de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Vilchez-Vargas, Ramiro; Pieper, Dietmar H
2016-01-01
Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi.
Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Wu, Jiayao; Song, Hyeunjeong; Asiegbu, Fred O; Lee, Yong-Hwan
2014-01-01
RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities. funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.
Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun
2013-01-01
Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. PMID:23936305
Averina, O V; Nezametdinova, V Z; Alekseeva, M G; Danilenko, V N
2012-11-01
The stability of inheriting several genes in the Russian commercial strain Bifidobacterium longum subsp. longum B379M during cultivation and maintenance under laboratory conditions has been studied. The examined genes code for probiotic characteristics, such as utilization of several sugars (lacA2 gene, encoding beta-galactosidase; ara gene, encoding arabinosidase; and galA gene, encoding arabinogalactan endo-beta-galactosidase); synthesis of bacteriocins (lans gene, encoding lanthionine synthetase); and mobile gene tet(W), conferring resistance to the antibiotic tetracycline. The other gene families studied include the genes responsible for signal transduction and adaptation to stress conditions in the majority of bacteria (serine/threonine protein kinases and the toxin-antitoxin systems of MazEF and RelBE types) and transcription regulators (genes encoding WhiB family proteins). Genomic DNA was analyzed by PCR using specially selected primers. A loss of the genes galA and tet(W) has been shown. It is proposed to expand the requirements on probiotic strains, namely, to control retention of the key probiotic genes using molecular biological methods.
Fock-Bastide, Isabelle; Palama, Tony Lionel; Bory, Séverine; Lécolier, Aurélie; Noirot, Michel; Joët, Thierry
2014-01-01
In Vanilla planifolia pods, development of flavor precursors is dependent on the phenylpropanoid pathway. The distinctive vanilla aroma is produced by numerous phenolic compounds of which vanillin is the most important. Because of the economic importance of vanilla, vanillin biosynthetic pathways have been extensively studied but agreement has not yet been reached on the processes leading to its accumulation. In order to explore the transcriptional control exerted on these pathways, five key phenylpropanoid genes expressed during pod development were identified and their mRNA accumulation profiles were evaluated during pod development and maturation using quantitative real-time PCR. As a prerequisite for expression analysis using qRT-PCR, five potential reference genes were tested, and two genes encoding Actin and EF1 were shown to be the most stable reference genes for accurate normalization during pod development. For the first time, genes encoding a phenylalanine ammonia-lyase (VpPAL1) and a cinnamate 4-hydroxylase (VpC4H1) were identified in vanilla pods and studied during maturation. Among phenylpropanoid genes, differential regulation was observed from 3 to 8 months after pollination. VpPAL1 was gradually up-regulated, reaching the maximum expression level at maturity. In contrast, genes encoding 4HBS, C4H, OMT2 and OMT3 did not show significant increase in expression levels after the fourth month post-pollination. Expression profiling of these key phenylpropanoid genes is also discussed in light of accumulation patterns for key phenolic compounds. Interestingly, VpPAL1 gene expression was shown to be positively correlated to maturation and vanillin accumulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
MAP3Ka encodes a key conserved protein kinase responsible for orchestrating a rapid cascade of cellular events ultimately leading to localized cell death. Hypersensitive response, as it is termed, enables genetically-resistant plants to limit microbial invasion under the right environmental conditio...
NASA Astrophysics Data System (ADS)
Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda
The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant No. 14-04-00173.
Kiehart, D P; Lutz, M S; Chan, D; Ketchum, A S; Laymon, R A; Nguyen, B; Goldstein, L S
1989-01-01
In contrast to vertebrate species Drosophila has a single myosin heavy chain gene that apparently encodes all sarcomeric heavy chain polypeptides. Flies also contain a cytoplasmic myosin heavy chain polypeptide that by immunological and peptide mapping criteria is clearly different from the major thoracic muscle isoform. Here, we identify the gene that encodes this cytoplasmic isoform and demonstrate that it is distinct from the muscle myosin heavy chain gene. Thus, fly myosin heavy chains are the products of a gene family. Our data suggest that the contractile function required to power myosin based movement in non-muscle cells requires myosin diversity beyond that available in a single heavy chain gene. In addition, we show, that accumulation of cytoplasmic myosin transcripts is regulated in a developmental stage specific fashion, consistent with a key role for this protein in the movements of early embryogenesis. Images PMID:2498088
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR), a key regulatory enzyme in the DNA synthesis pathway. The gene coding for the RR of MDV is located in the unique long (UL) region of the genome. The large subunit is encoded by UL39 (RR1) and is predicted to comprise 860 amino acid...
PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2.
Liu, Yonghong; Qu, Linlin; Liu, Yuanyuan; Roizman, Bernard; Zhou, Grace Guoying
2017-08-15
PUM1 is an RNA binding protein shown to regulate the stability and function of mRNAs bearing a specific sequence. We report the following: ( i ) A key function of PUM1 is that of a repressor of key innate immunity genes by repressing the expression of LGP2. Thus, between 12 and 48 hours after transfection of human cells with siPUM1 RNA there was an initial (phase 1) upsurge of transcripts encoding LGP2, CXCL10, IL6, and PKR. This was followed 24 hours later (phase 2) by a significant accumulation of mRNAs encoding RIG-I, SP100, MDA5, IFIT1, PML, STING, and IFNβ. The genes that were not activated encoded HDAC4 and NF-κB1. ( ii ) Simultaneous depletion of PUM1 and LGP2, CXCL10, or IL6 revealed that up-regulation of phase 1 and phase 2 genes was the consequence of up-regulation of LGP2. ( iii ) IFNβ produced 48-72 hours after transfection of siPUM1 was effective in up-regulating LGP2 and phase 2 genes and reducing the replication of HSV-1 in untreated cells. ( iv ) Because only half of genes up-regulated in phase 1 and 2 encode mRNAs containing PUM1 binding sites, the upsurge in gene expression could not be attributed solely to stabilization of mRNAs in the absence of PUM1. ( v ) Lastly, depletion of PUM2 does not result in up-regulation of phase 1 or phase 2 genes. The results of the studies presented here indicate that PUM1 is a negative regulator of LGP2, a master regulator of innate immunity genes expressed in a cascade fashion.
Stannous Fluoride Effects on Gene Expression of Streptococcus mutans and Actinomyces viscosus.
Shi, Y; Li, R; White, D J; Biesbrock, A R
2018-02-01
A genome-wide transcriptional analysis was performed to elucidate the bacterial cellular response of Streptococcus mutans and Actinomyces viscosus to NaF and SnF 2 . The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SnF 2 were predetermined before microarray study. Gene expression profiling microarray experiments were carried out in the absence (control) and presence (experimental) of 10 ppm and 100 ppm Sn 2+ (in the form of SnF 2 ) and fluoride controls for 10-min exposures (4 biological replicates/treatment). These Sn 2+ levels and treatment time were chosen because they have been shown to slow bacterial growth of S. mutans (10 ppm) and A. viscosus (100 ppm) without affecting cell viability. All data generated by microarray experiments were analyzed with bioinformatics tools by applying the following criteria: 1) a q value should be ≤0.05, and 2) an absolute fold change in transcript level should be ≥1.5. Microarray results showed SnF 2 significantly inhibited several genes encoding enzymes of the galactose pathway upon a 10-min exposure versus a negative control: lacA and lacB (A and B subunits of the galactose-6-P isomerase), lacC (tagatose-6-P kinase), lacD (tagatose-1,6-bP adolase), galK (galactokinase), galT (galactose-1-phosphate uridylyltransferase), and galE (UDP-glucose 4-epimerase). A gene fruK encoding fructose-1-phosphate kinase in the fructose pathway was also significantly inhibited. Several genes encoding fructose/mannose-specific enzyme IIABC components in the phosphotransferase system (PTS) were also downregulated, as was ldh encoding lactate dehydrogenase, a key enzyme involved in lactic acid synthesis. SnF 2 downregulated the transcription of most key enzyme genes involved in the galactose pathway and also suppressed several key genes involved in the PTS, which transports sugars into the cell in the first step of glycolysis.
2012-01-01
Background Spot 42 was discovered in Escherichia coli nearly 40 years ago as an abundant, small and unstable RNA. Its biological role has remained obscure until recently, and is today implicated in having broader roles in the central and secondary metabolism. Spot 42 is encoded by the spf gene. The gene is ubiquitous in the Vibrionaceae family of gamma-proteobacteria. One member of this family, Aliivibrio salmonicida, causes cold-water vibriosis in farmed Atlantic salmon. Its genome encodes Spot 42 with 84% identity to E. coli Spot 42. Results We generated a A. salmonicida spf deletion mutant. We then used microarray and Northern blot analyses to monitor global effects on the transcriptome in order to provide insights into the biological roles of Spot 42 in this bacterium. In the presence of glucose, we found a surprisingly large number of ≥ 2X differentially expressed genes, and several major cellular processes were affected. A gene encoding a pirin-like protein showed an on/off expression pattern in the presence/absence of Spot 42, which suggests that Spot 42 plays a key regulatory role in the central metabolism by regulating the switch between fermentation and respiration. Interestingly, we discovered an sRNA named VSsrna24, which is encoded immediately downstream of spf. This new sRNA has an expression pattern opposite to that of Spot 42, and its expression is repressed by glucose. Conclusions We hypothesize that Spot 42 plays a key role in the central metabolism, in part by regulating the pyruvat dehydrogenase enzyme complex via pirin. PMID:22272603
Wu, Yaqin; Zhuang, Jiabao; Zhao, Dan; Zhang, Fuqiang; Ma, Jiayin; Xu, Chun
2017-10-01
This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.
MADS-box genes in maize: Frequent targets of selection during domestication
USDA-ARS?s Scientific Manuscript database
MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 random loci from the maize genome and investigated their involvement in maize domestication and improvement. Using n...
Fahad, Ahmed al; Abood, Amira; Fisch, Katja M.; Osipow, Anna; Davison, Jack; Avramović, Marija; Butts, Craig P.; Piel, Jörn; Simpson, Thomas J.
2014-01-01
An FAD-dependent monooxygenase encoding gene (SorbC) was cloned from Penicillium chrysogenum E01-10/3 and expressed as a soluble protein in Escherichia coli. The enzyme efficiently performed the oxidative dearomatisation of sorbicillin and dihydrosorbicillin to give sorbicillinol and dihydrosorbicillinol respectively. Bioinformatic examination of the gene cluster surrounding SorbC indicated the presence of two polyketide synthase (PKS) encoding genes designated sorbA and sorbB. The gene sorbA-encodes a highly reducing iterative PKS while SorbB encodes a non-reducing iterative PKS which features a reductive release domain usually involved in the production of polyketide aldehydes. Using these observations and previously reported results from isotopic feeding experiments a new and simpler biosynthetic route to the sorbicillin class of secondary metabolites is proposed which is consistent with all reported experimental results. PMID:25580210
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels.
Hernández-Prieto, Miguel A; Lin, Yuankui; Chen, Min
2017-02-09
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina , multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA , we detected a similar transcriptional pattern for psbJ and psbU , which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. Copyright © 2017 Hernandez-Prieto et al.
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels
Hernández-Prieto, Miguel A.; Lin, Yuankui; Chen, Min
2016-01-01
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. PMID:27974439
A deep auto-encoder model for gene expression prediction.
Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua
2017-11-17
Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
Liu, Pengfei; Yang, Yanxiang; Lü, Zhe; Lu, Yahai
2014-08-01
Members of Methanocellales are widespread in paddy field soils and play the key role in methane production. These methanogens feature largely in these organisms’ adaptation to low H2 and syntrophic growth with anaerobic fatty acid oxidizers. The adaptive mechanisms, however, remain unknown. In the present study, we determined the transcripts of 21 genes involved in the key steps of methanogenesis and acetate assimilation of Methanocella conradii HZ254, a strain recently isolated from paddy field soil. M. conradii was grown in monoculture and syntrophically with Pelotomaculum thermopropionicum (a propionate syntroph) or Syntrophothermus lipocalidus (a butyrate syntroph). Comparison of the relative transcript abundances showed that three hydrogenase-encoding genes and all methanogenesis-related genes tested were upregulated in cocultures relative to monoculture. The genes encoding formylmethanofuran dehydrogenase (Fwd), heterodisulfide reductase (Hdr), and the membrane-bound energy-converting hydrogenase (Ech) were the most upregulated among the evaluated genes. The expression of the formate dehydrogenase (Fdh)-encoding gene also was significantly upregulated. In contrast, an acetate assimilation gene was downregulated in cocultures. The genes coding for Fwd, Hdr, and the D subunit of F420-nonreducing hydrogenase (Mvh) form a large predicted transcription unit; therefore, the Mvh/Hdr/Fwd complex, capable of mediating the electron bifurcation and connecting the first and last steps of methanogenesis, was predicted to be formed in M. conradii. We propose that Methanocella methanogens cope with low H2 and syntrophic growth by (i) stabilizing the Mvh/Hdr/Fwd complex and (ii) activating formatedependent methanogenesis.
Of the currently known reductive dehalogenase genes, few have functions assigned, and it seems likely that many more remain to be discovered. Very little is known of the ecology of the organisms that harbor these genes, that encode enzymes that are key to the anaerobic dechlorina...
Farrugia, Daniel N.; Elbourne, Liam D. H.; Mabbutt, Bridget C.; Paulsen, Ian T.
2015-01-01
Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5′ end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature. PMID:25883135
Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y
Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.
2015-12-08
This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.
Wiedemann, Gertrud; Hermsen, Corinna; Melzer, Michael; Büttner-Mainik, Annette; Rennenberg, Heinz; Reski, Ralf; Kopriva, Stanislav
2010-06-03
A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the DeltaSiR1 mutants. While DeltaSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Schmidt, Andreas Johannes; Hemmeter, Ulrich Michael; Krieg, Jürgen-Christian; Vedder, Helmut; Heiser, Philip
2009-05-01
Antipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.3, 3, 30 and 300microM haloperidol and quetiapine, respectively; mRNA levels were measured by polymerase chain reaction. In the present study, we observed mostly significant decreases of mRNA contents. With respect to the key pathways, we detected mainly effects on the mRNA levels of the hydrogen peroxide detoxifying enzymes. Among the enzymes of the glutathione metabolism, glutathione-S-transferase- and gamma-glutamyltranspeptidase-mRNA levels showed the most prominent effects. Taken together, our results demonstrate a significantly reduced expression of genes encoding for antioxidant enzymes after treatment with the antipsychotics, haloperidol and quetiapine.
Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.
2002-01-01
We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388
Rashid, M Mamunur; Ikawa, Yumi; Tsuge, Seiji
2016-07-01
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight of rice. For the virulence of the bacterium, the hrp genes, encoding components of the type III secretion system, are indispensable. The expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX: HrpG regulates hrpX, and HrpX regulates other hrp genes. Several other regulators have been shown to be involved in the regulation of hrp genes. Here, we found that a LysR-type transcriptional regulator that we named GamR, encoded by XOO_2767 of X. oryzae pv. oryzae strain MAFF311018, positively regulated the transcription of both hrpG and hrpX, which are adjacent to each other but have opposite orientations, with an intergenic upstream region in common. In a gel electrophoresis mobility shift assay, GamR bound directly to the middle of the upstream region common to hrpG and hrpX The loss of either GamR or its binding sites decreased hrpG and hrpX expression. Also, GamR bound to the upstream region of either a galactose metabolism-related gene (XOO_2768) or a galactose metabolism-related operon (XOO_2768 to XOO_2771) located next to gamR itself and positively regulated the genes. The deletion of the regulator gene resulted in less bacterial growth in a synthetic medium with galactose as a sole sugar source. Interestingly, induction of the galactose metabolism-related gene was dependent on galactose, while that of the hrp regulator genes was galactose independent. Our results indicate that the LysR-type transcriptional regulator that regulates the galactose metabolism-related gene(s) also acts in positive regulation of two key hrp regulators and the following hrp genes in X. oryzae pv. oryzae. The expression of hrp genes encoding components of the type III secretion system is essential for the virulence of many plant-pathogenic bacteria, including Xanthomonas oryzae pv. oryzae. It is specifically induced during infection. Research has revealed that in this bacterium, hrp gene expression is controlled by two key hrp regulators, HrpG and HrpX, along with several other regulators in the complex regulatory network, but the details remain unclear. Here, we found that a novel LysR-type transcriptional activator, named GamR, functions as an hrp regulator by directly activating the transcription of both hrpG and hrpX Interestingly, GamR also regulates a galactose metabolism-related gene (or operon) in a galactose-dependent manner, while the regulation of hrpG and hrpX is independent of the sugar. Our finding of a novel hrp regulator that directly and simultaneously regulates two key hrp regulators provides new insights into an important and complex regulation system of X. oryzae pv. oryzae hrp genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; ...
2015-09-15
We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzymemore » (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.« less
Methylotrophic Methylobacterium Bacteria Nodulate and Fix Nitrogen in Symbiosis with Legumes
Sy, Abdoulaye; Giraud, Eric; Jourand, Philippe; Garcia, Nelly; Willems, Anne; de Lajudie, Philippe; Prin, Yves; Neyra, Marc; Gillis, Monique; Boivin-Masson, Catherine; Dreyfus, Bernard
2001-01-01
Rhizobia described so far belong to three distinct phylogenetic branches within the α-2 subclass of Proteobacteria. Here we report the discovery of a fourth rhizobial branch involving bacteria of the Methylobacterium genus. Rhizobia isolated from Crotalaria legumes were assigned to a new species, “Methylobacterium nodulans,” within the Methylobacterium genus on the basis of 16S ribosomal DNA analyses. We demonstrated that these rhizobia facultatively grow on methanol, which is a characteristic of Methylobacterium spp. but a unique feature among rhizobia. Genes encoding two key enzymes of methylotrophy and nodulation, the mxaF gene, encoding the α subunit of the methanol dehydrogenase, and the nodA gene, encoding an acyltransferase involved in Nod factor biosynthesis, were sequenced for the type strain, ORS2060. Plant tests and nodA amplification assays showed that “M. nodulans” is the only nodulating Methylobacterium sp. identified so far. Phylogenetic sequence analysis showed that “M. nodulans” NodA is closely related to Bradyrhizobium NodA, suggesting that this gene was acquired by horizontal gene transfer. PMID:11114919
SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening
Ji, Kai; Kai, Wenbin; Zhao, Bo; Sun, Yufei; Yuan, Bing; Dai, Shengjie; Li, Qian; Chen, Pei; Wang, Ya; Pei, Yuelin; Wang, Hongqing; Guo, Yangdong; Leng, Ping
2014-01-01
Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8′-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitative real-time PCR showed that VIGS-treated tomato fruits had significant reductions in target gene transcripts. In SlNCED1-RNAi-treated fruits, ripening slowed down, and the entire fruit turned to orange instead of red as in the control. In comparison, the downregulation of SlCYP707A2 expression in SlCYP707A2-silenced fruit could promote ripening; for example, colouring was quicker than in the control. Silencing SlNCED2/3 or SlCYP707A1/3 made no significant difference to fruit ripening comparing RNAi-treated fruits with control fruits. ABA accumulation and SlNCED1transcript levels in the SlNCED1-RNAi-treated fruit were downregulated to 21% and 19% of those in control fruit, respectively, but upregulated in SlCYP707A2-RNAi-treated fruit. Silencing SlNCED1 or SlCYP707A2 by VIGS significantly altered the transcripts of a set of both ABA-responsive and ripening-related genes, including ABA-signalling genes (PYL1, PP2C1, and SnRK2.2), lycopene-synthesis genes (SlBcyc, SlPSY1 and SlPDS), and cell wall-degrading genes (SlPG1, SlEXP, and SlXET) during ripening. These data indicate that SlNCED1 and SlCYP707A2 are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively. PMID:25039074
Wang, Pingyang; Qiu, Zhiyong; Xia, Dingguo; Tang, Shunming; Shen, Xingjia; Zhao, Qiaoling
2017-01-01
A new purple quail-like (q-lp) mutant found from the plain silkworm strain 932VR has pigment dots on the epidermis similar to the pigment mutant quail (q). In addition, q-lp mutant larvae are inactive, consume little and grow slowly, with a high death rate and other developmental abnormalities. Pigmentation of the silkworm epidermis consists of melanin, ommochrome and pteridine. Silkworm development is regulated by ecdysone and juvenile hormone. In this study, we performed RNA-Seq on the epidermis of the q-lp mutant in the 4th instar during molting, with 932VR serving as the control. The results showed 515 differentially expressed genes, of which 234 were upregulated and 281 downregulated in q-lp. BLASTGO analysis indicated that the downregulated genes mainly encode protein-binding proteins, membrane components, oxidation/reduction enzymes, and proteolytic enzymes, whereas the upregulated genes largely encode cuticle structural constituents, membrane components, transport related proteins, and protein-binding proteins. Quantitative reverse transcription PCR was used to verify the accuracy of the RNA-Seq data, focusing on key genes for biosynthesis of the three pigments and chitin as well as genes encoding cuticular proteins and several related nuclear receptors, which are thought to play key roles in the q-lp mutant. We drew three conclusions based on the results: 1) melanin, ommochrome and pteridine pigments are all increased in the q-lp mutant; 2) more cuticle proteins are expressed in q-lp than in 932VR, and the number of upregulated cuticular genes is significantly greater than downregulated genes; 3) the downstream pathway regulated by ecdysone is blocked in the q-lp mutant. Our research findings lay the foundation for further research on the developmental changes responsible for the q-lp mutant.
Molecular and genomic basis of volatile-mediated indirect defense against insects in rice.
Yuan, Joshua S; Köllner, Tobias G; Wiggins, Greg; Grant, Jerome; Degenhardt, Jörg; Chen, Feng
2008-08-01
Rice plants fed on by fall armyworm (Spodoptera frugiperda, FAW) caterpillars emit a blend of volatiles dominated by terpenoids. These volatiles were highly attractive to females of the parasitoid Cotesia marginiventris. Microarray analysis identified 196 rice genes whose expression was significantly upregulated by FAW feeding, 18 of which encode metabolic enzymes potentially involved in volatile biosynthesis. Significant induction of expression of seven of the 11 terpene synthase (TPS) genes identified through the microarray experiments was confirmd using real-time RT-PCR. Enzymes encoded by three TPS genes, Os02g02930, Os08g07100 and Os08g04500, were biochemically characterized. Os02g02930 was found to encode a monoterpene synthase producing the single product S-linalool, which is the most abundant volatile emitted from FAW-damaged rice plants. Both Os08g07100 and Os08g04500 were found to encode sesquiterpene synthases, each producing multiple products. These three enzymes are responsible for production of the majority of the terpenes released from FAW-damaged rice plants. In addition to TPS genes, several key genes in the upstream terpenoid pathways were also found to be upregulated by FAW feeding. This paper provides a comprehensive analysis of FAW-induced volatiles and the corresponding volatile biosynthetic genes potentially involved in indirect defense in rice. Evolution of the genetic basis governing volatile terpenoid biosynthesis for indirect defense is discussed.
Deregulation of Rab and Rab Effector Genes in Bladder Cancer
Ho, Joel R.; Chapeaublanc, Elodie; Kirkwood, Lisa; Nicolle, Remy; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Southgate, Jennifer; Radvanyi, François; Goud, Bruno
2012-01-01
Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer. PMID:22724020
Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying
2018-04-03
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Richard J. Baerends; Grietje J. Sulter; Thomas W. Jeffries; James M. Cregg; Marten Veenhuis
2002-01-01
Glutathione-dependent formaldehyde dehydrogenase (FLD) is a key enzyme required for the catabolism of methanol as a carbon source and certain primary amines, such as methylamine as nitrogen sources in methylotrophic yeasts. Here we describe the molecular characterization of the FLD1 gene from the yeast Hansenula polymorpha. Unlike the recently described Pichia pastoris...
ERIC Educational Resources Information Center
Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak
2010-01-01
RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…
Bourguignon, Natalia; Bargiela, Rafael; Rojo, David; Chernikova, Tatyana N; de Rodas, Sara A López; García-Cantalejo, Jesús; Näther, Daniela J; Golyshin, Peter N; Barbas, Coral; Ferrero, Marcela; Ferrer, Manuel
2016-12-01
The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.
Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M
2007-06-01
Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.
Bragin, E Yu; Shtratnikova, V Yu; Dovbnya, D V; Schelkunov, M I; Pekov, Yu A; Malakho, S G; Egorova, O V; Ivashina, T V; Sokolov, S L; Ashapkin, V V; Donova, M V
2013-11-01
A comparative genome analysis of Mycobacterium spp. VKM Ac-1815D, 1816D and 1817D strains used for efficient production of key steroid intermediates (androst-4-ene-3,17-dione, AD, androsta-1,4-diene-3,17-dione, ADD, 9α-hydroxy androst-4-ene-3,17-dione, 9-OH-AD) from phytosterol has been carried out by deep sequencing. The assembled contig sequences were analyzed for the presence putative genes of steroid catabolism pathways. Since 3-ketosteroid-9α-hydroxylases (KSH) and 3-ketosteroid-Δ(1)-dehydrogenase (Δ(1) KSTD) play key role in steroid core oxidation, special attention was paid to the genes encoding these enzymes. At least three genes of Δ(1) KSTD (kstD), five genes of KSH subunit A (kshA), and one gene of KSH subunit B of 3-ketosteroid-9α-hydroxylases (kshB) have been found in Mycobacterium sp. VKM Ac-1817D. Strains of Mycobacterium spp. VKM Ac-1815D and 1816D were found to possess at least one kstD, one kshB and two kshA genes. The assembled genome sequence of Mycobacterium sp. VKM Ac-1817D differs from those of 1815D and 1816D strains, whereas these last two are nearly identical, differing by 13 single nucleotide substitutions (SNPs). One of these SNPs is located in the coding region of a kstD gene and corresponds to an amino acid substitution Lys (135) in 1816D for Ser (135) in 1815D. The findings may be useful for targeted genetic engineering of the biocatalysts for biotechnological application. Copyright © 2013. Published by Elsevier Ltd.
Corbin, Cyrielle; Decourtil, Cédric; Marosevic, Djurdjica; Bailly, Marlène; Lopez, Tatiana; Renouard, Sullivan; Doussot, Joël; Dutilleul, Christelle; Auguin, Daniel; Giglioli-Guivarc'h, Nathalie; Lainé, Eric; Lamblin, Frédéric; Hano, Christophe
2013-11-01
A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild type and mutated promoter sequences. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Impact of enhancin genes on potency of LdNPV in gypsy moth
Kelli Hoover; Jim McNeil; Alyssa Gendron; James. Slavicek
2011-01-01
Lymantria dispar nucleopolyhedrovirus (LdNPV) contains two enhancin genes (E1 and E2) encoding proteases that degrade key peritrophic matrix (PM) proteins, thereby promoting infection and mortality by the virus. In a previous study, gypsy moth larvae inoculated with LdNPV in which both E1 and E2 were deleted (double deletion virus) resulted in a non-...
Genomics of high molecular weight plasmids isolated from an on-farm biopurification system.
Martini, María C; Wibberg, Daniel; Lozano, Mauricio; Torres Tejerizo, Gonzalo; Albicoro, Francisco J; Jaenicke, Sebastian; van Elsas, Jan Dirk; Petroni, Alejandro; Garcillán-Barcia, M Pilar; de la Cruz, Fernando; Schlüter, Andreas; Pühler, Alfred; Pistorio, Mariano; Lagares, Antonio; Del Papa, María F
2016-06-20
The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.
Regulation of Oil Biosynthesis in Algae
2008-06-25
for future engineering purposes 3. Biochemical analysis of diacylglycerol acyltransferases ( DGATs ). These are key enzymes of oil biosynthesis...catalyzing the assembly of triacylglycerol in many organisms. 5 Genes predicted to encode DGATs and their role in triacylglycerol biosynthesis were identified
Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry
2015-01-01
The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965
Comparative genomics of the lactic acid bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarova, K.; Slesarev, A.; Wolf, Y.
Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive genemore » loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.« less
Winterbottom, Emily F; Koestler, Devin C; Fei, Dennis Liang; Wika, Eric; Capobianco, Anthony J; Marsit, Carmen J; Karagas, Margaret R; Robbins, David J
2017-06-14
Sex-specific factors play a major role in human health and disease, including responses to environmental stresses such as toxicant exposure. Increasing evidence suggests that such sex differences also exist during fetal development. In a previous report using the resources of the New Hampshire Birth Cohort Study (NHBCS), we found that low-to-moderate in utero exposure to arsenic, a highly toxic and widespread pollutant, was associated with altered expression of several key developmental genes in the fetal portion of the placenta. These associations were sex-dependent, suggesting that in utero arsenic exposure differentially impacts male and female fetuses. In the present study, we investigated the molecular basis for these sex-specific responses to arsenic. Using NanoString technology, we further analyzed the fetal placenta samples from the NHBCS for the expression of genes encoding arsenic transporters and metabolic enzymes. Multivariable linear regression analysis was used to examine their relationship with arsenic exposure and with key developmental genes, after stratification by fetal sex. We found that maternal arsenic exposure was strongly associated with expression of the AQP9 gene, encoding an aquaglyceroporin transporter, in female but not male fetal placenta. Moreover, AQP9 expression associated with that of a subset of female-specific arsenic-responsive genes. Our results suggest that AQP9 is upregulated in response to arsenic exposure in female, but not male, fetal placenta. Based on these results and prior studies, increased AQP9 expression may lead to increased arsenic transport in the female fetal placenta, which in turn may alter the expression patterns of key developmental genes that we have previously shown to be associated with arsenic exposure. Thus, this study suggests that AQP9 may play a role in the sex-specific effects of in utero arsenic exposure.
White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein.
Ballario, P; Vittorioso, P; Magrelli, A; Talora, C; Cabibbo, A; Macino, G
1996-01-01
The Neurospora crassa blind mutant white collar-1 (wc-1) is pleiotropically defective in all blue light-induced phenomena, establishing a role for the wc-1 gene product in the signal transduction pathway. We report the cloning of the wc-1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc-1 gene product provides a key piece of the blue light signal transduction puzzle. The wc-1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine-rich putative transcription activation domain. We demonstrate that the wc-1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light-regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc-1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation. Images PMID:8612589
Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor; Guzmán, Plinio
2018-01-01
RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.
Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor
2018-01-01
RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes. PMID:29324855
DAZ Family Proteins, Key Players for Germ Cell Development
Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei
2015-01-01
DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution. PMID:26327816
Sex determination in insects: a binary decision based on alternative splicing.
Salz, Helen K
2011-08-01
The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Engineering tobacco to remove mercury from polluted soil.
Chang, S; Wei, F; Yang, Y; Wang, A; Jin, Z; Li, J; He, Y; Shu, H
2015-04-01
Tobacco is an ideal plant for modification to remove mercury from soil. Although several transgenic tobacco strains have been developed, they either release elemental mercury directly into the air or are only capable of accumulating small quantities of mercury. In this study, we constructed two transgenic tobacco lines: Ntk-7 (a tobacco plant transformed with merT-merP-merB1-merB2-ppk) and Ntp-36 (tobacco transformed with merT-merP-merB1-merB2-pcs1). The genes merT, merP, merB1, and merB2 were obtained from the well-known mercury-resistant bacterium Pseudomonas K-62. Ppk is a gene that encodes polyphosphate kinase, a key enzyme for synthesizing polyphosphate in Enterobacter aerogenes. Pcs1 is a tobacco gene that encodes phytochelatin synthase, which is the key enzyme for phytochelatin synthesis. The genes were linked with LP4/2A, a sequence that encodes a well-known linker peptide. The results demonstrate that all foreign genes can be abundantly expressed. The mercury resistance of Ntk-7 and Ntp-36 was much higher than that of the wild type whether tested with organic mercury or with mercuric ions. The transformed plants can accumulate significantly more mercury than the wild type, and Ntp-36 can accumulate more mercury from soil than Ntk-7. In mercury-polluted soil, the mercury content in Ntp-36's root can reach up to 251 μg/g. This is the first report to indicate that engineered tobacco can not only accumulate mercury from soil but also retain this mercury within the plant. Ntp-36 has good prospects for application in bioremediation for mercury pollution.
Meléndez-Hernández, Mayra Gisela; Barrios, María Luisa Labra; Orozco, Esther; Luna-Arias, Juan Pedro
2008-12-23
Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.
ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii.
Robinson, J C; Rostami, N; Casement, J; Vollmer, W; Rickard, A H; Jakubovics, N S
2018-04-01
Biofilm formation and cell-cell sensing by the pioneer dental plaque colonizer Streptococcus gordonii are dependent upon arginine. This study aimed to identify genetic factors linking arginine-dependent responses and biofilm formation in S. gordonii. Isogenic mutants disrupted in genes required for the biosynthesis or catabolism of arginine, or for arginine-dependent gene regulation, were screened for their ability to form biofilms in a static culture model. Biofilm formation by a knockout mutant of arcR, encoding an arginine-dependent regulator of transcription, was reduced to < 50% that of the wild-type whereas other strains were unaffected. Complementation of S. gordonii ∆arcR with a plasmid-borne copy of arcR restored the ability to develop biofilms. By DNA microarray analysis, 25 genes were differentially regulated in S. gordonii ∆arcR compared with wild-type under arginine-replete conditions including eight genes encoding components of phosphotransferase systems for sugar uptake. By contrast, disruption of argR or ahrC genes, which encode paralogous arginine-dependent regulators, each resulted in significant changes in the expression of more than 100 genes. Disruption of a gene encoding a putative extracellular protein that was strongly regulated in S. gordonii ∆arcR had a minor impact on biofilm formation. We hypothesize that genes regulated by ArcR form a critical pathway linking arginine sensing to biofilm formation in S. gordonii. Further elucidation of this pathway may provide new targets for the control of dental plaque formation by inhibiting biofilm formation by a key pioneer colonizer of tooth surfaces. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Barbi, Florian; Bragalini, Claudia; Vallon, Laurent; Prudent, Elsa; Dubost, Audrey; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia
2014-01-01
Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the discovery of complex patterns in gene expression of soil fungal communities. PMID:25545363
Chen, Nanhua; LaCrue, Alexis N.; Teuscher, Franka; Waters, Norman C.; Gatton, Michelle L.; Kyle, Dennis E.
2014-01-01
Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment. PMID:24913167
Amiour, Nardjis; Imbaud, Sandrine; Clément, Gilles; Agier, Nicolas; Zivy, Michel; Valot, Benoît; Balliau, Thierry; Quilleré, Isabelle; Tercé-Laforgue, Thérèse; Dargel-Graffin, Céline; Hirel, Bertrand
2014-11-20
To identify the key elements controlling grain production in maize, it is essential to have an integrated view of the responses to alterations in the main steps of nitrogen assimilation by modification of gene expression. Two maize mutant lines (gln1.3 and gln1.4), deficient in two genes encoding cytosolic glutamine synthetase, a key enzyme involved in nitrogen assimilation, were previously characterized by a reduction of kernel size in the gln1.4 mutant and by a reduction of kernel number in the gln1.3 mutant. In this work, the differences in leaf gene transcripts, proteins and metabolite accumulation in gln1.3 and gln1.4 mutants were studied at two key stages of plant development, in order to identify putative candidate genes, proteins and metabolic pathways contributing on one hand to the control of plant development and on the other to grain production. The most interesting finding in this study is that a number of key plant processes were altered in the gln1.3 and gln1.4 mutants, including a number of major biological processes such as carbon metabolism and transport, cell wall metabolism, and several metabolic pathways and stress responsive and regulatory elements. We also found that the two mutants share common or specific characteristics across at least two or even three of the "omics" considered at the vegetative stage of plant development, or during the grain filling period. This is the first comprehensive molecular and physiological characterization of two cytosolic glutamine synthetase maize mutants using a combined transcriptomic, proteomic and metabolomic approach. We find that the integration of the three "omics" procedures is not straight forward, since developmental and mutant-specific levels of regulation seem to occur from gene expression to metabolite accumulation. However, their potential use is discussed with a view to improving our understanding of nitrogen assimilation and partitioning and its impact on grain production.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.
Cornish, Adam J; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. PMID:25927230
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; ...
2015-04-30
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H 2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate undermore » anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less
Virus world as an evolutionary network of viruses and capsidless selfish elements.
Koonin, Eugene V; Dolja, Valerian V
2014-06-01
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Hovel-Miner, Galadriel; Pampou, Sergey; Faucher, Sebastien P; Clarke, Margaret; Morozova, Irina; Morozov, Pavel; Russo, James J; Shuman, Howard A; Kalachikov, Sergey
2009-04-01
Legionella pneumophila is the causative agent of the severe and potentially fatal pneumonia Legionnaires' disease. L. pneumophila is able to replicate within macrophages and protozoa by establishing a replicative compartment in a process that requires the Icm/Dot type IVB secretion system. The signals and regulatory pathways required for Legionella infection and intracellular replication are poorly understood. Mutation of the rpoS gene, which encodes sigma(S), does not affect growth in rich medium but severely decreases L. pneumophila intracellular multiplication within protozoan hosts. To gain insight into the intracellular multiplication defect of an rpoS mutant, we examined its pattern of gene expression during exponential and postexponential growth. We found that sigma(S) affects distinct groups of genes that contribute to Legionella intracellular multiplication. We demonstrate that rpoS mutants have a functional Icm/Dot system yet are defective for the expression of many genes encoding Icm/Dot-translocated substrates. We also show that sigma(S) affects the transcription of the cpxR and pmrA genes, which encode two-component response regulators that directly affect the transcription of Icm/Dot substrates. Our characterization of the L. pneumophila small RNA csrB homologs, rsmY and rsmZ, introduces a link between sigma(S) and the posttranscriptional regulator CsrA. We analyzed the network of sigma(S)-controlled genes by mutational analysis of transcriptional regulators affected by sigma(S). One of these, encoding the L. pneumophila arginine repressor homolog gene, argR, is required for maximal intracellular growth in amoebae. These data show that sigma(S) is a key regulator of multiple pathways required for L. pneumophila intracellular multiplication.
Wells, Julie; Rivera, Miguel N; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A
2010-07-01
WT1 encodes a tumor suppressor first identified by its inactivation in Wilms' Tumor. Although one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three-amino acid (KTS) insertion. Using cells that conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning analysis to identify candidate WT1(+KTS)-regulated promoters. We identified the planar cell polarity gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33-nucleotide region within the Scribble promoter in mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway.
NASA Astrophysics Data System (ADS)
Kikuchi, Shoshi
2009-02-01
Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.
Lin, J W; Lu, H C; Chen, H Y; Weng, S F
1997-10-09
Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.
Smith, Sarah R.; McCrow, John P.; Tan, Maxine; Lichtle, Christian; Goodenough, Ursula; Bowler, Chris P.; Dupont, Christopher L.
2017-01-01
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3−). To investigate the cellular and genetic basis of diatom NO3− assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO3− transport remained intact. Unassimilated NO3− accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3− chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3−. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3−, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3− addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3− replete and deplete conditions. PMID:28765511
Characterization of key triacylglycerol biosynthesis processes in rhodococci
Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi; ...
2016-04-29
In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less
McCarthy, James K.; Smith, Sarah R.; McCrow, John P.; ...
2017-09-07
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO 3 -). To investigate the cellular and genetic basis of diatom NO 3 - assimilation, in this paper we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO 3 - transport remained intact. Unassimilated NO 3 - accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO 3 - chloride channel transportersmore » plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO 3 -. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO 3 -, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO 3 - addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. Finally, N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO 3 - replete and deplete conditions.« less
Characterization of key triacylglycerol biosynthesis processes in rhodococci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi
In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, James K.; Smith, Sarah R.; McCrow, John P.
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO 3 -). To investigate the cellular and genetic basis of diatom NO 3 - assimilation, in this paper we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO 3 - transport remained intact. Unassimilated NO 3 - accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO 3 - chloride channel transportersmore » plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO 3 -. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO 3 -, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO 3 - addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. Finally, N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO 3 - replete and deplete conditions.« less
A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN
Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank
2014-01-01
It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944
Bagga, Suman; Apodaca, Kimberly; Lucero, Yvonne
2018-01-01
Chile pepper (Capsicum annuum) is an important high valued crop worldwide, and when grown on a large scale has problems with weeds. One important herbicide used is glyphosate. Glyphosate inactivates the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the synthesis of aromatic amino acids. A transgenic approach towards making glyphosate resistant plants, entails introducing copies of a gene encoding for glyphosate-resistant EPSPS enzyme into the plant. The main objective of our work was to use an intragenic approach to confer resistance to glyphosate in chile which would require using only chile genes for transformation including the selectable marker. Tobacco was used as the transgenic system to identify different gene constructs that would allow for the development of the intragenic system for chile, since chile transformation is inefficient. An EPSPS gene was isolated from chile and mutagenized to introduce substitutions that are known to make the encoded enzyme resistant to glyphosate. The promoter for EPSPS gene was isolated from chile and the mutagenized chile EPSPS cDNA was engineered behind both the CaMV35S promoter and the EPSPS promoter. The leaves from the transformants were checked for resistance to glyphosate using a cut leaf assay. In tobacco, though both gene constructs exhibited some degree of resistance to glyphosate, the construct with the CaMV35S promoter was more effective and as such chile was transformed with this gene construct. The chile transformants showed resistance to low concentrations of glyphosate. Furthermore, preliminary studies showed that the mutated EPSPS gene driven by the CaMV35S promoter could be used as a selectable marker for transformation. We have shown that an intragenic approach can be used to confer glyphosate-resistance in chile. However, we need a stronger chile promoter and a mutated chile gene that encodes for a more glyphosate resistant EPSPS protein. PMID:29649228
Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo
2018-02-01
This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing
Kola, Vijaya Sudhakara Rao; Renuka, P.; Madhav, Maganti Sheshu; Mangrauthia, Satendra K.
2015-01-01
RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21–24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed. PMID:25954206
Bernick, David L.; Dennis, Patrick P.; Lui, Lauren M.; Lowe, Todd M.
2012-01-01
A great diversity of small, non-coding RNA (ncRNA) molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs (sRNA) in archaea is limited. We employed RNA-seq to identify novel sRNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense sRNAs encoded opposite to key regulatory (ferric uptake regulator), metabolic (triose-phosphate isomerase), and core transcriptional apparatus genes (transcription factor B). We also found a large increase in the number of conserved C/D box sRNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these sRNAs indicates they are relatively recent, stable adaptations. PMID:22783241
Weigel, B J; Burgett, S G; Chen, V J; Skatrud, P L; Frolik, C A; Queener, S W; Ingolia, T D
1988-01-01
beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution. Images PMID:3045077
The role of the ataxia telangiectasia mutated gene in lung cancer: recent advances in research.
Xu, Yanling; Gao, Peng; Lv, Xuejiao; Zhang, Lin; Zhang, Jie
2017-09-01
Lung cancer is the leading cause of death due to cancer worldwide. It is estimated that approximately 1.2 million new cases of lung cancer are diagnosed each year. Early detection and treatment are crucial for improvements in both prognosis and quality of life of lung cancer patients. The ataxia telangiectasia mutated (ATM) gene is a cancer-susceptibility gene that encodes a key apical kinase in the DNA damage response pathway. It has recently been shown to play an important role in the development of lung cancer. The main functions of the ATM gene and protein includes participation in cell cycle regulation, and identification and repair of DNA damage. ATM gene mutation can lead to multiple system dysfunctions as well as a concomitant increase in tumor tendency. In recent years, many studies have indicated that single nucleotide polymorphism of the ATM gene is associated with increased incidence of lung cancer. At the same time, the ATM gene and its encoding product ATM protein predicts the response to radiotherapy, chemotherapy, and prognosis of lung cancer, thus suggesting that the ATM gene may be a new potential target for the diagnosis and treatment of lung cancer.
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-01-01
Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-12-01
Among nucleic acid-based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.
Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae
Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.
2013-01-01
Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276
USDA-ARS?s Scientific Manuscript database
Disease resistance (R) genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLRs define the fastest evolving...
Virus-encoded chemokine receptors--putative novel antiviral drug targets.
Rosenkilde, Mette M
2005-01-01
Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies--will be highlighted here together with the potentials of the virus-encoded chemokines and chemokine-binding proteins as novel anti-inflammatory biopharmaceutical strategies.
LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313
Wilson, Charlotte M.; Klingeman, Dawn M.; Schlachter, Caleb; ...
2016-12-21
Organisms regulate gene expression in response to the environment to coordinate metabolic reactions.Clostridium thermocellumexpresses enzymes for both lignocellulose solubilization and its fermentation to produce ethanol. In one LacI regulator termed GlyR3 inC. thermocellumATCC 27405 we identified a repressor of neighboring genes with repression relieved by laminaribiose (a β-1,3 disaccharide). To better understand the threeC. thermocellumLacI regulons, deletion mutants were constructed using the genetically tractable DSM1313 strain. DSM1313lacIgenes Clo1313_2023, Clo1313_0089, and Clo1313_0396 encode homologs of GlyR1, GlyR2, and GlyR3 from strain ATCC 27405, respectively. Furthermore, growth on cellobiose or pretreated switchgrass was unaffected by any of the gene deletions under controlled-pHmore » fermentations. Global gene expression patterns from time course analyses identified glycoside hydrolase genes encoding hemicellulases, including cellulosomal enzymes, that were highly upregulated (5- to 100-fold) in the absence of each LacI regulator, suggesting that these were repressed under wild-type conditions and that relatively few genes were controlled by each regulator under the conditions tested. Clo1313_2022, encoding lichenase enzyme LicB, was derepressed in a ΔglyR1strain. Higher expression of Clo1313_1398, which encodes the Man5A mannanase, was observed in a ΔglyR2strain, and α-mannobiose was identified as a probable inducer for GlyR2-regulated genes. For the ΔglyR3strain, upregulation of the two genes adjacent toglyR3in thecelC-glyR3-licAoperon was consistent with earlier studies. Electrophoretic mobility shift assays have confirmed LacI transcription factor binding to specific regions of gene promoters. IMPORTANCEUnderstandingC. thermocellumgene regulation is of importance for improved fundamental knowledge of this industrially relevant bacterium. Most LacI transcription factors regulate local genomic regions; however, a small number of those genes encode global regulatory proteins with extensive regulons. This study indicates that there are small specificC. thermocellumLacI regulons. Finally, the identification of LacI repressor activity for hemicellulase gene expression is a key result of this work and will add to the small body of existing literature on the area of gene regulation inC. thermocellum.« less
Chen, Nanhua; LaCrue, Alexis N; Teuscher, Franka; Waters, Norman C; Gatton, Michelle L; Kyle, Dennis E; Cheng, Qin
2014-08-01
Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kurusu, Mitsuhiko; Cording, Amy; Taniguchi, Misako; Menon, Kaushiki; Suzuki, Emiko; Zinn, Kai
2008-01-01
Summary In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron. PMID:18817735
Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.
Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B
2017-10-13
Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.
A gene associated with social immunity in the burying beetle Nicrophorus vespilloides
Palmer, William J.; Duarte, Ana; Schrader, Matthew; Day, Jonathan P.; Kilner, Rebecca; Jiggins, Francis M.
2016-01-01
Some group-living species exhibit social immunity, where the immune response of one individual can protect others in the group from infection. In burying beetles, this is part of parental care. Larvae feed on vertebrate carcasses which their parents smear with exudates that inhibit microbial growth. We have sequenced the transcriptome of the burying beetle Nicrophorus vespilloides and identified six genes that encode lysozymes—a type of antimicrobial enzyme that has previously been implicated in social immunity in burying beetles. When females start breeding and producing antimicrobial anal exudates, we found that the expression of one of these genes was increased by approximately 1000 times to become one of the most abundant transcripts in the transcriptome. Females varied considerably in the antimicrobial properties of their anal exudates, and this was strongly correlated with the expression of this lysozyme. We conclude that we have likely identified a gene encoding a key effector molecule in social immunity and that it was recruited during evolution from a function in personal immunity. PMID:26817769
Wang, Hong; Wang, Congcong; Li, Ya; Yue, Xiaofeng; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi
2013-01-01
Methylenetetrahydrofolate reductases (MTHFRs) play a key role in the biosynthesis of methionine in both prokaryotic and eukaryotic organisms. In this study, we report the identification of a novel T-DNA-tagged mutant WH672 in the rice blast fungus Magnaporthe oryzae, which was defective in vegetative growth, conidiation and pathogenicity. Analysis of the mutation confirmed a single T-DNA insertion upstream of MET13, which encodes a 626-amino-acid protein encoding a MTHFR. Targeted gene deletion of MET13 resulted in mutants that were non-pathogenic and significantly impaired in aerial growth and melanin pigmentation. All phenotypes associated with Δmet13 mutants could be overcome by addition of exogenous methionine. The M. oryzae genome contains a second predicted MTHFR-encoding gene, MET12. The deduced amino acid sequences of Met13 and Met12 share 32% identity. Interestingly, Δmet12 mutants produced significantly less conidia compared with the isogenic wild-type strain and grew very poorly in the absence of methionine, but were fully pathogenic. Deletion of both genes resulted in Δmet13Δmet12 mutants that showed similar phenotypes to single Δmet13 mutants. Taken together, we conclude that the MTHFR gene, MET13, is essential for infection-related morphogenesis by the rice blast fungus M. oryzae. PMID:24116181
Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New?
Cheregi, Otilia; Funk, Christiane
2015-08-12
In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5' GGCGATCGCC 3', was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1) motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes.
Robin, F; Beyrouthy, R; Bonacorsi, S; Aissa, N; Bret, L; Brieu, N; Cattoir, V; Chapuis, A; Chardon, H; Degand, N; Doucet-Populaire, F; Dubois, V; Fortineau, N; Grillon, A; Lanotte, P; Leyssene, D; Patry, I; Podglajen, I; Recule, C; Ros, A; Colomb-Cotinat, M; Ponties, V; Ploy, M C; Bonnet, R
2017-03-01
The objective of this study was to perform an inventory of the extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae isolates responsible for infections in French hospitals and to assess the mechanisms associated with ESBL diffusion. A total of 200 nonredundant ESBL-producing Enterobacteriaceae strains isolated from clinical samples were collected during a multicenter study performed in 18 representative French hospitals. Antibiotic resistance genes were identified by PCR and sequencing experiments. The clonal relatedness between isolates was investigated by the use of the DiversiLab system. ESBL-encoding plasmids were compared by PCR-based replicon typing and plasmid multilocus sequence typing. CTX-M-15, CTX-M-1, CTX-M-14, and SHV-12 were the most prevalent ESBLs (8% to 46.5%). The three CTX-M-type EBSLs were significantly observed in Escherichia coli (37.1%, 24.2%, and 21.8%, respectively), and CTX-M-15 was the predominant ESBL in Klebsiella pneumoniae (81.1%). SHV-12 was associated with ESBL-encoding Enterobacter cloacae strains (37.9%). qnrB , aac(6 ' )-Ib-cr , and aac(3)-II genes were the main plasmid-mediated resistance genes, with prevalences ranging between 19.5% and 45% according to the ESBL results. Molecular typing did not identify wide clonal diffusion. Plasmid analysis suggested the diffusion of low numbers of ESBL-encoding plasmids, especially in K. pneumoniae and E. cloacae However, the ESBL-encoding genes were observed in different plasmid replicons according to the bacterial species. The prevalences of ESBL subtypes differ according to the Enterobacteriaceae species. Plasmid spread is a key determinant of this epidemiology, and the link observed between the ESBL-encoding plasmids and the bacterial host explains the differences observed in the Enterobacteriaceae species. Copyright © 2017 American Society for Microbiology.
Gross, G; Snel, J; Boekhorst, J; Smits, M A; Kleerebezem, M
2010-03-01
Recently, we have identified the mannose-specific adhesin encoding gene (msa) of Lactobacillus plantarum. In the current study, structure and function of this potentially probiotic effector gene were further investigated, exploring genetic diversity of msa in L. plantarum in relation to mannose adhesion capacity. The results demonstrate that there is considerable variation in quantitative in vitro mannose adhesion capacity, which is paralleled by msa gene sequence variation. The msa genes of different L. plantarum strains encode proteins with variable domain composition. Construction of L. plantarum 299v mutant strains revealed that the msa gene product is the key-protein for mannose adhesion, also in a strain with high mannose adhering capacity. However, no straightforward correlation between adhesion capacity and domain composition of Msa in L. plantarum could be identified. Nevertheless, differences in Msa sequences in combination with variable genetic background of specific bacterial strains appears to determine mannose adhesion capacity and potentially affects probiotic properties. These findings exemplify the strain-specificity of probiotic characteristics and illustrate the need for careful and molecular selection of new candidate probiotics.
Properties of genes essential for mouse development
Kabir, Mitra; Barradas, Ana; Tzotzos, George T.; Hentges, Kathryn E.
2017-01-01
Essential genes are those that are critical for life. In the specific case of the mouse, they are the set of genes whose deletion means that a mouse is unable to survive after birth. As such, they are the key minimal set of genes needed for all the steps of development to produce an organism capable of life ex utero. We explored a wide range of sequence and functional features to characterise essential (lethal) and non-essential (viable) genes in mice. Experimental data curated manually identified 1301 essential genes and 3451 viable genes. Very many sequence features show highly significant differences between essential and viable mouse genes. Essential genes generally encode complex proteins, with multiple domains and many introns. These genes tend to be: long, highly expressed, old and evolutionarily conserved. These genes tend to encode ligases, transferases, phosphorylated proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction networks. They are involved with regulating protein-protein interactions, gene expression and metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication, cell differentiation, DNA repair and transcription, cell differentiation and embryonic development. Viable genes tend to encode: membrane proteins or secreted proteins, and are associated with functions such as cellular communication, apoptosis, behaviour and immune response, as well as housekeeping and tissue specific functions. Viable genes are linked to transport, ion channels, signal transduction, calcium binding and lipid binding, consistent with their location in membranes and involvement with cell-cell communication. From the analysis of the composite features of essential and viable genes, we conclude that essential genes tend to be required for intracellular functions, and viable genes tend to be involved with extracellular functions and cell-cell communication. Knowledge of the features that are over-represented in essential genes allows for a deeper understanding of the functions and processes implemented during mammalian development. PMID:28562614
Key management of the double random-phase-encoding method using public-key encryption
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2010-03-01
Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.
Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping
2012-01-01
Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).
Guan, Cong; Huang, Yan-Hua; Cui, Xin; Liu, Si-Jia; Zhou, Yun-Zhuan; Zhang, Yun-Wei
2018-05-25
Genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant salt stress tolerance. Switchgrass (Panicum virgatum L.) has developed into a dedicated bioenergy crop. To improve the biomass production of switchgrass grown on different types of soil, abiotic stress tolerance traits are considered for its genetic improvement. Proline accumulation is a widespread response when plants are subjected to abiotic stresses such as drought, cold and salinity. In plants, P5CS gene encodes the key regulatory enzyme that plays a crucial role in proline biosynthesis. Here, we introduced the PuP5CS gene (from Puccinellia chinampoensis) into switchgrass by Agrobacterium-mediated transformation. Transgenic lines overexpressing the PuP5CS gene showed phenotypic advantages, in leaf width, internode diameter, internode length, tiller numbers and precocious flowering under normal conditions, and the transgenic lines displayed better regenerative capacity in forming more tillers after harvest. Moreover, the PuP5CS gene enhanced the salt tolerance of transgenic switchgrass by altering a wide range of physiological responses. In accordance with the physiological results, histological analysis of cross sections through the leaf blade showed that the areas of bulliform cells and bundle sheath cells were significantly increased in PuP5CS-overexpressing leaves. The expression levels of ROS scavenging-associated genes in transgenic plants were higher than in control plants under salt stress. The results show that genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant stress tolerance.
Potential utility of natural products as regulators of breast cancer-assoicated aromatase promoters
USDA-ARS?s Scientific Manuscript database
Aromatase, the key enzyme in estrogen biosynthesis, converts androstenedione to estrone and testosterone to estradiol. The enzyme is expressed in various tissues such as ovary, placenta, bone, brain, skin, and adipose tissue. Aromatase enzyme is encoded by a single gene CYP 19A1 and its expression i...
USDA-ARS?s Scientific Manuscript database
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle fusion components that included 22 soluble N-ethylmaleimide...
" Exploration into the roles of genes, the proteins that they encode, and the functions that they carry out within the cell is a founding pillar in the field of toxicology. Recent breakthroughs in clustered, regularly interspaced, short palindromic repeat (CRISPR) technology...
Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes
Phil Kersten; Dan Cullen
2014-01-01
Extracellular peroxide generation, a key component of oxidative lignocellulose degradation, has been attributed to various enzymes including the copper radical oxidases. Encoded by a family of structurally related sequences, the genes are widely distributed among wood decay fungi including three recently completed polypore genomes. In all cases, core catalytic residues...
Peddareddygari, Leema Reddy; Dutra, Ana Virginia; Levenstien, Mark A; Sen, Souvik; Grewal, Raji P
2009-01-01
Background Cerebral ischemia involves a series of reactions which ultimately influence the final volume of a brain infarction. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of the cerebral response to ischemia and impact the resultant stroke volume. The final volume of a cerebral infarct is important as it correlates with the morbidity and mortality associated with non-lacunar ischemic strokes. Methods The proteins encoded by the methylenetetrahydrofolate reductase (MTHFR) and glutathione S-transferase omega-1 (GSTO-1) genes are, through oxidative mechanisms, key participants in the cerebral response to ischemia. On the basis of these biological activities, they were selected as candidate genes for further investigation. We analyzed the C677T polymorphism in the MTHFR gene and the C419A polymorphism in the GSTO-1 gene in 128 patients with non-lacunar ischemic strokes. Results We found no significant association of either the MTHFR (p = 0.72) or GSTO-1 (p = 0.58) polymorphisms with cerebral infarct volume. Conclusion Our study shows no major gene effect of either the MTHFR or GSTO-1 genes as a modifier of ischemic stroke volume. However, given the relatively small sample size, a minor gene effect is not excluded by this investigation. PMID:19624857
Wells, Julie; Rivera, Miguel N.; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A.
2010-01-01
WT1 encodes a tumor suppressor, first identified by its inactivation in Wilms Tumor. While one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three amino acid (KTS) insertion. Using cells which conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning (ChIP-cloning) analysis to identify candidate WT1(+KTS) regulated promoters. We identified the planar cell polarity (PCP) gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33 nucleotide region within the Scribble promoter in both mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064
Grundhoff, Adam; Sullivan, Christopher S.
2011-01-01
microRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category are a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection. PMID:21277611
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements
Dolja, Valerian V.
2014-01-01
SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023
Speranskaya, Anna S; Krinitsina, Anastasia A; Kudryavtseva, Anna V; Poltronieri, Palmiro; Santino, Angelo; Oparina, Nina Y; Dmitriev, Alexey A; Belenikin, Maxim S; Guseva, Marina A; Shevelev, Alexei B
2012-08-01
The group of Kunitz-type protease inhibitors (KPI) from potato is encoded by a polymorphic family of multiple allelic and non-allelic genes. The previous explanations of the KPI variability were based on the hypothesis of random mutagenesis as a key factor of KPI polymorphism. KPI-A genes from the genomes of Solanum tuberosum cv. Istrinskii and the wild species Solanum palustre were amplified by PCR with subsequent cloning in plasmids. True KPI sequences were derived from comparison of the cloned copies. "Hot spots" of recombination in KPI genes were independently identified by DnaSP 4.0 and TOPALi v2.5 software. The KPI-A sequence from potato cv. Istrinskii was found to be 100% identical to the gene from Solanum nigrum. This fact illustrates a high degree of similarity of KPI genes in the genus Solanum. Pairwise comparison of KPI A and B genes unambiguously showed a non-uniform extent of polymorphism at different nt positions. Moreover, the occurrence of substitutions was not random along the strand. Taken together, these facts contradict the traditional hypothesis of random mutagenesis as a principal source of KPI gene polymorphism. The experimentally found mosaic structure of KPI genes in both plants studied is consistent with the hypothesis suggesting recombination of ancestral genes. The same mechanism was proposed earlier for other resistance-conferring genes in the nightshade family (Solanaceae). Based on the data obtained, we searched for potential motifs of site-specific binding with plant DNA recombinases. During this work, we analyzed the sequencing data reported by the Potato Genome Sequencing Consortium (PGSC), 2011 and found considerable inconsistence of their data concerning the number, location, and orientation of KPI genes of groups A and B. The key role of recombination rather than random point mutagenesis in KPI polymorphism was demonstrated for the first time. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Staphylococcus aureus genomics and the impact of horizontal gene transfer.
Lindsay, Jodi A
2014-03-01
Whole genome sequencing and microarrays have revealed the population structure of Staphylococcus aureus, and identified epidemiological shifts, transmission routes, and adaptation of major clones. S. aureus genomes are highly diverse. This is partly due to a population structure of conserved lineages, each with unique combinations of genes encoding surface proteins, regulators, immune evasion and virulence pathways. Even more variable are the mobile genetic elements (MGE), which encode key proteins for antibiotic resistance, virulence and host-adaptation. MGEs can transfer at high frequency between isolates of the same lineage by horizontal gene transfer (HGT). There is increasing evidence that HGT is key to bacterial adaptation and success. Recent studies have shed light on new mechanisms of DNA transfer such as transformation, the identification of receptors for transduction, on integration of DNA pathways, mechanisms blocking transfer including CRISPR and new restriction systems, strategies for evasion of restriction barriers, as well as factors influencing MGE selection and stability. These studies have also lead to new tools enabling construction of genetically modified clinical S. aureus isolates. This review will focus on HGT mechanisms and their importance in shaping the evolution of new clones adapted to antibiotic resistance, healthcare, communities and livestock. Copyright © 2013 Elsevier GmbH. All rights reserved.
Hori, Kentaro; Yamada, Yasuyuki; Purwanto, Ratmoyo; Minakuchi, Yohei; Toyoda, Atsushi; Hirakawa, Hideki
2018-01-01
Abstract Land plants produce specialized low molecular weight metabolites to adapt to various environmental stressors, such as UV radiation, pathogen infection, wounding and animal feeding damage. Due to the large variety of stresses, plants produce various chemicals, particularly plant species-specific alkaloids, through specialized biosynthetic pathways. In this study, using a draft genome sequence and querying known biosynthetic cytochrome P450 (P450) enzyme-encoding genes, we characterized the P450 genes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in California poppy (Eschscholzia californica), as P450s are key enzymes involved in the diversification of specialized metabolism. Our in silico studies showed that all identified enzyme-encoding genes involved in BIA biosynthesis were found in the draft genome sequence of approximately 489 Mb, which covered approximately 97% of the whole genome (502 Mb). Further analyses showed that some P450 families involved in BIA biosynthesis, i.e. the CYP80, CYP82 and CYP719 families, were more enriched in the genome of E. californica than in the genome of Arabidopsis thaliana, a plant that does not produce BIAs. CYP82 family genes were highly abundant, so we measured the expression of CYP82 genes with respect to alkaloid accumulation in different plant tissues and two cell lines whose BIA production differs to estimate the functions of the genes. Further characterization revealed two highly homologous P450s (CYP82P2 and CYP82P3) that exhibited 10-hydroxylase activities with different substrate specificities. Here, we discuss the evolution of the P450 genes and the potential for further genome mining of the genes encoding the enzymes involved in BIA biosynthesis. PMID:29301019
Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi
2014-01-03
Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.
Liu, Xingwang; Bartholomew, Ezra; Cai, Yanling; Ren, Huazhong
2016-01-01
Trichomes are specialized epidermal cells located in aerial parts of plants that function in plant defense against biotic and abiotic stresses. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study the molecular mechanism of cell differentiation and pattern formation in plants. Loss-of-function mutations in Arabidopsis thaliana have suggested that the core genes GL1 (which encodes a MYB transcription factor) and TTG1 (which encodes a WD40 repeat-containing protein) are important for the initiation and spacing of leaf trichomes, while for normal trichome initiation, the genes GL3, and EGL3 (which encode a bHLH protein) are needed. However, the positive regulatory genes involved in multicellular trichrome development in cucumber remain unclear. This review focuses on the phenotype of mutants (csgl3, tril, tbh, mict, and csgl1) with disturbed trichomes in cucumber and then infers which gene(s) play key roles in trichome initiation and development in those mutants. Evidence indicates that MICT, TBH, and CsGL1 are allelic with alternative splicing. CsGL3 and TRIL are allelic and override the effect of TBH, MICT, and CsGL1 on the regulation of multicellular trichome development; and affect trichome initiation. CsGL3, TRIL, MICT, TBH, and CsGL1 encode HD-Zip proteins with different subfamilies. Genetic and molecular analyses have revealed that CsGL3, TRIL, MICT, TBH, and CsGL1 are responsible for the differentiation of epidermal cells and the development of trichomes. Based on current knowledge, a positive regulator pathway model for trichome development in cucumber was proposed and compared to a model in Arabidopsis. These data suggest that trichome development in cucumber may differ from that in Arabidopsis. PMID:27559338
Sutter, Jan-Moritz; Tästensen, Julia-Beate; Johnsen, Ulrike; Soppa, Jörg; Schönheit, Peter
2016-08-15
The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2008-04-01
have genes that encode enzymes of the Calvin-Benson cycle, specifically for the key enzyme ribulose 1,5-bisphosphate carboxylase ( RubisCO ) which...Closer examination of the gene sequence annotated as RubisCO revealed that is more closely related to RubisCO -like (Hanson and Tabita 2001) proteins than...to RubisCO and is likely not involved in the Calvin-Benson cycle. Ionic Strength A recent paper (Müller, Walter et al. 2006) explored the
Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal
2014-01-01
The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors. PMID:24971876
Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G
2018-04-26
Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal
2014-01-01
The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.
Lin, Sue; Dong, Heng; Zhang, Fang; Qiu, Lin; Wang, Fangzhan; Cao, Jiashu; Huang, Li
2014-01-01
Background and Aims The arabinogalactan protein (AGP) gene family is involved in plant reproduction. However, little is known about the function of individual AGP genes in pollen development and pollen tube growth. In this study, Brassica campestris male fertility 8 (BcMF8), a putative AGP-encoding gene previously found to be pollen specific in Chinese cabbage (B. campestris ssp. chinensis), was investigated. Methods Real-time reverse transcription–PCR and in situ hybridization were used to analyse the expression pattern of BcMF8 in pistils. Prokaryotic expression and western blots were used to ensure that BcMF8 could encode a protein. Antisense RNA technology was applied to silence gene expression, and morphological and cytological approaches (e.g. scanning electron microscopy and transmission electron microscopy) were used to reveal abnormal phenotypes caused by gene silencing. Key Results The BcMF8 gene encoded a putative AGP protein that was located in the cell wall, and was expressed in pollen grains and pollen tubes. The functional interruption of BcMF8 by antisense RNA technology resulted in slipper-shaped and bilaterally sunken pollen with abnormal intine development and aperture formation. The inhibition of BcMF8 led to a decrease in the percentage of in vitro pollen germination. In pollen that did germinate, the pollen tubes were unstable, abnormally shaped and burst more frequently relative to controls, which corresponded to an in vivo arrest of pollen germination at the stigma surface and retarded pollen tube growth in the stylar transmitting tissues. Conclusions The phenotypic defects of antisense BcMF8 RNA lines (bcmf8) suggest a crucial function of BcMF8 in modulating the physical nature of the pollen wall and in helping in maintaining the integrity of the pollen tube wall matrix. PMID:24489019
Tao, Xiang; Fang, Yang; Xiao, Yao; Jin, Yan-Ling; Ma, Xin-Rong; Zhao, Yun; He, Kai-Ze; Zhao, Hai; Wang, Hai-Yan
2013-05-08
Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata.
2013-01-01
Background Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata. PMID:23651472
Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing
2009-03-11
Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.
Yassin, Atteyet F; Langenberg, Stefan; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Mukherjee, Supratim; Reddy, T B K; Daum, Chris; Shapiro, Nicole; Ivanova, Natalia; Woyke, Tanja; Kyrpides, Nikos C
2017-01-01
The permanent draft genome sequence of Actinotignum schaalii DSM 15541T is presented. The annotated genome includes 2,130,987 bp, with 1777 protein-coding and 58 rRNA-coding genes. Genome sequence analysis revealed absence of genes encoding for: components of the PTS systems, enzymes of the TCA cycle, glyoxylate shunt and gluconeogensis. Genomic data revealed that A. schaalii is able to oxidize carbohydrates via glycolysis, the nonoxidative pentose phosphate and the Entner-Doudoroff pathways. Besides, the genome harbors genes encoding for enzymes involved in the conversion of pyruvate to lactate, acetate and ethanol, which are found to be the end products of carbohydrate fermentation. The genome contained the gene encoding Type I fatty acid synthase required for de novo FAS biosynthesis. The plsY and plsX genes encoding the acyltransferases necessary for phosphatidic acid biosynthesis were absent from the genome. The genome harbors genes encoding enzymes responsible for isoprene biosynthesis via the mevalonate (MVA) pathway. Genes encoding enzymes that confer resistance to reactive oxygen species (ROS) were identified. In addition, A. schaalii harbors genes that protect the genome against viral infections. These include restriction-modification (RM) systems, type II toxin-antitoxin (TA), CRISPR-Cas and abortive infection system. A. schaalii genome also encodes several virulence factors that contribute to adhesion and internalization of this pathogen such as the tad genes encoding proteins required for pili assembly, the nanI gene encoding exo-alpha-sialidase, genes encoding heat shock proteins and genes encoding type VII secretion system. These features are consistent with anaerobic and pathogenic lifestyles. Finally, resistance to ciprofloxacin occurs by mutation in chromosomal genes that encode the subunits of DNA-gyrase (GyrA) and topisomerase IV (ParC) enzymes, while resistant to metronidazole was due to the frxA gene, which encodes NADPH-flavin oxidoreductase.
Bryson, Steve; Thomson, Christy A; Risnes, Louise F; Dasgupta, Somnath; Smith, Kenneth; Schrader, John W; Pai, Emil F
2016-06-01
The human Ab response to certain pathogens is oligoclonal, with preferred IgV genes being used more frequently than others. A pair of such preferred genes, IGVK3-11 and IGVH3-30, contributes to the generation of protective Abs directed against the 23F serotype of the pneumonococcal capsular polysaccharide of Streptococcus pneumoniae and against the AD-2S1 peptide of the gB membrane protein of human CMV. Structural analyses of Fab fragments of mAbs 023.102 and pn132p2C05 in complex with portions of the 23F polysaccharide revealed five germline-encoded residues in contact with the key component, l-rhamnose. In the case of the AD-2S1 peptide, the KE5 Fab fragment complex identified nine germline-encoded contact residues. Two of these germline-encoded residues, Arg91L and Trp94L, contact both the l-rhamnose and the AD-2S1 peptide. Comparison of the respective paratopes that bind to carbohydrate and protein reveals that stochastic diversity in both CDR3 loops alone almost exclusively accounts for their divergent specificity. Combined evolutionary pressure by human CMV and the 23F serotype of S. pneumoniae acted on the IGVK3-11 and IGVH3-30 genes as demonstrated by the multiple germline-encoded amino acids that contact both l-rhamnose and AD-2S1 peptide. Copyright © 2016 by The American Association of Immunologists, Inc.
Gasmi, Najla; Jacques, Pierre-Etienne; Klimova, Natalia; Guo, Xiao; Ricciardi, Alessandra; Robert, François; Turcotte, Bernard
2014-10-01
In the yeast Saccharomyces cerevisiae, fermentation is the major pathway for energy production, even under aerobic conditions. However, when glucose becomes scarce, ethanol produced during fermentation is used as a carbon source, requiring a shift to respiration. This adaptation results in massive reprogramming of gene expression. Increased expression of genes for gluconeogenesis and the glyoxylate cycle is observed upon a shift to ethanol and, conversely, expression of some fermentation genes is reduced. The zinc cluster proteins Cat8, Sip4, and Rds2, as well as Adr1, have been shown to mediate this reprogramming of gene expression. In this study, we have characterized the gene YBR239C encoding a putative zinc cluster protein and it was named ERT1 (ethanol regulated transcription factor 1). ChIP-chip analysis showed that Ert1 binds to a limited number of targets in the presence of glucose. The strongest enrichment was observed at the promoter of PCK1 encoding an important gluconeogenic enzyme. With ethanol as the carbon source, enrichment was observed with many additional genes involved in gluconeogenesis and mitochondrial function. Use of lacZ reporters and quantitative RT-PCR analyses demonstrated that Ert1 regulates expression of its target genes in a manner that is highly redundant with other regulators of gluconeogenesis. Interestingly, in the presence of ethanol, Ert1 is a repressor of PDC1 encoding an important enzyme for fermentation. We also show that Ert1 binds directly to the PCK1 and PDC1 promoters. In summary, Ert1 is a novel factor involved in the regulation of gluconeogenesis as well as a key fermentation gene. Copyright © 2014 by the Genetics Society of America.
Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.
Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M
1991-02-15
The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.
USDA-ARS?s Scientific Manuscript database
Elongases 2, 4 and 5, encoded by genes ELOVL2, ELOVL4 and ELOVL5, have a key role in the biosynthesis of very long chain polyunsaturated fatty acids (PUFAs). To date, few studies have investigated the associations between elongase polymorphisms and cardiovascular health. We investigated whether ELOV...
USDA-ARS?s Scientific Manuscript database
A key feature of a gene's function is the variety of protein isoforms it encodes in a population. However, the genetic diversity in bovine whole genome databases tends to be underrepresented because these databases contain an abundance of sequence from the most influential sires. Our first aim was ...
Polonais, Valérie; Prensier, Gérard; Méténier, Guy; Vivarès, Christian P; Delbac, Frédéric
2005-09-01
The spore polar tube is a unique organelle required for cell invasion by fungi-related microsporidian parasites. Two major polar tube proteins (PTP1 and PTP2) are encoded by two tandemly arranged genes in Encephalitozoon species. A look at Antonospora (Nosema) locustae contigs (http://jbpc.mbl.edu/Nosema/Contigs/) revealed significant conservation in the order and orientation of various genes, despite high sequence divergence features, when comparing with Encephalitozoon cuniculi complete genome. This syntenic relationship between distantly related Encephalitozoon and Antonospora genera has been successfully exploited to identify ptp1 and ptp2 genes in two insect-infecting species assigned to the Antonospora clade (A. locustae and Paranosema grylli). Targeting of respective proteins to the polar tube was demonstrated through immunolocalization experiments with antibodies raised against recombinant proteins. Both PTPs were extracted from spores with 100mM dithiothreitol. Evidence for PTP1 mannosylation was obtained in studied species, supporting a key role of PTP1 in interactions with host cell surface.
Lorenzo-Díaz, Fabián; Fernández-López, Cris; Lurz, Rudi
2017-01-01
Abstract Horizontal gene transfer is a key process in the evolution of bacteria and also represents a source of genetic variation in eukaryotes. Among elements participating in gene transfer, thousands of small (<10 kb) mobile bacterial plasmids that replicate by the rolling circle mechanism represent a driving force in the spread of antibiotic resistances. In general, these plasmids are built as genetic modules that encode a replicase, an antibiotic-resistance determinant, and a relaxase that participates in their conjugative mobilization. Further, they control their relatively high copy number (∼30 copies per genome equivalent) by antisense RNAs alone or combined with a repressor protein. We report here that the MobM conjugative relaxase encoded by the promiscuous plasmid pMV158 participates in regulation of the plasmid copy number by transcriptional repression of the antisense RNA, thus increasing the number of plasmid molecules ready to be horizontally transferred (mobilization) and/or vertically inherited (replication). This type of crosstalk between genetic modules involved in vertical and horizontal gene flow has not been reported before. PMID:28525572
Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina
2017-01-01
The PKS-NRPS-derived tetramic acid equisetin and its N-desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus. The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum, a species distantly related to the notorious rice pathogen Fusarium fujikuroi. Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi. Bioinformatic analysis revealed that this cluster does not contain the equisetin N-methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi. Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22, led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23, encoding a second Zn(II)2Cys6 TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T. TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus. PMID:28379186
Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina
2017-04-05
The PKS-NRPS-derived tetramic acid equisetin and its N -desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus . The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum , a species distantly related to the notorious rice pathogen Fusarium fujikuroi . Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi . Bioinformatic analysis revealed that this cluster does not contain the equisetin N -methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi . Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22 , led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23 , encoding a second Zn(II)₂Cys₆ TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T . TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus.
Commensal bacteria produce GPCR ligands that mimic human signaling molecules
Cohen, Louis J.; Esterhazy, Daria; Kim, Seong-Hwan; Lemetre, Christophe; Aguilar, Rhiannon R.; Gordon, Emma A.; Pickard, Amanda J.; Cross, Justin R.; Emiliano, Ana B.; Han, Sun M.; Chu, John; Vila-Farres, Xavier; Kaplitt, Jeremy; Rogoz, Aneta; Calle, Paula Y.; Hunter, Craig; Bitok, J. Kipchirchir; Brady, Sean F.
2017-01-01
Summary Statement Commensal bacteria are believed to play important roles in human health. The mechanisms by which they affect mammalian physiology are poorly understood; however, bacterial metabolites are likely to be key components of host interactions. Here, we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands although future studies are needed to define their potential physiologic role in humans. This work suggests that chemical mimicry of eukaryotic signaling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a new small molecule therapeutic modality (microbiome-biosynthetic-gene-therapy). PMID:28854168
Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.
Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu
2012-04-01
Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. Copyright © 2011 Elsevier Ltd. All rights reserved.
LEFPS1, a Tomato Farnesyl Pyrophosphate Gene Highly Expressed during Early Fruit Development1
Gaffe, Joel; Bru, Jean-Philippe; Causse, Mathilde; Vidal, Alain; Stamitti-Bert, Linda; Carde, Jean-Pierre; Gallusci, Philippe
2000-01-01
Farnesyl pyrophosphate synthase (FPS) catalyzes the synthesis of farnesyl pyrophosphate, a key intermediate in sterol and sesquiterpene biosynthesis. Using a polymerase chain reaction-based approach, we have characterized LeFPS1, a tomato (Lycoperscion esculentum cv Wva 106) fruit cDNA, which encodes a functional FPS. We demonstrate that tomato FPSs are encoded by a small multigenic family with genes located on chromosomes 10 and 12. Consistent with farnesyl pyrophosphate requirement in sterol biosynthesis, FPS genes are ubiquitously expressed in tomato plants. Using an LeFPS1 specific probe, we show that the corresponding gene can account for most of FPS mRNA in most plant organs, but not during young seedling development, indicating a differential regulation of FPS genes in tomato. FPS gene expression is also under strict developmental control: FPS mRNA was mainly abundant in young organs and decreased as organs matured with the exception of fruits that presented a biphasic accumulation pattern. In this latter case in situ hybridization studies have shown that FPS mRNA is similarly abundant in all tissues of young fruit. Taken together our results suggest that several FPS isoforms are involved in tomato farnesyl pyrophosphate metabolism and that FPS genes are mostly expressed in relation to cell division and enlargement. PMID:10938353
Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal
2016-01-01
Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans, the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. PMID:28007841
Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal
2017-02-09
Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans , the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. Copyright © 2017 Erdelyi et al.
Yoshioka, Y; Kurei, S; Machida, Y
2001-06-01
We screened a gene trap library of Arabidopsis thaliana and isolated a line in which a gene encoding a homologue of monofunctional aspartate kinase was trapped by the reporter gene. Aspartate kinase (AK) is a key enzyme in the biosynthsis of aspartate family amino acids such as lysine, threonine, isoleucine, and methionine. In plants, two types of AK are known: one is AK which is sensitive to feedback inhibition by threonine and carries both AK and homoserine dehydrogenase (HSD) activities. The other one is monofunctional, sensitive to lysine and synergistically S-adenosylmethionine, and has only AK activity. We concluded that the trapped gene encoded a monofunctional aspartate kinase and designated as AK-lys3, because it lacked the HSD domain and had an amino acid sequence highly similar to those of the monofunctional aspartate kinases ofA. thaliana. AK-lys3 was highly expressed in xylem of leaves and hypocotyls and stele of roots. Significant expression of this gene was also observed in trichomes after bolting. Slight expression of AK-lys3 was detected in vascular bundles and mesophyll cells of cauline leaves, inflorescence stems, sepals, petals, and stigmas. These results indicated that this aspartate kinase gene was not expressed uniformly but in a spatially specific manner.
Li, Ya; Yue, Xiaofeng; Que, Yawei; Yan, Xia; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi
2014-01-01
LIM domain proteins contain contiguous double-zinc finger domains and play important roles in cytoskeletal re-organisation and organ development in multi-cellular eukaryotes. Here, we report the characterization of four genes encoding LIM proteins in the rice blast fungus Magnaporthe oryzae. Targeted gene replacement of either the paxillin-encoding gene, PAX1, or LRG1 resulted in a significant reduction in hyphal growth and loss of pathogenicity, while deletion of RGA1 caused defects in conidiogenesis and appressorium development. A fourth LIM domain gene, LDP1, was not required for infection-associated development by M. oryzae. Live cell imaging revealed that Lrg1-GFP and Rga1-GFP both localize to septal pores, while Pax1-GFP is present in the cytoplasm. To explore the function of individual LIM domains, we carried out systematic deletion of each LIM domain, which revealed the importance of the Lrg1-LIM2 and Lrg1-RhoGAP domains for Lrg1 function and overlapping functions of the three LIM domains of Pax1. Interestingly, deletion of either PAX1 or LRG1 led to decreased sensitivity to cell wall-perturbing agents, such as Congo Red and SDS (sodium dodecyl sulfate). qRT-PCR analysis demonstrated the importance of both Lrg1 and Pax1 to regulation of genes associated with cell wall biogenesis. When considered together, our results indicate that LIM domain proteins are key regulators of infection-associated morphogenesis by the rice blast fungus. PMID:24505448
Nara, Ayako; Hashimoto, Takuya; Komatsu, Mamoru; Nishiyama, Makoto; Kuzuyama, Tomohisa; Ikeda, Haruo
2017-05-01
Bafilomycins A 1 , C 1 and B 1 (setamycin) produced by Kitasatospora setae KM-6054 belong to the plecomacrolide family, which exhibit antibacterial, antifungal, antineoplastic and immunosuppressive activities. An analysis of gene clusters from K. setae KM-6054 governing the biosynthesis of bafilomycins revealed that it contains five large open reading frames (ORFs) encoding the multifunctional polypeptides of bafilomycin polyketide synthases (PKSs). These clustered PKS genes, which are responsible for bafilomycin biosynthesis, together encode 11 homologous sets of enzyme activities, each catalyzing a specific round of polyketide chain elongation. The region contains an additional 13 ORFs spanning a distance of 73 287 bp, some of which encode polypeptides governing other key steps in bafilomycin biosynthesis. Five ORFs, BfmB, BfmC, BfmD, BfmE and BfmF, were involved in the formation of methoxymalonyl-acyl carrier protein (ACP). Two possible regulatory genes, bfmR and bfmH, were found downstream of the above genes. A gene-knockout analysis revealed that BfmR was only a transcriptional regulator for the transcription of bafilomycin biosynthetic genes. Two genes, bfmI and bfmJ, were found downstream of bfmH. An analysis of these gene-disruption mutants in addition to an enzymatic analysis of BfmI and BfmJ revealed that BfmJ activated fumarate and BfmI functioned as a catalyst to form a fumaryl ester at the C21 hydroxyl residue of bafilomycin A 1 . A comparative analysis of bafilomycin gene clusters in K. setae KM-6054, Streptomyces lohii JCM 14114 and Streptomyces griseus DSM 2608 revealed that each ORF of both gene clusters in two Streptomyces strains were quite similar to each other. However, each ORF of gene cluster in K. setae KM-6054 was of lower similarity to that of corresponding ORF in the two Streptomyces species.
Tfaily, Malak M.; Green, Stefan J.; Steinweg, J. Megan; Chanton, Patrick; Imvittaya, Aopeau; Chanton, Jeffrey P.; Cooper, William; Schadt, Christopher
2014-01-01
This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria, and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter. Methylocystaceae-like small-subunit (SSU) rRNA genes, pmoA, and mmoX genes were more abundant among methanotrophs. Genes encoding N2 fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N2 fixation, and oligosaccharide degradation at MEF relative to other wetland and soil environments, consistent with the nutrient-poor and carbohydrate-rich conditions found in this Sphagnum-dominated boreal peatland. PMID:24682299
Lin, Xueju; Tfaily, Malak M; Green, Stefan J; Steinweg, J Megan; Chanton, Patrick; Imvittaya, Aopeau; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher; Kostka, Joel E
2014-06-01
This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria, and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter. Methylocystaceae-like small-subunit (SSU) rRNA genes, pmoA, and mmoX genes were more abundant among methanotrophs. Genes encoding N2 fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N2 fixation, and oligosaccharide degradation at MEF relative to other wetland and soil environments, consistent with the nutrient-poor and carbohydrate-rich conditions found in this Sphagnum-dominated boreal peatland.
Is ftsH the Key to Plastid Longevity in Sacoglossan Slugs?
de Vries, Jan; Habicht, Jörn; Woehle, Christian; Huang, Changjie; Christa, Gregor; Wägele, Heike; Nickelsen, Jörg; Martin, William F.; Gould, Sven B.
2013-01-01
Plastids sequestered by sacoglossan sea slugs have long been a puzzle. Some sacoglossans feed on siphonaceous algae and can retain the plastids in the cytosol of their digestive gland cells. There, the stolen plastids (kleptoplasts) can remain photosynthetically active in some cases for months. Kleptoplast longevity itself challenges current paradigms concerning photosystem turnover, because kleptoplast photosystems remain active in the absence of nuclear algal genes. In higher plants, nuclear genes are essential for plastid maintenance, in particular, for the constant repair of the D1 protein of photosystem II. Lateral gene transfer was long suspected to underpin slug kleptoplast longevity, but recent transcriptomic and genomic analyses show that no algal nuclear genes are expressed from the slug nucleus. Kleptoplast genomes themselves, however, appear expressed in the sequestered state. Here we present sequence data for the chloroplast genome of Acetabularia acetabulum, the food source of the sacoglossan Elysia timida, which can maintain Acetabularia kleptoplasts in an active state for months. The data reveal what might be the key to sacoglossan kleptoplast longevity: plastids that remain photosynthetically active within slugs for periods of months share the property of encoding ftsH, a D1 quality control protease that is essential for photosystem II repair. In land plants, ftsH is always nuclear encoded, it was transferred to the nucleus from the plastid genome when Charophyta and Embryophyta split. A replenishable supply of ftsH could, in principle, rescue kleptoplasts from D1 photodamage, thereby influencing plastid longevity in sacoglossan slugs. PMID:24336424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiraiwa, Akikazu; Yamanaka, Katsuo; Kwok, W.W.
Although HLA genes have been shown to be associated with certain diseases, the basis for this association is unknown. Recent studies, however, have documented patterns of nucleotide sequence variation among some HLA genes associated with a particular disease. For rheumatoid arthritis, HLA genes in most patients have a shared nucleotide sequence encoding a key structural element of an HLA class II polypeptide; this sequence element is critical for the interaction of the HLA molecule with antigenic peptides and with responding T cells, suggestive of a direct role for this sequence element in disease susceptibility. The authors describe the serological andmore » cellular immunologic characteristics encoded by this rheumatoid arthritis-associated sequence element. Site-directed mutagenesis of the DRB1 gene was used to define amino acids critical for antibody and T-cell recognition of this structural element, focusing on residues that distinguish the rheumatoid arthritis-associated alleles Dw4 and Dw14 from a closely related allele, Dw10, not associated with disease. Both the gain and loss of rheumatoid arthritis-associated epitopes were highly dependent on three residues within a discrete domain of the HLA-DR molecule. Recognition was most strongly influenced by the following amino acids (in order): 70 > 71 > 67. Some alloreactive T-cell clones were also influenced by amino acid variation in portions of the DR molecule lying outside the shared sequence element.« less
Milivojevic, Verica; Kranzler, Henry R.; Gelernter, Joel; Burian, Linda; Covault, Jonathan
2010-01-01
Background Studies of alcohol effects in rodents and in vitro implicate endogenous neuroactive steroids as key mediators of alcohol effects at GABAA receptors. We used a case-control sample to test the association with alcohol dependence (AD) of single nucleotide polymorphisms (SNPs) in the genes encoding two key enzymes required for the generation of endogenous neuroactive steroids: 5α–reductase, type I (5α-R) and 3α-hydroxysteroid dehydrogenase, type 2 (3α-HSD), both of which are expressed in human brain. Methods We focused on markers previously associated with a biological phenotype. For 5α-R, we examined the synonymous SRD5A1 exon 1 SNP rs248793, which has been associated with the ratio of dihydrotestosterone to testosterone. For 3α-HSD, we examined the non-synonymous AKR1C3 SNP rs12529 (H5Q), which has been associated with bladder cancer. The SNPs were genotyped in a sample of 1,083 non-Hispanic Caucasians including 552 controls and 531 subjects with AD. Results The minor allele for both SNPs was more common among controls than subjects with AD: SRD5A1 rs248793 C-allele (χ2(1)=7.6, p=0.006) and AKR1C3 rs12529 G-allele (χ2(1)=14.6, p=0.0001). There was also an interaction of these alleles such that the “protective” effect of the minor allele at each marker for AD was conditional on the genotype of the second marker. Conclusions We found evidence of an association with AD of polymorphisms in two genes encoding neuroactive steroid biosynthetic enzymes, providing indirect evidence that neuroactive steroids are important mediators of alcohol effects in humans. PMID:21323680
Milivojevic, Verica; Kranzler, Henry R; Gelernter, Joel; Burian, Linda; Covault, Jonathan
2011-05-01
Studies of alcohol effects in rodents and in vitro implicate endogenous neuroactive steroids as key mediators of alcohol effects at GABA(A) receptors. We used a case-control sample to test the association with alcohol dependence (AD) of single nucleotide polymorphisms in the genes encoding two key enzymes required for the generation of endogenous neuroactive steroids: 5α-reductase, type I (5α-R), and 3α-hydroxysteroid dehydrogenase, type 2 (3α-HSD), both of which are expressed in human brain. We focused on markers previously associated with a biological phenotype. For 5α-R, we examined the synonymous SRD5A1 exon 1 SNP rs248793, which has been associated with the ratio of dihydrotestosterone to testosterone. For 3α-HSD, we examined the nonsynonymous AKR1C3 SNP rs12529 (H5Q), which has been associated with bladder cancer. The SNPs were genotyped in a sample of 1,083 non-Hispanic Caucasians including 552 controls and 531 subjects with AD. The minor allele for both SNPs was more common among controls than subjects with AD: SRD5A1 rs248793 C-allele (χ(2)(1) = 7.6, p = 0.006) and AKR1C3 rs12529 G-allele (χ(2)(1) = 14.6, p = 0.0001). There was also an interaction of these alleles such that the "protective" effect of the minor allele at each marker for AD was conditional on the genotype of the second marker. We found evidence of an association with AD of polymorphisms in two genes encoding neuroactive steroid biosynthetic enzymes, providing indirect evidence that neuroactive steroids are important mediators of alcohol effects in humans. Copyright © 2011 by the Research Society on Alcoholism.
Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping
2012-01-01
Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525
Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.
Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M
2008-03-19
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.
Perturbed desmosomal cadherin expression in grainy head-like 1-null mice
Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M
2008-01-01
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution. PMID:18288204
Gorny, Miroslaw K.; Sampson, Jared; Li, Huiguang; Jiang, Xunqing; Totrov, Maxim; Wang, Xiao-Hong; Williams, Constance; O'Neal, Timothy; Volsky, Barbara; Li, Liuzhe; Cardozo, Timothy; Nyambi, Phillipe; Zolla-Pazner, Susan; Kong, Xiang-Peng
2011-01-01
Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs. PMID:22164215
Zhu, Genfa; Yang, Fengxi; Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun
2015-01-01
The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species.
Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun
2015-01-01
The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species. PMID:26042676
Genetics of human epilepsies: Continuing progress.
Szepetowski, Pierre
2018-03-01
Numerous epilepsy genes have been identified in the last years, mostly in the (rare) monogenic forms and thanks to the increased availability and the decreased cost of next-generation sequencing approaches. Besides the somehow expected group of epilepsy genes encoding various ion channel subunits (e.g. sodium or potassium channel subunits, or GABA receptors, or glutamate-gated NMDA receptors), more diversity has emerged recently, with novel epilepsy genes encoding proteins playing a wide range of physiological roles at the cellular and molecular levels, such as synaptic proteins, members of the mTOR pathway, or proteins involved in chromatin remodeling. The overall picture is somehow complicated: one given epilepsy gene can be associated with more than one epileptic phenotype, and with variable degrees of severity, from the benign to the severe forms (e.g. epileptic encephalopathies), and with various comorbid conditions such as migraine or autism spectrum of disorders. Conversely, one given epileptic syndrome may be associated with different genes, some of which have obvious links with each other (e.g. encoding different subunits of the same receptor) while other ones have no clear relationships. Also genomic copy number variations have been detected, some of which, albeit rare, may confer high risk to epilepsy. Whereas translation from gene identification to targeted medicine still remains challenging, progress in epilepsy genetics is currently revolutionizing genetic-based diagnosis and genetic counseling. Epilepsy gene identification also represents a key entry point to start in deciphering the underlying pathophysiological mechanisms via the design and the study of the most pertinent cellular and animal models - which may in turn provide proofs-of-principle for future applications in human epilepsies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G
2016-09-01
In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.
Simultaneous transmission for an encrypted image and a double random-phase encryption key
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu
2007-06-01
We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.
Simultaneous transmission for an encrypted image and a double random-phase encryption key.
Yuan, Sheng; Zhou, Xin; Li, Da-hai; Zhou, Ding-fu
2007-06-20
We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.
USDA-ARS?s Scientific Manuscript database
In plants, most disease resistance (R) genes encode nucleotide binding leucine-rich-repeat 42 (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) 43 upon pathogen recognition. The maize NLR protein Rp1-D21 derives from an intragenic 44 recombination between...
USDA-ARS?s Scientific Manuscript database
Glutaredoxins (GRXs) have emerged as key mediators in plant responses to environmental stimuli by modulating redox-dependent signaling pathways. Here, we report that RNAi-mediated suppression of the rice gene OsGRXS17, encoding a monothiol GRX with a CGFS-type active site motif, elevates H2O2 produc...
USDA-ARS?s Scientific Manuscript database
Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...
Pantzartzi, Chrysoula N.; Drosopoulou, Elena; Scouras, Zacharias G.
2013-01-01
Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups. With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family. Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably shortly after the split of Hyperoartia and Gnathostomata. PMID:24066039
Jia, Longgang; Dong, Jianzhang; Wang, Ruijie; Mao, Shuhong; Lu, Fuping; Singh, Suren; Wang, Zhengxiang; Liu, Xiaoguang
2017-08-01
Penicillium raistrickii ATCC 10490 is used for the commercial preparation of 15α-13-methy-estr-4-ene-3,17-dione, a key intermediate in the synthesis of gestodene, which is a major component of third-generation contraceptive pills. Although it was previously shown that a cytochrome P450 enzyme in P. raistrickii is involved in steroid 15α-hydroxylation, the gene encoding the steroid 15α-hydroxylase remained unknown. In this study, we report the cloning and characterization of the 15α-hydroxylase gene from P. raistrickii ATCC 10490 by combining transcriptomic profiling with functional heterologous expression in Saccharomyces cerevisiae. The full-length open reading frame (ORF) of the 15α-hydroxylase gene P450pra is 1563 bp and predicted to encode a cytochrome P450 protein of 520 amino acids. Targeted gene deletion revealed that P450pra is solely responsible for 15α-hydroxylation activity on 13-methy-estr-4-ene-3,17-dione in P. raistrickii ATCC 10490. The identification of the 15α-hydroxylase gene from P. raistrickii should help elucidate the molecular basis of regio- and stereo-specificity of steroid 15α-hydroxylation and aid in the engineering of more efficient industrial strains for useful steroid 15α-hydroxylation reactions.
Analysis of the core genome and pangenome of Pseudomonas putida.
Udaondo, Zulema; Molina, Lázaro; Segura, Ana; Duque, Estrella; Ramos, Juan L
2016-10-01
Pseudomonas putida are strict aerobes that proliferate in a range of temperate niches and are of interest for environmental applications due to their capacity to degrade pollutants and ability to promote plant growth. Furthermore solvent-tolerant strains are useful for biosynthesis of added-value chemicals. We present a comprehensive comparative analysis of nine strains and the first characterization of the Pseudomonas putida pangenome. The core genome of P. putida comprises approximately 3386 genes. The most abundant genes within the core genome are those that encode nutrient transporters. Other conserved genes include those for central carbon metabolism through the Entner-Doudoroff pathway, the pentose phosphate cycle, arginine and proline metabolism, and pathways for degradation of aromatic chemicals. Genes that encode transporters, enzymes and regulators for amino acid metabolism (synthesis and degradation) are all part of the core genome, as well as various electron transporters, which enable aerobic metabolism under different oxygen regimes. Within the core genome are 30 genes for flagella biosynthesis and 12 key genes for biofilm formation. Pseudomonas putida strains share 85% of the coding regions with Pseudomonas aeruginosa; however, in P. putida, virulence factors such as exotoxins and type III secretion systems are absent. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.
Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela
2017-09-06
In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.
Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae
Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.
2012-01-01
The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
Every which way--nanos gene regulation in echinoderms.
Oulhen, Nathalie; Wessel, Gary M
2014-03-01
Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.
Every which way – nanos gene regulation in echinoderms
Oulhen, Nathalie; Wessel, Gary M.
2014-01-01
Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110
Moyroud, Edwige; Kusters, Elske; Monniaux, Marie; Koes, Ronald; Parcy, François
2010-06-01
The LEAFY (LFY) gene of Arabidopsis and its homologs in other angiosperms encode a unique plant-specific transcription factor that assigns the floral fate of meristems and plays a key role in the patterning of flowers, probably since the origin of flowering plants. LFY-like genes are also found in gymnosperms, ferns and mosses that do not produce flowers, but their role in these plants is poorly understood. Here, we review recent findings explaining how the LFY protein works and how it could have evolved throughout land plant history. We propose that LFY homologs have an ancestral role in regulating cell division and arrangement, and acquired novel functions in seed plants, such as activating reproductive gene networks.
The excludon: a new concept in bacterial antisense RNA-mediated gene regulation.
Sesto, Nina; Wurtzel, Omri; Archambaud, Cristel; Sorek, Rotem; Cossart, Pascale
2013-02-01
In recent years, non-coding RNAs have emerged as key regulators of gene expression. Among these RNAs, the antisense RNAs (asRNAs) are particularly abundant, but in most cases the function and mechanism of action for a particular asRNA remains elusive. Here, we highlight a recently discovered paradigm termed the excludon, which defines a genomic locus encoding an unusually long asRNA that spans divergent genes or operons with related or opposing functions. Because these asRNAs can inhibit the expression of one operon while functioning as an mRNA for the adjacent operon, they act as fine-tuning regulatory switches in bacteria.
Lam, L T; Pickeral, O K; Peng, A C; Rosenwald, A; Hurt, E M; Giltnane, J M; Averett, L M; Zhao, H; Davis, R E; Sathyamoorthy, M; Wahl, L M; Harris, E D; Mikovits, J A; Monks, A P; Hollingshead, M G; Sausville, E A; Staudt, L M
2001-01-01
Flavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated. Using DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone. The gene expression profile of flavopiridol closely resembled the profiles of two transcription inhibitors, actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), suggesting that flavopiridol inhibits transcription globally. We were therefore able to use flavopiridol to measure mRNA turnover rates comprehensively and we found that different functional classes of genes had distinct distributions of mRNA turnover rates. In particular, genes encoding apoptosis regulators frequently had very short half-lives, as did several genes encoding key cell-cycle regulators. Strikingly, genes that were transcriptionally inducible were disproportionately represented in the class of genes with rapid mRNA turnover. The present genomic-scale measurement of mRNA turnover uncovered a regulatory logic that links gene function with mRNA half-life. The observation that transcriptionally inducible genes often have short mRNA half-lives demonstrates that cells have a coordinated strategy to rapidly modulate the mRNA levels of these genes. In addition, the present results suggest that flavopiridol may be more effective against types of cancer that are highly dependent on genes with unstable mRNAs.
Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A.
2016-01-01
Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766
Liu, Shujun; Sun, Yonghua; Du, Xiaoqiu; Xu, Qijiang; Wu, Feng; Meng, Zheng
2013-01-01
Background and Aims According to the floral ABC model, B-function genes appear to play a key role in the origin and diversification of the perianth during the evolution of angiosperms. The basal angiosperm Hedyosmum orientale (Chloranthaceae) has unisexual inflorescences associated with a seemingly primitive reproductive morphology and a reduced perianth structure in female flowers. The aim of this study was to investigate the nature of the perianth and the evolutionary state of the B-function programme in this species. Methods A series of experiments were conducted to characterize B-gene homologues isolated from H. orientale, including scanning electron microscopy to observe the development of floral organs, phylogenetic analysis to reconstruct gene evolutionary history, reverse transcription–PCR, quantitative real-time PCR and in situ hybridization to identify gene expression patterns, the yeast two-hybrid assay to explore protein dimerization affinities, and transgenic analyses in Arabidopsis thaliana to determine activities of the encoded proteins. Key Results The expression of HoAP3 genes was restricted to stamens, whereas HoPI genes were broadly expressed in all floral organs. HoAP3 was able to partially restore the stamen but not petal identity in Arabidopsis ap3-3 mutants. In contrast, HoPI could rescue aspects of both stamen and petal development in Arabidopsis pi-1 mutants. When the complete C-terminal sequence of HoPI was deleted, however, no or weak transgenic phenotypes were observed and homodimerization capability was completely abolished. Conclusions The results suggest that Hedyosmum AP3-like genes have an ancestral function in specifying male reproductive organs, and that the activity of the encoded PI-like proteins is highly conserved between Hedyosmum and Arabidopsis. Moreover, there is evidence that the C-terminal region is important for the function of HoPI. Our findings indicate that the development of the proposed perianth in Hedyosmum does not rely on the B homeotic function. PMID:23956161
Liu, Mao-Sen; Li, Hui-Chun; Lai, Ying-Mi; Lo, Hsiao-Feng; Chen, Long-Fang O
2013-11-20
Previously, we investigated transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and mimics the action of exogenous supplied CK in delaying postharvest senescence of broccoli. Here, we used proteomics and transcriptomics to compare the mechanisms of ipt-transgenic and N(6)-benzylaminopurine (BA) CK treatment of broccoli during postharvest storage. The 2 treatments conferred common and distinct mechanisms. BA treatment decreased the quantity of proteins involved in energy and carbohydrate metabolism and amino acid metabolism, and ipt-transgenic treatment increased that of stress-related proteins and molecular chaperones and slightly affected levels of carbohydrate metabolism proteins. Both treatments regulated genes involved in CK signaling, sugar transport, energy and carbohydrate metabolism, amino acid metabolism and lipid metabolism, although ipt-transgenic treatment to a lesser extent. BA treatment induced genes encoding molecular chaperones, whereas ipt-transgenic treatment induced stress-related genes for cellular protection during storage. Both BA and ipt-transgenic treatments acted antagonistically on ethylene functions. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. Transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and N(6)-benzylaminopurine (BA) CK treated broccoli both showed retardation of postharvest senescence during storage. The mechanisms underlying the two treatments were compared. The combination of proteomic and transcriptomic evidences revealed that the 2 treatments conferred common and distinct mechanisms in delaying senescence of broccoli florets. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.
Mollusk genes encoding lysine tRNA (UUU) contain introns.
Matsuo, M; Abe, Y; Saruta, Y; Okada, N
1995-11-20
New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.
Human AZU-1 gene, variants thereof and expressed gene products
Chen, Huei-Mei; Bissell, Mina
2004-06-22
A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.
Grohmann, L; Brennicke, A; Schuster, W
1992-01-01
The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526
[Isolation and function of genes regulating aphB expression in Vibrio cholerae].
Chen, Haili; Zhu, Zhaoqin; Zhong, Zengtao; Zhu, Jun; Kan, Biao
2012-02-04
We identified genes that regulate the expression of aphB, the gene encoding a key virulence regulator in Vibrio cholerae O1 E1 Tor C6706(-). We constructed a transposon library in V. cholerae C6706 strain containing a P(aphB)-luxCDABE and P(aphB)-lacZ transcriptional reporter plasmids. Using a chemiluminescence imager system, we rapidly detected aphB promoter expression level at a large scale. We then sequenced the transposon insertion sites by arbitrary PCR and sequencing analysis. We obtained two candidate mutants T1 and T2 which displayed reduced aphB expression from approximately 40,000 transposon insertion mutants. Sequencing analysis shows that Tn inserted in vc1585 reading frame in the T1 mutant and Tn inserted in the end of coding sequence of vc1602 in the T2 mutant. By using a genetic screen, we identified two potential genes that may involve in regulation of the expression of the key virulence regulator AphB. This study sheds light on our further investigation to fully understand V. cholerae virulence gene regulatory cascades.
Lunetti, Paola; Cappello, Anna Rita; Marsano, René Massimiliano; Pierri, Ciro Leonardo; Carrisi, Chiara; Martello, Emanuela; Caggese, Corrado; Dolce, Vincenza; Capobianco, Loredana
2013-10-01
The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata. © 2013.
Toral-Rios, Danira; Franco-Bocanegra, Diana; Rosas-Carrasco, Oscar; Mena-Barranco, Francisco; Carvajal-García, Rosa; Meraz-Ríos, Marco Antonio; Campos-Peña, Victoria
2015-01-01
Amyloid peptide is able to promote the activation of microglia and astrocytes in Alzheimer’s disease (AD), and this stimulates the production of pro-inflammatory cytokines. Inflammation contributes to the process of neurodegeneration and therefore is a key factor in the development of AD. Some of the most important proteins involved in AD inflammation are: clusterin (CLU), complement receptor 1 (CR1), C reactive protein (CRP), tumor necrosis factor α (TNF-α), the interleukins 1α (IL-1α), 6 (IL-6), 10 (IL-10) and cyclooxygenase 2 (COX-2). In particular, COX-2 is encoded by the prostaglandin-endoperoxide synthase 2 gene (PTGS2). Since variations in the genes that encode these proteins may modify gene expression or function, it is important to investigate whether these variations may change the developing AD. The aim of this study was to determine whether the presence of polymorphisms in the genes encoding the aforementioned proteins is associated in Mexican patients with AD. Fourteen polymorphisms were genotyped in 96 subjects with AD and 100 controls; the differences in allele, genotype and haplotype frequencies were analyzed. Additionally, an ancestry analysis was conducted to exclude differences in genetic ancestry among groups as a confounding factor in the study. Significant differences in frequencies between AD and controls were found for the single-nucleotide polymorphism (SNP) rs20417 within the PTGS2 gene. Ancestry analysis revealed no significant differences in the ancestry of the compared groups, and the association was significant even after adjustment for ancestry and correction for multiple testing, which strengthens the validity of the results. We conclude that this polymorphism plays an important role in the development of the AD pathology and further studies are required, including their proteins. PMID:26041990
Valle-Maldonado, Marco Iván; Jácome-Galarza, Irvin Eduardo; Díaz-Pérez, Alma Laura; Martínez-Cadena, Guadalupe; Campos-García, Jesús; Ramírez-Díaz, Martha Isela; Reyes-De la Cruz, Homero; Riveros-Rosas, Héctor; Díaz-Pérez, César; Meza-Carmen, Víctor
2015-12-01
In fungi, heterotrimeric G proteins are key regulators of biological processes such as mating, virulence, morphology, among others. Mucor circinelloides is a model organism for many biological processes, and its genome contains the largest known repertoire of genes that encode putative heterotrimeric G protein subunits in the fungal kingdom: twelve Gα (McGpa1-12), three Gβ (McGpb1-3), and three Gγ (McGpg1-3). Phylogenetic analysis of fungal Gα showed that they are divided into four distinct groups as reported previously. Fungal Gβ and Gγ are also divided into four phylogenetic groups, and to our understanding this is the first report of a phylogenetic classification for fungal Gβ and Gγ subunits. Almost all genes that encode putative heterotrimeric G subunits in M. circinelloides are differentially expressed during dimorphic growth, except for McGpg1 (Gγ) that showed very low mRNA levels at all developmental stages. Moreover, several of the subunits are expressed in a similar pattern and at the same level, suggesting that they constitute discrete complexes. For example, McGpb3 (Gβ), and McGpg2 (Gγ), are co-expressed during mycelium growth, and McGpa1, McGpb2, and McGpg2, are co-expressed during yeast development. These findings provide the conceptual framework to study the biological role of these genes during M. circinelloides morphogenesis. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.
Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj
2014-01-01
Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.
A Genomic View of the Sea Urchin Nervous System
Burke, RD; Angerer, LM; Elphick, MR; Humphrey, GW; Yaguchi, S; Kiyama, T; Liang, S; Mu, X; Agca, C; Klein, WH; Brandhorst, BP; Rowe, M; Wilson, K; Churcher, AM; Taylor, JS; Chen, N; Murray, G; Wang, D; Mellott, D; Olinski, R; Hallböök, F; Thorndyke, MC
2007-01-01
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones, and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins. PMID:16965768
van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.
2016-01-01
Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes. PMID:27855160
Bioinformatic Analysis of Strawberry GSTF12 Gene
NASA Astrophysics Data System (ADS)
Wang, Xiran; Jiang, Leiyu; Tang, Haoru
2018-01-01
GSTF12 has always been known as a key factor of proanthocyanins accumulate in plant testa. Through bioinformatics analysis of the nucleotide and encoded protein sequence of GSTF12, it is more advantageous to the study of genes related to anthocyanin biosynthesis accumulation pathway. Therefore, we chosen GSTF12 gene of 11 kinds species, downloaded their nucleotide and protein sequence from NCBI as the research object, found strawberry GSTF12 gene via bioinformation analyse, constructed phylogenetic tree. At the same time, we analysed the strawberry GSTF12 gene of physical and chemical properties and its protein structure and so on. The phylogenetic tree showed that Strawberry and petunia were closest relative. By the protein prediction, we found that the protein owed one proper signal peptide without obvious transmembrane regions.
Shelburne, Samuel A; Keith, David; Horstmann, Nicola; Sumby, Paul; Davenport, Michael T; Graviss, Edward A; Brennan, Richard G; Musser, James M
2008-02-05
Although central to pathogenesis, the molecular mechanisms used by microbes to regulate virulence factor production in specific environments during host-pathogen interaction are poorly defined. Several recent ex vivo and in vivo studies have found that the level of group A Streptococcus (GAS) virulence factor gene transcripts is temporally related to altered expression of genes encoding carbohydrate utilization proteins. These findings stimulated us to analyze the role in pathogenesis of catabolite control protein A (CcpA), a GAS ortholog of a key global regulator of carbohydrate metabolism in Bacillus subtilis. Inasmuch as the genomewide effects of CcpA in a human pathogen are unknown, we analyzed the transcriptome of a DeltaccpA isogenic mutant strain grown in nutrient-rich medium. CcpA influences the transcript levels of many carbohydrate utilization genes and several well characterized GAS virulence factors, including the potent cytolysin streptolysin S. Compared with the wild-type parental strain, the DeltaccpA isogenic mutant strain was significantly less virulent in a mouse model of invasive infection. Moreover, the isogenic mutant strain was significantly impaired in ability to colonize the mouse oropharynx. When grown in human saliva, a nutrient-limited environment, CcpA influenced production of several key virulence factors not influenced during growth in nutrient-rich medium. Purified recombinant CcpA bound to the promoter region of the gene encoding streptolysin S. Our discovery that GAS virulence and complex carbohydrate utilization are directly linked through CcpA provides enhanced understanding of a mechanism used by a Gram-positive pathogen to modulate virulence factor production in specific environments.
Parada, Francisca; Noriega, Ximena; Dantas, Débora; Bressan-Smith, Ricardo; Pérez, Francisco J
2016-08-20
Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response to temperature and glucose, two stimuli that normally increase respiration in plant tissues. While respiration in non-dormant buds rose sharply in response to both stimuli, respiration in dormant buds was only slightly affected. This suggests that a metabolic inhibitor is present. Here, we propose that the plant hormone abscisic acid (ABA) could be this inhibitor. ABA inhibits respiration in non-dormant buds and represses the expression of respiratory genes, such as ALTERNATIVE NADH DEHYDROGENASE (VaND1, VvaND2), CYTOCHROME OXIDASE (VvCOX6) and CYTOCHROME C (VvCYTC), and induces the expression of VvSnRK1, a gene encoding a member of a highly conserved family of protein kinases that act as energy sensors and regulate gene expression in response to energy depletion. In addition to inducing ED the SD-photoperiod up-regulated the expression of VvNCED, a gene that encodes a key enzyme in ABA synthesis. Taken together, these results suggest that ABA through the mediation of VvSnRK1, could play a key role in the regulation of the metabolic changes accompanying the entry into ED of grapevine buds. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang Youhua; Zhao Zhe
2006-12-08
The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSDmore » in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.« less
Trayhurn, Paul; Denyer, Gareth
2012-01-01
Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity.
Trayhurn, Paul; Denyer, Gareth
2012-01-01
Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity. PMID:25191551
Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V
2014-06-01
The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.
Kageyama, Hakuto; Tanaka, Yoshito; Shibata, Ayumi; Waditee-Sirisattha, Rungaroon; Takabe, Teruhiro
2018-05-01
Dimethylsulfoniopropionate (DMSP) is one of the most abundant molecules on earth and plays a pivotal role in the marine sulfur cycle. DMSP is believed to be synthesized from methionine by a four-step reaction pathway in marine algae. The genes responsible for biosynthesis of DMSP remain unidentified. A diatom Thalassiosira pseudonana CCMP1335 is an important component of marine ecosystems and contributes greatly to the world's primary production. In this study, through genome search, in vivo activity and functional studies of cDNA products, a gene encoding Thalassiosira methyltransferase (TpMMT) which catalyzes the key step of DMSP synthesis formation of 4-methylthio-2-hydroxybutyrate (DMSHB) from 4-methylthio-2-oxobutyrate (MTHB), was identified. The amino acid sequence of TpMMT was homologous to the methyltransferase from Phaeodactylum tricornutum CCAP 1055/1, but not the recently identified bacterium gene. High salinity and nitrogen limitation stresses caused the increase of DMSP content and TpMMT protein in Thalassiosira. In addition to TpMMT, the enzyme activities for the first three steps could be detected and enhanced under high salinity, suggesting the importance of four-step DMSP synthetic pathway in Thalassiosira. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J
2016-11-01
Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.
Hamaguchi-Hamada, Kayoko; Kurumata-Shigeto, Mami; Minobe, Sumiko; Fukuoka, Nozomi; Sato, Manami; Matsufuji, Miyuki; Koizumi, Osamu; Hamada, Shun
2016-01-01
The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis.
Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas
2017-01-01
Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type.
Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas
2017-01-01
Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type. PMID:28154576
A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil
Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian
2016-01-01
In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292
Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders
2016-03-01
Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
A synthetic system for expression of components of a bacterial microcompartment.
Sargent, Frank; Davidson, Fordyce A; Kelly, Ciarán L; Binny, Rachelle; Christodoulides, Natasha; Gibson, David; Johansson, Emelie; Kozyrska, Katarzyna; Lado, Lucia Licandro; Maccallum, Jane; Montague, Rachel; Ortmann, Brian; Owen, Richard; Coulthurst, Sarah J; Dupuy, Lionel; Prescott, Alan R; Palmer, Tracy
2013-11-01
In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilization (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T and -U, and each was shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.
Germline Mutations of Inhibins in Early-Onset Ovarian Epithelial Tumors
Tournier, Isabelle; Marlin, Régine; Walton, Kelly; Charbonnier, Françoise; Coutant, Sophie; Théry, Jean-Christophe; Charbonnier, Camille; Spurrell, Cailyn; Vezain, Myriam; Ippolito, Lorena; Bougeard, Gaëlle; Roman, Horace; Tinat, Julie; Sabourin, Jean-Christophe; Stoppa-Lyonnet, Dominique; Caron, Olivier; Bressac-de Paillerets, Brigitte; Vaur, Dominique; King, Mary-Claire; Harrison, Craig; Frebourg, Thierry
2014-01-01
To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors. PMID:24302632
A Screen for Modifiers of Hedgehog Signaling in Drosophila melanogaster Identifies swm and mts
Casso, David J.; Liu, Songmei; Iwaki, D. David; Ogden, Stacey K.; Kornberg, Thomas B.
2008-01-01
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway—patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn+ finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity. PMID:18245841
Xue, Yufei; Chen, Baojun; Win, Aung Naing; Fu, Chun; Lian, Jianping; Liu, Xue; Wang, Rui; Zhang, Xingcui
2018-01-01
Omega-3 fatty acid desaturase (ω-3 FAD, D15D) is a key enzyme for α-linolenic acid (ALA) biosynthesis. Both chia (Salvia hispanica) and perilla (Perilla frutescens) contain high levels of ALA in seeds. In this study, the ω-3 FAD gene family was systematically and comparatively cloned from chia and perilla. Perilla FAD3, FAD7, FAD8 and chia FAD7 are encoded by single-copy (but heterozygous) genes, while chia FAD3 is encoded by 2 distinct genes. Only 1 chia FAD8 sequence was isolated. In these genes, there are 1 to 6 transcription start sites, 1 to 8 poly(A) tailing sites, and 7 introns. The 5’UTRs of PfFAD8a/b contain 1 to 2 purine-stretches and 2 pyrimidine-stretches. An alternative splice variant of ShFAD7a/b comprises a 5’UTR intron. Their encoded proteins harbor an FA_desaturase conserved domain together with 4 trans-membrane helices and 3 histidine boxes. Phylogenetic analysis validated their identity of dicot microsomal or plastidial ω-3 FAD proteins, and revealed some important evolutionary features of plant ω-3 FAD genes such as convergent evolution across different phylums, single-copy status in algae, and duplication events in certain taxa. The qRT-PCR assay showed that the ω-3 FAD genes of two species were expressed at different levels in various organs, and they also responded to multiple stress treatments. The functionality of the ShFAD3 and PfFAD3 enzymes was confirmed by yeast expression. The systemic molecular and functional features of the ω-3 FAD gene family from chia and perilla revealed in this study will facilitate their use in future studies on genetic improvement of ALA traits in oilseed crops. PMID:29351555
Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; ...
2016-06-21
Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiornargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of amore » chain-forming " Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. " Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that " Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO 2 fixation pathway. Surprisingly, " Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na +-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae " Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In conclusion, the genome of " Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja
Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiornargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of amore » chain-forming " Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. " Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that " Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO 2 fixation pathway. Surprisingly, " Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na +-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae " Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In conclusion, the genome of " Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.« less
Chen, Y M; Zhu, Y; Lin, E C
1987-12-01
In Escherichia coli the six known genes specifying the utilization of L-fucose as carbon and energy source cluster at 60.2 min and constitute a regulon. These genes include fucP (encoding L-fucose permease), fucI (encoding L-fucose isomerase), fucK (encoding L-fuculose kinase), fucA (encoding L-fuculose 1-phosphate aldolase), fucO (encoding L-1,2-propanediol oxidoreductase), and fucR (encoding the regulatory protein). In this study the fuc genes were cloned and their positions on the chromosome were established by restriction endonuclease and complementation analyses. Clockwise, the gene order is: fucO-fucA-fucP-fucI-fucK-fucR. The operons comprising the structural genes and the direction of transcription were determined by complementation analysis and Southern blot hybridization. The fucPIK and fucA operons are transcribed clockwise. The fucO operon is transcribed counterclockwise. The fucR gene product activates the three structural operons in trans.
Salame, Tomer M; Knop, Doriv; Levinson, Dana; Mabjeesh, Sameer J; Yarden, Oded; Hadar, Yitzhak
2014-01-01
Lignin biodegradation by white-rot fungi is pivotal to the earth's carbon cycle. Manganese peroxidases (MnPs), the most common extracellular ligninolytic peroxidases produced by white-rot fungi, are considered key in ligninolysis. Pleurotus ostreatus, the oyster mushroom, is a preferential lignin degrader occupying niches rich in lignocellulose such as decaying trees. Here, we provide direct, genetically based proof for the functional significance of MnP to P. ostreatus ligninolytic capacity under conditions mimicking its natural habitat. When grown on a natural lignocellulosic substrate of cotton stalks under solid-state culture conditions, gene and isoenzyme expression profiles of its short MnP and versatile peroxidase (VP)-encoding gene family revealed that mnp2 was predominately expressed. mnp2, encoding the versatile short MnP isoenzyme 2 was disrupted. Inactivation of mnp2 resulted in three interrelated phenotypes, relative to the wild-type strain: (i) reduction of 14% and 36% in lignin mineralization of stalks non-amended and amended with Mn(2+), respectively; (ii) marked reduction of the bioconverted lignocellulose sensitivity to subsequent bacterial hydrolyses; and (iii) decrease in fungal respiration rate. These results may serve as the basis to clarify the roles of the various types of fungal MnPs and VPs in their contribution to white-rot decay of wood and lignocellulose in various ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter*
Moreno, Erika; Plata, Consuelo; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R.; Vázquez, Norma; Leyva-Ríos, Karla; Islas, León; Cutler, Christopher; Pacheco-Alvarez, Diana; Mercado, Adriana; Cariño-Cortés, Raquel; Castañeda-Bueno, María; Gamba, Gerardo
2016-01-01
The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCβ is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCβ from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCβ is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCβ is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCβ exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter. PMID:27587391
Hussey, Richard S; Huang, Guozhong; Allen, Rex
2011-01-01
Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.
Salerno, Paola; Persson, Jessica; Bucca, Giselda; Laing, Emma; Ausmees, Nora; Smith, Colin P; Flärdh, Klas
2013-12-05
The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously unknown genes with important roles in sporulation. The transcriptomic data reported here should also serve as a basis for identification of further developmentally important genes in future functional studies.
Xu, Aishi; Li, Guang; Yang, Dong; Wu, Songfeng; Ouyang, Hongsheng; Xu, Ping; He, Fuchu
2015-12-04
Although the "missing protein" is a temporary concept in C-HPP, the biological information for their "missing" could be an important clue in evolutionary studies. Here we classified missing-protein-encoding genes into two groups, the genes encoding PE2 proteins (with transcript evidence) and the genes encoding PE3/4 proteins (with no transcript evidence). These missing-protein-encoding genes distribute unevenly among different chromosomes, chromosomal regions, or gene clusters. In the view of evolutionary features, PE3/4 genes tend to be young, spreading at the nonhomology chromosomal regions and evolving at higher rates. Interestingly, there is a higher proportion of singletons in PE3/4 genes than the proportion of singletons in all genes (background) and OTCSGs (organ, tissue, cell type-specific genes). More importantly, most of the paralogous PE3/4 genes belong to the newly duplicated members of the paralogous gene groups, which mainly contribute to special biological functions, such as "smell perception". These functions are heavily restricted into specific type of cells, tissues, or specific developmental stages, acting as the new functional requirements that facilitated the emergence of the missing-protein-encoding genes during evolution. In addition, the criteria for the extremely special physical-chemical proteins were first set up based on the properties of PE2 proteins, and the evolutionary characteristics of those proteins were explored. Overall, the evolutionary analyses of missing-protein-encoding genes are expected to be highly instructive for proteomics and functional studies in the future.
Jarvis, Eric E.; Roessler, Paul G.
1999-01-01
The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.
Human Genomic Signatures of Brain Oscillations During Memory Encoding.
Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve
2018-05-01
Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.
Ssb1 chaperone is a [PSI+] prion-curing factor.
Chacinska, A; Szczesniak, B; Kochneva-Pervukhova, N V; Kushnirov, V V; Ter-Avanesyan, M D; Boguta, M
2001-04-01
Yeast SUP7' or SUP11 nonsense suppressors have no phenotypic expression in strains deficient in the isopentenylation of A37 in tRNA. Here we show that such strains spontaneously produce cells with a nonsense suppressor phenotype which is related to the cytoplasmically inherited determinant and manifests all the key features of the [PSI+] prion. A screen of a multicopy yeast genomic library for genes that inactivate the [PSI+]-related suppressor phenotype resulted in the isolation of the SSB1 gene. Moreover, we demonstrate that multicopy plasmid encoding the Ssb1 chaperone cures cells of the [PSI+] prion.
Dametto, Lettee; Shavrukov, Yuri; Jenkins, Colin L. D.
2018-01-01
Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2. PMID:29558397
Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.
Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E
1987-07-01
Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.
Zhao, Lufei; Zhang, Chengfei; Li, Zehui; Lei, Zhao; Liu, Fei; Guan, Peizhu; Crawford, Nigel M.
2016-01-01
We show that NITRATE REGULATORY GENE2 (NRG2), which we identified using forward genetics, mediates nitrate signaling in Arabidopsis thaliana. A mutation in NRG2 disrupted the induction of nitrate-responsive genes after nitrate treatment by an ammonium-independent mechanism. The nitrate content in roots was lower in the mutants than in the wild type, which may have resulted from reduced expression of NRT1.1 (also called NPF6.3, encoding a nitrate transporter/receptor) and upregulation of NRT1.8 (also called NPF7.2, encoding a xylem nitrate transporter). Genetic and molecular data suggest that NRG2 functions upstream of NRT1.1 in nitrate signaling. Furthermore, NRG2 directly interacts with the nitrate regulator NLP7 in the nucleus, but nuclear retention of NLP7 in response to nitrate is not dependent on NRG2. Transcriptomic analysis revealed that genes involved in four nitrogen-related clusters including nitrate transport and response to nitrate were differentially expressed in the nrg2 mutants. A nitrogen compound transport cluster containing some members of the NRT/PTR family was regulated by both NRG2 and NRT1.1, while no nitrogen-related clusters showed regulation by both NRG2 and NLP7. Thus, NRG2 plays a key role in nitrate regulation in part through modulating NRT1.1 expression and may function with NLP7 via their physical interaction. PMID:26744214
Turkowski, Kari L; Tester, David J; Bos, J Martijn; Haugaa, Kristina H; Ackerman, Michael J
2017-03-01
Arrhythmogenic cardiomyopathy (ACM) is a heritable disease characterized by fibrofatty replacement of cardiomyocytes, has a prevalence of approximately 1 in 5000 individuals, and accounts for approximately 20% of sudden cardiac death in the young (≤35 years). ACM is most often inherited as an autosomal dominant trait with incomplete penetrance and variable expression. While mutations in several genes that encode key desmosomal proteins underlie about half of all ACM, the remainder is elusive genetically. Here, whole exome sequencing (WES) was performed with genomic triangulation in an effort to identify a novel explanation for a phenotype-positive, genotype-negative multi-generational pedigree with a presumed autosomal dominant, maternal inheritance of ACM. WES and genomic triangulation was performed on a symptomatic 14-year-old female proband, her affected mother and affected sister, and her unaffected father to elucidate a novel ACM-susceptibility gene for this pedigree. Following variant filtering using Ingenuity® Variant Analysis, gene priority ranking was performed on the candidate genes using ToppGene and Endeavour. The phylogenetic and physiochemical properties of candidate mutations were assessed further by 6 in silico prediction tools. Species alignment and amino acid conservation analysis was performed using the Uniprot Consortium. Tissue expression data was abstracted from Expression Atlas. Following WES and genomic triangulation, CDH2 emerged as a novel, autosomal dominant, ACM-susceptibility gene. The CDH2-encoded N-cadherin is a cell-cell adhesion protein predominately expressed in the heart. Cardiac dysfunction has been demonstrated in prior CDH2 knockout and over-expression animal studies. Further in silico mutation prediction, species conservation, and protein expression analysis supported the ultra-rare (minor allele frequency <0.005%) p.Asp407Asn-CDH2 variant as a likely pathogenic variant. Herein, it is demonstrated that genetic mutations in CDH2-encoded N-cadherin may represent a novel pathogenetic basis for ACM in humans. The prevalence of CDH2-mediated ACM in heretofore genetically elusive ACM remains to be determined. © 2017 Wiley Periodicals, Inc.
Suzuki, Tadashi; Yano, Keiichi; Sugimoto, Seiji; Kitajima, Ken; Lennarz, William J; Inoue, Sadako; Inoue, Yasuo; Emori, Yasufumi
2002-07-23
Formation of oligosaccharides occurs both in the cytosol and in the lumen of the endoplasmic reticulum (ER). Luminal oligosaccharides are transported into the cytosol to ensure that they do not interfere with proper functioning of the glycan-dependent quality control machinery in the lumen of the ER for newly synthesized glycoproteins. Once in the cytosol, free oligosaccharides are catabolized, possibly to maximize the reutilization of the component sugars. An endo-beta-N-acetylglucosaminidase (ENGase) is a key enzyme involved in the processing of free oligosaccharides in the cytosol. This enzyme activity has been widely described in animal cells, but the gene encoding this enzyme activity has not been reported. Here, we report the identification of the gene encoding human cytosolic ENGase. After 11 steps, the enzyme was purified 150,000-fold to homogeneity from hen oviduct, and several internal amino acid sequences were analyzed. Based on the internal sequence and examination of expressed sequence tag (EST) databases, we identified the human orthologue of the purified protein. The human protein consists of 743 aa and has no apparent signal sequence, supporting the idea that this enzyme is localized in the cytosol. By expressing the cDNA of the putative human ENGase in COS-7 cells, the enzyme activity in the soluble fraction was enhanced 100-fold over the basal level, confirming that the human gene identified indeed encodes for ENGase. Careful gene database surveys revealed the occurrence of ENGase homologues in Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana, indicating the broad occurrence of ENGase in higher eukaryotes. This gene was expressed in a variety of human tissues, suggesting that this enzyme is involved in basic biological processes in eukaryotic cells.
Kuhl, U; Lassner, D; Dorner, A; Rohde, M; Escher, F; Seeberg, B; Hertel, E; Tschope, C; Skurk, C; Gross, U M; Schultheiss, H-P; Poller, W
2013-09-01
Recent studies have detected erythrovirus genomes in the hearts of cardiomyopathy and cardiac transplant patients. Assessment of the functional status of viruses may provide clinically important information beyond detection of the viral genomes. Here, we report transcriptional activation of cardiotropic erythrovirus to be associated with strongly altered myocardial gene expression in a distinct subgroup of cardiomyopathy patients. Endomyocardial biopsies (EMBs) from 415 consecutive cardiac erythrovirus (B19V)-positive patients with clinically suspected cardiomyopathy were screened for virus-encoded VP1/VP2 mRNA indicating transcriptional activation of the virus, and correlated with cardiac host gene expression patterns in transcriptionally active versus latent infections, and in virus-free control hearts. Transcriptional activity was detected in baseline biopsies of only 66/415 patients (15.9 %) harbouring erythrovirus. At the molecular level, significant differences between cardiac B19V-positive patients with transcriptionally active versus latent virus were revealed by expression profiling of EMBs. Importantly, latent B19V infection was indistinguishable from controls. Genes involved encode proteins of antiviral immune response, B19V receptor complex, and mitochondrial energy metabolism. Thus, functional mapping of erythrovirus allows definition of a subgroup of B19V-infected cardiomyopathy patients characterized by virus-encoded VP1/VP2 transcripts and anomalous host myocardial transcriptomes. Cardiac B19V reactivation from latency, as reported here for the first time, is a key factor required for erythrovirus to induce altered cardiac gene expression in a subgroup of cardiomyopathy patients. Virus genome detection is insufficient to assess pathogenic potential, but additional transcriptional mapping should be incorporated into future pathogenetic and therapeutic studies both in cardiology and transplantation medicine.
Sellem, Carole H; di Rago, Jean-Paul; Lasserre, Jean-Paul; Ackerman, Sharon H; Sainsard-Chanet, Annie
2016-07-01
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.
Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls
NASA Astrophysics Data System (ADS)
Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.
2003-05-01
Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.
Jarvis, E.E.; Roessler, P.G.
1999-07-27
The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.
Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.
Cirulli, Elizabeth T; Lasseigne, Brittany N; Petrovski, Slavé; Sapp, Peter C; Dion, Patrick A; Leblond, Claire S; Couthouis, Julien; Lu, Yi-Fan; Wang, Quanli; Krueger, Brian J; Ren, Zhong; Keebler, Jonathan; Han, Yujun; Levy, Shawn E; Boone, Braden E; Wimbish, Jack R; Waite, Lindsay L; Jones, Angela L; Carulli, John P; Day-Williams, Aaron G; Staropoli, John F; Xin, Winnie W; Chesi, Alessandra; Raphael, Alya R; McKenna-Yasek, Diane; Cady, Janet; Vianney de Jong, J M B; Kenna, Kevin P; Smith, Bradley N; Topp, Simon; Miller, Jack; Gkazi, Athina; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan; Silani, Vincenzo; Ticozzi, Nicola; Shaw, Christopher E; Baloh, Robert H; Appel, Stanley; Simpson, Ericka; Lagier-Tourenne, Clotilde; Pulst, Stefan M; Gibson, Summer; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Grossman, Murray; Shneider, Neil A; Chung, Wendy K; Ravits, John M; Glass, Jonathan D; Sims, Katherine B; Van Deerlin, Vivianna M; Maniatis, Tom; Hayes, Sebastian D; Ordureau, Alban; Swarup, Sharan; Landers, John; Baas, Frank; Allen, Andrew S; Bedlack, Richard S; Harper, J Wade; Gitler, Aaron D; Rouleau, Guy A; Brown, Robert; Harms, Matthew B; Cooper, Gregory M; Harris, Tim; Myers, Richard M; Goldstein, David B
2015-03-27
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention. Copyright © 2015, American Association for the Advancement of Science.
Biswas, Subir; Lim, Erin E; Gupta, Ankit; Saqib, Uzma; Mir, Snober S; Siddiqi, Mohammad Imran; Ralph, Stuart A; Habib, Saman
2011-03-01
Protein translation in the plastid (apicoplast) of Plasmodium spp. is of immense interest as a target for potential anti-malarial drugs. However, the molecular data on apicoplast translation needed for optimisation and development of novel inhibitors is lacking. We report characterisation of two key translation elongation factors in Plasmodium falciparum, apicoplast-encoded elongation factor PfEF-Tu and nuclear-encoded PfEF-Ts. Recombinant PfEF-Tu hydrolysed GTP and interacted with its presumed nuclear-encoded partner PfEF-Ts. The EF-Tu inhibitor kirromycin affected PfEF-Tu activity in vitro, indicating that apicoplast EF-Tu is indeed the target of this drug. The predicted PfEF-Ts leader sequence targeted GFP to the apicoplast, confirming that PfEF-Ts functions in this organelle. Recombinant PfEF-Ts mediated nucleotide exchange on PfEF-Tu and homology modeling of the PfEF-Tu:PfEF-Ts complex revealed PfEF-Ts-induced structural alterations that would expedite GDP release from PfEF-Tu. Our results establish functional interaction between two apicoplast translation factors encoded by genes residing in different cellular compartments and highlight the significance of their sequence/structural differences from bacterial elongation factors in relation to inhibitor activity. These data provide an experimental system to study the effects of novel inhibitors targeting PfEF-Tu and PfEF-Tu.PfEF-Ts interaction. Our finding that apicoplast EF-Tu possesses chaperone-related disulphide reductase activity also provides a rationale for retention of the tufA gene on the plastid genome. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.
Yamburenko, Maria V; Kieber, Joseph J; Schaller, G Eric
2017-01-01
Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the expression of many genes involved in cytokinin action differs between the panicle and vegetative tissues. Dynamic patterns of gene expression suggest that subnetworks mediate cytokinin action during different stages of panicle development. The variation of expression during panicle development is greater among genes encoding proteins involved in cytokinin metabolism and negative regulators of the pathway than for the genes in the primary response pathway. These results provide insight into the expression patterns of genes involved in cytokinin action during inflorescence development in a crop of agricultural importance, with relevance to similar processes in other monocots. The identification of subnetworks of genes expressed at different stages of early panicle development suggests that manipulation of their expression could have substantial effects on inflorescence architecture.
2013-01-01
Background Hydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to 40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are poorly understood. The functional roles of individual genes within such gene families also remain unclear. The relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are supplemented by results of the protein structure modeling for a representative set of hydrophobins. Results We have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes, Heterobasidion irregulare, representing one of the microspecies within the aggregate H. annosum s.l., and Phlebia brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irregulare (16 copies), a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1–40 copies), whereas contraction through gene loss was observed among the analyzed ascomycetes (1–11 copies). Our phylogenetic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species’ ecological strategy, with the non-pathogenic fungi having increased numbers of hydrophobins compared with their pathogenic counterparts. However, there was no significant relationship between the number of hydrophobin-encoding genes and genome size. Furthermore, our results revealed significant differences in the expression levels of the 16 H. annosum s.s. hydrophobin-encoding genes which suggest possible differences in their regulatory patterns. Conclusions A considerable expansion of the hydrophobin-encoding genes in basidiomycetes has been observed. The distribution and number of hydrophobin-encoding genes in the analyzed species may be connected to their ecological preferences. Results of our analysis also have shown that H. annosum s.l. hydrophobin-encoding genes may be under positive selection. Our gene expression analysis revealed differential expression of H. annosum s.s. hydrophobin genes under different growth conditions, indicating their possible functional diversification. PMID:24188142
Lloyd-Jones, G; Lau, P C
1997-01-01
Homologs of the glutathione S-transferase (GST)-encoding gene were identified in a collection of aromatic hydrocarbon-degrading Sphingomonas spp. isolated from New Zealand, Antarctica, and the United States by using PCR primers designed from the GST-encoding gene of Sphingomonas paucimobilis EPA505. Sequence analysis of PCR fragments generated from these isolates and of the GST gene amplified from DNA extracted from polycyclic aromatic hydrocarbon (PAH)-contaminated soil revealed a high degree of conservation, which may make the GST-encoding gene a potentially useful marker for PAH-degrading bacteria. PMID:9251217
Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.
Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B
2013-02-01
Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.
2012-01-01
Background Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, represent an open nursery pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene), lilac aldehydes, and phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring reproductive success in S. latifolia, the molecular basis of scent biosynthesis in this species has not yet been investigated. Results We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase. Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1) &S. latifolia guaiacol O-methyltransferase2 (SlGOMT2) encode proteins that catalyze the methylation of guaiacol to form veratrole. A large Km value difference between SlGOMT1 (~10 μM) and SlGOMT2 (~501 μM) resulted that SlGOMT1 is 31-fold more catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that the SlGOMT genes are specifically expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher level of GOMT gene transcripts than female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1) and S. dioica O-methyltransferase2 (SdOMT2), were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate guaiacol, consistent with the lack of veratrole emission in the flowers of this species. Our evolutionary analysis uncovered that SlGOMT1 and SlGOMT2 genes evolved under positive selection, whereas SdOMT1 and SdOMT2 genes show no evidence for selection. Conclusions Altogether, we report the identification and functional characterization of the gene, SlGOMT1 that efficiently catalyzes veratrole formation, whereas another copy of this gene with only one amino acid difference, SlGOMT2 was found to be less efficient for veratrole synthesis in S. latifolia. PMID:22937972
Cobessi, David; Dumas, Renaud; Pautre, Virginie; Meinguet, Céline; Ferrer, Jean-Luc; Alban, Claude
2012-01-01
Diaminopelargonic acid aminotransferase (DAPA-AT) and dethiobiotin synthetase (DTBS) catalyze the antepenultimate and the penultimate steps, respectively, of biotin synthesis. Whereas DAPA-AT and DTBS are encoded by distinct genes in bacteria, in biotin-synthesizing eukaryotes (plants and most fungi), both activities are carried out by a single enzyme encoded by a bifunctional gene originating from the fusion of prokaryotic monofunctional ancestor genes. In few angiosperms, including Arabidopsis thaliana, this chimeric gene (named BIO3-BIO1) also produces a bicistronic transcript potentially encoding separate monofunctional proteins that can be produced following an alternative splicing mechanism. The functional significance of the occurrence of a bifunctional enzyme in biotin synthesis pathway in eukaryotes and the relative implication of each of the potential enzyme forms (bifunctional versus monofunctional) in the plant biotin pathway are unknown. In this study, we demonstrate that the BIO3-BIO1 fusion protein is the sole protein form produced by the BIO3-BIO1 locus in Arabidopsis. The enzyme catalyzes both DAPA-AT and DTBS reactions in vitro and is targeted to mitochondria in vivo. Our biochemical and kinetic characterizations of the pure recombinant enzyme show that in the course of the reaction, the DAPA intermediate is directly transferred from the DAPA-AT active site to the DTBS active site. Analysis of several structures of the enzyme crystallized in complex with and without its ligands reveals key structural elements involved for acquisition of bifunctionality and brings, together with mutagenesis experiments, additional evidences for substrate channeling. PMID:22547782
A de novo variant in the ASPRV1 gene in a dog with ichthyosis.
Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso
2017-03-01
Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.
Joo, Jihoon E; Hiden, Ursula; Lassance, Luciana; Gordon, Lavinia; Martino, David J; Desoye, Gernot; Saffery, Richard
2013-07-15
The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells. Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase. Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.
Borlee, Bradley R; Goldman, Aaron D; Murakami, Keiji; Samudrala, Ram; Wozniak, Daniel J; Parsek, Matthew R
2010-01-01
Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a β-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability. Thus, this study identifies a key protein structural component of the P. aeruginosa EPS matrix. PMID:20088866
Ariyarathna, H A Chandima K; Oldach, Klaus H; Francki, Michael G
2016-01-19
Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.
Lee, Ji-Yeon; Kim, Lee-Han; Kim, Ha-Eun; Park, Jae-Sin; Han, Kap-Hoon; Han, Dong-Min
2013-12-01
The nsdD gene encoding a GATA type transcription factor positively controls sexual development in Aspergillus nidulans. According to microarray data, 20 genes that were upregulated by deleting nsdD during various life cycle stages were randomly selected and deleted for functional analysis. None of the mutants showed apparent changes in growth or development compared with those of the wild-type except the AN3154 gene that encodes a putative APSES transcription factor and is an ortholog of Saccharomyces cerevisiae swi4. Deleting AN3154 resulted in retarded growth and development, and the gene was named rgdA (retared growth and development). The rgdA deletion mutant developed a reduced number of conidia even under favorable conditions for asexual development. The retarded growth and development was partially suppressed by the veA1 mutation. The conidial heads of the mutant aborted, showing reduced and irregular shaped phialides. Fruiting body development was delayed compared with that in the wild-type. The mutant did not respond to various nutritional or environmental factors that affected the development patterns. The rgdA gene was expressed at low levels throughout the life cycle and was not significantly affected by several regulators of sexual and asexual development such as nsdD, veA, stuA, or brlA. However, the rgdA gene affected brlA and abaA expression, which function as key regulators of asexual sporulation, suggesting that rgdA functions upstream of those genes.
Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D.
Driskell, Lonnie O; Yu, Xue-jie; Zhang, Lihong; Liu, Yan; Popov, Vsevolod L; Walker, David H; Tucker, Aimee M; Wood, David O
2009-08-01
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligately intracytoplasmic bacterium, a lifestyle that imposes significant barriers to genetic manipulation. The key to understanding how this unique bacterium evades host immunity is the mutagenesis of selected genes hypothesized to be involved in virulence. The R. prowazekii pld gene, encoding a protein with phospholipase D activity, has been associated with phagosomal escape. To demonstrate the feasibility of site-directed knockout mutagenesis of rickettsial genes and to generate a nonrevertible vaccine strain, we utilized homologous recombination to generate a pld mutant of the virulent R. prowazekii strain Madrid Evir. Using linear DNA for transformation, a double-crossover event resulted in the replacement of the rickettsial wild-type gene with a partially deleted pld gene. Linear DNA was used to prevent potentially revertible single-crossover events resulting in plasmid insertion. Southern blot and PCR analyses were used to confirm the presence of the desired mutation and to demonstrate clonality. While no phenotypic differences were observed between the mutant and wild-type strains when grown in tissue culture, the pld mutant exhibited attenuated virulence in the guinea pig model. In addition, animals immunized with the mutant strain were protected against subsequent challenge with the virulent Breinl strain, suggesting that this transformant could serve as a nonrevertible, attenuated vaccine strain. This study demonstrates the feasibility of generating site-directed rickettsial gene mutants, providing a new tool for understanding rickettsial biology and furthering advances in the prevention of epidemic typhus.
Origins of neurogenesis, a cnidarian view.
Galliot, Brigitte; Quiquand, Manon; Ghila, Luiza; de Rosa, Renaud; Miljkovic-Licina, Marijana; Chera, Simona
2009-08-01
New perspectives on the origin of neurogenesis emerged with the identification of genes encoding post-synaptic proteins as well as many "neurogenic" regulators as the NK, Six, Pax, bHLH proteins in the Demosponge genome, a species that might differentiate sensory cells but no neurons. However, poriferans seem to miss some key regulators of the neurogenic circuitry as the Hox/paraHox and Otx-like gene families. Moreover as a general feature, many gene families encoding evolutionarily-conserved signaling proteins and transcription factors were submitted to a wave of gene duplication in the last common eumetazoan ancestor, after Porifera divergence. In contrast gene duplications in the last common bilaterian ancestor, Urbilateria, are limited, except for the bHLH Atonal-class. Hence Cnidaria share with Bilateria a large number of genetic tools. The expression and functional analyses currently available suggest a neurogenic function for numerous orthologs in developing or adult cnidarians where neurogenesis takes place continuously. As an example, in the Hydra polyp, the Clytia medusa and the Acropora coral, the Gsx/cnox2/Anthox-2 ParaHox gene likely supports neurogenesis. Also neurons and nematocytes (mechanosensory cells) share in hydrozoans a common stem cell and several regulatory genes indicating that they can be considered as sister cells. Performed in anthozoan and medusozoan species, these studies should tell us more about the way(s) evolution hazards achieved the transition from epithelial to neuronal cell fate, and about the robustness of the genetic circuitry that allowed neuromuscular transmission to arise and be maintained across evolution.
Chen, Xiao-Ren; Huang, Shen-Xin; Zhang, Ye; Sheng, Gui-Lin; Li, Yan-Peng; Zhu, Feng
2018-03-23
Phytophthora capsici is a hemibiotrophic, phytopathogenic oomycete that infects a wide range of crops, resulting in significant economic losses worldwide. By means of a diverse arsenal of secreted effector proteins, hemibiotrophic pathogens may manipulate plant cell death to establish a successful infection and colonization. In this study, we described the analysis of the gene family encoding necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) in P. capsici, and identified 39 real NLP genes and 26 NLP pseudogenes. Out of the 65 predicted NLP genes, 48 occur in groups with two or more genes, whereas the remainder appears to be singletons distributed randomly among the genome. Phylogenetic analysis of the 39 real NLPs delineated three groups. Key residues/motif important for the effector activities are degenerated in most NLPs, including the nlp24 peptide consisting of the conserved region I (11-aa immunogenic part) and conserved region II (the heptapeptide GHRHDWE motif) that is important for phytotoxic activity. Transcriptional profiling of eight selected NLP genes indicated that they were differentially expressed during the developmental and plant infection phases of P. capsici. Functional analysis of ten cloned NLPs demonstrated that Pc11951, Pc107869, Pc109174 and Pc118548 were capable of inducing cell death in the Solanaceae, including Nicotiana benthamiana and hot pepper. This study provides an overview of the P. capsici NLP gene family, laying a foundation for further elucidating the pathogenicity mechanism of this devastating pathogen.
van der Ley, P
1988-11-01
Gonococci express a family of related outer membrane proteins designated protein II (P.II). These surface proteins are subject to both phase variation and antigenic variation. The P.II gene repertoire of Neisseria gonorrhoeae strain JS3 was found to consist of at least ten genes, eight of which were cloned. Sequence analysis and DNA hybridization studies revealed that one particular P.II-encoding sequence is present in three distinct, but almost identical, copies in the JS3 genome. These genes encode the P.II protein that was previously identified as P.IIc. Comparison of their sequences shows that the multiple copies of this P.IIc-encoding gene might have been generated by both gene conversion and gene duplication.
Martín, Juan F
2017-05-01
Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the production of novel secondary metabolites, particularly of those secondary metabolites which are produced in trace amounts encoded by silent or near-silent gene clusters.
Dandoy, Damien; Fremaux, Christophe; de Frahan, Marie Henry; Horvath, Philippe; Boyaval, Patrick; Hols, Pascal; Fontaine, Laetitia
2011-08-30
In industrial fermentation processes, the rate of milk acidification by Streptococcus thermophilus is of major technological importance. The cell-envelope proteinase PrtS was previously shown to be a key determinant of the milk acidification activity in this species. The PrtS enzyme is tightly anchored to the cell wall via a mechanism involving the typical sortase A (SrtA) and initiates the breakdown of milk casein into small oligopeptides. The presence or absence of PrtS divides the S. thermophilus strains into two phenotypic groups i.e. the slow and the fast acidifying strains. The aim of this study was to improve the milk acidification rate of slow S. thermophilus strains, and hence optimise the fermentation process of dairy products. In the present work, we developed for the first time a strategy based on natural transformation to confer the rapid acidification phenotype to slow acidifying starter strains of S. thermophilus. First, we established by gene disruption that (i) prtS, encoding the cell-envelope proteinase, is a key factor responsible for rapid milk acidification in fast acidifying strains, and that (ii) srtA, encoding sortase A, is not absolutely required to express the PrtS activity. Second, a 15-kb PCR product encompassing the prtS genomic island was transferred by natural transformation using the competence-inducing peptide in three distinct prtS-defective genetic backgrounds having or not a truncated sortase A gene. We showed that in all cases the milk acidification rate of transformants was significantly increased, reaching a level similar to that of wild-type fast acidifying strains. Furthermore, it appeared that the prtS-encoded activity does not depend on the prtS copy number or on its chromosomal integration locus. We have successfully used natural competence to transfer the prtS locus encoding the cell-envelope proteinase in three slow acidifying strains of S. thermophilus, allowing their conversion into fast acidifying derivatives. The efficient protocol developed in this article will provide the dairy industry with novel and optimised S. thermophilus starter strains.
Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela
2008-01-01
The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830
Identification and functional analysis of secreted effectors from phytoparasitic nematodes.
Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K
2016-03-21
Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes.
Modularity and evolutionary constraints in a baculovirus gene regulatory network
2013-01-01
Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks. PMID:24006890
Stretch-Enhancers Delineate Disease-Associated Regulatory Nodes in T Cells
Vahedi, Golnaz; Kanno, Yuka; Furumoto, Yasuko; Jiang, Kan; Parker, Stephen C.; Erdos, Michael; Davis, Sean R.; Roychoudhuri, Rahul; Restifo, Nicholas P.; Gadina, Massimo; Tang, Zhonghui; Ruan, Yijun; Collins, Francis S.; Sartorelli, Vittorio; O’Shea, John J.
2014-01-01
Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity1. Stretch- or super-enhancers (SEs) are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease2,3,4,5,6. CD4+ T cells are critical for host defense and autoimmunity. Herein, we analyzed maps of T cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. This notwithstanding, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T cell SE, revealing a network wherein SE-associated genes critical for T cell biology are repressed by BACH2. Disease-associated SNPs for immune-mediated disorders, including rheumatoid arthritis (RA), were highly enriched for T cell-SEs versus typical enhancers (TEs) or SEs in other cell lineages7. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor, tofacitinib, disproportionately altered the expression of RA risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a “guardian” transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention. PMID:25686607
Moghe, Gaurav D.
2018-01-01
Flowers of Tanacetum cinerariifolium produce a set of compounds known collectively as pyrethrins, which are commercially important pesticides that are strongly toxic to flying insects but not to most vertebrates. A pyrethrin molecule is an ester consisting of either trans-chrysanthemic acid or its modified form, pyrethric acid, and one of three alcohols, jasmolone, pyrethrolone, and cinerolone, that appear to be derived from jasmonic acid. Chrysanthemyl diphosphate synthase (CDS), the first enzyme involved in the synthesis of trans-chrysanthemic acid, was characterized previously and its gene isolated. TcCDS produces free trans-chrysanthemol in addition to trans-chrysanthemyl diphosphate, but the enzymes responsible for the conversion of trans-chrysanthemol to the corresponding aldehyde and then to the acid have not been reported. We used an RNA sequencing-based approach and coexpression correlation analysis to identify several candidate genes encoding putative trans-chrysanthemol and trans-chrysanthemal dehydrogenases. We functionally characterized the proteins encoded by these genes using a combination of in vitro biochemical assays and heterologous expression in planta to demonstrate that TcADH2 encodes an enzyme that oxidizes trans-chrysanthemol to trans-chrysanthemal, while TcALDH1 encodes an enzyme that oxidizes trans-chrysanthemal into trans-chrysanthemic acid. Transient coexpression of TcADH2 and TcALDH1 together with TcCDS in Nicotiana benthamiana leaves results in the production of trans-chrysanthemic acid as well as several other side products. The majority (58%) of trans-chrysanthemic acid was glycosylated or otherwise modified. Overall, these data identify key steps in the biosynthesis of pyrethrins and demonstrate the feasibility of metabolic engineering to produce components of these defense compounds in a heterologous host. PMID:29122986
Loewen, Carin A; Ganetzky, Barry
2018-04-01
Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018 by the Genetics Society of America.
Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie
2015-11-27
The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.
2014-07-01
Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.
ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity.
Sun, Tongjun; Zhang, Yaxi; Li, Yan; Zhang, Qian; Ding, Yuli; Zhang, Yuelin
2015-12-18
Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses.
Molecular characterization of enolase gene from Taenia multiceps.
Li, W H; Qu, Z G; Zhang, N Z; Yue, L; Jia, W Z; Luo, J X; Yin, H; Fu, B Q
2015-10-01
Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gish, Stacey R.; Maier, Ezekiel J.; Haynes, Brian C.; Santiago-Tirado, Felipe H.; Srikanta, Deepa L.; Ma, Cynthia Z.; Li, Lucy X.; Williams, Matthew; Crouch, Erika C.; Khader, Shabaana A.
2016-01-01
ABSTRACT Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills over 600,000 people annually. Here, we report integrated computational and experimental investigations of the role and mechanisms of transcriptional regulation in cryptococcal infection. Major cryptococcal virulence traits include melanin production and the development of a large polysaccharide capsule upon host entry; shed capsule polysaccharides also impair host defenses. We found that both transcription and translation are required for capsule growth and that Usv101 is a master regulator of pathogenesis, regulating melanin production, capsule growth, and capsule shedding. It does this by directly regulating genes encoding glycoactive enzymes and genes encoding three other transcription factors that are essential for capsule growth: GAT201, RIM101, and SP1. Murine infection with cryptococci lacking Usv101 significantly alters the kinetics and pathogenesis of disease, with extended survival and, unexpectedly, death by pneumonia rather than meningitis. Our approaches and findings will inform studies of other pathogenic microbes. PMID:27094327
Microevolution of Monophasic Salmonella Typhimurium during Epidemic, United Kingdom, 2005–2010
Petrovska, Liljana; Mather, Alison E.; AbuOun, Manal; Branchu, Priscilla; Harris, Simon R.; Connor, Thomas; Hopkins, K.L.; Underwood, A.; Lettini, Antonia A.; Page, Andrew; Bagnall, Mary; Wain, John; Parkhill, Julian; Dougan, Gordon; Davies, Robert
2016-01-01
Microevolution associated with emergence and expansion of new epidemic clones of bacterial pathogens holds the key to epidemiologic success. To determine microevolution associated with monophasic Salmonella Typhimurium during an epidemic, we performed comparative whole-genome sequencing and phylogenomic analysis of isolates from the United Kingdom and Italy during 2005–2012. These isolates formed a single clade distinct from recent monophasic epidemic clones previously described from North America and Spain. The UK monophasic epidemic clones showed a novel genomic island encoding resistance to heavy metals and a composite transposon encoding antimicrobial drug resistance genes not present in other Salmonella Typhimurium isolates, which may have contributed to epidemiologic success. A remarkable amount of genotypic variation accumulated during clonal expansion that occurred during the epidemic, including multiple independent acquisitions of a novel prophage carrying the sopE gene and multiple deletion events affecting the phase II flagellin locus. This high level of microevolution may affect antigenicity, pathogenicity, and transmission. PMID:26982594
Hilton, Hugo G; Blokhuis, Jeroen H; Guethlein, Lisbeth A; Norman, Paul J; Parham, Peter
2017-03-01
KIR2DP1 is an inactive member of the human lineage III KIR family, which includes all HLA-C-specific receptor genes. The lethal, and only, defect in KIR2DP1 is a nucleotide deletion in codon 88. Fixed in modern humans, the deletion is also in archaic human genomes. KIR2DP1 is polymorphic, with dimorphism at specificity-determining position 44. By repairing the deletion, we resurrected 11 alleles of KIR2DP1 F , the functional antecedent of KIR2DP1 We demonstrate how K44-KIR2DP1 F with lysine 44 recognized C1 + HLA-C, whereas T44-KIR2DP1 F recognized C2 + HLA-C. Dimorphisms at 12 other KIR2DP1 F residues modulate receptor avidity or signaling. KIR2DP1 and KIR2DL1 are neighbors in the centromeric KIR region and are in tight linkage disequilibrium. Like KIR2DL1 , KIR2DP1 contributed to CenA and CenB KIR haplotype differences. Encoded on CenA , C1-specific K44-KIR2DP1 F were stronger receptors than the attenuated C2-specific T44-KIR2DP1 F encoded on CenB The last common ancestor of humans and chimpanzees had diverse lineage III KIR that passed on to chimpanzees but not to humans. Early humans inherited activating KIR2DS4 and an inhibitory lineage III KIR , likely encoding a C1-specific receptor. The latter spawned the modern family of HLA-C receptors. KIR2DP1 F has properties consistent with KIR2DP1 F having been the founder gene. The first KIR2DP1 F alleles encoded K44-C1 receptors; subsequently KIR2DP1 F alleles encoding T44-C2 receptors evolved. The emergence of dedicated KIR2DL2/3 and KIR2DL1 genes encoding C1 and C2 receptors, respectively, could have led to obsolescence of KIR2DP1 F Alternatively, pathogen subversion caused its demise. Preservation of KIR2DP1 F functional polymorphism was a side effect of fixation of the deletion in KIR2DP1 F by micro gene conversion. Copyright © 2017 by The American Association of Immunologists, Inc.
Mitis group streptococci express variable pilus islet 2 pili.
Zähner, Dorothea; Gandhi, Ashish R; Yi, Hong; Stephens, David S
2011-01-01
Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells. PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits in the Mitis group streptococci.
Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie
2013-03-01
To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01). Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.
Recent advances in the research and development of blue flowers.
Noda, Naonobu
2018-01-01
Flower color is the most important trait in the breeding of ornamental plants. In the floriculture industry, however, bluish colored flowers of desirable plants have proved difficult to breed. Many ornamental plants with a high production volume, such as rose and chrysanthemum, lack the key genes for producing the blue delphinidin pigment or do not have an intracellular environment suitable for developing blue color. Recently, it has become possible to incorporate a blue flower color trait through progress in molecular biological analysis of pigment biosynthesis genes and genetic engineering. For example, introduction of the F3 ' 5 ' H gene encoding flavonoid 3',5'-hydroxylase can produce delphinidin in various flowers such as roses and carnations, turning the flower color purple or violet. Furthermore, the world's first blue chrysanthemum was recently produced by introducing the A3 ' 5 ' GT gene encoding anthocyanin 3',5'- O -glucosyltransferase, in addition to F3 ' 5 ' H , into the host plant. The B-ring glucosylated delphinidin-based anthocyanin that is synthesized by the two transgenes develops blue coloration by co-pigmentation with colorless flavone glycosides naturally present in the ray floret of chrysanthemum. This review focuses on the biotechnological efforts to develop blue flowers, and describes future prospects for blue flower breeding and commercialization.
Zhang, Bo; Tieman, Denise M.; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J.; Klee, Harry J.
2016-01-01
Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN. Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology. PMID:27791156
Ferrara, Silvia; Falcone, Marilena; Macchi, Raffaella; Bragonzi, Alessandra; Girelli, Daniela; Cariani, Lisa; Cigana, Cristina
2017-01-01
Small non-coding RNAs (sRNAs) are post-transcriptional regulators of gene expression that have been recognized as key contributors to bacterial virulence and pathogenic mechanisms. In this study, we characterized the sRNA PesA of the opportunistic human pathogen Pseudomonas aeruginosa. We show that PesA, which is transcribed within the pathogenicity island PAPI-1 of P. aeruginosa strain PA14, contributes to P. aeruginosa PA14 virulence. In fact, pesA gene deletion resulted in a less pathogenic strain, showing higher survival of cystic fibrosis human bronchial epithelial cells after infection. Moreover, we show that PesA influences positively the expression of pyocin S3 whose genetic locus comprises two structural genes, pyoS3A and pyoS3I, encoding the killing S3A and the immunity S3I proteins, respectively. Interestingly, the deletion of pesA gene results in increased sensitivity to UV irradiation and to the fluoroquinolone antibiotic ciprofloxacin. The degree of UV sensitivity displayed by the PA14 strain lacking PesA is comparable to that of a strain deleted for pyoS3A-I. These results suggest an involvement of pyocin S3 in DNA damage repair and a regulatory role of PesA on this function. PMID:28665976
Ascorbic acid metabolism during bilberry (Vaccinium myrtillus L.) fruit development.
Cocetta, Giacomo; Karppinen, Katja; Suokas, Marko; Hohtola, Anja; Häggman, Hely; Spinardi, Anna; Mignani, Ilaria; Jaakola, Laura
2012-07-15
Bilberry (Vaccinium myrtillus L.) possesses a high antioxidant capacity in berries due to the presence of anthocyanins and ascorbic acid (AsA). Accumulation of AsA and the expression of the genes encoding the enzymes of the main AsA biosynthetic route and of the ascorbate-glutathione cycle, as well as the activities of the enzymes involved in AsA oxidation and recycling were investigated for the first time during the development and ripening of bilberry fruit. The results showed that the AsA level remained relatively stable during fruit maturation. The expression of the genes encoding the key enzymes in the AsA main biosynthetic route showed consistent trends with each other as well as with AsA levels, especially during the first stages of fruit ripening. The expression of genes and activities of the enzyme involved in the AsA oxidation and recycling route showed more prominent developmental stage-dependent changes during the ripening process. Different patterns of activity were found among the studied enzymes and the results were, for some enzymes, in accordance with AsA levels. In fully ripe berries, both AsA content and gene expression were significantly higher in skin than in pulp. Copyright © 2012 Elsevier GmbH. All rights reserved.
Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D
2014-11-27
Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.
Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard
2014-08-26
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda
2017-01-31
Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines. Compared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation.
A New Quantum Gray-Scale Image Encoding Scheme
NASA Astrophysics Data System (ADS)
Naseri, Mosayeb; Abdolmaleky, Mona; Parandin, Fariborz; Fatahi, Negin; Farouk, Ahmed; Nazari, Reza
2018-02-01
In this paper, a new quantum images encoding scheme is proposed. The proposed scheme mainly consists of four different encoding algorithms. The idea behind of the scheme is a binary key generated randomly for each pixel of the original image. Afterwards, the employed encoding algorithm is selected corresponding to the qubit pair of the generated randomized binary key. The security analysis of the proposed scheme proved its enhancement through both randomization of the generated binary image key and altering the gray-scale value of the image pixels using the qubits of randomized binary key. The simulation of the proposed scheme assures that the final encoded image could not be recognized visually. Moreover, the histogram diagram of encoded image is flatter than the original one. The Shannon entropies of the final encoded images are significantly higher than the original one, which indicates that the attacker can not gain any information about the encoded images. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN
Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton.
Suzuki, Hideaki; Rodriguez-Uribe, Laura; Xu, Jiannong; Zhang, Jinfa
2013-10-01
A global view of differential expression of genes in CMS-D8 of cotton was presented in this study which will facilitate the understanding of cytoplasmic male sterility in cotton. Cytoplasmic male sterility (CMS) is a maternally inherited trait in higher plants which is incapable of producing functional pollen. However, the male fertility can be restored by one or more nuclear-encoded restorer genes. A genome-wide transcriptome analysis of CMS and restoration in cotton is currently lacking. In this study, Affymetrix GeneChips© Cotton Genome Array containing 24,132 transcripts was used to compare differentially expressed (DE) genes of flower buds at the meiosis stage between CMS and its restorer cotton plants conditioned by the D8 cytoplasm. A total of 458 (1.9 %) of DE genes including 127 up-regulated and 331 down-regulated ones were identified in the CMS-D8 line. Quantitative RT-PCR was used to validate 10 DE genes selected from seven functional categories. The most frequent DE gene group was found to encode putative proteins involved in cell wall expansion, such as pectinesterase, pectate lyase, pectin methylesterase, glyoxal oxidase, polygalacturonase, indole-3-acetic acid-amino synthetase, and xyloglucan endo-transglycosylase. Genes in cytoskeleton category including actin, which plays a key role in cell wall expansion, cell elongation and cell division, were also highly differentially expressed between the fertile and CMS plants. This work represents the first study in utilizing microarray to identify CMS-related genes by comparing overall DE genes between fertile and CMS plants in cotton. The results provide evidence that many CMS-associated genes are mainly involved in cell wall expansion. Further analysis will be required to elucidate the molecular mechanisms of male sterility which will facilitate the development of new hybrid cultivars in cotton.
Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes
Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise
2009-01-01
Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885
Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita
2012-10-01
Genetic transformation of the Indian medicinal plant, Bacopa monnieri, using a gene encoding cryptogein, a proteinaceous elicitor, via Ri and Ti plasmids, were established and induced bioproduction of bacopa saponins in crypt-transgenic plants were obtained. Transformed roots obtained with A. rhizogenes strain LBA 9402 crypt on selection medium containing kanamycin (100 mg l(-1)) dedifferentiated forming callus and redifferentiated to roots which, spontaneously showed shoot bud induction. Ri crypt-transformed plants thus obtained showed integration and expression of rol genes as well as crypt gene. Ti crypt-transformed B. monnieri plants were established following transformation with disarmed A. tumefaciens strain harboring crypt. Transgenic plants showed significant enhancement in growth and bacopa saponin content. Bacopasaponin D (1.4-1.69 %) was maximally enhanced in transgenic plants containing crypt. In comparison to Ri-transformed plants, Ri crypt-transformed plants showed significantly (p ≤ 0.05) enhanced accumulation of bacoside A(3), bacopasaponin D, bacopaside II, bacopaside III and bacopaside V. Produced transgenic lines can be used for further research on elicitation in crypt-transgenic plants as well as for large scale production of saponins. Key message The cryptogein gene, which encodes a proteinaceous elicitor is associated with increase in secondary metabolite accumulation-either alone or in addition to the increases associated with transformation by A. rhizogenes.
NASA Astrophysics Data System (ADS)
Krupovic, Mart; Koonin, Eugene V.
2014-06-01
Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.
Chalcone synthase genes from milk thistle (Silybum marianum): isolation and expression analysis.
Sanjari, Sepideh; Shobbar, Zahra Sadat; Ebrahimi, Mohsen; Hasanloo, Tahereh; Sadat-Noori, Seyed-Ahmad; Tirnaz, Soodeh
2015-12-01
Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.
Biometrics based key management of double random phase encoding scheme using error control codes
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2013-08-01
In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.
Hong, Chenlu; Chen, Yangyang; Li, Lu; Chen, Shouwen; Wei, Xuetuan
2017-03-01
Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca 2+ , Zn 2+ , Ba 2+ , Mn 2+ , Cu 2+ , SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.
Hamaguchi-Hamada, Kayoko; Kurumata-Shigeto, Mami; Minobe, Sumiko; Fukuoka, Nozomi; Sato, Manami; Matsufuji, Miyuki; Koizumi, Osamu; Hamada, Shun
2016-01-01
The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis. PMID:27043211
Rella, Monika; Elliot, Joann L; Revett, Timothy J; Lanfear, Jerry; Phelan, Anne; Jackson, Richard M; Turner, Anthony J; Hooper, Nigel M
2007-01-01
Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene. PMID:17597519
Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA
2012-06-19
Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.
USDA-ARS?s Scientific Manuscript database
Plant resistance (R) genes typically encode proteins with nucleotide binding site-leucine rich repeat (NLR) domains. We identified a novel, broad-spectrum rice blast R gene, Ptr, encoding a non-NLR protein with four Armadillo repeats. Ptr was originally identified by fast neutron mutagenesis as a ...
Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua
2018-04-18
This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P < 0.05) mRNA profiles of 9 inflammation-related genes in cells, while short-time Se pretreatment modestly reversed (P < 0.05) the LPS-induced upregulation of 7 genes (COX-2, ICAM-1, IL-1β, IL-6, IL-10, iNOS, and MCP-1) and further increased (P < 0.05) expression of IFN-β and TNF-α in stressed cells. Meanwhile, LPS decreased (P < 0.05) mRNA levels of 18 selenoprotein encoding genes and upregulated mRNA levels of TXNRD1 and TXNRD3 in cells. Se pretreatment recovered (P < 0.05) expression of 3 selenoprotein encoding genes (GPX1, SELENOH, and SELENOW) in a dose-dependent manner and increased (P < 0.05) expression of another 5 selenoprotein encoding genes (SELENOK, SELENOM, SELENOS, SELENOT, and TXNRD2) only at a high level (2.0 μmol Se/L). Taken together, LPS-induced immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.
Khan, Muhammad Sarwar; Hameed, Waqar; Nozoe, Mikio; Shiina, Takashi
2007-05-01
The functional analysis of genes encoded by the chloroplast genome of tobacco by reverse genetics is routine. Nevertheless, for a small number of genes their deletion generates heteroplasmic genotypes, complicating their analysis. There is thus the need for additional strategies to develop deletion mutants for these genes. We have developed a homologous copy correction-based strategy for deleting/mutating genes encoded on the chloroplast genome. This system was used to produce psbA knockouts. The resulting plants are homoplasmic and lack photosystem II (PSII) activity. Further, the deletion mutants exhibit a distinct phenotype; young leaves are green, whereas older leaves are bleached, irrespective of light conditions. This suggests that senescence is promoted by the absence of psbA. Analysis of the transcript levels indicates that NEP (nuclear-encoded plastid RNA polymerase)-dependent plastid genes are up regulated in the psbA deletion mutants, whereas the bleached leaves retain plastid-encoded plastid RNA polymerase activity. Hence, the expression of NEP-dependent plastid genes may be regulated by photosynthesis, either directly or indirectly.
Cui, Ruqiang; Zhang, Lei; Chen, Yuyan; Huang, Wenkun; Fan, Chengming; Wu, Qingsong; Peng, Deliang; da Silva, Washington; Sun, Xiaotang
2017-05-01
The full cDNA of Mi-ace-3 encoding an acetylcholinesterase (AChE) in Meloidogyne incognita was cloned and characterized. Mi-ace-3 had an open reading frame of 1875 bp encoding 624 amino acid residues. Key residues essential to AChE structure and function were conserved. The deduced Mi-ACE-3 protein sequence had 72% amino acid similarity with that of Ditylenchus destructor Dd-AChE-3. Phylogenetic analyses using 41 AChEs from 24 species showed that Mi-ACE-3 formed a cluster with 4 other nematode AChEs. Our results revealed that the Mi-ace-3 cloned in this study, which is orthologous to Caenorhabditis elegans AChE, belongs to the nematode ACE-3/4 subgroup. There was a significant reduction in the number of galls in transgenic tobacco roots when Mi-ace-1, Mi-ace-2, and Mi-ace-3 were knocked down simultaneously, whereas little or no effect were observed when only one or two of these genes were knocked down. This is an indication that the functions of these three genes are redundant. Copyright © 2017. Published by Elsevier Inc.
Ferreira, Rafaella Nascimento; Holanda, Gustavo Moraes; Pinto Silva, Eliana Vieira; Casseb, Samir Mansour Moraes; Melo, Karla Fabiane Lopes; Carvalho, Carlos Alberto Marques; Lima, Juliana Abreu; Vasconcelos, Pedro Fernando Costa; Cruz, Ana Cecília Ribeiro
2018-06-07
Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (Flaviviridae). ZIKV infection is associated with alterations in various organs, including the liver, lungs, and kidneys. Studies on the influence of posttranscriptional control on viral infections have demonstrated that microRNAs (miRNAs) interfere with different stages of the replicative cycle of several viruses and may influence the disease outcome. To shed light on ZIKV-induced regulation of host miRNA-processing machinery in the above organs, we analyzed the expression of genes encoding key proteins of the miRNA pathway in different ZIKV-infected continuous primate cell lineages (HepG2, A549, and MA104) by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Expression of the genes encoding the miRNA-related proteins DGCR8, Ago1, and Ago3 in HepG2 cells and Drosha, Dicer, Ago2, and Ago3 in A549 and MA104 cells was significantly altered in the presence of ZIKV. Our results suggest that ZIKV modulates miRNA levels during infection in liver, lung, and kidney cells, which may be an additional mechanism of host cell subversion in these organs.
De Novo Sequencing of a Sparassis latifolia Genome and Its Associated Comparative Analyses
Ma, Lu; Yang, Chi; Ying, Zhenghe; Jiang, Xiaoling
2018-01-01
Known to be rich in β-glucan, Sparassis latifolia (S. latifolia) is a valuable edible fungus cultivated in East Asia. A few studies have suggested that S. latifolia is effective on antidiabetic, antihypertension, antitumor, and antiallergen medications. However, it is still unclear genetically why the fungus has these medical effects, which has become a key bottleneck for its further applications. To provide a better understanding of this fungus, we sequenced its whole genome, which has a total size of 48.13 megabases (Mb) and contains 12,471 predicted gene models. We then performed comparative and phylogenetic analyses, which indicate that S. latifolia is closely related to a few species in the antrodia clade including Fomitopsis pinicola, Wolfiporia cocos, Postia placenta, and Antrodia sinuosa. Finally, we annotated the predicted genes. Interestingly, the S. latifolia genome encodes most enzymes involved in carbohydrate and glycoconjugate metabolism and is also enriched in genes encoding enzymes critical to secondary metabolite biosynthesis and involved in indole, terpene, and type I polyketide pathways. As a conclusion, the genome content of S. latifolia sheds light on its genetic basis of the reported medicinal properties and could also be used as a reference genome for comparative studies on fungi. PMID:29682127
[Metabolic engineering of edible plant oils].
Yue, Ai-Qin; Sun, Xi-Ping; Li, Run-Zhi
2007-12-01
Plant seed oil is the major source of many fatty acids for human nutrition, and also one of industrial feedstocks. Recent advances in understanding of the basic biochemistry of seed oil biosynthesis, coupled with cloning of the genes encoding the enzymes involved in fatty acid modification and oil accumulation, have set the stage for the metabolic engineering of oilseed crops that produce "designer" plant seed oils with the improved nutritional values for human being. In this review we provide an overview of seed oil biosynthesis/regulation and highlight the key enzymatic steps that are targets for gene manipulation. The strategies of metabolic engineering of fatty acids in oilseeds, including overexpression or suppression of genes encoding single or multi-step biosynthetic pathways and assembling the complete pathway for the synthesis of long-chain polyunsaturated fatty acids (e.g. arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid) are described in detail. The current "bottlenecks" in using common oilseeds as "bioreactors" for commercial production of high-value fatty acids are analyzed. It is also discussed that the future research focuses of oilseed metabolic engineering and the prospects in creating renewable sources and promoting the sustainable development of human society and economy.
Genes involved in host-parasite interactions can be revealed by their correlated expression.
Reid, Adam James; Berriman, Matthew
2013-02-01
Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host-parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.
Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants
Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE
2007-07-10
Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.
Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T
2013-11-01
Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.
Romero, Roberto; Tarca, Adi; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S.; Kalita, Cynthia A.; Cai, Juan; Yeo, Lami; Lipovich, Leonard
2014-01-01
Objective The mechanisms responsible for normal and abnormal parturition are poorly understood. Myometrial activation leading to regular uterine contractions is a key component of labor. Dysfunctional labor (arrest of dilatation and/or descent) is a leading indication for cesarean delivery. Compelling evidence suggests that most of these disorders are functional in nature, and not the result of cephalopelvic disproportion. The methodology and the datasets afforded by the post-genomic era provide novel opportunities to understand and target gene functions in these disorders. In 2012, the ENCODE Consortium elucidated the extraordinary abundance and functional complexity of long non-coding RNA genes in the human genome. The purpose of the study was to identify differentially expressed long non-coding RNA genes in human myometrium in women in spontaneous labor at term. Materials and Methods Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n=19) and women in spontaneous labor at term (n=20). RNA was extracted and profiled using an Illumina® microarray platform. The analysis of the protein coding genes from this study has been previously reported. Here, we have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. Results Upon considering more than 18,498 distinct lncRNA genes compiled nonredundantly from public experimental data sources, and interrogating 2,634 that matched Illumina microarray probes, we identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an independent experimental method. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site that lacked evolutionary conservation beyond primates. Conclusions We provide for the first time evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known, as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term. PMID:24168098
The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, S.M.; Habash, D.Z.
2009-07-02
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulationmore » of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.« less
The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Que; Ma, Wei; Yang, Haibing
WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less
Singh, Rajesh K.; Ali, Sharique A.; Nath, Pravendra; Sane, Vidhu A.
2011-01-01
Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit. PMID:21430290
Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken
2013-09-01
Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.
Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken
2013-01-01
Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442
The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots
Kong, Que; Ma, Wei; Yang, Haibing; ...
2017-08-26
WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less
El Malki, F; Jacobs, M
2001-01-01
The histidine auxotroph mutant his 1(-) isolated from Nicotiana plumbaginifolia haploid protoplasts was first characterized to be deficient for the enzyme histidinol phosphate aminotransferase that is responsible for one of the last steps of histidine biosynthesis. Expression of the mutated gene at the RNA level was assessed by northern analysis of various tissues. Transcriptional activity was unimpaired by the mutation and, in contrast, a higher level of expression was obtained when compared to the wild-type. The cDNA sequence encoding the mutated gene was isolated by RT-PCR and compared to the wild-type gene. A single point mutation corresponding to the substitution of a G nucleotide by A was identified at position 1212 starting from the translation site. The alignment of the deduced amino acid sequences from the mutated and wild-type gene showed that this mutation resulted in the substitution of an Arg by a His residue at position 381. This Arg residue is a conserved amino acid for histidinol phosphate aminotransferase of many species. These results indicate that the identified mutation results in an altered histidinol phosphate aminotransferase enzyme that is unable to convert the substrate imidazole acetol phosphate to histidinol phosphate and thereby leads to the blockage of histidine biosynthesis. Possible consequences of this blockage on the expression of other amino acid biosynthesis genes were evaluated by analysing the expression of the dhdps gene encoding dihydrodipicolinate synthase, the first key enzyme of the lysine pathway.
Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs
2015-02-01
Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.
One gene - many endocrine and metabolic syndromes: PTEN-opathies and precision medicine.
Yehia, Lamis; Eng, Charis
2018-05-23
An average of 10% of all cancers (range 1-40%) are caused by heritable mutations and over the years, have become powerful models for precision medicine practice. Furthermore, such cancer predisposition genes for seemingly rare syndromes have turned out to help explain mechanisms of sporadic carcinogenesis and often inform normal development. The tumor suppressor PTEN encodes a ubiquitously expressed phosphatase that counteracts the PI3K/AKT/mTOR cascade - one of the most critical growth-promoting signaling pathways. Clinically, individuals with germline PTEN mutations have diverse phenotypes and fall under the umbrella term PTEN hamartoma tumor syndrome (PHTS). PHTS encompasses four clinically distinct allelic overgrowth syndromes, namely Cowden, Bannayan-Riley-Ruvalcaba, Proteus, and Proteus-like syndromes. Relatedly, mutations in other genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN also predispose patients to partially overlapping clinical manifestations, with similar effects as PTEN malfunction. We refer to these syndromes as "PTEN-opathies." As a tumor suppressor and key regulator of normal development, PTEN dysfunction can cause a spectrum of phenotypes including benign overgrowths, malignancies, metabolic, and neurodevelopmental disorders. Relevant to clinical practice, the identification of PTEN mutations in patients not only establishes a PHTS molecular diagnosis, but also informs on more accurate cancer risk assessment and medical management of those patients and affected family members. Importantly, timely diagnosis is key, as early recognition allows for preventative measures such as high-risk screening and surveillance even prior to cancer onset. This review highlights the translational impact that the discovery of PTEN has had on the diagnosis, management, and treatment of PHTS.
Lozano, Roberto; Ponce, Olga; Ramirez, Manuel; Mostajo, Nelly; Orjeda, Gisella
2012-01-01
The majority of disease resistance (R) genes identified to date in plants encode a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain containing protein. Additional domains such as coiled-coil (CC) and TOLL/interleukin-1 receptor (TIR) domains can also be present. In the recently sequenced Solanum tuberosum group phureja genome we used HMM models and manual curation to annotate 435 NBS-encoding R gene homologs and 142 NBS-derived genes that lack the NBS domain. Highly similar homologs for most previously documented Solanaceae R genes were identified. A surprising ∼41% (179) of the 435 NBS-encoding genes are pseudogenes primarily caused by premature stop codons or frameshift mutations. Alignment of 81.80% of the 577 homologs to S. tuberosum group phureja pseudomolecules revealed non-random distribution of the R-genes; 362 of 470 genes were found in high density clusters on 11 chromosomes. PMID:22493716
Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Cai, Yu-Dong
2017-01-01
Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.
Suzuki, Shino; Ishii, Shun'ichi; Hoshino, Tatsuhiko; Rietze, Amanda; Tenney, Aaron; Morrill, Penny L; Inagaki, Fumio; Kuenen, J Gijs; Nealson, Kenneth H
2017-11-01
Water from The Cedars springs that discharge from serpentinized ultramafic rocks feature highly basic (pH=~12), highly reducing (E h <-550 mV) conditions with low ionic concentrations. These conditions make the springs exceptionally challenging for life. Here, we report the metagenomic data and recovered draft genomes from two different springs, GPS1 and BS5. GPS1, which was fed solely by a deep groundwater source within the serpentinizing system, was dominated by several bacterial taxa from the phyla OD1 ('Parcubacteria') and Chloroflexi. Members of the GPS1 community had, for the most part, the smallest genomes reported for their respective taxa, and encoded only archaeal (A-type) ATP synthases or no ATP synthases at all. Furthermore, none of the members encoded respiration-related genes and some of the members also did not encode key biosynthesis-related genes. In contrast, BS5, fed by shallow water, appears to have a community driven by hydrogen metabolism and was dominated by a diverse group of Proteobacteria similar to those seen in many terrestrial serpentinization sites. Our findings indicated that the harsh ultrabasic geological setting supported unexpectedly diverse microbial metabolic strategies and that the deep-water-fed springs supported a community that was remarkable in its unusual metagenomic and genomic constitution.
Vernon, Daniel M.; Bohnert, Hans J.
1992-01-01
The facultative halophyte Mesembryanthemum crystallinum responds to osmotic stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). This shift to CAM involves the stress-initiated up-regulation of mRNAs encoding CAM enzymes. The capability of the plants to induce a key CAM enzyme, phosphoenolpyruvate carboxylase, is influenced by plant age, and it has been suggested that adaptation to salinity in M. crystallinum may be modulated by a developmental program that controls molecular responses to stress. We have compared the effects of plant age on the expression of two salinity-induced genes: Gpdl, which encodes the photosynthesis-related enzyme glyceraldehyde 3-phosphate dehydrogenase, and Imtl, which encodes a methyl transferase involved in the biosynthesis of a putative osmoprotectant, pinitol. Imtl mRNA accumulation and the accompanying increase in pinitol in stressed Mesembryanthemum exhibit a pattern of induction distinct from that observed for CAM-related genes. We conclude that the molecular mechanisms that trigger Imtl and pinitol accumulation in response to salt stress in M. crystallinum differ in some respects from those that lead to CAM induction. There may be multiple signals or pathways that regulate inducible components of salinity tolerance in this facultative halophyte. ImagesFigure 1Figure 2 PMID:16669095
Conditional-suicide containment system for bacteria which mineralize aromatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, A.; Ramos, J.L.; Molin, S.
A model conditional-suicide system to control genetically engineered microorganisms able to degrade substituted benzoates is reported. The system is based on two elements. One element consists of a fusion between the promoter of the Pseudomonas putide TOL plasmid-encoded meta-cleavage pathway operon (P{sub m}) and the lacI gene encoding Lac repressor plus sylS, coding for the positive regulator of P{sub m}. The other element carries a fusion between the P{sub tac} promoter and the gef gene, which encodes a killing function. In the absence of effectors, expression of the P{sub tac}::gef cassette is no longer prevented and a high rate ofmore » cell killing is observed. The substitution of XylS for XylSthr45, a mutant regulator with altered effector specificity and increased affinity for benzoates, allows the control of populations able to degrade a wider range of benzoates at micromolar substrate concentrations. Given the wide effector specificity of the key regulators, the wild-type and mutant ZylS proteins, the system should allow the control of populations able to metabolize benzoate; methyl-, dimethyl-, chloro-, dichloro-, ethyl-, and methoxybenzoates; salicylate; and methyl- and chlorosalicylates. A small population of genetically engineered microorganisms became Gef resistant; however, the mechanism of such survival remains unknown.« less
The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.
Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W
2013-01-01
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.
Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A
2016-12-01
Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.
Shah, Shiraz A; Alkhnbashi, Omer S; Behler, Juliane; Han, Wenyuan; She, Qunxin; Hess, Wolfgang R; Garrett, Roger A; Backofen, Rolf
2018-06-19
A study was undertaken to identify conserved proteins that are encoded adjacent to cas gene cassettes of Type III CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats - CRISPR associated) interference modules. Type III modules have been shown to target and degrade dsDNA, ssDNA and ssRNA and are frequently intertwined with cofunctional accessory genes, including genes encoding CRISPR-associated Rossman Fold (CARF) domains. Using a comparative genomics approach, and defining a Type III association score accounting for coevolution and specificity of flanking genes, we identified and classified 39 new Type III associated gene families. Most archaeal and bacterial Type III modules were seen to be flanked by several accessory genes, around half of which did not encode CARF domains and remain of unknown function. Northern blotting and interference assays in Synechocystis confirmed that one particular non-CARF accessory protein family was involved in crRNA maturation. Non-CARF accessory genes were generally diverse, encoding nuclease, helicase, protease, ATPase, transporter and transmembrane domains with some encoding no known domains. We infer that additional families of non-CARF accessory proteins remain to be found. The method employed is scalable for potential application to metagenomic data once automated pipelines for annotation of CRISPR-Cas systems have been developed. All accessory genes found in this study are presented online in a readily accessible and searchable format for researchers to audit their model organism of choice: http://accessory.crispr.dk .
Mugford, Sam T.; Louveau, Thomas; Melton, Rachel; Qi, Xiaoquan; Bakht, Saleha; Hill, Lionel; Tsurushima, Tetsu; Honkanen, Suvi; Rosser, Susan J.; Lomonossoff, George P.; Osbourn, Anne
2013-01-01
Operon-like gene clusters are an emerging phenomenon in the field of plant natural products. The genes encoding some of the best-characterized plant secondary metabolite biosynthetic pathways are scattered across plant genomes. However, an increasing number of gene clusters encoding the synthesis of diverse natural products have recently been reported in plant genomes. These clusters have arisen through the neo-functionalization and relocation of existing genes within the genome, and not by horizontal gene transfer from microbes. The reasons for clustering are not yet clear, although this form of gene organization is likely to facilitate co-inheritance and co-regulation. Oats (Avena spp) synthesize antimicrobial triterpenoids (avenacins) that provide protection against disease. The synthesis of these compounds is encoded by a gene cluster. Here we show that a module of three adjacent genes within the wider biosynthetic gene cluster is required for avenacin acylation. Through the characterization of these genes and their encoded proteins we present a model of the subcellular organization of triterpenoid biosynthesis. PMID:23532069
Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan
2018-01-01
Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua . It's important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua , named AaEIN3 . Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua , indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1 , and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway.
Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan
2018-01-01
Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua. It’s important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua, named AaEIN3. Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua, indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1, and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway. PMID:29675029
Nishibuchi, M; Murakami, A; Arita, M; Jikuya, H; Takano, J; Honda, T; Miwatani, T
1989-01-01
We examined variations in the genes encoding heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) in 88 strains of Escherichia coli isolated from individuals with traveler's diarrhea to find suitable sequences for use as oligonucleotide probes. Four oligonucleotide probes of the gene encoding ST of human origin (STIb or STh), one oligonucleotide probe of the gene encoding ST of porcine origin (STIa or STp), and three oligonucleotide probes of the gene encoding LT of human origin (LTIh) were used in DNA colony hybridization tests. In 15 of 22 strains possessing the STh gene and 28 of 42 strains producing LT, the sequences of all regions tested were identical to the published sequences. One region in the STh gene examined with a 18-mer probe was relatively well conserved and was shown to be closely associated with the enterotoxicity of the E. coli strains in suckling mice. This oligonucleotide, however, hybridized with strains of Vibrio cholerae O1, V. parahaemolyticus, and Yersinia enterocolitica that gave negative results in the suckling mouse assay. PMID:2685027
Ying, Jianchao; Wang, Huifeng; Bao, Bokan; Zhang, Ying; Zhang, Jinfang; Zhang, Cheng; Li, Aifang; Lu, Junwan; Li, Peizhen; Ying, Jun; Liu, Qi; Xu, Teng; Yi, Huiguang; Li, Jinsong; Zhou, Li; Zhou, Tieli; Xu, Zuyuan; Ni, Liyan; Bao, Qiyu
2015-01-01
The homocysteine methyltransferase encoded by mmuM is widely distributed among microbial organisms. It is the key enzyme that catalyzes the last step in methionine biosynthesis and plays an important role in the metabolism process. It also enables the microbial organisms to tolerate high concentrations of selenium in the environment. In this research, 533 mmuM gene sequences covering 70 genera of the bacteria were selected from GenBank database. The distribution frequency of mmuM is different in the investigated genera of bacteria. The mapping results of 160 mmuM reference sequences showed that the mmuM genes were found in 7 species of pathogen genomes sequenced in this work. The polymerase chain reaction products of one mmuM genotype (NC_013951 as the reference) were sequenced and the sequencing results confirmed the mapping results. Furthermore, 144 representative sequences were chosen for phylogenetic analysis and some mmuM genes from totally different genera (such as the genes between Escherichia and Klebsiella and between Enterobacter and Kosakonia) shared closer phylogenetic relationship than those from the same genus. Comparative genomic analysis of the mmuM encoding regions on plasmids and bacterial chromosomes showed that pKF3-140 and pIP1206 plasmids shared a 21 kb homology region and a 4.9 kb fragment in this region was in fact originated from the Escherichia coli chromosome. These results further suggested that mmuM gene did go through the gene horizontal transfer among different species or genera of bacteria. High-throughput sequencing combined with comparative genomics analysis would explore distribution and dissemination of the mmuM gene among bacteria and its evolution at a molecular level.
Böhnke, Stefanie; Perner, Mirjam
2015-03-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.
Guo, Chuan-yu; Wu, Guang-heng; Xing, Jin; Li, Wen-qi; Tang, Ding-zhong; Cui, Bai-ming
2013-05-01
A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.
Fradin, Chantal; Mavor, Abigail L; Weindl, Günther; Schaller, Martin; Hanke, Karin; Kaufmann, Stefan H E; Mollenkopf, Hans; Hube, Bernhard
2007-03-01
Candida albicans is a polymorphic opportunistic fungus that can cause life-threatening systemic infections following hematogenous dissemination in patients susceptible to nosocomial infection. Neutrophils form part of the innate immune response, which is the first line of defense against microbes and is particularly important in C. albicans infections. To compare the transcriptional response of leukocytes exposed to C. albicans, we investigated the expression of key cytokine genes in polymorphonuclear and mononuclear leukocytes after incubation with C. albicans for 1 h. Isolated mononuclear cells expressed high levels of genes encoding proinflammatory signaling molecules, whereas neutrophils exhibited much lower levels, similar to those observed in whole blood. The global transcriptional profile of neutrophils was examined by using an immunology-biased human microarray to determine whether different morphological forms or the viability of C. albicans altered the transcriptome. Hyphal cells appeared to have the broadest effect, although the most strongly induced genes were regulated independently of morphology or viability. These genes were involved in proinflammatory cell-cell signaling, cell signal transduction, and cell growth. Generally, genes encoding known components of neutrophil granules showed no upregulation at this time point; however, lactoferrin, a well-known candidacidal peptide, was secreted by neutrophils. Addition to inhibitors of RNA or protein de novo synthesis did not influence the killing activity within 30 min. These results support the general notion that neutrophils do not require gene transcription to mount an immediate and direct attack against microbes. However, neutrophils exposed to C. albicans express genes involved in communication with other immune cells.
A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea.
Reith, M; Munholland, J
1993-01-01
Extensive DNA sequencing of the chloroplast genome of the red alga Porphyra purpurea has resulted in the detection of more than 125 genes. Fifty-eight (approximately 46%) of these genes are not found on the chloroplast genomes of land plants. These include genes encoding 17 photosynthetic proteins, three tRNAs, and nine ribosomal proteins. In addition, nine genes encoding proteins related to biosynthetic functions, six genes encoding proteins involved in gene expression, and at least five genes encoding miscellaneous proteins are among those not known to be located on land plant chloroplast genomes. The increased coding capacity of the P. purpurea chloroplast genome, along with other characteristics such as the absence of introns and the conservation of ancestral operons, demonstrate the primitive nature of the P. purpurea chloroplast genome. In addition, evidence for a monophyletic origin of chloroplasts is suggested by the identification of two groups of genes that are clustered in chloroplast genomes but not in cyanobacteria. PMID:12271072
A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo
NASA Technical Reports Server (NTRS)
Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar;
2002-01-01
We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of the model are greatly facilitated by interspecific computational sequence comparison, which affords a rapid identification of likely cis-regulatory elements in advance of experimental analysis. The network specifies genomically encoded regulatory processes between early cleavage and gastrula stages. These control the specification of the micromere lineage and of the initial veg(2) endomesodermal domain; the blastula-stage separation of the central veg(2) mesodermal domain (i.e., the secondary mesenchyme progenitor field) from the peripheral veg(2) endodermal domain; the stabilization of specification state within these domains; and activation of some downstream differentiation genes. Each of the temporal-spatial phases of specification is represented in a subelement of the network model, that treats regulatory events within the relevant embryonic nuclei at particular stages. (c) 2002 Elsevier Science (USA).
Genome-Wide Architecture of Disease Resistance Genes in Lettuce
Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K.; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W.
2015-01-01
Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. PMID:26449254
USDA-ARS?s Scientific Manuscript database
This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...
Cytochrome b5 gene and protein of Candida tropicalis and methods relating thereto
Craft, David L.; Madduri, Krishna M.; Loper, John C.
2003-01-01
A novel gene has been isolated which encodes cytochrome b5 (CYTb5) protein of the .omega.-hydroxylase complex of C. tropicalis 20336. Vectors including this gene, and transformed host cells are provided. Methods of increasing the production of a CYTb5 protein are also provided which involve transforming a host cell with a gene encoding this protein and culturing the cells. Methods of increasing the production of a dicarboxylic acid are also provided which involve increasing in the host cell the number of genes encoding this protein.
Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin
2009-08-15
Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.
Orellana, L H; Rodriguez-R, L M; Higgins, S; Chee-Sanford, J C; Sanford, R A; Ritalahti, K M; Löffler, F E; Konstantinidis, K T
2014-06-03
Microbial activities in soils, such as (incomplete) denitrification, represent major sources of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2. We recently described "atypical" functional NosZ proteins encoded by both denitrifiers and nondenitrifiers, which were missed in previous environmental surveys (R. A. Sanford et al., Proc. Natl. Acad. Sci. U. S. A. 109:19709-19714, 2012, doi:10.1073/pnas.1211238109). Here, we analyzed the abundance and diversity of both nosZ types in whole-genome shotgun metagenomes from sandy and silty loam agricultural soils that typify the U.S. Midwest corn belt. First, different search algorithms and parameters for detecting nosZ metagenomic reads were evaluated based on in silico-generated (mock) metagenomes. Using the derived cutoffs, 71 distinct alleles (95% amino acid identity level) encoding typical or atypical NosZ proteins were detected in both soil types. Remarkably, more than 70% of the total nosZ reads in both soils were classified as atypical, emphasizing that prior surveys underestimated nosZ abundance. Approximately 15% of the total nosZ reads were taxonomically related to Anaeromyxobacter, which was the most abundant genus encoding atypical NosZ-type proteins in both soil types. Further analyses revealed that atypical nosZ genes outnumbered typical nosZ genes in most publicly available soil metagenomes, underscoring their potential role in mediating N2O consumption in soils. Therefore, this study provides a bioinformatics strategy to reliably detect target genes in complex short-read metagenomes and suggests that the analysis of both typical and atypical nosZ sequences is required to understand and predict N2O flux in soils. Nitrous oxide (N2O) is a potent greenhouse gas with ozone layer destruction potential. Microbial activities control both the production and the consumption of N2O, i.e., its conversion to innocuous dinitrogen gas (N2). Until recently, consumption of N2O was attributed to bacteria encoding "typical" nitrous oxide reductase (NosZ). However, recent phylogenetic and physiological studies have shown that previously uncharacterized, functional, "atypical" NosZ proteins are encoded in genomes of diverse bacterial groups. The present study revealed that atypical nosZ genes outnumbered their typical counterparts, highlighting their potential role in N2O consumption in soils and possibly other environments. These findings advance our understanding of the diversity of microbes and functional genes involved in the nitrogen cycle and provide the means (e.g., gene sequences) to study N2O fluxes to the atmosphere and associated climate change. Copyright © 2014 Orellana et al.
Polese, Valéria; de Paula Soares, Cleiton; da Silva, Paula Renata Alves; Simões-Araújo, Jean Luiz; Baldani, José Ivo; Vidal, Marcia Soares
2017-12-01
Quantitative reverse transcription PCR (RT-qPCR) is an important tool for evaluating gene expression. However, this technique requires that specific internal normalizing genes be identified for different experimental conditions. To date, no internal normalizing genes are available for validation of data analyses for Herbaspirillum rubrisubalbicans strain HCC103, an endophyte that is part of the sugarcane consortium inoculant. This work seeks to identify and evaluate suitable reference genes for gene expression studies in HCC103 grown until middle log phase in sugarcane juice obtained from four sugarcane varieties or media with three different carbon sources. The mRNA levels of five candidate genes (rpoA, gyrA, dnaG, recA and gmK) and seven target genes involved in carbon metabolism (acnA, fbp, galE, suhB, wcaA, ORF_0127.0101 and _0127.0123) were quantified by RT-qPCR. Analysis of expression stability of these genes was carried out using geNorm and Normfinder software. The results indicated that the HCC103 dnaG and gyrA genes are the most stable and showed adequate relative expression level changes among the different sugarcane juices. The highest expression level was seen for ORF_0127.0101, which encodes a sugar transporter, in juice from sugarcane variety RB867515 and glucose as the carbon source. The suhB gene, encoding SuhB inositol monophosphatase, had a higher relative expression level on 0.5% glucose, 100% sugarcane juice from variety RB867515 and 0.5% aconitate. Together the results suggest that dnaG and gyrA genes are suitable as reference genes for RT-qPCR analysis of strain HCC103 and that juice from different sugarcane varieties modulates the expression of key genes involved in carbon metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, John T.; Brown, Steven D.; Ronson, Clive W.
Mesorhizobium loti is the microsymbiont of Lotus species, including the model legume L. japonicus. M. loti differs from other rhizobia in that it contains two copies of the key nitrogen fixation regulatory gene nifA, nifA1 and nifA2, both of which are located on the symbiosis island ICEMlSymR7A. M. loti R7A also contains two rpoN genes, rpoN1 located on the chromosome outside of ICEMlSymR7A and rpoN2 that is located on ICEMlSymR7A. The aims of the current work were to establish how nifA expression was activated in M. loti and to characterise the NifA-RpoN regulon. The nifA2 and rpoN2 genes were essentialmore » for nitrogen fixation whereas nifA1 and rpoN1 were dispensable. Expression of nifA2 was activated, possibly in response to an inositol derivative, by a novel regulator of the LacI/GalR family encoded by the fixV gene located upstream of nifA2. Other than the well-characterized nif/fix genes, most NifA2-regulated genes were not required for nitrogen fixation although they were strongly expressed in nodules. The NifA-regulated nifZ and fixU genes, along with nifQ which was not NifA-regulated, were required in M. loti for a fully effective symbiosis although they are not present in some other rhizobia. The NifA-regulated gene msi158 that encodes a porin was also required for a fully effective symbiosis. Several metabolic genes that lacked NifA-regulated promoters were strongly expressed in nodules in a NifA2-dependent manner but again mutants did not have an overt symbiotic phenotype. In summary, many genes encoded on ICEMlSymR7A were strongly expressed in nodules but not free-living rhizobia, but were not essential for symbiotic nitrogen fixation. It seems likely that some of these genes have functional homologues elsewhere in the genome and that bacteroid metabolism may be sufficiently plastic to adapt to loss of certain enzymatic functions.« less
Sullivan, John T.; Brown, Steven D.; Ronson, Clive W.
2013-01-01
Mesorhizobium loti is the microsymbiont of Lotus species, including the model legume L. japonicus. M. loti differs from other rhizobia in that it contains two copies of the key nitrogen fixation regulatory gene nifA, nifA1 and nifA2, both of which are located on the symbiosis island ICEMlSymR7A. M. loti R7A also contains two rpoN genes, rpoN1 located on the chromosome outside of ICEMlSymR7A and rpoN2 that is located on ICEMlSymR7A. The aims of the current work were to establish how nifA expression was activated in M. loti and to characterise the NifA-RpoN regulon. The nifA2 and rpoN2 genes were essential for nitrogen fixation whereas nifA1 and rpoN1 were dispensable. Expression of nifA2 was activated, possibly in response to an inositol derivative, by a novel regulator of the LacI/GalR family encoded by the fixV gene located upstream of nifA2. Other than the well-characterized nif/fix genes, most NifA2-regulated genes were not required for nitrogen fixation although they were strongly expressed in nodules. The NifA-regulated nifZ and fixU genes, along with nifQ which was not NifA-regulated, were required in M. loti for a fully effective symbiosis although they are not present in some other rhizobia. The NifA-regulated gene msi158 that encodes a porin was also required for a fully effective symbiosis. Several metabolic genes that lacked NifA-regulated promoters were strongly expressed in nodules in a NifA2-dependent manner but again mutants did not have an overt symbiotic phenotype. In summary, many genes encoded on ICEMlSymR7A were strongly expressed in nodules but not free-living rhizobia, but were not essential for symbiotic nitrogen fixation. It seems likely that some of these genes have functional homologues elsewhere in the genome and that bacteroid metabolism may be sufficiently plastic to adapt to loss of certain enzymatic functions. PMID:23308282
Malumbres, M; Martín, J F
1996-10-01
Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium. The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).
2016-01-01
Covering: 2003 to 2016 The last decade has seen the first major discoveries regarding the genomic basis of plant natural product biosynthetic pathways. Four key computationally driven strategies have been developed to identify such pathways, which make use of physical clustering, co-expression, evolutionary co-occurrence and epigenomic co-regulation of the genes involved in producing a plant natural product. Here, we discuss how these approaches can be used for the discovery of plant biosynthetic pathways encoded by both chromosomally clustered and non-clustered genes. Additionally, we will discuss opportunities to prioritize plant gene clusters for experimental characterization, and end with a forward-looking perspective on how synthetic biology technologies will allow effective functional reconstitution of candidate pathways using a variety of genetic systems. PMID:27321668
Aoyagi, K; Beyou, A; Moon, K; Fang, L; Ulrich, T
1993-01-01
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) is a key enzyme in the isoprenoid biosynthetic pathway. We have isolated partial cDNAs from wheat (Triticum aestivum) using the polymerase chain reaction. Comparison of deduced amino acid sequences of these cDNAs shows that they represent a small family of genes that share a high degree of sequence homology among themselves as well as among genes from other organisms including tomato, Arabidopsis, hamster, human, Drosophila, and yeast. Southern blot analysis reveals the presence of at least four genes. Our results concerning the tissue-specific expression as well as developmental regulation of these HMGR cDNAs highlight the important role of this enzyme in the growth and development of wheat. PMID:8108513
antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters
Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko
2015-01-01
Abstract Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. PMID:25948579
Lopez-Moya, Federico; Kowbel, David; Nueda, Ma José; Palma-Guerrero, Javier; Glass, N. Louise; Lopez-Llorca, Luis Vicente
2016-01-01
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed, NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement and NCU04537 a MFS monosaccharide transporter related with assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as antifungal. PMID:26694141
Genome complexity in the coelacanth is reflected in its adaptive immune system
Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.
2014-01-01
We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.
Jules, Matthieu; Le Chat, Ludovic; Aymerich, Stéphane; Le Coq, Dominique
2009-05-01
We present here experimental evidence that the Bacillus subtilis ywjI gene encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the fbp-encoded class III enzyme, and constitutes with the upstream gene, murAB, an operon transcribed at the same level under glycolytic or gluconeogenic conditions.
Jules, Matthieu; Le Chat, Ludovic; Aymerich, Stéphane; Le Coq, Dominique
2009-01-01
We present here experimental evidence that the Bacillus subtilis ywjI gene encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the fbp-encoded class III enzyme, and constitutes with the upstream gene, murAB, an operon transcribed at the same level under glycolytic or gluconeogenic conditions. PMID:19270101
Gene replacement in Penicillium roqueforti.
Goarin, Anne; Silar, Philippe; Malagnac, Fabienne
2015-05-01
Most cheese-making filamentous fungi lack suitable molecular tools to improve their biotechnology potential. Penicillium roqueforti, a species of high industrial importance, would benefit from functional data yielded by molecular genetic approaches. This work provides the first example of gene replacement by homologous recombination in P. roqueforti, demonstrating that knockout experiments can be performed in this fungus. To do so, we improved the existing transformation method to integrate transgenes into P. roqueforti genome. In the meantime, we cloned the PrNiaD gene, which encodes a NADPH-dependent nitrate reductase that reduces nitrate to nitrite. Then, we performed a deletion of the PrNiaD gene from P. roqueforti strain AGO. The ΔPrNiaD mutant strain is more resistant to chlorate-containing medium than the wild-type strain, but did not grow on nitrate-containing medium. Because genomic data are now available, we believe that generating selective deletions of candidate genes will be a key step to open the way for a comprehensive exploration of gene function in P. roqueforti.
Ventura, Marco; Kenny, John G; Zhang, Ziding; Fitzgerald, Gerald F; van Sinderen, Douwe
2005-09-01
The so-called clp genes, which encode components of the Clp proteolytic complex, are widespread among bacteria. The Bifidobacterium breve UCC 2003 genome contains a clpB gene with significant homology to predicted clpB genes from other members of the Actinobacteridae group. The heat- and osmotic-inducibility of the B. breve UCC 2003 clpB homologue was verified by slot-blot analysis, while Northern blot and primer extension analyses showed that the clpB gene is transcribed as a monocistronic unit with a single promoter. The role of a hspR homologue, known to control the regulation of clpB and dnaK gene expression in other high G+C content bacteria was investigated by gel mobility shift assays. Moreover the predicted 3D structure of HspR provides further insight into the binding mode of this protein to the clpB promoter region, and highlights the key amino acid residues believed to be involved in the protein-DNA interaction.
Microarray analysis reveals key genes and pathways in Tetralogy of Fallot
He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai
2017-01-01
The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF. PMID:28713939
Santos-Garcia, Diego; Rollat-Farnier, Pierre-Antoine; Beitia, Francisco; Zchori-Fein, Einat; Vavre, Fabrice; Mouton, Laurence; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.
2014-01-01
Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively. Reconstruction of their last common ancestors’ gene contents revealed an initial massive gene loss from the free-living ancestor. This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very rare in endosymbionts, an important function of these genes cannot be ruled out. PMID:24723729
Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.
Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue
2013-07-01
Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.
Crowhurst, Ross N; Gleave, Andrew P; MacRae, Elspeth A; Ampomah-Dwamena, Charles; Atkinson, Ross G; Beuning, Lesley L; Bulley, Sean M; Chagne, David; Marsh, Ken B; Matich, Adam J; Montefiori, Mirco; Newcomb, Richard D; Schaffer, Robert J; Usadel, Björn; Allan, Andrew C; Boldingh, Helen L; Bowen, Judith H; Davy, Marcus W; Eckloff, Rheinhart; Ferguson, A Ross; Fraser, Lena G; Gera, Emma; Hellens, Roger P; Janssen, Bart J; Klages, Karin; Lo, Kim R; MacDiarmid, Robin M; Nain, Bhawana; McNeilage, Mark A; Rassam, Maysoon; Richardson, Annette C; Rikkerink, Erik HA; Ross, Gavin S; Schröder, Roswitha; Snowden, Kimberley C; Souleyre, Edwige JF; Templeton, Matt D; Walton, Eric F; Wang, Daisy; Wang, Mindy Y; Wang, Yanming Y; Wood, Marion; Wu, Rongmei; Yauk, Yar-Khing; Laing, William A
2008-01-01
Background Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia. PMID:18655731
Romano, Jacob; Nimrod, Guy; Ben-Tal, Nir; Shadkchan, Yona; Baruch, Koti; Sharon, Haim; Osherov, Nir
2006-07-01
The ECM33/SPS2 family of glycosylphosphatidylinositol-anchored proteins plays an important role in maintaining fungal cell wall integrity and virulence. However, the precise molecular role of these proteins is unknown. In this work, AfuEcm33, the gene encoding the ECM33 homologue in the important pathogenic fungus Aspergillus fumigatus, has been cloned and its function analysed. It is shown that disruption of AfuEcm33 results in rapid conidial germination, increased cell-cell adhesion, resistance to the antifungal agent caspofungin and increased virulence in an immunocompromised mouse model for disseminated aspergillosis. These results suggest that the protein encoded by AfuEcm33 is involved in key aspects of cell wall morphogenesis and plays an important role in A. fumigatus virulence.
Hayashida, Kyoko; Hara, Yuichiro; Abe, Takashi; Yamasaki, Chisato; Toyoda, Atsushi; Kosuge, Takehide; Suzuki, Yutaka; Sato, Yoshiharu; Kawashima, Shuichi; Katayama, Toshiaki; Wakaguri, Hiroyuki; Inoue, Noboru; Homma, Keiichi; Tada-Umezaki, Masahito; Yagi, Yukio; Fujii, Yasuyuki; Habara, Takuya; Kanehisa, Minoru; Watanabe, Hidemi; Ito, Kimihito; Gojobori, Takashi; Sugawara, Hideaki; Imanishi, Tadashi; Weir, William; Gardner, Malcolm; Pain, Arnab; Shiels, Brian; Hattori, Masahira; Nene, Vishvanath; Sugimoto, Chihiro
2012-01-01
ABSTRACT We sequenced the genome of Theileria orientalis, a tick-borne apicomplexan protozoan parasite of cattle. The focus of this study was a comparative genome analysis of T. orientalis relative to other highly pathogenic Theileria species, T. parva and T. annulata. T. parva and T. annulata induce transformation of infected cells of lymphocyte or macrophage/monocyte lineages; in contrast, T. orientalis does not induce uncontrolled proliferation of infected leukocytes and multiplies predominantly within infected erythrocytes. While synteny across homologous chromosomes of the three Theileria species was found to be well conserved overall, subtelomeric structures were found to differ substantially, as T. orientalis lacks the large tandemly arrayed subtelomere-encoded variable secreted protein-encoding gene family. Moreover, expansion of particular gene families by gene duplication was found in the genomes of the two transforming Theileria species, most notably, the TashAT/TpHN and Tar/Tpr gene families. Gene families that are present only in T. parva and T. annulata and not in T. orientalis, Babesia bovis, or Plasmodium were also identified. Identification of differences between the genome sequences of Theileria species with different abilities to transform and immortalize bovine leukocytes will provide insight into proteins and mechanisms that have evolved to induce and regulate this process. The T. orientalis genome database is available at http://totdb.czc.hokudai.ac.jp/. PMID:22951932
The Essential Role of the Deinococcus radiodurans ssb Gene in Cell Survival and Radiation Tolerance
Lockhart, J. Scott; DeVeaux, Linda C.
2013-01-01
Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans. PMID:23951213
Rubio-Sanz, L.; Prieto, R. I.; Imperial, J.; Brito, B.
2013-01-01
A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analysis of gene expression showed that the R. leguminosarum dmeRF genes are organized as a transcriptional unit whose expression is strongly induced by nickel and cobalt ions, likely by alleviating the repressor activity of DmeR on dmeRF transcription. An R. leguminosarum dmeRF mutant strain displayed increased sensitivity to Co(II) and Ni(II), whereas no alterations of its resistance to Cd(II), Cu(II), or Zn(II) were observed. A decrease of symbiotic performance was observed when pea plants inoculated with an R. leguminosarum dmeRF deletion mutant strain were grown in the presence of high concentrations of nickel and cobalt. The same mutant induced significantly lower activity levels of NiFe hydrogenase in microaerobic cultures. These results indicate that the R. leguminosarum DmeRF system is a metal-responsive efflux mechanism acting as a key element for metal homeostasis in R. leguminosarum under free-living and symbiotic conditions. The presence of similar dmeRF gene clusters in other Rhizobiaceae suggests that the dmeRF system is a conserved mechanism for metal tolerance in legume endosymbiotic bacteria. PMID:23934501
Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T
1993-01-01
Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043
Tong, Yuru; Su, Ping; Zhao, Yujun; Zhang, Meng; Wang, Xiujuan; Liu, Yujia; Zhang, Xianan; Gao, Wei; Huang, Luqi
2015-01-01
1-Deoxy-d-xylulose-5-phosphate synthase (DXS) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) genes are the key enzyme genes of terpenoid biosynthesis but still unknown in Tripterygium wilfordii Hook. f. Here, three full-length cDNA encoding DXS1, DXS2 and DXR were cloned from suspension cells of T. wilfordii with ORF sizes of 2154 bp (TwDXS1, GenBank accession no.KM879187), 2148 bp (TwDXS2, GenBank accession no.KM879186), 1410 bp (TwDXR, GenBank accession no.KM879185). And, the TwDXS1, TwDXS2 and TwDXR were characterized by color complementation in lycopene accumulating strains of Escherichia coli, which indicated that they encoded functional proteins and promoted lycopene pathway flux. TwDXS1 and TwDXS2 are constitutively expressed in the roots, stems and leaves and the expression level showed an order of roots > stems > leaves. After the suspension cells were induced by methyl jasmonate, the mRNA expression level of TwDXS1, TwDXS2, and TwDXR increased, and triptophenolide was rapidly accumulated to 149.52 µg·g−1, a 5.88-fold increase compared with the control. So the TwDXS1, TwDXS2, and TwDXR could be important genes involved in terpenoid biosynthesis in Tripterygium wilfordii Hook. f. PMID:26512659
Recent advances in the research and development of blue flowers
Noda, Naonobu
2018-01-01
Flower color is the most important trait in the breeding of ornamental plants. In the floriculture industry, however, bluish colored flowers of desirable plants have proved difficult to breed. Many ornamental plants with a high production volume, such as rose and chrysanthemum, lack the key genes for producing the blue delphinidin pigment or do not have an intracellular environment suitable for developing blue color. Recently, it has become possible to incorporate a blue flower color trait through progress in molecular biological analysis of pigment biosynthesis genes and genetic engineering. For example, introduction of the F3′5′H gene encoding flavonoid 3′,5′-hydroxylase can produce delphinidin in various flowers such as roses and carnations, turning the flower color purple or violet. Furthermore, the world’s first blue chrysanthemum was recently produced by introducing the A3′5′GT gene encoding anthocyanin 3′,5′-O-glucosyltransferase, in addition to F3′5′H, into the host plant. The B-ring glucosylated delphinidin-based anthocyanin that is synthesized by the two transgenes develops blue coloration by co-pigmentation with colorless flavone glycosides naturally present in the ray floret of chrysanthemum. This review focuses on the biotechnological efforts to develop blue flowers, and describes future prospects for blue flower breeding and commercialization. PMID:29681750
Smith, Christopher P; Thorsness, Peter E
2008-07-01
AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared to Aac2, Aac1 exhibited reduced capacity to support growth of yeast lacking mitochondrial DNA or of yeast lacking the ATP/Mg-P(i) carrier, both conditions requiring ATP import into the mitochondrial matrix through the ADP/ATP carrier. Sixteen AAC1/AAC2 chimeric genes were constructed and analyzed to determine the key differences between residues or sections of Aac1 and Aac2. On the basis of the growth rate differences of yeast expressing different chimeras, the C1 and M2 loops of the ADP/ATP carriers contain divergent residues that are responsible for the difference(s) between Aac1 and Aac2. One chimeric gene construct supported growth on nonfermentable carbon sources but failed to support growth of yeast lacking mitochondrial DNA. We identified nine independent intragenic mutations in this chimeric gene that suppressed the growth phenotype of yeast lacking mitochondrial DNA, identifying regions of the carrier important for nucleotide exchange activities.
Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard
2014-01-01
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251
Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant.
van Roosmalen, Wies; Le Dévédec, Sylvia E; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M; Look, Maxime P; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A C 't; Martens, John W M; Foekens, John A; Geiger, Benjamin; van de Water, Bob
2015-04-01
Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3-binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.
Characterization and chromosomal localization of the gene for human rhodopsin kinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khani, S.C.; Yamamoto, S.; Dryja, T.P.
1996-08-01
G-protein-dependent receptor kinases (GRKs) play a key role in the adapatation of receptors to persistent stimuli. In rod photoreceptors rhodopsin kinase (RK) mediates rapid densensitization of rod photoreceptors to light by catalyzing phosphorylation of the visual pigment rhodopsin. To study the structure and mechanism of FRKs in human photoreceptors, we have isolated and characterized cDNA and genomic clones derived from the human RK locus using a bovine rhodopsin kinase cDNA fragment as a probe. The RK locus, assigned to chromosome 13 band q34, is composed of seven exons that encode a protein 92% identical in amino acid sequence to bovinemore » rhodopsin kinase. The marked difference between the structure of this gene and that of another recently clone human GRK gene suggests the existence of a wide evolutionary gap between members of the GRK gene family. 39 refs., 3 figs.« less
Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients.
Jansen, Erik; Laven, Joop S E; Dommerholt, Henri B R; Polman, Jan; van Rijt, Cindy; van den Hurk, Caroline; Westland, Jolanda; Mosselman, Sietse; Fauser, Bart C J M
2004-12-01
Polycystic ovary syndrome (PCOS) represents the most common cause of anovulatory infertility and affects 5-10% of women of reproductive age. The etiology of PCOS is still unknown. The current study is the first to describe consistent differences in gene expression profiles in human ovaries comparing PCOS patients vs. healthy normoovulatory individuals. The microarray analysis of PCOS vs. normal ovaries identifies dysregulated expression of genes encoding components of several biological pathways or systems such as Wnt signaling, extracellular matrix components, and immunological factors. Resulting data may provide novel clues for ovarian dysfunction in PCOS. Intriguingly, the gene expression profiles of ovaries from (long-term) androgen-treated female-to-male transsexuals (TSX) show considerable overlap with PCOS. This observation provides supportive evidence that androgens play a key role in the pathogenesis of PCOS. Presented data may contribute to a better understanding of dysregulated pathways in PCOS, which might ultimately reveal novel leads for therapeutic intervention.
Bacillus subtilis 168 Contains Two Differentially Regulated Genes Encoding l-Asparaginase
Fisher, Susan H.; Wray, Lewis V.
2002-01-01
Expression of the two Bacillus subtilis genes encoding l-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional l-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second l-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression. PMID:11914346
Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase.
Fisher, Susan H; Wray, Lewis V
2002-04-01
Expression of the two Bacillus subtilis genes encoding L-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional L-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second L-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.
Recombinant DNA encoding a desulfurization biocatalyst
Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.
1994-01-01
This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.
Song, Na; Dai, Qingqing; Zhu, Baitao; Wu, Yuxing; Xu, Ming; Voegele, Ralf Thomas; Gao, Xiaoning; Kang, Zhensheng; Huang, Lili
2017-01-01
In fungi, heterotrimeric guanine-nucleotide binding proteins (G-proteins) are key elements of signal transduction pathways, which control growth, asexual and sexual development, as well as virulence. In this study, we have identified two genes encoding heterotrimeric G protein alpha subunits, named Gvm2 and Gvm3, from Valsa mali, the causal agent of apple Valsa canker. Characterization of Gvm2 and Gvm3 mutants indicates that Gvm3 may be a crucial regulator of vegetative growth. Deletion of the corresponding gene results in a 20% reduction in growth rate. Besides, Gvm2 and Gvm3 seem to be involved in asexual reproduction, and mutants are hypersensitive to oxidative and cell membrane stresses. Interestingly, both G protein alpha subunits were most probably involved in V. mali virulence. In infection assays using Malus domestica cv. 'Fuji' leaves and twigs, the size of lesions caused by deletion mutants △Gvm2, or △Gvm3 are significantly reduced. Furthermore, many genes encoding hydrolytic enzymes-important virulence factors in V. mali-are expressed at a lower level in these deletion mutants. Our results suggest that Gvm2 and Gvm3 play an important role in virulence probably by regulation of expression of cell wall degrading enzymes. △Gvm2, and △Gvm3 mutants were further analyzed with respect to their impact on the transcript levels of genes in the cAMP/PKA pathway. The expression of the genes encoding adenylate cyclase VmAC, protein kinase A (PKA) regulatory subunit VmPKR, and PKA catalytic subunit VmPKA1 are down-regulated in both mutants. Further analyses indicated that intracellular cAMP level and PKA activity are down-regulated in the △Gvm3 mutant, but are basically unchanged in the △Gvm2 mutant. Overall, our findings indicate that both Gvm2 and Gvm3 play diverse roles in the modulation of vegetative growth, asexual development, and virulence in V. mali.
A highly divergent gene cluster in honey bees encodes a novel silk family.
Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S
2006-11-01
The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.
The MYSTerious MOZ, a histone acetyltransferase with a key role in haematopoiesis
Perez-Campo, Flor M; Costa, Guilherme; Lie-a-Ling, Michael; Kouskoff, Valerie; Lacaud, Georges
2013-01-01
The MOnocytic leukaemia Zing finger (MOZ; MYST3 or KAT6A1) gene is frequently found translocated in acute myeloid leukaemia. MOZ encodes a large multidomain protein that contains, besides others, a histone acetyl transferase catalytic domain. Several studies have now established the critical function of MOZ in haematopoiesis. In this review we summarize the recent findings that underscore the relevance of the different biological activities of MOZ in the regulation of haematopoiesis. PMID:23347099
Conditional Depletion of Nuclear Proteins by the Anchor Away System (ms# CP-10-0125)
Fan, Xiaochun; Geisberg, Joseph V.; Wong, Koon Ho; Jin, Yi
2011-01-01
Nuclear proteins play key roles in the regulation of many important cellular processes. In Saccharomyces cerevisiae, many genes encoding nuclear proteins are essential. Here we describe a method termed Anchor Away that can be used to conditionally and rapidly deplete nuclear proteins of interest. It involves conditional export of the protein of interest out of the nucleus and its subsequent sequestration in the cytoplasm. This method can be used to simultaneously deplete multiple proteins from nucleus. PMID:21225637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmeyer, B.; Cashmore, A.R.; Schaefer, E.
Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light.more » These distinct expression characteristics are shown to reflect differences at the level of transcription.« less
Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.
2011-01-01
Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2017-01-01
Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072
Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus.
Ceniceros, Ana; Dijkhuizen, Lubbert; Petrusma, Mirjan; Medema, Marnix H
2017-08-09
Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2015-12-01
The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
The molecular architecture of human N-acetylgalactosamine kinase.
Thoden, James B; Holden, Hazel M
2005-09-23
Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
NASA Astrophysics Data System (ADS)
Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.
2016-06-01
Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.
Adewoye, L O; Worobec, E A
2000-08-08
The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.
Wang, Shu; Tao, Qianyi; Pan, Junsong; Si, Longting; Gong, Zhenhui; Cai, Run
2012-01-01
It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the ‘one-hormone hypothesis’, which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified ‘one-hormone hypothesis’ for sex determination in cucumber is proposed. PMID:22577183
Li, Zheng; Wang, Shu; Tao, Qianyi; Pan, Junsong; Si, Longting; Gong, Zhenhui; Cai, Run
2012-07-01
It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the 'one-hormone hypothesis', which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified 'one-hormone hypothesis' for sex determination in cucumber is proposed.
Ródenas, Reyes; García-Legaz, Manuel Francisco; López-Gómez, Elvira; Martínez, Vicente; Rubio, Francisco; Ángeles Botella, M
2017-08-01
Regulation of essential macronutrients acquisition by plants in response to their availability is a key process for plant adaptation to changing environments. Here we show in tomato and Arabidopsis plants that when they are subjected to NO 3 - , PO 4 3 - and SO 4 2 - deprivation, low-affinity K + uptake and K + translocation to the shoot are reduced. In parallel, these nutritional deficiencies produce reductions in the messenger levels of the genes encoding the main systems for low-affinity K + uptake and K + translocation, i.e. AKT1 and SKOR in Arabidopsis and LKT1 and the tomato homolog of SKOR, SlSKOR in tomato, respectively. The results suggest that the shortage of one nutrient produces a general downregulation of the acquisition of other nutrients. In the case of K + nutrient, one of the mechanisms for such a response resides in the transcriptional repression of the genes encoding the systems for K + uptake and translocation. © 2017 Scandinavian Plant Physiology Society.
Luedin, Samuel M; Pothier, Joël F; Danza, Francesco; Storelli, Nicola; Frigaard, Niels-Ulrik; Wittwer, Matthias; Tonolla, Mauro
2018-01-01
" Thiodictyon syntrophicum" sp. nov. strain Cad16 T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria . The type strain Cad16 T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16 T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16 T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232 T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16 T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovanovic, Iva; Magnuson, Jon K.; Collart, Frank R.
2009-08-01
Genome sequencing of a variety of fungi is a major initiative currently supported by the Department of Energy’s Joint Genome Institute. Encoded within the genomes of many fungi are upwards of 200+ enzymes called glycoside hydrolases (GHs). GHs are known for their ability to hydrolyze the polysaccharide components of lignocellulosic biomass. Production of ethanol and “next generation” biofuels from lignocellulosic biomass represents a sustainable route to biofuels production. However this process has to become more economical before large scale operations are put into place. Identifying and characterizing GHs with improved properties for biomass degradation is a key factor for themore » development of cost effective processes to convert biomass to fuels and chemicals. With the recent explosion in the number of GH encoding genes discovered by fungal genome sequencing projects, it has become apparent that improvements in GH gene annotation processes have to be developed. This will enable more informed and efficient decision making with regard to selection and utilization of these important enzymes in bioprocess that produce fuels and chemicals from lignocellulosic feedstocks.« less
A kinase-dependent feedforward loop affects CREBB stability and long term memory formation.
Lee, Pei-Tseng; Lin, Guang; Lin, Wen-Wen; Diao, Fengqiu; White, Benjamin H; Bellen, Hugo J
2018-02-23
In Drosophila , long-term memory (LTM) requires the cAMP-dependent transcription factor CREBB, expressed in the mushroom bodies (MB) and phosphorylated by PKA. To identify other kinases required for memory formation, we integrated Trojan exons encoding T2A-GAL4 into genes encoding putative kinases and selected for genes expressed in MB. These lines were screened for learning/memory deficits using UAS-RNAi knockdown based on an olfactory aversive conditioning assay. We identified a novel, conserved kinase, Meng-Po ( MP , CG11221 , SBK1 in human), the loss of which severely affects 3 hr memory and 24 hr LTM, but not learning. Remarkably, memory is lost upon removal of the MP protein in adult MB but restored upon its reintroduction. Overexpression of MP in MB significantly increases LTM in wild-type flies showing that MP is a limiting factor for LTM. We show that PKA phosphorylates MP and that both proteins synergize in a feedforward loop to control CREBB levels and LTM. key words: Drosophila, Mushroom bodies, SBK1, deGradFP, T2A-GAL4, MiMIC.
Fernandes, Alinda R; Chari, Divya M
2016-09-28
Genetically engineered neural stem cell (NSC) transplant populations offer key benefits in regenerative neurology, for release of therapeutic biomolecules in ex vivo gene therapy. NSCs are 'hard-to-transfect' but amenable to 'magnetofection'. Despite the high clinical potential of this approach, the low and transient transfection associated with the large size of therapeutic DNA constructs is a critical barrier to translation. We demonstrate for the first time that DNA minicircles (small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids) deployed with magnetofection achieve the highest, safe non-viral DNA transfection levels (up to 54%) reported so far for primary NSCs. Minicircle-functionalized magnetic nanoparticle (MNP)-mediated gene delivery also resulted in sustained gene expression for up to four weeks. All daughter cell types of engineered NSCs (neurons, astrocytes and oligodendrocytes) were transfected (in contrast to conventional plasmids which usually yield transfected astrocytes only), offering advantages for targeted cell engineering. In addition to enhancing MNP functionality as gene delivery vectors, minicircle technology provides key benefits from safety/scale up perspectives. Therefore, we consider the proof-of-concept of fusion of technologies used here offers high potential as a clinically translatable genetic modification strategy for cell therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen
2016-11-11
Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.
van den Brink, Joost; Daran-Lapujade, Pascale; Pronk, Jack T; de Winde, Johannes H
2008-01-01
Background The capacity of respiring cultures of Saccharomyces cerevisiae to immediately switch to fast alcoholic fermentation upon a transfer to anaerobic sugar-excess conditions is a key characteristic of Saccharomyces cerevisiae in many of its industrial applications. This transition was studied by exposing aerobic glucose-limited chemostat cultures grown at a low specific growth rate to two simultaneous perturbations: oxygen depletion and relief of glucose limitation. Results The shift towards fully fermentative conditions caused a massive transcriptional reprogramming, where one third of all genes within the genome were transcribed differentially. The changes in transcript levels were mostly driven by relief from glucose-limitation. After an initial strong response to the addition of glucose, the expression profile of most transcriptionally regulated genes displayed a clear switch at 30 minutes. In this respect, a striking difference was observed between the transcript profiles of genes encoding ribosomal proteins and those encoding ribosomal biogenesis components. Not all regulated genes responded with this binary profile. A group of 87 genes showed a delayed and steady increase in expression that specifically responded to anaerobiosis. Conclusion Our study demonstrated that, despite the complexity of this multiple-input perturbation, the transcriptional responses could be categorized and biologically interpreted. By comparing this study with public datasets representing dynamic and steady conditions, 14 up-regulated and 11 down-regulated genes were determined to be anaerobic specific. Therefore, these can be seen as true "signature" transcripts for anaerobicity under dynamic as well as under steady state conditions. PMID:18304306
Ouibrahim, Laurence; Mazier, Marianne; Estevan, Joan; Pagny, Gaëlle; Decroocq, Véronique; Desbiez, Cécile; Moretti, André; Gallois, Jean-Luc; Caranta, Carole
2014-09-01
Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi-0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map-based cloning delimited rwm1 on chromosome 1 in a 114-kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus-encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N-terminal domain of cPGK2 is involved in rwm1-mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus-induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Currin, Andrew; Dunstan, Mark S; Johannissen, Linus O; Hollywood, Katherine A; Vinaixa, Maria; Jervis, Adrian J; Swainston, Neil; Rattray, Nicholas J W; Gardiner, John M; Kell, Douglas B; Takano, Eriko; Toogood, Helen S; Scrutton, Nigel S
2018-03-02
The realization of a synthetic biology approach to microbial (1 R ,2 S ,5 R )-( - )-menthol ( 1 ) production relies on the identification of a gene encoding an isopulegone isomerase (IPGI), the only enzyme in the Mentha piperita biosynthetic pathway as yet unidentified. We demonstrate that Δ5-3-ketosteroid isomerase (KSI) from Pseudomonas putida can act as an IPGI, producing ( R )-(+)-pulegone (( R )- 2 ) from (+)- cis -isopulegone ( 3 ). Using a robotics-driven semirational design strategy, we identified a key KSI variant encoding four active site mutations, which confer a 4.3-fold increase in activity over the wild-type enzyme. This was assisted by the generation of crystal structures of four KSI variants, combined with molecular modeling of 3 binding to identify key active site residue targets. The KSI variant was demonstrated to function efficiently within cascade biocatalytic reactions with downstream Mentha enzymes pulegone reductase and (-)-menthone:(-)-menthol reductase to generate 1 from 3 . This study introduces the use of a recombinant IPGI, engineered to function efficiently within a biosynthetic pathway for the production of 1 in microorganisms.
Recombinant DNA encoding a desulfurization biocatalyst
Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.
1994-10-18
This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.
Structure, Function, Interaction, Co-evolution of Rice Blast Resistance Genes
USDA-ARS?s Scientific Manuscript database
Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive rice diseases worldwide. Resistance (R) genes to blast encode proteins that detect pathogen signaling molecules encoded by M. oryzae avirulence (AVR) genes. R genes can be a single or a member of clu...
Molecular genetics of Erwinia amylovora involved in the development of fire blight.
Oh, Chang-Sik; Beer, Steven V
2005-12-15
The bacterial plant pathogen, Erwinia amylovora, causes the devastating disease known as fire blight in some Rosaceous plants like apple, pear, quince, raspberry and several ornamentals. Knowledge of the factors affecting the development of fire blight has mushroomed in the last quarter century. On the molecular level, genes encoding a Hrp type III secretion system, genes encoding enzymes involved in synthesis of extracellular polysaccharides and genes facilitating the growth of E. amylovora in its host plants have been characterized. The Hrp pathogenicity island, delimited by genes suggesting horizontal gene transfer, is composed of four distinct regions, the hrp/hrc region, the HEE (Hrp effectors and elicitors) region, the HAE (Hrp-associated enzymes) region, and the IT (Island transfer) region. The Hrp pathogenicity island encodes a Hrp type III secretion system (TTSS), which delivers several proteins from bacteria to plant apoplasts or cytoplasm. E. amylovora produces two exopolysaccharides, amylovoran and levan, which cause the characteristic fire blight wilting symptom in host plants. In addition, other genes, and their encoded proteins, have been characterized as virulence factors of E. amylovora that encode enzymes facilitating sorbitol metabolism, proteolytic activity and iron harvesting. This review summarizes our understanding of the genes and gene products of E. amylovora that are involved in the development of the fire blight disease.
Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C
2007-02-01
Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.
Carter, C. J.
2011-01-01
Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens. PMID:22567321
Effect of Mild Acid on Gene Expression in Staphylococcus aureus
Weinrick, Brian; Dunman, Paul M.; McAleese, Fionnuala; Murphy, Ellen; Projan, Steven J.; Fang, Yuan; Novick, Richard P.
2004-01-01
During staphylococcal growth in glucose-supplemented medium, the pH of a culture starting near neutrality typically decreases by about 2 units due to the fermentation of glucose. Many species can comfortably tolerate the resulting mildly acidic conditions (pH, ∼5.5) by mounting a cellular response, which serves to defend the intracellular pH and, in principle, to modify gene expression for optimal performance in a mildly acidic infection site. In this report, we show that changes in staphylococcal gene expression formerly thought to represent a glucose effect are largely the result of declining pH. We examine the cellular response to mild acid by microarray analysis and define the affected gene set as the mild acid stimulon. Many of the genes encoding extracellular virulence factors are affected, as are genes involved in regulation of virulence factor gene expression, transport of sugars and peptides, intermediary metabolism, and pH homeostasis. Key results are verified by gene fusion and Northern blot hybridization analyses. The results point to, but do not define, possible regulatory pathways by which the organism senses and responds to a pH stimulus. PMID:15576791
Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway
Baumann, Sascha; Sander, Adrianne; Gurnon, James R.; Yanai-Balser, Giane; VanEtten, James L.; Piotrowski, Markus
2007-01-01
Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+- binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses. PMID:17101165
Macho-Rivero, Miguel A; Herrera-Rodríguez, M Begoña; Brejcha, Ramona; Schäffner, Anton R; Tanaka, Nobuhiro; Fujiwara, Toru; González-Fontes, Agustín; Camacho-Cristóbal, Juan J
2018-04-01
Toxic boron (B) concentrations cause impairments in several plant metabolic and physiological processes. Recently we reported that B toxicity led to a decrease in the transpiration rate of Arabidopsis plants in an ABA-dependent process within 24 h, which could indicate the occurrence of an adjustment of whole-plant water relations in response to this stress. Since plasma membrane intrinsic protein (PIP) aquaporins are key components influencing the water balance of plants because of their involvement in root water uptake and tissue hydraulic conductance, the aim of the present work was to study the effects of B toxicity on these important parameters affecting plant water status over a longer period of time. For this purpose, transpiration rate, water transport to the shoot and transcript levels of genes encoding four major PIP aquaporins were measured in Arabidopsis plants treated or not with a toxic B concentration. Our results indicate that, during the first 24 h of B toxicity, increased shoot ABA content would play a key role in reducing stomatal conductance, transpiration rate and, consequently, the water transport to the shoot. These physiological responses to B toxicity were maintained for up to 48 h of B toxicity despite shoot ABA content returning to control levels. In addition, B toxicity also caused the down-regulation of several genes encoding root and shoot aquaporins, which could reduce the cell to cell movement of water in plant tissues and, consequently, the water flux to shoot. All these changes in the water balance of plants under B toxicity could be a mechanism to prevent excess B accumulation in plant tissues.
Brautaset, Trygve; Jakobsen, Øyvind M; Degnes, Kristin F; Netzer, Roman; Naerdal, Ingemar; Krog, Anne; Dillingham, Rick; Flickinger, Michael C; Ellingsen, Trond E
2010-07-01
We here present the pyc gene encoding pyruvate carboxylase (PC), and the hom-1 and hom-2 genes encoding two active homoserine dehydrogenase (HD) proteins, in methylotrophic Bacillus methanolicus MGA3. In general, both PC and HD are regarded as key targets for improving bacterial L-lysine production; PC plays a role in precursor oxaloacetate (OAA) supply while HD controls an important branch point in the L-lysine biosynthetic pathway. The hom-1 and hom-2 genes were strongly repressed by L-threonine and L-methionine, respectively. Wild-type MGA3 cells secreted 0.4 g/l L-lysine and 59 g/l L-glutamate under optimised fed batch methanol fermentation. The hom-1 mutant M168-20 constructed herein secreted 11 g/l L-lysine and 69 g/l of L-glutamate, while a sixfold higher L-lysine overproduction (65 g/l) of the previously constructed classical B. methanolicus mutant NOA2#13A52-8A66 was accompanied with reduced L-glutamate production (28 g/l) and threefold elevated pyc transcription level. Overproduction of PC and its mutant enzyme P455S in M168-20 had no positive effect on the volumetric L-lysine yield and the L-lysine yield on methanol, and caused significantly reduced volumetric L-glutamate yield and L: -glutamate yield on methanol. Our results demonstrated that hom-1 represents one key target for achieving L-lysine overproduction, PC activity plays an important role in controlling L-glutamate production from methanol, and that OAA precursor supply is not a major bottleneck for L-lysine overproduction by B. methanolicus.
A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia.
Gonçalves, Vanessa F; Cappi, Carolina; Hagen, Christian M; Sequeira, Adolfo; Vawter, Marquis P; Derkach, Andriy; Zai, Clement C; Hedley, Paula L; Bybjerg-Grauholm, Jonas; Pouget, Jennie G; Cuperfain, Ari B; Sullivan, Patrick F; Christiansen, Michael; Kennedy, James L; Sun, Lei
2018-05-01
The genetic risk factors of schizophrenia (SCZ), a severe psychiatric disorder, are not yet fully understood. Multiple lines of evidence suggest that mitochondrial dysfunction may play a role in SCZ, but comprehensive association studies are lacking. We hypothesized that variants in nuclear-encoded mitochondrial genes influence susceptibility to SCZ. We conducted gene-based and gene-set analyses using summary association results from the Psychiatric Genomics Consortium Schizophrenia Phase 2 (PGC-SCZ2) genome-wide association study comprising 35,476 cases and 46,839 control subjects. We applied the MAGMA method to three sets of nuclear-encoded mitochondrial genes: oxidative phosphorylation genes, other nuclear-encoded mitochondrial genes, and genes involved in nucleus-mitochondria crosstalk. Furthermore, we conducted a replication study using the iPSYCH SCZ sample of 2290 cases and 21,621 control subjects. In the PGC-SCZ2 sample, 1186 mitochondrial genes were analyzed, among which 159 had p values < .05 and 19 remained significant after multiple testing correction. A meta-analysis of 818 genes combining the PGC-SCZ2 and iPSYCH samples resulted in 104 nominally significant and nine significant genes, suggesting a polygenic model for the nuclear-encoded mitochondrial genes. Gene-set analysis, however, did not show significant results. In an in silico protein-protein interaction network analysis, 14 mitochondrial genes interacted directly with 158 SCZ risk genes identified in PGC-SCZ2 (permutation p = .02), and aldosterone signaling in epithelial cells and mitochondrial dysfunction pathways appeared to be overrepresented in this network of mitochondrial and SCZ risk genes. This study provides evidence that specific aspects of mitochondrial function may play a role in SCZ, but we did not observe its broad involvement even using a large sample. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Torres-Cortés, Gloria; Ghignone, Stefano; Bonfante, Paola; Schüßler, Arthur
2015-06-23
For more than 450 million years, arbuscular mycorrhizal fungi (AMF) have formed intimate, mutualistic symbioses with the vast majority of land plants and are major drivers in almost all terrestrial ecosystems. The obligate plant-symbiotic AMF host additional symbionts, so-called Mollicutes-related endobacteria (MRE). To uncover putative functional roles of these widespread but yet enigmatic MRE, we sequenced the genome of DhMRE living in the AMF Dentiscutata heterogama. Multilocus phylogenetic analyses showed that MRE form a previously unidentified lineage sister to the hominis group of Mycoplasma species. DhMRE possesses a strongly reduced metabolic capacity with 55% of the proteins having unknown function, which reflects unique adaptations to an intracellular lifestyle. We found evidence for transkingdom gene transfer between MRE and their AMF host. At least 27 annotated DhMRE proteins show similarities to nuclear-encoded proteins of the AMF Rhizophagus irregularis, which itself lacks MRE. Nuclear-encoded homologs could moreover be identified for another AMF, Gigaspora margarita, and surprisingly, also the non-AMF Mortierella verticillata. Our data indicate a possible origin of the MRE-fungus association in ancestors of the Glomeromycota and Mucoromycotina. The DhMRE genome encodes an arsenal of putative regulatory proteins with eukaryotic-like domains, some of them encoded in putative genomic islands. MRE are highly interesting candidates to study the evolution and interactions between an ancient, obligate endosymbiotic prokaryote with its obligate plant-symbiotic fungal host. Our data moreover may be used for further targeted searches for ancient effector-like proteins that may be key components in the regulation of the arbuscular mycorrhiza symbiosis.
The ribosomal protein genes and Minute loci of Drosophila melanogaster
Marygold, Steven J; Roote, John; Reuter, Gunter; Lambertsson, Andrew; Ashburner, Michael; Millburn, Gillian H; Harrison, Paul M; Yu, Zhan; Kenmochi, Naoya; Kaufman, Thomas C; Leevers, Sally J; Cook, Kevin R
2007-01-01
Background Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. Results We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. Conclusion This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome. PMID:17927810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.
The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this proteinmore » are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.« less
Gonda, Itay; Davidovich-Rikanati, Rachel; Bar, Einat; Lev, Shery; Jhirad, Pliaa; Meshulam, Yuval; Wissotsky, Guy; Portnoy, Vitaly; Burger, Joseph; Schaffer, Arthur A; Tadmor, Yaakov; Giovannoni, James J; Fei, Zhangjun; Fait, Aaron; Katzir, Nurit; Lewinsohn, Efraim
2018-04-01
Studies on the active pathways and the genes involved in the biosynthesis of L-phenylalanine-derived volatiles in fleshy fruits are sparse. Melon fruit rinds converted stable-isotope labeled L-phe into more than 20 volatiles. Phenylpropanes, phenylpropenes and benzenoids are apparently produced via the well-known phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL) and being (E)-cinnamic acid a key intermediate. Phenethyl derivatives seemed to be derived from L-phe via a separate biosynthetic route not involving (E)-cinnamic acid and PAL. To explore for a biosynthetic route to (E)-cinnamaldehyde in melon rinds, soluble protein cell-free extracts were assayed with (E)-cinnamic acid, CoA, ATP, NADPH and MgSO 4 , producing (E)-cinnamaldehyde in vitro. In this context, we characterized CmCNL, a gene encoding for (E)-cinnamic acid:coenzyme A ligase, inferred to be involved in the biosynthesis of (E)-cinnamaldehyde. Additionally we describe CmBAMT, a SABATH gene family member encoding a benzoic acid:S-adenosyl-L-methionine carboxyl methyltransferase having a role in the accumulation of methyl benzoate. Our approach leads to a more comprehensive understanding of L-phe metabolism into aromatic volatiles in melon fruit. Copyright © 2018 Elsevier Ltd. All rights reserved.
Identifying metabolic enzymes with multiple types of association evidence
Kharchenko, Peter; Chen, Lifeng; Freund, Yoav; Vitkup, Dennis; Church, George M
2006-01-01
Background Existing large-scale metabolic models of sequenced organisms commonly include enzymatic functions which can not be attributed to any gene in that organism. Existing computational strategies for identifying such missing genes rely primarily on sequence homology to known enzyme-encoding genes. Results We present a novel method for identifying genes encoding for a specific metabolic function based on a local structure of metabolic network and multiple types of functional association evidence, including clustering of genes on the chromosome, similarity of phylogenetic profiles, gene expression, protein fusion events and others. Using E. coli and S. cerevisiae metabolic networks, we illustrate predictive ability of each individual type of association evidence and show that significantly better predictions can be obtained based on the combination of all data. In this way our method is able to predict 60% of enzyme-encoding genes of E. coli metabolism within the top 10 (out of 3551) candidates for their enzymatic function, and as a top candidate within 43% of the cases. Conclusion We illustrate that a combination of genome context and other functional association evidence is effective in predicting genes encoding metabolic enzymes. Our approach does not rely on direct sequence homology to known enzyme-encoding genes, and can be used in conjunction with traditional homology-based metabolic reconstruction methods. The method can also be used to target orphan metabolic activities. PMID:16571130
Piscopo, Sara-Pier; Drouin, Guy
2014-05-01
Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.
Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.
Wang, Hao; Shun, Ming-Chieh; Dickson, Amy K; Engelman, Alan N
2015-01-01
Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1/Hdgfrp2 double-deficient mice.
Zhao, Weijun; Hang, Baojian; Zhu, Xiangcheng; Wang, Ri; Shen, Minjie; Huang, Lei; Xu, Zhinan
2016-10-20
S-Adenosyl-l-methionine (SAM) is an important metabolite having prominent roles in treating various diseases. In order to improve the production of SAM, the regulation of three metabolic pathways involved in SAM biosynthesis were investigated in an industrial yeast strain ZJU001. GLC3 encoded glycogen-branching enzyme (GBE), SPE2 encoded SAM decarboxylase, as well as ERG4 and ERG6 encoded key enzymes in ergosterol biosynthesis, were knocked out in ZJU001 accordingly. The results indicated that blocking of either glycogen pathway or SAM decarboxylation pathway could improve the SAM accumulation significantly in ZJU001, while single disruption of either ERG4 or ERG6 gene had no obvious effect on SAM production. Moreover, the double mutant ZJU001-GS with deletion of both GLC3 and SPE2 genes was also constructed, which showed further improvement of SAM accumulation. Finally, SAM2 was overexpressed in ZJU001-GS to give the best SAM-producing recombinant strain ZJU001-GS-SAM2, in which 12.47g/L SAM was produced by following our developed pseudo-exponential fed-batch cultivation strategy, about 81.0% increase comparing to its parent strain ZJU001. The present work laid a solid base for large-scale SAM production with the industrial Saccharomyces cerevisiae strain. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Juan; Hou, Lijun; Zheng, Yanling; Liu, Min; Yin, Guoyu; Li, Xiaofei; Lin, Xianbiao; Yu, Chendi; Wang, Rong; Jiang, Xiaofen; Sun, Xiuru
2016-10-01
For the past few decades, human activities have intensively increased the reactive nitrogen enrichment in China's coastal wetlands. Although denitrification is a critical pathway of nitrogen removal, the understanding of denitrifier community dynamics driving denitrification remains limited in the coastal wetlands. In this study, the diversity, abundance, and community composition of nirS-encoding denitrifiers were analyzed to reveal their variations in China's coastal wetlands. Diverse nirS sequences were obtained and more than 98 % of them shared considerable phylogenetic similarity with sequences obtained from aquatic systems (marine/estuarine/coastal sediments and hypoxia sea water). Clone library analysis revealed that the distribution and composition of nirS-harboring denitrifiers had a significant latitudinal differentiation, but without a seasonal shift. Canonical correspondence analysis showed that the community structure of nirS-encoding denitrifiers was significantly related to temperature and ammonium concentration. The nirS gene abundance ranged from 4.3 × 10(5) to 3.7 × 10(7) copies g(-1) dry sediment, with a significant spatial heterogeneity. Among all detected environmental factors, temperature was a key factor affecting not only the nirS gene abundance but also the community structure of nirS-type denitrifiers. Overall, this study significantly enhances our understanding of the structure and dynamics of denitrifying communities in the coastal wetlands of China.
The ribosome as a missing link in the evolution of life.
Root-Bernstein, Meredith; Root-Bernstein, Robert
2015-02-21
Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cao, Min; Wang, Dongmei; Mao, Yunxiang; Kong, Fanna; Bi, Guiqi; Xing, Qikun; Weng, Zhen
2017-01-01
Bangia fuscopurpurea is a traditional mariculture crop having high nutritional value, eicosapntemacnioc acid (EPA) production, and protein content. As an intertidal species, it can tolerate drastic changes in abiotic factors such as temperature, hydration, and light radiation; however, genomic information on the evolutionary aspect and mechanism of EPA enrichment in B. fuscopurpurea and the role of EPA in cold tolerance in this species remain elusive. We conducted transcriptome profile analysis in B. fuscopurpurea to investigate the biological functions of genes associated with resistance to various environment factors. We identified 41,935 unigenes that were assembled and applied to public databases to define their functional annotation (NR, GO, KEGG, KOG, and SwissProt). We further identified genes that encoded key enzymes in EPA biosynthesis; five paralogous genes encoding delta5 desaturase were detected in B. fuscopurpurea. Fatty acid profiling and gene expression analysis of B. fuscopurpurea grown under cold stress were simultaneously performed. The EPA content was increased by 29.8% in the samples grown at 4°C, while the total amount of fatty acids remained unchanged. Moreover, all the EPA biosynthesis-related desaturase and elongase genes were upregulated under cold stress. Thus, we hypothesized that diverse EPA biosynthesis pathways and significant increase in gene copy numbers of fatty acid desaturases, together with the concomitant elevation in the transcriptional level of genes associated with fatty acid metabolism, lead to EPA accumulation and subsequently affect membrane fluidity, contributing to cold stress resistance in B. fuscopurpurea. Our findings not only provide a fundamental genetic background for further research in B. fuscopurpurea, but also have important implications for screening and genetic engineering of algae and plants for EPA production.
Lu, Xunli; Kracher, Barbara; Saur, Isabel M. L.; Bauer, Saskia; Ellwood, Simon R.; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul
2016-01-01
Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1. Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation. PMID:27702901
Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul
2016-10-18
Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.
Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J.
2017-01-01
Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc), enterotoxin (cpe), and Perfringolysin O (pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet) and anti-defensins genes (mprF) were consistently detected in silico (tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen. PMID:29312194
Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J
2017-01-01
Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens -associated exotoxins genes including α-toxin ( plc ), enterotoxin ( cpe ), and Perfringolysin O ( pfo or pfoA ), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes ( tet ) and anti-defensins genes ( mprF ) were consistently detected in silico ( tet : 75%; mprF : 100%). However, pre-antibiotic era strain genomes did not encode for tet , thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.
Mao, Yunxiang; Kong, Fanna; Bi, Guiqi; Xing, Qikun; Weng, Zhen
2017-01-01
Bangia fuscopurpurea is a traditional mariculture crop having high nutritional value, eicosapntemacnioc acid (EPA) production, and protein content. As an intertidal species, it can tolerate drastic changes in abiotic factors such as temperature, hydration, and light radiation; however, genomic information on the evolutionary aspect and mechanism of EPA enrichment in B. fuscopurpurea and the role of EPA in cold tolerance in this species remain elusive. We conducted transcriptome profile analysis in B. fuscopurpurea to investigate the biological functions of genes associated with resistance to various environment factors. We identified 41,935 unigenes that were assembled and applied to public databases to define their functional annotation (NR, GO, KEGG, KOG, and SwissProt). We further identified genes that encoded key enzymes in EPA biosynthesis; five paralogous genes encoding delta5 desaturase were detected in B. fuscopurpurea. Fatty acid profiling and gene expression analysis of B. fuscopurpurea grown under cold stress were simultaneously performed. The EPA content was increased by 29.8% in the samples grown at 4°C, while the total amount of fatty acids remained unchanged. Moreover, all the EPA biosynthesis-related desaturase and elongase genes were upregulated under cold stress. Thus, we hypothesized that diverse EPA biosynthesis pathways and significant increase in gene copy numbers of fatty acid desaturases, together with the concomitant elevation in the transcriptional level of genes associated with fatty acid metabolism, lead to EPA accumulation and subsequently affect membrane fluidity, contributing to cold stress resistance in B. fuscopurpurea. Our findings not only provide a fundamental genetic background for further research in B. fuscopurpurea, but also have important implications for screening and genetic engineering of algae and plants for EPA production. PMID:29240755
Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps
Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen
2003-01-01
Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...
De Paepe, Marianne; Hutinet, Geoffrey; Son, Olivier; Amarir-Bouhram, Jihane; Schbath, Sophie; Petit, Marie-Agnès
2014-01-01
Bacteriophages (or phages) dominate the biosphere both numerically and in terms of genetic diversity. In particular, genomic comparisons suggest a remarkable level of horizontal gene transfer among temperate phages, favoring a high evolution rate. Molecular mechanisms of this pervasive mosaicism are mostly unknown. One hypothesis is that phage encoded recombinases are key players in these horizontal transfers, thanks to their high efficiency and low fidelity. Here, we associate two complementary in vivo assays and a bioinformatics analysis to address the role of phage encoded recombinases in genomic mosaicism. The first assay allowed determining the genetic determinants of mosaic formation between lambdoid phages and Escherichia coli prophage remnants. In the second assay, recombination was monitored between sequences on phage λ, and allowed to compare the performance of three different Rad52-like recombinases on the same substrate. We also addressed the importance of homologous recombination in phage evolution by a genomic comparison of 84 E. coli virulent and temperate phages or prophages. We demonstrate that mosaics are mainly generated by homology-driven mechanisms that tolerate high substrate divergence. We show that phage encoded Rad52-like recombinases act independently of RecA, and that they are relatively more efficient when the exchanged fragments are divergent. We also show that accessory phage genes orf and rap contribute to mosaicism. A bioinformatics analysis strengthens our experimental results by showing that homologous recombination left traces in temperate phage genomes at the borders of recently exchanged fragments. We found no evidence of exchanges between virulent and temperate phages of E. coli. Altogether, our results demonstrate that Rad52-like recombinases promote gene shuffling among temperate phages, accelerating their evolution. This mechanism may prove to be more general, as other mobile genetic elements such as ICE encode Rad52-like functions, and play an important role in bacterial evolution itself. PMID:24603854
Pandey, Dhananjay K; Chaudhary, Bhupendra
2016-05-13
Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes, indicating for its role upstream in the apical-to-floral meristem signalling cascade.
Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao
2018-01-01
A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea. PMID:29867912
Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao
2018-01-01
A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .
Tsoutsman, Tatiana; Wang, Xiaoyu; Garchow, Kendra; Riser, Bruce; Twigg, Stephen; Semsarian, Christopher
2013-09-01
Hypertrophic cardiomyopathy (HCM) is the most common inherited primary myocardial disorder. HCM is characterized by interstitial fibrosis and excessive accumulation of extracellular matrix (ECM) proteins. Fibrosis in HCM has been associated with impaired cardiac function and heart failure, and has been considered a key substrate for ventricular arrhythmias and sudden death. The molecular triggers underpinning ECM production are not well established. We have previously developed a double-mutant mouse model of HCM that recapitulates the phenotype seen in humans with multiple mutations, including earlier onset of the disease, progression to a dilated phenotype, severe heart failure and premature mortality. The present study investigated the expression of ECM-encoding genes in severe HCM and heart failure. Significant upregulation of structural Fn1, regulatory Mmp14, Timp1, Serpin3A, SerpinE1, SerpineE2, Tgfβ1, and Tgfβ2; and matricellular Ccn2, Postn, Spp1, Thbs1, Thbs4, and Tnc was evident from the early, pre-phenotype stage. Non-myocytes expressed ECM genes at higher levels than cardiomyocytes in normal and diseased hearts. Synchronous increase of secreted CCN2 and TIMP1 plasma levels and decrease of MMP3 levels were observed in end-stage disease. CCN2 protein expression was increased from early disease in double-mutant hearts and played an important role in ECM responses. It was a powerful modulator of ECM regulatory (Timp1 and SerpinE1) and matricellular protein-encoding (Spp1, Thbs1, Thbs4 and Tnc) gene expression in cardiomyocytes when added exogenously in vitro. Modulation of CCN2 (CTGF, connective tissue growth factor) and associated early ECM changes may represent a new therapeutic target in the treatment and prevention of heart failure in HCM. Copyright © 2013 Elsevier Ltd. All rights reserved.
DupA: a key regulator of the amoebal MAP kinase response to Legionella pneumophila
Li, Zhiru; Dugan, Aisling S.; Bloomfield, Gareth; Skelton, Jason; Ivens, Alasdair; Losick, Vicki; Isberg, Ralph R.
2009-01-01
SUMMARY The dupA gene, encoding a putative tyrosine kinase/dual specificity phosphatase (Dusp), was identified in a screen for Dictyostelium discoideum mutants altered in supporting Legionella pneumophila intracellular replication. The absence of dupA resulted in hyperphosphorylation of ERK1, consistent with the loss of a phosphatase activity, as well as degradation of ERK2. ERK1 hyperphosphorylation mimicked the response of this protein after bacterial challenge of wild type amoebae. Similar to Dusps in higher eukaryotic cells, the amoebal dupA gene was induced after bacterial contact, indicating a response of Dusps that is conserved from amoebae to mammals. A large set of genes was misregulated in the dupA− mutant that largely overlaps with genes responding to L. pneumophila infection. Some of the amoebal genes appear to be involved in a response similar to innate immunity in higher eukaryotes, indicating there was misregulation of a conserved response to bacteria. PMID:19748467
Honda, Yoko; Higashibata, Akira; Matsunaga, Yohei; Yonezawa, Yukiko; Kawano, Tsuyoshi; Higashitani, Atsushi; Kuriyama, Kana; Shimazu, Toru; Tanaka, Masashi; Szewczyk, Nathaniel J; Ishioka, Noriaki; Honda, Shuji
2012-01-01
How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues.
Honda, Yoko; Higashibata, Akira; Matsunaga, Yohei; Yonezawa, Yukiko; Kawano, Tsuyoshi; Higashitani, Atsushi; Kuriyama, Kana; Shimazu, Toru; Tanaka, Masashi; Szewczyk, Nathaniel J.; Ishioka, Noriaki; Honda, Shuji
2012-01-01
How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues. PMID:22768380
Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.
Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas
2017-01-01
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.
Parasite-specific immune response in adult Drosophila melanogaster: a genomic study
Roxström-Lindquist, Katarina; Terenius, Olle; Faye, Ingrid
2004-01-01
Insects of the order Diptera are vectors for parasitic diseases such as malaria, sleeping sickness and leishmania. In the search for genes encoding proteins involved in the antiparasitic response, we have used the protozoan parasite Octosporea muscaedomesticae for oral infections of adult Drosophila melanogaster. To identify parasite-specific response molecules, other flies were exposed to virus, bacteria or fungi in parallel. Analysis of gene expression patterns after 24 h of microbial challenge, using Affymetrix oligonucleotide microarrays, revealed a high degree of microbe specificity. Many serine proteases, key intermediates in the induction of insect immune responses, were uniquely expressed following infection of the different organisms. Several lysozyme genes were induced in response to Octosporea infection, while in other treatments they were not induced or downregulated. This suggests that lysozymes are important in antiparasitic defence. PMID:14749722
Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K
2013-12-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.
Plett, Krista L; Raposo, Anita E; Bullivant, Stephen; Anderson, Ian C; Piller, Sabine C; Plett, Jonathan M
2017-03-09
Methylation of proteins at arginine residues, catalysed by members of the protein arginine methyltransferase (PRMT) family, is crucial for the regulation of gene transcription and for protein function in eukaryotic organisms. Inhibition of the activity of PRMTs in annual model plants has demonstrated wide-ranging involvement of PRMTs in key plant developmental processes, however, PRMTs have not been characterised or studied in long-lived tree species. Taking advantage of the recently available genome for Eucalyptus grandis, we demonstrate that most of the major plant PRMTs are conserved in E. grandis as compared to annual plants and that they are expressed in all major plant tissues. Proteomic and transcriptomic analysis in roots suggest that the PRMTs of E. grandis control a number of regulatory proteins and genes related to signalling during cellular/root growth and morphogenesis. We demonstrate here, using chemical inhibition of methylation and transgenic approaches, that plant type I PRMTs are necessary for normal root growth and branching in E. grandis. We further show that EgPRMT1 has a key role in root hair initiation and elongation and is involved in the methylation of β-tubulin, a key protein in cytoskeleton formation. Together, our data demonstrate that PRMTs encoded by E. grandis methylate a number of key proteins and alter the transcription of a variety of genes involved in developmental processes. Appropriate levels of expression of type I PRMTs are necessary for the proper growth and development of E. grandis roots.
Molecular evolution of nitrogen assimilatory enzymes in marine prasinophytes.
Ghoshroy, Sohini; Robertson, Deborah L
2015-01-01
Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.
Leroch, Michaela; Mernke, Dennis; Koppenhoefer, Dieter; Schneider, Prisca; Mosbach, Andreas; Doehlemann, Gunther; Hahn, Matthias
2011-05-01
The green fluorescent protein (GFP) and its variants have been widely used in modern biology as reporters that allow a variety of live-cell imaging techniques. So far, GFP has rarely been used in the gray mold fungus Botrytis cinerea because of low fluorescence intensity. The codon usage of B. cinerea genes strongly deviates from that of commonly used GFP-encoding genes and reveals a lower GC content than other fungi. In this study, we report the development and use of a codon-optimized version of the B. cinerea enhanced GFP (eGFP)-encoding gene (Bcgfp) for improved expression in B. cinerea. Both the codon optimization and, to a smaller extent, the insertion of an intron resulted in higher mRNA levels and increased fluorescence. Bcgfp was used for localization of nuclei in germinating spores and for visualizing host penetration. We further demonstrate the use of promoter-Bcgfp fusions for quantitative evaluation of various toxic compounds as inducers of the atrB gene encoding an ABC-type drug efflux transporter of B. cinerea. In addition, a codon-optimized mCherry-encoding gene was constructed which yielded bright red fluorescence in B. cinerea.
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones
Glass, Jennifer B.; Kretz, Cecilia B.; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L.; Buck, Kristen N.; Landing, William M.; Morton, Peter L.; Moffett, James W.; Giovannoni, Stephen J.; Vergin, Kevin L.; Stewart, Frank J.
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3−, NO2−, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu. PMID:26441925
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.
Glass, Jennifer B; Kretz, Cecilia B; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L; Buck, Kristen N; Landing, William M; Morton, Peter L; Moffett, James W; Giovannoni, Stephen J; Vergin, Kevin L; Stewart, Frank J
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.
Genomic Regions in Local Endangered Sheep Encode Potentially Favorable Genes.
Moioli, Bianca; Steri, Roberto; Catillo, Gennaro
2018-01-02
The economic evaluation of farm animal genetic resources plays a key role in developing conservation programs. However, to date, the link between diversity as assessed by neutral genetic markers and the functional diversity is not yet understood. Two genome-wide comparisons, using over 44,000 Single Nucleotide Polymorphisms, identified the markers with the highest difference in allele frequency between the Alpago endangered breed and two clusters, composed of four specialized dairy sheep, and four meat breeds respectively. The genes in proximity of these markers were mapped to known pathways of the Gene Ontology to determine which ones were most represented. Our results indicated that the differences of the Alpago breed from the more productive sheep rely upon genes involved in cellular defense and repair mechanisms. A higher number of different markers and genes were detected in the comparison with the specialized dairy sheep. These genes play a role in complex biological processes: metabolic, homeostatic, neurological system, and macromolecular organization; such processes may possibly explain the evolution of gene function as a result of selection to improve milk yield.
Lopez-Bigas, Nuria; Kisiel, Tomasz A.; DeWaal, Dannielle C.; Holmes, Katie B.; Volkert, Tom L.; Gupta, Sumeet; Love, Jennifer; Murray, Heather L.; Young, Richard A.; Benevolenskaya, Elizaveta V.
2010-01-01
SUMMARY Retinoblastoma protein (pRB) mediates cell-cycle withdrawal and differentiation by interacting with a variety of proteins. RB-Binding Protein 2 (RBP2) has been shown to be a key effector. We sought to determine transcriptional regulation by RBP2 genome-wide by using location analysis and gene expression profiling experiments. We describe that RBP2 shows high correlation with the presence of H3K4me3 and its target genes are separated into two functionally distinct classes: differentiation-independent and differentiation-dependent genes. The former class is enriched by genes that encode mitochondrial proteins, while the latter is represented by cell-cycle genes. We demonstrate the role of RBP2 in mitochondrial biogenesis, which involves regulation of H3K4me3-modified nucleosomes. Analysis of expression changes upon RBP2 depletion depicted genes with a signature of differentiation control, analogous to the changes seen upon reintroduction of pRB. We conclude that, during differentiation, RBP2 exerts inhibitory effects on multiple genes through direct interaction with their promoters. PMID:18722178
Miller, David J.; Hayward, David C.; Reece-Hoyes, John S.; Scholten, Ingo; Catmull, Julian; Gehring, Walter J.; Callaerts, Patrick; Larsen, Jill E.; Ball, Eldon E.
2000-01-01
Pax genes encode a family of transcription factors, many of which play key roles in animal embryonic development but whose evolutionary relationships and ancestral functions are unclear. To address these issues, we are characterizing the Pax gene complement of the coral Acropora millepora, an anthozoan cnidarian. As the simplest animals at the tissue level of organization, cnidarians occupy a key position in animal evolution, and the Anthozoa are the basal class within this diverse phylum. We have identified four Pax genes in Acropora: two (Pax-Aam and Pax-Bam) are orthologs of genes identified in other cnidarians; the others (Pax-Cam and Pax-Dam) are unique to Acropora. Pax-Aam may be orthologous with Drosophila Pox neuro, and Pax-Bam clearly belongs to the Pax-2/5/8 class. The Pax-Bam Paired domain binds specifically and preferentially to Pax-2/5/8 binding sites. The recently identified Acropora gene Pax-Dam belongs to the Pax-3/7 class. Clearly, substantial diversification of the Pax family occurred before the Cnidaria/higher Metazoa split. The fourth Acropora Pax gene, Pax-Cam, may correspond to the ancestral vertebrate Pax gene and most closely resembles Pax-6. The expression pattern of Pax-Cam, in putative neurons, is consistent with an ancestral role of the Pax family in neural differentiation and patterning. We have determined the genomic structure of each Acropora Pax gene and show that some splice sites are shared both between the coral genes and between these and Pax genes in triploblastic metazoans. Together, these data support the monophyly of the Pax family and indicate ancient origins of several introns. PMID:10781047
The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules
McArthur, Sarah D; Pulvermacher, Sarah C; Stauffer, George V
2006-01-01
Background In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism. Results In this study, we report that the Yersinia pestis KIM6 gcvB gene encodes two small RNAs. Transcription of gcvB is activated by the GcvA protein and repressed by the GcvR protein. The gcvB-encoded RNAs are required for repression of the Y. pestis dppA gene, encoding the periplasmic-binding protein component of the dipeptide transport system, showing that the GcvB RNAs have regulatory activity. A deletion of the gcvB gene from the Y. pestis KIM6 chromosome results in a decrease in the generation time of the organism as well as a change in colony morphology. Conclusion The results of this study indicate that the Y. pestis gcvB gene encodes two small non-coding regulatory RNAs that repress dppA expression. A gcvB deletion is pleiotropic, suggesting that the sRNAs are likely involved in controlling genes in addition to dppA. PMID:16768793
Lemieux, Claude; Otis, Christian; Turmel, Monique
2014-10-04
Because they represent the earliest divergences of the Chlorophyta, the morphologically diverse unicellular green algae making up the prasinophytes hold the key to understanding the nature of the first viridiplants and the evolutionary patterns that accompanied the radiation of chlorophytes. Nuclear-encoded 18S rDNA phylogenies unveiled nine prasinophyte clades (clades I through IX) but their branching order is still uncertain. We present here the newly sequenced chloroplast genomes of Nephroselmis astigmatica (clade III) and of five picoplanktonic species from clade VI (Prasinococcus sp. CCMP 1194, Prasinophyceae sp. MBIC 106222 and Prasinoderma coloniale) and clade VII (Picocystis salinarum and Prasinophyceae sp. CCMP 1205). These chloroplast DNAs (cpDNAs) were compared with those of the six previously sampled prasinophytes (clades I, II, III and V) in order to gain information both on the relationships among prasinophyte lineages and on chloroplast genome evolution. Varying from 64.3 to 85.6 kb in size and encoding 100 to 115 conserved genes, the cpDNAs of the newly investigated picoplanktonic species are substantially smaller than those observed for larger-size prasinophytes, are economically packed and contain a reduced gene content. Although the Nephroselmis and Picocystis cpDNAs feature a large inverted repeat encoding the rRNA operon, gene partitioning among the single copy regions is remarkably different. Unexpectedly, we found that all three species from clade VI (Prasinococcales) harbor chloroplast genes not previously documented for chlorophytes (ndhJ, rbcR, rpl21, rps15, rps16 and ycf66) and that Picocystis contains a trans-spliced group II intron. The phylogenies inferred from cpDNA-encoded proteins are essentially congruent with 18S rDNA trees, resolving with robust support all six examined prasinophyte lineages, with the exception of the Pycnococcaceae. Our results underscore the high variability in genome architecture among prasinophyte lineages, highlighting the strong pressure to maintain a small and compact chloroplast genome in picoplanktonic species. The unique set of six chloroplast genes found in the Prasinococcales supports the ancestral status of this lineage within the prasinophytes. The widely diverging traits uncovered for the clade-VII members (Picocystis and Prasinophyceae sp. CCMP 1205) are consistent with their resolution as separate lineages in the chloroplast phylogeny.
Venturini, Carola; Hassan, Karl A; Roy Chowdhury, Piklu; Paulsen, Ian T; Walker, Mark J; Djordjevic, Steven P
2013-01-01
Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.
2006-07-01
ATM genetic variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for each mutation examined. 15. SUBJECT...women without breast cancer. An additional objective is to determine the functional impact upon the protein encoded by the ATM gene for each mutation ...each ATM variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for mutations identified. Body STATEMENT
Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.
Suter, T M; Viswanathan, V K; Cianciotto, N P
1997-06-01
A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae.
Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.
Suter, T M; Viswanathan, V K; Cianciotto, N P
1997-01-01
A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae. PMID:9174205
Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.
Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu
2017-09-01
Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.
Pasion, S G; Hines, J C; Aebersold, R; Ray, D S
1992-01-01
A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.
Pöggeler, S
2000-06-01
In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.
NASA Astrophysics Data System (ADS)
Böer, Erik; Steinborn, Gerhard; Florschütz, Kristina; Körner, Martina; Gellissen, Gerd; Kunze, Gotthard
The dimorphic ascomycetous yeast Arxula adeninivorans exhibits some unusual properties. Being a thermo- and halotolerant species it is able to assimilate and ferment many compounds as sole carbon and/or nitrogen source. It utilises n-alkanes and is capable of degrading starch. Due to these unusual biochemical properties A. adeninivorans can be exploited as a gene donor for the production of enzymes with attractive biotechnological characteristics. Examples of A. adeninivorans-derived genes that are overexpressed include the ALIP1 gene encoding a secretory lipase, the AINV encoding invertase, the AXDH encoding xylitol dehydrogenase and the APHY encoding a secretory phosphatase with phytase activity.
Designing and encoding models for synthetic biology.
Endler, Lukas; Rodriguez, Nicolas; Juty, Nick; Chelliah, Vijayalakshmi; Laibe, Camille; Li, Chen; Le Novère, Nicolas
2009-08-06
A key component of any synthetic biology effort is the use of quantitative models. These models and their corresponding simulations allow optimization of a system design, as well as guiding their subsequent analysis. Once a domain mostly reserved for experts, dynamical modelling of gene regulatory and reaction networks has been an area of growth over the last decade. There has been a concomitant increase in the number of software tools and standards, thereby facilitating model exchange and reuse. We give here an overview of the model creation and analysis processes as well as some software tools in common use. Using markup language to encode the model and associated annotation, we describe the mining of components, their integration in relational models, formularization and parametrization. Evaluation of simulation results and validation of the model close the systems biology 'loop'.
Karimi, Ashkan; Milewicz, Dianna M
2016-01-01
The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibres. The SMC elastin-contractile unit is a structural unit that links the elastin fibres to the SMCs and is characterized by the following: (1) layers of elastin fibres that are surrounded by microfibrils; (2) microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs; and (3) SMC contractile filaments that are linked to the focal adhesions on the inner side of the membrane. The genes that are altered to cause thoracic aortic aneurysms and aortic dissections encode proteins involved in the structure or function of the SMC elastin-contractile unit. Included in this gene list are the genes encoding protein that are structural components of elastin fibres and microfibrils, FBN1, MFAP5, ELN, and FBLN4. Also included are genes that encode structural proteins in the SMC contractile unit, including ACTA2, which encodes SMC-specific α-actin and MYH11, which encodes SMC-specific myosin heavy chain, along with MYLK and PRKG1, which encode kinases that control SMC contraction. Finally, mutations in the gene encoding the protein linking integrin receptors to the contractile filaments, FLNA, also predispose to thoracic aortic disease. Thus, these data suggest that functional SMC elastin-contractile units are important for maintaining the structural integrity of the aorta. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Khan, Sumbul Jawed; Abidi, Syeda Nayab Fatima; Skinner, Andrea; Tian, Yuan; Smith-Bolton, Rachel K
2017-07-01
Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.
Skinner, Andrea; Tian, Yuan
2017-01-01
Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. PMID:28753614
Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains.
Dos Santos, Leandro Vieira; Carazzolle, Marcelo Falsarella; Nagamatsu, Sheila Tiemi; Sampaio, Nádia Maria Vieira; Almeida, Ludimila Dias; Pirolla, Renan Augusto Siqueira; Borelli, Guilherme; Corrêa, Thamy Lívia Ribeiro; Argueso, Juan Lucas; Pereira, Gonçalo Amarante Guimarães
2016-12-21
The development of biocatalysts capable of fermenting xylose, a five-carbon sugar abundant in lignocellulosic biomass, is a key step to achieve a viable production of second-generation ethanol. In this work, a robust industrial strain of Saccharomyces cerevisiae was modified by the addition of essential genes for pentose metabolism. Subsequently, taken through cycles of adaptive evolution with selection for optimal xylose utilization, strains could efficiently convert xylose to ethanol with a yield of about 0.46 g ethanol/g xylose. Though evolved independently, two strains carried shared mutations: amplification of the xylose isomerase gene and inactivation of ISU1, a gene encoding a scaffold protein involved in the assembly of iron-sulfur clusters. In addition, one of evolved strains carried a mutation in SSK2, a member of MAPKKK signaling pathway. In validation experiments, mutating ISU1 or SSK2 improved the ability to metabolize xylose of yeast cells without adaptive evolution, suggesting that these genes are key players in a regulatory network for xylose fermentation. Furthermore, addition of iron ion to the growth media improved xylose fermentation even by non-evolved cells. Our results provide promising new targets for metabolic engineering of C5-yeasts and point to iron as a potential new additive for improvement of second-generation ethanol production.
Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains
dos Santos, Leandro Vieira; Carazzolle, Marcelo Falsarella; Nagamatsu, Sheila Tiemi; Sampaio, Nádia Maria Vieira; Almeida, Ludimila Dias; Pirolla, Renan Augusto Siqueira; Borelli, Guilherme; Corrêa, Thamy Lívia Ribeiro; Argueso, Juan Lucas; Pereira, Gonçalo Amarante Guimarães
2016-01-01
The development of biocatalysts capable of fermenting xylose, a five-carbon sugar abundant in lignocellulosic biomass, is a key step to achieve a viable production of second-generation ethanol. In this work, a robust industrial strain of Saccharomyces cerevisiae was modified by the addition of essential genes for pentose metabolism. Subsequently, taken through cycles of adaptive evolution with selection for optimal xylose utilization, strains could efficiently convert xylose to ethanol with a yield of about 0.46 g ethanol/g xylose. Though evolved independently, two strains carried shared mutations: amplification of the xylose isomerase gene and inactivation of ISU1, a gene encoding a scaffold protein involved in the assembly of iron-sulfur clusters. In addition, one of evolved strains carried a mutation in SSK2, a member of MAPKKK signaling pathway. In validation experiments, mutating ISU1 or SSK2 improved the ability to metabolize xylose of yeast cells without adaptive evolution, suggesting that these genes are key players in a regulatory network for xylose fermentation. Furthermore, addition of iron ion to the growth media improved xylose fermentation even by non-evolved cells. Our results provide promising new targets for metabolic engineering of C5-yeasts and point to iron as a potential new additive for improvement of second-generation ethanol production. PMID:28000736
Soyer, Jessica L; El Ghalid, Mennat; Glaser, Nicolas; Ollivier, Bénédicte; Linglin, Juliette; Grandaubert, Jonathan; Balesdent, Marie-Hélène; Connolly, Lanelle R; Freitag, Michael; Rouxel, Thierry; Fudal, Isabelle
2014-03-01
Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.
Alzan, Heba F; Knowles, Donald P; Suarez, Carlos E
2016-11-01
Apicomplexa tick-borne hemoparasites, including Babesia bovis, Babesia microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis, respectively. These parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate and tick hosts. Large gaps in knowledge concerning the mechanisms used by these parasites for gene regulation remain. Regulatory genes coding for DNA binding proteins such as members of the Api-AP2, HMG, and Myb families are known to play crucial roles as transcription factors. Although the repertoire of Api-AP2 has been defined and a HMG gene was previously identified in the B. bovis genome, these regulatory genes have not been described in detail in B. microti and T. equi. In this study, comparative bioinformatics was used to: (i) identify and map genes encoding for these transcription factors among three parasites' genomes; (ii) identify a previously unreported HMG gene in B. microti; (iii) define a repertoire of eight conserved Myb genes; and (iv) identify AP2 correlates among B. bovis and the better-studied Plasmodium parasites. Searching the available transcriptome of B. bovis defined patterns of transcription of these three gene families in B. bovis erythrocyte stage parasites. Sequence comparisons show conservation of functional domains and general architecture in the AP2, Myb, and HMG proteins, which may be significant for the regulation of common critical parasite life cycle transitions in B. bovis, B. microti, and T. equi. A detailed understanding of the role of gene families encoding DNA binding proteins will provide new tools for unraveling regulatory mechanisms involved in B. bovis, B. microti, and T. equi life cycles and environmental adaptive responses and potentially contributes to the development of novel convergent strategies for improved control of babesiosis and equine piroplasmosis.
Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.
Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B
2015-10-01
Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further understand the differential roles of GPCR/G protein mediated intracellular signaling system across various metazoan lineages. Copyright © 2015 Elsevier Inc. All rights reserved.
Seabra, Ana R; Vieira, Cristina P; Cullimore, Julie V; Carvalho, Helena G
2010-08-19
Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.
Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.
Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao
2011-04-01
Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.
Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.
2012-01-01
Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less
Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose; ...
2015-12-01
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less
antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.
Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H
2015-07-01
Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi.
Marcet-Houben, Marina; Gabaldón, Toni
2016-01-01
Clavicipitaceae is a fungal group that comprises species that closely interact with plants as pathogens, parasites or symbionts. A key factor in these interactions is the ability of these fungi to synthesize toxic alkaloid compounds that contribute to the protection of the plant host against herbivores. Some of these compounds such as ergot alkaloids are toxic to humans and have caused important epidemics throughout history. The gene clusters encoding the proteins responsible for the synthesis of ergot alkaloids and lolines in Clavicipitaceae have been elucidated. Notably, homologs to these gene clusters can be found in distantly related species such as Aspergillus fumigatus and Penicillium expansum, which diverged from Clavicipitaceae more than 400 million years ago. We here use a phylogenetic approach to analyze the evolution of these gene clusters. We found that the gene clusters conferring the ability to synthesize ergot alkaloids and loline emerged first in Eurotiomycetes and were then likely transferred horizontally to Clavicipitaceae. Horizontal gene transfer is known to play a role in shaping the distribution of secondary metabolism clusters across distantly related fungal species. We propose that HGT events have played an important role in the capability of Clavicipitaceae to produce two key secondary metabolites that have enhanced the ability of these species to protect their plant hosts, therefore favoring their interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Reinhart, Alexandria A.; Powell, Daniel A.; Nguyen, Angela T.; O'Neill, Maura; Djapgne, Louise; Wilks, Angela; Ernst, Robert K.
2014-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence. PMID:25510881
Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J
2011-08-15
We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.
Chen, Silong; Lei, Yong; Xu, Xian; Huang, Jiaquan; Jiang, Huifang; Wang, Jin; Cheng, Zengshu; Zhang, Jianan; Song, Yahui; Liao, Boshou; Li, Yurong
2015-01-01
Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts. PMID:26302041
Bilovol, Yulia; Panaccione, Daniel G.
2016-01-01
Bioactive ergot alkaloids produced by several species of fungi are important molecules in agriculture and medicine. Much of the ergot alkaloid pathway has been elucidated, but a few steps, including the gene controlling hydroxylation of festuclavine to fumigaclavine B, remain unsolved. Festuclavine is a key intermediate in the fumigaclavine branch of the ergot alkaloid pathway of the opportunistic pathogen Neosartorya fumigata and also in the dihydrolysergic acid-based ergot alkaloid pathway of certain Claviceps species. Based on several lines of evidence, the N. fumigata gene easM is a logical candidate to encode the festuclavine-hydroxylating enzyme. To test this hypothesis we disrupted easM function by replacing part of its coding sequences with a hygromycin resistance gene and transforming N. fumigata with this construct. High pressure liquid chromatography analysis demonstrated that easM deletion mutants were blocked in the ergot alkaloid pathway at festuclavine, and downstream products were eliminated. An additional alkaloid, proposed to be a prenylated form of festuclavine on the basis of mass spectral data, also accumulated to higher concentrations in the easM knockout. Complementation with the wild-type allele of easM gene restored the ability of the fungus to produce downstream compounds. These results indicate that easM encodes an enzyme required for fumigaclavine B synthesis likely by hydroxylating festuclavine. The festuclavine-accumulating strain of N. fumigata may facilitate future investigations of the biosynthesis of dihydrolysergic acid derivatives, which are derived from festuclavine and are the basis for several important drugs. PMID:26972831
Bilovol, Yulia; Panaccione, Daniel G
2016-11-01
Bioactive ergot alkaloids produced by several species of fungi are important molecules in agriculture and medicine. Much of the ergot alkaloid pathway has been elucidated, but a few steps, including the gene controlling hydroxylation of festuclavine to fumigaclavine B, remain unsolved. Festuclavine is a key intermediate in the fumigaclavine branch of the ergot alkaloid pathway of the opportunistic pathogen Neosartorya fumigata and also in the dihydrolysergic acid-based ergot alkaloid pathway of certain Claviceps species. Based on several lines of evidence, the N. fumigata gene easM is a logical candidate to encode the festuclavine-hydroxylating enzyme. To test this hypothesis we disrupted easM function by replacing part of its coding sequences with a hygromycin resistance gene and transforming N. fumigata with this construct. High-pressure liquid chromatography analysis demonstrated that easM deletion mutants were blocked in the ergot alkaloid pathway at festuclavine, and downstream products were eliminated. An additional alkaloid, proposed to be a prenylated form of festuclavine on the basis of mass spectral data, also accumulated to higher concentrations in the easM knockout. Complementation with the wild-type allele of easM gene restored the ability of the fungus to produce downstream compounds. These results indicate that easM encodes an enzyme required for fumigaclavine B synthesis likely by hydroxylating festuclavine. The festuclavine-accumulating strain of N. fumigata may facilitate future investigations of the biosynthesis of dihydrolysergic acid derivatives, which are derived from festuclavine and are the basis for several important drugs.
CIP1 polypeptides and their uses
Foreman, Pamela [Los Altos, CA; Van Solingen, Pieter [Naaldwijk, NL; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA
2011-04-12
Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.
Peñalosa-Ruiz, Georgina; Aranda, Cristina; Ongay-Larios, Laura; Colon, Maritrini; Quezada, Hector; Gonzalez, Alicia
2012-01-01
Background Gene duplication and the subsequent divergence of paralogous pairs play a central role in the evolution of novel gene functions. S. cerevisiae possesses two paralogous genes (ALT1/ALT2) which presumably encode alanine aminotransferases. It has been previously shown that Alt1 encodes an alanine aminotransferase, involved in alanine metabolism; however the physiological role of Alt2 is not known. Here we investigate whether ALT2 encodes an active alanine aminotransferase. Principal Findings Our results show that although ALT1 and ALT2 encode 65% identical proteins, only Alt1 displays alanine aminotransferase activity; in contrast ALT2 encodes a catalytically inert protein. ALT1 and ALT2 expression is modulated by Nrg1 and by the intracellular alanine pool. ALT1 is alanine-induced showing a regulatory profile of a gene encoding an enzyme involved in amino acid catabolism, in agreement with the fact that Alt1 is the sole pathway for alanine catabolism present in S. cerevisiae. Conversely, ALT2 expression is alanine-repressed, indicating a role in alanine biosynthesis, although the encoded-protein has no alanine aminotransferase enzymatic activity. In the ancestral-like yeast L. kluyveri, the alanine aminotransferase activity was higher in the presence of alanine than in the presence of ammonium, suggesting that as for ALT1, LkALT1 expression could be alanine-induced. ALT2 retention poses the questions of whether the encoded protein plays a particular function, and if this function was present in the ancestral gene. It could be hypotesized that ALT2 diverged after duplication, through neo-functionalization or that ALT2 function was present in the ancestral gene, with a yet undiscovered function. Conclusions ALT1 and ALT2 divergence has resulted in delegation of alanine aminotransferase activity to Alt1. These genes display opposed regulatory profiles: ALT1 is alanine-induced, while ALT2 is alanine repressed. Both genes are negatively regulated by the Nrg1 repressor. Presented results indicate that alanine could act as ALT2 Nrg1-co-repressor. PMID:23049841
Auerbach, Raymond K; Chen, Bin; Butte, Atul J
2013-08-01
Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.
Schaschl, Helmut; Huber, Susanne; Schaefer, Katrin; Windhager, Sonja; Wallner, Bernard; Fieder, Martin
2015-05-13
The evolutionary highly conserved neurohypophyseal hormones oxytocin and arginine vasopressin play key roles in regulating social cognition and behaviours. The effects of these two peptides are meditated by their specific receptors, which are encoded by the oxytocin receptor (OXTR) and arginine vasopressin receptor 1a genes (AVPR1A), respectively. In several species, polymorphisms in these genes have been linked to various behavioural traits. Little, however, is known about whether positive selection acts on sequence variants in genes influencing variation in human behaviours. We identified, in both neuroreceptor genes, signatures of balancing selection in the cis-regulative acting sequences such as transcription factor binding and enhancer sequences, as well as in a transcriptional repressor sequence motif. Additionally, in the intron 3 of the OXTR gene, the SNP rs59190448 appears to be under positive directional selection. For rs59190448, only one phenotypical association is known so far, but it is in high LD' (>0.8) with loci of known association; i.e., variants associated with key pro-social behaviours and mental disorders in humans. Only for one SNP on the OXTR gene (rs59190448) was a sign of positive directional selection detected with all three methods of selection detection. For rs59190448, however, only one phenotypical association is known, but rs59190448 is in high LD' (>0.8), with variants associated with important pro-social behaviours and mental disorders in humans. We also detected various signatures of balancing selection on both neuroreceptor genes.
Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant
van Roosmalen, Wies; Le Dévédec, Sylvia E.; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M.; Look, Maxime P.; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A.C. ‘t; Martens, John W.M.; Foekens, John A.; Geiger, Benjamin; van de Water, Bob
2015-01-01
Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3–binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis. PMID:25774502
Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming
2013-01-01
Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362
Veenstra, Jan A; Khammassi, Hela
2017-04-01
RYamides are arthropod neuropeptides with unknown function. In 2011 two RYamides were isolated from D. melanogaster as the ligands for the G-protein coupled receptor CG5811. The D. melanogaster gene encoding these neuropeptides is highly unusual, as there are four RYamide encoding exons in the current genome assembly, but an exon encoding a signal peptide is absent. Comparing the D. melanogaster gene structure with those from other species, including D. virilis, suggests that the gene is degenerating. RNAseq data from 1634 short sequence read archives at NCBI containing more than 34 billion spots yielded numerous individual spots that correspond to the RYamide encoding exons, of which a large number include the intron-exon boundary at the start of this exon. Although 72 different sequences have been spliced onto this RYamide encoding exon, none codes for the signal peptide of this gene. Thus, the RNAseq data for this gene reveal only noise and no signal. The very small quantities of peptide recovered during isolation and the absence of credible RNAseq data, indicates that the gene is very little expressed, while the RYamide gene structure in D. melanogaster suggests that it might be evolving into a pseudogene. Yet, the identification of the peptides it encodes clearly shows it is still functional. Using region specific antisera, we could localize numerous neurons and enteroendocrine cells in D. willistoni, D. virilis and D. pseudoobscura, but only two adult abdominal neurons in D. melanogaster. Those two neurons project to and innervate the rectal papillae, suggesting that RYamides may be involved in the regulation of water homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E.; Brautaset, Trygve
2011-01-01
We investigated the regulation and roles of six aspartate pathway genes in l-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by l-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the l-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has—in addition to a hom-1 mutation—chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for l-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased l-lysine production levels. PMID:21724876
Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E; Brautaset, Trygve
2011-09-01
We investigated the regulation and roles of six aspartate pathway genes in L-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by L-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the L-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has-in addition to a hom-1 mutation-chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for L-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased L-lysine production levels.
Yue, Xun; Li, Xing Guo; Gao, Xin-Qi; Zhao, Xiang Yu; Dong, Yu Xiu; Zhou, Chao
2016-09-02
Phytohormone synergies and signaling interdependency are important topics in plant developmental biology. Physiological and genetic experimental evidence for phytohormone crosstalk has been accumulating and a genome-scale enzyme correlation model representing the Arabidopsis metabolic pathway has been published. However, an integrated molecular characterization of phytohormone crosstalk is still not available. A novel modeling methodology and advanced computational approaches were used to construct an enzyme-based Arabidopsis phytohormone crosstalk network (EAPCN) at the biosynthesis level. The EAPCN provided the structural connectivity architecture of phytohormone biosynthesis pathways and revealed a surprising result; that enzymes localized at the highly connected nodes formed a consecutive metabolic route. Furthermore, our analysis revealed that the transcription factors (TFs) that regulate enzyme-encoding genes in the consecutive metabolic route formed structures, which we describe as circular control units operating at the transcriptional level. Furthermore, the downstream TFs in phytohormone signal transduction pathways were found to be involved in the circular control units that included the TFs regulating enzyme-encoding genes. In addition, multiple functional enzymes in the EAPCN were found to be involved in ion and pH homeostasis, environmental signal perception, cellular redox homeostasis, and circadian clocks. Last, publicly available transcriptional profiles and a protein expression map of the Arabidopsis root apical meristem were used as a case study to validate the proposed framework. Our results revealed multiple scales of coupled mechanisms in that hormonal crosstalk networks that play a central role in coordinating internal developmental processes with environmental signals, and give a broader view of Arabidopsis phytohormone crosstalk. We also uncovered potential key regulators that can be further analyzed in future studies.
Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un
2016-12-01
Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.
“Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks
Gillis, Jesse; Pavlidis, Paul
2012-01-01
Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks. PMID:22479173
Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria
Hilton, Jason A.; Meeks, John C.; Zehr, Jonathan P.
2016-01-01
Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria. PMID:27206019
Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria.
Hilton, Jason A; Meeks, John C; Zehr, Jonathan P
2016-01-01
Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria.
Comtet-Marre, Sophie; Chaucheyras-Durand, Frédérique; Bouzid, Ourdia; Mosoni, Pascale; Bayat, Ali R.; Peyret, Pierre; Forano, Evelyne
2018-01-01
Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium Fibrobacter succinogenes S85 grown on wheat straw or cellobiose. FibroChip was used to identify the expressed CAZyme genes from the targeted families in the rumen of a cow fed a mixed diet based on grass silage. Among expressed genes, those encoding GH43, GH5, and GH10 families were the most represented. Most of the F. succinogenes genes detected by the FibroChip were also detected following RNA-seq analysis of RNA transcripts obtained from the rumen fluid sample. Use of the FibroChip also indicated that transcripts of fiber degrading enzymes derived from eukaryotes (protozoa and anaerobic fungi) represented a significant proportion of the total microbial mRNA pool. FibroChip represents a reliable and high-throughput tool that enables researchers to monitor active members of fiber degradation in the rumen. PMID:29487591
Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.
Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S
2016-01-01
Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Carles, Cristel C; Choffnes-Inada, Dan; Reville, Keira; Lertpiriyapong, Kvin; Fletcher, Jennifer C
2005-03-01
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by gene networks that contain both positive and negative components. We have previously defined the ULTRAPETALA1 (ULT1) gene as a key negative regulator of cell accumulation in Arabidopsis shoot and floral meristems, because mutations in ULT1 cause the enlargement of inflorescence and floral meristems, the production of supernumerary flowers and floral organs, and a delay in floral meristem termination. Here, we show that ULT1 negatively regulates the size of the WUSCHEL (WUS)-expressing organizing center in inflorescence meristems. We have cloned the ULT1 gene and find that it encodes a small protein containing a B-box-like motif and a SAND domain, a DNA-binding motif previously reported only in animal transcription factors. ULT1 and its Arabidopsis paralog ULT2 define a novel small gene family in plants. ULT1 and ULT2 are expressed coordinately in embryonic shoot apical meristems, in inflorescence and floral meristems, and in developing stamens, carpels and ovules. Additionally, ULT1 is expressed in vegetative meristems and leaf primordia. ULT2 protein can compensate for mutant ULT1 protein when overexpressed in an ult1 background, indicating that the two genes may regulate a common set of targets during plant development. Downregulation of both ULT genes can lead to shoot apical meristem arrest shortly after germination, revealing a requirement for ULT activity in early development.
Comtet-Marre, Sophie; Chaucheyras-Durand, Frédérique; Bouzid, Ourdia; Mosoni, Pascale; Bayat, Ali R; Peyret, Pierre; Forano, Evelyne
2018-01-01
Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium Fibrobacter succinogenes S85 grown on wheat straw or cellobiose. FibroChip was used to identify the expressed CAZyme genes from the targeted families in the rumen of a cow fed a mixed diet based on grass silage. Among expressed genes, those encoding GH43, GH5, and GH10 families were the most represented. Most of the F. succinogenes genes detected by the FibroChip were also detected following RNA-seq analysis of RNA transcripts obtained from the rumen fluid sample. Use of the FibroChip also indicated that transcripts of fiber degrading enzymes derived from eukaryotes (protozoa and anaerobic fungi) represented a significant proportion of the total microbial mRNA pool. FibroChip represents a reliable and high-throughput tool that enables researchers to monitor active members of fiber degradation in the rumen.
Park, Jin Hwan; Jang, Yu-Sin; Lee, Jeong Wook; Lee, Sang Yup
2011-05-01
A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L-valine tolerance, was metabolically engineered for the production of L-valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L-valine, available for enhanced L-valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBN(mut) genes encoding feedback-resistant acetohydroxy acid synthase (AHAS) I and the L-valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid-based overexpression. The global regulator Lrp and L-valine exporter YgaZH were also amplified by plasmid-based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBN(mut) , ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L-valine by fed-batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L-valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K-12, which have so far been the most efficient L-valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Copyright © 2010 Wiley Periodicals, Inc.
Role of the Fusarium fujikuroi TOR Kinase in Nitrogen Regulation and Secondary Metabolism
Teichert, Sabine; Wottawa, Marieke; Schönig, Birgit; Tudzynski, Bettina
2006-01-01
In Fusarium fujikuroi, the biosynthesis of gibberellins (GAs) and bikaverin is under control of AreA-mediated nitrogen metabolite repression. Thus far, the signaling components acting upstream of AreA and regulating its nuclear translocation are unknown. In Saccharomyces cerevisiae, the target of rapamycin (TOR) proteins, Tor1p and Tor2p, are key players of nutrient-mediated signal transduction to control cell growth. In filamentous fungi, probably only one TOR kinase-encoding gene exists. However, nothing is known about its function. Therefore, we investigated the role of TOR in the GA-producing fungus F. fujikuroi in order to determine whether TOR plays a role in nitrogen regulation, especially in the regulation of GA and bikaverin biosynthesis. We cloned and characterized the F. fujikuroi tor gene. However, we were not able to create knockout mutants, suggesting that TOR is essential for viability. Inhibition of TOR by rapamycin affected the expression of AreA-controlled secondary metabolite genes for GA and bikaverin biosynthesis, as well as genes involved in transcriptional and translational regulation, ribosome biogenesis, and autophagy. Deletion of fpr1 encoding the FKBP12-homologue confirmed that the effects of rapamycin are due to the specific inhibition of TOR. Interestingly, the expression of most of the TOR target genes has been previously shown to be also affected in the glutamine synthetase mutant, although in the opposite way. We demonstrate here for the first time in a filamentous fungus that the TOR kinase is involved in nitrogen regulation of secondary metabolism and that rapamycin affects also the expression of genes involved in translation control, ribosome biogenesis, carbon metabolism, and autophagy. PMID:17031002
Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA.
Queck, Shu Y; Khan, Burhan A; Wang, Rong; Bach, Thanh-Huy L; Kretschmer, Dorothee; Chen, Liang; Kreiswirth, Barry N; Peschel, Andreas; Deleo, Frank R; Otto, Michael
2009-07-01
Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.
Netsvyetayeva, Irina; Fraczek, Mariusz; Piskorska, Katarzyna; Golas, Marlena; Sikora, Magdalena; Mlynarczyk, Andrzej; Swoboda-Kopec, Ewa; Marusza, Wojciech; Palmieri, Beniamino; Iannitti, Tommaso
2014-03-05
The number of studies regarding the incidence of multidrug resistant strains and distribution of genes encoding virulence factors, which have colonized the post-Soviet states, is considerably limited. The aim of the study was (1) to assess the Staphylococcus (S.) aureus nasal carriage rate, including Methicillin Resistant S. aureus (MRSA) strains in adult Ukrainian population, (2) to determine antibiotic resistant pattern and (3) the occurrence of Panton Valentine Leukocidine (PVL)-, Fibronectin-Binding Protein A (FnBPA)- and Exfoliative Toxin (ET)-encoding genes. Nasal samples for S. aureus culture were obtained from 245 adults. The susceptibility pattern for several classes of antibiotics was determined by disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The virulence factor encoding genes, mecA, lukS-lukF, eta, etb, etd, fnbA, were detected by Polymerase Chain Reaction (PCR). The S. aureus nasal carriage rate was 40%. The prevalence of nasal MRSA carriage in adults was 3.7%. LukS-lukF genes were detected in over 58% of the strains. ET-encoding genes were detected in over 39% of the strains and the most prevalent was etd. The fnbA gene was detected in over 59% of the strains. All MRSA isolates tested were positive for the mecA gene. LukS-lukF genes and the etd gene were commonly co-present in MRSA, while lukS-lukF genes and the fnbA gene were commonly co-present in Methicillin Sensitive S. aureus (MSSA) isolates. No significant difference was detected between the occurrence of lukS-lukF genes (P > 0.05) and the etd gene (P > 0.05) when comparing MRSA and MSSA. The occurrence of the fnbA gene was significantly more frequent in MSSA strains (P < 0.05). In Ukraine, S. aureus is a common cause of infection. The prevalence of S. aureus nasal carriage in our cohort of patients from Ukraine was 40.4%. We found that 9.1% of the strains were classified as MRSA and all MRSA isolates tested positive for the mecA gene. We also observed a high prevalence of PVL- and ET- encoding genes among S. aureus nasal carriage strains. A systematic surveillance system can help prevent transmission and spread of drug resistant toxin producing S. aureus strains.
Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J
2018-02-01
WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes.
Chen, Kai-Yi; Cong, Bin; Wing, Rod; Vrebalov, Julia; Tanksley, Steven D
2007-10-26
We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.
The MYSTerious MOZ, a histone acetyltransferase with a key role in haematopoiesis.
Perez-Campo, Flor M; Costa, Guilherme; Lie-a-Ling, Michael; Kouskoff, Valerie; Lacaud, Georges
2013-06-01
The MOnocytic leukaemia Zing finger (MOZ; MYST3 or KAT6A(1)) gene is frequently found translocated in acute myeloid leukaemia. MOZ encodes a large multidomain protein that contains, besides others, a histone acetyl transferase catalytic domain. Several studies have now established the critical function of MOZ in haematopoiesis. In this review we summarize the recent findings that underscore the relevance of the different biological activities of MOZ in the regulation of haematopoiesis. © 2013 The Paterson Institute for Cancer Research Immunology © 2013 Blackwell Publishing Ltd.
Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome
Kunieda, T; Fujiyuki, T; Kucharski, R; Foret, S; Ament, S A; Toth, A L; Ohashi, K; Takeuchi, H; Kamikouchi, A; Kage, E; Morioka, M; Beye, M; Kubo, T; Robinson, G E; Maleszka, R
2006-01-01
Carbohydrate-metabolizing enzymes may have particularly interesting roles in the honey bee, Apis mellifera, because this social insect has an extremely carbohydrate-rich diet, and nutrition plays important roles in caste determination and socially mediated behavioural plasticity. We annotated a total of 174 genes encoding carbohydrate-metabolizing enzymes and 28 genes encoding lipid-metabolizing enzymes, based on orthology to their counterparts in the fly, Drosophila melanogaster, and the mosquito, Anopheles gambiae. We found that the number of genes for carbohydrate metabolism appears to be more evolutionarily labile than for lipid metabolism. In particular, we identified striking changes in gene number or genomic organization for genes encoding glycolytic enzymes, cellulase, glucose oxidase and glucose dehydrogenases, glucose-methanol-choline (GMC) oxidoreductases, fucosyltransferases, and lysozymes. PMID:17069632
Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu
2014-08-01
Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.
Ito, Teruyo; Ma, Xiao Xue; Takeuchi, Fumihiko; Okuma, Keiko; Yuzawa, Harumi; Hiramatsu, Keiichi
2004-01-01
Staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element composed of the mec gene complex, which encodes methicillin resistance, and the ccr gene complex, which encodes the recombinases responsible for its mobility. The mec gene complex has been classified into four classes, and the ccr gene complex has been classified into three allotypes. Different combinations of mec gene complex classes and ccr gene complex types have so far defined four types of SCCmec elements. Now we introduce the fifth allotype of SCCmec, which was found on the chromosome of a community-acquired methicillin-resistant Staphylococcus aureus strain (strain WIS [WBG8318]) isolated in Australia. The element shared the same chromosomal integration site with the four extant types of SCCmec and the characteristic nucleotide sequences at the chromosome-SCCmec junction regions. The novel SCCmec carried mecA bracketed by IS431 (IS431-mecA-ΔmecR1-IS431), which is designated the class C2 mec gene complex; and instead of ccrA and ccrB genes, it carried a single copy of a gene homologue that encoded cassette chromosome recombinase. Since the open reading frame (ORF) was found to encode an enzyme which catalyzes the precise excision as well as site- and orientation-specific integration of the element, we designated the ORF cassette chromosome recombinase C (ccrC), and we designated the element type V SCCmec. Type V SCCmec is a small SCCmec element (28 kb) and does not carry any antibiotic resistance genes besides mecA. Unlike the extant SCCmec types, it carries a set of foreign genes encoding a restriction-modification system that might play a role in the stabilization of the element on the chromosome. PMID:15215121
Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing
2017-01-01
Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings (Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF. PMID:29238356
Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing
2017-01-01
Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings ( Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF.
Blumhagen, Rachel Z; Hedin, Brenna R; Malcolm, Kenneth C; Burnham, Ellen L; Moss, Marc; Abraham, Edward; Huie, Tristan J; Nick, Jerry A; Fingerlin, Tasha E; Alper, Scott
2017-11-01
A key physiological feature of acute respiratory distress syndrome (ARDS) is inflammation. Toll-like receptor (TLR) signaling is required to combat the infection that underlies many ARDS cases but also contributes to pathological inflammation. Several TLR signaling pathway genes encoding positive effectors of inflammation also produce alternatively spliced mRNAs encoding negative regulators of inflammation. An imbalance between these isoforms could contribute to pathological inflammation and disease severity. To determine whether splicing in TLR pathways is altered in patients with ARDS, we monitored alternative splicing of MyD88 and IRAK1 , two genes that function in multiple TLR pathways. The MyD88 and IRAK1 genes produce long proinflammatory mRNAs (MyD88 L and IRAK1) and shorter anti-inflammatory mRNAs (MyD88 S and IRAK1c). We quantified mRNA encoding inflammatory cytokines and MyD88 and IRAK1 isoforms in peripheral blood mononuclear cells (PBMCs) from 104 patients with ARDS and 30 healthy control subjects. We found that MyD88 pre-mRNA splicing is altered in patients with ARDS in a proinflammatory direction. We also observed altered MyD88 isoform levels in a second critically ill patient cohort, suggesting that these changes may not be unique to ARDS. Early in ARDS, PBMC IRAK1c levels were associated with patient survival. Despite the similarities in MyD88 and IRAK1 alternative splicing observed in previous in vitro studies, there were differences in how MyD88 and IRAK1 alternative splicing was altered in patients with ARDS. We conclude that pre-mRNA splicing of TLR signaling genes is altered in patients with ARDS, and further investigation of altered splicing may lead to novel prognostic and therapeutic approaches. Copyright © 2017 the American Physiological Society.
Nasser, Waleed; Beres, Stephen B; Olsen, Randall J; Dean, Melissa A; Rice, Kelsey A; Long, S Wesley; Kristinsson, Karl G; Gottfredsson, Magnus; Vuopio, Jaana; Raisanen, Kati; Caugant, Dominique A; Steinbakk, Martin; Low, Donald E; McGeer, Allison; Darenberg, Jessica; Henriques-Normark, Birgitta; Van Beneden, Chris A; Hoffmann, Steen; Musser, James M
2014-04-29
We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.
Nasser, Waleed; Beres, Stephen B.; Olsen, Randall J.; Dean, Melissa A.; Rice, Kelsey A.; Long, S. Wesley; Kristinsson, Karl G.; Gottfredsson, Magnus; Vuopio, Jaana; Raisanen, Kati; Caugant, Dominique A.; Steinbakk, Martin; Low, Donald E.; McGeer, Allison; Darenberg, Jessica; Henriques-Normark, Birgitta; Van Beneden, Chris A.; Hoffmann, Steen; Musser, James M.
2014-01-01
We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD+-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide. PMID:24733896
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, Jeanette M.; Klotz, Martin G; Stein, Lisa Y
2008-01-01
The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presencemore » of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.« less
Transcriptional Profiling of Caulobacter crescentus during Growth on Complex and Minimal Media
Hottes, Alison K.; Meewan, Maliwan; Yang, Desiree; Arana, Naomi; Romero, Pedro; McAdams, Harley H.; Stephens, Craig
2004-01-01
Microarray analysis was used to examine gene expression in the freshwater oligotrophic bacterium Caulobacter crescentus during growth on three standard laboratory media, including peptone-yeast extract medium (PYE) and minimal salts medium with glucose or xylose as the carbon source. Nearly 400 genes (approximately 10% of the genome) varied significantly in expression between at least two of these media. The differentially expressed genes included many encoding transport systems, most notably diverse TonB-dependent outer membrane channels of unknown substrate specificity. Amino acid degradation pathways constituted the largest class of genes induced in PYE. In contrast, many of the genes upregulated in minimal media encoded enzymes for synthesis of amino acids, including incorporation of ammonia and sulfate into glutamate and cysteine. Glucose availability induced expression of genes encoding enzymes of the Entner-Doudoroff pathway, which was demonstrated here through mutational analysis to be essential in C. crescentus for growth on glucose. Xylose induced expression of genes encoding several hydrolytic exoenzymes as well as an operon that may encode a novel pathway for xylose catabolism. A conserved DNA motif upstream of many xylose-induced genes was identified and shown to confer xylose-specific expression. Xylose is an abundant component of xylan in plant cell walls, and the microarray data suggest that in addition to serving as a carbon source for growth of C. crescentus, this pentose may be interpreted as a signal to produce enzymes associated with plant polymer degradation. PMID:14973021
Karmi, Ola; Marjault, Henri-Baptiste; Pesce, Luca; Carloni, Paolo; Onuchic, Jose' N; Jennings, Patricia A; Mittler, Ron; Nechushtai, Rachel
2018-02-12
NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.
Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling
2013-01-01
Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter−1 of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism. PMID:23811508
Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling; Brautaset, Trygve
2013-09-01
Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter(-1) of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism.
Molecular cloning and characterization of alpha - galactosidase gene from Glaciozyma antarctica
NASA Astrophysics Data System (ADS)
Moheer, Reyad Qaed Al; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul
2015-09-01
Psychrophilic enzymes are proteins produced by psychrophilic organisms which recently are the limelight for industrial applications. A gene encoding α-galactosidase from a psychrophilic yeast, Glaciozyma antarctica PI12 which belongs to glycoside hydrolase family 27, was isolated and analyzed using several bioinformatic tools. The cDNA of the gene with the size of 1,404-bp encodes a protein with 467 amino acid residues. Predicted molecular weight of protein was 48.59 kDa and hence we name the gene encoding α-galactosidase as GAL48. We found that the predicted protein sequences possessed signal peptide sequence and are highly conserved among other fungal α-galactosidase.
Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka
2005-01-01
We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.
Alliinase and cysteine synthase transcription in developing garlic (Allium sativum L.) over time.
Mitrová, Katarina; Svoboda, Pavel; Milella, Luigi; Ovesná, Jaroslava
2018-06-15
Garlic is a valuable source of healthy compounds, including secondary metabolites rich in sulphur such as cysteine sulphoxides (CSOs). Here, we present new qRT-PCR assays analysing the transcription of two genes encoding key enzymes in CSO biosynthetic pathways (cysteine synthase and alliinase) in developing garlic. We also identified a set of genes (ACT I, GAPDH, and TUB) to use as transcription normalisation controls. We showed that the (normalised) transcription of both enzymes was highest during sprouting and decreased significantly in fully developed leaves, which are the major CSO-producing organs. Transcriptional activity further declined at the end of the growing season. Different cultivars show similar sulphur metabolism gene expression when European garlics were compared to Chinese and American genotypes. The qRT-PCR assays presented are also suitable for investigating the effects of agricultural practices on CSO formation in garlic to satisfy consumer demands. Copyright © 2017. Published by Elsevier Ltd.
RNA extraction from decaying wood for (meta)transcriptomic analyses.
Adamo, Martino; Voyron, Samuele; Girlanda, Mariangela; Marmeisse, Roland
2017-10-01
Wood decomposition is a key step of the terrestrial carbon cycle and is of economic importance. It is essentially a microbiological process performed by fungi and to an unknown extent by bacteria. To gain access to the genes expressed by the diverse microbial communities participating in wood decay, we developed an RNA extraction protocol from this recalcitrant material rich in polysaccharides and phenolic compounds. This protocol was implemented on 22 wood samples representing as many tree species from 11 plant families in the Angiosperms and Gymnosperms. RNA was successfully extracted from all samples and converted into cDNAs from which were amplified both fungal and bacterial protein coding genes, including genes encoding hydrolytic enzymes participating in lignocellulose hydrolysis. This protocol applicable to a wide range of decomposing wood types represents a first step towards a metatranscriptomic analysis of wood degradation under natural conditions.
Lima, Luanne Helena Augusto; Pinheiro, Cristiano Guimarães do Amaral; de Moraes, Lídia Maria Pepe; de Freitas, Sonia Maria; Torres, Fernando Araripe Gonçalves
2006-12-01
Yeasts can metabolize xylose by the action of two key enzymes: xylose reductase and xylitol dehydrogenase. In this work, we present data concerning the cloning of the XYL2 gene encoding xylitol dehydrogenase from the yeast Candida tropicalis. The gene is present as a single copy in the genome and is controlled at the transcriptional level by the presence of the inducer xylose. XYL2 was functionally tested by heterologous expression in Saccharomyces cerevisiae to develop a yeast strain capable of producing ethanol from xylose. Structural analysis of C. tropicalis xylitol dehydrogenase, Xyl2, suggests that it is a member of the medium-chain dehydrogenase (MDR) family. This is supported by the presence of the amino acid signature [GHE]xx[G]xxxxx[G]xx[V] in its primary sequence and a typical alcohol dehydrogenase Rossmann fold pattern composed by NAD(+) and zinc ion binding domains.
Recurrent PTPRB and PLCG1 mutations in angiosarcoma.
Behjati, Sam; Tarpey, Patrick S; Sheldon, Helen; Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J
2014-04-01
Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. M. Kathryn Barton
2011-11-29
The shoot apical meristems of land plants are small mounds of hundreds of cells located at the tips of branches. It is from these small clusters of cells that essentially all above ground plant biomass and therefore much of our energy supply originates. Several key genes have been discovered that are necessary for cells in the shoot apical meristem to take on stem cell properties. The goal of this project is to understand how the synthesis and accumulation of the mRNAs and proteins encoded by these genes is controlled. A thorough understanding of the molecules that control the growth ofmore » shoot apical meristems in plants will help us to manipulate food, fiber and biofuel crops to better feed, clothe and provide energy for humans.« less
[Process and mechanism of plants in overcoming acid soil aluminum stress].
Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi
2013-10-01
Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.
Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi
2016-07-01
To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota
Vanwonterghem, Inka; Evans, Paul N.; Parks, Donovan H.; ...
2016-10-03
Methanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in population genomes recovered from anoxic environments with high methane flux that belong to a new archaeal phylum, the Verstraetearchaeota. These archaea encode the genes required for methylotrophic methanogenesis, and may conserve energy using a mechanismmore » similar to that proposed for the obligate H 2-dependent methylotrophic Methanomassiliicoccales and recently described Candidatus ‘Methanofastidiosa’. Our findings indicate that we are only beginning to understand methanogen diversity and support an ancient origin for methane metabolism in the Archaea, which is changing our understanding of the global carbon cycle.« less
Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanwonterghem, Inka; Evans, Paul N.; Parks, Donovan H.
Methanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in population genomes recovered from anoxic environments with high methane flux that belong to a new archaeal phylum, the Verstraetearchaeota. These archaea encode the genes required for methylotrophic methanogenesis, and may conserve energy using a mechanismmore » similar to that proposed for the obligate H 2-dependent methylotrophic Methanomassiliicoccales and recently described Candidatus ‘Methanofastidiosa’. Our findings indicate that we are only beginning to understand methanogen diversity and support an ancient origin for methane metabolism in the Archaea, which is changing our understanding of the global carbon cycle.« less
Decoding sORF translation - from small proteins to gene regulation.
Cabrera-Quio, Luis Enrique; Herberg, Sarah; Pauli, Andrea
2016-11-01
Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.
Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki
2005-12-01
Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.
Báez-Viveros, José Luis; Flores, Noemí; Juárez, Katy; Castillo-España, Patricia; Bolivar, Francisco; Gosset, Guillermo
2007-01-01
Background The rational design of L-phenylalanine (L-Phe) overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS) and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase), reaching yields of 0.33 (g-Phe/g-Glc), which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA) of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB), gluconeogenic (ppsA, pckA) and fermentative enzymes (ldhA) were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt) in the best PTS- L-Phe overproducing strain (PB12-ev2). Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to both PTS inactivation and the presence of plasmids. For instance, acs-ackA, sucABCD, and sdhABCD operons were up-regulated in PB12 (PTS mutant that carries an arcB- mutation). The induction of these operons was further increased by the presence of plasmids in PB12-ev2. Some genes involved in the shikimate and specific aromatic amino acid pathways showed down-regulation in the L-Phe overproducing strains, might cause possible metabolic limitations in the shikimate pathway. Conclusion The identification of potential rate-limiting steps and the detection of transcriptional responses in overproducing microorganisms may suggest "reverse engineering" strategies for the further improvement of L-Phe production strains. PMID:17880710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, K.D.; Handen, J.S.; Rosenberg, H.F.
The Charcot-Leyden crystal (CLC) protein, or eosinophil lysophospholipase, is a characteristic protein of human eosinophils and basophils; recent work has demonstrated that the CLC protein is both structurally and functionally related to the galectin family of {beta}-galactoside binding proteins. The galectins as a group share a number of features in common, including a linear ligand binding site encoded on a single exon. In this work, we demonstrate that the intron-exon structure of the gene encoding CLC is analogous to those encoding the galectins. The coding sequence of the CLC gene is divided into four exons, with the entire {beta}-galactoside bindingmore » site encoded by exon III. We have isolated CLC {beta}-galactoside binding sites from both orangutan (Pongo pygmaeus) and murine (Mus musculus) genomic DNAs, both encoded on single exons, and noted conservation of the amino acids shown to interact directly with the {beta}-galactoside ligand. The most likely interpretation of these results suggests the occurrence of one or more exon duplication and insertion events, resulting in the distribution of this lectin domain to CLC as well as to the multiple galectin genes. 35 refs., 3 figs.« less
Recombination and mutation of class II histocompatibility genes in wild mice.
Wakeland, E K; Darby, B R
1983-12-01
We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.
Epigenetic Regulation in Prostate Cancer Progression.
Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro
2018-01-01
An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.
Schulte, W; Töpfer, R; Stracke, R; Schell, J; Martini, N
1997-04-01
Three genes coding for different multifunctional acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) isoenzymes from Brassica napus were isolated and divided into two major classes according to structural features in their 5' regions: class I comprises two genes with an additional coding exon of approximately 300 bp at the 5' end, and class II is represented by one gene carrying an intron of 586 bp in its 5' untranslated region. Fusion of the peptide sequence encoded by the additional first exon of a class I ACCase gene to the jellyfish Aequorea victoria green fluorescent protein (GFP) and transient expression in tobacco protoplasts targeted GFP to the chloroplasts. In contrast to the deduced primary structure of the biotin carboxylase domain encoded by the class I gene, the corresponding amino acid sequence of the class II ACCase shows higher identity with that of the Arabidopsis ACCase, both lacking a transit peptide. The Arabidopsis ACCase has been proposed to be a cytosolic isoenzyme. These observations indicate that the two classes of ACCase genes encode plastidic and cytosolic isoforms of multi-functional, eukaryotic type, respectively, and that B. napus contains at least one multi-functional ACCase besides the multi-subunit, prokaryotic type located in plastids. Southern blot analysis of genomic DNA from B. napus, Brassica rapa, and Brassica oleracea, the ancestors of amphidiploid rapeseed, using a fragment of a multi-functional ACCase gene as a probe revealed that ACCase is encoded by a multi-gene family of at least five members.
Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping
2014-09-01
To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.