes of homozygotes and hemizygotes for three point mutations at ix indicates that the null phenotypes of homozygotes diplo-X animals into intersexes while leaving haplo-X animals unaffected. Analysis of X-ray induced, mitotic recombination clones lacking ix{sup +} function in the abdomen of diplo-X individuals indicates that the ix{sup +} product functions in a cell-autonomous manner and that it is required at least until the termination of cell division in this tissue. Taken together with previous analyses, our results indicate that the ix{sup +} product is required to function with the female-specific product of doublesex to implement appropriate female sexual differentiation in diplo-X animals. 55 refs., 4 figs., 4 tabs.

  9. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality.

  10. Lung histopathological pattern in a survivor with rapidly progressive interstitial lung disease and anti-melanoma differentiation-associated gene 5 antibody-positive clinically amyopathic dermatomyositis.

    PubMed

    Suzuki, Atsushi; Kondoh, Yasuhiro; Taniguchi, Hiroyuki; Tabata, Kazuhiko; Kimura, Tomoki; Kataoka, Kensuke; Ono, Kenzo; Hashisako, Mikiko; Fukuoka, Junya

    2016-01-01

    Anti-melanoma differentiation-associated gene 5 (MDA5) antibodies are specific indicators of patients with dermatomyositis, particularly clinically amyopathic dermatomyositis (CADM). CADM is occasionally accompanied by fatal, treatment-resistant, rapidly-progressive interstitial lung disease (RP-ILD). All previous reports showed that histopathological findings in RP-ILD with anti-MDA5 antibody-positive CADM indicated diffuse alveolar damage (DAD). This is the first report describing a non-DAD pattern in RP-ILD with anti-MDA5 antibody-positive CADM, which was improved by immunosuppressive therapy. This case may be a milder clinical phenotype than a typical DAD pattern in RP-ILD with anti-MDA5 antibody-positive CADM. PMID:27354955

  11. Differential Expression of Genes Involved in Host Recognition, Attachment, and Degradation in the Mycoparasite Tolypocladium ophioglossoides

    PubMed Central

    Quandt, C. Alisha; Di, Yanming; Elser, Justin; Jaiswal, Pankaj; Spatafora, Joseph W.

    2016-01-01

    The ability of a fungus to infect novel hosts is dependent on changes in gene content, expression, or regulation. Examining gene expression under simulated host conditions can explore which genes may contribute to host jumping. Insect pathogenesis is the inferred ancestral character state for species of Tolypocladium, however several species are parasites of truffles, including Tolypocladium ophioglossoides. To identify potentially crucial genes in this interkingdom host switch, T. ophioglossoides was grown on four media conditions: media containing the inner and outer portions of its natural host (truffles of Elaphomyces), cuticles from an ancestral host (beetle), and a rich medium (Yeast Malt). Through high-throughput RNASeq of mRNA from these conditions, many differentially expressed genes were identified in the experiment. These included PTH11-related G-protein-coupled receptors (GPCRs) hypothesized to be involved in host recognition, and also found to be upregulated in insect pathogens. A divergent chitinase with a signal peptide was also found to be highly upregulated on media containing truffle tissue, suggesting an exogenous degradative activity in the presence of the truffle host. The adhesin gene, Mad1, was highly expressed on truffle media as well. A BiNGO analysis of overrepresented GO terms from genes expressed during each growth condition found that genes involved in redox reactions and transmembrane transport were the most overrepresented during T. ophioglossoides growth on truffle media, suggesting their importance in growth on fungal tissue as compared to other hosts and environments. Genes involved in secondary metabolism were most highly expressed during growth on insect tissue, suggesting that their products may not be necessary during parasitism of Elaphomyces. This study provides clues into understanding genetic mechanisms underlying the transition from insect to truffle parasitism. PMID:26801645

  12. Identification of differentially expressed genes implicated in peel color (red and green) of Dimocarpus confinis.

    PubMed

    Jiang, Fan; Chen, Xiu-Ping; Hu, Wen-Shun; Zheng, Shao-Quan

    2016-01-01

    Nowadays, there are few reports about regulatory genes implicated in peel color of longan. The basic genetic research of longan has been in stagnation for a long time as a lack of transcriptomic and genetic information. To predict candidate genes associated with peel color, Gene Functional Annotation and Coding Sequence prediction were used to perform functional annotation for our assembled unigenes and investigate differentially expressed genes (DEGs) of fruitlet peels from Longli (Dimocarpus confinis). Finally, a total of 24,044 (44.19 %) unigenes were annotated at least in one database after BLAST search to NCBI non-redundant protein sequence, NCBI non-redundant nucleotide sequences, Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog, manually annotated and reviewed protein sequence database (Swiss-Prot), Protein family, Gene Ontology, euKaryotic Ortholog Groups databases. After searching against the KEGG-GENE protein database, a result of 6228 (11.45 %) unigenes were assigned to 245 KEGG pathways. Via comparing the distributions of expression value of all corresponding unigenes from red peel and green peel fruit, it could be intuitively concluded that high similarity was existed in the two distributions; however, on the whole, between two distributions of log RPKM expression value, some differences indicated that expression level in green-peel fruit group is slightly higher than values in red-peel fruit group. Finally, a total of 1349 unigenes were identified as DEGs after blasting the DEGs to public sequence databases, and 32 peel-color-related genes were identified in longan. Our results suggest that a number of unigenes involved in longan metabolic process, including anthocyanin biosynthesis. In addition, DRF, F3H, ANS, CYP75A1 and C1 may be the key ones. The study on key genes related to peel color will be contributed to revealing the molecular mechanisms of regulating peel color in woody plants. PMID:27468388

  13. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis.

    PubMed

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  14. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  15. Differential Expression of Genes Involved in Host Recognition, Attachment, and Degradation in the Mycoparasite Tolypocladium ophioglossoides.

    PubMed

    Quandt, C Alisha; Di, Yanming; Elser, Justin; Jaiswal, Pankaj; Spatafora, Joseph W

    2016-01-22

    The ability of a fungus to infect novel hosts is dependent on changes in gene content, expression, or regulation. Examining gene expression under simulated host conditions can explore which genes may contribute to host jumping. Insect pathogenesis is the inferred ancestral character state for species of Tolypocladium, however several species are parasites of truffles, including Tolypocladium ophioglossoides. To identify potentially crucial genes in this interkingdom host switch, T. ophioglossoides was grown on four media conditions: media containing the inner and outer portions of its natural host (truffles of Elaphomyces), cuticles from an ancestral host (beetle), and a rich medium (Yeast Malt). Through high-throughput RNASeq of mRNA from these conditions, many differentially expressed genes were identified in the experiment. These included PTH11-related G-protein-coupled receptors (GPCRs) hypothesized to be involved in host recognition, and also found to be upregulated in insect pathogens. A divergent chitinase with a signal peptide was also found to be highly upregulated on media containing truffle tissue, suggesting an exogenous degradative activity in the presence of the truffle host. The adhesin gene, Mad1, was highly expressed on truffle media as well. A BiNGO analysis of overrepresented GO terms from genes expressed during each growth condition found that genes involved in redox reactions and transmembrane transport were the most overrepresented during T. ophioglossoides growth on truffle media, suggesting their importance in growth on fungal tissue as compared to other hosts and environments. Genes involved in secondary metabolism were most highly expressed during growth on insect tissue, suggesting that their products may not be necessary during parasitism of Elaphomyces. This study provides clues into understanding genetic mechanisms underlying the transition from insect to truffle parasitism.

  16. The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila

    PubMed Central

    Denholm, Barry; Hu, Nan; Fauquier, Teddy; Caubit, Xavier; Fasano, Laurent; Skaer, Helen

    2013-01-01

    The physiological activities of organs are underpinned by an interplay between the distinct cell types they contain. However, little is known about the genetic control of patterned cell differentiation during organ development. We show that the conserved Teashirt transcription factors are decisive for the differentiation of a subset of secretory cells, stellate cells, in Drosophila melanogaster renal tubules. Teashirt controls the expression of the water channel Drip, the chloride conductance channel CLC-a and the Leukokinin receptor (LKR), all of which characterise differentiated stellate cells and are required for primary urine production and responsiveness to diuretic stimuli. Teashirt also controls a dramatic transformation in cell morphology, from cuboidal to the eponymous stellate shape, during metamorphosis. teashirt interacts with cut, which encodes a transcription factor that underlies the differentiation of the primary, principal secretory cells, establishing a reciprocal negative-feedback loop that ensures the full differentiation of both cell types. Loss of teashirt leads to ineffective urine production, failure of homeostasis and premature lethality. Stellate cell-specific expression of the teashirt paralogue tiptop, which is not normally expressed in larval or adult stellate cells, almost completely rescues teashirt loss of expression from stellate cells. We demonstrate conservation in the expression of the family of tiptop/teashirt genes in lower insects and establish conservation in the targets of Teashirt transcription factors in mouse embryonic kidney. PMID:23404107

  17. A Generalized Gene-Regulatory Network Model of Stem Cell Differentiation for Predicting Lineage Specifiers.

    PubMed

    Okawa, Satoshi; Nicklas, Sarah; Zickenrott, Sascha; Schwamborn, Jens C; Del Sol, Antonio

    2016-09-13

    Identification of cell-fate determinants for directing stem cell differentiation remains a challenge. Moreover, little is known about how cell-fate determinants are regulated in functionally important subnetworks in large gene-regulatory networks (i.e., GRN motifs). Here we propose a model of stem cell differentiation in which cell-fate determinants work synergistically to determine different cellular identities, and reside in a class of GRN motifs known as feedback loops. Based on this model, we develop a computational method that can systematically predict cell-fate determinants and their GRN motifs. The method was able to recapitulate experimentally validated cell-fate determinants, and validation of two predicted cell-fate determinants confirmed that overexpression of ESR1 and RUNX2 in mouse neural stem cells induces neuronal and astrocyte differentiation, respectively. Thus, the presented GRN-based model of stem cell differentiation and computational method can guide differentiation experiments in stem cell research and regenerative medicine. PMID:27546532

  18. Murine bone cell lines as models for spaceflight induced effects on differentiation and gene expression

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.; Reitz, G.

    Critical health factors for space crews especially on long-term missions are radiation exposure and the absence of gravity DNA double strand breaks DSB are presumed to be the most deleterious DNA lesions after radiation as they disrupt both DNA strands in close proximity Besides radiation risk the absence of gravity influences the complex skeletal apparatus concerning muscle and especially bone remodelling which results from mechanical forces exerting on the body Bone is a dynamic tissue which is life-long remodelled by cells from the osteoblast and osteoclast lineage Any imbalance of this system leads to pathological conditions such as osteoporosis or osteopetrosis Osteoblastic cells play a crucial role in bone matrix synthesis and differentiate either into bone-lining cells or into osteocytes Premature terminal differentiation has been reported to be induced by a number of DNA damaging or cell stress inducing agents including ionising and ultraviolet radiation as well as treatment with mitomycin C In the present study we compare the effects of sequential differentiation by adding osteoinductive substances ss -glycerophosphate and ascorbic acid Radiation-induced premature differentiation was investigated regarding the biosynthesis of specific osteogenic marker molecules and the differentiation dependent expression of marker genes The bone cell model established in our laboratory consists of the osteocyte cell line MLO-Y4 the osteoblast cell line OCT-1 and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 expressing several

  19. Variable allelic expression of imprinted genes in human pluripotent stem cells during differentiation into specialized cell types in vitro.

    PubMed

    Park, Sang-Wook; Kim, Jihoon; Park, Jong-Lyul; Ko, Ji-Yun; Im, Ilkyun; Do, Hyo-Sang; Kim, Hyemin; Tran, Ngoc-Tung; Lee, Sang-Hun; Kim, Yong Sung; Cho, Yee Sook; Lee, Dong Ryul; Han, Yong-Mahn

    2014-04-01

    Genomic imprinting is an epigenetic phenomenon by which a subset of genes is asymmetrically expressed in a parent-of-origin manner. However, little is known regarding the epigenetic behaviors of imprinted genes during human development. Here, we show dynamic epigenetic changes in imprinted genes in hESCs during in vitro differentiation into specialized cell types. Out of 9 imprinted genes with single nucleotide polymorphisms, mono-allelic expression for three imprinted genes (H19, KCNQ1OT1, and IPW), and bi- or partial-allelic expression for three imprinted genes (OSBPL5, PPP1R9A, and RTL1) were stably retained in H9-hESCs throughout differentiation, representing imprinting stability. Three imprinted genes (KCNK9, ATP10A, and SLC22A3) showed a loss and a gain of imprinting in a lineage-specific manner during differentiation. Changes in allelic expression of imprinted genes were observed in another hESC line during in vitro differentiation. These findings indicate that the allelic expression of imprinted genes may be vulnerable in a lineage-specific manner in human pluripotent stem cells during differentiation.

  20. qPCR for second year undergraduates: A short, structured inquiry to illustrate differential gene expression.

    PubMed

    McCauslin, Christine Seitz; Gunn, Kathryn Elaine; Pirone, Dana; Staiger, Jennifer

    2015-01-01

    We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the NOS2 gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative CT method, students are able determine whether transcriptional activation of NOS2 occurs and to what degree. The exercise is aimed at second year undergraduates who possess basic knowledge of gene expression events. It requires only 4-5 hr of dedicated laboratory time and focuses on use of the primary literature, data analysis, and interpretation. Importantly, this exercise provides a mechanism to introduce the concept of differential gene expression and provides a starting point for development of more complex guided or open inquiry projects for students moving into upper level molecular biology, immunology, and biochemistry course work. PMID:26148025

  1. qPCR for second year undergraduates: A short, structured inquiry to illustrate differential gene expression.

    PubMed

    McCauslin, Christine Seitz; Gunn, Kathryn Elaine; Pirone, Dana; Staiger, Jennifer

    2015-01-01

    We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the NOS2 gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative CT method, students are able determine whether transcriptional activation of NOS2 occurs and to what degree. The exercise is aimed at second year undergraduates who possess basic knowledge of gene expression events. It requires only 4-5 hr of dedicated laboratory time and focuses on use of the primary literature, data analysis, and interpretation. Importantly, this exercise provides a mechanism to introduce the concept of differential gene expression and provides a starting point for development of more complex guided or open inquiry projects for students moving into upper level molecular biology, immunology, and biochemistry course work.

  2. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection.

    PubMed

    Yang, Jinghua; Liu, Dongyuan; Wang, Xiaowu; Ji, Changmian; Cheng, Feng; Liu, Baoning; Hu, Zhongyuan; Chen, Sheng; Pental, Deepak; Ju, Youhui; Yao, Pu; Li, Xuming; Xie, Kun; Zhang, Jianhui; Wang, Jianlin; Liu, Fan; Ma, Weiwei; Shopan, Jannat; Zheng, Hongkun; Mackenzie, Sally A; Zhang, Mingfang

    2016-10-01

    The Brassica genus encompasses three diploid and three allopolyploid genomes, but a clear understanding of the evolution of agriculturally important traits via polyploidy is lacking. We assembled an allopolyploid Brassica juncea genome by shotgun and single-molecule reads integrated to genomic and genetic maps. We discovered that the A subgenomes of B. juncea and Brassica napus each had independent origins. Results suggested that A subgenomes of B. juncea were of monophyletic origin and evolved into vegetable-use and oil-use subvarieties. Homoeolog expression dominance occurs between subgenomes of allopolyploid B. juncea, in which differentially expressed genes display more selection potential than neutral genes. Homoeolog expression dominance in B. juncea has facilitated selection of glucosinolate and lipid metabolism genes in subvarieties used as vegetables and for oil production. These homoeolog expression dominance relationships among Brassicaceae genomes have contributed to selection response, predicting the directional effects of selection in a polyploid crop genome. PMID:27595476

  3. Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III.

    PubMed

    Tessitori, Matilde; Maria, Giovanna; Capasso, Clemente; Catara, Giuliana; Rizza, Serena; De Luca, Viviana; Catara, Antonino; Capasso, Antonio; Carginale, Vincenzo

    2007-04-01

    Citrus are natural hosts of several viroids, which are plant pathogens composed exclusively of a non-protein-coding, small single-stranded circular RNA that is able to replicate autonomously in susceptible hosts. They are responsible for symptoms such as stunting, leaf epinasty, and chlorosis. Citrus viroid III (CVd-III) has been long regarded as a possible dwarfing agent of citrus grafted on trifoliate orange and its hybrids. To investigate molecular mechanisms involved in pathogenesis, the messenger RNA (mRNA) differential display technique was here applied to identify genes whose transcription was significantly altered in leaves of Etrog citron (Citrus medica) infected by CVd-III (variant b). Of eighteen genes identified, thirteen were up-regulated by viroid infection, while five were down-regulated. Except for two genes that encode proteins of unknown function, the remaining genes are mainly involved in plant defence/stress responses, signal transduction, amino acid transport, and cell wall structure. Among the up-regulated genes, it is noteworthy a suppressor of RNA silencing that might be involved in viroid and virus pathogenicity. The functions of these genes are discussed.

  4. Areal and laminar differentiation in the mouse neocortex using large scale gene expression data.

    PubMed

    Hawrylycz, Mike; Bernard, Amy; Lau, Chris; Sunkin, Susan M; Chakravarty, M Mallar; Lein, Ed S; Jones, Allan R; Ng, Lydia

    2010-02-01

    Although cytoarchitectonic organization of the mammalian cortex into different lamina has been well-studied, identifying the architectural differences that distinguish cortical areas from one another is more challenging. Localization of large anatomical structures is possible using magnetic resonance imaging or invasive techniques (such as anterograde or retrograde tracing), but identifying patterns in gene expression architecture is limited as gene products do not necessarily identify an immediate functional consequence of a specialized area. Expression of specific genes in the mouse and human cortex is most often identified across entire lamina, and areal patterning of expression (when it exists) is most easily differentiated on a layer-by-layer basis. Since cortical organization is defined by the expression of large sets of genes, the task of identifying individual (or groups of structures) cannot be done using individual areal markers. In this manuscript we describe a methodology for clustering gene expression correlation profiles in the C57Bl/6J mouse cortex to identify large-scale genetic relationships between layers and areas. By using the Anatomic Gene Expression Atlas (http://mouse.brain-map.org/agea/) derived from in situ hybridization data in the Allen Brain Atlas, we show that a consistent expression based organization of areal patterning in the mouse cortex exists when clustered on a laminar basis. Surface-based mapping and visualization techniques are used as a representation to clarify these relationships. PMID:19800006

  5. Differential expression of Gnrh2, Gthbeta, and Gthr genes in sterile triploids and fertile tetraploids.

    PubMed

    Long, Yu; Tao, Min; Liu, Shaojun; Zhong, Huan; Chen, Lin; Tao, Suifei; Liu, Yun

    2009-10-01

    Gonadotropin-releasing hormone (GnRH), gonadotropin hormone (GTH), and gonadotropin hormone receptor (GTHR) are the pivotal signal molecules of the hypothalamic-pituitary-gonad (HPG) axis, which plays a crucial role in regulating gonadal development in vertebrate. In this study, we comparatively analyze the expression characteristics of Gnrh2, Gthbeta, and Gthr in red crucian carp diploids, triploids, and allotetraploids. The expression patterns of these genes are similar in the three fish ploidy types: the Gnrh2 gene is expressed in midbrains, pituitaries, and gonads; the Gthbeta gene is expressed in pituitaries; the Gthr gene is mainly expressed in gonads. These results indicate that the three genes participate in the regulation of gonadal development. By real-time polymerase chain reaction and in situ hybridization, we find that, among these three fish ploidy types, the expression level of Gthr in the gonads of triploids is lower than those of diploids and tetraploids; this weakens the combination of GTHR with GTH released from the pituitary and leads to the sterility of triploids, since the gonad cannot produce enough sex steroids. In addition, the low expression of Gthr in triploids may affect the down-regulation of Gthbeta, which then affects the down-regulation of Gnrh2; hence, the expression levels of Gnrh2 and Gthbeta genes in triploids are the highest after the breeding season. In conclusion, the differential expression of Gnrh2, Gthbeta, and Gthr in triploids and tetraploids is related to their sterility and bisexual fertility, respectively.

  6. The Identification and Differentiation between Burkholderia mallei and Burkholderia pseudomallei Using One Gene Pyrosequencing

    PubMed Central

    Gilling, Damian H.; Luna, Vicki Ann; Pflugradt, Cori

    2014-01-01

    The etiologic agents for melioidosis and glanders, Burkholderia mallei and Burkholderia pseudomallei respectively, are genetically similar making identification and differentiation from other Burkholderia species and each other challenging. We used pyrosequencing to determine the presence or absence of an insertion sequence IS407A within the flagellin P (fliP) gene and to exploit the difference in orientation of this gene in the two species. Oligonucleotide primers were designed to selectively target the IS407A-fliP interface in B. mallei and the fliP gene specifically at the insertion point in B. pseudomallei. We then examined DNA from ten B. mallei, ten B. pseudomallei, 14 B. cepacia, eight other Burkholderia spp., and 17 other bacteria. Resultant pyrograms encompassed the target sequence that contained either the fliP gene with the IS407A interruption or the fully intact fliP gene with 100% sensitivity and 100% specificity. These pyrosequencing assays based upon a single gene enable investigators to reliably identify the two species. The information obtained by these assays provides more knowledge of the genomic reduction that created the new species B. mallei from B. pseudomallei and may point to new targets that can be exploited in the future. PMID:27350960

  7. Identification of genes differentially expressed during larval molting and metamorphosis of Helicoverpa armigera

    PubMed Central

    Dong, Du-Juan; He, Hong-Juan; Chai, Lian-Qin; Jiang, Xiao-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2007-01-01

    Background Larval molting and metamorphosis are important physiological processes in the life cycle of the holometabolous insect. We used suppression subtractive hybridization (SSH) to identify genes differentially expressed during larval molting and metamorphosis. Results We performed SSH between tissues from a variety of developmental stages, including molting 5th and feeding 6th instar larvae, metamorphically committed and feeding 5th instar larvae, and feeding 5th instar and metamorphically committed larvae. One hundred expressed sequence tags (ESTs) were identified and included 73 putative genes with similarity to known genes, and 27 unknown ESTs. SSH results were further characterized by dot blot, Northern blot, and RT-PCR. The expression levels of eleven genes were found to change during larval molting or metamorphosis, suggesting a functional role during these processes. Conclusion These results provide a new set of genes expressed specifically during larval molt or metamorphosis that are candidates for further studies into the regulatory mechanisms of those stage-specific genes during larval molt and metamorphosis PMID:17588272

  8. Serotypic differentiation of group A rotaviruses with porcine rotavirus gene 9 probes.

    PubMed Central

    Rosen, B I; Saif, L J; Jackwood, D J; Gorziglia, M

    1990-01-01

    The serotypic specificities of Gottfried and OSU porcine rotavirus gene 9 probes were investigated in a dot hybridization assay. The probes were reacted with homologous and heterologous serotypes of group A rotaviruses of human and animal origin. Hybridizations were conducted under relatively low-stringency (52 degrees C, no formamide, 5 x SSC) and high-stringency (52 degrees C, 50% formamide, formamide, 5 x SSC) conditions (1 x SSC is 0.15 M NaCl plus 0.015 M sodium citrate). Under conditions of relatively low stringency, the Gottfried and OSU gene 9 probes demonstrated broad cross-reactivity and were useful in the detection of homologous and heterologous serotypes of group A rotaviruses. Under conditions of relatively high stringency, the Gottfried and OSU gene 9 probes were serotype specific. The Gottfried gene 9 probe (serotype 4) hybridized with homologous Gottfried porcine rotavirus as well as the serotype 4 human rotaviruses ST3 and VA70. The OSU gene 9 probe (serotype 5) hybridized with homologous OSU porcine rotavirus and the serotype 5 equine rotavirus H1. Hybridization was not observed with the antigenically distinct group B and C porcine rotaviruses or with other porcine enteric viruses, including calicivirus and a coronavirus, transmissible gastroenteritis virus, regardless of stringency conditions. Analysis of 14 group A rotavirus-positive field samples resulted in the serotypic differentiation, collectively, of six serotype 4 or 5 porcine rotaviruses. No field samples reacted with both the Gottfried and OSU gene 9 probes. Images PMID:2174902

  9. Differential gene expression in seasonal sympatry: mechanisms involved in diverging life histories.

    PubMed

    Fudickar, Adam M; Peterson, Mark P; Greives, Timothy J; Atwell, Jonathan W; Bridge, Eli S; Ketterson, Ellen D

    2016-03-01

    In an era of climate change, understanding the genetic and physiological mechanisms underlying flexibility in phenology and life history has gained greater importance. These mechanisms can be elucidated by comparing closely related populations that differ in key behavioural and physiological traits such as migration and timing of reproduction. We compared gene expression in two recently diverged dark-eyed Junco ( Junco hyemalis) subspecies that live in seasonal sympatry during winter and early spring, but that differ in behaviour and physiology, despite exposure to identical environmental cues. We identified 547 genes differentially expressed in blood and pectoral muscle. Genes involved in lipid transport and metabolism were highly expressed in migrant juncos, while genes involved in reproductive processes were highly expressed in resident breeders. Seasonal differences in gene expression in closely related populations residing in the same environment provide significant insights into mechanisms underlying variation in phenology and life history, and have potential implications for the role of seasonal timing differences in gene flow and reproductive isolation. PMID:26979563

  10. Metallothionein isoform 3 gene is differentially expressed in corticotropin-producing pituitary adenomas.

    PubMed

    Giorgi, R R; Correa-Giannella, M L C; Casarini, A P M; Machado, M C; Bronstein, M D; Cescato, V A; Giannella-Neto, D

    2005-01-01

    In order to search for candidate genes related to pituitary adenoma aggressiveness, the present investigation was intended to compare the mRNA expression profile from a pool of four nonfunctional pituitary adenomas (NFPA) with a spinal cord metastasis of a nonfunctional pituitary carcinoma (MNFPC). The metallothionein isoform 3 (MT3) gene was differentially expressed in nonfunctional adenomas in comparison to the metastasis of nonfunctional carcinoma. A microarray dataset comprising 19,881 probes was employed for comparing expression profiles of a spinal cord metastasis of a nonfunctional pituitary carcinoma with a pool of four nonfunctional pituitary adenomas. RT-qPCR confirmed the microarray findings and was used to investigate MT3 mRNA gene expression in tumor samples of a series of 52 different pituitary adenoma subtypes comprising 10 corticotropin (ACTH)-producing, 18 growth hormone (GH)-producing, 8 prolactin (PRL)-producing, and 16 nonfunctional adenomas. Microarray data analysis by GeneSifter program unveiled Gene Ontology terms related to zinc ion-binding activity closely related to MT3 function. MT3 mRNA expression was statistically significantly higher in ACTH-producing pituitary adenomas and in nonfunctional pituitary adenomas in comparison to the other pituitary adenoma subtypes. The more abundant expression of this gene in ACTH-producing pituitary adenomas suggests that MT3 could be related to distinct pituitary cell lineage regulating the activity of some transcription factor of importance in hormone production and/or secretion. PMID:16601360

  11. Microclimatic differentiation of gene pools in the Lobaria pulmonaria symbiosis in a primeval forest landscape.

    PubMed

    Nadyeina, Olga; Dymytrova, Lyudmyla; Naumovych, Anna; Postoyalkin, Sergyi; Werth, Silke; Cheenacharoen, Saran; Scheidegger, Christoph

    2014-11-01

    Population genetics of the tree-colonizing lichen Lobaria pulmonaria were studied in the largest primeval beech forest of Europe, covering 10 000 ha. During an intensive survey of the area, we collected 1522 thallus fragments originating from 483 trees, which were genotyped with eight mycobiont- and 14 photobiont-specific microsatellite markers. The mycobiont and photobiont of L. pulmonaria were found to consist of two distinct gene pools, which are co-existing within small areas of 3-180 ha in a homogeneous beech forest. The small-scale distribution pattern of the symbiotic gene pools show habitat partitioning of lineages associated with either floodplains or mountain forests. Using approximate Bayesian computation (ABC), we dated the divergence of the two fungal gene pools of L. pulmonaria as the Early Pleistocene. Both fungal gene pools survived the Pleistocene glacial cycles in the Carpathians, although possibly in climatically different refugia. Fungal diversification prior to these cycles and the selection of photobionts with different altitudinal distributions explain the current sympatric, but ecologically differentiated habitat partitioning of L. pulmonaria. In addition, the habitat preferences of the mycobiont are determined by other factors and are rather independent of those of the photobiont at the landscape level. The distinct gene pools should be considered evolutionarily significant units and deserve specific conservation priorities in the future, for example gene pool A, which is a Pliocene relict. PMID:25244617

  12. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display.

    PubMed

    Lang, Ping; Zhang, Can-Kui; Ebel, Robert C; Dane, Fenny; Dozier, William A

    2005-10-10

    Citrus unshiu is freeze tolerant to -10 degrees C when fully acclimated after exposure to cold, nonfreezing temperatures. To gain an understanding of its cold tolerance mechanism, mRNA differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) and quantitative relative RT-PCR were used to study gene expression under a gradual cold-acclimation temperature regime. Six up-regulated and two down regulated genes were identified based on their amino acid sequences. The identified proteins encoded by the up-regulated genes were: 14-3-3 protein, 40S ribosomal protein S23, putative 60S ribosomal protein L15, nucleoside diphosphate kinase III protein, regulator of chromosome condensation-like protein, and amino acid permease 6. The proteins encoded by the two down-regulated genes were: miraculin-like protein and beta-galactosidase. Their individual function has been briefly reviewed based on published information. In addition to the findings in this study, we compared the function of cold responsive genes of Poncirus trifoliata, a very cold hardy relative of Citrus species that is freeze tolerant to -30 degrees C when fully acclimated, to the function of genes in the current study. PMID:16125877

  13. CXXC5 plays a role as a transcription activator for myelin genes on oligodendrocyte differentiation.

    PubMed

    Kim, Mi-Yeon; Kim, Hyun-Yi; Hong, Jiso; Kim, Daesoo; Lee, Hyojung; Cheong, Eunji; Lee, Yangsin; Roth, Jürgen; Kim, Dong Goo; Min, Do Sik; Choi, Kang-Yell

    2016-03-01

    Myelination in corpus callosum plays important role for normal brain functions by transferring neurological information between various brain regions. However, the factors controlling expression of myelin genes in myelination are poorly understood. Here, CXXC5, a recently identified protein with CXXC-type zinc finger DNA binding motif, was characterized as a transcriptional activator of major myelin genes. We identified expression of CXXC5 expression was increased by Wnt/β-catenin signaling. CXXC5 specifically expressed in the white matter induced expression of myelin genes through the direct binding of CXXC DNA-binding motif of CXXC5 on the MBP promoter. During the differentiation of neural stem cells (NSCs) of CXXC5(-/-) mice, the expressions of myelin genes were simultaneously reduced. The CXXC5(-/-) mice exhibited severely reduction of myelin genes expression in corpus callosum as well as abnormalities in myelin structure. The disrupted structural integrity of myelin in the CXXC5(-/-) mice resulted in reduced electrical conduction amplitudes at corpus callosum. These findings indicate that the regulation of myelin genes expression by CXXC5 is important for forming myelin structure involved with axonal electrical signal transfer in the corpus callosum.

  14. A novel highly differentially expressed gene in wheat endosperm associated with bread quality

    PubMed Central

    Furtado, A.; Bundock, P. C.; Banks, P. M.; Fox, G.; Yin, X.; Henry, R. J.

    2015-01-01

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5’-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437

  15. Differential and stage-related expression in embryonic tissues of a new human homoeobox gene.

    PubMed

    Mavilio, F; Simeone, A; Giampaolo, A; Faiella, A; Zappavigna, V; Acampora, D; Poiana, G; Russo, G; Peschle, C; Boncinelli, E

    The homoeobox is a 183 base-pair (bp) DNA sequence conserved in several Drosophila genes controlling segmentation and segment identity. Homoeobox sequences have been detected in the genome of species ranging from insects and anellids to vertebrates and homoeobox containing genes have been cloned from Xenopus, mouse and man. We recently isolated human homoeobox containing complementary DNA clones, that represent transcripts from four different human genes. One clone (HHO.c10) is selectively expressed in a 2.1 kilobase (kb) polyadenylated transcript in the spinal cord of human embryos and fetuses 5-10 weeks after fertilization. We report the characterization of a second cDNA clone, termed HHO.c13, that represents a new homoeobox gene. This clone encodes a protein of 255 amino-acid residues, which includes a pentapeptide, upstream of the homoeo domain, conserved in other Drosophila, Xenopus, murine and human homoeobox genes. By Northern analysis HHO.c13 detects multiple embryonic transcripts, which are differentially expressed in spinal cord, brain, backbone rudiments, limb buds and heart in 5-9-week-old human embryos and fetuses, in a striking organ- and stage-specific pattern. These observations suggest that in early mammalian development homoeobox genes may exert a wide spectrum of control functions in a variety of organs and body parts, in addition to the spinal cord. PMID:2879245

  16. Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum–Phaseolus vulgaris interaction

    PubMed Central

    Oliveira, Marília B.; de Andrade, Rosângela V.; Grossi-de-Sá, Maria F.; Petrofeza, Silvana

    2015-01-01

    The fungus Sclerotinia sclerotiorum (Lib.) de Bary, one of the most important plant pathogens, causes white mold on a wide range of crops. Crop yield can be dramatically decreased due to this disease, depending on the plant cultivar and environmental conditions. In this study, a suppression subtractive hybridization cDNA library approach was used for the identification of pathogen and plant genes that were differentially expressed during infection of the susceptible cultivar BRS Pérola of Phaseolus vulgaris L. A total of 979 unigenes (430 contigs and 549 singletons) were obtained and classified according to their functional categories. The transcriptional profile of 11 fungal genes related to pathogenicity and virulence were evaluated by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Additionally, the temporal expression profile obtained by RT-qPCR was evaluated for the following categories of plant defense-related genes: pathogenesis-related genes (PvPR1, PvPR2, and PvPR3), phenylpropanoid pathway genes (PvIsof, PvFPS1, and 4CL), and genes involved in defense and stress-related categories (PvLox, PvHiprp, PvGST, PvPod, and PvDox). Data obtained in this study provide a starting point for achieving a better understanding of the pathosystem S. sclerotiorum–P. vulgaris. PMID:26579080

  17. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis

    PubMed Central

    Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein−protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including ‘Fatty acid metabolism’, ‘Alanine, aspartate, and glutamate metabolism’, and ‘Biosynthesis of unsaturated fatty acids’) and cell signaling pathways (including ‘PPAR signaling pathway’, ‘Adipocytokine signaling pathway’, ‘TGF-beta signaling pathway’, ‘MAPK signaling pathway’, and ‘p53 signaling pathway’). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and

  18. Differential gene expression in the testes of different murine strains under normal and hyperthermic conditions.

    PubMed

    Li, Ying; Zhou, Qing; Hively, Randy; Yang, Lizhong; Small, Christopher; Griswold, Michael D

    2009-01-01

    Cryptorchidism and scrotal heating result in abnormal spermatogenesis, but the mechanism(s) prescribing this temperature sensitivity are unknown. It was previously reported that the AKR/N or MRL/MpJ-+/+ mouse testis is more heat-resistant than the testis from the C57BL/6 strain. We have attempted to probe into the mechanism(s) involved in heat sensitivity by examining global gene expression profiles of normal and heat-treated testes from C57BL/6, AKR/N, and MRL/MpJ-+/+ mice by microarray analysis. In the normal C57BL/6 testis, 415 and 416 transcripts were differentially expressed (at least 2-fold higher or lower) when compared with the normal AKR/N and MRL/MpJ-+/+ testis, respectively. The AKR/N and MRL/MpJ-+/+ strains revealed 268 differentially expressed transcripts between them. There were 231 transcripts differentially expressed between C57BL/6 and 2 purported heat-resistant strains, AKR/N and MRL/MpJ-+/+. Next, the testes of C57BL/6 and AKR/N mice were exposed to 43 degrees C for 15 minutes and harvested at different time points for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) studies and microarrays. An increase of TUNEL-positive germ cell numbers was significant 8 hours after heat exposure in the C57BL/6 mouse. However, this increase was not observed in the AKR/N mouse until 10 hours after heat exposure. All tubules showed germ cell loss and disruption in C57BL/6 testis 24 hours after heat shock. In contrast, although a number of seminiferous tubules showed an abnormal morphology 24 hours post-heat shock in the AKR/N mouse, many tubules still retained a normal structure. Numerous transcripts exhibited differential regulation between the 2 strains within 24 hours after heat exposure. The differentially expressed transcripts in the testes 8 hours after heat exposure were targeted to identify the genes involved in the initial response rather than those attributable to germ cell loss. Twenty transcripts were significantly down

  19. Differential gene expression profile in bovine blastocysts resulting from hyperglycemia exposure during early cleavage stages.

    PubMed

    Cagnone, Gaël L M; Dufort, Isabelle; Vigneault, Christian; Sirard, Marc-André

    2012-02-01

    To understand the compromised survival of embryos derived from assisted reproductive techniques, transcriptome survey of early embryonic development has shown the impact of in vitro culture environment on gene expression in bovine or other living species. However, how the differentially expressed genes translate into developmentally compromised embryos is unresolved. We therefore aimed to characterize transcriptomic markers expressed by bovine blastocysts cultured in conditions that are known to impair embryo development. As increasing glucose concentrations has been shown to be stressful for early cleavage stages of mammalian embryos and to decrease subsequent blastocyst survival, in vitro-matured/fertilized bovine zygotes were cultured in control (0.2 mM) or high-glucose (5 mM) conditions until the 8- to 16-cell stage, and then transferred to control media until they reached the blastocyst stage. The concentration of 5 mM glucose was chosen as a stress treatment because there was a significant effect on blastocyst rate without the treatment's being lethal as with 10 mM. Microarray analysis revealed gene expression differences unrelated to embryo sex or hatching. Overrepresented processes among differentially expressed genes in treated blastocysts were extracellular matrix signalling, calcium signaling, and energy metabolism. On a pathophysiological level, higher glucose treatment impacts pathways associated with diabetes and tumorigenesis through genes controlling the Warburg effect, i.e., emphasis on use of anaerobic glycolysis rather than oxidative phosphorylation. These results allowed us to conclude that disruption of in vitro preattachment development is concomitant with gene expression modifications involved in metabolic control.

  20. Differential gene expression of CYP3A isoforms in equine liver and intestines.

    PubMed

    Tydén, E; Löfgren, M; Pegolo, S; Capolongo, F; Tjälve, H; Larsson, P

    2012-12-01

    Recently, seven CYP3A isoforms - CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP129 - have been isolated from the horse genome. In this study, we have examined the hepatic and intestinal gene expression of these CYP3A isoforms using TaqMan probes. We have also studied the enzyme activity using luciferin-isopropyl acetal (LIPA) as a substrate. The results show a differential gene expression of the CYP3A isoforms in the liver and intestines in horses. In the liver, CYP3A89, CYP3A94, CYP3A96 and CYP3A97 were highly expressed, while in the intestine there were only two dominating isoforms, CYP3A93 and CYP3A96. The isoform CYP3A129 was not detected in the liver or the intestine, although this gene consists of a complete set of exons and should therefore code for a functional protein. It is possible that this gene is expressed in tissues other than the liver and intestines. In the intestine, both CYP3A96 and CYP3A93 showed the highest gene expression in the duodenum and the proximal parts of the jejunum. This correlated with a high protein expression in these tissues. Studies of the enzyme activity showed the same K(m) for the LIPA substrate in the liver and the intestine, while the maximum velocity (V(max)) in the liver was higher than in the intestine. Our finding of a differential gene expression of the CYP3A isoforms in the liver and the intestines contributes to a better understanding of drug metabolism in horses.

  1. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  2. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  3. Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution.

    PubMed

    Raj, Dibyendu; Ghosh, Esha; Mukherjee, Avik K; Nozaki, Tomoyoshi; Ganguly, Sandipan

    2014-02-10

    Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress w