Sample records for genes encoding cd30l

  1. Identification and characterization of a second CD4-like gene in teleost fish.

    PubMed

    Dijkstra, Johannes Martinus; Somamoto, Tomonori; Moore, Lindsey; Hordvik, Ivar; Ototake, Mitsuru; Fischer, Uwe

    2006-02-01

    In fish, T cell subdivision is not well studied, although CD8 and CD4 homologues have been reported. This study describes a second teleost CD4-like gene, CD4-like 2 (CD4L-2). Two rainbow trout copies of this gene were found, -2a and -2b, encoding molecules sharing 81% aa identity. The 2a/2b duplication may be related to tetraploid ancestry of salmonid fishes. In the Fugu genome CD4L-2 lies head to tail with an earlier reported, very different CD4-like gene [Suetake, H., Araki, K., Suzuki, Y., 2004. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368-374], which was designated CD4L-1 in the present article. The flanking genes of the Fugu CD4L-1 and CD4L-2 are reminiscent of the genes surrounding CD4 and LAG-3 in mammals. However, neither synteny nor phylogenetic analysis could decide between CD4 and LAG-3 identity for the fish CD4L genes. CD4L-1 and CD4L-2 share a tyrosine protein kinase p56(lck) binding motif in the cytoplasmic tail with CD4 but not with LAG-3. Trout CD4L-2 expression is highest in the thymus, similar to mammalian and chicken CD4, whereas Fugu CD4L-1 expression was highest in the spleen. However, CD4L-2 encodes only two IG-like domains, whereas CD4L-1, CD4 and LAG-3 encode four. The CD4-like genes 1 and 2 in fish apparently went through an evolution different from that of LAG-3 and CD4 in higher vertebrates.

  2. Inhibition of Type 1 Cytokine–mediated Inflammation by a Soluble CD30 Homologue Encoded by Ectromelia (Mousepox) Virus

    PubMed Central

    Saraiva, Margarida; Smith, Philip; Fallon, Padraic G.; Alcami, Antonio

    2002-01-01

    CD30 is up-regulated in several human diseases and viral infections but its role in immune regulation is poorly understood. Here, we report the expression of a functional soluble CD30 homologue, viral CD30 (vCD30), encoded by ectromelia (mousepox) virus, a poxvirus that causes a severe disease related to human smallpox. We show that vCD30 is a 12-kD secreted protein that not only binds CD30L with high affinity and prevents its interaction with CD30, but it also induces reverse signaling in cells expressing CD30L. vCD30 blocked the generation of interferon γ–producing cells in vitro and was a potent inhibitor of T helper cell (Th)1- but not Th2-mediated inflammation in vivo. The finding of a CD30 homologue encoded by ectromelia virus suggests a role for CD30 in antiviral defense. Characterization of the immunological properties of vCD30 has uncovered a role of CD30–CD30L interactions in the generation of inflammatory responses. PMID:12235215

  3. IgA measurements in over 12 000 Swedish twins reveal sex differential heritability and regulatory locus near CD30L

    PubMed Central

    Viktorin, Alexander; Frankowiack, Marcel; Padyukov, Leonid; Chang, Zheng; Melén, Erik; Sääf, Annika; Kull, Inger; Klareskog, Lars; Hammarström, Lennart; Magnusson, Patrik K.E.

    2014-01-01

    In a broad attempt to improve the understanding of the genetic regulation of serum IgA levels, the heritability was estimated in over 12 000 Swedish twins, and a genome-wide association study was conducted in a subsample of 9617. Using the classical twin model the heritability was found to be significantly larger among females (61%) compared with males (21%), while contribution from shared environment (20%) was only seen for males. By modeling the genetic relationship matrix with IgA levels, we estimate that a substantial proportion (31%) of variance in IgA levels can ultimately be explained by the investigated SNPs. The genome-wide association study revealed significant association to two loci: (i) rs6928791 located on chromosome 6, 22 kb upstream of the gene SAM and SH3 domain containing 1 (SASH1) and (ii) rs13300483 on chromosome 9, situated 12 kb downstream the CD30 ligand (CD30L) encoding gene. The association to rs13300483 was replicated in two additional independent Swedish materials. The heritability of IgA levels is moderate and can partly be attributable to common variation in the CD30L locus. PMID:24676358

  4. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study

    PubMed Central

    Hu, Shimin; Xu-Monette, Zijun Y.; Balasubramanyam, Aarthi; Manyam, Ganiraju C.; Visco, Carlo; Tzankov, Alexander; Liu, Wei-min; Miranda, Roberto N.; Zhang, Li; Montes-Moreno, Santiago; Dybkær, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W. L.; Han van Krieken, J.; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J. M.; Zhao, Xiaoying; Winter, Jane N.; Zhang, Mingzhi; Li, Ling; Møller, Michael B.; Piris, Miguel A.; Li, Yong; Go, Ronald S.; Wu, Lin; Medeiros, L. Jeffrey; Young, Ken H.

    2013-01-01

    CD30, originally identified as a cell-surface marker of Reed-Sternberg and Hodgkin cells of classical Hodgkin lymphoma, is also expressed by several types of non-Hodgkin lymphoma, including a subset of diffuse large B-cell lymphoma (DLBCL). However, the prognostic and biological importance of CD30 expression in DLBCL is unknown. Here we report that CD30 expression is a favorable prognostic factor in a cohort of 903 de novo DLBCL patients. CD30 was expressed in ∼14% of DLBCL patients. Patients with CD30+ DLBCL had superior 5-year overall survival (CD30+, 79% vs CD30–, 59%; P = .001) and progression-free survival (P = .003). The favorable outcome of CD30 expression was maintained in both the germinal center B-cell and activated B-cell subtypes. Gene expression profiling revealed the upregulation of genes encoding negative regulators of nuclear factor κB activation and lymphocyte survival, and downregulation of genes encoding B-cell receptor signaling and proliferation, as well as prominent cytokine and stromal signatures in CD30+ DLBCL patients, suggesting a distinct molecular basis for its favorable outcome. Given the superior prognostic value, unique gene expression signature, and significant value of CD30 as a therapeutic target for brentuximab vedotin in ongoing successful clinical trials, it seems appropriate to consider CD30+ DLBCL as a distinct subgroup of DLBCL. PMID:23343832

  5. Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: A soluble, secreted CD30 homologue

    PubMed Central

    Panus, Joanne Fanelli; Smith, Craig A.; Ray, Caroline A.; Smith, Terri Davis; Patel, Dhavalkumar D.; Pickup, David J.

    2002-01-01

    Cowpox virus (Brighton Red strain) possesses one of the largest genomes in the Orthopoxvirus genus. Sequence analysis of a region of the genome that is type-specific for cowpox virus identified a gene, vCD30, encoding a soluble, secreted protein that is the fifth member of the tumor necrosis factor receptor family known to be encoded by cowpox virus. The vCD30 protein contains 110 aa, including a 21-residue signal peptide, a potential O-linked glycosylation site, and a 58-aa sequence sharing 51–59% identity with highly conserved extracellular segments of both mouse and human CD30. A vCD30Fc fusion protein binds CD153 (CD30 ligand) specifically, and it completely inhibits CD153/CD30 interactions. Although the functions of CD30 are not well understood, the existence of vCD30 suggests that the cellular receptor plays a significant role in normal immune responses. Viral inhibition of CD30 also lends support to the potential therapeutic value of targeting CD30 in human inflammatory and autoimmune diseases. PMID:12034885

  6. IgA measurements in over 12 000 Swedish twins reveal sex differential heritability and regulatory locus near CD30L.

    PubMed

    Viktorin, Alexander; Frankowiack, Marcel; Padyukov, Leonid; Chang, Zheng; Melén, Erik; Sääf, Annika; Kull, Inger; Klareskog, Lars; Hammarström, Lennart; Magnusson, Patrik K E

    2014-08-01

    In a broad attempt to improve the understanding of the genetic regulation of serum IgA levels, the heritability was estimated in over 12 000 Swedish twins, and a genome-wide association study was conducted in a subsample of 9617. Using the classical twin model the heritability was found to be significantly larger among females (61%) compared with males (21%), while contribution from shared environment (20%) was only seen for males. By modeling the genetic relationship matrix with IgA levels, we estimate that a substantial proportion (31%) of variance in IgA levels can ultimately be explained by the investigated SNPs. The genome-wide association study revealed significant association to two loci: (i) rs6928791 located on chromosome 6, 22 kb upstream of the gene SAM and SH3 domain containing 1 (SASH1) and (ii) rs13300483 on chromosome 9, situated 12 kb downstream the CD30 ligand (CD30L) encoding gene. The association to rs13300483 was replicated in two additional independent Swedish materials. The heritability of IgA levels is moderate and can partly be attributable to common variation in the CD30L locus. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  8. A method for the generation of ectromelia virus (ECTV) recombinants: in vivo analysis of ECTV vCD30 deletion mutants.

    PubMed

    Alejo, Ali; Saraiva, Margarida; Ruiz-Argüello, Maria Begoña; Viejo-Borbolla, Abel; de Marco, Mar Fernández; Salguero, Francisco Javier; Alcami, Antonio

    2009-01-01

    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo. To evaluate the contribution of viral CD30 (vCD30) to virus pathogenesis in the infected host, we have adapted a novel transient dominant method for the selection of recombinant ECTVs. Using this method, we have generated an ECTV vCD30 deletion mutant, its corresponding revertant control virus as well as a virus encoding the extracellular domain of murine CD30. These viruses contain no exogenous marker DNA sequences in their genomes, as opposed to other ECTVs reported up to date. We show that the vCD30 is expressed as a secreted disulfide linked trimer and that the absence of vCD30 does not impair mousepox induced fatality in vivo. Replacement of vCD30 by a secreted version of mouse CD30 caused limited attenuation of ECTV. The recombinant viruses generated may be of use in the study of the role of the cellular CD30-CD30L interaction in the development of the immune response. The method developed might be useful for the construction of ECTV mutants for the study of additional genes.

  9. Disruption of the zinc metabolism in rat fœtal brain after prenatal exposure to cadmium.

    PubMed

    Ben Mimouna, Safa; Boughammoura, Sana; Chemek, Marouane; Haouas, Zohra; Banni, Mohamed; Messaoudi, Imed

    2018-04-25

    This study was carried out to investigate the effects of maternal Cd and/or Zn exposure on some parameters of Zn metabolism in fetal brain of Wistar rats. Thus, female controls and other exposed by the oral route during the gestation period to Cd (50 mg CdCl 2 /L) and/or Zn (ZnCl 2 60 mg/L) were used. The male fetuses at age 20 days of gestation (GD20) were sacrificed and their brains were taken for histological, chemical and molecular analysis. Zn depletion was observed in the brains of fetuses issued from mothers exposed to Cd. Histological analysis showed that Cd exposure induces pyknosis in cortical region and CA1 region of the hippocampus compared to controls. Under Cd exposure, we noted an overexpression of the genes coding for membrane transporter involved in the intracellular incorporation of Zn (ZIP6) associated with inhibition of that encoding the transporters involved in the output of the Zn into the extracellular medium (ZnT1 and ZnT3). A decrease in the expression of the gene encoding the neuro-trophic factor (BDNF) associated with overexpression of the encoding the metal regulatory transcription factor 1 (MTF1), factor involved in the homeostasis of Zn, was also noted in Cd group. Interestingly, Zn supply provided a total or partial restauration of the changes induced by the Cd exposure. The depletion of brain Zn contents as well as the modification of the profile of expression of genes encoding membrane Zn transporters, suggest that the toxicity of Cd observed in fetal brain level are mediated, in part, by impairment of Zn metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3.

    PubMed

    Jaleco, A C; Stegmann, A P; Heemskerk, M H; Couwenberg, F; Bakker, A Q; Weijer, K; Spits, H

    1999-10-15

    Transgenic and gene targeted mice have contributed greatly to our understanding of the mechanisms underlying B-cell development. We describe here a model system that allows us to apply molecular genetic techniques to the analysis of human B-cell development. We constructed a retroviral vector with a multiple cloning site connected to a gene encoding green fluorescent protein by an internal ribosomal entry site. Human CD34(+)CD38(-) fetal liver cells, cultured overnight in a combination of stem cell factor and interleukin-7 (IL-7), could be transduced with 30% efficiency. We ligated the gene encoding the dominant negative helix loop helix (HLH) factor Id3 that inhibits many enhancing basic HLH transcription factors into this vector. CD34(+)CD38(-) FL cells were transduced with Id3-IRES-GFP and cultured with the murine stromal cell line S17. In addition, we cultured the transduced cells in a reaggregate culture system with an SV-transformed human fibroblast cell line (SV19). It was observed that overexpression of Id3 inhibited development of B cells in both culture systems. B-cell development was arrested at a stage before expression of the IL-7Ralpha. The development of CD34(+)CD38(-) cells into CD14(+) myeloid cells in the S17 system was not inhibited by overexpression of Id3. Moreover, Id3(+) cells, although inhibited in their B-cell development, were still able to develop into natural killer (NK) cells when cultured in a combination of Flt-3L, IL-7, and IL-15. These findings confirm the essential role of bHLH factors in B-cell development and demonstrate the feasibility of retrovirus-mediated gene transfer as a tool to genetically modify human B-cell development.

  11. Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage.

    PubMed

    Chung, Yoon-Suk A; Sabel, Katja; Krönke, Martin; Klimka, Alexander

    2008-04-16

    The display of binding ligands, such as recombinant antibody fragments, on the surface of filamentous phage makes it possible to specifically attach these phage particles to target cells. After uptake of the phage, their internal single-stranded DNA is processed by the host cell, which allows transient expression of an encoded eukaryotic gene cassette. This opens the possibility to use bacteriophage as vectors for targeted gene therapy, although the transduction efficiency is very low. Here we demonstrate the display of an anti-CD30 single chain variable fragment fused to the major coat protein pVIII on the surface of bacteriophage. These phage particles showed an improved binding and transduction efficiency of CD30 positive Hodgkin-lymphoma cells, compared to bacteriophage with the anti-CD30 single chain variable fragment fused to the minor coat protein pIII. We can conclude from the results that the postulated multivalency of the anti-CD30-pVIII displaying bacteriophage combined with disseminated display of the anti-CD30 scFv on the whole particle surface is responsible for the improved gene transfer rate. These results mark an important step towards the use of phage particles as a cheap and safe gene transfer vehicle for the gene delivery of the desired target cells via their specific surface receptors.

  12. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng

    2015-02-01

    Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work.

  13. Deciphering CD30 ligand biology and its role in humoral immunity

    PubMed Central

    Kennedy, Mary K; Willis, Cynthia R; Armitage, Richard J

    2006-01-01

    Ligands and receptors in the tumour necrosis factor (TNF) and tumour necrosis factor receptor (TNFR) superfamilies have been the subject of extensive investigation over the past 10–15 years. For certain TNFR family members, such as Fas and CD40, some of the consequences of receptor ligation were predicted before the identification and cloning of their corresponding ligands through in vitro functional studies using agonistic receptor-specific antibodies. For other members of the TNFR family, including CD30, cross-linking the receptor with specific antibodies failed to yield many clues about the functional significance of the relevant ligand–receptor interactions. In many instances, the subsequent availability of TNF family ligands in the form of recombinant protein facilitated the determination of biological consequences of interactions with their relevant receptor in both in vitro and in vivo settings. In the case of CD30 ligand (CD30L; CD153), definition of its biological role remained frustratingly elusive. Early functional studies using CD30L+ cells or agonistic CD30-specific antibodies logically focused attention on cell types that had been shown to express CD30, namely certain lymphoid malignancies and subsets of activated T cells. However, it was not immediately clear how the reported activities from these in vitro studies relate to the biological activity of CD30L in the more complex whole animal setting. Recently, results from in vivo models involving CD30 or CD30L gene disruption, CD30L overexpression, or pharmacological blockade of CD30/CD30L interactions have begun to provide clues about the role played by CD30L in immunological processes. In this review we consider the reported biology of CD30L and focus on results from several recent studies that point to an important role for CD30/CD30L interactions in humoral immune responses. PMID:16771849

  14. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response.

    PubMed

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P; Schlosser, Anders; Sorensen, Grith L; Nielsen, Ole; Tornøe, Ida; Grønlund, Jørn; Nielsen, Maria E; Jørgensen, Jan S; Jensen, Ole N; Mollenhauer, Jan; Moestrup, Søren K; Holmskov, Uffe

    2012-03-01

    CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.

  15. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice.

    PubMed

    Ishikawa, Satoru; Ishimaru, Yasuhiro; Igura, Masato; Kuramata, Masato; Abe, Tadashi; Senoura, Takeshi; Hase, Yoshihiro; Arao, Tomohito; Nishizawa, Naoko K; Nakanishi, Hiromi

    2012-11-20

    Rice (Oryza sativa L.) grain is a major dietary source of cadmium (Cd), which is toxic to humans, but no practical technique exists to substantially reduce Cd contamination. Carbon ion-beam irradiation produced three rice mutants with <0.05 mg Cd⋅kg(-1) in the grain compared with a mean of 1.73 mg Cd⋅kg(-1) in the parent, Koshihikari. We identified the gene responsible for reduced Cd uptake and developed a strategy for marker-assisted selection of low-Cd cultivars. Sequence analysis revealed that these mutants have different mutations of the same gene (OsNRAMP5), which encodes a natural resistance-associated macrophage protein. Functional analysis revealed that the defective transporter protein encoded by the mutant osnramp5 greatly decreases Cd uptake by roots, resulting in decreased Cd in the straw and grain. In addition, we developed DNA markers to facilitate marker-assisted selection of cultivars carrying osnramp5. When grown in Cd-contaminated paddy fields, the mutants have nearly undetectable Cd in their grains and exhibit no agriculturally or economically adverse traits. Because mutants produced by ion-beam radiation are not transgenic plants, they are likely to be accepted by consumers and thus represent a practical choice for rice production worldwide.

  16. GDP-L-fucose: {beta}-D-galactoside 2-{alpha}-Lfucosyltransferases, DNA sequences encoding the same, method for producing the same and a method of genotyping a person

    DOEpatents

    Lowe, J.B.; Lennon, G.; Rouquier, S.; Giorgi, D.; Kelly, R.J.

    1998-09-15

    The gene encoding GDP-L-fucose: {beta}-D-Galactoside 2-{alpha}-Lfucosyltransferase has been cloned, and a mutation in this gene has been found to be responsible for an individual being a non-secretor. 30 figs.

  17. Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Z.; Chen, S.; Wilson, D.B.

    1999-11-01

    An Mn{sup 2+} and Cd{sup 2+} uptake gene, mntA, was cloned from Lactobacillus plantarum ATCC 14917 into Escherichia coli. Its expression conferred on E. coli cells increased Cd{sup 2+} sensitivity as well as energy-dependent Cd{sup 2+} uptake activity. Both transcription and translation of mntA were induced by Mn{sup 2+} starvation in L. plantarum, as indicated by reverse transcriptase PCR and immunoblotting. Two Cd{sup 2+} uptake systems have been identified in L. plantarum: one is a high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system that is expressed in Mn{sup 2+}-starved cells, and the other is a nonsaturable Cd{sup 2+} uptake systemmore » that is expressed in Cd{sup 2+}-sufficient cells. MntA was not detected in an Mn{sup 2+}-dependent mutant of L. plantarum which had lost high-affinity Mn{sup 2+} and Cd{sup 2+} uptake activity. The results suggest that mntA is the gene encoding the high-affinity Mn{sup 2+} and Cd{sup 2+} transporter. On the basis of its predicted amino acid sequence, MntA belongs to the family of P-type cation-translocating ATPases. The topology and potential Mn{sup 2+}- and Cd{sup 2+}-binding sites of MntA are discussed. A second clone containing a low-affinity Cd{sup 2+} transport system was also isolated.« less

  18. Genetic polymorphism in ATG16L1 gene influences the response to adalimumab in Crohn's disease patients.

    PubMed

    Koder, Silvo; Repnik, Katja; Ferkolj, Ivan; Pernat, Cvetka; Skok, Pavel; Weersma, Rinse K; Potočnik, Uroš

    2015-01-01

    To see if SNPs could help predict response to biological therapy using adalimumab (ADA) in Crohn's disease (CD). IBDQ index and CRP levels were used to monitor therapy response. We genotyped 31 CD-associated genes in 102 Slovenian CD patients. The strongest association for treatment response defined as decrease in CRP levels was found for ATG16L1 SNP rs10210302. Additional SNPs in 7 out of 31 tested CD-associated genes (PTGER4, CASP9, IL27, C11orf30, CCNY, IL13, NR1I2) showed suggestive association with ADA response. Our results suggest ADA response in CD patients is genetically predisposed by SNPs in CD risk genes and suggest ATG16L1 as most promising candidate gene for drug response in ADA treatment. Original submitted 24 September 2014; Revision submitted 1 December 2014.

  19. Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): Histopathological changes and expression characterization of stress response genes.

    PubMed

    Zhu, Qi-Hui; Zhou, Zhong-Kai; Tu, Dan-Dan; Zhou, Yi-Lian; Wang, Cong; Liu, Ze-Peng; Gu, Wen-Bin; Chen, Yu-Yin; Shu, Miao-An

    2018-02-01

    Cadmium (Cd) is a heavy metal that accumulates easily in organisms and causes several detrimental effects, including tissue damage. Cd contamination from anthropogenic terrestrial sources flows into rivers, and through estuaries to the ocean. To evaluate the toxic effects of Cd on estuary crustaceans, we exposed the mud crab Scylla paramamosain to various Cd concentrations (0, 10.0, 20.0, and 40.0mg/L) for 24h. We also exposed mud crabs to a fixed Cd concentration (20.0mg/L) for various periods of time (0, 6, 12, 24, 48, and 72h). We observed that after exposure to Cd, the surfaces of the gill lamellae were wrinkled, and the morphologies of the nuclei and mitochondria in the hepatopancreas were altered. We analyzed the expression profiles of 36 stress-related genes after Cd exposure, including those encoding metallothioneins, heat shock proteins, apoptosis-related proteins, and antioxidant proteins, with quantitative reverse transcription PCR. We found that exposure to Cd altered gene expression, and that some genes might be suitable bioindicators of Cd stress. Gene expression profiles were organ-, duration-, and concentration-dependent, suggesting that stress-response genes might be involved in an innate defense system for handling heavy metal exposure. To the best of our knowledge, this study is the first one of histopathology and stress-response gene expression pattern of Scylla paramamosain after Cd exposure. Our work could increase our understanding of the effect of environmental toxins on estuary crustaceans. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Intraperitoneal Administration of a Tumor-Associated Antigen SART3, CD40L, and GM-CSF Gene-Loaded Polyplex Micelle Elicits a Vaccine Effect in Mouse Tumor Models

    PubMed Central

    Furugaki, Kouichi; Cui, Lin; Kunisawa, Yumi; Osada, Kensuke; Shinkai, Kentaro; Tanaka, Masao; Kataoka, Kazunori; Nakano, Kenji

    2014-01-01

    Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype. PMID:25013909

  1. Human anti-CD30 recombinant antibodies by guided phage antibody selection using cell panning

    PubMed Central

    Klimka, A; Matthey, B; Roovers, R C; Barth, S; Arends, J-W; Engert, A; Hoogenboom, H R

    2000-01-01

    In various clinical studies, Hodgkin’s patients have been treated with anti-CD30 immunotherapeutic agents and have shown promising responses. One of the problems that appeared from these studies is the development of an immune response against the non-human therapeutics, which limits repeated administration and reduces efficacy. We have set out to make a recombinant, human anti-CD30 single-chain variable fragment (scFv) antibody, which may serve as a targeting moiety with reduced immunogenicity and more rapid tumour penetration in similar clinical applications. Rather than selecting a naive phage antibody library on recombinant CD30 antigen, we used guided selection of a murine antibody in combination with panning on the CD30-positive cell line L540. The murine monoclonal antibody Ki-4 was chosen as starting antibody, because it inhibits the shedding of the extracellular part of the CD30 antigen. This makes the antibody better suited for CD30-targeting than most other anti-CD30 antibodies. We have previously isolated the murine Ki-4 scFv by selecting a mini-library of hybridoma-derived phage scFv-antibodies via panning on L540 cells. Here, we report that phage display technology was successfully used to obtain a human Ki-4 scFv version by guided selection. The murine variable heavy (VH) and light (VL) chain genes of the Ki-4 scFv were sequentially replaced by human V gene repertoires, while retaining only the major determinant for epitope-specificity: the heavy-chain complementarity determining region 3 (CDR3) of murine Ki-4. After two rounds of chain shuffling and selection by panning on L540 cells, a fully human anti-CD30 scFv was selected. It competes with the parental monoclonal antibody Ki-4 for binding to CD30, inhibits the shedding of the extracellular part of the CD30 receptor from L540 cells and is thus a promising candidate for the generation of anti-CD30 immunotherapeutics. © 2000 Cancer Research Campaign PMID:10901379

  2. Individual and epistatic effects of genetic polymorphisms of B-cell co-stimulatory molecules on susceptibility to pemphigus foliaceus.

    PubMed

    Malheiros, D; Petzl-Erler, M L

    2009-09-01

    Following the candidate gene approach we analyzed the CD40L, CD40, BLYS and CD19 genes that participate of B-cell co-stimulation, for association with pemphigus foliaceus (PF), an organ-specific autoimmune disease, characterized by the detachment of epidermal cells from each other (acantholysis) and presence of autoantibodies specific for desmoglein 1 (dsg1), an epidermal cell-adhesion molecule. The disease is endemic in certain regions of Brazil and also is known as fogo selvagem. Complex interactions among environmental and genetic susceptibility factors contribute to the manifestation of this multifactorial disease. The sample included 179 patients and 317 controls. Strong significant association was found with CD40L-726T>C (odds ratio, OR=5.54 and 0.30 for T+ and C+ genotypes, respectively). In addition, there were significant negative associations with CD40 -1T (OR=0.61) and BLYS-871T (OR=0.62) due to the decrease of the frequency of both homo- and heterozygotes in the patient group. No associations were found with variants of CD19 gene. Gene-gene interactions were observed between CD40 and BLYS, and between CD40L and BLYS. So, the dominant protective effects of CD40L-726C and of CD40 -1T only manifest in BLYS-871T+ individuals, and vice versa. We conclude that genetic variability of CD40L, CD40 and BLYS is an important factor for PF pathogenesis.

  3. Genome of Enterobacteriophage Lula/phi80 and Insights into Its Ability To Spread in the Laboratory Environment

    PubMed Central

    Rotman, Ella; Kouzminova, Elena; Plunkett, Guy

    2012-01-01

    The novel temperate bacteriophage Lula, contaminating laboratory Escherichia coli strains, turned out to be the well-known lambdoid phage phi80. Our previous studies revealed that two characteristics of Lula/phi80 facilitate its spread in the laboratory environment: cryptic lysogen productivity and stealthy infectivity. To understand the genetics/genomics behind these traits, we sequenced and annotated the Lula/phi80 genome, encountering an E. coli-toxic gene revealed as a gap in the sequencing contig and analyzing a few genes in more detail. Lula/phi80's genome layout copies that of lambda, yet homology with other lambdoid phages is mostly limited to the capsid genes. Lula/phi80's DNA is resistant to cutting with several restriction enzymes, suggesting DNA modification, but deletion of the phage's damL gene, coding for DNA adenine methylase, did not make DNA cuttable. The damL mutation of Lula/phi80 also did not change the phage titer in lysogen cultures, whereas the host dam mutation did increase it almost 100-fold. Since the high phage titer in cultures of Lula/phi80 lysogens is apparently in response to endogenous DNA damage, we deleted the only Lula/phi80 SOS-controlled gene, dinL. We found that dinL mutant lysogens release fewer phage in response to endogenous DNA damage but are unchanged in their response to external DNA damage. The toxic gene of Lula/phi80, gamL, encodes an inhibitor of the host ATP-dependent exonucleases, RecBCD and SbcCD. Its own antidote, agt, apparently encoding a modifier protein, was found nearby. Interestingly, Lula/phi80 lysogens are recD and sbcCD phenocopies, so GamL and Agt are part of lysogenic conversion. PMID:23042999

  4. Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene.

    PubMed

    He, Lilong; Ma, Xiaoling; Li, Zhenzhen; Jiao, Zhengli; Li, Yongqing; Ow, David W

    2016-07-01

    Previously the Arabidopsis (Arabidopsis thaliana) zinc finger protein OXIDATIVE STRESS2 (AtOXS2) and four OXS2-like (AtO2L) family members were described to play a role in stress tolerance and stress escape. For stress escape, SOC1 was a target of AtOXS2. However, for stress tolerance, the downstream targets were not identified. We cloned two OXS2 homolog genes from sweet corn, ZmOXS2b and ZmO2L1 Both genes are transiently inducible by Cd treatment. When expressed in Arabidopsis, each enhances tolerance against cadmium. Further analysis showed that ZmOXS2b and ZmO2L1 proteins enhance Cd tolerance in Arabidopsis by activating at least one target gene, that encoding a putative S-adenosyl-l-Met-dependent methyltransferase superfamily protein (AT5G37990), which we named CIMT1 This activation involves the in vivo interaction with a segment of the CIMT1 promoter that contains a BOXS2 motif previously identified as the binding element for AtOXS2. More importantly, CIMT1 is induced by Cd treatment, and overexpression of this gene alone was sufficient to enhance Cd tolerance in Arabidopsis. The connection of ZmOXS2b and ZmO2L1 to Arabidopsis CIMT1 suggests a similar network may exist in maize (Zea mays) and may provide a clue to possibly using a CIMT1 maize homolog to engineer stress tolerance in a major crop. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Detection of tlh and tdh genes in Vibrio Parahaemolyticus inhabiting farmed water ecosystem used for L. Vannamei aquaculture

    NASA Astrophysics Data System (ADS)

    Nawan Hasrimi, Adila; Budiharjo, Anto; Nur Jannah, Siti

    2018-05-01

    Vibrio parahaemolyticus is hallophilic gram-negative bacteria that live as natural inhabitant in aquatic environment. All Vibrio parahaemolyticus strain known to have thermolabile hemolysin encoded by tlh gene as species marker. Thermostable direct hemolysin encoded by tdh gene is responsible for regulating virulence factor in Vibrio parhaemolyticus. Aim of this research is to detect tlh and tdh gene from water of L. vannamei aquaculture in Rembang regency. Colonies of green-blueish bacteria grew from isolation of L. vannamei aquaculture water in CD-VP media which was identified as Vibrio parahaemolyticus. Colonies of V. parahaemolyticus grew to be small and green-blueish bacteria colonies in TCBS agar. Result of molecular analysis showed that bacteria isolated from water sample are specifically identified as Vibrio parahaemolyticus bacteria by the detection of tlh gene. Vibrio parahaemolyticus isolated from water of L. vannamei aquaculture detected as tdh negative that indicates tdh gene is not present in isolated bacteria. Vibrio parahaemolyticus isolate were cultured in Wagatsuma agar for tdh gene confirmation test that showed Kanagawa negative result, which indicated that V. parahaemolyticus did not produce thermostable direct hemolysin. These results showed that Vibrio parahaemolyticus isolated from aquatic environment of L. vannamei aquaculture in Rembang regency did not show virulence factors.

  6. Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters

    PubMed Central

    WANG, JIACHEN; DASGUPTA, INDRANI; FOX, GEORGE E.

    2009-01-01

    The genomic associations of the archaeal ribosomal proteins, (r-proteins), were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such. PMID:19478915

  7. Post-transplant soluble CD30 levels are associated with early subclinical rejection in kidney transplantation.

    PubMed

    Grenzi, Patricia C; Campos, Érika F; Silva, Hélio T; Felipe, Claudia R; Franco, Marcelo F; Soares, Maria F; Medina-Pestana, José O; Gerbase-DeLima, Maria

    2015-03-01

    Several studies have shown association of high pre- or post-transplant levels of soluble CD30 (sCD30) with acute rejection and poor late kidney transplant outcome. Our goal was to investigate whether sCD30 levels at month-3 post-transplant are associated with subclinical rejection, presence of CD30(+) cells within the graft, and expression of immune response genes in peripheral blood mononuclear cells. The study comprised 118 adult first kidney graft recipients, transplanted at a single center, receiving tacrolimus in low concentration. All were submitted to a protocol biopsy at month-3. Subclinical rejection was identified in 10 biopsies and sCD30 levels ≥ 61.88 ng/mL (P = 0.004), younger recipient age (P = 0.030) and non-Caucasian ethnicity (P = 0.011) were independently associated with this outcome. Rare CD30(+) cells were present in only two biopsies. There was a correlation between sCD30 levels and CD30 gene expression in peripheral blood mononuclear cells (r = 0.385, P = 0.043). These results show that high sCD30 levels are independent predictors of graft dysfunction and may contribute to patient selection protocols by indicating those who could benefit from a more thorough evaluation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. L-asparaginase induced complete remission in Epstein-Barr virus positive, multidrug resistant, cutaneous T-cell lymphoma.

    PubMed

    Obama, K; Tara, M; Niina, K

    1999-06-01

    A 30-year-old man was admitted to our hospital with subcutaneous tumors and a high fever. Based on biomicroscopic findings of the tumor, the patient was diagnosed as having diffuse, medium, well-differentiated malignant lymphoma. Immunochemical analysis showed that CD3, CD4, CD25, and TCR beta were positive, and in situ hybridization revealed Epstein-Barr virus-encoded small RNAs in the nuclei of the lymphoma cells. Despite the patient's resistance to multidrug therapy, complete remission was achieved using L-asparaginase. This case is unique because of its peculiar clinical course and a possible association with the Epstein-Barr virus. L-asparaginase may be an important treatment in other patients who exhibit some of these characteristics.

  9. ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in the Netherlands.

    PubMed

    Weersma, Rinse K; Zhernakova, Alexandra; Nolte, Ilja M; Lefebvre, Céline; Rioux, John D; Mulder, Flip; van Dullemen, Hendrik M; Kleibeuker, Jan H; Wijmenga, Cisca; Dijkstra, Gerard

    2008-03-01

    Inflammatory bowel disease (IBD)--Crohn's disease (CD) and ulcerative colitis (UC)--and celiac disease are intestinal inflammatory disorders with a complex genetic background. Recently, two novel genes were found to be associated with IBD susceptibility. One, an uncommon coding variant (rs11209026) in the gene encoding for the interleukin-23 receptor (IL23R), conferred strong protection against CD. The other, rs2241880 in the autophagy-related 16-like 1 gene (ATG16L1), was associated with CD. We performed a case-control study for the association of IBD with IL23R and ATG16L1 in a Dutch cohort. We also looked at the association of IL23R and ATG16L1 with celiac disease. Five hundred eighteen Dutch white IBD patients (311 CD and 207 UC, including 176 trios of patients with both parents), 508 celiac disease patients, and 893 healthy controls were studied for association with the rs11209026 (IL23R) and rs2241880 (ATG16L1) single nucleotide polymorphisms (SNP). The rs11209026 SNP in IL23R had a protective effect for IBD in the case-control analysis (odds ratio [OR] 0.19, 95% confidence interval [CI] 0.10-0.37, P= 6.6E-09). Both CD (OR 0.14, CI 0.06-0.37, P= 3.9E-07) and UC (OR 0.33, CI 0.15-0.73, P= 1.4E-03) were associated with IL23R. For ATG16L1, the rs2241880 SNP was associated with CD susceptibility (OR 1.36, CI 1.12-1.66, P= 0.0017). The population-attributable risk of carrying allele G is 0.24 and is 0.19 for homozygosity for allele G in CD. No association was found between IL23R or ATG16L1 and celiac disease. We confirmed the association of IL23R and ATG16L1 with CD susceptibility and also the association of IL23R with UC. We found IL23R and ATG16L1 were not associated with celiac disease susceptibility.

  10. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.

    PubMed

    Ferreira, A B; Oliveira, M N V de; Freitas, F S; Paiva, A D; Alfenas-Zerbini, P; Silva, D F da; Queiroz, M V de; Borges, A C; Moraes, C A de

    2015-01-01

    Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.

  12. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation.

    PubMed

    Sakpirom, Jakkapan; Kantachote, Duangporn; Nunkaew, Tomorn; Khan, Eakalak

    2017-04-01

    This study was aimed at selecting purple non-sulfur bacteria (PNSB) isolated from various paddy fields, including Cd- and Zn-contaminated paddy fields, based on their biofertilizer properties. Among 235 PNSB isolates, strain TN110 was most effective in plant growth-promoting substance (PGPS) production, releasing 3.2 mg/L of [Formula: see text] , 4.11 mg/L of 5-aminolevulinic acid (ALA) and 3.62 mg/L of indole-3-acetic acid (IAA), and reducing methane emission up to 80%. This strain had nifH, vnfG and anfG, which are the Mo, V and Fe nitrogenase genes encoded for key enzymes in nitrogen fixation under different conditions. This strain provided 84% and 55% removal of Cd and Zn, respectively. Another isolate, TN414, not only produced PGPS (1.30 mg/L of [Formula: see text] , 0.94 mg/L of ALA and 0.65 mg/L of IAA), but was also efficient in removing both Cd and Zn at 72% and 74%, respectively. Based on 16S rDNA sequencing, strain TN110 was identified as Rhodopseudomonas palustris, while strain TN414 was Rubrivivax gelatinosus. A combination of TN110 and TN414 could potentially provide a biofertilizer, which is a greener alternative to commercial/chemical fertilizers and an agent for bioremediation of heavy metals and greenhouse gas mitigation in paddy fields. Copyright © 2016 Institut Pasteur. All rights reserved.

  13. Structures of Preferred Human IgV Genes-Based Protective Antibodies Identify How Conserved Residues Contact Diverse Antigens and Assign Source of Specificity to CDR3 Loop Variation.

    PubMed

    Bryson, Steve; Thomson, Christy A; Risnes, Louise F; Dasgupta, Somnath; Smith, Kenneth; Schrader, John W; Pai, Emil F

    2016-06-01

    The human Ab response to certain pathogens is oligoclonal, with preferred IgV genes being used more frequently than others. A pair of such preferred genes, IGVK3-11 and IGVH3-30, contributes to the generation of protective Abs directed against the 23F serotype of the pneumonococcal capsular polysaccharide of Streptococcus pneumoniae and against the AD-2S1 peptide of the gB membrane protein of human CMV. Structural analyses of Fab fragments of mAbs 023.102 and pn132p2C05 in complex with portions of the 23F polysaccharide revealed five germline-encoded residues in contact with the key component, l-rhamnose. In the case of the AD-2S1 peptide, the KE5 Fab fragment complex identified nine germline-encoded contact residues. Two of these germline-encoded residues, Arg91L and Trp94L, contact both the l-rhamnose and the AD-2S1 peptide. Comparison of the respective paratopes that bind to carbohydrate and protein reveals that stochastic diversity in both CDR3 loops alone almost exclusively accounts for their divergent specificity. Combined evolutionary pressure by human CMV and the 23F serotype of S. pneumoniae acted on the IGVK3-11 and IGVH3-30 genes as demonstrated by the multiple germline-encoded amino acids that contact both l-rhamnose and AD-2S1 peptide. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene.

    PubMed

    Liu, Senquan; Ye, Zhaohui; Gao, Yongxing; He, Chaoxia; Williams, Donna W; Moliterno, Alison; Spivak, Jerry; Huang, He; Cheng, Linzhao

    2017-01-01

    Activating point mutations in the MPL gene encoding the thrombopoietin receptor are found in 3%-10% of essential thrombocythemia (ET) and myelofibrosis patients. Here, we report the derivation of induced pluripotent stem cells (iPSCs) from an ET patient with a heterozygous MPL V501L mutation. Peripheral blood CD34 + progenitor cells were reprogrammed by transient plasmid expression of OCT4, SOX2, KLF4, c-MYC plus BCL2L1 (BCL-xL) genes. The derived line M494 carries a MPL V501L mutation, displays typical iPSC morphology and characteristics, are pluripotent and karyotypically normal. Upon differentiation, the iPSCs are able to differentiate into cells derived from three germ layers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Genomic structure and chromosomal mapping of the human CD22 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kozlow, E.; Kehrl, J.H.

    1993-06-01

    The human CD22 gene is expressed specifically in B lymphocytes and likely has an important function in cell-cell interactions. A nearly full length human CD22 cDNA clone was used to isolate genomic clones that span the CD22 gene. The CD22 gene is spread over 22 kb of DNA and is composed of 15 exons. The first exon contains the major transcriptional start sites. The translation initiation codon is located in exon 3, which also encodes a portion of the signal peptide. Exons 4 to 10 encode the seven Ig domains of CD22, exon 11 encodes the transmembrane domain, exons 12more » to 15 encode the intracytoplasmic domain of CD22, and exon 15 also contains the 3' untranslated region. A minor form of CD22 mRNA likely results from splicing of exon 5 to exon 8, skipping exons 6 and 7. A 4.6-kb Xbal fragment of the CD22 gene was used to map the chromosomal location of CD22 by fluorescence in situ hybridization. The hybridization locus was identified by combining fluorescent images of the probe with the chromosomal banding pattern generated by an Alu probe. The results demonstrate the CD22 is located within the band region q13.1 of chromosome 19. Two closely clustered major transcription start sites and several minor start sites were mapped by primer extension. Similarly to many other lymphoid-specific genes, the CD22 promoter lacks an obvious TATA box. Approximately 4 kb of DNA 5' of the transcription start sites were sequenced and found to contain multiple Alu elements. Potential binding sites for the transcriptional factors NF-kB, AP-1, and Oct-2 are located within 300 bp 5' of the major transcription start sites. A 400-bp fragment (bp -339 through +71) of the CD22 promoter region was subcloned into a pGEM-chloramphenicol acetyltransferase vector and after transfection into B and T cells was found to be active in both B and T cells. 45 refs., 7 figs., 2 tabs.« less

  16. Targeted Resequencing and Functional Testing Identifies Low-Frequency Missense Variants in the Gene Encoding GARP as Significant Contributors to Atopic Dermatitis Risk.

    PubMed

    Manz, Judith; Rodríguez, Elke; ElSharawy, Abdou; Oesau, Eva-Maria; Petersen, Britt-Sabina; Baurecht, Hansjörg; Mayr, Gabriele; Weber, Susanne; Harder, Jürgen; Reischl, Eva; Schwarz, Agatha; Novak, Natalija; Franke, Andre; Weidinger, Stephan

    2016-12-01

    Gene-mapping studies have consistently identified a susceptibility locus for atopic dermatitis and other inflammatory diseases on chromosome band 11q13.5, with the strongest association observed for a common variant located in an intergenic region between the two annotated genes C11orf30 and LRRC32. Using a targeted resequencing approach we identified low-frequency and rare missense mutations within the LRRC32 gene encoding the protein GARP, a receptor on activated regulatory T cells that binds latent transforming growth factor-β. Subsequent association testing in more than 2,000 atopic dermatitis patients and 2,000 control subjects showed a significant excess of these LRRC32 variants in individuals with atopic dermatitis. Structural protein modeling and bioinformatic analysis predicted a disruption of protein transport upon these variants, and overexpression assays in CD4 + CD25 - T cells showed a significant reduction in surface expression of the mutated protein. Consistently, flow cytometric (FACS) analyses of different T-cell subtypes obtained from atopic dermatitis patients showed a significantly reduced surface expression of GARP and a reduced conversion of CD4 + CD25 - T cells into regulatory T cells, along with lower expression of latency-associated protein upon stimulation in carriers of the LRRC32 A407T variant. These results link inherited disturbances of transforming growth factor-β signaling with atopic dermatitis risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Genome complexity in the coelacanth is reflected in its adaptive immune system

    USGS Publications Warehouse

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  18. Prolactin improves hepatic steatosis via CD36 pathway.

    PubMed

    Zhang, Pengzi; Ge, Zhijuan; Wang, Hongdong; Feng, Wenhuan; Sun, Xitai; Chu, Xuehui; Jiang, Can; Wang, Yan; Zhu, Dalong; Bi, Yan

    2018-06-01

    Prolactin (PRL) is a multifunctional polypeptide with effects on metabolism, however, little is known about its effect on hepatic steatosis and lipid metabolism. Herein, we aimed to assess the role of PRL in the development of non-alcoholic fatty liver disease (NAFLD). The serum PRL levels of 456 patients with NAFLD, 403 controls without NAFLD diagnosed by ultrasound, and 85 individuals with liver histology obtained during metabolic surgery (44 female and 30 male patients with NAFLD and 11 age-matched non-NAFLD female individuals) were evaluated. The expression of the gene encoding the prolactin receptor (PRLR) and signalling molecules involved in hepatic lipid metabolism were evaluated in human liver and HepG2 cells. The effects of overexpression of PRLR or fatty acid translocase (FAT)/CD36 or knockdown of PRLR on hepatic lipid metabolism were tested in free fatty acid (FFA)-treated HepG2 cells. Circulating PRL levels were lower in individuals with ultrasound-diagnosed NAFLD (men: 7.9 [range, 5.9-10.3] µg/L; women: 8.7 [range, 6.1-12.4] µg/L) than those with non-NAFLD (men: 9.1 [range, 6.8-13.0] µg/L, p = 0.002; women: 11.6 [range, 8.2-16.1] µg/L, p <0.001). PRL levels in patients with biopsy-proven severe hepatic steatosis were lower compared with those with mild-to-moderate hepatic steatosis in both men (8.3 [range, 5.4-9.5] µg/L vs. 9.7 [range, 7.1-12.3] µg/L, p = 0.031) and women (8.5 [range, 4.2-10.6] µg/L vs. 9.8 [range, 8.2-15.7] µg/L, p = 0.027). Furthermore, hepatic PRLR gene expression was significantly reduced in patients with NAFLD and negatively correlated with CD36 gene expression. In FFA-induced HepG2 cells, PRL treatment or PRLR overexpression significantly reduced the expression of CD36 and lipid content, effects that were abrogated after silencing of PRLR. Furthermore, overexpression of CD36 significantly reduced the PRL-mediated improvement in lipid content. Our results reveal a novel association between the central nervous system and the liver, whereby PRL/PRLR improved hepatic lipid accumulation via the CD36 pathway. Our clinical study suggests a negative association between prolactin (PRL)/prolactin receptor (PRLR) and the presence of non-alcoholic fatty liver disease (NAFLD). Using cell experiments, we found that PRL ameliorates hepatic steatosis via the hepatic PRLR and fatty acid translocase (FAT)/CD36, a key transporter of free fatty acid uptake in liver. Our findings suggest a novel approach to improving NAFLD using PRL and PRLR. Clinical trial number: NCT03296605. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Molecular Determinants of Antiestrogen and Drug Sensitivity in Breast Carcinoma Cells

    DTIC Science & Technology

    1996-08-01

    00 ~cd -olC CC) 00, COq -6 0 00d C5 kr0) C~U, 23l Effects of infection rate and selection pressure on gene expression from an internal promoter of a...Hybridization probes were prepared by restriction enzyme digestion of the LNCIuc plasmid, followed by the isolation of the desired fragments by...sensitivity to this drug. The bacterial neo gene encodes neomycin phosphotransferase, an enzyme that metabolically inactivates G418, with the extent of

  20. Differential splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities

    DTIC Science & Technology

    2017-12-01

    exhibited enhanced activation of the PI3K/AKT pathway compared to the same lines over-expressing the CA- enriched long (-L) variant PIK3CD-L (retains...demonstrate that FGFR3-S: i) encodes a more aggressive oncogenic signaling protein compared to CA-enriched FGFR3-L (retains exon 14) as defined by in vitro...into PCa cell lines for in vitro and in vivo investigations completed in Year 1 (see description below). 3 FIGURE 1. Full-length cDNA

  1. Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response.

    PubMed

    Alvarez, E; Moga, E; Barquinero, J; Sierra, J; Briones, J

    2010-04-01

    Fusion of dendritic cells and tumor cells (FCs) constitutes a promising tool for generating an antitumor response because of their capacity to present tumor antigens and provide appropriate costimulatory signals. CD40-CD40L interaction has an important role in the maturation and survival of dendritic cells and provides critical help for T-cell priming. In this study, we sought to improve the effectiveness of FC vaccines in a murine model of B-cell lymphoma by engineering FCs to express CD40L by means of an adenovirus encoding CD40L (Adv-CD40L). Before transduction with Adv-CD40L, no CD40L expression was detected in FCs, DCs or tumor cells. The surface expression of CD40L in FC transduced with Adv-CD40L (FC-CD40L) ranged between 50 and 60%. FC-CD40L showed an enhanced expression of CD80, CD86, CD54 and MHC class II molecules and elicited a strong in vitro immune response in a syngeneic mixed lymphocyte reaction. Furthermore, FC-CD40L showed enhanced migration to secondary lymphoid organs. Splenocytes from mice treated with FC-CD40L had a dramatic increase in the production of IL-17, IL-6 and IFN-gamma, compared with controls. Treatment with the FC-CD40L vaccine induced regression of established tumors and increased survival. Our data demonstrate that FC transduced with Adv-CD40L enhances the antitumor effect of FC vaccines in a murine lymphoma model and this is associated with an increased Th17-type immune response.

  2. Deletion of the TNFAIP3/A20 gene detected by FICTION analysis in classical Hodgkin lymphoma

    PubMed Central

    2012-01-01

    Background The TNFAIP3 gene, which encodes a ubiquitin-modifying enzyme (A20) involved in the negative regulation of NF-κB signaling, is frequently inactivated by gene deletions/mutations in a variety of B-cell malignancies. However, the detection of this in primary Hodgkin lymphoma (HL) specimens is hampered by the scarcity of Hodgkin Reed-Sternberg (HR-S) cells even after enrichment by micro-dissection. Methods We used anti-CD30 immunofluorescence with fluorescence in-situ hybridization (FISH) to evaluate the relative number of TNFAIP3/CEP6 double-positive signals in CD30-positive cells. Results From a total of 47 primary classical Hodgkin lymphoma (cHL) specimens, 44 were evaluable. We found that the relative numbers of TNFAIP3/CD30 cells were distributed among three groups, corresponding to those having homozygous (11%), heterozygous (32%), and no (57%) deletions in TNFAIP3. This shows that TNFAIP3 deletions could be sensitively detected using our chosen methods. Conclusions Comparing the results with mutation analysis, TNFAIP3 inactivation was shown to have escaped detection in many samples with homozygous deletions. This suggests that TNFAIP3 inactivation in primary cHL specimens might be more frequent than previously reported. PMID:23039325

  3. moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.J.; Lidstrom, M.E.

    The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome c/sub L/. In this study, four polypeptides of M/sub r/, 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement ofmore » the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the M/sub r/-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the M/sub r/-20,000 polypeptide, was identified as mature cytochrome c/sub L/, and the product of moxI, the M/sub r/-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the M/sub r/-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the M/sub r/-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the M/sub r/-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the M/sub r/-60,000 MeDH polypeptide. Our data suggest that both the M/sub r/-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1.« less

  4. Organization of the murine Cd22 locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Che-Leung; Torres, R.M.; Sundeberg, H.A.

    1993-07-01

    Murine CD22 (mCD22) is a B cell-associated adhesion protein with seven extracellular Ig-like domains that has 62% amino acid identify to its human homologue. Southern analysis on genomic DNA isolated from tissues and cell lines from several mouse strains using mCD22 cDNA demonstrated that the Cd22 locus encoding mCD22 is a single copy gene of [le]30 kb. Digestion of genomic DNA preparations with four restriction endonucleases revealed the presence of restriction fragment length polymorphisms (RFLP) in BALB/c, C57BL/6, and C3H strains vs DBA/2j, NZB, and NZC strains, suggesting the presence of two or more Cd22 alleles. Using a mCD22 cDNAmore » clone derived from the BALB/c strain, the authors isolated genomic clones from a DBA/2 genomic library that contained all the exons necessary to encode the full length mCD22 cDNA. Fifteen exons, including exon 3 that encodes the translation start codon, were identified. Each extracellular Ig-like domain of mCD22 is encoded by a single exon. A comparison between the nucleotide sequences of the BALB/c CD22 cDNA and the exons of the DBA/2j CD22 genomic clones revealed an 18-nucleotide deletion in exon 4 (encoding the most distal Ig-like domain 1 of mCD22) of the DBA/2j genomic sequence in addition to a number of substitutions, insertions, and deletions in other exons. These nucleotide differences were also present in a cDNA clone isolated from total RNA of LPS-activated DBA/2j splenocytes mosome 7, a region sytenic to human chromosome 19q, close to the previously reported loci, Lyb-8 and Mag (a homologue of Cd22). An antibody (CY34) against the Lyb-8.2 B cell marker reacted with a BHK transfectant expressing the full length mCd22 cDNA, thus demonstrating that Lyb-8 and Cd22 loci are identical. Furthermore, a rat anti-mCD22 mAb, NIM-R6, bound to slgM[sup +] DBA/2j B cells, confirming the expression of a CD22 protein by the Cd22[sup a]/lyb-8[sup a] allele. 63 refs., 7 figs., 1 tab.« less

  5. VP2 (PTA motif) encoding DNA vaccine confers protection against lethal challenge with infectious pancreatic necrosis virus (IPNV) in trout.

    PubMed

    Ahmadivand, Sohrab; Soltani, Mehdi; Behdani, Mahdi; Evensen, Øystein; Alirahimi, Ehsan; Soltani, Elahe; Hassanzadeh, Reza; Ashrafi-Helan, Javad

    2018-02-01

    IPNV in Atlantic salmon is represented by various strains with different virulence and immunogenicity linked to various motifs of the VP2 capsid. IPNV variant with P 217 , T 221 , A 247 (PTA) motif is found to be avirulent in Atlantic salmon, but virulent in rainbow trout, and other salmonid species. This study describes a DNA vaccine delivered intramuscularly encoding the VP2 protein of infectious pancreatic necrosis virus (IPNV) with PTA motif that confers high protection in rainbow trout (Oncorhynchus mykiss). Intramuscular injection of 2, 5 and 10 μg of DNA (pcDNA3.1-VP2) in rainbow trout fry (4-5 g), confers relative protection of 75-83% in the different vaccine groups at 30 days post vaccination (450° days). The VP2 gene is expressed in spleen, kidney, muscle and liver at day 30 post-vaccination (RT-PCR), and IFN-1 and Mx-1 mRNA are upregulated at early time post vaccination, and so also for IgM, IgT, CD4 and CD8 in the head kidney of vaccinated fish compared to controls, 15 and 30 days post vaccination. Significant increase of serum anti-IPNV antibodies was found 30-90 days post-vaccination that was correlated with protection levels. Mortality corresponded with viral VP4 gene expression were significantly decreased in vaccinated and challenged fish. This shows for the first time that a VP2-encoding DNA vaccine delivered intramuscularly elicits a high level of protection alongside with high levels of circulating antibodies in rainbow trout and a lowered viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cholera toxin B-subunit gene enhances mucosal immunoglobulin A, Th1-type, and CD8+ cytotoxic responses when coadministered intradermally with a DNA vaccine.

    PubMed

    Sanchez, Alba E; Aquino, Guillermo; Ostoa-Saloma, Pedro; Laclette, Juan P; Rocha-Zavaleta, Leticia

    2004-07-01

    A plasmid vector encoding the cholera toxin B subunit (pCtB) was evaluated as an intradermal genetic adjuvant for a model DNA vaccine expressing the human papillomavirus type 16 L1 capsid gene (p16L1) in mice. p16L1 was coadministered with plasmid pCtB or commercial polypeptide CtB as a positive control. Coadministration of pCtB induced a significant increment of specific anti-L1 immunoglobulin A (IgA) antibodies in cervical secretions (P < 0.05) and fecal extracts (P < 0.005). Additionally, coadministration of pCtB enhanced the production of interleukin-2 and gamma interferon by spleen cells but did not affect the production of interleukin-4, suggesting a Th1-type helper response. Furthermore, improved CD8+ T-cell-mediated cytotoxic activity was observed in mice vaccinated with the DNA vaccine with pCtB as an adjuvant. This adjuvant effect was comparable to that induced by the CtB polypeptide. These results indicate that intradermal coadministration of pCtB is an adequate means to enhance the mucosa-, Th1-, and CD8(+)-mediated cytotoxic responses induced by a DNA vaccine.

  7. Cadmium exposure and the epigenome

    PubMed Central

    Sanders, Alison P; Smeester, Lisa; Rojas, Daniel; DeBussycher, Tristan; Wu, Michael C; Wright, Fred A; Zhou, Yi-Hui; Laine, Jessica E; Rager, Julia E; Swamy, Geeta K; Ashley-Koch, Allison; Lynn Miranda, Marie; Fry, Rebecca C

    2014-01-01

    Cadmium (Cd) is prevalent in the environment yet understudied as a developmental toxicant. Cd partially crosses the placental barrier from mother to fetus and is linked to detrimental effects in newborns. Here we examine the relationship between levels of Cd during pregnancy and 5-methylcytosine (5mC) levels in leukocyte DNA collected from 17 mother-newborn pairs. The methylation of cytosines is an epigenetic mechanism known to impact transcriptional signaling and influence health endpoints. A methylated cytosine-guanine (CpG) island recovery assay was used to assess over 4.6 million sites spanning 16,421 CpG islands. Exposure to Cd was classified for each mother-newborn pair according to maternal blood levels and compared with levels of cotinine. Subsets of genes were identified that showed altered DNA methylation levels in their promoter regions in fetal DNA associated with levels of Cd (n = 61), cotinine (n = 366), or both (n = 30). Likewise, in maternal DNA, differentially methylated genes were identified that were associated with Cd (n = 92) or cotinine (n = 134) levels. While the gene sets were largely distinct between maternal and fetal DNA, functional similarities at the biological pathway level were identified including an enrichment of genes that encode for proteins that control transcriptional regulation and apoptosis. Furthermore, conserved DNA motifs with sequence similarity to specific transcription factor binding sites were identified within the CpG islands of the gene sets. This study provides evidence for distinct patterns of DNA methylation or “footprints” in fetal and maternal DNA associated with exposure to Cd. PMID:24169490

  8. The organization of the fuc regulon specifying L-fucose dissimilation in Escherichia coli K12 as determined by gene cloning.

    PubMed

    Chen, Y M; Zhu, Y; Lin, E C

    1987-12-01

    In Escherichia coli the six known genes specifying the utilization of L-fucose as carbon and energy source cluster at 60.2 min and constitute a regulon. These genes include fucP (encoding L-fucose permease), fucI (encoding L-fucose isomerase), fucK (encoding L-fuculose kinase), fucA (encoding L-fuculose 1-phosphate aldolase), fucO (encoding L-1,2-propanediol oxidoreductase), and fucR (encoding the regulatory protein). In this study the fuc genes were cloned and their positions on the chromosome were established by restriction endonuclease and complementation analyses. Clockwise, the gene order is: fucO-fucA-fucP-fucI-fucK-fucR. The operons comprising the structural genes and the direction of transcription were determined by complementation analysis and Southern blot hybridization. The fucPIK and fucA operons are transcribed clockwise. The fucO operon is transcribed counterclockwise. The fucR gene product activates the three structural operons in trans.

  9. Transferrin Level Before Treatment and Genetic Polymorphism in HFE Gene as Predictive Markers for Response to Adalimumab in Crohn's Disease Patients.

    PubMed

    Repnik, Katja; Koder, Silvo; Skok, Pavel; Ferkolj, Ivan; Potočnik, Uroš

    2016-08-01

    Tumor necrosis factor α inhibitors (anti-TNF) have improved treatment of several complex diseases, including Crohn's disease (CD). However, the effect varies and approximately one-third of the patients do not respond. Since blood parameters as well as genetic factors have shown a great potential to predict response during treatment, the aim of the study was to evaluate response to anti-TNF treatment with adalimumab (ADA) between genes HFE and TF and haematological parameters in Slovenian refractory CD patients. Single nucleotide polymorphisms (SNPs) rs1799852 in gene TF and rs2071303 in gene HFE were genotyped in 68 refractory CD patients for which response has been measured using inflammatory bowel disease questionnaire (IBDQ) index. Haematological parameters and IBDQ index were determined before therapy and after 4, 12, 20 and 30 weeks. We found novel strong association between SNP rs2071303 in gene HFE and response to ADA treatment, particularly patients with G allele comparing to A allele had better response after 20 weeks (p = 0.008). Further, we found strong association between transferrin level at baseline and treatment response after 12, 20 and 30 weeks, where average transferrin level before therapy was lower in responders (2.38 g/L) compared to non-responders (2.89 g/L, p = 0.005). Association was found between transferrin level in week 30 and SNP rs1799852 (p = 0.023), and between MCHC level before treatment and SNP rs2071303 (p = 0.007). Our results suggest that SNP in gene HFE as well as haematological markers serve as promising prognostic markers of response to anti-TNF treatment in CD patients.

  10. Antigen S1, encoded by the MIC1 gene, is characterized as an epitope of human CD59, enabling measurement of mutagen-induced intragenic deletions in the AL cell system

    NASA Technical Reports Server (NTRS)

    Wilson, A. B.; Seilly, D.; Willers, C.; Vannais, D. B.; McGraw, M.; Waldren, C. A.; Hei, T. K.; Davies, A.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    S1 cell membrane antigen is encoded by the MIC1 gene on human chromosome 11. This antigen has been widely used as a marker for studies in gene mapping or in analysis of mutagen-induced gene deletions/mutations, which utilized the human-hamster hybrid cell-line, AL-J1, carrying human chromosome 11. Evidence is presented here which identifies S1 as an epitope of CD59, a cell membrane complement inhibiting protein. E7.1 monoclonal antibody, specific for the S1 determinant, was found to react strongly with membrane CD59 in Western blotting, and to bind to purified, urinary form of CD59 in ELISAs. Cell membrane expression of S1 on various cell lines always correlated with that of CD59 when examined by immunofluorescent staining. In addition, E7.1 antibody inhibited the complement regulatory function of CD59. Identification of S1 protein as CD59 has increased the scope of the AL cell system by enabling analysis of intragenic mutations, and multiplex PCR analysis of mutated cells is described, showing variable loss of CD59 exons.

  11. Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3

    USGS Publications Warehouse

    Laing, K.J.; Zou, J.J.; Purcell, M.K.; Phillips, R.; Secombes, C.J.; Hansen, J.D.

    2006-01-01

    The T cell coreceptor CD4 is a transmembrane glycoprotein belonging to the Ig superfamily and is essential for cell-mediated immunity. Two different genes were identified in rainbow trout that resemble mammalian CD4. One (trout CD4) encodes four extracellular Ig domains reminiscent off mammalian CD4, whereas the other (CD4REL) codes for two Ig domains. Structural motifs within the amino acid sequences suggest that the two Ig domains of CD4REL duplicated to generate the four-domain molecule of CD4 and the related gene, lymphocyte activation gene-3. Here we present evidence that both of these molecules in trout are homologous to mammalian CD4 and that teleosts encode an additional CD4 family member, lymphocyte activation gene-3, which is a marker for activated T cells. The syntenic relationships of similar genes in other teleost and non-fish genomes provide evidence for the likely evolution of CD4-related molecules in vertebrates, with CD4REL likely representing the primordial form in fish. Expression of both CD4 genes is highest in the thymus and spleen, and mRNA expression of these genes is limited to surface IgM- lymphocytes, consistent with a role for T cell functionality. Finally, the intracellular regions of both CD4 and CD4REL possess the canonical CXC motif involved in the interaction off CD4 with p56LCK, implying that similar mechanisms for CD4 + T cell activation are present in all vertebrates. Our results therefore raise new questions about T cell development and functionality in lower vertebrates that cannot be answered by current mammalian models and, thus, is of fundamental importance for understanding the evolution of cell-mediated immunity in gnathosomes. Copyright ?? 2006 by The American Association of Immunologists, Inc.

  12. The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B.

    PubMed

    Lieto, L D; Maasho, K; West, D; Borrego, F; Coligan, J E

    2006-01-01

    CD94/NKG2A is an inhibitory receptor expressed by natural killer (NK) cells and a subset of CD8+ T cells. Ligation of CD94/NKG2A by its ligand HLA-E results in tyrosine phosphorylation of the NKG2A immunoreceptor tyrosine-based inhibitory motifs, and recruitment and activation of the SH2 domain-bearing tyrosine phosphatase-1, which in turn suppresses activation signals. The nkg2a gene encodes two isoforms, NKG2A and NKG2B, with the latter lacking the stem region. We identified three new alternative transcripts of the cd94 gene in addition to the originally described canonical CD94Full. One of the transcripts, termed CD94-T4, lacks the portion that encodes the stem region. CD94-T4 associates with both NKG2A and NKG2B, but preferentially associates with the latter. This is probably due to the absence of a stem region in both CD94-T4 and NKG2B. CD94-T4/NKG2B is capable of binding HLA-E and, when expressed in E6-1 Jurkat T cells, inhibits TCR mediated signals, demonstrating that this heterodimer is functional. Coevolution of stemless isoforms of CD94 and NKG2A that preferentially pair with each other to produce a functional heterodimer indicates that this may be more than a serendipitous event. CD94-T4/NKG2B may contribute to the plasticity of the NK immunological synapse by insuring an adequate inhibitory signal.

  13. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.

    PubMed

    Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu

    2012-04-01

    Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle

    PubMed Central

    Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin

    2014-01-01

    CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE

  15. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan.

    PubMed Central

    Mengin-Lecreulx, D; van Heijenoort, J; Park, J T

    1996-01-01

    A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth. PMID:8808921

  16. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETÁ) is a potent immunotoxin against a Hodgkin-derived cell line

    PubMed Central

    Klimka, A; Barth, S; Matthey, B; Roovers, R C; Lemke, H; Hansen, H; Arends, J-W; Diehl, V; Hoogenboom, H R; Engert, A

    1999-01-01

    The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin A (ETÁ). The resulting immunotoxin Ki-4(scFv)-ETÁ specifically binds to CD30+ L540Cy cells and inhibits the protein synthesis by 50% at a concentration (IC50) of 43 pM. This recombinant immunotoxin is a promising candidate for further clinical evaluation in patients with Hodgkin's lymphoma or other CD30+ malignancies. © 1999 Cancer Research Campaign PMID:10376974

  17. CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS

    PubMed Central

    Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.; Hammond, Katherine B.; Fischer, Miranda; Turner, John M.; Legasse, Alfred W.; Axthelm, Michael K.; Edlefsen, Paul T.; Nelson, Jay A.; Lifson, Jeffrey D.; Früh, Klaus; Picker, Louis J.

    2013-01-01

    CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition. PMID:23704576

  18. Selection of differently temporally regulated African swine fever virus promoters with variable expression activities and their application for transient and recombinant virus mediated gene expression.

    PubMed

    Portugal, Raquel S; Bauer, Anja; Keil, Guenther M

    2017-08-01

    African swine fever virus threatens pig production worldwide due to the lack of vaccines, for which generation of both deletion and insertion mutants is considered. For development of the latter, operational ASFV promoters of different temporal regulation and strengths are desirable. We therefore compared the capacities of putative promoter sequences from p72, CD2v, p30, viral DNA polymerase and U104L genes to mediate expression of luciferase from transfected plasmids after activation in trans, or p30-, DNA polymerase- and U104L promoters in cis, using respective ASFV recombinants. We identified sequences with promoter activities upstream the viral ORFs, and showed that they differ in both their expression intensity regulating properties and in their temporal regulation. In summary, p30 and DNA polymerase promoters are recommended for high level early regulated transgene expression. For late expression, the p72, CD2v and U104L promoter are suitable. The latter however, only if low level transgene expression is aimed. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    PubMed

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  20. Measuring the spectrum of mutation induced by nitrogen ions and protons in the human-hamster hybrid cell line A(L)C

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Astronauts can be exposed to charged particles, including protons, alpha particles and heavier ions, during space flights. Therefore, studying the biological effectiveness of these sparsely and densely ionizing radiations is important to understanding the potential health effects for astronauts. We evaluated the mutagenic effectiveness of sparsely ionizing 55 MeV protons and densely ionizing 32 MeV/nucleon nitrogen ions using cells of two human-hamster cell lines, A(L) and A(L)C. We have previously characterized a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in the human-hamster hybrid cell lines A(L)C and A(L). CD59(-) mutants have lost expression of a human cell surface antigen encoded by the CD59 gene located at 11p13. Deletion of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the A(L) hybrid, so that CD59 mutants that lose the entire chromosome 11 die and escape detection. In contrast, deletion of the 11p15.5 region is not lethal in the hybrid A(L)C, allowing for the detection of chromosome loss or other chromosomal mutations involving 11p15.5. The 55 MeV protons and 32 MeV/nucleon nitrogen ions were each about 10 times more mutagenic per unit dose at the CD59 locus in A(L)C cells than in A(L) cells. In the case of nitrogen ions, the mutations observed in A(L)C cells were predominantly due to chromosome loss events or 11p deletions, often containing a breakpoint in the pericentromeric region. The increase in the CD59(-) mutant fraction for A(L)C cells exposed to protons was associated with either translocation of portions of 11q onto a hamster chromosome, or discontinuous or "skipping" mutations. We demonstrate here that A(L)C cells are a powerful tool that will aid in the understanding of the mutagenic effects of different types of ionizing radiation.

  1. CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification.

    PubMed

    Friedel, Thorsten; Jung-Klawitter, Sabine; Sebe, Attila; Schenk, Franziska; Modlich, Ute; Ivics, Zoltán; Schumann, Gerald G; Buchholz, Christian J; Schneider, Irene C

    2016-05-01

    Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.

  2. Development of an Improved Mammalian Overexpression Method for Human CD62L

    PubMed Central

    Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.

    2014-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  3. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium.

    PubMed

    Tang, Lu; Yao, Aijun; Ming Yuan; Tang, Yetao; Liu, Jian; Liu, Xi; Qiu, Rongliang

    2016-12-01

    Zinc (Zn) and cadmium (Cd) are two closely related chemical elements with very different biological roles in photosynthesis. Zinc plays unique biochemical functions in photosynthesis. Previous studies suggested that in some Zn/Cd hyperaccumulators, many steps in photosynthesis may be Cd tolerant or even Cd stimulated. Using RNA-seq data, we found not only that Cd and Zn both up-regulated the CA1 gene, which encodes a β class carbonic anhydrase (CA) in chloroplasts, but that a large number of other Zn up-regulated genes in the photosynthetic pathway were also significantly up-regulated by Cd in leaves of the Zn/Cd hyperaccumulator Sedum alfredii. These genes also include chloroplast genes involved in transcription and translation (rps18 and rps14), electron transport and ATP synthesis (atpF and ccsA), Photosystem II (PSBI, PSBM, PSBK, PSBZ/YCF9, PSBO-1, PSBQ, LHCB1.1, LHCB1.4, LHCB2.1, LHCB4.3 and LHCB6) and Photosystem I (PSAE-1, PSAF, PSAH2, LHCA1 and LHCA4). Cadmium and Zn also up-regulated the VAR1 gene, which encodes the ATP-dependent zinc metalloprotease FTSH 5 (a member of the FtsH family), and the DAG gene, which influences chloroplast differentiation and plastid development, and the CP29 gene, which supports RNA processing in chloroplasts and has a potential role in signal-dependent co-regulation of chloroplast genes. Further morphological parameters (dry biomass, cross-sectional thickness, chloroplast size, chlorophyll content) and chlorophyll fluorescence parameters confirmed that leaf photosynthesis of S. alfredii responded to Cd much as it did to Zn, which will contribute to our understanding of the positive effects of Zn and Cd on growth of this plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism].

    PubMed

    Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie

    2013-03-01

    To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01). Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.

  5. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia.

    PubMed

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M; Dombkowski, Alan A; Buck, Steven A; Boerner, Julie L; Taub, Jeffrey W; Matherly, Larry H; Ge, Yubin

    2009-09-24

    RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the delta catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)-kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.

  6. Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene.

    PubMed

    Martín, Miguel A; Blázquez, Alberto; Gutierrez-Solana, Luis G; Fernández-Moreira, Daniel; Briones, Paz; Andreu, Antoni L; Garesse, Rafael; Campos, Yolanda; Arenas, Joaquín

    2005-04-01

    Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. The proband was a child who displayed the clinical features of LS. Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.

  7. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles.

    PubMed

    Minchenko, Dmytro O; Tsymbal, D O; Yavorovsky, O P; Solokha, N V; Minchenko, O H

    2017-04-25

    The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.

  8. Gene encoding the collagen type I and thrombospondin receptor CD36 is located on chromosome 7q11. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Ruiz, E.; Armesilla, A.L.; Sanchez-Madrid, F.

    The human CD36 is a member of a gene family of structurally related glycoproteins and functions as a receptor for collagen type I and thrombospondin. CD36 also binds to red blood cells infected with the human malaria parasite Plasmodium falciparum. In the present study, the CD36 gene was assigned to chromosome 7 by using the polymerase chain reaction with DNA from human-hamster somatic cell hybrids. Furthermore, the use of a CD36 genomic probe has allowed the localization of the CD36 locus to the 7q11.2 band by fluorescence in situ hybridization coupled with GTG-banding. 14 refs., 2 figs.

  9. Expression of CD30 mRNA, CD30L mRNA and a variant form of CD30 mRNA in restimulated peripheral blood mononuclear cells (PBMC) of patients with helminthic infections resembling a Th2 disease

    PubMed Central

    Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P

    1999-01-01

    It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429

  10. Angioimmunoblastic T-cell lymphoma and hypereosinophilic syndrome with FIP1L1/PDGFRA fusion gene effectively treated with imatinib: A case report.

    PubMed

    Yamamoto, Masayo; Ikuta, Katsuya; Toki, Yasumichi; Hatayama, Mayumi; Shindo, Motohiro; Torimoto, Yoshihiro; Okumura, Toshikatsu

    2017-09-01

    Hypereosinophilic syndrome (HES) is a rare disorder characterized by hypereosinophilia and organ damage. Some cases of HES are caused by the FIP1L1/PDGFRA fusion gene and respond to imatinib. FIP1L1/PDGFRA-positive HES occasionally evolves into chronic eosinophilic leukemia or into another form of myeloproliferative neoplasm; however, the development of a malignant lymphoma is very rare. We present a rare case of angioimmunoblastic T-cell lymphoma (AITL) and HES with the FIP1L1/PDGFRA gene rearrangement. A man in his 30s presented to our hospital with fever, hypereosinophilia, widespread lymphadenopathy, and splenomegaly. Laboratory tests showed hypereosinophilia, increased soluble interleukin-2 receptor, and increased vitamin B12. Positron-emission tomography with F fluorodeoxyglucose (FDG) showed positive FDG uptake in multiple enlarged lymph nodes throughout the body and the red bone marrow. A bone-marrow biopsy showed hypereosinophilia without dysplasia and an increased number of blasts. The FIP1L1/PDGFRA fusion gene was positive upon fluorescence in situ hybridization (FISH) analysis of the peripheral blood. Furthermore, biopsy of a lymph node from the neck revealed restiform hyperplasia of capillary vessels, with small lymphoma cells arranged around the capillaries. Lymphoma cells were positive for CD3, CD4, and CD10, and negative for CD20. Lymphoma cells were also positive for the FIP1L1/PDGFRA fusion gene by FISH analysis. From these findings, the patient was diagnosed with HES and AITL with FIP1L1/PDGFRA. After the diagnosis, corticosteroid was administered but was ineffective. Imatinib was then administered. Imatinib was very effective for treating HES and AITL, and complete remission was achieved in both. This report presents the first case in which the FIP1L1/PDGFRA fusion gene was positive both in peripheral blood and lymph nodes, implying the possibility that the tumor cells acquired the FIP1L1/PDGFRA fusion gene in the early stage of hematopoietic progenitor cell developments. Imatinib was very effective in treating both HES and lymphoma, suggesting that the FIP1L1/PDGFRA fusion gene plays a key role in the pathogenesis of both HES and lymphoma.

  11. Prognostic values of soluble CD30 and CD30 gene polymorphisms in heart transplantation.

    PubMed

    Frisaldi, Elisa; Conca, Raffaele; Magistroni, Paola; Fasano, Maria Edvige; Mazzola, Gina; Patanè, Francesco; Zingarelli, Edoardo; Dall'omo, Anna M; Brusco, Alfredo; Amoroso, Antonio

    2006-04-27

    Pretransplant soluble CD30 (sCD30) is a predictor of kidney graft outcome. Its status as a predictor of heart transplant (HT) outcome has not been established. We have studied this question by assessing sCD30 levels and the number of (CCAT)n repeats of the microsatellite in the CD30 promoter region, which is able alone to repress gene transcription, in the sera of 83 HT patients and 77 of their donors. sCD30 was non-significantly increased in the patients, whereas there were no differences in the CD30 microsatellite allele frequencies. A negative correlation between the number of (CCAT)n and sCD30 levels was evident in the donors. Patients with pretransplant sCD30

  12. Bacillus subtilis 168 Contains Two Differentially Regulated Genes Encoding l-Asparaginase

    PubMed Central

    Fisher, Susan H.; Wray, Lewis V.

    2002-01-01

    Expression of the two Bacillus subtilis genes encoding l-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional l-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second l-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression. PMID:11914346

  13. Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase.

    PubMed

    Fisher, Susan H; Wray, Lewis V

    2002-04-01

    Expression of the two Bacillus subtilis genes encoding L-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional L-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second L-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.

  14. A human systemic lupus erythematosus-related anti-cardiolipin/single-stranded DNA autoantibody is encoded by a somatically mutated variant of the developmentally restricted 51P1 V[sub H] gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Es, J.H.; Aanstoot, H.; Gmelig-Meyling, F.H.J.

    1992-09-15

    The authors report the Ig H and L chain V region sequences from the cDNAs encoding a monoclonal human IgG anti-cardiolipin/ssDNA autoantibody (R149) derived from a patient with active SLE. Comparison with the germ-line V-gene repertoire of this patient revealed that R149 likely arose as a consequence of an Ag-driven selection process. The Ag-binding portions of the V regions were characterized by a high number of arginine residues, a property that has been associated with anti-dsDNA autoantibodies from lupus-prone mice and patients with SLE. The V[sub H] gene encoding autoantibody R149 was a somatically mutated variant of the 51P1 genemore » segment, which is frequently associated with the restricted fetal B cell repertoire, malignant CD5 B cells, and natural antibodies. These data suggest that in SLE patients a common antigenic stimulus may evoke anti-DNA and anti-cardiolipin autoantibodies and provide further evidence that a small set of developmentally restricted V[sub H] genes can give rise to disease-associated autoantibodies through Ag-selected somatic mutations. 42 refs., 5 figs.« less

  15. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study.

    PubMed

    Panach, Layla; Pineda, Begoña; Mifsut, Damián; Tarín, Juan J; Cano, Antonio; García-Pérez, Miguel Ángel

    2016-02-01

    Compelling data are revealing that the CD40/CD40L system is involved in bone metabolism. Furthermore, we have previously demonstrated that polymorphisms in both genes are associated with bone phenotypes. The aim of this study is to further characterize this association and to identify the causal functional mechanism. We conducted an association study of BMD with 15 SNPs in CD40/CD40L genes in a population of 779 women. In addition, we assessed the functionality of this association through the study of the allele-dependent expression of CD40 and CD40L in peripheral blood leukocytes (PBLs) and in human osteoblasts (OBs) obtained from bone explants by qPCR and by sequencing. When an allelic imbalance (AI) was detected, studies on allele-dependent in vitro transcription rate and on CpG methylation in the gene promoter were also performed. Our results confirm the genetic association between SNP rs116535 (T>C) of CD40L gene with LS-BMD. Regarding CD40 gene, two SNPs showed nominal P-values<0.05 for FN- and LS-BMD (Z-scores), although the association was not significant after correcting for multiple testing. Homozygous TT women for SNP rs1883832 (C>T) of CD40 gene showed a trend to have lower levels of OPG (Q-value=0.059), especially when women of BMD-quartile ends were selected (P<0.05). Regarding functionality, we detected an AI for rs1883832 with the C allele the most expressed in OBs and in PBLs. Since the rs116535 of CD40L gene did not show AI, it was not further analyzed. Finally, we described a differential methylation of CpGs in the CD40 promoter among women of high in comparison to low BMD. Our results suggest that the CD40/CD40L system plays a role in regulating BMD. Effectively, our data suggest that a decreased production of OPG could be the cause of the lower BMD observed in TT women for rs1883832 of the CD40 gene and that the degree of methylation of CpGs in the CD40 promoter could contribute to the acquisition of BMD. One possibility that deserves further study is whether the degree of methylation of the CD40 gene affects the level of CD40 expression and, consequently, the level of OPG. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. African Swine Fever Virus Isolate, Georgia, 2007

    PubMed Central

    Rowlands, Rebecca J.; Michaud, Vincent; Heath, Livio; Hutchings, Geoff; Oura, Chris; Vosloo, Wilna; Dwarka, Rahana; Onashvili, Tinatin; Albina, Emmanuel

    2008-01-01

    African swine fever (ASF) is widespread in Africa but is rarely introduced to other continents. In June 2007, ASF was confirmed in the Caucasus region of Georgia, and it has since spread to neighboring countries. DNA fragments amplified from the genome of the isolates from domestic pigs in Georgia in 2007 were sequenced and compared with other ASF virus (ASFV) isolates to establish the genotype of the virus. Sequences were obtained from 4 genome regions, including part of the gene B646L that encodes the p72 capsid protein, the complete E183L and CP204L genes, which encode the p54 and p30 proteins and the variable region of the B602L gene. Analysis of these sequences indicated that the Georgia 2007 isolate is closely related to isolates belonging to genotype II, which is circulating in Mozambique, Madagascar, and Zambia. One possibility for the spread of disease to Georgia is that pigs were fed ASFV-contaminated pork brought in on ships and, subsequently, the disease was disseminated throughout the region. PMID:19046509

  17. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  18. Value of soluble CD30 in liver transplantation.

    PubMed

    Fábrega, E; Unzueta, M G; Cobo, M; Casafont, F; Amado, J A; Romero, F P

    2007-09-01

    CD30 is a membrane glycoprotein that belongs to the tumor necrosis factor superfamily. It is expressed on activated T cells. After activation of CD30(+) T cells, a soluble form of CD30 (sCD30) released into the bloodstream, can be measured in the serum. The aim of our study was to investigate the time course of serum levels of sCD30 during hepatic allograft rejection. Serum levels of sCD30 were determined in 30 healthy subjects and 50 hepatic transplant recipients. These patients were divided into two groups: group I, 35 patients without rejection; and group II, 15 patients with acute rejection. Samples were collected on day 1 and 7 after transplantation and on the day of liver biopsy. The concentrations of sCD30 were similar in the rejection (40.4 +/- 16.5 U/mL) and nonrejection groups (43.0 +/- 18.2 U/mL) on postoperative day 1. We observed a significant increase in sCD30 levels in the rejection group on postoperative day 7 (76.3 +/- 61.8 U/mL vs 46.8 +/- 20.5 U/mL; P = .01). The difference increased when a diagnosis of acute rejection had been established: namely 133.0 +/- 113.5 U/mL versus 40.1 +/- 22.0 U/mL; (P = .001). These levels were also significantly higher during the entire postoperative period in all the patients, with or without rejection, than those observed in healthy controls (26.6 +/- 5.3 U/mL; P = .005). The release of circulating sCD30 is a prominent feature coinciding with the first episode of hepatic allograft rejection. So, monitoring of sCD30 levels may be useful for the early diagnosis of an acute rejection episode.

  19. T-cell receptor accessory and co-receptor molecules in channel catfish

    USDA-ARS?s Scientific Manuscript database

    T cell receptor (TCR) associated invariant chains CD3gamma/delta,epsilon, and zeta as well as TCR co-receptors CD8alpha and CD8beta were isolated from the channel catfish, Ictalurus punctatus, at both the gene and cDNA levels. All of catfish CD3 sequences encode for proteins that resemble their resp...

  20. Expression of CD30 in patients with acute graft-versus-host disease.

    PubMed

    Chen, Yi-Bin; McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R; Cutler, Corey S; Soiffer, Robert J; Ritz, Jerome

    2012-07-19

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8(+) T cells with the difference especially pronounced in the central memory subset (CD8(+)CD45RO(+)CD62L(+)): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4(+) T cells, and regulatory (CD4(+)CD127(low)CD25(+)) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30(+) infiltrating lymphocytes present. These results suggest that CD30 expression on CD8(+) T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD.

  1. Expression of CD30 in patients with acute graft-versus-host disease

    PubMed Central

    McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R.; Cutler, Corey S.; Soiffer, Robert J.; Ritz, Jerome

    2012-01-01

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8+ T cells with the difference especially pronounced in the central memory subset (CD8+CD45RO+CD62L+): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4+ T cells, and regulatory (CD4+CD127lowCD25+) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30+ infiltrating lymphocytes present. These results suggest that CD30 expression on CD8+ T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD. PMID:22661699

  2. High serum soluble CD30 does not predict acute rejection in liver transplant patients.

    PubMed

    Matinlauri, I; Höckerstedt, K; Isoniemi, H

    2006-12-01

    Increased pre- and posttransplantation values of soluble CD30 (sCD30) have been shown to be associated with acute kidney transplant rejection. We sought to study whether high sCD30 could predict rejection early after liver transplantation. The study population included 54 consecutive liver transplant patients, whose samples were collected before liver transplantation and at discharge, which was at a mean time of 3 weeks after transplantation. During the first 6 months posttransplantation, 22 patients experienced an acute rejection episode. Serum sCD30 concentrations were measured by an enzyme-linked immunoassay; changes in serum sCD30 levels posttransplantation were also expressed as relative values compared with pretransplantation results. Liver patients before transplantation displayed higher serum sCD30 values compared with healthy controls: mean values +/- SD were 93 +/- 58 IU/mL vs 17 +/- 8 IU/mL, respectively. At 3 weeks after transplantation the mean sCD30 concentration in liver transplant patients decreased to 59 +/- 42 IU/mL (P = .005). The mean pretransplantation serum sCD30 value was slightly lower among rejecting vs nonrejecting patients: 78 +/- 43 IU/mL vs 104 +/- 65 IU/mL (P = NS). Posttransplantation values in both groups decreased significantly: 47 +/- 34 IU/mL in patients with rejection (P = .014) vs 69 +/- 45 IU/mL in patients without rejection (P = .012). The relative value at 3 weeks posttransplantation decreased slightly more among patients with vs without rejection (70% vs 88%; NS). No correlation was found between serum sCD30 and anti-HLA class I antibodies or crossmatch positivity. In conclusion, neither pre- nor posttransplantation sCD30 levels were associated with acute rejection in liver transplant patients.

  3. Cornelia de Lange syndrome: Congenital heart disease in 149 patients.

    PubMed

    Ayerza Casas, Ariadna; Puisac Uriol, Beatriz; Teresa Rodrigo, María Esperanza; Hernández Marcos, María; Ramos Fuentes, Feliciano J; Pie Juste, Juan

    2017-10-11

    Cornelia de Lange syndrome (CdLS) is produced by mutations in genes that encode regulatory or structural proteins of the cohesin complex. Congenital heart disease (CHD) is not a major criterion of the disease, but it affects many individuals. The objective of this study was to study the incidence and type of CHD in patients with CdLS. Cardiological findings were evaluated in 149 patients with CdLS and their possible relationship with clinical and genetic variables. A percentage of 34.9 had CHD (septal defects 50%, pulmonary stenosis 27%, aortic coarctation 9.6%). The presence of CHD was related with neonatal hospitalisation (P=.04), hearing loss (P=.002), mortality (P=.09) and lower hyperactivity (P=.02), it being more frequent in HDAC8+ patients (60%), followed by NIPBL+ (33%) and SMC1A+ (28.5%). While septal defects predominate in NIPBL+, pulmonary stenosis is more common in HDAC8+. Patients with CdLS have a high incidence of CHD, which varies according to the affected gene, the most frequent findings being septal defects and pulmonary stenosis. Perform a cardiologic study in all these patients is suggested. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  4. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd

    PubMed Central

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted negatively. In summary, antioxidant enzymes responded to Cd and Pb interaction at an early stage of exposure, and their gene expression profiles provided more details of the activation of those systems. PMID:28046098

  5. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd.

    PubMed

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted negatively. In summary, antioxidant enzymes responded to Cd and Pb interaction at an early stage of exposure, and their gene expression profiles provided more details of the activation of those systems.

  6. Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Elizabeth-sharon

    2008-01-01

    Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-I (TCF-1) (gene name Tcli). To identify additional regulators of T cell specification, a cDNA libnlrY from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were identified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expressionmore » of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin{sup -}Sca-1{sup +}Kit{sup +}CD27{sup -}) and multipotent progenitors (Lin{sup -}Sca-l{sup +}Kit{sup +}CD27{sup +}), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bclllb, TCF-I (Tcli), and HEBalt, Notch target Deltexl, Deltex3L, Fkbp5, Eval, and Tmem13l. Like GATA3 and Deltexl, Bclllb, Fkbp5, and Eval were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only BcIlI band HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative I and double negative 2) corresponding to T lineage specification. Bclllb was uniquely T lineage restricted and induced by NotchlDelta signaling specifically upon entry into the T lineage differentiation pathway.« less

  7. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus.

    PubMed Central

    Nies, D H

    1992-01-01

    The czcR gene, one of the two control genes responsible for induction of resistance to Co2+, Zn2+, and Cd2+ (czc system) in the Alcaligenes eutrophus plasmid pMOL30, was cloned and characterized. The 1,376-bp sequence upstream of the czcCBAD structural genes encodes a 41.4-kDa protein, the czcR gene product, transcribed in the opposite direction of that of the czcCBAD genes. The putative CzcR polypeptide (355 amino acid residues) contains 11 cysteine and 14 histidine residues which might form metal cation-binding sites. A czcC::lacZ reporter gene translational fusion was constructed, inserted into plasmid pMOL30 in A. eutrophus, and expressed under the control of CzcR. Zn2+, Co2+, and Cd2+, as well as Ni2+, Cu2+, Hg2+, and Mn2+ and even Al3+, served as inducers of beta-galactosidase activity. Besides the CzcR protein, the membrane-bound CzcD protein was essential for induction of czc. The CzcR and CzcD proteins display no sequence similarity to two-component regulatory systems of a sensor and a response activator type; however, CzcD has 34% identity with the ZRC-1 protein, which mediates zinc resistance in Saccharomyces cerevisiae (A. Kamizomo, M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura, Mol. Gen. Genet. 219:161-167, 1989). Images PMID:1459958

  8. Polymorphisms in Iron Homeostasis Genes and Urinary Cadmium Concentrations among Nonsmoking Women in Argentina and Bangladesh

    PubMed Central

    Rentschler, Gerda; Kippler, Maria; Axmon, Anna; Raqib, Rubhana; Ekström, Eva-Charlotte; Skerfving, Staffan; Vahter, Marie

    2013-01-01

    Background: Cadmium (Cd) is a human toxicant and carcinogen. Genetic variation might affect long-term accumulation. Cd is absorbed via iron transporters. Objectives: We evaluated the impact of iron homeostasis genes [divalent metal transporter 1 (SLC11A2), transferrin (TF), transferrin receptors (TFR2 and TFRC), and ferroportin (SLC40A1)] on Cd accumulation. Methods: Subjects were nonsmoking women living in the Argentinean Andes [n = 172; median urinary Cd (U-Cd) = 0.24 µg/L] and Bangladesh (n = 359; U-Cd = 0.54 µg/L) with Cd exposure mainly from food. Concentrations of U-Cd and Cd in whole blood or in erythrocytes (Ery-Cd) were measured by inductively coupled plasma mass spectrometry. Fifty polymorphisms were genotyped by Sequenom. Gene expression was measured in whole blood (n = 72) with Illumina DirectHyb HumanHT-12 v4.0. Results: TFRC rs3804141 was consistently associated with U-Cd. In the Andean women, mean U-Cd concentrations were 22% (95% CI: –2, 51%), and they were 56% (95% CI: 10, 120%) higher in women with GA and AA genotypes, respectively, relative to women with the GG genotype. In the Bangladeshi women, mean U-Cd concentrations were 22% (95% CI: 1, 48%), and they were 58% (95% CI: –3, 157%) higher in women with GA and AA versus GG genotype, respectively [adjusted for age and plasma ferritin in both groups; ptrend = 0.006 (Andes) and 0.009 (Bangladesh)]. TFRC expression in blood was negatively correlated with plasma ferritin (rS = –0.33, p = 0.006), and positively correlated with Ery-Cd (significant at ferritin concentrations of < 30 µg/L only, rS = 0.40, p = 0.046). Rs3804141 did not modify these associations or predict TFRC expression. Cd was not consistently associated with any of the other polymorphisms evaluated. Conclusions: One TFRC polymorphism was associated with urine Cd concentration, a marker of Cd accumulation in the kidney, in two very different populations. The consistency of the findings supports the possibility of a causal association. PMID:23416510

  9. Clinical Utility of Urinary CD90 as a Biomarker for Prostate Cancer Detection — EDRN Public Portal

    Cancer.gov

    Tumor-associated stromal cells differ from normal gland-associated stromal cells in gene expression. Genes up-regulated in these stromal cells are potential cancer biomarkers, especially those encoding secreted or extracellular proteins. These proteins might be detected in urine. CD90/THY1 is one such candidate. A clinical test based on urinary CD90 would be useful in reducing the number of unnecessary biopsies done because of abnormal serum PSA and/or DRE finding. Elevated CD90 protein is found in tumor tissue and urine.

  10. NF-κB deregulation in Hodgkin lymphoma.

    PubMed

    Weniger, Marc A; Küppers, Ralf

    2016-08-01

    Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots

    PubMed Central

    Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li

    2016-01-01

    Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms. PMID:27144562

  12. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots.

    PubMed

    Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li

    2016-04-30

    Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms.

  13. The influence of antibody fragment format on phage display based affinity maturation of IgG

    PubMed Central

    Steinwand, Miriam; Droste, Patrick; Frenzel, Andrè; Hust, Michael; Dübel, Stefan; Schirrmann, Thomas

    2014-01-01

    Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.   In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab. PMID:24262918

  14. An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter.

    PubMed Central

    Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C

    1989-01-01

    The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122

  15. High pre-transplant soluble CD30 levels are predictive of the grade of rejection.

    PubMed

    Rajakariar, Ravindra; Jivanji, Naina; Varagunam, Mira; Rafiq, Mohammad; Gupta, Arun; Sheaff, Michael; Sinnott, Paul; Yaqoob, M M

    2005-08-01

    In renal transplantation, serum soluble CD30 (sCD30) levels in graft recipients are associated with increased rejection and graft loss. We investigated whether pre-transplant sCD30 concentrations are predictive of the grade of rejection. Pre-transplant sera of 51 patients with tubulointerstitial rejection (TIR), 16 patients with vascular rejection (VR) and an age-matched control group of 41 patients with no rejection (NR) were analyzed for sCD30. The transplant biopsies were immunostained for C4d. The median sCD30 level was significantly elevated in the group with VR (248 Units (U)/mL, range: 92-802) when compared with TIR (103 U/mL, range: 36-309, p<0.001) and NR (179 U/mL, range: 70-343, p<0.03). Moreover, patients with TIR had significantly lower sCD30 levels compared to NR. Based on C4d staining, a TH2 driven process, the median sCD30 levels were significantly raised in C4d+ patients compared with C4d- group (177 U/mL vs. 120 U/mL, p<0.05). sCD30 levels measured at time of transplantation correlate with the grade of rejection. High pre-transplant levels are associated with antibody-mediated rejection which carries a poorer prognosis. sCD30 could be another tool to assess immunological risk prior to transplantation and enable a patient centered approach to immunosuppression.

  16. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  17. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  18. L-rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake.

    PubMed

    Tamayo-Ramos, Juan A; Flipphi, Michel; Pardo, Ester; Manzanares, Paloma; Orejas, Margarita

    2012-02-21

    Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE) encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA). Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE). The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a novel CreA-independent mechanism. The identification of rhaE and the characterization of its regulation will facilitate the design of strategies to overproduce the encoded enzyme - or homologs from other fungi - for industrial applications. Moreover, A. nidulans α-L-rhamnosidase encoding genes could serve as prototypes for fungal genes coding for plant cell wall degrading enzymes regulated by a novel mechanism of CCR.

  19. L-Rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake

    PubMed Central

    2012-01-01

    Background Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE) encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA). Results Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE). The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. Conclusions The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a novel CreA-independent mechanism. The identification of rhaE and the characterization of its regulation will facilitate the design of strategies to overproduce the encoded enzyme - or homologs from other fungi - for industrial applications. Moreover, A. nidulans α-L-rhamnosidase encoding genes could serve as prototypes for fungal genes coding for plant cell wall degrading enzymes regulated by a novel mechanism of CCR. PMID:22353731

  20. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus).

    PubMed

    Wu, Zhichao; Zhao, Xiaohu; Sun, Xuecheng; Tan, Qiling; Tang, Yafang; Nie, Zhaojun; Hu, Chengxiao

    2015-01-01

    Cadmium (Cd) is a toxic metal which harms human health through food chains. The mechanisms underlying Cd accumulation in oilseed rape are still poorly understood. Here, we investigated the physiological and genetic processes involved in Cd uptake and transport of two oilseed rape cultivars (Brassica napus). L351 accumulates more Cd in shoots but less in roots than L338. A scanning ion-selective electrode technique (SIET) and uptake kinetics of Cd showed that roots were not responsible for the different Cd accumulation in shoots since L351 showed a lower Cd uptake ability. However, concentration-dependent and time-dependent dynamics of Cd transport by xylem showed L351 exhibited a superordinate capacity of Cd translocation to shoots. Additionally, the Cd concentrations of shoots and xylem sap showed a great correlation in both cultivars. Furthermore, gene expression levels related to Cd uptake by roots (IRT1) and Cd transport by xylem (HMA2 and HMA4) were consistent with the tendencies of Cd absorption and transport at the physiological level respectively. In other words, L351 had stronger gene expression for Cd transport but lower for Cd uptake. Overall, results revealed that the process of Cd translocation to shoots is a determinative factor for Cd accumulation in shoots, both at physiological and genetic levels. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose.

    PubMed

    Ozaki, Aiko; Konishi, Rie; Otomo, Chisako; Kishida, Mayumi; Takayama, Seiya; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko

    2017-12-01

    Modification of the Schizosaccharomyces pombe genome is often laborious, time consuming due to the lower efficiency of homologous recombination. Here, we constructed metabolically engineered S. pombe strains using a CRISPR-Cas9 system and also demonstrated D-lactic acid (D-LA) production from glucose and cellobiose. Genes encoding two separate pyruvate decarboxylases (PDCs), an L-lactic acid dehydrogenase (L-LDH), and a minor alcohol dehydrogenase (SPBC337.11) were disrupted, thereby attenuating ethanol production. To increase the cellular supply of acetyl-CoA, an important metabolite for growth, we introduced genes encoding bacterial acetylating acetaldehyde dehydrogenase enzymes (Escherichia coli MhpF and EutE). D-LA production by the resulting strain was achieved by expressing a Lactobacillus plantarum gene encoding D-lactate dehydrogenase. The engineered strain efficiently consumed glucose and produced D-LA at 25.2 g/L from 35.5 g/L of consumed glucose with a yield of 0.71 g D-LA / g glucose. We further modified this strain by expressing beta-glucosidase by cell surface display; the resulting strain produced D-LA at 24.4 g/L from 30 g/L of cellobiose in minimal medium, with a yield of 0.68 g D-LA / g glucose. To our knowledge, this study represents the first report of a S. pombe strain that was metabolically engineered using a CRISPR-Cas9 system, and demonstrates the possibility of engineering S. pombe for the production of value-added chemicals.

  2. GDP-L-fucose: .beta.-D-galactoside 2-.alpha.-L-fucosyltransferases, DNA sequences encoding the same, method for producing the same and a method of genotyping a person

    DOEpatents

    Lowe, John B.; Lennon, Gregory; Rouquier, Sylvie; Giorgi, Dominique; Kelly, Robert J.

    1998-01-01

    The gene encoding GDP-L-fucose: .beta.-D-Galactoside 2-.alpha.-L-fucosyltransferase has been cloned, and a mutation in this gene has been found to be responsible for an individual being a non-secretor.

  3. The complete mitochondrial genome of the redeye mullet Liza haematocheila (Teleostei, Mugilidae).

    PubMed

    Chen, Jianhua; Li, Yinglei; Chen, Haigang; Yan, Binlun; Meng, Xueping

    2015-01-01

    The complete mitochondrial sequence of the redeye mullet Liza haematocheila has been determined. The circle genome is 16,822 bp in size, and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region. The gene order and composition of L. haematocheila was similar to that of most other teleosts. The base composition of H-strand is 26.42% (A), 26.38% (T), 16.72% (G) and 30.47% (C), with an AT content of 52.8%. All genes are encoded on the heavy strand with the exception of ND6 and eight tRNA genes. The mitochondrial genome of L. haematocheila presented will be in favor of resolving phylogenetic relationships within the family Scatophagidae and the Mugiliformes.

  4. Analysis and Manipulation of Aspartate Pathway Genes for l-Lysine Overproduction from Methanol by Bacillus methanolicus▿

    PubMed Central

    Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E.; Brautaset, Trygve

    2011-01-01

    We investigated the regulation and roles of six aspartate pathway genes in l-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by l-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the l-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has—in addition to a hom-1 mutation—chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for l-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased l-lysine production levels. PMID:21724876

  5. Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus.

    PubMed

    Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E; Brautaset, Trygve

    2011-09-01

    We investigated the regulation and roles of six aspartate pathway genes in L-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by L-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the L-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has-in addition to a hom-1 mutation-chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for L-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased L-lysine production levels.

  6. Absence of both Sos-1 and Sos-2 in peripheral CD4+ T cells leads to PI3K pathway activation and defects in migration

    PubMed Central

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-01-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-Guanine Exchange Factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4+ T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4+ T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4+ T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. PMID:25973715

  7. Evaluation of serum sCD30 in renal transplantation patients with and without acute rejection.

    PubMed

    Cervelli, C; Fontecchio, G; Scimitarra, M; Azzarone, R; Famulari, A; Pisani, F; Battistoni, C; Di Iulio, B; Fracassi, D; Scarnecchia, M A; Papola, F

    2009-05-01

    Despite new immunosuppressive approaches, acute rejection episodes (ARE) are still a major cause of early kidney dysfunction with a negative impact on long-term allograft survival. Noninvasive markers able to identify renal ARE earlier than creatinine measurement include sCD30. We sought to establish whether circulating levels of sCD30 in pretransplantation and posttransplantation periods were of clinical relevance to avoid graft damage. Quantitative detection of serum sCD30 was performed using an enzyme-linked immunosorbent assay. Our results demonstrated that the mean concentrations of sCD30 were significantly higher in the sera of renal transplant recipients with ARE (30.04 U/mL) and in uremic patients on the waiting list (37.7 U/mL) compared with healthy controls (HC; 9.44 U/mL), but not nonrejecting patients (12.01 U/mL). Statistical analysis revealed a strong association between high sCD30 levels in posttransplantation sera and ARE risk. This study suggested that sCD30 levels were a reliable predictor of ARE among deceased-donor kidney recipients.

  8. Alternations in neuroendocrine and endocrine regulation of reproduction in male goldfish (Carassius auratus) following an acute and chronic exposure to vinclozolin, in vivo.

    PubMed

    Golshan, Mahdi; Hatef, Azadeh; Zare, Ava; Socha, Magdalena; Milla, Sylvain; Gosiewski, Grzegorz; Fontaine, Pascal; Sokołowska-Mikołajczyk, Mirosława; Habibi, Hamid R; Alavi, Sayyed Mohammad Hadi

    2014-10-01

    The fungicide vinclozolin (VZ) is in use globally and known to disrupt reproductive function in male. The present study tested the hypothesis that VZ disrupts testicular function in goldfish (Carassius auratus) by affecting brain-pituitary-testis axis. Goldfish were exposed to 100, 400 and 800 μg/L VZ and 5 μg/L 17β-estradiol (E2) for comparison. In VZ treated goldfish, 11-ketotesteosterone (11-KT) secretion was changed depending on dose and duration period of treatment. Following 7 days of exposure, 11-KT was decreased in goldfish exposed to 800 μg/L VZ, while it was increased in goldfish exposed to 100 μg/L VZ after 30 days of exposure. Circulating E2 level was unchanged in VZ treated goldfish, however the E2/11-KT ratio was increased in a concentration-related manner. In E2 treated goldfish, circulatory 11-KT and E2 levels were decreased and increased, respectively, which resulted in an increase in the E2/11-KT ratio. Exposure to VZ at 100 μg/L caused a significant increase in the circulatory luteinizing hormone (LH) after 30 days. In E2 treated fish circulatory LH was decreased, significantly. Transcripts of genes encoding gonadotropin-releasing hormone and androgen receptor in the brain, and those of genes encoding LH and follicle-stimulating hormone receptors, StAR, CYP17, and 3β-HSD in the testis changed in VZ-treated goldfish depending on concentration and period of treatment. mRNA of genes encoding vitellogenin and estrogen receptor in the liver and cytochrome P450 aromatase in the brain were increased in E2-treated goldfish. The results suggest that VZ-induced changes in 11-KT were due to disruption in brain-pituitary-testis axis and provide integrated characterization of VZ-related reproductive disorders in male fish. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription

    PubMed Central

    Carlson, Jonathan; Yan, Jiyu; Akinsiku, Olusimidele T.; Schaefer, Malinda; Sabbaj, Steffanie; Bet, Anne; Levy, David N.; Heath, Sonya; Tang, Jianming; Kaslow, Richard A.; Walker, Bruce D.; Ndung’u, Thumbi; Goulder, Philip J.; Heckerman, David; Hunter, Eric; Goepfert, Paul A.

    2010-01-01

    Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity. PMID:20065064

  10. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.

    PubMed

    Ding, Yanfei; Gong, Shaohua; Wang, Yi; Wang, Feijuan; Bao, Hexigeduleng; Sun, Junwei; Cai, Chong; Yi, Keke; Chen, Zhixiang; Zhu, Cheng

    2018-06-20

    MicroRNAs (miRNAs) are 20- to 24-nucleotide small non-coding RNAs that regulate gene expression in eukaryotic organisms. Several plant miRNAs, such as miR166, have vital roles in plant growth, development and responses to environmental stresses. One such environmental stress encountered by crop plants is exposure to cadmium (Cd), an element highly toxic to most organisms, including humans and plants. In this study, we analyzed the role of miR166 in Cd accumulation and tolerance in rice (Oryza sativa). The expression levels of miR166 in both root and leaf tissues were significantly higher in the reproductive stage than in the seedling stage in rice. The expression of miR166 in the roots of rice seedlings was reduced after Cd treatment. Overexpression of miR166 in rice improved Cd tolerance, a result associated with the reduction of Cd-induced oxidative stress in transgenic rice plants. Furthermore, overexpression of miR166 reduced both Cd translocation from roots to shoots and Cd accumulation in the grains. miR166 targets genes encoding the class-III homeodomain-leucine zipper (HD-Zip) family proteins in plants. In rice, HOMEODOMAIN CONTAINING PROTEIN 4 (OsHB4) gene (Os03g43930), which encodes an HD-Zip protein, was up-regulated by Cd treatment but down-regulated by overexpression of miR166 in transgenic rice plants. Overexpression of OsHB4 increased Cd sensitivity and Cd accumulation in the leaves and grains of transgenic rice plants. By contrast, silencing OsHB4 by RNA interference enhanced Cd tolerance in transgenic rice plants. These results indicate a critical role for miR166 in Cd accumulation and tolerance through regulation of its target gene, OsHB4, in rice. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  11. Immunostimulatory AdCD40L gene therapy combined with low-dose cyclophosphamide in metastatic melanoma patients

    PubMed Central

    Loskog, Angelica; Maleka, Aglaia; Mangsbo, Sara; Svensson, Emma; Lundberg, Christina; Nilsson, Anders; Krause, Johan; Agnarsdóttir, Margrét; Sundin, Anders; Ahlström, Håkan; Tötterman, Thomas H; Ullenhag, Gustav

    2016-01-01

    Background: Current approaches for treating metastatic malignant melanoma (MM) are not effective enough and are associated with serious adverse events. Due to its immunogenicity, melanoma is an attractive target for immunostimulating therapy. In this phase I/IIa study, local AdCD40L immunostimulatory gene therapy was evaluated in patients with MM. Methods: AdCD40L is an adenovirus carrying the gene for CD40 ligand. Patients that failed standard treatments were enrolled. Six patients received four weekly intratumoral AdCD40L injections. Next, nine patients received low-dose cyclophosphamide conditioning before the first and fourth AdCD40L injection. The blood samples were collected at multiple time points for chemistry, haematology and immunology evaluations. Radiology was performed at enrolment and repeated twice after the treatment. Results: AdCD40L was safe with mild transient reactions. No objective responses were recorded by MRI, however, local and distant responses were seen on FDG-PET. The overall survival at 6 months was significantly better when cyclophosphamide was added to AdCD40L. The patients with the best survival developed the highest levels of activated T cells and experienced a pronounced decrease of intratumoral IL8. Conclusions: AdCD40L therapy for MM was well tolerated. Local and distant responses along with better survival in the low-dose cyclophosphamide group are encouraging. PMID:27031851

  12. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells.

    PubMed

    Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2018-04-18

    This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P < 0.05) mRNA profiles of 9 inflammation-related genes in cells, while short-time Se pretreatment modestly reversed (P < 0.05) the LPS-induced upregulation of 7 genes (COX-2, ICAM-1, IL-1β, IL-6, IL-10, iNOS, and MCP-1) and further increased (P < 0.05) expression of IFN-β and TNF-α in stressed cells. Meanwhile, LPS decreased (P < 0.05) mRNA levels of 18 selenoprotein encoding genes and upregulated mRNA levels of TXNRD1 and TXNRD3 in cells. Se pretreatment recovered (P < 0.05) expression of 3 selenoprotein encoding genes (GPX1, SELENOH, and SELENOW) in a dose-dependent manner and increased (P < 0.05) expression of another 5 selenoprotein encoding genes (SELENOK, SELENOM, SELENOS, SELENOT, and TXNRD2) only at a high level (2.0 μmol Se/L). Taken together, LPS-induced immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.

  13. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies.

    PubMed

    Das, Bhabatosh; Kumari, Reena; Pant, Archana; Sen Gupta, Sourav; Saxena, Shruti; Mehta, Ojasvi; Nair, Gopinath Balakrish

    2014-12-01

    CTXΦ, a filamentous vibriophage encoding cholera toxin, uses a unique strategy for its lysogeny. The single-stranded phage genome forms intramolecular base-pairing interactions between two inversely oriented XerC and XerD binding sites (XBS) and generates a functional phage attachment site, attP(+), for integration. The attP(+) structure is recognized by the host-encoded tyrosine recombinases XerC and XerD (XerCD), which enables irreversible integration of CTXΦ into the chromosome dimer resolution site (dif) of Vibrio cholerae. The dif site and the XerCD recombinases are widely conserved in bacteria. We took advantage of these conserved attributes to develop a broad-host-range integrative expression vector that could irreversibly integrate into the host chromosome using XerCD recombinases without altering the function of any known open reading frame (ORF). In this study, we engineered two different arabinose-inducible expression vectors, pBD62 and pBD66, using XBS of CTXΦ. pBD62 replicates conditionally and integrates efficiently into the dif of the bacterial chromosome by site-specific recombination using host-encoded XerCD recombinases. The expression level of the gene of interest could be controlled through the PBAD promoter by modulating the functions of the vector-encoded transcriptional factor AraC. We validated the irreversible integration of pBD62 into a wide range of pathogenic and nonpathogenic bacteria, such as V. cholerae, Vibrio fluvialis, Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Gene expression from the PBAD promoter of integrated vectors was confirmed in V. cholerae using the well-studied reporter genes mCherry, eGFP, and lacZ. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Purification, characterization, gene cloning and nucleotide sequencing of D: -stereospecific amino acid amidase from soil bacterium: Delftia acidovorans.

    PubMed

    Hongpattarakere, Tipparat; Komeda, Hidenobu; Asano, Yasuhisa

    2005-12-01

    The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.

  15. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells.

    PubMed

    Weniger, Marc A; Tiacci, Enrico; Schneider, Stefanie; Arnolds, Judith; Rüschenbaum, Sabrina; Duppach, Janine; Seifert, Marc; Döring, Claudia; Hansmann, Martin-Leo; Küppers, Ralf

    2018-06-11

    Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.

  16. Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium

    PubMed Central

    Ashton, Kevin J.; Tupicoff, Amanda; Williams-Pritchard, Grant; Kiessling, Can J.; See Hoe, Louise E.; Headrick, John P.; Peart, Jason N.

    2013-01-01

    Background Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. Methodology/Principal Findings Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. Conclusions Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered. PMID:23991079

  17. A murC gene from coryneform bacteria.

    PubMed

    Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K

    1999-02-01

    The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.

  18. Establishment and characterization of a novel Hodgkin lymphoma cell line, AM-HLH, carrying the Epstein-Barr virus genome integrated into the host chromosome.

    PubMed

    Hayashida, Masahiko; Daibata, Masanori; Tagami, Erika; Taguchi, Takahiro; Maekawa, Fumiyo; Takeoka, Kayo; Fukutsuka, Katsuhiro; Shimomura, Daiki; Hayashi, Takamasa; Iwatani, Yoshinori; Ohno, Hitoshi

    2017-12-01

    We describe the establishment and characterization of a cell line, AM-HLH, obtained from a patient with Epstein-Barr virus-positive (EBV + ) nodular sclerosis-type Hodgkin lymphoma (HL). The cells were positive for CD2 and CD30 and negative for CD15. The immunoglobulin heavy- and κ light-chain genes were rearranged. The karyotype was of the triploid range. Southern blotting using the EBV terminal repeat probe detected 3 hybridizing bands that were identical to those of the parental HL material. The cells expressed EBV-encoded RNAs as well as latent genes (EBNA1, EBNA2, LMP1, and LMP2A) and lytic genes (BZLF1 and BALF2). Fluorescence in situ hybridization (FISH) with the cosmid pJB8 clone containing a fragment of EBV DNA as a probe revealed multiple hybridization signals at a marker chromosome. Additional FISH using whole chromosome painting and centromere probes in combination with multicolor FISH determined that multiple EBV copies were clustered within the chromosome 20 materials of the marker chromosome. Culture supernatants of AM-HLH contained IL-10 as measured by the bead-based immunoassay. It is possible that an integrated EBV genome and cellular genes on chromosome 20 were coamplified, leading to the enhanced expression of genes involved in cell growth control. The AM-HLH cell line will be useful to clarify the role of cytokines in the development of EBV + HL. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Does pretransplant soluble CD30 serum concentration affect deceased-donor kidney graft function 3 years after transplantation?

    PubMed

    Kovac, J; Arnol, M; Vidan-Jeras, B; Bren, A F; Kandus, A

    2008-06-01

    Elevated serum concentrations of soluble CD30 molecule (sCD30) have been related to acute cellular rejection and poor graft outcomes in kidney transplantation. This historical cohort study investigated the association of pretransplant sCD30 serum concentrations with kidney graft function expressed as estimated glomerular filtration rate (GFR) at 3 years after transplantation. Pretransplant sera from 176 adult deceased-donor kidney graft recipients were tested for sCD30 content using a commercially available automated enzyme-linked immunosorbent assay. The immunosuppression consisted of induction therapy with monoclonal anti-CD25 antibodies and a maintenance regimen of cyclosporine (CsA)-based therapy. GFR was estimated (eGFR) by the four-variable Modification of Diet in Renal Disease (MDRD) Study equation. According to the distribution of pretransplant sCD30 levels (median 66.7 U/mL; interquartile range, 46.6 to 98.6 U/mL), a concentration of 66 U/mL or higher was defined as high (n = 89) and below 66 U/mL as low (n = 87). Three years after transplantation, eGFR was not significantly different among recipients in high versus low sCD30 groups (69 +/- 23 mL/min/1.73m2 vs 66 +/- 21 mL/min/1.73m2; P = .327) and there was no correlation between eGFR and pretransplant sCD30 levels (r2 = 0.001; P = .73). Upon multivariate regression analysis, donor age, recipient body mass index at transplantation, and acute rejection episodes were independent variables affecting eGFR at 3 years after transplantation. This study showed that pretransplant sCD30 serum concentrations were not associated with deceased-donor kidney graft function at 3 years after transplantation. The immunosuppression with anti-CD25 antibodies and a triple CsA-based maintenance regimen could possibly be decisive for our findings.

  20. Levels of soluble CD30 in cord blood and peripheral blood during childhood are not correlated with the development of atopic disease or a family history of atopy.

    PubMed

    Holmlund, U; Bengtsson, A; Nilsson, C; Kusoffsky, E; Lilja, G; Scheynius, A; Sverremark-Ekström, E

    2003-11-01

    The CD30 molecule has been linked to Th2 responses. Furthermore, elevated levels of the soluble form of CD30 (sCD30) in blood as well as of the expression of CD30 on the plasma membrane of T cells are associated with atopic disease. To assess the potential usefulness of sCD30 levels as a prognostic indicator of and/or diagnostic marker for the development of atopic disease in children. sCD30 levels in cord blood and peripheral blood from 36 2-year-old (10 atopic and 26 non-atopic) and 74 7-year-old (35 atopic and 39 non-atopic) children were determined employing an ELISA procedure. Atopy was diagnosed on the basis of clinical evaluation in combination with a positive skin prick test. No significant correlation between sCD30 levels in cord blood and the development of atopic disease at 2 or 7 years of age was observed. At 7 years of age, the circulating sCD30 levels in children with atopic disease (median 41 U/mL, range 6-503 U/mL) did not differ from the corresponding values for non-atopic subjects (median 41 U/mL, range 8-402 U/mL). The same was true for children at 2 years of age. Furthermore, the sCD30 levels of children who had developed atopic eczema/dermatitis syndrome by the age of 7 years (median 49 U/mL, range 14-503 U/mL) were not significantly elevated in comparison with those of the non-atopic children. Finally, neither sCD30 levels in cord blood nor peripheral blood at 2 or 7 years of age could be linked to a family history of atopy. These findings indicate that the sCD30 concentration in cord blood is not a reliable prognostic indicator of, nor a useful diagnostic marker for, atopic disease in children up to 7 years of age. If such correlations do exist, they might be masked by age-dependent variations in the circulating levels of sCD30, which may reflect individual differences in the maturation of children's immunological responses.

  1. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2

    PubMed Central

    Aloui, Chaker; Prigent, Antoine; Tariket, Sofiane; Sut, Caroline; Fagan, Jocelyne; Cognasse, Fabrice; Chakroun, Tahar; Garraud, Olivier; Laradi, Sandrine

    2016-01-01

    Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 presented a positive association with rs1126643, with a significant modification in sCD40L secretion (carriers of C allele, P = 0.02), unlike the investigated CD40LG and CD40 polymorphisms. One CD40LG haplotype (TGGC) showing rs975379 (C/T), rs3092952 (A/G), rs3092933 (A/G) and rs3092929 (A/C) was associated with increased sCD40L levels (1.906 μg/L (95% CI: 1.060 to 2.751); P = 0.000009). The sCD40L level was associated with the inter-chromosomal CD40LG/CD40/ITGA2 haplotype (ATC), displaying rs3092952 (A/G), rs1883832 (C/T) and rs1126643 (C/T), with increased sCD40L levels (P = 0.0135). Our results help to decipher the genetic role of CD40LG, CD40 and ITGA2 with regard to sCD40L levels found in platelet components. Given the crucial role of sCD40L, this haplotype study in a transfusion model may be helpful to further determine the role of haplotypes in inflammatory clinical settings. PMID:27094978

  2. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum

    PubMed Central

    Raabe, Carsten A.; Sanchez, Cecilia P.; Randau, Gerrit; Robeck, Thomas; Skryabin, Boris V.; Chinni, Suresh V.; Kube, Michael; Reinhardt, Richard; Ng, Guey Hooi; Manickam, Ravichandran; Kuryshev, Vladimir Y.; Lanzer, Michael; Brosius, Juergen; Tang, Thean Hock; Rozhdestvensky, Timofey S.

    2010-01-01

    Nonprotein-coding RNAs (npcRNAs) represent an important class of regulatory molecules that act in many cellular pathways. Here, we describe the experimental identification and validation of the small npcRNA transcriptome of the human malaria parasite Plasmodium falciparum. We identified 630 novel npcRNA candidates. Based on sequence and structural motifs, 43 of them belong to the C/D and H/ACA-box subclasses of small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs). We further observed the exonization of a functional H/ACA snoRNA gene, which might contribute to the regulation of ribosomal protein L7a gene expression. Some of the small npcRNA candidates are from telomeric and subtelomeric repetitive regions, suggesting their potential involvement in maintaining telomeric integrity and subtelomeric gene silencing. We also detected 328 cis-encoded antisense npcRNAs (asRNAs) complementary to P. falciparum protein-coding genes of a wide range of biochemical pathways, including determinants of virulence and pathology. All cis-encoded asRNA genes tested exhibit lifecycle-specific expression profiles. For all but one of the respective sense–antisense pairs, we deduced concordant patterns of expression. Our findings have important implications for a better understanding of gene regulatory mechanisms in P. falciparum, revealing an extended and sophisticated npcRNA network that may control the expression of housekeeping genes and virulence factors. PMID:19864253

  3. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum.

    PubMed

    Raabe, Carsten A; Sanchez, Cecilia P; Randau, Gerrit; Robeck, Thomas; Skryabin, Boris V; Chinni, Suresh V; Kube, Michael; Reinhardt, Richard; Ng, Guey Hooi; Manickam, Ravichandran; Kuryshev, Vladimir Y; Lanzer, Michael; Brosius, Juergen; Tang, Thean Hock; Rozhdestvensky, Timofey S

    2010-01-01

    Nonprotein-coding RNAs (npcRNAs) represent an important class of regulatory molecules that act in many cellular pathways. Here, we describe the experimental identification and validation of the small npcRNA transcriptome of the human malaria parasite Plasmodium falciparum. We identified 630 novel npcRNA candidates. Based on sequence and structural motifs, 43 of them belong to the C/D and H/ACA-box subclasses of small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs). We further observed the exonization of a functional H/ACA snoRNA gene, which might contribute to the regulation of ribosomal protein L7a gene expression. Some of the small npcRNA candidates are from telomeric and subtelomeric repetitive regions, suggesting their potential involvement in maintaining telomeric integrity and subtelomeric gene silencing. We also detected 328 cis-encoded antisense npcRNAs (asRNAs) complementary to P. falciparum protein-coding genes of a wide range of biochemical pathways, including determinants of virulence and pathology. All cis-encoded asRNA genes tested exhibit lifecycle-specific expression profiles. For all but one of the respective sense-antisense pairs, we deduced concordant patterns of expression. Our findings have important implications for a better understanding of gene regulatory mechanisms in P. falciparum, revealing an extended and sophisticated npcRNA network that may control the expression of housekeeping genes and virulence factors.

  4. Plant rhabdoviruses.

    PubMed

    Redinbaugh, M G; Hogenhout, S A

    2005-01-01

    This chapter provides an overview of plant rhabdovirus structure and taxonomy, genome structure, protein function, and insect and plant infection. It is focused on recent research and unique aspects of rhabdovirus biology. Plant rhabdoviruses are transmitted by aphid, leafhopper or planthopper vectors, and the viruses replicate in both their insect and plant hosts. The two plant rhabdovirus genera, Nucleorhabdovirus and Cytorhabdovirus, can be distinguished on the basis of their intracellular site of morphogenesis in plant cells. All plant rhabdoviruses carry analogs of the five core genes: the nucleocapsid (N), phosphoprotein (P), matrix (M), glycoprotein (G) and large or polymerase (L). However, compared to vesiculoviruses that are composed of the five core genes, all plant rhabdoviruses encode more than these five genes, at least one of which is inserted between the P and M genes in the rhabdoviral genome. Interestingly, while these extra genes are not similar among plant rhabdoviruses, two encode proteins with similarity to the 30K superfamily of plant virus movement proteins. Analysis of nucleorhabdoviral protein sequences revealed nuclear localization signals for the N, P, M and L proteins, consistent with virus replication and morphogenesis of these viruses in the nucleus. Plant and insect factors that limit virus infection and transmission are discussed.

  5. Local irradiation does not enhance the effect of immunostimulatory AdCD40L gene therapy combined with low dose cyclophosphamide in melanoma patients

    PubMed Central

    Irenaeus, Sandra; Schiza, Aglaia; Mangsbo, Sara M.; Wenthe, Jessica; Eriksson, Emma; Krause, Johan; Sundin, Anders; Ahlström, Håkan; Tötterman, Thomas H.; Loskog, Angelica; Ullenhag, Gustav J.

    2017-01-01

    Background AdCD40L is an immunostimulatory gene therapy under evaluation for advanced melanoma, including ocular melanoma. Herein, we present the final data of a Phase I/IIa trial using AdCD40L alone or in combination with low dose cyclophosphamide +/- radiation therapy. Methods AdCD40L is a replication-deficient adenovirus carrying the gene for CD40 ligand (CD40L). Twenty-four patients with advanced melanoma were enrolled and treated with AdCD40L monotherapy, or combined with cyclophosphamide +/- single fraction radiotherapy. The patients were monitored for 10 weeks using immunological and radiological evaluations and thereafter for survival. Results AdCD40L treatment was safe and well tolerated both alone and in combination with cyclophosphamide as well as local radiotherapy. Four out of twenty-four patients had >1 year survival. Addition of cyclophosphamide was beneficial but adding radiotherapy did not further extend survival. High initial plasma levels of IL12 and MIP3b correlated to overall survival, whereas IL8 responses post-treatment correlated negatively with survival. Interestingly, antibody reactions to the virus correlated negatively with post IL6 and pre IL1b levels in blood. Conclusions AdCD40L was safely administered to patients and effect was improved by cyclophosphamide but not by radiotherapy. Immune activation profile at baseline may predict responders better than shortly after treatment. PMID:29108250

  6. [Characterization of a recombinant aminopeptidase Lmo1711 from Listeria monocytogenes].

    PubMed

    He, Zhan; Wang, Hang; Han, Xiao; Ma, Tiantian; Hang, Yi; Yu, Huifei; Wei, Fangfang; Sun, Jing; Yang, Yongchun; Cheng, Changyong; Song, Houhui

    2018-05-25

    We aimed to obtain the recombinant aminopeptidase encoded by Listeria monocytogenes (L. monocytogenes) gene lmo1711, and characterized the enzyme. First, the amino acid sequences of Lmo1711 from L. monocytogenes EGD-e and its homologues in other microbial species were aligned and the putative active sites were analyzed. The putative model of Lmo1711 was constructed through the SWISS-MODEL Workspace. Then, the plasmid pET30a-Lmo1711 was constructed and transformed into E. coli for expression of the recombinant Lmo1711. The his-tagged soluble protein was purified using the nickel-chelated affinity column chromatography. With the amino acid-p-nitroaniline as the substrate, Lmo1711 hydrolyzed the substrate to free p-nitroaniline monomers, whose absorbance measured at 405 nm reflected the aminopeptidase activity. The specificity of Lmo1711 to substrates was then examined by changing various substrates, and the effect of metal ions on the catalytic efficiency of this enzyme was further determined. Based on the bioinformatics data, Lmo1711 is a member of the M29 family aminopeptidases, containing a highly conserved catalytic motif (Glu-Glu-His-Tyr-His-Asp) with typical structure arrangements of the peptidase family. The recombinant Lmo1711 with a size of about 49.3 kDa exhibited aminopeptidase activity and had a selectivity to the substrates, with the highest degree of affinity for leucine-p-nitroaniline. Interestingly, the enzymatic activity of Lmo1711 can be activated by Cd²⁺, Zn²⁺, and is strongly stimulated by Co²⁺. We here, for the first time demonstrate that L. monocytogenes lmo1711 encodes a cobalt-activated aminopeptidase of M29 family.

  7. Polymorphism in Human Cytomegalovirus UL40 Impacts on Recognition of Human Leukocyte Antigen-E (HLA-E) by Natural Killer Cells*

    PubMed Central

    Heatley, Susan L.; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M. L.; Harpur, Christopher M.; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G.; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C.; Brooks, Andrew G.

    2013-01-01

    Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a “mimic” of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a “polymorphic hot spot” within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors. PMID:23335510

  8. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells.

    PubMed

    Heatley, Susan L; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M L; Harpur, Christopher M; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C; Brooks, Andrew G

    2013-03-22

    Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a "mimic" of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a "polymorphic hot spot" within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors.

  9. Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors

    PubMed Central

    Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.

    2011-01-01

    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234

  10. CD30 on extracellular vesicles from malignant Hodgkin cells supports damaging of CD30 ligand-expressing bystander cells with Brentuximab-Vedotin, in vitro

    PubMed Central

    Hansen, Hinrich P.; Trad, Ahmad; Dams, Maria; Zigrino, Paola; Moss, Marcia; Tator, Maximilian; Schön, Gisela; Grenzi, Patricia C; Bachurski, Daniel; Aquino, Bruno; Dürkop, Horst; Reiners, Katrin S; von Bergwelt-Baildon, Michael; Hallek, Michael; Grötzinger, Joachim; Engert, Andreas; Leme, Adriana F Paes; von Strandmann, Elke Pogge

    2016-01-01

    The goal of targeted immunotherapy in cancer is to damage both malignant and tumor-supporting cells of the microenvironment but spare unaffected tissue. The malignant cells in classical Hodgkin lymphoma (cHL) selectively express CD30. They release this receptor on extracellular vesicles (EVs) for the tumor-supporting communication with CD30 ligand (CD30L)-positive bystander cells. Here, we investigated how CD30-positive EVs influence the efficacy of the CD30 antibody drug conjugate (ADC) Brentuximab Vedotin (SGN-35). The malignant cells and the EVs expressed the active sheddase ADAM10. ADAM10 cleaved and released the CD30 ectodomain (sCD30), causing a gradual depletion of SGN-35 binding sites on EVs and creating a soluble competitor of the ADC therapy. In a 3D semi-solid tumor microenvironment model, the EVs were retained in the matrix whereas sCD30 penetrated readily into the surrounding culture medium. This resulted in a lowered ratio of EV-associated CD30 (CD30EV) to sCD30 in the surrounding medium in comparison to non-embedded cultures. A low percentage of CD30EV was also detected in the plasma of cHL patients, supporting the clinical relevance of the model. The adherence of CD30EV but not sCD30 to CD30−/CD30L+ mast cells and eosinophils allowed the indirect binding of SGN-35. Moreover, SGN-35 damaged CD30-negative cells, provided they were loaded with CD30+ EVs. PMID:27105521

  11. Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l.

    PubMed Central

    2013-01-01

    Background Hydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to 40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are poorly understood. The functional roles of individual genes within such gene families also remain unclear. The relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are supplemented by results of the protein structure modeling for a representative set of hydrophobins. Results We have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes, Heterobasidion irregulare, representing one of the microspecies within the aggregate H. annosum s.l., and Phlebia brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irregulare (16 copies), a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1–40 copies), whereas contraction through gene loss was observed among the analyzed ascomycetes (1–11 copies). Our phylogenetic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species’ ecological strategy, with the non-pathogenic fungi having increased numbers of hydrophobins compared with their pathogenic counterparts. However, there was no significant relationship between the number of hydrophobin-encoding genes and genome size. Furthermore, our results revealed significant differences in the expression levels of the 16 H. annosum s.s. hydrophobin-encoding genes which suggest possible differences in their regulatory patterns. Conclusions A considerable expansion of the hydrophobin-encoding genes in basidiomycetes has been observed. The distribution and number of hydrophobin-encoding genes in the analyzed species may be connected to their ecological preferences. Results of our analysis also have shown that H. annosum s.l. hydrophobin-encoding genes may be under positive selection. Our gene expression analysis revealed differential expression of H. annosum s.s. hydrophobin genes under different growth conditions, indicating their possible functional diversification. PMID:24188142

  12. Transcriptional response of mysid crustacean, Americamysis bahia, is affected by subchronic exposure to nonylphenol.

    PubMed

    Uchida, Masaya; Hirano, Masashi; Ishibashi, Hiroshi; Kobayashi, Jun; Kagami, Yoshihiro; Koyanagi, Akiko; Kusano, Teruhiko; Koga, Minoru; Arizono, Koji

    2016-11-01

    Nonylphenol (NP) has been classified as an endocrine-disrupting chemical. In this study, we conducted mysid DNA microarray analysis with which has 2240 oligo DNA probes to observe differential gene expressions in mysid crustacean (Americamysis bahia) exposed to 1, 3, 10 and 30 μg/l of NP for 14 days. As a result, we found 31, 27, 39 and 68 genes were differentially expressed in the respective concentrations. Among these genes, the expressions of five particular genes were regulated in a similar manner at all concentrations of the NP exposure. So, we focused on one gene encoding cuticle protein, and another encoding cuticular protein analogous to peritrophins 1-H precursor. These genes were down-regulated by NP exposure in a dose-dependent manner, and it suggested that they were related in a reduction of the number of molting in mysids. Thus, they might become useful molecular biomarker candidates to evaluate molting inhibition in mysids. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Plasma levels of soluble CD30 in kidney graft recipients as predictors of acute allograft rejection.

    PubMed

    Ayed, K; Abdallah, T B; Bardi, R; Abderrahim, E; Kheder, A

    2006-09-01

    In renal transplant recipients elevated soluble serum CD30 levels are associated with increased rejection and graft loss. We sought to determine the sCD30 plasma levels before and after kidney transplantation and to assess whether sCD30 was a predictive factor of immunological risk. sCD30 plasma levels were determined by an enzyme-linked immunosorbent assay assay in 52 kidney graft recipients before as well as 7, 15, and 21 days after transplantation. Eighteen patients developed acute allograft rejection (group I) and 34 patients showed uneventful courses (group II). Before transplantation sCD30 plasma levels were elevated in both groups (mean: 162.6 +/- 89.5 U/mL). After transplantation, group I recipients with acute rejection showed higher relative levels of plasma sCD30 on days 7 and 15 (120.8 +/- 74.6 U/mL and 210.6 +/- 108.7 U/mL respectively) compared with group II patients without rejection (95 +/- 45 U/mL and 59.4 +/- 31.6 U/mL), a difference that was significant for group I (P = .0003) and not significant for group II (P = .09). On day 21, sCD30 decreased in the two groups but remained higher among group I patients (120.6 +/- 92.7 U/mL). HLA antibodies were positive in 18 patients (34.6%) with 9 (50%) experiencing at last one episode of acute rejection. Among 34 patients negative for anti-HLA antibodies, nine displayed acute rejection only (26.4%), a difference that was not significant (P > .05). If we consider 100 U/mL as the minimum predictive level for allograft rejection, our results suggested that levels of sCD30 should be taken into consideration with the presence of HLA-antibodies detectable before and after transplantation, especially in patients with more than three HLA mismatches [RR = 3.20 (0.94 < RR < 10.91)]. These data suggested that measurement of plasma sCD30 is a useful procedure for the recognition of rejection in its earliest stages.

  14. Genome-Wide Associations of CD46 and IFI44L Genetic Variants with Neutralizing Antibody Response to Measles Vaccine

    PubMed Central

    Haralambieva, Iana H.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Larrabee, Beth R.; Zimmermann, Michael T.; Grill, Diane E.; Schaid, Daniel J.; Poland, Gregory A.

    2017-01-01

    Background Population-based studies have revealed 2 to 10% measles vaccine failure rate even after two vaccine doses. While the mechanisms behind this remain unknown, we hypothesized that host genetic factors are likely to be involved. Methods We performed a genome-wide association study of measles specific neutralizing antibody and IFNγ ELISPOT response in a combined sample of 2,872 subjects. Results We identified two distinct chromosome 1 regions (previously associated with MMR-related febrile seizures), associated with vaccine-induced measles neutralizing antibody titers. The 1q32 region contained 20 significant SNPs in/around the measles virus receptor-encoding CD46 gene, including the intronic rs2724384 (p-value = 2.64x10−09) and rs2724374 (p-value = 3.16x10−09) SNPs. The 1q31.1 region contained nine significant SNPs in/around IFI44L, including the intronic rs1333973 (p-value = 1.41x10−10) and the missense rs273259 (His73Arg, p-value = 2.87x10−10) SNPs. Analysis of differential exon usage with mRNA-Seq data and RT-PCR suggests the involvement of rs2724374 minor G allele in the CD46 STP region exon B skipping, resulting in shorter CD46 isoforms. Conclusions Our study reveals common CD46 and IFI44L SNPs associated with measles-specific humoral immunity, and highlights the importance of alternative splicing/virus cellular receptor isoform usage as a mechanism explaining inter-individual variation in immune response after live measles vaccine. PMID:28289848

  15. Ubiquitin--conserved protein or selfish gene?

    PubMed

    Catic, André; Ploegh, Hidde L

    2005-11-01

    The posttranslational modifier ubiquitin is encoded by a multigene family containing three primary members, which yield the precursor protein polyubiquitin and two ubiquitin moieties, Ub(L40) and Ub(S27), that are fused to the ribosomal proteins L40 and S27, respectively. The gene encoding polyubiquitin is highly conserved and, until now, those encoding Ub(L40) and Ub(S27) have been generally considered to be equally invariant. The evolution of the ribosomal ubiquitin moieties is, however, proving to be more dynamic. It seems that the genes encoding Ub(L40) and Ub(S27) are actively maintained by homologous recombination with the invariant polyubiquitin locus. Failure to recombine leads to deterioration of the sequence of the ribosomal ubiquitin moieties in several phyla, although this deterioration is evidently constrained by the structural requirements of the ubiquitin fold. Only a few amino acids in ubiquitin are vital for its function, and we propose that conservation of all three ubiquitin genes is driven not only by functional properties of the ubiquitin protein, but also by the propensity of the polyubiquitin locus to act as a 'selfish gene'.

  16. Isolation and characterization of a novel tannase from a metagenomic library.

    PubMed

    Yao, Jian; Fan, Xin Jiong; Lu, Yi; Liu, Yu Huan

    2011-04-27

    A novel gene (designated as tan410) encoding tannase was isolated from a cotton field metagenomic library by functional screening. Sequence analysis revealed that tan410 encoded a protein of 521 amino acids. SDS-PAGE and gel filtration chromatography analysis of purified tannase suggested that Tan410 was a monomeric enzyme with a molecular mass of 55 kDa. The optimum temperature and pH of Tan410 were 30 °C and 6.4. The activity was enhanced by addition of Ca(2+), Mg(2+) and Cd(2+). In addition, Tan410 was stable in the presence of 4 M NaCl. Chlorogenic acid, rosmarinic acid, ethyl ferulate, tannic acid, epicatechin gallate and epigallocathchin gallate were efficiently hydrolyzed by recombinant tannase. All of these excellent properties make Tan410 an interesting enzyme for biotechnological application.

  17. Post-transplant monitoring of soluble CD30 level as predictor of graft outcome: a single center experience from China.

    PubMed

    Wang, Dong; Wu, Weizhen; Yang, Shunliang; Wang, Qinghua; Tan, Jianming

    2012-12-01

    There are no reliable parameters for post-transplantation immunological monitoring, which might enable recipient-tailored immunosuppressive therapy. 250 renal graft recipients were enrolled and detected for sCD30 level pre-transplantation, and on days 5 and 14, and on months 1, 3, 6, 12, 24, 36, 48 and 60 post-transplantation. Analysis was performed on correlation between sCD30 level and acute rejection, lung infection, or graft loss respectively. sCD30 levels descended to a nadir with a mean of 10.2 ± 3.8 U/mL on day 30 post-transplantation, then rose gradually, and approached 21.8 ± 10.1 U/mL on month 3, 34.2 ± 16.5 U/mL on month 6, and 42.9 ± 29.5 U/mL on month 12, then presented a stable level. Recipients with AR had significantly higher sCD30 levels than those without AR on days 5 and 14 post-transplantation. Recipients with pneumonia had significantly lower sCD30 levels within 3 months post-transplantation than those without pneumonia. Significantly higher sCD30 levels were recorded in recipients who suffered graft loss than those with normal graft function on days 5 and 14, and on months 6, 12, and 24. High sCD30 level (≥ 48.3 U/mL) at month 12 post-transplantation has an obvious detrimental effect on renal graft survival (p=0.000, HR=9.075). Serum sCD30 level might reflect immune state of renal graft recipients. Post-transplantation sequential monitoring of sCD30 level is necessary, which might not only identify recipients at the risk of acute rejection and graft loss, but also chosen as an independent predictor of pneumonia in renal transplant recipients. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. High frequency of EBV association and 30-bp deletion in the LMP-1 gene in CD56 lymphomas of the upper aerodigestive tract.

    PubMed

    Tai, Yan-Chin; Kim, Lian-Hua; Peh, Suat-Cheng

    2004-03-01

    Natural killer (NK)/T-cell lymphomas are frequently associated with Epstein-Barr virus (EBV), and usually lack TCR gene rearrangement. Studies from Asia have reported frequent deletion in the LMP-1 gene in EBV-associated nasopharyngeal carcinoma (NPC). The present study aims to investigate LMP-1 and TCRgamma gene status in upper aerodigestive tract lymphomas. A total of 43 cases were classified into T-, B-, and NK/T-cell tumors based on the phenotype expressions of CD3(+)/CD20(-)/CD56(-), CD3(-)/CD20(+)/CD56(-), and CD3(+)/CD20(-)/CD56(+), respectively. The presence of EBV in the tumor was confirmed by EBV early RNA-in situ hybridization. LMP-1 gene deletion and TCR gamma gene rearrangement were analyzed by polymerase chain reaction on paraffin-embedded tissues. There were 20 NK/T-, eight T-, and 15 B-cell phenotype lymphomas in the present series, and EBV was detected in 19 (95%), two (25%), and three (20%) cases in the respective groups. All EBV+ cases carried 30-bp deletion in the LMP-1 gene, and two of the NK/T-cell cases were infected by both the wild type and deleted strains. Five (25%) of the NK/T-cell phenotype lymphomas showed rearranged TCR gamma gene. The present study revealed a high frequency of EBV association, and a high frequency of 30-bp deletion in the LMP-1 gene in the virus in the present series of lymphoma. The NK/T-phenotype lymphomas are comprised of both NK-cell and cytotoxic T-lymphocyte-derived tumors.

  19. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.

    PubMed

    Gottlieb, Katrin; Albermann, Christoph; Sprenger, Georg A

    2014-07-11

    For the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported. L-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM C(Phe)/C(Glucose) and a maximal space-time-yield (STY) of 0.13 g l(-1) h(-1) was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM C(Phe)/C(Glycerol)), but the maximal STY was higher (0.21 g l(-1) h(-1)). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpK(G232D)) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM C(Phe)/C(Glycerol); 0.25 g l(-1) h(-1) and 0.21 mM C(Phe)/C(Glycerol); 0.23 g l(-1) h(-1), respectively), the combination of extra genes of glpX and tktA together led to an increase in maximal STY of about 80% (0.37 g l(-1) h(-1)) and a carbon recovery of 0.26 mM C(Phe)/C(Glycerol). Enhancing the gene copy numbers for glpX and tktA increased L-Phe productivity from glycerol without affecting growth rate. Engineering of glycerol metabolism towards L-Phe production in E. coli has to balance the pathways of gluconeogenesis, glycolysis, and PPP to improve the supply of the precursors, PEP and E4P.

  20. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    DOE PAGES

    Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; ...

    2015-09-15

    We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzymemore » (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.« less

  1. H2O2 Production in Species of the Lactobacillus acidophilus Group: a Central Role for a Novel NADH-Dependent Flavin Reductase

    PubMed Central

    Hertzberger, Rosanne; Arents, Jos; Dekker, Henk L.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel

    2014-01-01

    Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii. PMID:24487531

  2. Expression mapping using a retroviral vector for CD8+ T cell epitopes: definition of a Mycobacterium tuberculosis peptide presented by H2-Dd.

    PubMed

    Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio

    2005-03-01

    Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.

  3. A cadmium metallothionein gene of ridgetail white prawn Exopalaemon carinicauda (Holthuis, 1950) and its expression

    NASA Astrophysics Data System (ADS)

    Zhang, Jiquan; Wang, Jing; Xiang, Jianhai

    2013-11-01

    Metallothioneins (MTs) are a group of low molecular weight cysteine-rich proteins capable of binding heavy metal ions. A cadmium metallothionein ( EcMT — Cd) cDNA with a 189 bp open reading frame (ORF) that encoded a 62 amino acid protein was obtained from Exopalaemon carinicauda. Seventeen cysteines were in the deduced amino acid sequence, and the cysteine (Cys)-rich characteristic was revealed in different metallothioneins in other species. In addition, the deduced amino acid sequence did not contain any aromatic amino acid residues, such as tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). EcMT—Cd mRNA was expressed in all tested tissues (the ovary, muscle, stomach, and hepatopancreas), and its expression profiles in the hepatopancreas were very different when shrimps were exposed to seawater containing either 50 μmol/L CuSO4 or 2.5 μmol/L CdCl 2. The expression of EcMT-Cd was significantly up-regulated in shrimp exposed to CuSO4 for 12 h and down-regulated in shrimps exposed to CdCl2 for 12 h. After 24 h exposure to both metals, its expression was down-regulated. By contrast, at 48 h the EcMT-Cd was up-regulated in test shrimps exposed to CdCl2. The transcript of EcMT-Cd was very low or even absent before the zoea stage, and the expression of EcMT-Cd was detected from mysis larvae-I, then its expression began to rise. In conclusion, a cadmium MT exists in E. carinicauda that is expressed in different tissues and during different developmental stages, and responds to the challenge with heavy metal ions, which provides a clue to understanding the function of cadmium MT.

  4. Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride.

    PubMed

    Tamburro, Manuela; Ripabelli, Giancarlo; Vitullo, Monia; Dallman, Timothy James; Pontello, Mirella; Amar, Corinne Francoise Laurence; Sammarco, Michela Lucia

    2015-06-01

    In this study, tolerance at sublethal concentration of benzalkonium chloride and transcription levels of mdrL, ladR, lde, sigB and bcrABC genes in Listeria monocytogenes strains were evaluated. Viable cells reduction occurred in 45% of strains and clinical isolates showed lower sensitivity than isolates from foods. An increased transcription of an efflux system encoding gene was found in 60% of strains, and simultaneous mdrL overexpression and ladR underexpression occurred in 30% of isolates. A significant association between reduced benzalkonium chloride activity and both mdrL and sigB overexpression was observed; sigB expression also correlated with both mdrL and ladR genes. The bcrABC gene was only found in six strains, all isolated from foods and sensitive to benzalkonium chloride, and in four strains an underexpression was observed. Disinfection at sublethal concentration was less effective in clinical isolates, and mdrL and sigB expression was significantly affected by disinfection. Further insights are needed to understand the adaptation to benzalkonium chloride and to evaluate whether changes in gene expression could affect the L. monocytogenes virulence traits and persistence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    PubMed

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis.

    PubMed

    Lorente, Leonardo; Martín, María M; Varo, Nerea; Borreguero-León, Juan María; Solé-Violán, Jordi; Blanquer, José; Labarta, Lorenzo; Díaz, César; Jiménez, Alejandro; Pastor, Eduardo; Belmonte, Felipe; Orbe, Josune; Rodríguez, José A; Gómez-Melini, Eduardo; Ferrer-Agüero, José M; Ferreres, José; Llimiñana, María C; Páramo, José A

    2011-03-15

    CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis. This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint. Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03). In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target.

  7. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    PubMed

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination.

  8. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  9. Type, Frequency, and Spatial Distribution of Immune Cell Infiltrates in CNS Germinomas: Evidence for Inflammatory and Immunosuppressive Mechanisms.

    PubMed

    Zapka, Pia; Dörner, Evelyn; Dreschmann, Verena; Sakamato, Noriaki; Kristiansen, Glen; Calaminus, Gabriele; Vokuhl, Christian; Leuschner, Ivo; Pietsch, Torsten

    2018-02-01

    Central nervous system germinomas are characterized by a massive immune cell infiltrate. We systematically characterized these immune cells in 28 germinomas by immunophenotyping and image analysis. mRNA expression was analyzed by Nanostring technology and in situ RNA hybridization. Tumor infiltrating lymphocytes (TILs) were composed of 61.8% ± 3.1% (mean ± SE) CD3-positive T cells, including 45.2% ± 3.5% of CD4-positive T-helper cells, 23.4% ± 1.5% of CD8-positive cytotoxic T cells, 5.5% ± 0.9% of FoxP3-positive regulatory T cells, and 11.9% ±1.3% PD-1-positive TILs. B cells accounted for 35.8% ± 2.9% of TILs and plasma cells for 9.3% ± 1.6%. Tumor-associated macrophages consisted of clusters of activated PD-L1-positive macrophages and interspersed anti-inflammatory macrophages expressing CD163. Germinoma cells did not express PD-L1. Expression of genes encoding immune cell markers and cytokines was high and comparable to mRNA levels in lymph node tissue. IFNG and IL10 mRNA was detected in subfractions of TILs and in PD-L1-positive macrophages. Taken together, the strong immune reaction observed in germinomas involves inflammatory as well as various suppressive mechanisms. Expression of PD-1 and PD-L1 and infiltration of cytotoxic T cells are biomarkers predictive of response to anti-PD-1/PD-L1 therapies, constituting a rationale for possible novel treatment approaches. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  10. [Evaluation of immune status of kidney transplant recipients by combined HLA-G5 and sCD30].

    PubMed

    JIN, Zhan-kui; TIAN, Pu-xun; XUE, Wu-jun; DING, Xiao-ming; PAN, Xiao-ming; DING, Chen-guang; JIA, Li-ning; GE, Guan-qun; HAO, Jun-jun

    2010-09-28

    to study the relationship between the expression of serum human leucocyte antigen-G5 (HLA-G5)/soluble CD30 (sCD30) and the function of renal graft in kidney transplant recipients and investigate the immune status of recipients with combined HLA-G5 and sCD30. from January 2002 to November 2008, a total of 66 kidney transplant recipients in our centre were selected as subjects and divided into three groups: stable function of renal graft (n = 38), acute rejection (n = 15) and chronic rejection (n = 13). The expressions of serum HLA-G5 and sCD30 were detected. There were two different immune conditions with acute/chronic allograft rejection and normal renal graft in kidney transplant recipients as evaluated by combined HLA-G5 and sCD30. The sensitivity, specificity and critical value of the method were analyzed by the curve of receiver operating characteristic. the levels of HLA-G5 and sCD30 were significantly correlated with serum creatinine (r = -0.493, 0.691, both P < 0.01). Within the first year post-transplantation, the sensitivity was 78.6% and the specificity 85.7% when HLA-G5 critical value 82 microg/L and sCD30 critical value 12.2 microg/L. After one year post-transplantation: the sensitivity was 92.3% and the specificity 84.6% when HLA-G5 critical value 141 microg/L and sCD30 critical value 10.3 microg/L. the immune state of recipients are evaluated by combine HLA-G5 and sCD30 which may be a simple and valid method.

  11. High soluble CD30 levels and associated anti-HLA antibodies in patients with failed renal allografts.

    PubMed

    Karahan, Gonca E; Caliskan, Yasar; Ozdilli, Kursat; Kekik, Cigdem; Bakkaloglu, Huseyin; Caliskan, Bahar; Turkmen, Aydin; Sever, Mehmet S; Oguz, Fatma S

    2017-01-13

    Serum soluble CD30 (sCD30), a 120-kD glycoprotein that belongs to the tumor necrosis factor receptor family, has been suggested as a marker of rejection in kidney transplant patients. The aim of this study was to evaluate the relationship between sCD30 levels and anti-HLA antibodies, and to compare sCD30 levels in patients undergoing hemodialysis (HD) with and without failed renal allografts and transplant recipients with functioning grafts. 100 patients undergoing HD with failed grafts (group 1), 100 patients undergoing HD who had never undergone transplantation (group 2), and 100 kidney transplant recipients (group 3) were included in this study. Associations of serum sCD30 levels and anti-HLA antibody status were analyzed in these groups. The sCD30 levels of group 1 and group 2 (154 ± 71 U/mL and 103 ± 55 U/mL, respectively) were significantly higher than those of the transplant recipients (group 3) (39 ± 21 U/mL) (p<0.001 and p<0.001). The serum sCD30 levels in group 1 (154 ± 71 U/mL) were also significantly higher than group 2 (103 ± 55 U/mL) (p<0.001). Anti-HLA antibodies were detected in 81 (81%) and 5 (5%) of patients in groups 1 and 2, respectively (p<0.001). When multiple regression analysis was performed to predict sCD30 levels, the independent variables in group 1 were the presence of class I anti-HLA antibodies (β = 0.295; p = 0.003) and age (β = -0.272; p = 0.005), and serum creatinine (β = 0.218; p = 0.027) and presence of class II anti-HLA antibodies (standardized β = 0.194; p = 0.046) in group 3. Higher sCD30 levels and anti-HLA antibodies in patients undergoing HD with failed renal allografts may be related to higher inflammatory status in these patients.

  12. Absence of both Sos-1 and Sos-2 in peripheral CD4(+) T cells leads to PI3K pathway activation and defects in migration.

    PubMed

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-08-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-guanine exchange factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4(+) T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4(+) T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4(+) T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  13. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.

    PubMed

    Das, Natasha; Bhattacharya, Surajit; Maiti, Mrinal K

    2016-08-01

    One of the most grievous heavy metal pollutants in the environment is cadmium (Cd), which is not only responsible for the crop yield loss owing to its phytotoxicity, but also for the human health hazards as the toxic elements usually accumulate in the consumable parts of crop plants. In the present study, we aimed to isolate and functionally characterize the OsMTP1 gene from indica rice (Oryza sativa L. cv. IR64) to study its potential application for efficient phytoremediation of Cd. The 1257 bp coding DNA sequence (CDS) of OsMTP1 encodes a ∼46 kDa protein belonging to the cation diffusion facilitator (CDF) or metal tolerance/transport protein (MTP) family. The OsMTP1 transcript in rice plant was found to respond during external Cd stress. Heterologous expression of OsMTP1 in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects, including growth inhibition, lipid peroxidation, and cell death. Compared to untransformed control, the transgenic tobacco plants showed enhanced vacuolar thiol content, indicating vacuolar localization of the sequestered Cd. The transgenic tobacco plants exhibited significantly higher biomass growth (2.2-2.8-folds) and hyperaccumulation of Cd (1.96-2.22-folds) compared to untransformed control under Cd exposure. The transgenic plants also showed moderate tolerance and accumulation of arsenic (As) upon exogenous As stress, signifying broad substrate specificity of OsMTP1. Together, findings of our research suggest that the transgenic tobacco plants overexpressing OsMTP1 with its hyperaccumulating activity and increased growth rate could be useful for future phytoremediation applications to clean up the Cd-contaminated soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila.

    PubMed

    Lüneberg, E; Mayer, B; Daryab, N; Kooistra, O; Zähringer, U; Rohde, M; Swanson, J; Frosch, M

    2001-03-01

    We recently described the phase-variable expression of a virulence-associated lipopolysaccharide (LPS) epitope in Legionella pneumophila. In this study, the molecular mechanism for phase variation was investigated. We identified a 30 kb unstable genetic element as the molecular origin for LPS phase variation. Thirty putative genes were encoded on the 30 kb sequence, organized in two putative opposite transcription units. Some of the open reading frames (ORFs) shared homologies with bacteriophage genes, suggesting that the 30 kb element was of phage origin. In the virulent wild-type strain, the 30 kb element was located on the chromosome, whereas excision from the chromosome and replication as a high-copy plasmid resulted in the mutant phenotype, which is characterized by alteration of an LPS epitope and loss of virulence. Mapping and sequencing of the insertion site in the genome revealed that the chromosomal attachment site was located in an intergenic region flanked by genes of unknown function. As phage release could not be induced by mitomycin C, it is conceivable that the 30 kb element is a non-functional phage remnant. The protein encoded by ORF T on the 30 kb plasmid could be isolated by an outer membrane preparation, indicating that the genes encoded on the 30 kb element are expressed in the mutant phenotype. Therefore, it is conceivable that the phenotypic alterations seen in the mutant depend on high-copy replication of the 30 kb element and expression of the encoded genes. Excision of the 30 kb element from the chromosome was found to occur in a RecA-independent pathway, presumably by the involvement of RecE, RecT and RusA homologues that are encoded on the 30 kb element.

  15. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.

    PubMed

    Hey, Ying-Ying; O'Neill, Helen C

    This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.

  16. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    PubMed Central

    Báez-Viveros, José Luis; Flores, Noemí; Juárez, Katy; Castillo-España, Patricia; Bolivar, Francisco; Gosset, Guillermo

    2007-01-01

    Background The rational design of L-phenylalanine (L-Phe) overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS) and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase), reaching yields of 0.33 (g-Phe/g-Glc), which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA) of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB), gluconeogenic (ppsA, pckA) and fermentative enzymes (ldhA) were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt) in the best PTS- L-Phe overproducing strain (PB12-ev2). Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to both PTS inactivation and the presence of plasmids. For instance, acs-ackA, sucABCD, and sdhABCD operons were up-regulated in PB12 (PTS mutant that carries an arcB- mutation). The induction of these operons was further increased by the presence of plasmids in PB12-ev2. Some genes involved in the shikimate and specific aromatic amino acid pathways showed down-regulation in the L-Phe overproducing strains, might cause possible metabolic limitations in the shikimate pathway. Conclusion The identification of potential rate-limiting steps and the detection of transcriptional responses in overproducing microorganisms may suggest "reverse engineering" strategies for the further improvement of L-Phe production strains. PMID:17880710

  17. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines.

    PubMed

    D'Souza, Sushila; Romano, Marta; Korf, Johanna; Wang, Xiao-Ming; Adnet, Pierre-Yves; Huygen, Kris

    2006-05-01

    Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.

  18. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.

    USDA-ARS?s Scientific Manuscript database

    Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of "AtCAX2" or "AtCAX4", which encode divalent cation/proto...

  19. Serum levels of the soluble form of CD30 molecule as a tumor marker in CD30+ anaplastic large-cell lymphoma.

    PubMed

    Nadali, G; Vinante, F; Stein, H; Todeschini, G; Tecchio, C; Morosato, L; Chilosi, M; Menestrina, F; Kinney, M C; Greer, J P

    1995-06-01

    To determine serum levels of the soluble form of CD30 molecule (sCD30) in patients with Ki-1/CD30+ anaplastic large-cell lymphoma (ALCL), and to evaluate its correlation with clinical features at presentation and its possible role as a tumor marker to monitor response to treatment and subsequent follow-up. sCD30 serum levels were measured with an improved commercial sandwich enzyme-linked immunosorbent assay (ELISA) test kit in 24 patients with CD30+ ALCL at diagnosis and in 13 after treatment. Increased values (> 20 U/mL) at diagnosis were observed in 23 of 24 cases (median, 842.5 U/mL; range, 16 to 37,250) as compared with controls (P < .0001). These values were greater than those of 60 stage-matched cases of Hodgkin's disease (HD) (P < .0001). The highest median value was observed in patients with T-cell-type ALCL (1,690 U/mL), with a significant overall difference as compared with B- and null-cell types (P = .004). Phenotype maintained its significance when results were corrected for other parameters, such as age, sex, and stage (P = .03). sCD30 values returned to the normal range in complete remission (CR), but remained increased in one patient who only partially responded to treatment. Subsequent increases of sCD30 levels were recorded in four of four patients after relapse. sCD30 appears to be a new biologic serum tumor marker of possible use in the clinical setting of CD30+ ALCL.

  20. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    PubMed

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  1. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0.05) observed between dead and living microbial cells for metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study advocates the use of Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas putida and Bacillus licheniformis. PMID:23387904

  2. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    PubMed

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p < 0.05) observed between dead and living microbial cells for metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study advocates the use of Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas putida and Bacillus licheniformis.

  3. Photocontrol of the expression of genes encoding chlorophyll a/b binding proteins and small subunit of ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (L. ) and Nicotiana tabacum (L. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehmeyer, B.; Cashmore, A.R.; Schaefer, E.

    Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light.more » These distinct expression characteristics are shown to reflect differences at the level of transcription.« less

  4. Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene

    PubMed Central

    Zamora, Genesis; Sun, Chung-Ho; Trinidad, Anthony; Chun, Changho; Kwon, Young Jik; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2014-01-01

    Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80 % of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments. PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect. PMID:24610460

  5. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism

    PubMed Central

    van Dongen, Stijn; Haluck-Kangas, Ashley; Sarshad, Aishe A; Bartom, Elizabeth T; Kim, Kwang-Youn A; Scholtens, Denise M; Hafner, Markus; Zhao, Jonathan C; Murmann, Andrea E

    2017-01-01

    Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3’UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells. PMID:29063830

  6. Diversity of heavy metal resistant bacteria from Kalimas Surabaya: A phylogenetic taxonomy approach

    NASA Astrophysics Data System (ADS)

    Zulaika, Enny; Utomo, Andry Prio; Prima, Adisya; Alami, Nur Hidayatul; Kuswytasari, Nengah Dwianita; Shovitri, Maya; Sembiring, Langkah

    2017-06-01

    Bacterial resistance to heavy metal is a genetic and physiological adaptation to the environment which contaminated by heavy metal. Kalimas is an important river in Surabaya that is contaminated by some heavy metals and probably as a habitat for heavy metal resistance bacteria. Bacterial resistance to heavy metals are different for each species, and their diversity can be studied by phylogenetic taxonomy approach. Isolates screening was done using nutrient agar which contained 1 mg/L HgCl2, CdCl2 and K2Cr2O7. Bacterial viability were observed by nutrient broth which contained 10 mg/L HgCl2, 30 mg/L CdCl2 and 50 mg/L K2Cr2O7. Isolates that resistant to heavy metal and viable after exposure to heavy metal were identified using 16S rRNA gene marker by Polymerase Chain Reaction (PCR). Phylogenetic tree reconstruction was done by the neighbor-joining algorithm. Genetic assignment showed isolates that resist and viable after exposure of Hg, Cd and Cr are Bacillus S1, SS19 and DA11. Based on BLAST analysis from NCBI gene bank, 16S rRNA sequences, those isolates were similar with the member of Bacillus cereus. Depend on 16S rRNA nucleotide alignment by the neighbor-joining algorithm, Bacillus S1, SS19 and DA11 were belong to Bacillus cereus sensu-lato group.

  7. Plasma Soluble CD30 as a Possible Marker of Adult T-cell Leukemia in HTLV-1 Carriers: a Nested Case-Control Study.

    PubMed

    Takemoto, Shigeki; Iwanaga, Masako; Sagara, Yasuko; Watanabe, Toshiki

    2015-01-01

    Elevated levels of soluble CD30 (sCD30) are linked with various T-cell neoplasms. However, the relationship between sCD30 levels and the development of adult T-cell leukemia (ATL) in human T-cell leukemia virus type 1 (HTLV-1) carriers remains to be clarified. We here investigated whether plasma sCD30 is associated with risk of ATL in a nested case-control study within a cohort of HTLV-1 carriers. We compared sCD30 levels between 11 cases (i.e., HTLV-1 carriers who later progressed to ATL) and 22 age-, sex- and institution-matched control HTLV-1 carriers (i.e., those with no progression). The sCD30 concentration at baseline was significantly higher in cases than in controls (median 65.8, range 27.2-134.5 U/mL vs. median 22.2, range 8.4-63.1 U/mL, P=0.001). In the univariate logistic regression analysis, a higher sCD30 (≥30.2 U/mL) was significantly associated with ATL development (odds ratio 7.88 and the 95% confidence intervals 1.35-45.8, P = 0.02). Among cases, sCD30 concentration tended to increase at the time of diagnosis of aggressive-type ATL, but the concentration was stable in those developing the smoldering-type. This suggests that sCD30 may serve as a predictive marker for the onset of aggressive-type ATL in HTLV-1 carriers.

  8. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretin receptor superfamily with an unusual extracellular domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, J.; Hamann, D.; Lier, R.A.W.

    1995-08-15

    CD97 is a monomeric glycoprotein of 75 to 85 kDa that is induced rapidly on the surface of most leukocytes upon activation. We herein report the isolation of a cDNA encoding human CD97 by expression cloning in COS cells. The 3-kb cDNA clone encodes a mature polypeptide chain of 722 amino acids with a predicted molecular mass of 79 kDa. Within the C-terminal part of the protein, a region with seven hydrophobic segments was identified, suggesting that CD97 is a seven-span transmembrane molecule. Sequence comparison indicates that CD97 is the first leukocyte Ag in a recently described superfamily that includesmore » the receptors for secretin, calcitonin, and other mammalian and insect peptide hormones. Different from these receptors, CD97 has an extended extracellular region of 433 amino acids that possesses three N-terminal epidermal growth factor-like domains, two of them with a calcium-binding site, and single Arg-Gly-Asp (RGD) motif. The existence of structural elements characteristic for extracellular matrix proteins in a seven-span transmembrane molecule makes CD97 a receptor potentially involved in both adhesion and signaling processes early after leukocyte activation. The gene encoding CD97 is localized on chromosome 19 (19p13.12-13.2).« less

  9. Bioinformatics analysis and detection of gelatinase encoded gene in Lysinibacillussphaericus

    NASA Astrophysics Data System (ADS)

    Repin, Rul Aisyah Mat; Mutalib, Sahilah Abdul; Shahimi, Safiyyah; Khalid, Rozida Mohd.; Ayob, Mohd. Khan; Bakar, Mohd. Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, we performed bioinformatics analysis toward genome sequence of Lysinibacillussphaericus (L. sphaericus) to determine gene encoded for gelatinase. L. sphaericus was isolated from soil and gelatinase species-specific bacterium to porcine and bovine gelatin. This bacterium offers the possibility of enzymes production which is specific to both species of meat, respectively. The main focus of this research is to identify the gelatinase encoded gene within the bacteria of L. Sphaericus using bioinformatics analysis of partially sequence genome. From the research study, three candidate gene were identified which was, gelatinase candidate gene 1 (P1), NODE_71_length_93919_cov_158.931839_21 which containing 1563 base pair (bp) in size with 520 amino acids sequence; Secondly, gelatinase candidate gene 2 (P2), NODE_23_length_52851_cov_190.061386_17 which containing 1776 bp in size with 591 amino acids sequence; and Thirdly, gelatinase candidate gene 3 (P3), NODE_106_length_32943_cov_169.147919_8 containing 1701 bp in size with 566 amino acids sequence. Three pairs of oligonucleotide primers were designed and namely as, F1, R1, F2, R2, F3 and R3 were targeted short sequences of cDNA by PCR. The amplicons were reliably results in 1563 bp in size for candidate gene P1 and 1701 bp in size for candidate gene P3. Therefore, the results of bioinformatics analysis of L. Sphaericus resulting in gene encoded gelatinase were identified.

  10. Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies

    PubMed Central

    Ranger, Ann; Ray, Soma; Szak, Suzanne; Dearth, Andrea; Allaire, Norm; Murray, Ronald; Gardner, Rebecca; Cadavid, Diego

    2017-01-01

    Objective: To evaluate whether the anti-LINGO-1 antibody has immunomodulatory effects. Methods: Human peripheral blood mononuclear cells (hPBMCs), rat splenocytes, and rat CD4+ T cells were assessed to determine whether LINGO-1 was expressed and was inducible. Anti-LINGO-1 Li81 (0.1–30 μg/mL) effect on proliferation/cytokine production was assessed in purified rat CD4+ T cells and hPBMCs stimulated with antibodies to CD3 +/– CD28. In humans, the effect of 2 opicinumab (anti-LINGO-1/BIIB033; 30, 60, and 100 mg/kg) or placebo IV administrations was evaluated in RNA from blood and CSF samples taken before and after administration in phase 1 clinical trials; paired samples were assessed for differentially expressed genes by microarray. RNA from human CSF cell pellets was analyzed by quantitative real-time PCR for changes in transcripts representative of cell types, activation markers, and soluble proteins of the adaptive/innate immune systems. ELISA quantitated the levels of CXCL13 protein in human CSF supernatants. Results: LINGO-1 is not expressed in hPBMCs, rat splenocytes, or rat CD4+ T cells; LINGO-1 blockade with Li81 did not affect T-cell proliferation or cytokine production from purified rat CD4+ T cells or hPBMCs. LINGO-1 blockade with opicinumab resulted in neither significant changes in immune system gene expression in blood and CSF, nor changes in CXCL13 CSF protein levels (clinical studies). Conclusions: These data support the hypothesis that LINGO-1 blockade does not affect immune function. Classification of evidence: This study provides Class II evidence that in patients with MS, opicinumab does not have immunomodulatory effects detected by changes in immune gene transcript expression. PMID:29259995

  11. Retro-inverso d-peptide-modified hyaluronic acid/bioreducible hyperbranched poly(amido amine)/pDNA core-shell ternary nanoparticles for the dual-targeted delivery of short hairpin RNA-encoding plasmids.

    PubMed

    Gu, Jijin; Chen, Xinyi; Fang, Xiaoling; Sha, Xianyi

    2017-07-15

    The active targeting of gene carriers is a powerful strategy for improving tumour-specific delivery and therapy. Although numerous l-peptide ligands play significant roles in the active targeting of nanomedicine, retro-inverso d-peptides have been explored as targeting ligands due to their superior stability and bioactivity in vivo. In this study, retro-inverso d-peptide (RIF7)-modified hyaluronic acid (HA)/bioreducible hyperbranched poly(amido amine) (RHB)/plasmid DNA (pDNA) ternary nanoparticles were successfully developed using the layer-by-layer method for the CD44-positive tumour-specific delivery of short hairpin RNA (shRNA)-encoding pDNA through the combination of the Anxa1 (tumour vasculature) and CD44 (tumour cell-surface) receptors, which mediated the dual targeting. The potential of these newly designed nanoparticles was evaluated by examining the efficacy of their cellular uptake and transfection in cell monolayers, tumour spheroids, and malignant xenograft animal models. With negligible cytotoxicity, the spherical-shaped RIF7-HA/RHB/pDNA nanoparticles were the direct result of an electrostatic complex that had efficiently targeted CD44-positive tumour delivery, penetration, and cellular uptake in vitro. The nanoparticles showed excellent target-specific gene transfection even in the presence of serum. The in vivo therapeutic effect of RIF7-HA/RHB/pDNA-shRNA nanoparticle-mediated shRNA targeting of the Cyclin gene (shCyclin) was evaluated in tumour-bearing mice. The RIF7-HA/RHB/pDNA-shCyclin nanoparticles significantly increased the survival time of tumour-bearing mice and substantially reduced tumour growth due to their extremely specific tumour-targeting activity. These results suggested that the combination of HA and retro-inverso peptide RIF7 significantly increased the therapeutic effect of pDNA-shCyclin-loaded nanoparticles for CD44-positive tumours. Thus, RIF7-HA-mediated multi-target ternary gene vectors are an efficient and promising strategy for the delivery of pDNA-shRNA in the targeted treatment of malignant and metastatic cancers. Although l-peptide ligands play significant roles in the active targeting of nanomedicine, retro-inverso d-peptides have been explored as targeting ligands due to their superior stability and bioactivity in vivo. Retro-inverso peptide RIF7 was designed as a ligand of Anxa1 receptor. The resultant peptide, RIF7, displayed high binding efficiency within Anxa1 receptor, which is highly expressed tumour vasculature cells and some tumour cells such as B16F10 and U87MG cells. The most important feature of RIF7 is its high stability in the blood, which is suitable and promising for application in vivo. Multifunctional RIF7-HA was then synthesized by conjugating the RIF7 peptide to HA, which was used to modify the surface of RHB/pDNA nanoparticles to prepare RIF7-HA/RHB/pDNA core-shell ternary nanoparticles for the dual-targeted delivery of shRNA-encoding plasmids in vitro and in vivo. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Identification of cadmium-induced Agaricus blazei genes through suppression subtractive hybridization.

    PubMed

    Wang, Liling; Li, Haibo; Wei, Hailong; Wu, Xueqian; Ke, Leqin

    2014-01-01

    Cadmium (Cd) is one of the most serious environmental pollutants. Filamentous fungi are very promising organisms for controlling and reducing the amount of heavy metals released by human and industrial activities. However, the molecular mechanisms involved in Cd accumulation and tolerance of filamentous fungi are not fully understood. Agaricus blazei Murrill, an edible mushroom with medicinal properties, demonstrates high tolerance for heavy metals, especially Cd. To investigate the molecular mechanisms underlying the response of A. blazei after Cd exposure, we constructed a forward subtractive library that represents cadmium-induced genes in A. blazei under 4 ppm Cd stress for 14 days using suppression subtractive hybridization combined with mirror orientation selection. Differential screening allowed us to identify 39 upregulated genes, 26 of which are involved in metabolism, protein fate, cellular transport, transport facilitation and transport routes, cell rescue, defense and virulence, transcription, and the action of proteins with a binding function, and 13 are encoding hypothetical proteins with unknown functions. Induction of six A. blazei genes after Cd exposure was further confirmed by RT-qPCR. The cDNAs isolated in this study contribute to our understanding of genes involved in the biochemical pathways that participate in the response of filamentous fungi to Cd exposure. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  14. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a herpesvirus saimiri vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassmann, R.; Dengler, C.; Mueller-Fleckenstein, I.

    1989-05-01

    The role of the X region of the genome of the human T-cell leukemia virus type I (HTLV-I) in the immortalization of lymphocytes has been difficult to distinguish from its role in viral replication as this region encodes at least two genes, tax and rex, required for replication and the expression of viral proteins. To determine whether the X region does encode immortalizing functions, a fragment of the HTLV-I provirus capable of expressing known X-region proteins was inserted into the genome of a transformation-defective, replication-competent Herpesvirus saimiri. Infection of fresh mitogen-activated human cord blood and thymocytes yielded immortal T-cell linesmore » that had the same phenotype (CD4{sup +}, Cd5{sup +}, HLA class II{sup +}, interleukin 2 receptor {alpha}-chain +) as lymphocytes transformed by cocultivation with HTLV-I. These experiments demonstrate that the X region encodes the functions of HTLV-I that immortalize a distinct subpopulation of human T cells. The experiments also demonstrate the utility of the H. saimiri vector for the transduction of heterologous genes into human T cells.« less

  15. Involvement of Sp1 and Microsatellite Repressor Sequences in the Transcriptional Control of the Human CD30 Gene

    PubMed Central

    Croager, Emma J.; Gout, Alexander M.; Abraham, Lawrence J.

    2000-01-01

    CD30, as a member of the tumor necrosis factor (TNF) receptor family, is expressed on the surface of activated lymphoid cells. CD30 overexpression is a characteristic of lymphoproliferative diseases such as Hodgkin’s/non-Hodgkin’s lymphomas, embryonal carcinoma, and a number of Th2-associated diseases. The CD30 gene has been mapped to a region of the murine genome that is involved in susceptibility to systemic lupus erythematosus. Functionally, CD30 may play a role in the deletion of autoreactive T cells. We were interested in determining the molecular nature of CD30 overexpression. Sequence comparison has revealed significant identity between the TATA-less human and murine CD30 promoters; they share a number of common consensus binding motifs. Transfection assays identified three regions of transcriptional importance; the region between position −1.2 kb and −336 bp, containing a CCAT microsatellite sequence, a conserved Sp1 site at positions −43 to −38, and a downstream promoter element (DPE) at positions +24 to +29. EMSA and DNase I footprinting showed specific DNA-protein interactions of the CD30 promoter with the Sp1 site and the CCAT repeat region. The DPE element was shown to be essential for start site selection. We conclude that the conserved Sp1 site at −43 to −38 is associated with maximum reporter gene activity, the DPE element is required for start site selection, and the CCAT tetranucleotide repeats act to repress transcription. We also have shown that the microsatellite is multiallelic, when we screened a random healthy population. Further studies are required to determine whether microsatellite instability in the repressor predisposes susceptible individuals to CD30 overexpression. PMID:10793083

  16. Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8+ T Cell Responses

    PubMed Central

    Panas, Michael W.; Sixsmith, Jaimie D.; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T.; Moy, Brian T.; Lee, Sunhee; Schmitz, Joern E.; Jacobs, William R.; Porcelli, Steven A.; Haynes, Barton F.; Letvin, Norman L.

    2014-01-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8+ T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8+ T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8+ T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8+ T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. PMID:25287928

  17. Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses.

    PubMed

    Panas, Michael W; Sixsmith, Jaimie D; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T; Moy, Brian T; Lee, Sunhee; Schmitz, Joern E; Jacobs, William R; Porcelli, Steven A; Haynes, Barton F; Letvin, Norman L; Gillard, Geoffrey O

    2014-12-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8(+) T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8(+) T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8(+) T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8(+) T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Diversity Analysis of Dairy and Nondairy Lactococcus lactis Isolates, Using a Novel Multilocus Sequence Analysis Scheme and (GTG)5-PCR Fingerprinting▿

    PubMed Central

    Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.

    2007-01-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345

  19. Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting.

    PubMed

    Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T

    2007-11-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.

  20. Topographical cone photopigment gene expression in deutan-type red-green color vision defects.

    PubMed

    Bollinger, Kathryn; Sjoberg, Stacy A; Neitz, Maureen; Neitz, Jay

    2004-01-01

    Eye donors were identified who had X-chromosome photopigment gene arrays like those of living deuteranomalous men; the arrays contained two genes encoding long-wavelength sensitive (L) pigments as well as genes to encode middle-wavelength sensitive (M) photopigment. Ultrasensitive methods failed to detect the presence of M photopigment mRNA in the retinas of these deutan donors. This provides direct evidence that deuteranomaly is caused by the complete absence of M pigment mRNA. Additionally, for those eyes with mRNA corresponding to two different L-type photopigments, the ratio of mRNA from the first vs. downstream L genes was analyzed across the retinal topography. Results show that the pattern of first relative to downstream L gene expression in the deuteranomalous retina is similar to the pattern of L vs. M gene expression found in normal retinas.

  1. [X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia: report of a family and literature review].

    PubMed

    He, T Y; Xia, Y; Li, C G; Li, C R; Qi, Z X; Yang, J

    2018-01-02

    Objective: To investigate the clinical features and genetic characteristics of cases with X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia (XMEN). Methods: Characteristics of clinical material, immunological data and gene mutation of two cases with XMEN in the same family in China were retrospectively analyzed. The related reports literature were searched by using search terms'MAGT1 gene'or'XMEN'. Results: The proband, a 2-year-eight-month old boy, was admitted due to 'Urine with deepened color for two days and yellow stained skin for one day'. He had suffered from recurrent upper respiratory tract infection and sinusitis previously. Hemoglobin level was 38 g/L. The absolute count of reticulocytes was 223.2×10(9)/L. Urobilinogen level was 38 μmol/L (3-16 μmol/L). Coomb's test was positive. Both total (77.2 μmol/L) and indirect bilirubin (66 μmol/L) levels were elevated. There was an inverted CD4(+)/CD8(+)T cell ratio (0.89). The gene sequencing results showed MAGT1 gene c.472delG, p.D158Mfs*6 mutation. His 1-year-6-month old brother, was also identified to have MAGT1 gene c.472delG, p.D158Mfs*6 mutation.The younger brother mainly suffered from recurrent upper respiratory tract infection, accompanied by an inverted CD4(+)/CD8(+)T cell ratio (0.45), an elevated ratio and number of total B cells (45.7%). A total of 7 reports were retrieved including 11 male cases caused by MAGT1 gene mutation. These 11 cases were characterized by EBV viremia (11 cases), recurrent upper respiratory tract infection, otitis media or sinusitis (10 cases), secondary neoplasia diseases (8 cases), reduction of CD4(+)/CD8(+) T cell ratio (7 cases),and autoimmune thrombocytopenia or hemolytic anemia (2 cases). Conclusion: XMEN often manifests as male onset, recurrent upper respiratory tract infection, otitis media or sinusitis, EBV viremia, lymphoproliferative disease or lymphoma, autoimmune diseases and reduction of CD4(+)/CD8 (+)T cell ratio. NKG2D expression in NK cells is significantly reduced, and gene sequencing analysis shows a pathogenic mutation in MAGT1 gene.

  2. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis

    PubMed Central

    2011-01-01

    Introduction CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis. Methods This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint. Results Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03). Conclusions In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target. PMID:21406105

  3. Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders.

    PubMed

    Chandra, Goutam; Bagh, Maria B; Peng, Shiyong; Saha, Arjun; Sarkar, Chinmoy; Moralle, Matthew; Zhang, Zhongjian; Mukherjee, Anil B

    2015-10-01

    Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal. Although inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) cause INCL, those in the CLN10 gene encoding cathepsin D (CD) underlie CNCL. PPT1 is a lysosomal thioesterase that cleaves the thioester linkage in S-acylated proteins required for their degradation by lysosomal hydrolases like CD. Thus, PPT1 deficiency causes lysosomal accumulation of these lipidated proteins (major constituents of ceroid) leading to INCL. We sought to determine whether there is a common pathogenic link between INCL and CNCL. Using biochemical, histological and confocal microscopic analyses of brain tissues and cells from Cln1(-/-) mice that mimic INCL, we uncovered that Cln10/CD is overexpressed. Although synthesized in the endoplasmic reticulum, the CD-precursor protein (pro-CD) is transported through endosome to the lysosome where it is proteolytically processed to enzymatically active-CD. We found that despite Cln10 overexpression, the maturation of pro-CD to enzymatically active-CD in lysosome was disrupted. This defect impaired lysosomal degradative function causing accumulation of undegraded cargo in lysosome leading to INCL. Notably, treatment of intact Cln1(-/-) mice as well as cultured brain cells derived from these animals with a thioesterase-mimetic small molecule, N-tert-butyl-hydroxylamine, ameliorated the CD-processing defect. Our findings are significant in that they define a pathway in which Cln1 mutations disrupt the maturation of a major degradative enzyme in lysosome contributing to neuropathology in INCL and suggest that lysosomal CD deficiency is a common pathogenic link between INCL and CNCL. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    PubMed

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  5. L1000CDS2: LINCS L1000 characteristic direction signatures search engine.

    PubMed

    Duan, Qiaonan; Reid, St Patrick; Clark, Neil R; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Readhead, Ben; Tritsch, Sarah R; Hodos, Rachel; Hafner, Marc; Niepel, Mario; Sorger, Peter K; Dudley, Joel T; Bavari, Sina; Panchal, Rekha G; Ma'ayan, Avi

    2016-01-01

    The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes, we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served through a state-of-the-art web-based search engine application called L1000CDS 2 . The L1000CDS 2 search engine provides prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an input gene expression signature using two methods. The L1000CDS 2 search engine also predicts drug targets for all the small molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for single-gene perturbations in mammalian cells. We applied L1000CDS 2 to prioritize small molecules that are predicted to reverse expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22 endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS 2 , we collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with L1000CDS 2 we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS 2 tool can be applied in many biological and biomedical settings, while improving the extraction of knowledge from the LINCS L1000 resource.

  6. Deficit of heat shock transcription factor 1-heat shock 70 kDa protein 1A axis determines the cell death vulnerability in a model of spinocerebellar ataxia type 6.

    PubMed

    Li, Li; Saegusa, Hironao; Tanabe, Tsutomu

    2009-11-01

    Spinocerebellar ataxia type 6 (SCA6) is caused by a small expansion of polyglutamine (polyQ)-encoding CAG repeat in Ca(v)2.1 calcium channel gene. To gain insights into pathogenic mechanism of SCA6, we used HEK293 cells expressing fusion protein of enhanced green fluorescent protein and Ca(v)2.1 carboxyl terminal fragment (EGFP-Ca(v)2.1CT) [L24 and S13 cells containing 24 polyQ (disease range) and 13 polyQ (normal range), respectively] and examined their responses to some stressors. When exposed to CdCl(2), L24 cells showed lower viability than the control S13 cells and caspase-dependent apoptosis was enhanced more in L24 cells. Localization of EGFP-Ca(v)2.1CT was almost confined to the nucleus, where it existed as speckle-like structures. Interestingly, CdCl(2) treatment resulted in disruption of more promyelocytic leukemia nuclear bodies (PML-NBs) in L24 cells than in S13 cells and in cells where PML-NBs were disrupted, aggregates of EGFP-Ca(v)2.1CT became larger. Furthermore, a large number of aggregates were formed in L24 cells than in S13 cells. Results of RNAi experiments indicated that HSPA1A determined the difference against CdCl(2) toxicity. Furthermore, protein expression of heat shock transcription factor 1 (HSF1), which activates HSPA1A expression, was down-regulated in L24 cells. Therefore, HSF1-HSPA1A axis is critical for the vulnerability in L24 cells.

  7. [Killing effects of PWZL plasmid-mediated double suicide gene on human lens epithelium cells].

    PubMed

    Yan, Xiao-ran; Wu, Hong; Yu, Hai-tao; Wang, Xiu; Zhang, Yu

    2008-04-01

    To investigate the killing efficiency of PWZL plasmid-mediated herpes simplex virus-thymidine kinase (TK) and E. coli cytosine deaminase (CD) on human lens epithelium cells followed by the treatment of prodrugs. PWZL plasmid was used as a vehicle, to transduce double suicide genes into the human lens epithelium in vitro, then the cells were treated with fluorocytosine (5-FC) and/or ganciclovir (GCV) at different concentrations. The cell growth of the lens epithelium cells was observed by light microscope. MTT analysis was used to estimate the cell survival rate and the bystander effect was analyzed simultaneously. The significance of difference between each group was treated by statistical tests. The CD and TK gene could be joined into PWZL plasmid successfully, and did not have any special effect on normal cells. There was no significant difference in cell viability between CD-TK transfected cells and control cells. Cell viability in cells treated with prodrugs was decreased in a time-dependent manner. At the end of the experiment, cell viability was lowest in GCV 10 mg/L +5-FC 60 mg/L group, GCV 10 mg/L + 5-FC 100 mg/L group and GCV 100 mg/L + 5-FC 100 mg/L group. There were no significant differences between these three groups (X2 = 1.25 , P > 0.01). Analysis of bystander effect indicated that the cell viability in GCV 100 mg/L + 5-FC 100 mg/L group and GCV 10 mg/L +5-FC 60 mg/L group was significantly lower than that in the controls (t = 10.26, 13.16; P < 0.01). PWZL plasmid can transfect the CD and TK genes into lens epithelium cells successfully and efficiently. CD and TK genes can be expressed steadily. Transfection of double suicide gene reduces the dosage of prodrugs required for killing cells. The combination of 5-FC with GCV shows the greatest killing effect and also has the bystander effect.

  8. Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis.

    PubMed

    Esmaeili, Rezvan; Abdoli, Nasrin; Yadegari, Fatemeh; Neishaboury, Mohamadreza; Farahmand, Leila; Kaviani, Ahmad; Majidzadeh-A, Keivan

    2018-01-01

    CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan-CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer. In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation. A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1. The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.

  9. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: The role of extra copies of glpK, glpX, and tktA genes

    PubMed Central

    2014-01-01

    Background For the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported. Results L-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM CPhe/CGlucose and a maximal space-time-yield (STY) of 0.13 g l−1 h−1 was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM CPhe/CGlycerol), but the maximal STY was higher (0.21 g l−1 h−1). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpKG232D) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM CPhe/CGlycerol; 0.25 g l−1 h−1 and 0.21 mM CPhe/CGlycerol; 0.23 g l−1 h−1, respectively), the combination of extra genes of glpX and tktA together led to an increase in maximal STY of about 80% (0.37 g l−1 h−1) and a carbon recovery of 0.26 mM CPhe/CGlycerol. Conclusions Enhancing the gene copy numbers for glpX and tktA increased L-Phe productivity from glycerol without affecting growth rate. Engineering of glycerol metabolism towards L-Phe production in E. coli has to balance the pathways of gluconeogenesis, glycolysis, and PPP to improve the supply of the precursors, PEP and E4P. PMID:25012491

  10. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  11. Very high levels of soluble CD30 recognize the patients with classical Hodgkin's lymphoma retaining a very poor prognosis.

    PubMed

    Visco, Carlo; Nadali, Gianpaolo; Vassilakopoulos, Theodoros P; Bonfante, Valeria; Viviani, Simonetta; Gianni, Alessandro M; Federico, Massimo; Luminari, Stefano; Peethambaram, Prema; Witzig, Thomas E; Pangalis, Gerassimos; Cabanillas, Fernando; Medeiros, L Jeffrey; Sarris, Andreas H; Pizzolo, Giovanni

    2006-11-01

    To evaluate the prognostic role of pretreatment serum levels of soluble CD30 (sCD30) in patients with advanced stage classical Hodgkin's lymphoma (cHL) treated with adriamycin, bleomycin, vinblastine, and dacarbazine or equivalent regimens. We identified 321 previously untreated patients with cHL who presented to the participating centers between 1985 and 2002, and had serum samples available for the determination of sCD30 levels. With a median follow-up of 72 months, the actuarial 5-year overall survival was 82%, and failure-free survival (FFS) was 71%. The median serum level of sCD30 was 65 U/mL (range: 1-2230), and was significantly higher (P < 0.0001) when compared with a group of 113 healthy controls (4 U/mL, range: 0-20). Increasing level of sCD30 was associated with a continuous worsening of FFS and OS, and patients with sCD30 >or=200 U/mL had a 5-year FFS of 39%. With multivariate analysis, sCD30, Ann Arbor stage, and lactic acid dehydrogenase were significant independent factors in terms of FFS. The association of the above-mentioned three independent prognostic variables could discriminate 22% of patients with 5-year FFS of 40%. Our data confirm the independent prognostic role of sCD30 in identifying the patients with high risk of treatment failure, and show that its association with other variables can recognize patients with FFS considerably lower than 50%.

  12. Characterization of Chicken Spleen Transcriptome after Infection with Salmonella enterica Serovar Enteritidis

    PubMed Central

    Matulova, Marta; Rajova, Jana; Vlasatikova, Lenka; Volf, Jiri; Stepanova, Hana; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2012-01-01

    In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens. PMID:23094107

  13. Relation between pretransplant serum levels of soluble CD30 and acute rejection during the first 6 months after a kidney transplant.

    PubMed

    Shooshtarizadeh, Tina; Mohammadali, Ali; Ossareh, Shahrzad; Ataipour, Yousef

    2013-06-01

    The immunologic status of kidney allograft recipients affects transplant outcome. High levels of pretransplant serum soluble CD30 correlate with an increased risk of acute rejection. Studies show conflicting results. We evaluated the relation between pretransplant serum sCD30 levels with the risk of posttransplant acute kidney rejection in renal transplant recipients. This prospective cohort study was performed between March 2010 and March 2011 on 77 kidney transplant recipients (53 men [68.8%], 24 women [31.2%]; mean age, 41 ± 14 y). Serum samples were collected 24 hours before transplant and analyzed for soluble CD30 levels by enzyme-linked immunosorbent assay. Patients were followed for 6 months after transplant. Acute biopsy-proven rejection episodes were recorded, serum creatinine levels were measured, and glomerular filtration rates were calculated at the first and sixth months after transplant. Preoperative serum soluble CD30 levels were compared in patients with and without rejection. The mean pretransplant serum soluble CD30 level was 92.1 ± 47.3 ng/mL. At 6 months' follow-up, 10 patients experienced acute rejection. Mean pretransplant soluble CD30 levels were 128.5 ± 84 ng/mL versus 86.7 ± 37 ng/mL in patients with and without acute rejection episodes (P = .008). At 100 ng/mL, the sensitivity, specificity, and positive and negative predictive values of pretransplant serum soluble CD30 level to predict acute rejection were 70%, 73.6%, 29.1%, and 94.3%. We showed a significant relation between pretransplant serum soluble CD30 levels and acute allograft rejection. High pretransplant levels of serum soluble CD30 can be a risk factor for kidney transplant rejection, and its high negative predictive value at various cutoffs make it useful to find candidates with a low risk of acute rejection after transplant.

  14. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    PubMed

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  15. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  16. The heritage of pathogen pressures and ancient demography in the human innate-immunity CD209/CD209L region.

    PubMed

    Barreiro, Luis B; Patin, Etienne; Neyrolles, Olivier; Cann, Howard M; Gicquel, Brigitte; Quintana-Murci, Lluís

    2005-11-01

    The innate immunity system constitutes the first line of host defense against pathogens. Two closely related innate immunity genes, CD209 and CD209L, are particularly interesting because they directly recognize a plethora of pathogens, including bacteria, viruses, and parasites. Both genes, which result from an ancient duplication, possess a neck region, made up of seven repeats of 23 amino acids each, known to play a major role in the pathogen-binding properties of these proteins. To explore the extent to which pathogens have exerted selective pressures on these innate immunity genes, we resequenced them in a group of samples from sub-Saharan Africa, Europe, and East Asia. Moreover, variation in the number of repeats of the neck region was defined in the entire Human Genome Diversity Panel for both genes. Our results, which are based on diversity levels, neutrality tests, population genetic distances, and neck-region length variation, provide genetic evidence that CD209 has been under a strong selective constraint that prevents accumulation of any amino acid changes, whereas CD209L variability has most likely been shaped by the action of balancing selection in non-African populations. In addition, our data point to the neck region as the functional target of such selective pressures: CD209 presents a constant size in the neck region populationwide, whereas CD209L presents an excess of length variation, particularly in non-African populations. An additional interesting observation came from the coalescent-based CD209 gene tree, whose binary topology and time depth (approximately 2.8 million years ago) are compatible with an ancestral population structure in Africa. Altogether, our study has revealed that even a short segment of the human genome can uncover an extraordinarily complex evolutionary history, including different pathogen pressures on host genes as well as traces of admixture among archaic hominid populations.

  17. Posttransplant sCD30 as a predictor of kidney graft outcome.

    PubMed

    Süsal, Caner; Döhler, Bernd; Sadeghi, Mahmoud; Salmela, Kaija T; Weimer, Rolf; Zeier, Martin; Opelz, Gerhard

    2011-06-27

    Reliable markers for assessing the biological effect of immunosuppressive drugs and identification of transplant recipients at risk of developing rejection are not available. In a prospective multicenter study, we investigated whether posttransplant measurement of the T-cell activation marker soluble CD30 (sCD30) can be used for estimating the risk of graft loss in kidney transplant recipients. Pre- and posttransplant sera of 2322 adult deceased-donor kidney recipients were tested for serum sCD30 content using a commercial enzyme-linked immunosorbent assay. sCD30 decreased posttransplant and reached a nadir on day 30. Patients with a high sCD30 of more than or equal to 40 U/mL on day 30 showed a subsequent graft survival rate after 3 years of 78.3±4.1%, significantly lower than the 90.3±1.0% rate in recipients with a low sCD30 on day 30 of less than 40 U/mL (log-rank P<0.001; Cox hazard ratio 2.02, P<0.001). Although an association was found between pre- and posttransplant sCD30 levels, patients with high sCD30 on posttransplant day 30 demonstrated significantly lower 3-year graft survival irrespective of the pretransplant level. Our data suggest that posttransplant measurement of sCD30 on day 30 is a predictor of subsequent graft loss in kidney transplant recipients and that sCD30 may potentially serve as an indicator for adjustment of immunosuppressive medication.

  18. Comparative study of responses in the brown algae Sargassum thunbergii to zinc and cadmium stress

    NASA Astrophysics Data System (ADS)

    Lü, Fang; Dind, Gang; Liu, Wei; Zhan, Dongmei; Wu, Haiyi; Guo, Wen

    2017-08-01

    Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to different concentrations (0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc (Zn) and cadmium (Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specific growth rates increased slightly under the lower Zn concentration treatment (0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration (0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.

  19. Identification of a Secondary Promoter within the Human B Cell Receptor Component Gene hCD79b*

    PubMed Central

    Yoo, Eung Jae; Cooke, Nancy E.; Liebhaber, Stephen A.

    2013-01-01

    The human B cell-specific protein, CD79b (also known as Igβ and B29) constitutes an essential signal transduction component of the B cell receptor. Although its function is central to the triggering of B cell terminal differentiation in response to antigen stimulation, the transcriptional determinants that control CD79b gene expression remain poorly defined. In the present study, we explored these determinants using a series of hCD79b transgenic mouse models. Remarkably, we observed that the previously described hCD79b promoter along with its associated enhancer elements and first exon could be deleted without appreciable loss of hCD79b transcriptional activity or tissue specificity. In this deletion setting, a secondary promoter located within exon 2 maintained full levels and specificity of hCD79b transcription. Of note, this secondary promoter was also active, albeit at lower levels, in the wild-type hCD79b locus. The activity of the secondary promoter was dependent on the action(s) of a conserved sequence element mapping to a chromatin DNase I hypersensitive site located within intron 1. mRNA generated from this secondary promoter is predicted to encode an Igβ protein lacking a signal sequence and thus unable to serve normal B cell receptor function. Although the physiologic role of the hCD79b secondary promoter and its encoded protein remain unclear, the current data suggest that it has the capacity to play a role in normal as well as pathologic states in B cell proliferation and function. PMID:23649625

  20. Primary Central Nervous System T-Cell Lymphoma With Aberrant Expression of CD20 and CD79a: A Diagnostic Pitfall.

    PubMed

    Gupta, Neha; Nasim, Mansoor; Spitzer, Silvia G; Zhang, Xinmin

    2017-10-01

    Primary central nervous system T-cell lymphoma (PCNSTCL) is rare, accounting for 2% of CNS lymphomas. We report the first case of PCNSTCL with aberrant expression of CD20 and CD79a in an 81-year-old man with a left periventricular brain mass. A biopsy revealed dense lymphoid infiltrate consisting of medium-sized cells in a background of gliosis and many histiocytes. The lymphoid cells were positive for CD2, CD3, CD7, CD8, T-cell intracellular antigen-1, granzyme B, CD20, and CD79a and negative for CD4, CD5, PAX-5, OCT-2, BOB-1, human herpes virus-8, and Epstein-Barr virus-encoded small RNAs. Molecular studies revealed clonal TCR-β and TCR-γ gene rearrangements and negative immunoglobulin gene rearrangements. The patient was treated with chemotherapy (vincristine and methotrexate) and rituximab, but he died 1 month after the diagnosis. This is a unique case that emphasizes the use of a multimodal approach, including a broad immunohistochemical panel and molecular studies in lineage determination for lymphomas with ambiguous phenotype.

  1. Gene-breaking: A new paradigm for human retrotransposon-mediated gene evolution

    PubMed Central

    Wheelan, Sarah J.; Aizawa, Yasunori; Han, Jeffrey S.; Boeke, Jef D.

    2005-01-01

    The L1 retrotransposon is the most highly successful autonomous retrotransposon in mammals. This prolific genome parasite may on occasion benefit its host through genome rearrangements or adjustments of host gene expression. In examining possible effects of L1 elements on host gene expression, we investigated whether a full-length L1 element inserted in the antisense orientation into an intron of a cellular gene may actually split the gene's transcript into two smaller transcripts: (1) a transcript containing the upstream exons and terminating in the major antisense polyadenylation site (MAPS) of the L1, and (2) a transcript derived from the L1 antisense promoter (ASP) that includes the downstream exons of the gene. Bioinformatic analysis and experimental follow-up provide evidence for this L1 “gene-breaking” hypothesis. We identified three human genes apparently “broken” by L1 elements, as well as 12 more candidate genes. Most of the inserted L1 elements in our 15 candidate genes predate the human/chimp divergence. If indeed split, the transcripts of these genes may in at least one case encode potentially interacting proteins, and in another case may encode novel proteins. Gene-breaking represents a new mechanism through which L1 elements remodel mammalian genomes. PMID:16024818

  2. Characterization and complete genome sequences of L. rhamnosus DSM 14870 and L. gasseri DSM 14869 contained in the EcoVag® probiotic vaginal capsules.

    PubMed

    Marcotte, Harold; Krogh Andersen, Kasper; Lin, Yin; Zuo, Fanglei; Zeng, Zhu; Larsson, Per Göran; Brandsborg, Erik; Brønstad, Gunnar; Hammarström, Lennart

    2017-12-01

    Lactobacillus rhamnosus DSM 14870 and Lactobacillus gasseri DSM 14869 were previously isolated from the vaginal epithelial cells (VEC) of healthy women and selected for the development of the vaginal EcoVag ® probiotic capsules. EcoVag ® was subsequently shown to provide long-term cure and reduce relapse of bacterial vaginosis (BV) as an adjunct to antibiotic therapy. To identify genes potentially involved in probiotic activity, we performed genome sequencing and characterization of the two strains. The complete genome analysis of both strains revealed the presence of genes encoding functions related to adhesion, exopolysaccharide (EPS) biosynthesis, antimicrobial activity, and CRISPR adaptive immunity but absence of antibiotic resistance genes. Interesting features of L. rhamnosus DSM 14870 genome include the presence of the spaCBA-srtC gene encoding spaCBA pili and interruption of the gene cluster encoding long galactose-rich EPS by integrases. Unique to L. gasseri DSM 14869 genome was the presence of a gene encoding a putative (1456 amino acid) new adhesin containing two rib/alpha-like repeats. L. rhamnosus DSM 14870 and L. gasseri DSM 14869 showed acidification of the culture medium (to pH 3.8) and a strong adhesion capability to the Caco-2 cell line and VEC. L. gasseri DSM 14869 could produce a thick (40nm) EPS layer and hydrogen peroxide. L. rhamnosus DSM 14870 was shown to produce SpaCBA pili and a 20nm EPS layer, and could inhibit the growth of Gardnerella vaginalis, a bacterium commonly associated with BV. The genome sequences provide a basis for further elucidation of the molecular basis for their probiotic functions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    PubMed

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  4. Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance

    PubMed Central

    Ensminger, Stephan M.; Spriewald, Bernd M.

    2012-01-01

    Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401

  5. Expression of Genes Encoding the Enzymes for Glycogen and Trehalose Metabolism in L3 and L4 Larvae of Anisakis simplex.

    PubMed

    Łopieńska-Biernat, E; Zaobidna, E A; Dmitryjuk, M

    2015-01-01

    Trehalose and glycogen metabolism plays an important role in supporting life processes in many nematodes, including Anisakis simplex. Nematodes, cosmopolitan helminths parasitizing sea mammals and humans, cause a disease known as anisakiasis. The aim of this study was to investigate the expression of genes encoding the enzymes involved in the metabolism of trehalose and glycogen-trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), glycogen synthase (GS), and glycogen phosphorylase (GP)-in stage L3 and stage L4 larvae of A. simplex. The expression of mRNA all four genes, tps, tpp, gs, and gp, was examined by real-time polymerase chain reaction. The A. simplex ribosomal gene (18S) was used as a reference gene. Enzymatic activity was determined. The expression of trehalose enzyme genes was higher in L3 than in L4 larvae, but an inverse relationship was noted for the expression of gs and gp genes.

  6. Expression of Genes Encoding the Enzymes for Glycogen and Trehalose Metabolism in L3 and L4 Larvae of Anisakis simplex

    PubMed Central

    Łopieńska-Biernat, E.; Zaobidna, E. A.; Dmitryjuk, M.

    2015-01-01

    Trehalose and glycogen metabolism plays an important role in supporting life processes in many nematodes, including Anisakis simplex. Nematodes, cosmopolitan helminths parasitizing sea mammals and humans, cause a disease known as anisakiasis. The aim of this study was to investigate the expression of genes encoding the enzymes involved in the metabolism of trehalose and glycogen—trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), glycogen synthase (GS), and glycogen phosphorylase (GP)—in stage L3 and stage L4 larvae of A. simplex. The expression of mRNA all four genes, tps, tpp, gs, and gp, was examined by real-time polymerase chain reaction. The A. simplex ribosomal gene (18S) was used as a reference gene. Enzymatic activity was determined. The expression of trehalose enzyme genes was higher in L3 than in L4 larvae, but an inverse relationship was noted for the expression of gs and gp genes. PMID:26783451

  7. Gene cloning, recombinant expression, purification and characterization of l-methionine decarboxylase from Streptomyces sp. 590.

    PubMed

    Hayashi, Masaya; Okada, Akane; Yamamoto, Kumiko; Okugochi, Tomomi; Kusaka, Chika; Kudou, Daizou; Nemoto, Michiko; Inagaki, Junko; Hirose, Yuu; Okajima, Toshihide; Tamura, Takashi; Soda, Kenji; Inagaki, Kenji

    2017-04-01

    l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli. The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. Matrix metalloproteinase-9 plays a role in protecting zebrafish from lethal infection with Listeria monocytogenes by enhancing macrophage migration.

    PubMed

    Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan

    2016-07-01

    Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Non-survivor septic patients have persistently higher serum sCD40L levels than survivors.

    PubMed

    Lorente, Leonardo; Martín, María M; Pérez-Cejas, Antonia; Ferreres, José; Solé-Violán, Jordi; Labarta, Lorenzo; Díaz, César; Jiménez, Alejandro

    2017-10-01

    Soluble CD40 ligand (sCD40L) is a protein with proinflammatory and prothrombotic effects. Previously we found higher circulating sCD40L levels in non-survivor than in survivor patients at sepsis diagnosis. Now some questions arise such as how are serum sCD40L levels during the first week of severe sepsis?, is there an association between serum sCD40L levels during the first week and mortality?, and serum sCD40L levels during the first week could be used as sepsis mortality biomarker?. This study was developed to answer these asks. Study from 6 Spanish Intensive Care Units with 291 severe septic patients. There were determined serum levels of sCD40L and tumor necrosis factor (TNF)-alpha during the first week. The end-point study was 30-day mortality. We found that serum sCD40L at days 1, 4, and 8 could predict mortality at 30days, and are associated with mortality. The novel findings of our study were that there were higher serum sCD40L levels persistently during the first week in non-survivor than in survivor patients, that there is an association between serum sCD40L levels during the first week and sepsis mortality, and that serum sCD40L levels during the first week could be used as sepsis mortality biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A differential impact of mycophenolic acid, prednisolone, and tacrolimus exposure on sCD30 levels in adult kidney transplant recipients.

    PubMed

    Barraclough, Katherine A; Staatz, Christine E; Johnson, David W; Gillis, David; Lee, Katie J; McWhinney, Brett C; Ungerer, Jacobus P J; Campbell, Scott B; Isbel, Nicole M

    2013-04-01

    Soluble CD30 (sCD30) has been associated with rejection and graft loss in kidney transplantation, leading to the suggestion that sCD30 might be a useful biomarker to adjust immunosuppressant medication dosing. However, there has been minimal study of the influence of individual immunosuppressive drugs on sCD30 levels. To evaluate the influence of mycophenolic acid (MPA), prednisolone, and tacrolimus exposure on sCD30 levels in adult kidney transplant recipients. The sCD30 levels were measured pretransplant and 30 days posttransplant. Area under the concentration-time curve (AUC) for each drug was estimated on day 30 using validated, multiple regression-derived limited sampling strategies. One hundred twenty-five subjects were included. Median (interquartile range) sCD30 levels were lower on day 30 posttransplant compared with pretransplant [10.7 (3.7-20.1) pg/mL versus 66.5 (46.0-95.1) pg/mL; P < 0.0001]. On univariate analyses, day 30 sCD30 levels were negatively correlated with MPA exposure and positively correlated with tacrolimus exposure. Using multivariate logistic regression, higher tacrolimus exposure was independently associated with higher day 30 sCD30 levels (2.2 change in odds for an SD increase in tacrolimus AUC 0-12, P = 0.01; 5.5 change in odds for an SD increase in tacrolimus predose concentration, P < 0.0001). In contrast, MPA and total and free prednisolone exposures were not independently associated with sCD30 levels. The sCD30 levels are significantly reduced in the presence of combination immunosuppression but are differentially affected by different immunosuppressant agents. More research is required before introduction of sCD30 measurement into clinical practice can be considered.

  11. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants

    PubMed Central

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants. PMID:28187139

  12. A unique role for autophagy and Atg16L1 in Paneth cells in murine and human intestine

    PubMed Central

    Cadwell, Ken; Liu, John; Brown, Sarah L.; Miyoshi, Hiroyuki; Loh, Joy; Lennerz, Jochen; Kishi, Chieko; KC, Wumesh; Carrero, Javier A.; Hunt, Steven; Stone, Christian; Brunt, Elizabeth M.; Xavier, Ramnik J.; Sleckman, Barry P.; Li, Ellen; Mizushima, Noboru; Stappenbeck, Thaddeus S.; Virgin, Herbert W.

    2008-01-01

    Susceptibility to Crohn's disease (CD), a complex inflammatory disease involving the small intestine, is controlled by up to 32 loci1. One CD risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG162. It is not known how Atg16L1 or autophagy contributes to intestinal biology or CD pathogenesis. To address these questions we generated and characterized mice that are hypomorphic for Atg16L1 protein expression, and validated conclusions based on studies in these mice by analyzing intestinal tissues that we collected from CD patients carrying the CD risk allele of ATG16L1. We show that Atg16L1 is a bona fide autophagy protein. Within the ileal epithelium, both Atg16L1 and a second essential autophagy protein Atg5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell which functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment3. Atg16L1 and Atg5-deficient Paneth cells exhibited striking abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to Atg16L1-deficient Paneth cells including increased expression of genes involved in PPAR signaling and lipid metabolism, acute phase reactants, as well as two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, CD patients homozygous for the ATG16L1 CD risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy protein-deficient mice and expressed increased levels of leptin protein. Thus, Atg16L1, and likely the process of autophagy, play their role within the intestinal epithelium of mice and CD patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells. PMID:18849966

  13. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress.

    PubMed

    Ding, Yanfei; Wang, Yi; Jiang, Zhihua; Wang, Feijuan; Jiang, Qiong; Sun, Junwei; Chen, Zhixiang; Zhu, Cheng

    2017-07-26

    MicroRNAs (miRNAs) are 21-24-nucleotide-long RNAs that function as ubiquitous post-transcriptional regulators of gene expression in plants and animals. Increasing evidence points to the important role of miRNAs in plant responses to abiotic and biotic stresses. Cadmium (Cd) is a nonessential heavy metal highly toxic to plants. Although many genes encoding metal transporters have been characterized, the mechanisms for the regulation of the expression of the heavy-metal transporter genes are largely unknown. In this study, we found that the expression of miR268 in rice was significantly induced under Cd stress. By contrast, expression of natural resistance-associated macrophage protein 3 (NRAMP3), a target gene of miR268, was dramatically decreased by Cd treatment. Overexpression of miR268 inhibited rice seedling growth under Cd stress. The transgenic miR268-overexpressing plant leaves contained increased levels of hydrogen peroxide and malondialdehyde, and their seedlings accumulated increased levels of Cd when compared to those in wild-type plants. These results indicate that miR268 acts as a negative regulator of rice's tolerance to Cd stress. Thus, miRNA-guided regulation of gene expression plays an important role in plant responses to heavy-metal stress.

  14. EBV-Negative Monomorphic B-Cell Posttransplant Lymphoproliferative Disorder with Marked Morphologic Pleomorphism and Pathogenic Mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53.

    PubMed

    Bogusz, Agata M

    2017-01-01

    Posttransplant lymphoproliferative disorders (PTLDs) are a diverse group of lymphoid or plasmacytic proliferations frequently driven by Epstein-Barr virus (EBV). EBV-negative PTLDs appear to represent a distinct entity. This report describes an unusual case of a 33-year-old woman that developed a monomorphic EBV-negative PTLD consistent with diffuse large B-cell lymphoma (DLBCL) 13 years after heart-lung transplant. Histological examination revealed marked pleomorphism of the malignant cells including nodular areas reminiscent of classical Hodgkin lymphoma (cHL) with abundant large, bizarre Hodgkin-like cells. By immunostaining, the malignant cells were immunoreactive for CD45, CD20, CD79a, PAX5, BCL6, MUM1, and p53 and negative for CD15, CD30, latent membrane protein 1 (LMP1), and EBV-encoded RNA (EBER). Flow cytometry demonstrated lambda light chain restricted CD5 and CD10 negative B-cells. Fluorescence in situ hybridization studies (FISH) were negative for cMYC , BCL2, and BCL6 rearrangements but showed deletion of TP53 and monosomy of chromosome 17. Next-generation sequencing studies (NGS) revealed numerous genetic alterations including 6 pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53 (x2) genes and 30 variants of unknown significance (VOUS) in ABL1, ASXL1, ATM, BCOR, BCORL1, BRNIP3, CDH2, CDKN2A, DNMT3A, ETV6, EZH2, FBXW7, KIT, NF1, RUNX1, SETPB1, SF1, SMC1A, STAG2, TET2, TP53, and U2AF2.

  15. EBV-Negative Monomorphic B-Cell Posttransplant Lymphoproliferative Disorder with Marked Morphologic Pleomorphism and Pathogenic Mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53

    PubMed Central

    2017-01-01

    Posttransplant lymphoproliferative disorders (PTLDs) are a diverse group of lymphoid or plasmacytic proliferations frequently driven by Epstein-Barr virus (EBV). EBV-negative PTLDs appear to represent a distinct entity. This report describes an unusual case of a 33-year-old woman that developed a monomorphic EBV-negative PTLD consistent with diffuse large B-cell lymphoma (DLBCL) 13 years after heart-lung transplant. Histological examination revealed marked pleomorphism of the malignant cells including nodular areas reminiscent of classical Hodgkin lymphoma (cHL) with abundant large, bizarre Hodgkin-like cells. By immunostaining, the malignant cells were immunoreactive for CD45, CD20, CD79a, PAX5, BCL6, MUM1, and p53 and negative for CD15, CD30, latent membrane protein 1 (LMP1), and EBV-encoded RNA (EBER). Flow cytometry demonstrated lambda light chain restricted CD5 and CD10 negative B-cells. Fluorescence in situ hybridization studies (FISH) were negative for cMYC, BCL2, and BCL6 rearrangements but showed deletion of TP53 and monosomy of chromosome 17. Next-generation sequencing studies (NGS) revealed numerous genetic alterations including 6 pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53(x2) genes and 30 variants of unknown significance (VOUS) in ABL1, ASXL1, ATM, BCOR, BCORL1, BRNIP3, CDH2, CDKN2A, DNMT3A, ETV6, EZH2, FBXW7, KIT, NF1, RUNX1, SETPB1, SF1, SMC1A, STAG2, TET2, TP53, and U2AF2. PMID:28487787

  16. Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival.

    PubMed

    Echenique-Rivera, Hebert; Muzzi, Alessandro; Del Tordello, Elena; Seib, Kate L; Francois, Patrice; Rappuoli, Rino; Pizza, Mariagrazia; Serruto, Davide

    2011-05-01

    During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.

  17. Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival

    PubMed Central

    Del Tordello, Elena; Seib, Kate L.; Francois, Patrice; Rappuoli, Rino; Pizza, Mariagrazia; Serruto, Davide

    2011-01-01

    During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism. PMID:21589640

  18. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease.

    PubMed

    Yamano, Yoshihisa; Takenouchi, Norihiro; Li, Hong-Chuan; Tomaru, Utano; Yao, Karen; Grant, Christian W; Maric, Dragan A; Jacobson, Steven

    2005-05-01

    CD4(+)CD25(+) Tregs are important in the maintenance of immunological self tolerance and in the prevention of autoimmune diseases. As the CD4(+)CD25(+) T cell population in patients with human T cell lymphotropic virus type I-associated (HTLV-I-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) has been shown to be a major reservoir for this virus, it was of interest to determine whether the frequency and function of CD4(+)CD25(+) Tregs in HAM/TSP patients might be affected. In these cells, both mRNA and protein expression of the forkhead transcription factor Foxp3, a specific marker of Tregs, were lower than those in CD4(+)CD25(+) T cells from healthy individuals. The virus-encoded transactivating HTLV-I tax gene was demonstrated to have a direct inhibitory effect on Foxp3 expression and function of CD4(+)CD25(+) T cells. This is the first report to our knowledge demonstrating the role of a specific viral gene product (HTLV-I Tax) on the expression of genes associated with Tregs (in particular, foxp3) resulting in inhibition of Treg function. These results suggest that direct human retroviral infection of CD4(+)CD25(+) T cells may be associated with the pathogenesis of HTLV-I-associated neurologic disease.

  19. prtH2, Not prtH, Is the Ubiquitous Cell Wall Proteinase Gene in Lactobacillus helveticus▿

    PubMed Central

    Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S.

    2009-01-01

    Lactobacillus helveticus strains possess an efficient proteolytic system that releases peptides which are essential for lactobacillus growth in various fermented dairy products and also affect textural properties or biological activities. Cell envelope proteinases (CEPs) are bacterial enzymes that hydrolyze milk proteins. In the case of L. helveticus, two CEPs with low percentages of amino acid identity have been described, i.e., PrtH and PrtH2. However, the distribution of the genes that encode CEPs still remains unclear, rendering it difficult to further control the formation of particular peptides. This study evaluated the diversity of genes that encode CEPs in a collection of strains of L. helveticus isolated from various biotopes, both in terms of the presence or absence of these genes and in terms of nucleotide sequence, and studied their transcription in dairy matrices. After defining three sets of primers for both the prtH and prtH2 genes, we studied the distribution of the genes by using PCR and Southern blotting experiments. The prtH2 gene was ubiquitous in the 29 strains of L. helveticus studied, whereas only 18 of them also exhibited the prtH gene. Sequencing of a 350-bp internal fragment of these genes revealed the existence of intraspecific diversity. Finally, expression of these two CEP-encoding genes was followed during the growth in dairy matrices of two strains, ITG LH77 and CNRZ32, which possess one and two CEP-encoding genes, respectively. Both genes were shown to be expressed by L. helveticus at each stage of growth in milk and at different stages of mini-Swiss-type cheese making and ripening. PMID:19286786

  20. Association of CD30 transcripts with Th1 responses and proinflammatory cytokines in patients with end-stage renal disease.

    PubMed

    Velásquez, Sonia Y; Opelz, Gerhard; Rojas, Mauricio; Süsal, Caner; Alvarez, Cristiam M

    2016-05-01

    High serum sCD30 levels are associated with inflammatory disorders and poor outcome in renal transplantation. The contribution to these phenomena of transcripts and proteins related to CD30-activation and -cleavage is unknown. We assessed in peripheral blood of end-stage renal disease patients (ESRDP) transcripts of CD30-activation proteins CD30 and CD30L, CD30-cleavage proteins ADAM10 and ADAM17, and Th1- and Th2-type immunity-related factors t-bet and GATA3. Additionally, we evaluated the same transcripts and release of sCD30 and 32 cytokines after allogeneic and polyclonal T-cell activation. In peripheral blood, ESRDP showed increased levels of t-bet and GATA3 transcripts compared to healthy controls (HC) (both P<0.01) whereas levels of CD30, CD30L, ADAM10 and ADAM17 transcripts were similar. Polyclonal and allogeneic stimulation induced higher levels of CD30 transcripts in ESRDP than in HC (both P<0.001). Principal component analysis (PCA) in allogeneic cultures of ESRDP identified two correlation clusters, one consisting of sCD30, the Th-1 cytokine IFN-γ, MIP-1α, RANTES, sIL-2Rα, MIP-1β, TNF-β, MDC, GM-CSF and IL-5, and another one consisting of CD30 and t-bet transcripts, IL-13 and proinflammatory proteins IP-10, IL-8, IL-1Rα and MCP-1. Reflecting an activated immune state, ESRDP exhibited after allostimulation upregulation of CD30 transcripts in T cells, which was associated with Th1 and proinflammatory responses. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  1. Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968.

    PubMed

    Kozak, Natalia A; Buss, Meghan; Lucas, Claressa E; Frace, Michael; Govil, Dhwani; Travis, Tatiana; Olsen-Rasmussen, Melissa; Benson, Robert F; Fields, Barry S

    2010-02-01

    Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.

  2. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.

    PubMed

    Okino, Shohei; Suda, Masako; Fujikura, Keitaro; Inui, Masayuki; Yukawa, Hideaki

    2008-03-01

    In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of L-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce D-lactic acid. The modification involved expression of fermentative D-lactate dehydrogenase (D-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in L-lactate dehydrogenase (L-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum DeltaldhA/pCRB201 and C. glutamicum DeltaldhA/pCRB204, respectively. The productivity of C. glutamicum DeltaldhA/pCRB204 was fivefold higher than that of C. glutamicum DeltaldhA/pCRB201. By using C. glutamicum DeltaldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l(-1)) of D-lactic acid of greater than 99.9% optical purity was produced within 30 h.

  3. HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing

    PubMed Central

    Preußner, Marco; Schreiner, Silke; Hung, Lee-Hsueh; Porstner, Martina; Jäck, Hans-Martin; Benes, Vladimir; Rätsch, Gunnar; Bindereif, Albrecht

    2012-01-01

    CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4–6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4–6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons. PMID:22402488

  4. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania

    PubMed Central

    Flegontov, Pavel; Butenko, Anzhelika; Firsov, Sergei; Kraeva, Natalya; Eliáš, Marek; Field, Mark C.; Filatov, Dmitry; Flegontova, Olga; Gerasimov, Evgeny S.; Hlaváčová, Jana; Ishemgulova, Aygul; Jackson, Andrew P.; Kelly, Steve; Kostygov, Alexei Y.; Logacheva, Maria D.; Maslov, Dmitri A.; Opperdoes, Fred R.; O’Reilly, Amanda; Sádlová, Jovana; Ševčíková, Tereza; Venkatesh, Divya; Vlček, Čestmír; Volf, Petr; Jan Votýpka; Záhonová, Kristína; Yurchenko, Vyacheslav; Lukeš, Julius

    2016-01-01

    Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum. PMID:27021793

  5. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion.

    PubMed

    Farré, Domènec; Martínez-Vicente, Pablo; Engel, Pablo; Angulo, Ana

    2017-05-01

    Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Association of elevated pretransplant sCD30 levels with graft loss in 206 patients treated with modern immunosuppressive therapies after renal transplantation.

    PubMed

    Heinemann, Falko M; Rebmann, Vera; Witzke, Oliver; Philipp, Thomas; Broelsch, Christoph E; Grosse-Wilde, Hans

    2007-03-27

    Recent reports suggest that high pretransplant serum levels of soluble CD30 (sCD30) are a risk factor for rejections after kidney transplantation. The aim of our study was to elucidate the predictive value of pretransplant sCD30 levels for kidney transplantation outcome in a single-center patient cohort that has been treated with modern immunosuppressive therapies after transplantation. We retrospectively analyzed sCD30 in multiple pretransplant sera from 206 patients, of whom 174 were transplanted with a cadaveric kidney and 32 patients received an allograft from a living donor. Renal function after transplantation was estimated by measuring serum creatinine and by rejection diagnosis. We could demonstrate a statistically significant association between increased pretransplant sCD30 values and graft failures (P=0.005). Receiver operating curve analysis revealed a cutoff value of 124 U/mL pretransplant sCD30. A multivariate analysis confirmed pretransplant sCD30 values >124 U/mL (P=0.011) and rejection episodes (P<0.0001) as independent risk factors for graft loss. Our study revealed a strong correlation between pretransplant sCD30 levels and the incidence of graft failure, but we could not confirm that the development of rejection episodes is correlated with pretransplant sCD30 values.

  7. Predicting renal graft failure by sCD30 levels and de novo HLA antibodies at 1year post-transplantation.

    PubMed

    Wang, Dong; Wu, Guojun; Chen, Jinhua; Yu, Ziqiang; Wu, Weizhen; Yang, Shunliang; Tan, Jianming

    2012-06-01

    HLA antibodies and sCD30 levels were detected in the serum sampled from 620 renal graft recipients at 1 year post-transplantation, which were followed up for 5 years. Six-year graft and patient survivals were 81.6% and 91.0%. HLA antibodies were detected in 45 recipients (7.3%), of whom there were 14 cases with class I antibodies, 26 cases with class II, and 5 cases with both class I and II. Much more graft loss was record in recipients with HLA antibodies than those without antibodies (60% vs. 15.1%, p<0.001). Significantly higher sCD30 levels were recorded in recipients suffering graft loss than the others (73.9±48.8 U/mL vs. 37.3±14.6 U/mL, p<0.001). Compared with those with high sCD30 levels, recipients with low sCD30 levels (<50 U/mL) had much better 6-year graft survival (92.4% vs. 46.6%, p<0.001). Further statistical analysis showed that detrimental effect of de novo HLA antibodies and high sCD30 on graft survival was not only independent but also additive. Therefore, post-transplantation monitoring of HLA antibodies and sCD30 levels is necessary and recipients with elevated sCD30 level and/or de novo HLA antibody should be paid more attention in order to achieve better graft survival. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.

    PubMed

    Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto

    2016-06-28

    In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.

  9. Serum sCD30: A promising biomarker for predicting the risk of bacterial infection after kidney transplantation.

    PubMed

    Fernández-Ruiz, Mario; Parra, Patricia; López-Medrano, Francisco; Ruiz-Merlo, Tamara; González, Esther; Polanco, Natalia; Origüen, Julia; San Juan, Rafael; Andrés, Amado; Aguado, José María

    2017-04-01

    The transmembrane glycoprotein CD30 contributes to regulate the balance between Th 1 and Th 2 responses. Previous studies have reported conflicting results on the utility of its soluble form (sCD30) to predict post-transplant infection. Serum sCD30 was measured by a commercial ELISA assay at baseline and post-transplant months 1, 3, and 6 in 100 kidney transplant (KT) recipients (279 monitoring points). The impact of sCD30 levels on the incidence of overall, bacterial and opportunistic infection during the first 12 months after transplantation was assessed by Cox regression. There were no differences in serum sCD30 according to the occurrence of overall or opportunistic infection. However, sCD30 levels were higher in patients with bacterial infection compared to those without at baseline (P=.038) and months 1 (P<.0001), 3 (P=.043), and 6 after transplantation (P=.006). Patients with baseline sCD30 levels ≥13.5 ng/mL had lower 12-month bacterial infection-free survival (35.0% vs 80.0%; P<.0001). After adjusting for potential confounders, baseline sCD30 levels ≥13.5 ng/mL remained as an independent risk factor for bacterial infection (adjusted hazard ratio [aHR]: 4.65; 95% confidence interval [CI]: 2.05-10.53; <.001). Analogously, sCD30 levels ≥6.0 ng/mL at month 1 acted as a risk factor for subsequent bacterial infection (aHR: 5.29; 95% CI: 1.11-25.14; P=.036). Higher serum sCD30 levels were associated with an increased risk of bacterial infection after KT. We hypothesize that this biomarker reflects a Th 2 -polarized T-cell response, which exerts a detrimental effect on the immunity against bacterial pathogens. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis

    PubMed Central

    Blatt, Katharina; Cerny-Reiterer, Sabine; Schwaab, Juliana; Sotlar, Karl; Eisenwort, Gregor; Stefanzl, Gabriele; Hoermann, Gregor; Mayerhofer, Matthias; Schneeweiss, Mathias; Knapp, Sylvia; Rülicke, Thomas; Hadzijusufovic, Emir; Bauer, Karin; Smiljkovic, Dubravka; Willmann, Michael; Reiter, Andreas; Horny, Hans-Peter

    2015-01-01

    The Ki-1 antigen (CD30) is an established therapeutic target in patients with Hodgkin lymphoma and anaplastic large-cell lymphoma. We have recently shown that CD30 is expressed abundantly in the cytoplasm of neoplastic mast cells (MCs) in patients with advanced systemic mastocytosis (SM). In the current study, we asked whether CD30 is expressed on the surface of neoplastic MCs in advanced SM, and whether this surface structure may serve as therapeutic target in SM. As assessed by flow cytometry, CD30 was found to be expressed on the surface of neoplastic MCs in 3 of 25 patients (12%) with indolent SM, 4 of 7 patients (57%) with aggressive SM, and 4 of 7 patients (57%) with MC leukemia. The immature RAS-transformed human MC line MCPV-1.1 also expressed cell surface CD30, whereas the KIT-transformed MC line HMC-1.2 expressed no detectable CD30. The CD30-targeting antibody-conjugate brentuximab-vedotin inhibited proliferation in neoplastic MCs, with lower IC50 values obtained in CD30+ MCPV-1.1 cells (10 µg/mL) compared with CD30− HMC-1.2 cells (>50 µg/mL). In addition, brentuximab-vedotin suppressed the engraftment of MCPV-1.1 cells in NSG mice. Moreover, brentuximab-vedotin produced apoptosis in all CD30+ MC lines tested as well as in primary neoplastic MCs in patients with CD30+ SM, but did not induce apoptosis in neoplastic MCs in patients with CD30− SM. Furthermore, brentuximab-vedotin was found to downregulate anti-IgE–induced histamine release in CD30+ MCs. Finally, brentuximab-vedotin and the KIT D816V-targeting drug PKC412 produced synergistic growth-inhibitory effects in MCPV-1.1 cells. Together, CD30 is a promising new drug target for patients with CD30+ advanced SM. PMID:26486787

  11. A Quantitative Comparison of Anti-HIV Gene Therapy Delivered to Hematopoietic Stem Cells versus CD4+ T Cells

    PubMed Central

    Savkovic, Borislav; Nichols, James; Birkett, Donald; Applegate, Tanya; Ledger, Scott; Symonds, Geoff; Murray, John M.

    2014-01-01

    Gene therapy represents an alternative and promising anti-HIV modality to highly active antiretroviral therapy. It involves the introduction of a protective gene into a cell, thereby conferring protection against HIV. While clinical trials to date have delivered gene therapy to CD4+T cells or to CD34+ hematopoietic stem cells (HSC), the relative benefits of each of these two cellular targets have not been conclusively determined. In the present analysis, we investigated the relative merits of delivering a dual construct (CCR5 entry inhibitor + C46 fusion inhibitor) to either CD4+T cells or to CD34+ HSC. Using mathematical modelling, we determined the impact of each scenario in terms of total CD4+T cell counts over a 10 year period, and also in terms of inhibition of CCR5 and CXCR4 tropic virus. Our modelling determined that therapy delivery to CD34+ HSC generally resulted in better outcomes than delivery to CD4+T cells. An early one-off therapy delivery to CD34+ HSC, assuming that 20% of CD34+ HSC in the bone marrow were gene-modified (G+), resulted in total CD4+T cell counts ≥180 cells/ µL in peripheral blood after 10 years. If the uninfected G+ CD4+T cells (in addition to exhibiting lower likelihood of becoming productively infected) also exhibited reduced levels of bystander apoptosis (92.5% reduction) over non gene-modified (G-) CD4+T cells, then total CD4+T cell counts of ≥350 cells/ µL were observed after 10 years, even if initially only 10% of CD34+ HSC in the bone marrow received the protective gene. Taken together our results indicate that: 1.) therapy delivery to CD34+ HSC will result in better outcomes than delivery to CD4+T cells, and 2.) a greater impact of gene therapy will be observed if G+ CD4+T cells exhibit reduced levels of bystander apoptosis over G- CD4+T cells. PMID:24945407

  12. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  13. Nuclear Factor kappa B is central to Marek’s Disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo

    PubMed Central

    2012-01-01

    Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general. PMID:22979947

  14. The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with host protein IL-1ß

    USDA-ARS?s Scientific Manuscript database

    African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs that produces significant economic consequences to the swine industry. ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of op...

  15. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  16. Maternal serum soluble CD30 is increased in normal pregnancy, but decreased in preeclampsia and small for gestational age pregnancies.

    PubMed

    Kusanovic, Juan Pedro; Romero, Roberto; Hassan, Sonia S; Gotsch, Francesca; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Erez, Offer; Mittal, Pooja; Mazaki-Tovi, Shali; Soto, Eleazar; Than, Nandor Gabor; Friel, Lara A; Yoon, Bo Hyun; Espinoza, Jimmy

    2007-12-01

    Women with preeclampsia and those who deliver small for gestational age (SGA) neonates are characterized by intravascular inflammation (T helper 1 (Th1)-biased immune response). There is controversy about the T helper 2 (Th2) response in preeclampsia and SGA. CD30, a member of the tumor necrosis factor receptor superfamily, is preferentially expressed in vitro and in vivo by activated T cells producing Th2-type cytokines. Its soluble form (sCD30) has been proposed to be an index of Th2 immune response. The objective of this study was to determine whether the maternal serum concentration of sCD30 changes with normal pregnancy, as well as in mothers with preeclampsia and those who deliver SGA neonates. This cross-sectional study included patients in the following groups: (1) non-pregnant women (N = 49); (2) patients with a normal pregnancy (N = 89); (3) patients with preeclampsia (N = 100); and (4) patients who delivered an SGA neonate (N = 78). Maternal serum concentration of sCD30 was measured by a specific and sensitive enzyme-linked immunoassay. Non-parametric tests with post-hoc analysis were used for comparisons. A p value <0.05 was considered statistically significant. (1) The median sCD30 serum concentration of pregnant women was significantly higher than that of non-pregnant women (median 29.7 U/mL, range 12.2-313.2 vs. median 23.2 U/mL, range 14.6-195.1, respectively; p = 0.01). (2) Patients with preeclampsia had a significantly lower median serum concentration of sCD30 than normal pregnant women (median 24.7 U/mL, range 7.6-71.2 vs. median 29.7 U/mL, range 12.2-313.2, respectively; p < 0.05). (3) Mothers with SGA neonates had a lower median concentration of sCD30 than normal pregnant women (median 23.4 U/mL, range 7.1-105.3 vs. median 29.7 U/mL, range 12.2-313.2, respectively; p < 0.05). (4) There was no significant correlation (r = -0.059, p = 0.5) between maternal serum sCD30 concentration and gestational age (19-38 weeks) in normal pregnant women. (1) Patients with preeclampsia and those who deliver an SGA neonate had a significantly lower serum concentration of sCD30 than normal pregnant women. (2) This finding is consistent with the view that preeclampsia and SGA are associated with a polarized Th1 immune response and, perhaps, a reduced Th2 response.

  17. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity.

    PubMed

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-03-15

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis.

  18. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity

    PubMed Central

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-01-01

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis. PMID:26918453

  19. Screening a yeast promoter library leads to the isolation of the RP29/L32 and SNR17B/RPL37A divergent promoters and the discovery of a gene encoding ribosomal protein L37.

    PubMed

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1991-08-30

    Two promoters (A7 and A23), isolated at random from the Saccharomyces cerevisiae genome by virtue of their capacity to activate transcription, are identical to known intergenic bidirectional promoters. Sequence analysis of the genomic DNA adjacent to the A7 promoter identified a split gene encoding ribosomal (r) protein L37, which is homologous to the tRNA-binding r-proteins, L35a (from human and rat) and L32 (from frogs).

  20. Maternal serum soluble CD30 is increased in pregnancies complicated with acute pyelonephritis.

    PubMed

    Kusanovic, Juan Pedro; Romero, Roberto; Esoinoza, Jimmy; Gotsch, Francesca; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Mittal, Pooja; Soto, Eleazar; Erez, Offer; Mazaki-Tovi, Shali; Than, Nandor Gabor; Friel, Lara A; Yoon, Bo Hyun; Mazor, Moshe; Hassan, Sonia S

    2007-11-01

    Normal pregnancy is characterized by activation of the innate immunity and suppression of the adaptive limb of the immune response. However, pregnant women are more susceptible to the effects of infection and microbial products than non-pregnant women. CD30 is a member of the tumor necrosis factor receptor superfamily and is preferentially expressed by activated T cells producing Th2-type cytokines. Its soluble form (sCD30) is proposed to be an index of Th2 immune response. High serum concentrations of sCD30 have been found in the acute phase of viral infections, such as HIV-1 and hepatitis B. There is, however, conflicting evidence about serum sCD30 concentration in patients with bacterial infections. The objective of this study was to determine whether there are changes in the serum concentration of sCD30 in pregnant women with pyelonephritis. This cross-sectional study included normal pregnant women (N = 89) and pregnant women with pyelonephritis (N = 41). Maternal serum concentration of sCD30 was measured by a specific and sensitive enzyme-linked immunoassay. Non-parametric tests were used for comparisons. A p value <0.05 was considered statistically significant. (1) Pregnant women with pyelonephritis had a significantly higher median serum concentration of sCD30 than those with a normal pregnancy (median 44.3 U/mL, range 16-352.5 vs. median 29.7 U/mL, range 12.2-313.2, respectively; p < 0.001), and (2) No significant differences were found in the median maternal serum concentration of sCD30 between pregnant women with pyelonephritis who had a positive blood culture compared to those with a negative blood culture (median 47.7 U/mL, range 17.1-118.8 vs. median 42.6 U/mL, range 16-352.5, respectively; p = 0.86). Acute pyelonephritis during pregnancy is associated with a higher maternal serum concentration of sCD30 than normal pregnancy. This finding is novel and suggests that pregnant women with pyelonephritis may have a complex immune state in which there is activation of some components of what is considered a Th2 immune response.

  1. SLC25A13 Gene Analysis in Citrin Deficiency: Sixteen Novel Mutations in East Asian Patients, and the Mutation Distribution in a Large Pediatric Cohort in China

    PubMed Central

    Song, Yuan-Zong; Zhang, Zhan-Hui; Lin, Wei-Xia; Zhao, Xin-Jing; Deng, Mei; Ma, Yan-Li; Guo, Li; Chen, Feng-Ping; Long, Xiao-Ling; He, Xiang-Ling; Sunada, Yoshihide; Soneda, Shun; Nakatomi, Akiko; Dateki, Sumito; Ngu, Lock-Hock; Kobayashi, Keiko; Saheki, Takeyori

    2013-01-01

    Background The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet. Methods and Results By means of direct DNA sequencing, cDNA cloning and SNP analyses, 16 novel pathogenic mutations, including 9 missense, 4 nonsense, 1 splice-site, 1 deletion and 1 large transposal insertion IVS4ins6kb (GenBank accession number KF425758), were identified in CTLN2 or NICCD patients from China, Japan and Malaysia, respectively, making the SLC25A13 variations worldwide reach the total number of 81. A large NICCD cohort of 116 Chinese cases was also established, and the 4 high-frequency mutations contributed a much larger proportion of the mutated alleles in the patients from south China than in those from the north (χ2 = 14.93, P<0.01), with the latitude of 30°N as the geographic dividing line in mainland China. Conclusions This paper further enriched the SLC25A13 variation spectrum worldwide, and formed a substantial contribution to the in-depth understanding of the genotypic feature of Chinese CD patients. PMID:24069319

  2. Isolation and characterization of cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase large and small subunits in Nitrosomonas sp. strain ENI-11.

    PubMed

    Hirota, Ryuichi; Kato, Junichi; Morita, Hiromu; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao

    2002-03-01

    The cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large and small subunits in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 were cloned and sequenced. The deduced gene products, CbbL and CbbS, had 93 and 87% identity with Thiobacillus intermedius CbbL and Nitrobacter winogradskyi CbbS, respectively. Expression of cbbL and cbbS in Escherichia coli led to the detection of RubisCO activity in the presence of 0.1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG). To our knowledge, this is the first paper to report the genes involved in the carbon fixation reaction in chemolithotrophic ammonia-oxidizing bacteria.

  3. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 2. Tumor-specific immunity and cure after radio-inducible suicide gene therapy and systemic CD40-ligand and Flt3-ligand gene therapy in an orthotopic tumor model.

    PubMed

    Kawashita, Yujo; Deb, Niloy J; Garg, Madhur K; Kabarriti, Rafi; Fan, Zuoheng; Alfieri, Alan A; Roy-Chowdhury, Jayanta; Guha, Chandan

    2014-08-01

    Diffuse hepatocellular carcinoma (HCC) is a lethal disease that radiation therapy (RT) currently has a limited role in treating because of the potential for developing fatal radiation-induced liver disease. However, recently diffuse HCC, "radio-inducible suicide gene therapy" has been shown to enhance local tumor control and residual microscopic disease within the liver for diffuse HCC, by using a combination of chemoactivation and molecular radiosensitization. We have demonstrated that the addition of recombinant adenovirus-expressing human Flt3 ligand (Adeno-Flt3L) after radio-inducible suicide gene therapy induced a Th1-biased, immune response and enhanced tumor control in an ectopic model of HCC. We hypothesized that sequential administration of recombinant adenovirus-expressing CD40L (Adeno-CD40L) could further potentiate the efficacy of our trimodal therapy with RT + HSV-TK + Adeno-Flt3L. We examined our hypothesis in an orthotopic model of diffuse HCC using BNL1ME A.7R.1 (BNL) cells in Balb/c mice. BNL murine hepatoma cells (5 × 10(4)) transfected with an expression vector of HSV-TK under the control of a radiation-inducible promoter were injected intraportally into BALB/cJ mice. Fourteen days after the HCC injection, mice were treated with a 25 Gy dose of radiation to the whole liver, followed by ganciclovir (GCV) treatment and systemic adenoviral cytokine gene therapy (Flt3L or CD40L or both). Untreated mice died in 27 ± 4 days. Radiation therapy alone had a marginal effect on survival (median = 35 ± 7 days) and the addition of HSV-TK/GCV gene therapy improved the median survival to 47 ± 6 days. However, the addition of Adeno-Flt3L to radiation therapy and HSV-TK/GCV therapy significantly (P = 0.0005) increased survival to a median of 63 ± 20 days with 44% (7/16) of the animals still alive 116 days after tumor implantation. The curative effect of Flt3L was completely abolished when using immunodeficient nude mice or mice depleted for CD4, CD8 and natural killer cells. The addition of Adeno-CD40L further improved the median survival of animals to 80 ± 15 days and this effect was abolished only when using anti-CD8 antibodies. Chromium-51 (51Cr) release assay showed cytotoxic T lymphocyte (CTL) activation, suggesting efficient dendritic cell (DC) activation with CTL activation after the treatment. Furthermore, when surviving mice were rechallenged with BNL-ETK cells on the foot pad, RT + HSV-TK/GCV + Flt3L + CD40L-treated mice developed a small tumor on day 56 but the tumor eventually disappeared after 105 days. Mice treated with RT + HSV-TK/GCV + Flt3L showed a slowed tumor growth curve compared with untreated mice. Therefore, combination therapy using Flt3L to induce DC proliferation and CD40L to enhance DC maturation holds great promise for immunomodulation of radiation therapy to enhance HCC tumor control and prevent progression of disease in patients with diffuse HCC.

  4. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    PubMed

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  5. The Streptococcus mutans Serine/Threonine Kinase, PknB, Regulates Competence Development, Bacteriocin Production, and Cell Wall Metabolism ▿

    PubMed Central

    Banu, Liliana Danusia; Conrads, Georg; Rehrauer, Hubert; Hussain, Haitham; Allan, Elaine; van der Ploeg, Jan R.

    2010-01-01

    Bacteria can detect, transmit, and react to signals from the outside world by using two-component systems (TCS) and serine-threonine kinases and phosphatases. Streptococcus mutans contains one serine-threonine kinase, encoded by pknB. A gene encoding a serine-threonine phosphatase, pppL, is located upstream of pknB. In this study, the phenotypes of pknB and pppL single mutants and a pknB pppL double mutant were characterized. All mutants exhibited a reduction in genetic transformability and biofilm formation, showed abnormal cell shapes, grew slower than the wild-type strain in several complex media, and exhibited reduced acid tolerance. The mutants had reduced cariogenic capacity but no significant defects in colonization in a rat caries model. Whole-genome transcriptome analysis revealed that a pknB mutant showed reduced expression of genes involved in bacteriocin production and genetic competence. Among the genes that were differentially regulated in the pknB mutant, several were likely to be involved in cell wall metabolism. One such gene, SMU.2146c, and two genes encoding bacteriocins were shown to also be downregulated in a vicK mutant, which encodes a sensor kinase involved in the response to oxidative stress. Collectively, the results lead us to speculate that PknB may modulate the activity of the two-component signal transduction systems VicKR and ComDE. Real-time reverse transcriptase PCR (RT-PCR) showed that genes downregulated in the pknB mutant were upregulated in the pppL mutant, indicating that PppL serves to counteract PknB. PMID:20231406

  6. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism.

    PubMed

    Banu, Liliana Danusia; Conrads, Georg; Rehrauer, Hubert; Hussain, Haitham; Allan, Elaine; van der Ploeg, Jan R

    2010-05-01

    Bacteria can detect, transmit, and react to signals from the outside world by using two-component systems (TCS) and serine-threonine kinases and phosphatases. Streptococcus mutans contains one serine-threonine kinase, encoded by pknB. A gene encoding a serine-threonine phosphatase, pppL, is located upstream of pknB. In this study, the phenotypes of pknB and pppL single mutants and a pknB pppL double mutant were characterized. All mutants exhibited a reduction in genetic transformability and biofilm formation, showed abnormal cell shapes, grew slower than the wild-type strain in several complex media, and exhibited reduced acid tolerance. The mutants had reduced cariogenic capacity but no significant defects in colonization in a rat caries model. Whole-genome transcriptome analysis revealed that a pknB mutant showed reduced expression of genes involved in bacteriocin production and genetic competence. Among the genes that were differentially regulated in the pknB mutant, several were likely to be involved in cell wall metabolism. One such gene, SMU.2146c, and two genes encoding bacteriocins were shown to also be downregulated in a vicK mutant, which encodes a sensor kinase involved in the response to oxidative stress. Collectively, the results lead us to speculate that PknB may modulate the activity of the two-component signal transduction systems VicKR and ComDE. Real-time reverse transcriptase PCR (RT-PCR) showed that genes downregulated in the pknB mutant were upregulated in the pppL mutant, indicating that PppL serves to counteract PknB.

  7. Ectoenzymes and innate immunity: the role of human CD157 in leukocyte trafficking.

    PubMed

    Funaro, Ada; Ortolan, Erika; Bovino, Paola; Lo Buono, Nicola; Nacci, Giulia; Parrotta, Rossella; Ferrero, Enza; Malavasi, Fabio

    2009-01-01

    CD157 is a glycosylphosphatidylinositol-anchored molecule encoded by a member of the CD38/ADP-ribosyl cyclase gene family, involved in the metabolism of NAD. Expressed mainly by cells of the myeloid lineage and by vascular endothelial cells, CD157 has a dual nature behaving both as an ectoenzyme and as a receptor. Although it lacks a cytoplasmic domain, and cannot transduce signals on its own, the molecule compensates for this structural limit by interacting with conventional receptors. Recent experimental evidence suggests that CD157 orchestrates critical functions of human neutrophils. Indeed, CD157-mediated signals promote cell polarization, regulate chemotaxis induced through the high affinity fMLP receptor and control transendothelial migration.

  8. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  9. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    PubMed

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  10. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L.) Is Affected by Dietary Protein Source.

    PubMed

    Hu, Haibin; Kortner, Trond M; Gajardo, Karina; Chikwati, Elvis; Tinsley, John; Krogdahl, Åshild

    2016-01-01

    In Atlantic salmon (Salmo salar L.), and also in other fish species, certain plant protein ingredients can increase fecal water content creating a diarrhea-like condition which may impair gut function and reduce fish growth. The present study aimed to strengthen understanding of the underlying mechanisms by observing effects of various alternative plant protein sources when replacing fish meal on expression of genes encoding proteins playing key roles in regulation of water transport across the mucosa of the distal intestine (DI). A 48-day feeding trial was conducted with five diets: A reference diet (FM) in which fish meal (72%) was the only protein source; Diet SBMWG with a mix of soybean meal (30%) and wheat gluten (22%); Diet SPCPM with a mix of soy protein concentrate (30%) and poultry meal (6%); Diet GMWG with guar meal (30%) and wheat gluten (14.5%); Diet PM with 58% poultry meal. Compared to fish fed the FM reference diet, fish fed the soybean meal containing diet (SBMWG) showed signs of enteritis in the DI, increased fecal water content of DI chyme and higher plasma osmolality. Altered DI expression of a battery of genes encoding aquaporins, ion transporters, tight junction and adherens junction proteins suggested reduced transcellular transport of water as well as a tightening of the junction barrier in fish fed the SBMWG diet, which may explain the observed higher fecal water content and plasma osmolality. DI structure was not altered for fish fed the other experimental diets but alterations in target gene expression and fecal water content were observed, indicating that alterations in water transport components may take place without clear effects on intestinal structure.

  12. SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila.

    PubMed

    Hovel-Miner, Galadriel; Pampou, Sergey; Faucher, Sebastien P; Clarke, Margaret; Morozova, Irina; Morozov, Pavel; Russo, James J; Shuman, Howard A; Kalachikov, Sergey

    2009-04-01

    Legionella pneumophila is the causative agent of the severe and potentially fatal pneumonia Legionnaires' disease. L. pneumophila is able to replicate within macrophages and protozoa by establishing a replicative compartment in a process that requires the Icm/Dot type IVB secretion system. The signals and regulatory pathways required for Legionella infection and intracellular replication are poorly understood. Mutation of the rpoS gene, which encodes sigma(S), does not affect growth in rich medium but severely decreases L. pneumophila intracellular multiplication within protozoan hosts. To gain insight into the intracellular multiplication defect of an rpoS mutant, we examined its pattern of gene expression during exponential and postexponential growth. We found that sigma(S) affects distinct groups of genes that contribute to Legionella intracellular multiplication. We demonstrate that rpoS mutants have a functional Icm/Dot system yet are defective for the expression of many genes encoding Icm/Dot-translocated substrates. We also show that sigma(S) affects the transcription of the cpxR and pmrA genes, which encode two-component response regulators that directly affect the transcription of Icm/Dot substrates. Our characterization of the L. pneumophila small RNA csrB homologs, rsmY and rsmZ, introduces a link between sigma(S) and the posttranscriptional regulator CsrA. We analyzed the network of sigma(S)-controlled genes by mutational analysis of transcriptional regulators affected by sigma(S). One of these, encoding the L. pneumophila arginine repressor homolog gene, argR, is required for maximal intracellular growth in amoebae. These data show that sigma(S) is a key regulator of multiple pathways required for L. pneumophila intracellular multiplication.

  13. Bean Metal-Responsive Element-Binding Transcription Factor Confers Cadmium Resistance in Tobacco1

    PubMed Central

    Sun, Na; Liu, Meng; Zhang, Wentao; Yang, Wanning; Bei, Xiujuan; Ma, Hui; Qiao, Fan; Qi, Xiaoting

    2015-01-01

    Cadmium (Cd) is highly toxic to plants. Modulation of Cd-responsive transcription is an important way for Cd detoxification in plants. Metal-responsive element (MRE) is originally described in animal metallothionein genes. Although functional MREs also exist in Cd-regulated plant genes, specific transcription factors that bind MRE to regulate Cd tolerance have not been identified. Previously, we showed that Cd-inducible bean (Phaseolus vulgaris) stress-related gene2 (PvSR2) produces a short (S) PvSR2 transcript (S-PvSR2) driven by an intronic promoter. Here, we demonstrate that S-PvSR2 encodes a bean MRE-binding transcription factor1 (PvMTF-1) that confers Cd tolerance in tobacco (Nicotiana tabacum). PvMTF-1 expression was up-regulated by Cd at the levels of RNA and protein. Importantly, expression of PvMTF-1 in tobacco enhanced Cd tolerance, indicating its role in regulating Cd resistance in planta. This was achieved through direct regulation of a feedback-insensitive Anthranilate Synthase α-2 chain gene (ASA2), which catalyzes the first step for tryptophan biosynthesis. In vitro and in vivo DNA-protein interaction studies further revealed that PvMTF-1 directly binds to the MRE in the ASA2 promoter, and this binding depends on the zinc finger-like motif of PvMTF-1. Through modulating ASA2 up-regulation by Cd, PvMTF-1 increased free tryptophan level and subsequently reduced Cd accumulation, thereby enhancing Cd tolerance of transgenic tobacco plants. Consistent with this observation, tobacco transiently overexpressing ASA2 also exhibited increased tolerance to Cd. We conclude that PvMTF-1 is a zinc finger-like transcription factor that links MRE to Cd resistance in transgenic tobacco through activation of tryptophan biosynthesis. PMID:25624396

  14. Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions

    PubMed Central

    Wagner-Schuman, Melissa; Neitz, Jay; Rha, Jungtae; Williams, David R.; Neitz, Maureen; Carroll, Joseph

    2010-01-01

    Our understanding of the etiology of red-green color vision defects is evolving. While missense mutations within the long- (L-) and middle-wavelength sensitive (M-) photopigments and gross rearrangements within the L/M-opsin gene array are commonly associated with red-green defects, recent work using adaptive optics retinal imaging has shown that different genotypes can have distinct consequences for the cone mosaic. Here we examined the cone mosaic in red-green color deficient individuals with multiple X-chromosome opsin genes that encode L opsin, as well as individuals with a single X-chromosome opsin gene that encodes L opsin and a single patient with a novel premature termination codon in his M-opsin gene and a normal L-opsin gene. We observed no difference in cone density between normal trichomats and multiple or single gene dichromats. In addition, we demonstrate different phenotypic effects of a nonsense mutation versus the previously described deleterious polymorphism, (LIAVA), both of which differ from multiple and single gene dichromats. Our results help refine the relationship between opsin genotype and cone photoreceptor mosaic phenotype. PMID:20854834

  15. The Effects of Agaricus blazei Murill Polysaccharides on Cadmium-Induced Apoptosis and the TLR4 Signaling Pathway of Peripheral Blood Lymphocytes in Chicken.

    PubMed

    Liu, Wenjing; Ge, Ming; Hu, Xuequan; Lv, Ai; Ma, Dexing; Huang, Xiaodan; Zhang, Ruili

    2017-11-01

    In this study, we investigated the effects of Agaricus blazei Murill polysaccharides (ABP) on cadmium (Cd)-induced apoptosis and the TLR4 signaling pathway of chicken peripheral blood lymphocytes (PBLs). Seven-day-old healthy chickens were randomly divided into four groups, and each group contained 20 males. The cadmium-supplemented diet group (Cd group) was fed daily with full feed that contained 140 mg cadmium chloride (CdCl 2 )/kg and 0.2 mL saline. The A. blazei Murill polysaccharide diet group (ABP group) was fed daily with full feed with 0.2 mL ABP solution (30 mg/mL) by oral gavage. The cadmium-supplemented plus A. blazei Murill polysaccharide diet group (Cd + ABP group) was fed daily with full feed containing 140 mg CdCl 2 /kg and 0.2 mL ABP solution (30 mg/mL) by gavage. The control group was fed daily with full feed with 0.2 mL saline per day. We measured the apoptosis rate and messenger RNA (mRNA) levels of apoptosis genes (caspase-3, Bax, and Bcl-2), the mRNA levels of TLR4 and TLR4 signaling pathway-related factors (MyD88, TRIF, NF-κB, and IRF3), the TLR4 protein expression, and the concentrations of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in chicken PBLs. The results showed that the PBL apoptosis rate was significantly increased, the mRNA levels of caspase-3 and Bax were significantly increased, while that of Bcl-2 was significantly reduced. The Bax/Bcl-2 ratio was significantly increased in the Cd group at 20, 40, and 60 days after treatment compared with that in the control group. After treatment with ABP, the above changes were clearly suppressed. At the same time, ABP reduced the concentrations of IL-1β, IL-6, and TNF-α induced by Cd. We also found that ABP inhibited the TLR4 mRNA level and protein expression and inhibited the mRNA levels of MyD88, TRIF, NF-κB, and IRF3. The results demonstrated that Cd could induce apoptosis, activate the TLR4 signaling pathway, and induce the expression of inflammatory cytokines in chicken PBLs, and that the administration of ABP clearly inhibited Cd-induced effects on chicken PBLs.

  16. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  17. Subchronic cadmium exposure upregulates the mRNA level of genes associated to hepatic lipid metabolism in adult female CD1 mice.

    PubMed

    Zhang, Jun; Wang, Yan; Fu, Lin; Feng, Yu-Jie; Ji, Yan-Li; Wang, Hua; Xu, De-Xiang

    2018-07-01

    Cadmium (Cd) is a persistent environmental and occupational contaminant that accumulates in humans and shows adverse effects on health. Accumulating evidence reveals that environmental Cd exposure is associated with hepatic lipid accumulation and metabolic alterations in adult male mice. However, whether Cd exposure induces hepatic lipid accumulation and metabolic alterations in female mice remains poorly understood. In the present study, we aimed to investigate the effects of Cd exposure on insulin resistance, hepatic lipid accumulation and associated metabolic pathways. Female CD1 mice were administrated with CdCl 2 (10 and 100 mg l -1 ) by drinking water. We found that Cd exposure did not induce obesity, insulin resistance and hepatic lipid accumulation. By contrary, mice in the Cd-100 mg l -1 group presented a significant reduction of the glucose area under the curve during the glucose tolerance test. However, there was a significant elevation in the mRNA level of Fasn and Scd-1, which were critical genes during hepatic fatty acid synthesis. Moreover, hepatic Fabp1 and Fabp4, two genes for hepatic fatty acid uptake were upregulated in Cd-treated mice. Of interest, Lpl, a key gene for hepatic lipoprotein lysis, was also upregulated in Cd-treated mice. Collectively, our results suggest that Cd exposure upregulated mRNA level of genes related to hepatic lipid metabolism although there was no insulin resistance and hepatic lipid accumulation shown in the present study. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Common sequence variants in CD36 gene and the levels of triglyceride and high-density lipoprotein cholesterol among ethnic Chinese in Taiwan

    PubMed Central

    2012-01-01

    Background Evidence of the genetic association between CD36 candidate gene and the risk of metabolic syndrome and its components has been inconsistent. This case–control study assessed the haplotype-tagged SNPs from CD36 on the risk of metabolic syndrome and components. Methods and results We recruited 1,000 cases and age, gender-matched controls were randomly selected from the participants with metabolic syndrome defined by International Diabetes Federation. Overall, the haplotype tagged SNPs of CD36 gene were not related to the risk of metabolic syndrome. For individuals with normal lipid levels, several SNPs were significantly associated with the triglycerides and HDL-cholesterol levels: Subjects with rs3211848 homozygote had a higher triglyceride level (99.16 ± 2.61 mg/dL), compared with non-carriers (89.27 ± 1.45 mg/dL, P = 0.001). In addition, compared with non-carriers, individuals with rs1054516 heterozygous and homozygous genotypes had a significantly lower HDL-cholesterol (46.6 ± 0.46 mg/dL for non-carrier, 44.6 ± 0.36 mg/dL for heterozygous, and 44.3 ± 0.56 mg/dL for homozygous, P = 0.0008). Conclusion The CD36 gene variants were significantly associated with triglycerides and HDL-cholesterol concentrations among ethnic Chinese in Taiwan. PMID:23249574

  19. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells.

    PubMed

    Podsakoff, Greg M; Engel, Barbara C; Carbonaro, Denise A; Choi, Chris; Smogorzewska, Elzbieta M; Bauer, Gerhard; Selander, David; Csik, Susan; Wilson, Kathy; Betts, Michael R; Koup, Richard A; Nabel, Gary J; Bishop, Keith; King, Steven; Schmidt, Manfred; von Kalle, Christof; Church, Joseph A; Kohn, Donald B

    2005-07-01

    Two HIV-1-infected children on antiretroviral therapy were enrolled into a clinical study of retroviral-mediated transfer of a gene that inhibits replication of HIV-1, targeting bone marrow CD34+ hematopoietic stem/progenitor cells. Two retroviral vectors were used, one encoding a "humanized" dominant-negative REV protein (huM10) that is a potent inhibitor of HIV-1 replication and one encoding a nontranslated marker gene (FX) to serve as an internal control for the level of gene marking. Peripheral blood mononuclear cells (PBMC) containing the huM10 gene or FX gene were detected by quantitative PCR at frequencies of approximately 1/10,000 in both subjects for the first 1-3 months following re-infusion of the gene-transduced bone marrow, but then were at or below the limits of detection (<1/1,000,000) at most times over 2 years. In one patient, a reappearance of PBMC containing the huM10 gene, but not the FX gene, occurred concomitant with a rise in the HIV-1 viral load during a period of nonadherence to the antiretroviral regimen. Unique clones of gene-marked PBMC were detected by LAM-PCR during the time of elevated HIV-1 levels. These findings indicate that there was a selective survival advantage for PBMC containing the huM10 gene during the time of increased HIV-1 load.

  20. CD30, a marker to detect the high-risk kidney transplant recipients.

    PubMed

    Spiridon, Camelia; Nikaein, Afzal; Lerman, Mark; Hunt, Judson; Dickerman, Richard; Mack, Michael

    2008-01-01

    Sensitization of potential renal transplant recipients may impact the selection of donors and the outcome of transplant. Another element of the potential kidney transplant recipient immune system that provides useful information regarding the transplant outcome is the immunologic CD30 molecule. This study shows a significant correlation between the pre-transplant high level of soluble CD30 and increased incidence of post-transplant infection. Only 7/34 (20.6%) of the patients who had a low level of sCD30 (< 90 U/mL) developed infection as compared with the 25/58 (43.1%) of the patients who had a high level (> 90 U/mL) of sCD30 (p < 0.04). Higher level of sCD30 pre-transplant was also correlated with the increased level of serum creatinine (p < 0.05) and pre-transplant malignancy (p < 0.04). A significant higher level of sCD30 was also noted among females (74%), as compared with males (50%) with p < 0.03. In addition, significant effect of 3-6 human leukocyte antigen (HLA) mismatches on rejection was seen. These results show that higher pre-transplant immunologic reactivity measured by sCD30 level was associated with post-transplant outcome. The high level of sCD30 among females may indicate an active immunologic status, perhaps because of previous pregnancies.

  1. Pre-transplant soluble CD30 level as a predictor of not only acute rejection and graft loss but pneumonia in renal transplant recipients.

    PubMed

    Wang, Dong; Wu, Wei-Zhen; Chen, Jin-Hua; Yang, Shun-Liang; Wang, Qing-Hua; Zeng, Zhang-Xin; Tan, Jian-Ming

    2010-02-01

    Pre-transplant sera of 586 renal graft recipients were tested to investigate whether soluble CD30 (sCD30) is a useful predictor of some severe clinical episodes post-transplant. Correlation analysis showed sCD30 level was significantly correlated with acute rejection (AR) (r=0.242, P<0.001), graft loss (r=0.162, P<0.001), and pneumonia (r=-0.147, P<0.001). Higher sCD30 levels were observed in patients with AR than the others (180.0+/-89.1 vs. 135.3+/-72.7U/ml, P<0.001). And patients with pneumonia had significantly lower pre-transplant sCD30 level than the others (123.2+/-75.5 vs. 150.7+/-79.6U/ml, P=0.003). Based on statistical results, 120 and 240U/ml were selected as the optimal couple of cut-off value to divide patients into three groups: Group High (H), Group Intermedial (I) and Group Low (L). The lowest AR rate of 17.4% was observed in Group L (P<0.001). Significant difference of AR rate was also observed between Group I (29.2%) and H (42.9%) (P<0.001). There were much more patients suffering pneumonia in Group L (P=0.001). Significantly lower 5-year patient survival rate (79.4%) was observed in Group H (P=0.016). These data showed that elevated pre-transplant sCD30 level of renal allograft recipients may reflect an immune state detrimental for renal allograft survival. But sCD30 level lower than <120U/ml may be associated with a high risk of pneumonia. Pre-transplant sCD30 level is an independent predictor of acute rejection, lung infection, even graft survival. Suitable immunosuppression protocol should be selected according to pre-transplant sCD30 level in an attempt to promote patient and graft survival. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Posttransplant soluble CD30 as a predictor of acute renal allograft rejection.

    PubMed

    Kamali, Koosha; Abbasi, Mohammad Amin; Farokhi, Babak; Abbasi, Ata; Fallah, Parvane; Seifee, Mohammad Hasan; Ghadimi, Naime; Rezaie, Alireza R

    2009-12-01

    Recent results have indicated that high prerenal and postrenal transplant soluble CD30 levels may be associated with an increased acute rejection and graft loss. The aim of this study was to evaluate the feasibility of using serum sCD30 as a marker for predicting acute graft rejection. In this prospective study,we analyzed clinical data of 80 patients, whose pretransplant and posttransplant serum levels of sCD30 were detected by enzyme-linked immunoassay. Eight patients developed acute rejection, 7 patients showed delayed graft function, and 65 recipients experienced an uncomplicated course group. The patients were followed for 12 months, and there were no deaths. Preoperative sCD30 levels of 3 groups were 96.2 -/+ 32.5, 80.2 -/+ 28.3, and 76.8 -/+ 29.8 U/mL (P = .28). After transplant, a significant decrease in the sCD30 level was detected in 3 groups on day 14 posttransplant (P < .001), while sCD30 levels of acute rejection group remained significantly higher than delayed graft function and nonrejecting patients (28.3 -/+ 5.2, 22.1 -/+ 3.2, and 19.8 -/+ 4.7 U/mL) (P = .02). Positive panel reactive antibody was not statistically different among groups (P = .05). Also, hemodialysis did not affect sCD30 levels (P = .05). Receiver operating characteristic curve demonstrated that the sCD30 level on day 14 posttransplant could discriminate patients who subsequently suffered acute allograft rejection (area under receiver operating characteristic curve, 0.95). According to receiver operating characteristic curve, 20 U/mL may be the optimal operational cutoff level to predict impending graft rejection (specificity 93.8%, sensitivity 83.3%). Measurement of the soluble CD30 level on day 14 after transplant might offer a noninvasive means for recognizing patients at risk of acute graft rejection during the early posttransplant period.

  3. Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

    PubMed Central

    2011-01-01

    Background Entamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism. Results In this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h) gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold) at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion. Conclusions To our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first genome-wide analysis of transcriptional changes induced by L-cysteine deprivation in protozoan parasites, and in eukaryotic organisms where L-cysteine represents the major intracellular thiol. PMID:21627801

  4. Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome.

    PubMed

    Kuo, Caroline Y; Long, Joseph D; Campo-Fernandez, Beatriz; de Oliveira, Satiro; Cooper, Aaron R; Romero, Zulema; Hoban, Megan D; Joglekar, Alok V; Lill, Georgia R; Kaufman, Michael L; Fitz-Gibbon, Sorel; Wang, Xiaoyan; Hollis, Roger P; Kohn, Donald B

    2018-05-29

    X-linked hyper-immunoglobulin M (hyper-IgM) syndrome (XHIM) is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs), as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus

    PubMed Central

    Kovács, Klaudia; Bánóczi, Gergely; Varga, Andrea; Szabó, Izabella; Holczinger, András; Hornyánszky, Gábor; Zagyva, Imre

    2014-01-01

    The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia. PMID:24475062

  6. L1000CDS2: LINCS L1000 characteristic direction signatures search engine

    PubMed Central

    Duan, Qiaonan; Reid, St Patrick; Clark, Neil R; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Readhead, Ben; Tritsch, Sarah R; Hodos, Rachel; Hafner, Marc; Niepel, Mario; Sorger, Peter K; Dudley, Joel T; Bavari, Sina; Panchal, Rekha G; Ma’ayan, Avi

    2016-01-01

    The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes, we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served through a state-of-the-art web-based search engine application called L1000CDS2. The L1000CDS2 search engine provides prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an input gene expression signature using two methods. The L1000CDS2 search engine also predicts drug targets for all the small molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for single-gene perturbations in mammalian cells. We applied L1000CDS2 to prioritize small molecules that are predicted to reverse expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22 endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS2, we collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with L1000CDS2 we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS2 tool can be applied in many biological and biomedical settings, while improving the extraction of knowledge from the LINCS L1000 resource. PMID:28413689

  7. Typing of Panton-Valentine Leukocidin-Encoding Phages and lukSF-PV Gene Sequence Variation in Staphylococcus aureus from China.

    PubMed

    Zhao, Huanqiang; Hu, Fupin; Jin, Shu; Xu, Xiaogang; Zou, Yuhan; Ding, Baixing; He, Chunyan; Gong, Fang; Liu, Qingzhong

    2016-01-01

    Panton-Valentine leukocidin (PVL, encoded by lukSF-PV genes), a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus has been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE) typing, accessory gene regulator (agr) locus typing and multilocus sequence typing (MLST). Seventy eight (78/1175, 6.6%) isolates possessed the lukSF-PV genes and 59.0% (46/78) of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n = 13) and ΦPVL (n = 12) were the most prevalent among them. While 25 (25/78, 32.1%) isolates, belonging to ST30, and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs) were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages, and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.

  8. Genetic Control of L-a and L-(Bc) Dsrna Copy Number in Killer Systems of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Ball, Steven G.; Tirtiaux, Catherine; Wickner, Reed B.

    1984-01-01

    M dsRNA in yeast encodes a toxin precursor and immunity protein, whereas L-A dsRNA encodes the 81,000-dalton major protein of the intracellular particles in which both L-A and M are found. L-(BC) dsRNA(s) are found in particles with different coat proteins. We find that M dsRNA lowers the copy number of L-A, but not L-(BC). The SKI gene products lower the copy number of L-(BC), L-A, M1 and M2. This is the first known interaction of L-(BC) with any element of the killer systems. The MAK3, MAK10 and PET18 gene products are necessary for L-A maintenance and replication, but mutations in these genes do not affect L-(BC) copy number. Mutations in MAK1, MAK4, MAK7, MAK17 and MAK24 do not detectably affect copy number of L-(BC) or L-A. PMID:17246214

  9. IRGM Variants and Susceptibility to Inflammatory Bowel Disease in the German Population

    PubMed Central

    Bues, Stephanie; Stallhofer, Johannes; Fries, Christoph; Olszak, Torsten; Tsekeri, Eleni; Wetzke, Martin; Beigel, Florian; Steib, Christian; Friedrich, Matthias; Göke, Burkhard; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2013-01-01

    Background & Aims Genome-wide association studies identified the autophagy gene IRGM to be strongly associated with Crohn's disease (CD) but its impact in ulcerative colitis (UC), its phenotypic effects and potential epistatic interactions with other IBD susceptibility genes are less clear which we therefore analyzed in this study. Methodology/Principal Findings Genomic DNA from 2060 individuals including 817 CD patients, 283 UC patients, and 961 healthy, unrelated controls (all of Caucasian origin) was analyzed for six IRGM single nucleotide polymorphisms (SNPs) (rs13371189, rs10065172 = p.Leu105Leu, rs4958847, rs1000113, rs11747270, rs931058). In all patients, a detailed genotype-phenotype analysis and testing for epistasis with the three major CD susceptibility genes NOD2, IL23R and ATG16L1 were performed. Our analysis revealed an association of the IRGM SNPs rs13371189 (p = 0.02, OR 1.31 [95% CI 1.05–1.65]), rs10065172 = p.Leu105Leu (p = 0.016, OR 1.33 [95% CI 1.06–1.66]) and rs1000113 (p = 0.047, OR 1.27 [95% CI 1.01–1.61]) with CD susceptibility. There was linkage disequilibrium between these three IRGM SNPs. In UC, several IRGM haplotypes were weakly associated with UC susceptibility (p<0.05). Genotype-phenotype analysis revealed no significant associations with a specific IBD phenotype or ileal CD involvement. There was evidence for weak gene-gene-interaction between several SNPs of the autophagy genes IRGM and ATG16L1 (p<0.05), which, however, did not remain significant after Bonferroni correction. Conclusions/Significance Our results confirm IRGM as susceptibility gene for CD in the German population, supporting a role for the autophagy genes IRGM and ATG16L1 in the pathogenesis of CD. PMID:23365659

  10. The hematopoietic cell-specific transcription factor PU.1 is critical for expression of CD11c.

    PubMed

    Yashiro, Takuya; Kasakura, Kazumi; Oda, Yoshihito; Kitamura, Nao; Inoue, Akihito; Nakamura, Shusuke; Yokoyama, Hokuto; Fukuyama, Kanako; Hara, Mutsuko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Makoto; Nishiyama, Chiharu

    2017-02-01

    PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Marek's disease is a natural model for lymphomas overexpressing Hodgkin's disease antigen (CD30)

    PubMed Central

    Burgess, S. C.; Young, J. R.; Baaten, B. J. G.; Hunt, L.; Ross, L. N. J.; Parcells, M. S.; Kumar, P. M.; Tregaskes, C. A.; Lee, L. F.; Davison, T. F.

    2004-01-01

    Animal models are essential for elucidating the molecular mechanisms of carcinogenesis. Hodgkin's and many diverse non-Hodgkin's lymphomas overexpress the Hodgkin's disease antigen CD30 (CD30hi), a tumor necrosis factor receptor II family member. Here we show that chicken Marek's disease (MD) lymphoma cells are also CD30hi and are a unique natural model for CD30hi lymphoma. Chicken CD30 resembles an ancestral form, and we identify a previously undescribed potential cytoplasmic signaling domain conserved in chicken, human, and mouse CD30. Our phylogeneic analysis defines a relationship between the structures of human and mouse CD30 and confirms that mouse CD30 represents the ancestral mammalian gene structure. CD30 expression by MD virus (MDV)-transformed lymphocytes correlates with expression of the MDV Meq putative oncogene (a c-Jun homologue) in vivo. The chicken CD30 promoter has 15 predicted high-stringency Meq-binding transcription factor recognition motifs, and Meq enhances transcription from the CD30 promoter in vitro. Plasma proteomics identified a soluble form of CD30. CD30 overexpression is evolutionarily conserved and defines one class of neoplastic transformation events, regardless of etiology. We propose that CD30 is a component of a critical intracellular signaling pathway perturbed in neoplastic transformation. Specific anti-CD30 Igs occurred after infection of genetically MD-resistant chickens with oncogenic MDV, suggesting immunity to CD30 could play a role in MD lymphoma regression. PMID:15356338

  12. Molecular cloning and characterization of the full-length cDNA encoding the tree shrew (tupaia belangeri) CD28

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyan; Yan, Yan; Wang, Sha; Wang, Qinying; Shi, Jian; Shao, Zhanshe; Dai, Jiejie

    2017-11-01

    CD28 is one of the most important co-stimulatory molecules expressed by naive and primed T cells. The tree shrews (Tupaia belangeri), as an ideal animal model for analyzing mechanism of human diseases receiving extensive attentions, demands essential research tools, in particular in the study of cellular markers and monoclonal antibodies for immunological studies. However, little is known about tree shrew CD28 (tsCD28) until now. In this study, a 663 bp of the full-length CD28 cDNA, encoding a polypeptide of 220 amino acids was cloned from tree shrew spleen lymphocytes. The nucleotide sequence of the tsCD28 showed 85%, 76%, and 75% similarities with human, rat, and mouse, respectively, which showed the affinity relationship between tree shrew and human is much closer than between human and rodents. The open reading frame (ORF) sequence of tsCD28 gene was predicted to be in correspondence with the signal sequence, immunoglobulin variable-like (IgV) domain, transmembrane domain and cytoplasmic tail, respectively.We also analyzed its molecular characteristics with other mammals by using biology software such as Clustal W 2.0 and so forth. Our results showed that tsCD28 contained many features conserved in CD28 genes from other mammals, including conserved signal peptide and glycosylation sites, and several residues responsible for binding to the CD28R, and the tsCD28 amino acid sequence were found a close genetic relationship with human and monkey. The crystal structure and surface charge revealed most regions of tree shrew CD28 molecule surface charges are similar as human. However, compared with human CD28 (hCD28) regions, in some areas, the surface positive charge of tsCD28 was less than hCD28, which may affect antibody binding. The present study is the first report of cloning and characterization of CD28 in tree shrew. This study provides a theoretical basis for the further study the structure and function of tree shrew CD28 and utilize tree shrew as an effective animal model of human disease.

  13. Characterisation of an epigenetically altered CD4+ CD28+ Kir+ T cell subset in autoimmune rheumatic diseases by multiparameter flow cytometry

    PubMed Central

    Strickland, Faith M; Patel, Dipak; Somers, Emily; Robida, Aaron M; Pihalja, Michael; Swartz, Richard; Marder, Wendy; Richardson, Bruce

    2016-01-01

    Objectives Antigen-specific CD4+ T cells epigenetically modified with DNA methylation inhibitors overexpress genes normally suppressed by this mechanism, including CD11a, CD70, CD40L and the KIR gene family. The altered cells become autoreactive, losing restriction for nominal antigen and responding to self-class II major histocompatibility complex (MHC) molecules without added antigen, and are sufficient to cause a lupus-like disease in syngeneic mice. T cells overexpressing the same genes are found in patients with active lupus. Whether these genes are co-overexpressed on the same or different cells is unknown. The goal of this study was to determine whether these genes are overexpressed on the same or different T cells and whether this subset of CD4+ T cells is also present in patients with lupus and other rheumatic diseases. Methods Multicolour flow cytometry was used to compare CD11a, CD70, CD40L and KIR expression on CD3+CD4+CD28+ T cells to their expression on experimentally demethylated CD3+CD4+CD28+ T cells and CD3+CD4+CD28+ T cells from patients with active lupus and other autoimmune diseases. Results Experimentally demethylated CD4+ T cells and T cells from patients with active lupus have a CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ subset, and the subset size is proportional to lupus flare severity. A similar subset is found in patients with other rheumatic diseases including rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome but not retroperitoneal fibrosis. Conclusions Patients with active autoimmune rheumatic diseases have a previously undescribed CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ T cell subset. This subset may play an important role in flares of lupus and related autoimmune rheumatic diseases, provide a biomarker for disease activity and serve as a novel therapeutic target for the treatment of lupus flares. PMID:27099767

  14. Pretransplant soluble CD30 serum concentration does not affect kidney graft outcomes 3 years after transplantation.

    PubMed

    Kovač, J; Arnol, M; Vidan Jeras, B; Bren, A F; Kandus, A

    2010-12-01

    An elevated serum concentration of soluble the form of CD30 (sCD30), an activation marker of mainly T(H)2-type cytokines producing T lymphocytes, has been reported as a predictive factor for acute cellular rejection episodes and poor graft outcomes in kidney transplantation. This historic cohort study investigated the association of a pretransplant sCD30 serum concentrations with kidney graft function and graft survival 3 years posttransplantation in adult recipients of deceased donor kidney grafts, treated with monoclonal anti-CD25 antibodies as an induction treatment combined with a cyclosporine (CsA)-based maintenance triple therapy. The pretransplant sera of 296 recipients were tested for sCD30 content using a microsphere flow-cytometry assay. The estimated glomerular filtration rate (eGFR) was determined by the 4-variable Modification of Diet in Renal Disease equation. The incidences of graft loss were calculated with the use of Kaplan-Meier survival analysis and compared using the log-rank test. According to the distribution of the pretransplant sCD30 levels concentration ≥2700 pg/mL was defined as high (n = 146) and concentration <2700 pg/mL as low (n = 150). Three years posttransplantation, the eGFR was not significantly different in the recipients in high and low sCD30 groups (65 ± 24 vs 67 ± 21 mL/min/1.73 m(2); P = .43); there was no association between the eGFR 3 years after transplantation and the pretransplant sCD30 levels (r(2) = 0.002; P = .49). Graft survival 3 years after transplantation was also not different in the recipients in high and low sCD30 groups (P = .52). In our adult deceased-donor kidney graft recipients, the pretransplant sCD30 serum concentration was not a predictive factor of immunologic risk associated with the kidney graft function 3 years posttransplantation; neither did it affect graft survival 3 years after transplantation. The immunosuppression with anti-CD25 antibodies as an induction treatment combined with the CsA-based maintenance triple therapy could possibly be decisive for our findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. CD27/CD70, CD134/CD134 ligand, and CD30/CD153 pathways are independently essential for generation of regulatory cells after intratracheal delivery of alloantigen.

    PubMed

    Aramaki, Osamu; Shirasugi, Nozomu; Akiyama, Yoshinobu; Shibutani, Shintaro; Takayama, Tadatoshi; Shimazu, Motohide; Kitajima, Masaki; Ikeda, Yoshifumi; Okumura, Ko; Yagita, Hideo; Niimi, Masanori

    2003-09-15

    We investigated whether blockade of tumor necrosis factor receptor-ligand pathways could generate regulatory cells induced by intratracheal delivery of alloantigen. CBA (H-2k) mice were pretreated with intratracheal delivery of splenocytes (1x10(7)) from C57BL/10 (H-2b) mice and intraperitoneal administration of monoclonal antibody (mAb) specific for CD70, CD134 ligand (CD134L), CD153, or CD137L. Seven days later, C57BL/10 hearts were transplanted into pretreated CBA mice. Some naive CBA mice underwent adoptive transfer of splenocytes (5x10(7)) from pretreated CBA mice and transplantation of a C57BL/10 heart on the same day. Untreated CBA mice rejected C57BL/10 cardiac grafts acutely (median survival time [MST] 12 days). Pretreatment with intratracheal delivery of C57BL/10 donor splenocytes prolonged graft survival significantly (MST 84 days). Mice given intratracheal delivery of alloantigen plus anti-CD70, anti-CD134L, or anti-CD153 mAb, but not those given intratracheal delivery of alloantigen plus anti-CD137L mAb, rejected their graft acutely (MST 16, 14, 10, and 65 days, respectively). Adoptive transfer of splenocytes from mice pretreated with intratracheal delivery of alloantigen plus anti-CD70, CD134L, or CD153 mAb did not prolong survival of C57BL/10 cardiac grafts in naive secondary CBA recipients (MST 14, 11, and 11 days, respectively), whereas adoptive transfer of splenocytes from mice given intratracheal delivery of alloantigen plus anti-CD137L mAb did (MST 75 days). The CD27/CD70, CD134/CD134L, and CD30/CD153 pathways are independently required for generation of regulatory cells in our model.

  16. PD-L1 (CD274) copy number gain, expression, and immune cell infiltration as candidate predictors for response to immune checkpoint inhibitors in soft-tissue sarcoma

    PubMed Central

    Budczies, Jan; Mechtersheimer, Gunhild; Denkert, Carsten; Klauschen, Frederick; Jöhrens, Korinna; Endris, Volker; Lier, Amelie; Lasitschka, Felix; Penzel, Roland; Dietel, Manfred; Brors, Benedikt; Gröschel, Stefan; Glimm, Hanno; Schirmacher, Peter; Renner, Marcus; Fröhling, Stefan; Stenzinger, Albrecht

    2017-01-01

    ABSTRACT Soft-tissue sarcomas (STS) are rare malignancies that account for 1% of adult cancers and comprise more than 50 entities. Current therapeutic options for advanced-stage STS are limited. Immune checkpoint inhibitors targeting the PD-1/PD-L1 signaling axis are being explored as new treatment modality in STS; however, the determinants of response to these agents are largely unknown. Using the sarcoma data set of The Cancer Genome Altas (TCGA) and an independent cohort of untreated high-grade STS, we analyzed DNA copy number status and mRNA expression of PD-L1 in a total of 335 STS cases. Copy number gains (CNG) were detected in 54 TCGA cases (21.1%), of which 21 (8.2%) harbored focal PD-L1 CNG and that were most prevalent in myxofibrosarcoma (35%) and undifferentiated pleomorphic sarcoma (34%). In the untreated high-grade STS cohort, we detected CNG in six cases (7.6%). Analysis of co-amplified genes identified a 5.6-Mb core region comprising 27 genes, including JAK2. Patients with PD-L1 CNG had higher PD-L1 expression compared with STS without CNG (fold change, 1.8; p = 0.02), an effect that was most pronounced in the setting of focal PD-L1 CNG (fold change, 3.0; p = 0.0027). STS with PD-L1 CNG showed a significantly higher mutational load compared with tumors with a diploid PD-L1 locus (median number of mutated genes; 58 vs. 40; p = 3.6E-06), and PD-L1 CNG were associated with inferior survival (HR = 1.82; p = 0.025). In contrast, T-cell infiltrates quantified by mRNA expression of CD3Z were associated with improved survival (HR = 0.88; p = 0.024) and consequently influenced the prognostic power of PD-L1 CNG, with low CD3Z levels conferring poor survival in cases with PD-L1 CNG (HR = 1.8; p = 0.049). These data demonstrate that PD-L1 GNG and elevated expression of PD-L1 occur in a substantial proportion of STS, have prognostic impact that is modulated by T-cell infiltrates, and thus warrant investigation as response predictors for immune checkpoint inhibition. PMID:28405504

  17. PD-L1 (CD274) copy number gain, expression, and immune cell infiltration as candidate predictors for response to immune checkpoint inhibitors in soft-tissue sarcoma.

    PubMed

    Budczies, Jan; Mechtersheimer, Gunhild; Denkert, Carsten; Klauschen, Frederick; Mughal, Sadaf S; Chudasama, Priya; Bockmayr, Michael; Jöhrens, Korinna; Endris, Volker; Lier, Amelie; Lasitschka, Felix; Penzel, Roland; Dietel, Manfred; Brors, Benedikt; Gröschel, Stefan; Glimm, Hanno; Schirmacher, Peter; Renner, Marcus; Fröhling, Stefan; Stenzinger, Albrecht

    2017-01-01

    Soft-tissue sarcomas (STS) are rare malignancies that account for 1% of adult cancers and comprise more than 50 entities. Current therapeutic options for advanced-stage STS are limited. Immune checkpoint inhibitors targeting the PD-1/PD-L1 signaling axis are being explored as new treatment modality in STS; however, the determinants of response to these agents are largely unknown. Using the sarcoma data set of The Cancer Genome Altas (TCGA) and an independent cohort of untreated high-grade STS, we analyzed DNA copy number status and mRNA expression of PD-L1 in a total of 335 STS cases. Copy number gains (CNG) were detected in 54 TCGA cases (21.1%), of which 21 (8.2%) harbored focal PD-L1 CNG and that were most prevalent in myxofibrosarcoma (35%) and undifferentiated pleomorphic sarcoma (34%). In the untreated high-grade STS cohort, we detected CNG in six cases (7.6%). Analysis of co-amplified genes identified a 5.6-Mb core region comprising 27 genes, including JAK2 . Patients with PD-L1 CNG had higher PD-L1 expression compared with STS without CNG (fold change, 1.8; p = 0.02), an effect that was most pronounced in the setting of focal PD-L1 CNG (fold change, 3.0; p = 0.0027). STS with PD-L1 CNG showed a significantly higher mutational load compared with tumors with a diploid PD-L1 locus (median number of mutated genes; 58 vs. 40; p = 3.6E-06), and PD-L1 CNG were associated with inferior survival (HR = 1.82; p = 0.025). In contrast, T-cell infiltrates quantified by mRNA expression of CD3Z were associated with improved survival (HR = 0.88; p = 0.024) and consequently influenced the prognostic power of PD-L1 CNG, with low CD3Z levels conferring poor survival in cases with PD-L1 CNG (HR = 1.8; p = 0.049). These data demonstrate that PD-L1 GNG and elevated expression of PD-L1 occur in a substantial proportion of STS, have prognostic impact that is modulated by T-cell infiltrates, and thus warrant investigation as response predictors for immune checkpoint inhibition.

  18. Maternal Serum Soluble CD30 Is Increased in Normal Pregnancy, but Decreased in Preeclampsia and Small for Gestational Age Pregnancies

    PubMed Central

    Kusanovic, Juan Pedro; Romero, Roberto; Hassan, Sonia S.; Gotsch, Francesca; Edwin, Samuel; Erez, Offer; Mittal, Pooja; Mazaki-Tovi, Shali; Soto, Eleazar; Than, Nandor Gabor; Friel, Lara A.; Chaiworapongsa, Tinnakorn; Yoon, Bo Hyun; Espinoza, Jimmy

    2008-01-01

    Objective Women with preeclampsia and those who deliver small for gestational age (SGA) neonates are characterized by intravascular inflammation (T helper 1 (Th1)-biased immune response). There is controversy about the T helper 2 (Th2) response in preeclampsia and SGA. CD30, a member of the tumor necrosis factor receptor superfamily, is preferentially expressed in vitro and in vivo by activated T cells producing Th2-type cytokines. Its soluble form (sCD30) has been proposed to be an index of Th2 immune response. The objective of this study was to determine whether maternal serum concentration of sCD30 changes with normal pregnancy, as well as in mothers with preeclampsia and those who deliver SGA neonates. Methods This cross-sectional study included patients in the following groups: (1) non-pregnant women (N=49); (2) patients with a normal pregnancy (N=89); (3) patients with preeclampsia (N=100); and (4) patients who delivered an SGA neonates (N=78). Maternal serum concentration of sCD30 was measured by a specific and sensitive enzyme-linked immunoassay. Non-parametric tests with post-hoc analysis were used for comparisons. A p value <0.05 was considered statistically significant. Results (1) The median sCD30 serum concentration of pregnant women was significantly higher than that of non-pregnant women (median: 29.7 U/mL, range: 12.2-313.2 vs. median: 23.2 U/mL, range: 14.6-195.1, respectively; p=0.01); (2) Patients with preeclampsia had a significantly lower median serum concentration of sCD30 than normal pregnant women (median: 24.7 U/mL, range: 7.6-71.2 vs. median: 29.7 U/mL, range: 12.2-313.2, respectively; p<0.05); (3) Mothers with SGA neonates had a lower median concentration of sCD30 than normal pregnant women (median: 23.4 U/mL, range: 7.1-105.3 vs. median: 29.7 U/mL, range: 12.2-313.2, respectively; p<0.05); and (4) There was no significant correlation (r=-0.059, p=0.5) between maternal serum sCD30 concentration and gestational age (19-38 weeks) in normal pregnant women. Conclusions (1) Patients with preeclampsia and those who deliver a SGA neonate had a significantly lower serum concentration of sCD30 than normal pregnant women; (2) This finding is consistent with the view that preeclampsia and SGA are associated with a polarized Th1 immune response and, perhaps, a reduced Th2 response. PMID:17853188

  19. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  20. Selenium supplementation prevents metabolic and transcriptomic responses to cadmium in mouse lung.

    PubMed

    Hu, Xin; Chandler, Joshua D; Fernandes, Jolyn; Orr, Michael L; Hao, Li; Uppal, Karan; Neujahr, David C; Jones, Dean P; Go, Young-Mi

    2018-04-12

    The protective effect of selenium (Se) on cadmium (Cd) toxicity is well documented, but underlying mechanisms are unclear. Male mice fed standard diet were given Cd (CdCl 2 , 18 μmol/L) in drinking water with or without Se (Na 2 SeO 4, 20 μmol/L) for 16 weeks. Lungs were analyzed for Cd concentration, transcriptomics and metabolomics. Data were analyzed with biostatistics, bioinformatics, pathway enrichment analysis, and combined transcriptome-metabolome-wide association study. Mice treated with Cd had higher lung Cd content (1.7 ± 0.4 pmol/mg protein) than control mice (0.8 ± 0.3 pmol/mg protein) or mice treated with Cd and Se (0.4 ± 0.1 pmol/mg protein). Gene set enrichment analysis of transcriptomics data showed that Se prevented Cd effects on inflammatory and myogenesis genes and diminished Cd effects on several other pathways. Similarly, Se prevented Cd-disrupted metabolic pathways in amino acid metabolism and urea cycle. Integrated transcriptome and metabolome network analysis showed that Cd treatment had a network structure with fewer gene-metabolite clusters compared to control. Centrality measurements showed that Se counteracted changes in a group of Cd-responsive genes including Zdhhc11, (protein-cysteine S-palmitoyltransferase), Ighg1 (immunoglobulin heavy constant gamma-1) and associated changes in metabolite concentrations. Co-administration of Se with Cd prevented Cd increase in lung and prevented Cd-associated pathway and network responses of the transcriptome and metabolome. Se protection against Cd toxicity in lung involves complex systems responses. Environmental Cd stimulates proinflammatory and profibrotic signaling. The present results indicate that dietary or supplemental Se could be useful to mitigate Cd toxicity. Published by Elsevier B.V.

  1. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    PubMed

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  2. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    PubMed

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.

  3. Association between Age at Diagnosis of Graves' Disease and Variants in Genes Involved in Immune Response

    PubMed Central

    Jurecka-Lubieniecka, Beata; Ploski, Rafal; Kula, Dorota; Krol, Aleksandra; Bednarczuk, Tomasz; Kolosza, Zofia; Tukiendorf, Andrzej; Szpak-Ulczok, Sylwia; Stanjek-Cichoracka, Anita; Polanska, Joanna; Jarzab, Barbara

    2013-01-01

    Background Graves' disease (GD) is a complex disease in which genetic predisposition is modified by environmental factors. The aim of the study was to examine the association between genetic variants in genes encoding proteins involved in immune response and the age at diagnosis of GD. Methods 735 GD patients and 1216 healthy controls from Poland were included into the study. Eight genetic variants in the HLA-DRB1, TNF, CTLA4, CD40, NFKb, PTPN22, IL4 and IL10 genes were genotyped. Patients were stratified by the age at diagnosis of GD and the association with genotype was analysed. Results Polymorphism in the HLA-DRB1, TNF and CTLA4 genes were associated with GD. The carriers of the HLA DRB1*03 allele were more frequent in patients with age at GD diagnosis ≤30 years than in patients with older age at GD diagnosis. Conclusions HLADRB1*03 allele is associated with young age at diagnosis of Graves' disease in polish population. PMID:23544060

  4. Molecular Evolution and Mosaicism of Leptospiral Outer Membrane Proteins Involves Horizontal DNA Transfer

    PubMed Central

    Haake, David A.; Suchard, Marc A.; Kelley, Melissa M.; Dundoo, Manjula; Alt, David P.; Zuerner, Richard L.

    2004-01-01

    Leptospires belong to a genus of parasitic bacterial spirochetes that have adapted to a broad range of mammalian hosts. Mechanisms of leptospiral molecular evolution were explored by sequence analysis of four genes shared by 38 strains belonging to the core group of pathogenic Leptospira species: L. interrogans, L. kirschneri, L. noguchii, L. borgpetersenii, L. santarosai, and L. weilii. The 16S rRNA and lipL32 genes were highly conserved, and the lipL41 and ompL1 genes were significantly more variable. Synonymous substitutions are distributed throughout the ompL1 gene, whereas nonsynonymous substitutions are clustered in four variable regions encoding surface loops. While phylogenetic trees for the 16S, lipL32, and lipL41 genes were relatively stable, 8 of 38 (20%) ompL1 sequences had mosaic compositions consistent with horizontal transfer of DNA between related bacterial species. A novel Bayesian multiple change point model was used to identify the most likely sites of recombination and to determine the phylogenetic relatedness of the segments of the mosaic ompL1 genes. Segments of the mosaic ompL1 genes encoding two of the surface-exposed loops were likely acquired by horizontal transfer from a peregrine allele of unknown ancestry. Identification of the most likely sites of recombination with the Bayesian multiple change point model, an approach which has not previously been applied to prokaryotic gene sequence analysis, serves as a model for future studies of recombination in molecular evolution of genes. PMID:15090524

  5. Anti-CD30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma

    PubMed Central

    Molavi, Ommoleila; Xiong, Xiao-Bing; Douglas, Donna; Kneteman, Norm; Nagata, Satoshi; Pastan, Ira; Chu, Quincy

    2013-01-01

    The use of nano-carriers has been shown to improve the delivery and efficacy of chemotherapeutic agents in cancer patients. Recent studies suggest that decoration of the surface of nano-carriers with various targeting moieties may further improve the overall therapeutic efficacy. In this study, we compared the therapeutic efficacy of Doxil® (commercial doxorubicin-loaded liposomes) and that of Doxil® conjugated with anti-CD30 antibodies (CD30-targeted Doxil®) in treating anaplastic large cell lymphoma (ALCL), a type of T-cell lymphoma characterized by a high CD30 expression. Compared to Doxil®, the CD30-targeted Doxil® showed a significantly higher binding affinity to ALCL cells (5.3% versus 27%, p=0.005) and a lower inhibitory concentration at 50% (IC50) in-vitro (32.6 μg/mL versus 12.6 μg/mL, p=0.006). In a SCID mouse xenograft model, CD30-targeted Doxil® inhibited tumor growth more significantly than the unconjugated formulation; specifically, tumors in mice treated with CD30-targeted Doxil® were significantly smaller than those in mice treated with Doxil® (average, 117 mm3 vs. 270 mm3, p=0.001) at 18 days after the tumors were inoculated. Our findings have provided the proof-of-principle of using CD30-targeted nano-carriers to treat cancers that are characterized by a high level of CD30 expression, such as ALCL. PMID:23942212

  6. [Whole cDNA sequence cloning and expression of chicken L-FABP gene and its relationship with lipid deposition of hybrid chickens].

    PubMed

    Yu, Ying; Wang, Dong; Sun, Dong-Xiao; Xu, Gui-Yun; Li, Jun-Ying; Zhang, Yuan

    2011-07-01

    Liver fatty acid-binding protein (L-FABP) is closely related to intracellular transportation and deposition of lipids. A positive differential displayed fragment was found in the liver tissue among Silkie (CC), CAU-brown chicken (CD), and their reciprocal hybrids (CD and DC) at 8 weeks-old using differential display RT-PCR techniques (DDRT-PCR). Through recycling, sequencing, and alignment analysis, the fragment was identified as chicken liver fatty acid-binding protein gene (L-FABP, GenBank accession number AY321365). Reverse Northern dot blot and semi-quantitative RT-PCR revealed that the avian L-FABP gene was over-expressed in the liver tissue of the reciprocal hybrids (CD and DC) compared to their parental lines (CC and DD), which was consistent with the fact that higher abdomen fat weight and wider inter-muscular fat width observed in the reciprocal hybrids. Considering the higher expression of L-FABP may contribute to the increased lipid deposition in the hybrid chickens, the functional study of avian L-FABP is warranted in future.

  7. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells.

    PubMed

    Gabryšová, Leona; Alvarez-Martinez, Marisol; Luisier, Raphaëlle; Cox, Luke S; Sodenkamp, Jan; Hosking, Caroline; Pérez-Mazliah, Damián; Whicher, Charlotte; Kannan, Yashaswini; Potempa, Krzysztof; Wu, Xuemei; Bhaw, Leena; Wende, Hagen; Sieweke, Michael H; Elgar, Greg; Wilson, Mark; Briscoe, James; Metzis, Vicki; Langhorne, Jean; Luscombe, Nicholas M; O'Garra, Anne

    2018-05-01

    The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4 + T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4 + T cells in disease models involving the T H 1 subset of helper T cells (malaria), T H 2 cells (allergy) and T H 17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in T H 1 and T H 2 responses, T H 17 cell-mediated pathology was reduced in this context, with an accompanying decrease in T H 17 cells and increase in Foxp3 + regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.

  8. Immune Activation and Benefit From Avelumab in EBV-Positive Gastric Cancer.

    PubMed

    Panda, Anshuman; Mehnert, Janice M; Hirshfield, Kim M; Riedlinger, Greg; Damare, Sherri; Saunders, Tracie; Kane, Michael; Sokol, Levi; Stein, Mark N; Poplin, Elizabeth; Rodriguez-Rodriguez, Lorna; Silk, Ann W; Aisner, Joseph; Chan, Nancy; Malhotra, Jyoti; Frankel, Melissa; Kaufman, Howard L; Ali, Siraj; Ross, Jeffrey S; White, Eileen P; Bhanot, Gyan; Ganesan, Shridar

    2018-03-01

    Response to immune checkpoint therapy can be associated with a high mutation burden, but other mechanisms are also likely to be important. We identified a patient with metastatic gastric cancer with meaningful clinical benefit from treatment with the anti-programmed death-ligand 1 (PD-L1) antibody avelumab. This tumor showed no evidence of high mutation burden or mismatch repair defect but was strongly positive for presence of Epstein-Barr virus (EBV) encoded RNA. Analysis of The Cancer Genome Atlas gastric cancer data (25 EBV+, 80 microsatellite-instable [MSI], 310 microsatellite-stable [MSS]) showed that EBV-positive tumors were MSS. Two-sided Wilcoxon rank-sum tests showed that: 1) EBV-positive tumors had low mutation burden (median = 2.07 vs 3.13 in log10 scale, P < 10-12) but stronger evidence of immune infiltration (median ImmuneScore 2212 vs 1295, P < 10-4; log2 fold-change of CD8A = 1.85, P < 10-6) compared with MSI tumors, and 2) EBV-positive tumors had higher expression of immune checkpoint pathway (PD-1, CTLA-4 pathway) genes in RNA-seq data (log2 fold-changes: PD-1 = 1.85, PD-L1 = 1.93, PD-L2 = 1.50, CTLA-4 = 1.31, CD80 = 0.89, CD86 = 1.31, P < 10-4 each), and higher lymphocytic infiltration by histology (median tumor-infiltrating lymphocyte score = 3 vs 2, P < .001) compared with MSS tumors. These data suggest that EBV-positive low-mutation burden gastric cancers are a subset of MSS gastric cancers that may respond to immune checkpoint therapy.

  9. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples.

    PubMed

    Vaarala, M H; Porvari, K S; Kyllönen, A P; Mustonen, M V; Lukkarinen, O; Vihko, P T

    1998-09-25

    A cDNA library specific for mRNA over-expressed in prostate cancer was generated by subtractive hybridization of transcripts originating from prostatic hyperplasia and cancer tissues. cDNA encoding ribosomal proteins L4, L5, L7a, L23a, L30, L37, S14 and S18 was found to be present among 100 analyzed clones. Levels of ribosomal mRNA were significantly higher at least in one of the prostate-cancer cell lines, LNCaP, DU-145 and PC-3, than in hyperplastic tissue, as determined by slot-blot hybridization. Furthermore, L23a- and S14-transcript levels were significantly elevated in PC-3 cells as compared with those in the normal prostate epithelial cell line PrEC. Generally, dramatic changes in the mRNA content of the ribosomal proteins were not detected, the most evident over-expression being that of L37 mRNA, which was 3.4 times more abundant in LNCaP cells than in hyperplastic prostate tissue. The over-expression of L7a and L37 mRNA was confirmed in prostate-cancer tissue samples by in situ hybridization. Elevated cancer-related expression of L4 and L30 has not been reported, but levels of the other ribosomal proteins are known to be increased in several types of cancers. These results therefore suggest that prostate cancer is comparable with other types of cancers, in that a larger pool of some ribosomal proteins is gained during the transformation process, by an unknown mechanism.

  10. Association of high post-transplant soluble CD30 serum levels with chronic allograft nephropathy.

    PubMed

    Grenzi, Patricia C; Campos, Érika F; Tedesco-Silva, Hélio; Felipe, Claudia R; Franco, Marcello F; Soares, Maria Fernanda; Medina-Pestana, José Osmar; Gerbase-Delima, Maria

    2013-12-01

    The purpose of this study was to evaluate the association of post-transplant soluble CD30 (sCD30) levels, isolated or in combination with of anti-HLA class II antibodies and of serum creatinine levels, with kidney graft loss due to chronic allograft nephropathy (CAN), and type of lesions in graft biopsies for cause. The study comprised 511 first kidney graft recipients, transplanted at a single center, with a graft functioning for at least 2.8 years. A single blood sample was collected from each patient. sCD30 levels were determined by ELISA, and HLA antibodies by Luminex assay. The minimum follow-up after testing was 9.3 years. High sCD30 levels, set at sCD30 ≥ 34.15 ng/mL, the presence of HLA class II antibodies, and serum creatinine ≥ 1.9 mg/dL were independently associated with CAN-graft loss (P values <0.0001, 0.05, <0.0001, respectively), and the combined hazard ratio for CAN-graft loss was 20.2. Analyses of 166 biopsies for cause showed that high sCD30 levels and creatinine were independently associated with interstitial lesions. Post-transplant sCD30 serum levels, especially in conjunction with information regarding HLA class II antibodies and serum creatinine levels, provide valuable information regarding graft outcome and could be useful for the management of kidney transplant recipients. © 2013.

  11. Evaluation of soluble CD30 as an immunologic marker in heart transplant recipients.

    PubMed

    Spiridon, C; Hunt, J; Mack, M; Rosenthal, J; Anderson, A; Eichhorn, E; Magee, M; Dewey, T; Currier, M; Nikaein, A

    2006-12-01

    CD30 is an immunologic molecule that belongs to the TNF-R superfamily. CD30 serves as a T-cell signal transducing molecule that is expressed by a subset of activated T lymphocytes, CD45RO+ memory T cells. Augmentation of soluble CD30 during kidney transplant rejection has been reported. Our study sought to determine whether the level of sCD30 prior to heart transplant could categorize patients into high versus low immunologic risk for a poor outcome. A significant correlation was observed between high levels of soluble CD30 and a reduced incidence of infection. None of the 35 patients with high pretransplant levels of sCD30 level (>90 U/mL) developed infections posttransplantation. However, 9 of 65 patients who had low levels of sCD30 (<90 U/mL) developed infections posttransplantation (P < .02). No remarkable differences were noted among the other clinical parameters. The results also showed that the high-definition flow-bead (HDB) assay detected both weak and strong class I and class II HLA antibodies, some of which (weak class II HLA Abs) were undetectable by the anti-human globulin cytotoxicity method. In addition, more antibody specificities were detected by HDB. In conclusion, we have observed that high levels of sCD30 prior to heart transplant may be associated with greater immunologic ability and therefore produce a protective effect on the development of infection post heart transplant. We have also shown that the HDB assay is superior to the visual cytotoxicity method to detect HLA antibodies, especially those to class II HLA antigens.

  12. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome.

    PubMed

    Ahmed, Zubair M; Riazuddin, Saima; Aye, Sandar; Ali, Rana A; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B

    2008-10-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3-11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.

  13. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome

    PubMed Central

    Ahmed, Zubair M.; Riazuddin, Saima; Aye, Sandar; Ali, Rana A.; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P.; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B.

    2009-01-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be comprised of 35 exons and encodes a variety of isoforms with 3 to 11 ectodomains (EC), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1 we identified homozygous mutant alleles (1 missense, 1 splice site, 3 nonsense and 2 deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1. PMID:18719945

  14. Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity.

    PubMed

    Eickhoff, Christopher S; Zhang, Xiuli; Vasconcelos, Jose R; Motz, R Geoffrey; Sullivan, Nicole L; O'Shea, Kelly; Pozzi, Nicola; Gohara, David W; Blase, Jennifer R; Di Cera, Enrico; Hoft, Daniel F

    2016-09-01

    Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.

  15. A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses

    PubMed Central

    Grenga, Italia; Donahue, Renee N; Lepone, Lauren M; Richards, Jacob; Schlom, Jeffrey

    2016-01-01

    Monoclonal antibodies (MAbs) that interfere with checkpoint molecules are being investigated for the treatment of infectious diseases and cancer, with the aim of enhancing the function of an impaired immune system. Avelumab (MSB0010718C) is a fully human IgG1 MAb targeting programmed death-ligand 1 (PD-L1), which differs from other checkpoint-blocking antibodies in its ability to mediate antibody-dependent cell-mediated cytotoxicity. These studies were conducted to define whether avelumab could enhance the detection of antigen-specific immune response in in vitro assays. Peripheral blood mononuclear cells from 17 healthy donors were stimulated in vitro, with and without avelumab, with peptide pools encoding for cytomegalovirus, Epstein–Barr virus, influenza and tetanus toxin or the negative peptide control encoding for human leukocyte antigen. These studies show for the first time that the addition of avelumab to an antigen-specific IVS assay (a) increased the frequency of activated antigen-specific CD8+ T lymphocytes, and did so to a greater extent than that seen with commercially available PD-L1-blocking antibodies, (b) reduced CD4+ T-cell proliferation and (c) induced a switch in the production of Th2 to Th1 cytokines. Moreover, there was an inverse correlation between the enhancement of CD8+ T-cell activation and reduction in CD4+ T-cell proliferation induced by avelumab. These findings provide the rationale for the use of avelumab anti-PD-L1 in in vitro assays to monitor patient immune responses to immunotherapies. PMID:27350882

  16. A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses.

    PubMed

    Grenga, Italia; Donahue, Renee N; Lepone, Lauren M; Richards, Jacob; Schlom, Jeffrey

    2016-05-01

    Monoclonal antibodies (MAbs) that interfere with checkpoint molecules are being investigated for the treatment of infectious diseases and cancer, with the aim of enhancing the function of an impaired immune system. Avelumab (MSB0010718C) is a fully human IgG1 MAb targeting programmed death-ligand 1 (PD-L1), which differs from other checkpoint-blocking antibodies in its ability to mediate antibody-dependent cell-mediated cytotoxicity. These studies were conducted to define whether avelumab could enhance the detection of antigen-specific immune response in in vitro assays. Peripheral blood mononuclear cells from 17 healthy donors were stimulated in vitro, with and without avelumab, with peptide pools encoding for cytomegalovirus, Epstein-Barr virus, influenza and tetanus toxin or the negative peptide control encoding for human leukocyte antigen. These studies show for the first time that the addition of avelumab to an antigen-specific IVS assay (a) increased the frequency of activated antigen-specific CD8(+) T lymphocytes, and did so to a greater extent than that seen with commercially available PD-L1-blocking antibodies, (b) reduced CD4(+) T-cell proliferation and (c) induced a switch in the production of Th2 to Th1 cytokines. Moreover, there was an inverse correlation between the enhancement of CD8(+) T-cell activation and reduction in CD4(+) T-cell proliferation induced by avelumab. These findings provide the rationale for the use of avelumab anti-PD-L1 in in vitro assays to monitor patient immune responses to immunotherapies.

  17. Molecular Characterization of Copper and Cadmium Resistance Determinants in the Biomining Thermoacidophilic Archaeon Sulfolobus metallicus

    PubMed Central

    Orell, Alvaro; Remonsellez, Francisco; Arancibia, Rafaela; Jerez, Carlos A.

    2013-01-01

    Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining. PMID:23509422

  18. Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus.

    PubMed

    Orell, Alvaro; Remonsellez, Francisco; Arancibia, Rafaela; Jerez, Carlos A

    2013-01-01

    Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining.

  19. A computational search for box C/D snoRNA genes in the Drosophila melanogaster genome.

    PubMed

    Accardo, M C; Giordano, E; Riccardo, S; Digilio, F A; Iazzetti, G; Calogero, R A; Furia, M

    2004-12-12

    In eukaryotes, the family of non-coding RNA genes includes a number of genes encoding small nucleolar RNAs (mainly C/D and H/ACA snoRNAs), which act as guides in the maturation or post-transcriptional modifications of target RNA molecules. Since in Drosophila melanogaster (Dm) only few examples of snoRNAs have been identified so far by cDNA libraries screening, integration of the molecular data with in silico identification of these types of genes could throw light on their organization in the Dm genome. We have performed a computational screening of the Dm genome for C/D snoRNA genes, followed by experimental validation of the putative candidates. Few of the 26 confirmed snoRNAs had been recognized by cDNA library analysis. Organization of the Dm genome was also found to be more variegated than previously suspected, with snoRNA genes nested in both the introns and exons of protein-coding genes. This finding suggests that the presence of additional mechanisms of snoRNA biogenesis based on the alternative production of overlapping mRNA/snoRNA molecules. Additional information is available at http://www.bioinformatica.unito.it/bioinformatics/snoRNAs.

  20. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance

    PubMed Central

    Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari

    2013-01-01

    Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance. PMID:23386861

  1. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    PubMed Central

    Adams, Scott V.; Barrick, Brian; Freney, Emily P.; Shafer, Martin M.; Makar, Karen; Song, Xiaoling; Lampe, Johanna; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might therefore influence excretion of these metals. Methods 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 was associated with lower urinary Cd. Conclusions These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. PMID:26529669

  2. PD-L1 and PD-1 and characterization of tumor-infiltrating lymphocytes in high grade sarcomas of soft tissue - prognostic implications and rationale for immunotherapy.

    PubMed

    Boxberg, Melanie; Steiger, Katja; Lenze, Ulrich; Rechl, Hans; von Eisenhart-Rothe, Rüdiger; Wörtler, Klaus; Weichert, Wilko; Langer, Rupert; Specht, Katja

    2018-01-01

    Therapies targeting programmed death 1-(PD-1) or its ligand (PD-L1), promoting antitumor T-cell activity have been successfully introduced into clinical practice. Clinical response correlates with PD-L1 expression by tumor cells or immune cells within the tumor microenvironment. The PD-L1/PD-1 axis and tumor microenvironment has been rarely studied in high-grade sarcomas of soft tissue (hSTS), a group of rare, genetically heterogenous and clinically aggressive tumors. We examined PD-L1 protein and CD274/PD-L1 gene copy number variations in 128 primary resected, therapy-naive hSTS using immunohistochemistry and fluorescence-in-situ hybridization. Frequency of tumoral PD-L1 expression varied widely in different disease subentities, with highest rates of positivity (40%) seen in undifferentiated pleomorphic sarcomas (UPS) and rare positivity detected in synovial sarcomas (6%). Amplification of the CD274/PD-L1 gene occurred in 14% of UPS and was rare in other subtypes. PD-L1 protein expression was significantly more frequent in CD274/PD-L1 amplified cases (p = 0.015). The subgroup of UPS was further characterized regarding the interaction between PD-L1 and the immunologic tumor microenvironment. High density of CD3+ and CD8+ tumor infiltrating lymphocytes (TILs) was significantly correlated with the presence of PD-L1 expression and seen more frequently in tumors with lower TNM stage (p = 0.024). Both, PD-L1 expression and high density lymphocytic infiltration were independent prognostic factors for a favorable overall (p = 0.001, HR 6.105 (2.041-8.258)), disease-specific (p = 0.003, HR 10.536 (2.186-50.774)) and disease-free survival (p = 0.020, HR 3.317 (1.209-9.106); values for CD8) in this particular subgroup of hSTS, whereas PD-L1 expression in TILs or CD274/PD-L1 gene amplification were not associated with outcome. These findings represent novel insights into the immune landscape of soft tissue sarcomas, in particular UPS and strengthen the rationale for immunotherapy, including targeting the PD-1/PD-L1 axis in these tumors.

  3. Molecular definition of the identity and activation of natural killer cells.

    PubMed

    Bezman, Natalie A; Kim, Charles C; Sun, Joseph C; Min-Oo, Gundula; Hendricks, Deborah W; Kamimura, Yosuke; Best, J Adam; Goldrath, Ananda W; Lanier, Lewis L

    2012-10-01

    Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes with cytotoxic CD8(+) T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, many encoding molecules with unknown functions. Resting NK cells demonstrate a 'preprimed' state compared with naive T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene expression of NK cells in various states.

  4. [Gene Mutation Spectrum of β-Thalassemia in Dai Ethinic Population of Two Border Region in Chinese Yunnan Province].

    PubMed

    Zhang, Jie; He, Jing; Zeng, Xiao-Hong; Su, Jie; Chen, Hong; Xu, Yong-Mei; Pu, Jian; Zhu, Bao-Sheng

    2016-02-01

    To investigate the gene mutation spectrum of β-thalassemia in Dai ethnic population of 2 border region in Chinese Yunnan Province. The patients with β-thalassemia in Dai ethnic population of Dehong and Xishuangbanna autonamic prefecture were screened by using blood routine detection and capillary electrophoresis. The β-globin gene mutation in patients with β-thalassemia were detected by using PCR reverse dot-blot hybridization (PCR-RDB), the constitutive rate of gene mutation in patients with β-thalassemia of Dai ethnic population in two border regions was analyzed and compared. A total of 186 patients with gene mutation of β-thalassemia were confirmed. Among them, 10 gene mutation were found, and the 5 main gene mutations were CD26 (62.56%), CD41-42 (18.97%), CD17 (14.36%), CD71-72 (2.05%) and IVS-II-654 (1.54%). Among Dai ethinic population in Dehong region, 4 gene mutations were found including CD26 (80.31%), CD17 (11.02%), CD41-42 (6.30%) and CD71-72 (2.36%). Among Dai ethinic population in Xishuangbanna region, 6 gene mutations were found, out of them the more common gene mutations were CD41-42 (42.64%), CD26 (29.41%) and CD17 (20.59%). The gene mutations of β-thalassemia in Dai ethinic population of Yunnan province has been confirmed to be more genetic heterogenicity, the spectrums of β-thalassemia mutations in Dai ethinic population of different regions were significant different.

  5. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    PubMed

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  6. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis

    PubMed Central

    Liu, Dong-Xin; Fan, Chang-Sheng; Tao, Ju-Hong; Liang, Guo-Xin; Gao, Shan-E; Wang, Hai-Jiao; Li, Xin; Song, Da-Xin

    2004-01-01

    AIM: To study the effect of integration of tandem aroG-pheA genes into the tyrA locus of Corynebacterium glutamicum (C. glutamicum) on the production of L-phenylalanine. METHODS: By nitrosoguanidine mutagenesis, five p-fluorophenylalanine (FP)-resistant mutants of C.glutamicum FP were selected. The tyrA gene encoding prephenate dehydrogenase (PDH) of C.glutamicum was amplified by polymerase chain reaction (PCR) and cloned on the plasmid pPR. Kanamycin resistance gene (Km) and the PBF-aroG-pheA-T (GA) fragment of pGA were inserted into tyrA gene to form targeting vectors pTK and pTGAK, respectively. Then, they were transformed into C.glutamicum FP respectively by electroporation. Cultures were screened by a medium containing kanamycin and detected by PCR and phenotype analysis. The transformed strains were used for L-phenylalanine fermentation and enzyme assays. RESULTS: Engineering strains of C.glutamicum (Tyr-) were obtained. Compared with the original strain, the transformed strain C. glutamicum GAK was observed to have the highest elevation of L-phenylalanine production by a 1.71-fold, and 2.9-, 3.36-, and 3.0-fold in enzyme activities of chorismate mutase, prephenate dehydratase and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, respectively. CONCLUSION: Integration of tandem aroG-pheA genes into tyrA locus of C. glutamicum chromosome can disrupt tyrA gene and increase the yield of L-phenylalanine production. PMID:15534933

  7. Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model.

    PubMed

    Camps-Bossacoma, Mariona; Abril-Gil, Mar; Saldaña-Ruiz, Sandra; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida

    2016-04-23

    Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.

  8. Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model

    PubMed Central

    Camps-Bossacoma, Mariona; Abril-Gil, Mar; Saldaña-Ruiz, Sandra; Franch, Àngels; Pérez-Cano, Francisco J.; Castell, Margarida

    2016-01-01

    Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies. PMID:27120615

  9. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products

    PubMed Central

    Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike

    2016-01-01

    Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135

  10. Export of l-Isoleucine from Corynebacterium glutamicum: a Two-Gene-Encoded Member of a New Translocator Family

    PubMed Central

    Kennerknecht, Nicole; Sahm, Hermann; Yen, Ming-Ren; Pátek, Miroslav; Saier, Jr., Milton H.; Eggeling, Lothar

    2002-01-01

    Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes l-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for l-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports l-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of l-leucine and l-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in α-proteobacteria but not in other prokaryotes analyzed. PMID:12081967

  11. Effects of Agaricus blazei Murill Polysaccharide on Cadmium Poisoning on the MDA5 Signaling Pathway and Antioxidant Function of Chicken Peripheral Blood Lymphocytes.

    PubMed

    Lv, Ai; Ge, Ming; Hu, Xuequan; Liu, Wenjing; Li, Guangxing; Zhang, Ruili

    2018-01-01

    This experimental study investigated the effect of Agaricus blazei Murill polysaccharide (ABP) on cadmium (Cd) poisoning on the melanoma differentiation-associated gene 5 (MDA5) signaling pathway and antioxidant function of peripheral blood lymphocytes (PBLs) in chickens. The experiments were divided into four groups: 7-day-old chickens with normal saline (0.2 mL single/day), Cd (140 mg/kg), ABP (30 mg/mL, 0.2 mL single/day), and Cd + ABP(140 mg/kg/day + 0.2 mL ABP). Peripheral blood was collected on the 20th, 40th, and 60th days for each group, and PBLs were separated. We attempted to detect the expression of MDA5, downstream signaling molecules, and convergence protein (interferon promoter-stimulating factor 1); transcription factors (IRF3 and NF-κB); the content of cytokines (IL-1β, IL-6, TNF-α, and IFN-β) in PBLs; and the antioxidant index of superoxide dismutase (SOD), malondialdhyde (MDA), and glutathione peroxidase (GSH-Px). The results showed that ABP can reduce the accumulation of Cd in the peripheral blood of chickens; reduce the expression of MDA5 and downstream signaling molecules; and reduce the content of IL-1β, IL-6, TNF-α, and IFN-β in PBLs of chickens. The activity of antioxidant enzymes (SOD and GSH-Px) significantly increased, and the content of MDA decreased. These results showed that they have a certain protective effect of ABP on Cd poisoning in chicken PBLs caused by injury.

  12. Wound induced Beta vulgaris polygalacturonase-inhibiting protein genes encode a longer leucine-rich repeat domain and inhibit fungal polygalacturonases

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defense. Sugar beet (Beta vulgaris L.) PGIP genes, BvPGIP1, BvPGIP2 and BvPGIP3, were isolated from two breeding lines, F1016 and F1010. Full-length cDNA sequences of the three BvPGIP genes encod...

  13. Costimulatory receptors in jawed vertebrates: Conserved CD28, odd CTLA4 and multiple BTLAs

    USGS Publications Warehouse

    Bernard, D.; Hansen, J.D.; Du, Pasquier L.; Lefranc, M.-P.; Benmansour, A.; Boudinot, P.

    2007-01-01

    CD28 family of costimulatory receptors is comprised of molecules with a single V-type extracellular Ig domain, a transmembrane and an intracytoplasmic region with signaling motifs. CD28 and cytotoxic T lymphocyte antigen-4 (CTLA4) homologs have been recently identified in rainbow trout. Other sequences similar to mammalian CD28 family members have now been identified using teleost, Xenopus and chicken databases. CD28- and CTLA4 homologs were found in all vertebrate classes whereas inducible costimulatory signal (ICOS) was restricted to tetrapods, and programmed cell death-1 (PD1) was limited to mammals and chicken. Multiple B and T Lymphocyte Attenuator (BTLA) sequences were found in teleosts, but not in Xenopus or in avian genomes. The intron/exon structure of btlas was different from that of cd28 and other members of the family. The Ig domain encoded in all the btla genes has features of the C-type structure, which suggests that BTLA does not belong to the CD28 family. The genomic localization of these genes in vertebrate genomes supports the split between the BTLA and CD28 families. ?? 2006 Elsevier Ltd. All rights reserved.

  14. Age-dependent changes of serum soluble CD30 concentration in children.

    PubMed

    Chrul, Slawomir; Polakowska, Ewa

    2011-08-01

      CD30 was originally described as a marker on Reed-Sternberg cells in Hodgkin lymphoma. The extracellular portion of CD30 is proteolytically cleaved from CD30+ cells, to produce a soluble form of the molecule (sCD30) detectable in serum. Measurement of sCD30 concentration in serum has been suggested to be a potential tool in monitoring of inflammatory status in variety of diseases. Several investigators reported the relevance for sCD30 as a predictive marker for allograft rejection following organ transplantation. The aim of the study was to verify whether sCD30 serum concentrations may be affected by an age in healthy children. Heparinized venous blood was taken from 78 healthy children. For the analysis of sCD30 levels, the commercially available sCD30 ELISA was used. The sCD30 was detected in all serum samples and concentrations ranged from 6.75 to 68.07ng/mL. The statistical analysis of all individuals showed that sCD30 concentration was significantly age depended (r=-0.618, p<0.0001). When sCD30 concentrations were analyzed in regard to gender, no significant differences were identified in age subgroups. © 2011 John Wiley & Sons A/S.

  15. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans.

    PubMed

    Kim, Sunhee; Lee, Hyoung-Joo; Hahm, Jeong-Hoon; Jeong, Seul-Ki; Park, Don-Ha; Hancock, William S; Paik, Young-Ki

    2016-02-05

    When Caenorhabditis elegans encounters unfavorable growth conditions, it enters the dauer stage, an alternative L3 developmental period. A dauer larva resumes larval development to the normal L4 stage by uncharacterized postdauer reprogramming (PDR) when growth conditions become more favorable. During this transition period, certain heterochronic genes involved in controlling the proper sequence of developmental events are known to act, with their mutations suppressing the Muv (multivulva) phenotype in C. elegans. To identify the specific proteins in which the Muv phenotype is highly suppressed, quantitative proteomic analysis with iTRAQ labeling of samples obtained from worms at L1 + 30 h (for continuous development [CD]) and dauer recovery +3 h (for postdauer development [PD]) was carried out to detect changes in protein abundance in the CD and PD states of both N2 and lin-28(n719). Of the 1661 unique proteins identified with a < 1% false discovery rate at the peptide level, we selected 58 proteins exhibiting ≥2-fold up-regulation or ≥2-fold down-regulation in the PD state and analyzed the Gene Ontology terms. RNAi assays against 15 selected up-regulated genes showed that seven genes were predicted to be involved in higher Muv phenotype (p < 0.05) in lin-28(n791), which is not seen in N2. Specifically, two genes, K08H10.1 and W05H9.1, displayed not only the highest rate (%) of Muv phenotype in the RNAi assay but also the dauer-specific mRNA expression, indicating that these genes may be required for PDR, leading to the very early onset of dauer recovery. Thus, our proteomic approach identifies and quantitates the regulatory proteins potentially involved in PDR in C. elegans, which safeguards the overall lifecycle in response to environmental changes.

  16. Genetic identification of the bacteriocins produced by Enterococcus faecium IT62 and evidence that bacteriocin 32 is identical to enterocin IT.

    PubMed

    Izquierdo, Esther; Cai, Yimin; Marchioni, Eric; Ennahar, Saïd

    2009-05-01

    Enterococcus faecium IT62, a strain isolated from ryegrass in Japan, produces three bacteriocins (enterocins L50A, L50B, and IT) that have been previously purified and the primary structures of which have been determined by amino acid sequencing (E. Izquierdo, A. Bednarczyk, C. Schaeffer, Y. Cai, E. Marchioni, A. Van Dorsselaer, and S. Ennahar, Antimicrob. Agents Chemother., 52:1917-1923, 2008). Genetic analysis showed that the bacteriocins of E. faecium IT62 are plasmid encoded, but with the structural genes specifying enterocin L50A and enterocin L50B being carried by a plasmid (pTAB1) that is separate from the one (pTIT1) carrying the structural gene of enterocin IT. Sequencing analysis of a 1,475-bp region from pTAB1 identified two consecutive open reading frames corresponding, with the exception of 2 bp, to the genes entL50A and entL50B, encoding EntL50A and EntL50B, respectively. Both bacteriocins are synthesized without N-terminal leader sequences. Genetic analysis of a sequenced 1,380-bp pTIT1 fragment showed that the genes entIT and entIM, encoding enterocin IT and its immunity protein, respectively, were both found in E. faecium VRE200 for bacteriocin 32. Enterocin IT, a 6,390-Da peptide made up of 54 amino acids, has been previously shown to be identical to the C-terminal part of bacteriocin 32, a 7,998-Da bacteriocin produced by E. faecium VRE200 whose structure was deduced from its structural gene (T. Inoue, H. Tomita, and Y. Ike, Antimicrob. Agents Chemother., 50:1202-1212, 2006). By combining the biochemical and genetic data on enterocin IT, it was concluded that bacteriocin 32 is in fact identical to enterocin IT, both being encoded by the same plasmid-borne gene, and that the N-terminal leader peptide for this bacteriocin is 35 amino acids long and not 19 amino acids long as previously reported.

  17. Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation

    PubMed Central

    Smit, Bart A.; van Hylckama Vlieg, Johan E. T.; Engels, Wim J. M.; Meijer, Laura; Wouters, Jan T. M.; Smit, Gerrit

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions. PMID:15640202

  18. The role of human chorionic gonadotropin in regulation of naïve and memory T cells activity in vitro.

    PubMed

    Zamorina, S A; Litvinova, L S; Yurova, K A; Khaziakhmatova, O G; Timganova, V P; Bochkova, M S; Khramtsov, P V; Rayev, M B

    2018-01-01

    The role of human chorionic gonadotropin (hCG) in the regulation of molecular genetics factors determining the functional activity of human naïve and memory T cells in vitro was studied. It was found that hCG (10 and 100IU/ml) inhibited CD28 and CD25 expression on the naïve T cells (CD45RA+) and CD25 expression on the memory T cells (CD45R0+). hCG didn't affect the CD71 proliferation marker expression in total. Nevertheless, hCG reduced the percentage of proliferating memory T cells with simultaneous suppression of CD71 expression on proliferating CD45R0+cells. In parallel, expression of U2af1l4, Gfi1, and hnRNPLL genes, which are Ptprc gene alternative splicing regulators was evaluated. It was established that hCG stimulated the expression of U2af1l4 and hnRNPLL genes, responsible for the assembly of CD45R0 in memory T cells, but reduced the expression of Gfi1 in these cells. In general, hCG promotes the differentiation of memory T cells by increasing of CD45R0 expression, but inhibits proliferation and CD25 expression which reflects their functional activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain

    PubMed Central

    Anandasabapathy, Niroshana; Victora, Gabriel D.; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L.; Nussenzweig, Michel C.; Steinman, Ralph M.

    2011-01-01

    Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5–7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia. PMID:21788405

  20. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain.

    PubMed

    Anandasabapathy, Niroshana; Victora, Gabriel D; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L; Nussenzweig, Michel C; Steinman, Ralph M; Liu, Kang

    2011-08-01

    Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5-7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia.

  1. Molecular Characterization of Enterococcus faecalis N06-0364 with Low-Level Vancomycin Resistance Harboring a Novel d-Ala-d-Ser Gene Cluster, vanL▿

    PubMed Central

    Boyd, David A.; Willey, Barbara M.; Fawcett, Darlene; Gillani, Nazira; Mulvey, Michael R.

    2008-01-01

    Enterococcus faecalis N06-0364, exhibiting a vancomycin MIC of 8 μg/ml, was found to harbor a novel d-Ala-d-Ser gene cluster, designated vanL. The vanL gene cluster was similar in organization to the vanC operon, but the VanT serine racemase was encoded by two separate genes, vanTmL (membrane binding) and vanTrL (racemase). PMID:18458129

  2. Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress.

    PubMed

    Niederwanger, Michael; Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard

    2017-08-11

    Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata , one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails.

  3. Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress

    PubMed Central

    Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard

    2017-01-01

    Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata, one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails. PMID:28800079

  4. Rearrangement and expression of the human {Psi}C{lambda}6 gene segment results in a surface Ig receptor with a truncated light chain constant region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiernholm, N.B.J.; Verkoczy, L.K.; Berinstein, N.L.

    1995-05-01

    The constant region of the human Ig{lambda} locus consists of seven tandemly organized J-C gene segments. Although it has been established that the J-C{lambda}1, J-C{lambda}2, J-C{lambda}3, and J-C{lambda}7 gene segments are functional, and code for the four distinct Ig{lambda} isotypes found in human serum, the J-C{lambda}4, J-C{lambda}5, and J-C{lambda}6 gene segments are generally considered to be pseudogenes. Although one example of a functional J-C{lambda}6 gene segment has been documented, in the majority of cases, J-C{lambda}6 is rendered nonfunctional by virtue of a single duplication of four nucleotides, creating a premature translational arrest. We show here that rearrangements to the J-C{lambda}6more » gene segment do occur, and that such a rearrangement encodes an Ig{lambda} protein that lacks the terminal end of the constant region. We also show that this truncated protein is expressed on the surface with the IgH chain, creating an unusual surface Ig (sIg) receptor (sIg{triangle}CL). Cells that express this receptor on the surface do so at significantly reduced levels compared with clonally related variants, which express sIg receptors with conventional Ig{lambda} L chains. However, the effects of sIg cross-linking on tyrosine phosphorylation and surface expression of the CD25 and CD71 Ags are similar in cells that express conventional sIg receptors and in those that express sIg{triangle}CL receptors, suggesting that the latter could possibly function as an Ag receptor. 35 refs., 7 figs.« less

  5. The Trophic Life Cycle Stage of the Opportunistic Fungal Pathogen Pneumocystis murina Hinders the Ability of Dendritic Cells To Stimulate CD4+ T Cell Responses

    PubMed Central

    Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.

    2017-01-01

    ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293

  6. Selenium, selenoprotein genes and Crohn's disease in a case-control population from Auckland, New Zealand.

    PubMed

    Gentschew, Liljana; Bishop, Karen S; Han, Dug Yeo; Morgan, Angharad R; Fraser, Alan G; Lam, Wen Jiun; Karunasinghe, Nishi; Campbell, Bobbi; Ferguson, Lynnette R

    2012-09-01

    New Zealand has one of the highest incidence rates of Crohn's Disease (CD), whilst the serum selenium status of New Zealanders is amongst the lowest in the world. A prospective case-control study in Auckland, New Zealand considered serum selenium as a potential CD risk factor. Serum selenium levels were significantly lower in CD patients compared to controls (101.8 ± 1.02 vs. 111.1 ± 1.01 ng/mL) (p = 5.91 × 10(-8)). Recent detailed studies in the United Kingdom have suggested an optimal serum level around 122 ng/mL, making the average CD patient in New Zealand selenium deficient. Of the 29 single nucleotide polymorphisms (SNPs) tested, 13 were found to significantly interact with serum selenium on CD. After adjustment for multiple testing, a significant interaction with serum selenium on CD was found for three SNPs, namely rs17529609 and rs7901303 in the gene SEPHS1, and rs1553153 in the gene SEPSECS. These three SNPs have not been reported elsewhere as being significantly associated with selenium or CD. It is unclear as to whether lower selenium levels are a cause or an effect of the disease.

  7. Selenium, Selenoprotein Genes and Crohn’s Disease in a Case-Control Population from Auckland, New Zealand

    PubMed Central

    Gentschew, Liljana; Bishop, Karen S.; Han, Dug Yeo; Morgan, Angharad R.; Fraser, Alan G.; Lam, Wen Jiun; Karunasinghe, Nishi; Campbell, Bobbi; Ferguson, Lynnette R.

    2012-01-01

    New Zealand has one of the highest incidence rates of Crohn’s Disease (CD), whilst the serum selenium status of New Zealanders is amongst the lowest in the world. A prospective case-control study in Auckland, New Zealand considered serum selenium as a potential CD risk factor. Serum selenium levels were significantly lower in CD patients compared to controls (101.8 ± 1.02 vs. 111.1 ± 1.01 ng/mL) (p = 5.91 × 10−8). Recent detailed studies in the United Kingdom have suggested an optimal serum level around 122 ng/mL, making the average CD patient in New Zealand selenium deficient. Of the 29 single nucleotide polymorphisms (SNPs) tested, 13 were found to significantly interact with serum selenium on CD. After adjustment for multiple testing, a significant interaction with serum selenium on CD was found for three SNPs, namely rs17529609 and rs7901303 in the gene SEPHS1, and rs1553153 in the gene SEPSECS. These three SNPs have not been reported elsewhere as being significantly associated with selenium or CD. It is unclear as to whether lower selenium levels are a cause or an effect of the disease. PMID:23112913

  8. The dominant roles of ICAM-1-encoding gene in DNA vaccination against Japanese encephalitis virus are the activation of dendritic cells and enhancement of cellular immunity.

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2013-01-01

    We investigated the cellular immune responses elicited by a plasmid DNA vaccine encoding prM-E protein from the Japanese encephalitis (JE) virus (JEV) with or without various forms of intercellular adhesion molecule (ICAM)-1 gene to maximize the immune responses evoked by the JE DNA vaccine. We observed that co-immunization with the construct containing murine ICAM-1 gene (pICAM-1) resulted in a significant increase in the percentage of CD4(+)T cells, high level of JEV-specific cytotoxic T lymphocyte response, and high production of T helper 1 (Th1)-type cytokines in splenic T cells. Furthermore, the co-expression of ICAM-1 and DNA immunogens was found to be more effective in generating T cell-mediated immune responses than those induced by immunization with pJME in combination with pICAM-1. Our results suggested that ICAM-1 enhanced T cell receptor signaling and activated Th1 immune responses in the JEV model system by increasing the induction of CD4(+)Th1 cell subset and activating dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Thiols decrease cytokine levels and down-regulate the expression of CD30 on human allergen-specific T helper (Th) 0 and Th2 cells

    PubMed Central

    Bengtsson, Å; Lundberg, M; Avila-Cariño, J; Jacobsson, G; Holmgren, A; Scheynius, A

    2001-01-01

    The thiol antioxidant N-acetyl-l-cysteine (NAC), known as a precursor of glutathione (GSH), is used in AIDS treatment trials, as a chemoprotectant in cancer chemotherapy and in treatment of chronic bronchitis. In vitro, GSH and NAC are known to enhance T cell proliferation, production of IL-2 and up-regulation of the IL-2 receptor. The 120-kD CD30 surface antigen belongs to the tumour necrosis factor (TNF) receptor superfamily. It is expressed by activated T helper (Th) cells and its expression is sustained in Th2 cells. We have analysed the effect of GSH and NAC on the cytokine profile and CD30 expression on human allergen-specific T cell clones (TCC). TCC were stimulated with anti-CD3 antibodies in the presence of different concentrations of GSH and NAC. Both thiols caused a dose dependent down-regulation of IL-4, IL-5 and IFN-γ levels in Th0 and Th2 clones, with the most pronounced decrease of IL-4. Furthermore, they down-regulated the surface expression of CD30, and the levels of soluble CD30 (sCD30) in the culture supernatants were decreased. In contrast, the surface expression of CD28 or CD40 ligand (CD40L) was not significantly changed after treatment with 20 mm NAC. These results indicate that GSH and NAC favour a Th1 response by a preferential down-regulation of IL-4. In addition, the expression of CD30 was down regulated by GSH and NAC, suggesting that CD30 expression is dependent on IL-4, or modified by NAC. In the likely event that CD30 and its soluble counterpart prove to contribute to the pathogenesis in Th2 related diseases such as allergy, NAC may be considered as a future therapeutic agent in the treatment of these diseases. PMID:11298119

  10. Vitamin C modulates cadmium-induced hepatic antioxidants' gene transcripts and toxicopathic changes in Nile tilapia, Oreochromis niloticus.

    PubMed

    El-Sayed, Yasser S; El-Gazzar, Ahmed M; El-Nahas, Abeer F; Ashry, Khaled M

    2016-01-01

    Cadmium (Cd) is one of the naturally occurring heavy metals having adverse effects, while vitamin C (L-ascorbic acid) is an essential micronutrient for fish, which can attenuate tissue damage owing to its chain-breaking antioxidant and free radical scavenger properties. The adult Nile tilapia fish were exposed to Cd at 5 mg/l with and without vitamin C (500 mg/kg diet) for 45 days in addition to negative and positive controls fed with the basal diet and basal diet supplemented with vitamin C, respectively. Hepatic relative mRNA expression of genes involved in antioxidant function, metallothionein (MT), glutathione S-transferase (GST-α1), and glutathione peroxidase (GPx1), was assessed using real-time reverse transcription polymerase chain reaction (RT-PCR). Hepatic architecture was also histopathologically examined. Tilapia exposed to Cd exhibited upregulated antioxidants' gene transcript levels, GST-⍺1, GPx1, and MT by 6.10-, 4.60-, and 4.29-fold, respectively. Histopathologically, Cd caused severe hepatic changes of multifocal hepatocellular and pancreatic acinar necrosis, and lytic hepatocytes infiltrated with eosinophilic granular cells. Co-treatment of Cd-exposed fish with vitamin C overexpressed antioxidant enzyme-related genes, GST-⍺1 (16.26-fold) and GPx1 (18.68-fold), and maintained the expression of MT gene close to control (1.07-fold), averting the toxicopathic lesions induced by Cd. These results suggested that vitamin C has the potential to protect Nile tilapia from Cd hepatotoxicity via sustaining hepatic antioxidants' genes transcripts and normal histoarchitecture.

  11. Genetic diversity among major endemic strains of Leptospira interrogans in China

    PubMed Central

    He, Ping; Sheng, Yue-Ying; Shi, Yao-Zhou; Jiang, Xiu-Gao; Qin, Jin-Hong; Zhang, Zhi-Ming; Zhao, Guo-Ping; Guo, Xiao-Kui

    2007-01-01

    Background Leptospirosis is a world-widely distributed zoonosis. Humans become infected via exposure to pathogenic Leptospira spp. from contaminated water or soil. The availability of genomic sequences of Leptospira interrogans serovar Lai and serovar Copenhageni opened up opportunities to identify genetic diversity among different pathogenic strains of L. interrogans representing various kinds of serotypes (serogroups and serovars). Results Comparative genomic hybridization (CGH) analysis was used to compare the gene content of L. interrogans serovar Lai strain Lai with that of other 10 L. interrogans strains prevailed in China and one identified from Brazil using a microarray spotted with 3,528 protein coding sequences (CDSs) of strain Lai. The cutoff ratio of sample/reference (S/R) hybridization for detecting the absence of genes from one tested strain was set by comparing the ratio of S/R hybridization and the in silico sequence similarities of strain Lai and serovar Copenhageni strain Fiocruz L1-130. Among the 11 strains tested, 275 CDSs were found absent from at least one strain. The common backbone of the L. interrogans genome was estimated to contain about 2,917 CDSs. The genes encoding fundamental cellular functions such as translation, energy production and conversion were conserved. While strain-specific genes include those that encode proteins related to either cell surface structures or carbohydrate transport and metabolism. We also found two genomic islands (GIs) in strain Lai containing genes divergently absent in other strains. Because genes encoding proteins with potential pathogenic functions are located within GIs, these elements might contribute to the variations in disease manifestation. Differences in genes involved in O-antigen biosynthesis were also identified for strains belonging to different serogroups, which offers an opportunity for future development of genomic typing tools for serological classification. Conclusion CGH analyses for pathogenic leptospiral strains prevailed in China against the L. interrogans serovar Lai strain Lai CDS-spotted microarrays revealed 2,917 common backbone CDSs and strain specific genes encoding proteins mainly related to cell surface structures and carbohydrated transport/metabolism. Of the 275 CDSs considered absent from at least one of the L. interrogans strains tested, most of them were clustered in the rfb gene cluster and two putative genomic islands (GI A and B) in strain Lai. The strain-specific genes detected via this work will provide a knowledge base for further investigating the pathogenesis of L interrogans and/or for the development of effective vaccines and/or diagnostic tools. PMID:17603913

  12. CD30 induction of human immunodeficiency virus gene transcription is mediated by TRAF2

    PubMed Central

    Tsitsikov, Erdyni N.; Wright, Dowain A.; Geha, Raif S.

    1997-01-01

    CD30 is a member of the tumor necrosis factor receptor (TNFR) superfamily expressed on activated T and B lymphocytes and natural killer cells. Ligation of CD30 was previously shown to induce NF-κB activation and HIV expression in chronically infected T lymphocytes. In this study, we report that two members of the TNFR-associated factor (TRAF) family of proteins, TRAF1 and TRAF2, independently bind to the intracellular domain of CD30 (CD30IC). Transient overexpression of TRAF2, but not TRAF1, induced NF-κB activation and HIV-1-long terminal repeat-driven transcription in the T cell line, KT3. Moreover, dominant negative mutants consisting of the TRAF domain of TRAF1 and TRAF2 inhibited CD30 induction of NF-κB activation and HIV-1 transcription. These results suggest that CD30 ligation may enhance the expression of HIV via TRAF-2-mediated activation of NF-κB. PMID:9037063

  13. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    PubMed

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. Copyright © 2017 American Society for Microbiology.

  14. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation

    PubMed Central

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de las Rivas, Blanca

    2017-01-01

    ABSTRACT Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarum tanB [tanBLp], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. PMID:28115379

  15. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  16. TH1/TH2 cytokines and soluble CD30 levels in kidney allograft patients with donor bone marrow cell infusion.

    PubMed

    Solgi, G; Amirzagar, A A; Pourmand, G; Mehrsai, A R; Taherimahmoudi, M; Baradaran, N; Nicknam, M H; Ebrahimi Rad, M R; Saraji, A; Asadpoor, A A; Moheiydin, M; Nikbin, B

    2009-09-01

    We investigated the relevance of donor bone marrow cell infusion (DBMI) and serum levels of interferon-gamma (IFN-gamma), interleukin-10 (IL-10), and soluble CD30 (sCD30) in kidney recipients. We analyzed the allograft outcomes correlated with sCD30, IFN-gamma, and IL-10 levels using pre- and posttransplantation sera from 40 live donor renal transplants (20 patients with DBMI [2.1 x 10(9) +/- 1.3 x 10(9) mononuclear cells/body] and 20 controls). Patients with acute rejection episodes (ARE)-3/20 DBMI and 6/20 controls-showed increased sCD30 and IFN-gamma as well as decreased IL-10 posttransplantation compared with nonrejectors. Significant differences were observed for sCD30 and IFN-gamma levels: 59.54 vs 30.92 ng/mL (P = .02) and 11.91 vs 3.01 pg/mL (P = .01), respectively. Comparison of pre- and posttransplant levels of IFN-gamma, IL-10, and sCD30 in ARE patients showed higher levels in posttransplant sera except for IFN-gamma in controls (6.37 vs 11.93; P = .01). Increased IFN-gamma and IL-10 were correlated with rejection (r = .93; P = .008). sCD30 correlated with serum creatinine among ARE patients in control and DBMI groups (r = .89; P = .019; and r = 1.00; P < .0001, respectively). Higher levels of sCD30, IFN-gamma, and IL-10 posttransplantation in rejecting patients provided evidence for coexistence of cellular and humoral responses in ARE. There appeared to be a down-regulatory effect of infusion on alloresponses.

  17. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply.

    PubMed

    Man, Zaiwei; Rao, Zhiming; Xu, Meijuan; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-11-01

    l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H 2 O 2 -forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H 2 O 2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3g/L and 0.326g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H 2 O 2 synthesis and increasing the ATP supply. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. System analysis of the regulation of the immune response by CD147 and FOXC1 in cancer cell lines

    PubMed Central

    Kong, Ling-Min; Wei, Ding; Xu, Jing; Wang, Zi-Ling; Bian, Huijie; Chen, Zhi-Nan

    2018-01-01

    CD147, encoded by BSG, is a highly glycosylated transmembrane protein that belongs to the immunological superfamily and expressed on the surface of many types of cancer cells. While CD147 is best known as a potent inducer of extracellular matrix metalloproteinases, it can also function as a key mediator of inflammatory and immune responses. To systematically elucidate the function of CD147 in cancer cells, we performed an analysis of genome-wide profiling across the Cancer Cell Line Encyclopedia (CCLE). We showed that CD147 mRNA expression was much higher than that of most other genes in cancer cell lines. CD147 varied widely across these cell lines, with the highest levels in the ovary (COLO704) and stomach (SNU668), intermediate levels in the lung (RERFLCKJ, NCIH596 and NCIH1651) and lowest levels in hematopoietic and lymphoid tissue (UT7, HEL9217, HEL and MHHCALL3) and the kidney (A704 and SLR20). Genome-wide analyses showed that CD147 expression was significantly negatively correlated with immune-related genes. Our findings implicated CD147 as a novel regulator of immune-related genes and suggest its important role as a master regulator of immune-related responses in cancer cell lines. We also found a high correlation between the expression of CD147 and FOXC1, and proved that CD147 was a direct transcriptional target of FOXC1. Our findings demonstrate that FOXC1 is a novel regulator of CD147 and confirms its role as a master regulator of the immune response. PMID:29560120

  19. The role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development

    PubMed Central

    Nakamura, Yukiko; Lee, Suni; Haddox, Candace L.; Weaver, Eli J.; Lemmon, Vance P.

    2011-01-01

    Mutations in the human L1CAM gene cause X-linked Hydrocephalus and MASA syndrome. In vitro studies have shown the L1 cytoplasmic domain (L1CD) is involved in L1 trafficking, neurite branching, signaling, and interactions with the cytoskeleton. L1cam knock-out (L1KO) mice have hydrocephalus, a small cerebellum, hyperfasciculation of corticothalamic tracts and abnormal peripheral nerves. To explore the function of the L1CD, we made three new mice lines in which different parts of the L1CD have been altered. In all mutant lines L1 protein is expressed and transported into the axon. Interestingly, these new L1CD mutant lines display normal brain morphology. However, the expression of L1 protein in the adult is dramatically reduced in the two L1CD mutant lines that lack the ankyrin-binding region and they show defects in motor function. Therefore, the L1CD is not responsible for the major defects observed in L1KO mice, yet it is required for continued L1 protein expression and motor function in the adult. PMID:20127821

  20. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer

    PubMed Central

    Wilber, Andrew; Hargrove, Phillip W.; Kim, Yoon-Sang; Riberdy, Janice M.; Sankaran, Vijay G.; Papanikolaou, Eleni; Georgomanoli, Maria; Anagnou, Nicholas P.; Orkin, Stuart H.; Nienhuis, Arthur W.

    2011-01-01

    β-Thalassemia major results from severely reduced or absent expression of the β-chain of adult hemoglobin (α2β2;HbA). Increased levels of fetal hemoglobin (α2γ2;HbF), such as occurs with hereditary persistence of HbF, ameliorate the severity of β-thalassemia, raising the potential for genetic therapy directed at enhancing HbF. We used an in vitro model of human erythropoiesis to assay for enhanced production of HbF after gene delivery into CD34+ cells obtained from mobilized peripheral blood of normal adults or steady-state bone marrow from patients with β-thalassemia major. Lentiviral vectors encoding (1) a human γ-globin gene with or without an insulator, (2) a synthetic zinc-finger transcription factor designed to interact with the γ-globin gene promoters, or (3) a short-hairpin RNA targeting the γ-globin gene repressor, BCL11A, were tested. Erythroid progeny of normal CD34+ cells demonstrated levels of HbF up to 21% per vector copy. For β-thalassemic CD34+ cells, similar gene transfer efficiencies achieved HbF production ranging from 45% to 60%, resulting in up to a 3-fold increase in the total cellular Hb content. These observations suggest that both lentiviral-mediated γ-globin gene addition and genetic reactivation of endogenous γ-globin genes have potential to provide therapeutic HbF levels to patients with β-globin deficiency. PMID:21156846

  1. Induction of Broad CD4+ and CD8+ T-Cell Responses and Cross- Neutralizing Antibodies against Hepatitis C Virus by Vaccination with Th1-Adjuvanted Polypeptides Followed by Defective Alphaviral Particles Expressing Envelope Glycoproteins gpE1 and gpE2 and Nonstructural Proteins 3, 4, and 5▿ †

    PubMed Central

    Lin, Yinling; Kwon, Taewoo; Polo, John; Zhu, Yi-Fei; Coates, Stephen; Crawford, Kevin; Dong, Christine; Wininger, Mark; Hall, John; Selby, Mark; Coit, Doris; Medina-Selby, Angelica; McCoin, Colin; Ng, Philip; Drane, Debbie; Chien, David; Han, Jang; Vajdy, Michael; Houghton, Michael

    2008-01-01

    Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen. PMID:18508900

  2. CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma

    PubMed Central

    Trøen, Gunhild; Warsame, Abdirashid; Delabie, Jan

    2013-01-01

    The mutation status of genes involved in the NF-κB signaling pathway in splenic marginal zone lymphoma was examined. DNA sequence analysis of four genes was performed: CD79A, CD79B, CARD11, and MYD88 that are activated through BCR signaling or Toll-like and interleukin signaling. A single point mutation was detected in the CD79B gene (Y196H) in one of ten SMZL cases. Additionally, one point mutation was identified in the MYD88 gene (L265P) in another SMZL case. No mutations were revealed in CD79A or CARD11 genes in these SMZL cases. Neither were mutations detected in these four genes studied in 13 control MZL samples. Interestingly, the two cases with mutations of CD79B and MYD88 showed increased numbers of immunoblasts spread among the smaller and typical marginal zone lymphoma cells. Although SMZL shows few mutations of NF-κB signaling genes, our results indicate that the presence of these mutations is associated with a higher histological grade. PMID:23378931

  3. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    PubMed Central

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  4. CD30 Expression by B and T Cells: A Frequent Finding in Angioimmunoblastic T-Cell Lymphoma and Peripheral T-Cell Lymphoma-Not Otherwise Specified.

    PubMed

    Onaindia, Arantza; Martínez, Nerea; Montes-Moreno, Santiago; Almaraz, Carmen; Rodríguez-Pinilla, Socorro M; Cereceda, Laura; Revert, Jose B; Ortega, César; Tardio, Antoni; González, Lucía; García, Sonia; Camacho, Francisca I; González-Vela, Carmen; Piris, Miguel A

    2016-03-01

    CD30 expression in peripheral T-cell lymphoma (PTCL) and angioimmunoblastic T-cell lymphoma (AITL) is currently of great interest because therapy targeting CD30 is of clinical benefit, but the clinical and therapeutic relevance of CD30 expression in these neoplasms still remains uncertain. The aim of this study was to better quantify CD30 expression in AITL and PTCL-not otherwise specified (NOS). The secondary objective was to determine whether CD30 cells exhibit a B-cell or a T-cell phenotype. Gene expression profiling was studied in a series of 37 PTCL cases demonstrating a continuous spectrum of TNFRSF8 expression. This prompted us to study CD30 immunohistochemical (IHC) expression and mRNA levels by reverse transcription polymerase chain reaction (RT-PCR) in a different series of 51 cases (43 AITLs and 8 PTCL-NOSs) in routine samples. Double stainings with PAX5/CD30, CD3/CD30, and LEF1/CD30 were performed to study the phenotype of CD30 cells. Most (90%) of the cases showed some level of CD30 expression by IHC (1% to 95%); these levels were high (>50% of tumoral cells) in 14% of cases. CD30 expression was not detected in 10% of the cases. Quantitative RT-PCR results largely confirmed these findings, demonstrating a moderately strong correlation between global CD30 IHC and mRNA levels (r=0.65, P=1.75e-7). Forty-four of the positive cases (98%) contained CD30-positive B cells (PAX5), whereas atypical CD30-positive T cells were detected in 42 cases (93%). In conclusion, our data show that most AITL and PTCL-NOS cases express CD30, exhibiting very variable levels of CD30 expression that may be measured by IHC or RT-PCR techniques.

  5. Adverse prognostic value of MYBL2 overexpression and association with microRNA-30 family in acute myeloid leukemia patients.

    PubMed

    Fuster, Oscar; Llop, Marta; Dolz, Sandra; García, Paloma; Such, Esperanza; Ibáñez, Mariam; Luna, Irene; Gómez, Inés; López, María; Cervera, José; Montesinos, Pau; Moscardó, Federico; Cordón, Lourdes; Solves, Pilar; de Juan, Inmaculada; Palanca, Sarai; Bolufer, Pascual; Sanz, Miguel Ángel; Barragán, Eva

    2013-12-01

    The MYBL2 gene encodes a transcription factor implicated in cell proliferation and maturation whose amplification or overexpression has been associated with different human malignancies, suggesting that it could be implicated in tumorigenesis. We analyzed MYBL2 expression and its prognostic value in 291 patients with de novo acute myeloid leukemia (AML) and we also evaluated its association with microRNAs 29 and 30 families. MYBL2 expression in AML patients was increased relative to CD34+ cells. Moreover, MYBL2 overexpression was associated with lower expression of miR-30a (P=0.024), miR-30b (P=0.021) and miR-30c (P=0.009). Multivariate analysis showed that MYBL2 expression was an independent factor for disease-free survival (HR 3.0, 95% CI 1.5-6.0, P=0.002) and cumulative incidence of relapse (HR 2.6, 95% CI 1.2-5.6, P=0.015) in patients with an intermediate-risk karyotype. In conclusion, our data showed that MYBL2 expression analysis could be useful to define subgroups of patients with poor prognosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  7. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy.

    PubMed

    Cartier, Nathalie; Hacein-Bey-Abina, Salima; Bartholomae, Cynthia C; Bougnères, Pierre; Schmidt, Manfred; Kalle, Christof Von; Fischer, Alain; Cavazzana-Calvo, Marina; Aubourg, Patrick

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a severe genetic demyelinating disease caused by a deficiency in ALD protein, an adenosine triphosphate-binding cassette transporter encoded by the ABCD1 gene. When performed at an early stage of the disease, allogeneic hematopoietic stem cell transplantation (HCT) can arrest the progression of cerebral demyelinating lesions. To overcome the limitations of allogeneic HCT, hematopoietic stem cell (HSC) gene therapy strategy aiming to perform autologous transplantation of lentivirally corrected cells was developed. We demonstrated the preclinical feasibility of HSC gene therapy for ALD based on the correction of CD34+ cells from X-ALD patients using an HIV1-derived lentiviral vector. These results prompted us to initiate an HSC gene therapy trial in two X-ALD patients who had developed progressive cerebral demyelination, were candidates for allogeneic HCT, but had no HLA-matched donors or cord blood. Autologous CD34+ cells were purified from the peripheral blood after G-CSF stimulation, genetically corrected ex vivo with a lentiviral vector encoding wild-type ABCD1 cDNA, and then reinfused into the patients after they had received full myeloablative conditioning. Over 3 years of follow-up, the hematopoiesis remained polyclonal in the two patients treated with 7-14% of granulocytes, monocytes, and T and B lymphocytes expressing the lentivirally encoded ALD protein. There was no evidence of clonal dominance or skewing based on the retrieval of lentiviral insertion repertoire in different hematopoietic lineages by deep sequencing. Cerebral demyelination was arrested 14 and 16months, respectively, in the two treated patients, without further progression up to the last follow-up, a clinical outcome that is comparable to that observed after allogeneic HCT. Longer follow-up of these two treated patients and HSC gene therapy performed in additional ALD patients are however needed to evaluate the safety and efficacy of lentiviral HSC gene therapy in cerebral forms of X-ALD. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The Bovine Herpesvirus 4 Bo10 Gene Encodes a Nonessential Viral Envelope Protein That Regulates Viral Tropism through both Positive and Negative Effects▿

    PubMed Central

    Machiels, Bénédicte; Lété, Céline; de Fays, Katalin; Mast, Jan; Dewals, Benjamin; Stevenson, Philip G.; Vanderplasschen, Alain; Gillet, Laurent

    2011-01-01

    All gammaherpesviruses encode a glycoprotein positionally homologous to the Epstein-Barr virus gp350 and the Kaposi's sarcoma-associated herpesvirus (KSHV) K8.1. In this study, we characterized the positional homologous glycoprotein of bovine herpesvirus 4 (BoHV-4), encoded by the Bo10 gene. We identified a 180-kDa gene product, gp180, that was incorporated into the virion envelope. A Bo10 deletion virus was viable but showed a growth deficit associated with reduced binding to epithelial cells. This seemed to reflect an interaction of gp180 with glycosaminoglycans (GAGs), since compared to the wild-type virus, the Bo10 mutant virus was both less infectious for GAG-positive (GAG+) cells and more infectious for GAG-negative (GAG−) cells. However, we could not identify a direct interaction between gp180 and GAGs, implying that any direct interaction must be of low affinity. This function of gp180 was very similar to that previously identified for the murid herpesvirus 4 gp150 and also to that of the Epstein-Barr virus gp350 that promotes CD21+ cell infection and inhibits CD21− cell infection. We propose that such proteins generally regulate virion attachment both by binding to cells and by covering another receptor-binding protein until they are displaced. Thus, they regulate viral tropism both positively and negatively depending upon the presence or absence of their receptor. PMID:21068242

  9. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    PubMed Central

    Hsu, Cary; Jones, Stephanie A.; Cohen, Cyrille J.; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F.; Peng, Peter D.; Shen, Xinglei; Gomes, Theotonius J.; Dunbar, Cynthia E.; Munroe, David J.; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A.

    2007-01-01

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation. PMID:17353346

  10. Overexpression of Wild-Type Aspartokinase Increases l-Lysine Production in the Thermotolerant Methylotrophic Bacterium Bacillus methanolicus▿

    PubMed Central

    Jakobsen, Øyvind M.; Brautaset, Trygve; Degnes, Kristin F.; Heggeset, Tonje M. B.; Balzer, Simone; Flickinger, Michael C.; Valla, Svein; Ellingsen, Trond E.

    2009-01-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar Vmax values (between 47 and 58 μmol/min/mg protein) and Km values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC50], 0.1 mM) and by l-lysine (IC50, 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC50, 4 mM) and by l-lysine (IC50, 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK. PMID:19060158

  11. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E

    2009-02-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.

  12. Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137.

    PubMed

    Kim, Jong-Hyun; Sunako, Michihiro; Ono, Hisayo; Murooka, Yoshikatsu; Fukusaki, Eiichiro; Yamashita, Mitsuo

    2008-11-01

    A starch-hydrolyzing lactic acid bacterium, Lactobacillus plantarum L137, was isolated from traditional fermented food made from fish and rice in the Philippines. A gene (apuA) encoding an amylolytic enzyme from Lactobacillus plantarum L137 was cloned, and its nucleotide sequence was determined. The apuA gene consisted of an open reading frame of 6171 bp encoding a protein of 2056 amino acids, the molecular mass of which was calculated to be 215,625 Da. The catalytic domains of amylase and pullulanase were located in the same region within the middle of the N-terminal region. The deduced amino acid sequence revealed four highly conserved regions that are common among amylolytic enzymes. In the N-terminal region, a six-amino-acid sequence (Asp-Ala/Thr-Ala-Asn-Ser-Thr) is repeated 39 times, and a three-amino-acid sequence (Gln-Pro-Thr) is repeated 50 times in the C-terminal region. The apuA gene was subcloned in L. plantarum NCL21, which is a plasmid-cured derivative of the wild-type L137 strain and has no amylopullulanase activity, and the gene was overexpressed under the control of its own promoter. The ApuA enzyme from this recombinant L. plantarum NCL21 harboring apuA gene was purified. The enzyme has both alpha-amylase and pullulanase activities. The N-terminal sequence of the purified enzyme showed that the signal peptide was cleaved at Ala(36) and the molecular mass of the mature extracellular enzyme is 211,537 Da. The major reaction products from soluble starch were maltotriose (G3) and maltotetraose (G4). Only maltotriose (G3) was produced from pullulan. From these results, we concluded that ApuA is an amylolytic enzyme belonging to the amylopullulanase family.

  13. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    PubMed

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells

    PubMed Central

    Kuijpers, Taco W.; van Leeuwen, Ester M.M.; Barendregt, Barbara H.; Klarenbeek, Paul; aan de Kerk, Daan J.; Baars, Paul A.; Jansen, Machiel H.; de Vries, Niek; van Lier, René A.W.; van der Burg, Mirjam

    2013-01-01

    Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B+T−NK− X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8+ T cells and increased over time. Only the revertant CD8+ T cells showed normal expression of CD132 and the various CD8+ T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ+ T cells and differentiated CD4+CD27− effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8+ T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells. PMID:23403317

  15. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells.

    PubMed

    Kuijpers, Taco W; van Leeuwen, Ester M M; Barendregt, Barbara H; Klarenbeek, Paul; aan de Kerk, Daan J; Baars, Paul A; Jansen, Machiel H; de Vries, Niek; van Lier, René A W; van der Burg, Mirjam

    2013-07-01

    Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B(+)T(-)NK(-) X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8(+) T cells and increased over time. Only the revertant CD8(+) T cells showed normal expression of CD132 and the various CD8(+) T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ(+) T cells and differentiated CD4(+)CD27(-) effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8(+) T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells.

  16. Whole Genome Gene Expression Meta-Analysis of Inflammatory Bowel Disease Colon Mucosa Demonstrates Lack of Major Differences between Crohn's Disease and Ulcerative Colitis

    PubMed Central

    Østvik, Ann E.; Drozdov, Ignat; Gustafsson, Bjørn I.; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H.; Waldum, Helge L.; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K.

    2013-01-01

    Background In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Methods Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Results Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. Conclusions There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology. PMID:23468882

  17. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis.

    PubMed

    Granlund, Atle van Beelen; Flatberg, Arnar; Østvik, Ann E; Drozdov, Ignat; Gustafsson, Bjørn I; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H; Waldum, Helge L; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K

    2013-01-01

    In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.

  18. C2cd3 is required for cilia formation and Hedgehog signaling in mouse

    PubMed Central

    Hoover, Amber N.; Wynkoop, Aaron; Zeng, Huiqing; Jia, Jinping; Niswander, Lee A.; Liu, Aimin

    2011-01-01

    Cilia are essential for mammalian embryonic development as well as for the physiological activity of various adult organ systems. Despite the multiple crucial roles that cilia play, the mechanisms underlying ciliogenesis in mammals remain poorly understood. Taking a forward genetic approach, we have identified Hearty (Hty), a recessive lethal mouse mutant with multiple defects, including neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, a defect in left-right axis determination and severe polydactyly (extra digits). By genetic mapping, sequence analysis of candidate genes and characterization of a second mutant allele, we identify Hty as C2cd3, a novel gene encoding a vertebrate-specific C2 domain-containing protein. Target gene expression and double-mutant analyses suggest that C2cd3 is an essential regulator of intracellular transduction of the Hedgehog signal. Furthering a link between Hedgehog signaling and cilia function, we find that cilia formation and proteolytic processing of Gli3 are disrupted in C2cd3 mutants. Finally, we observe C2cd3 protein at the basal body, consistent with its essential function in ciliogenesis. Interestingly, the human ortholog for this gene lies in proximity to the critical regions of Meckel-Gruber syndrome 2 (MKS2) and Joubert syndrome 2 (JBTS2), making it a potential candidate for these two human genetic disorders. PMID:19004860

  19. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans

    PubMed Central

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-01-01

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer. PMID:27885267

  20. Transcription Factors of Lotus: Regulation of Isoflavonoid Biosynthesis Requires Coordinated Changes in Transcription Factor Activity1[W][OA

    PubMed Central

    Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L.; Martin, Cathie; Bailey, Paul

    2012-01-01

    Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285

  1. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    USDA-ARS?s Scientific Manuscript database

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  2. Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice.

    PubMed

    Liu, Yu-Ying; Yang, Wen-Tao; Shi, Shao-Hua; Li, Ya-Jie; Zhao, Liang; Shi, Chun-Wei; Zhou, Fang-Yu; Jiang, Yan-Long; Hu, Jing-Tao; Gu, Wei; Yang, Gui-Lian; Wang, Chun-Feng

    2017-06-30

    Goose parvovirus (GPV) continues to be a threat to goose farms and has significant economic effects on the production of geese. Current commercially available vaccines only rarely prevent GPV infection. In our study, Lactobacillus (L.) plantarum NC8 was selected as a vector to express the VP2 gene of GPV, and recombinant L. plantarum pSIP409-VP2/NC8 was successfully constructed. The molecular weight of the expressed recombinant protein was approximately 70 kDa. Mice were immunized with a 2 × 10 9 colony-forming unit/200 μL dose of the recombinant L. plantarum strain, and the ratios and numbers of CD11c + , CD3 + CD4 + , CD3 + CD8 + , and interferon gamma- and tumor necrosis factor alpha-expressing spleen lymphocytes in the pSIP409-VP2/NC8 group were higher than those in the control groups. In addition, we assessed the capacity of L. plantarum SIP409-VP2/NC8 to induce secretory IgA production. We conclude that administered pSIP409-VP2/NC8 leads to relatively extensive cellular responses. This study provides information on GPV infection and offers a clear framework of options available for GPV control strategies.

  3. Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice

    PubMed Central

    Liu, Yu-Ying; Yang, Wen-Tao; Shi, Shao-Hua; Li, Ya-Jie; Zhao, Liang; Shi, Chun-Wei; Zhou, Fang-Yu; Jiang, Yan-Long; Hu, Jing-Tao; Gu, Wei

    2017-01-01

    Goose parvovirus (GPV) continues to be a threat to goose farms and has significant economic effects on the production of geese. Current commercially available vaccines only rarely prevent GPV infection. In our study, Lactobacillus (L.) plantarum NC8 was selected as a vector to express the VP2 gene of GPV, and recombinant L. plantarum pSIP409-VP2/NC8 was successfully constructed. The molecular weight of the expressed recombinant protein was approximately 70 kDa. Mice were immunized with a 2 × 109 colony-forming unit/200 µL dose of the recombinant L. plantarum strain, and the ratios and numbers of CD11c+, CD3+CD4+, CD3+CD8+, and interferon gamma- and tumor necrosis factor alpha-expressing spleen lymphocytes in the pSIP409-VP2/NC8 group were higher than those in the control groups. In addition, we assessed the capacity of L. plantarum SIP409-VP2/NC8 to induce secretory IgA production. We conclude that administered pSIP409-VP2/NC8 leads to relatively extensive cellular responses. This study provides information on GPV infection and offers a clear framework of options available for GPV control strategies. PMID:27456769

  4. Expression of a recombinant human sperm-agglutinating mini-antibody in tobacco (Nicotiana tabacum L.).

    PubMed

    Xu, Bingfang; Copolla, Michael; Herr, John C; Timko, Michael P

    2007-01-01

    The murine monoclonal antibody (mAB) S19 recognizes an N-linked carbohydrate antigen designated sperm agglutination antigen-1 (SAGA1) located on the membrane protein CD52. This antigen is added to the sperm surface during epididymal maturation. Binding of the S19 mAB to SAGA-1 causes the rapid agglutination of sperm and blocks pre-fertilization events. Previous studies indicated that the S19 mAB may be a potential specific spermicidal agent (termed a spermistatic) capable of replacing current spermicidal products that contain harsh detergents with harmful side effects. The nucleotide sequences encoding the heavy (H) and light (L) chains of the S19 antibody were cloned. A chimeric gene was constructed using the nucleotide sequences encoding the variable regions of both the H and L chains, and this gene (scFv1 9) was expressed in transgenic tobacco (Nicotiana tabacum L.) to produce a recombinant anti-sperm antibody (RASA). Highest levels of RASA expression were observed in BY-2 plant cell suspension cultures and regenerated N. tabacum cv. Xanthi plants transformant in which the RASA coding sequences were expressed under the control of the Cauliflower Mosaic Virus 35S promoter containing a double-enhancer sequence (2X CaMV 35S). Subsequent modifications of the transgene including the addition of a 5'-untranslated sequence from the tobacco etch virus (TEV leader sequence), N-terminal fusion of the coding region with an endoplasmic reticulum targeting signal of patatin (pat) and C-terminal fusion with the endoplasmic reticulum retention signal peptide KDEL showed further enhancement of RASA expression. The plant-expressed RASA formed intrachain disulfide bonds and was primarily soluble in the cytoplasmic fraction of the cells. Introduction of a poly-histidine (6xHIS) tag in the recombinant RASA protein allowed for rapid purification of the recombinant protein using Ni-NTA chromatography. Optimization of scale-up production and purification of this plant-derived recombinant protein should provide large quantities of an inexpensive spermistatic plantibody.

  5. BK Virus Load Associated with Serum Levels of sCD30 in Renal Transplant Recipients

    PubMed Central

    Malik, Salma N.; Al-Saffer, Jinan M.; Jawad, Rana S.

    2016-01-01

    Background. Rejection is the main drawback facing the renal transplant operations. Complicated and overlapping factors, mainly related to the immune system, are responsible for this rejection. Elevated serum levels of sCD30 were frequently recorded as an indicator for renal allograft rejection, while BV virus is considered as one of the most serious consequences for immunosuppressive treatment of renal transplant recipients (RTRs). Aims. This study aimed to determine the association of BK virus load with serum levels of sCD30 in RTRs suffering from nephropathy. Patients and Methods. A total of 50 RTRs with nephropathy and 30 age-matched apparently healthy individuals were recruited for this study. Serum samples were obtained from each participant. Real-time PCR was used to quantify BK virus load in RTRs serum, while ELISA technique was employed to estimate serum levels of sCD30. Results. Twenty-two percent of RTRs had detectable BKV with mean viral load of 1.094E + 06 ± 2.291E + 06. RTRs showed higher mean serum level of sCD30 (20.669 ± 18.713 U/mL) than that of controls (5.517 ± 5.304 U/mL) with significant difference. BK virus load had significant positive correlation with the serum levels of sCD30 in RTRs group. Conclusion. These results suggest that serum levels of sCD30 could be used as an indicator of BK viremia, and accordingly the immunosuppressive regime should be adjusted. PMID:27051424

  6. Agaricus blazei Murill Polysaccharides Protect Against Cadmium-Induced Oxidative Stress and Inflammatory Damage in Chicken Spleens.

    PubMed

    Xie, Wanqiu; Lv, Ai; Li, Ruyue; Tang, Zequn; Ma, Dexing; Huang, Xiaodan; Zhang, Ruili; Ge, Ming

    2018-07-01

    Agaricus blazei Murill polysaccharide (ABP) has exhibited antioxidant and immunoregulatory activity. The aim of this study was to investigate the effect of ABP on cadmium (Cd)-induced antioxidant functions and inflammatory damage in chicken spleens. In this study, groups of 7-day-old chickens were fed with normal saline (0.2 mL single/day), CdCl 2 (140 mg/kg/day), ABP (30 mg/mL, 0.2 mL single/day), and Cd + ABP (140 mg/kg/day + 0.2 mL ABP). Spleens were separated on the 20th, 40th, and 60th day for each group. The Cd contents, expression of melanoma-associated differentiation gene 5 (MDA5) and its downstream signaling molecules (interferon promoter-stimulating factor 1 (IPS-1), transcription factors interferon regulatory factor 3 (IRF3), and nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB)), the content of cytokines (interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and beta interferon (IFN-β)), protein levels of heat shock proteins (HSPs), levels of malondialdehyde (MDA), activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and histopathological changes of spleens were detected on the 20th, 40th, and 60th day. The results showed that ABP significantly reduced the accumulation of Cd in the chicken spleens and reduced the expression of MDA5, IPS-1, IRF-3, and NF-κB; their downstream inflammatory cytokines, IL-1β, IL-6, TNF-α, and IFN-β; and the protein levels of HSPs (HSP60, HSP70, and HSP90) in spleens. The activities of antioxidant enzymes (SOD and GSH-Px) significantly increased, and the level of MDA decreased in the ABP + Cd group. The results indicate that ABP has a protective effect on Cd-induced damage in chicken spleens.

  7. CD30 serum levels and response to hymenoptera venom immunotherapy.

    PubMed

    Foschi, F G; Emiliani, F; Savini, S; Quercia, O; Stefanini, G F

    2008-01-01

    The glycoprotein CD30 is expressed and released by T lymphocytes that secrete type 2 helper cytokines of (T(H)2). These molecules play a role in the pathogenesis of allergic diseases. Venom immunotherapy has proven to be very effective in hymenoptera venom allergy through a shift in cytokine production from T(H)2-type cytokines to T(H)1-type cytokines. To evaluate the relationship between the soluble form of CD30 (sCD30) and venom immunotherapy in patients with hymenoptera venom allergy. sCD30 levels were assayed by enzyme-linked immunosorbent assay in the sera of 61 healthy controls and 14 patients with hymenoptera venom allergy who had undergone immunotherapy before treatment and 1,3, and 12 months after treatment started. Nine patients were allergic to Apis venom, 4 to Vespula venom, and 1 to Polistes venom. CD30 serum levels (median, interquartile range) were significantly higher in venom-allergic patients before treatment (33.6 U/mL; 14.8-61.6) than in controls (9.7 U/mL, 1.9-21.3) (P < .000). These levels decreased progressively during treatment in all patients except 2 (P < .000). At the third month of therapy, the levels reached statistical significance in comparison with baseline. This study shows that sCD30 levels are significantly higher in patients with hymenoptera venom allergy and indirectly confirms a preferential T(H)2-type cytokine production in these patients. sCD30 expression decreases during immunotherapy, thus confirming the immunomodulatory role of this treatment in promoting a shift to T(H)1-type cytokines.

  8. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells

    PubMed Central

    Podergajs, Neža; Motaln, Helena; Rajčević, Uroš; Verbovšek, Urška; Koršič, Marjan; Obad, Nina; Espedal, Heidi; Vittori, Miloš; Herold-Mende, Christel; Miletic, Hrvoje; Bjerkvig, Rolf; Turnšek, Tamara Lah

    2016-01-01

    The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment. PMID:26573230

  9. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants

    PubMed Central

    2013-01-01

    Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 “default” state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants. PMID:24053212

  10. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  11. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    PubMed

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).

  12. Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk.

    PubMed

    Liu, Yanhong; Ream, Amy

    2008-11-01

    To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.

  13. Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis.

    PubMed

    Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther

    2016-12-01

    The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.

  14. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Zaheed; Department of Pathology, Harvard Medical School, Boston, MA; Almeciga, Ingrid

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60more » cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.« less

  15. Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture.

    PubMed

    Silver, S

    1998-01-01

    Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together.

  16. Comprehensive molecular characterization of gastric adenocarcinoma

    PubMed Central

    Bass, Adam J.; Thorsson, Vesteinn; Shmulevich, Ilya; Reynolds, Sheila M.; Miller, Michael; Bernard, Brady; Hinoue, Toshinori; Laird, Peter W.; Curtis, Christina; Shen, Hui; Weisenberger, Daniel J.; Schultz, Nikolaus; Shen, Ronglai; Weinhold, Nils; Kelsen, David P.; Bowlby, Reanne; Chu, Andy; Kasaian, Katayoon; Mungall, Andrew J.; Robertson, A. Gordon; Sipahimalani, Payal; Cherniack, Andrew; Getz, Gad; Liu, Yingchun; Noble, Michael S.; Pedamallu, Chandra; Sougnez, Carrie; Taylor-Weiner, Amaro; Akbani, Rehan; Lee, Ju-Seog; Liu, Wenbin; Mills, Gordon B.; Yang, Da; Zhang, Wei; Pantazi, Angeliki; Parfenov, Michael; Gulley, Margaret; Piazuelo, M. Blanca; Schneider, Barbara G.; Kim, Jihun; Boussioutas, Alex; Sheth, Margi; Demchok, John A.; Rabkin, Charles S.; Willis, Joseph E.; Ng, Sam; Garman, Katherine; Beer, David G.; Pennathur, Arjun; Raphael, Benjamin J.; Wu, Hsin-Ta; Odze, Robert; Kim, Hark K.; Bowen, Jay; Leraas, Kristen M.; Lichtenberg, Tara M.; Weaver, Stephanie; McLellan, Michael; Wiznerowicz, Maciej; Sakai, Ryo; Getz, Gad; Sougnez, Carrie; Lawrence, Michael S.; Cibulskis, Kristian; Lichtenstein, Lee; Fisher, Sheila; Gabriel, Stacey B.; Lander, Eric S.; Ding, Li; Niu, Beifang; Ally, Adrian; Balasundaram, Miruna; Birol, Inanc; Bowlby, Reanne; Brooks, Denise; Butterfield, Yaron S. N.; Carlsen, Rebecca; Chu, Andy; Chu, Justin; Chuah, Eric; Chun, Hye-Jung E.; Clarke, Amanda; Dhalla, Noreen; Guin, Ranabir; Holt, Robert A.; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Li, Haiyan A.; Lim, Emilia; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Nip, Ka Ming; Robertson, A. Gordon; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Beroukhim, Rameen; Carter, Scott L.; Cherniack, Andrew D.; Cho, Juok; Cibulskis, Kristian; DiCara, Daniel; Frazer, Scott; Fisher, Sheila; Gabriel, Stacey B.; Gehlenborg, Nils; Heiman, David I.; Jung, Joonil; Kim, Jaegil; Lander, Eric S.; Lawrence, Michael S.; Lichtenstein, Lee; Lin, Pei; Meyerson, Matthew; Ojesina, Akinyemi I.; Pedamallu, Chandra Sekhar; Saksena, Gordon; Schumacher, Steven E.; Sougnez, Carrie; Stojanov, Petar; Tabak, Barbara; Taylor-Weiner, Amaro; Voet, Doug; Rosenberg, Mara; Zack, Travis I.; Zhang, Hailei; Zou, Lihua; Protopopov, Alexei; Santoso, Netty; Parfenov, Michael; Lee, Semin; Zhang, Jianhua; Mahadeshwar, Harshad S.; Tang, Jiabin; Ren, Xiaojia; Seth, Sahil; Yang, Lixing; Xu, Andrew W.; Song, Xingzhi; Pantazi, Angeliki; Xi, Ruibin; Bristow, Christopher A.; Hadjipanayis, Angela; Seidman, Jonathan; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Kim, Sang-Bae; Lee, Ju-Seog; Lu, Yiling; Mills, Gordon; Laird, Peter W.; Hinoue, Toshinori; Weisenberger, Daniel J.; Bootwalla, Moiz S.; Lai, Phillip H.; Shen, Hui; Triche, Timothy; Van Den Berg, David J.; Baylin, Stephen B.; Herman, James G.; Getz, Gad; Chin, Lynda; Liu, Yingchun; Murray, Bradley A.; Noble, Michael S.; Askoy, B. Arman; Ciriello, Giovanni; Dresdner, Gideon; Gao, Jianjiong; Gross, Benjamin; Jacobsen, Anders; Lee, William; Ramirez, Ricardo; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Sinha, Rileen; Sumer, S. Onur; Sun, Yichao; Weinhold, Nils; Thorsson, Vésteinn; Bernard, Brady; Iype, Lisa; Kramer, Roger W.; Kreisberg, Richard; Miller, Michael; Reynolds, Sheila M.; Rovira, Hector; Tasman, Natalie; Shmulevich, Ilya; Ng, Santa Cruz Sam; Haussler, David; Stuart, Josh M.; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Verhaak, Roeland G.W.; Mills, Gordon B.; Leiserson, Mark D. M.; Raphael, Benjamin J.; Wu, Hsin-Ta; Taylor, Barry S.; Black, Aaron D.; Bowen, Jay; Carney, Julie Ann; Gastier-Foster, Julie M.; Helsel, Carmen; Leraas, Kristen M.; Lichtenberg, Tara M.; McAllister, Cynthia; Ramirez, Nilsa C.; Tabler, Teresa R.; Wise, Lisa; Zmuda, Erik; Penny, Robert; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Curely, Erin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Shelton, Troy; Shelton, Candace; Sherman, Mark; Benz, Christopher; Lee, Jae-Hyuk; Fedosenko, Konstantin; Manikhas, Georgy; Potapova, Olga; Voronina, Olga; Belyaev, Smitry; Dolzhansky, Oleg; Rathmell, W. Kimryn; Brzezinski, Jakub; Ibbs, Matthew; Korski, Konstanty; Kycler, Witold; ŁaŸniak, Radoslaw; Leporowska, Ewa; Mackiewicz, Andrzej; Murawa, Dawid; Murawa, Pawel; Spychała, Arkadiusz; Suchorska, Wiktoria M.; Tatka, Honorata; Teresiak, Marek; Wiznerowicz, Maciej; Abdel-Misih, Raafat; Bennett, Joseph; Brown, Jennifer; Iacocca, Mary; Rabeno, Brenda; Kwon, Sun-Young; Penny, Robert; Gardner, Johanna; Kemkes, Ariane; Mallery, David; Morris, Scott; Shelton, Troy; Shelton, Candace; Curley, Erin; Alexopoulou, Iakovina; Engel, Jay; Bartlett, John; Albert, Monique; Park, Do-Youn; Dhir, Rajiv; Luketich, James; Landreneau, Rodney; Janjigian, Yelena Y.; Kelsen, David P.; Cho, Eunjung; Ladanyi, Marc; Tang, Laura; McCall, Shannon J.; Park, Young S.; Cheong, Jae-Ho; Ajani, Jaffer; Camargo, M. Constanza; Alonso, Shelley; Ayala, Brenda; Jensen, Mark A.; Pihl, Todd; Raman, Rohini; Walton, Jessica; Wan, Yunhu; Demchok, John A.; Eley, Greg; Mills Shaw, Kenna R.; Sheth, Margi; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Davidsen, Tanja; Hutter, Carolyn M.; Sofia, Heidi J.; Burton, Robert; Chudamani, Sudha; Liu, Jia

    2014-01-01

    Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies. PMID:25079317

  17. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  18. Chronic exposure of diesel exhaust particles induces alveolar enlargement in mice.

    PubMed

    Yoshizaki, Kelly; Brito, Jôse Mára; Moriya, Henrique T; Toledo, Alessandra C; Ferzilan, Sandra; Ligeiro de Oliveira, Ana Paula; Machado, Isabel D; Farsky, Sandra H P; Silva, Luiz F F; Martins, Milton A; Saldiva, Paulo H N; Mauad, Thais; Macchione, Mariangela

    2015-02-07

    Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified. We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus corridor in Sao Paulo (150 μg/m3). Male BALB/c mice were divided into mice receiving a nasal instillation: saline (saline; n = 30) and 30 μg/10 μL of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10, IL-13 and interferon-gamma (INF-γ) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages, CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm), a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2). DEP decreased IFN-γ levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels. MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T cells (p ≤ 0.001) and CD8+ T cells (p ≤ 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept (Lm) was increased in the DEP-exposed animals (p ≤ 0.001), and the index D2 was statistically different (p = 0.038) from the control animals. Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar enlargement in the pulmonary parenchyma of healthy mice.

  19. Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin.

    PubMed

    Gross, G; Snel, J; Boekhorst, J; Smits, M A; Kleerebezem, M

    2010-03-01

    Recently, we have identified the mannose-specific adhesin encoding gene (msa) of Lactobacillus plantarum. In the current study, structure and function of this potentially probiotic effector gene were further investigated, exploring genetic diversity of msa in L. plantarum in relation to mannose adhesion capacity. The results demonstrate that there is considerable variation in quantitative in vitro mannose adhesion capacity, which is paralleled by msa gene sequence variation. The msa genes of different L. plantarum strains encode proteins with variable domain composition. Construction of L. plantarum 299v mutant strains revealed that the msa gene product is the key-protein for mannose adhesion, also in a strain with high mannose adhering capacity. However, no straightforward correlation between adhesion capacity and domain composition of Msa in L. plantarum could be identified. Nevertheless, differences in Msa sequences in combination with variable genetic background of specific bacterial strains appears to determine mannose adhesion capacity and potentially affects probiotic properties. These findings exemplify the strain-specificity of probiotic characteristics and illustrate the need for careful and molecular selection of new candidate probiotics.

  20. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    PubMed Central

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  1. Conserved small mRNA with an unique, extended Shine-Dalgarno sequence

    PubMed Central

    Hahn, Julia; Migur, Anzhela; von Boeselager, Raphael Freiherr; Kubatova, Nina; Kubareva, Elena; Schwalbe, Harald

    2017-01-01

    ABSTRACT Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level. PMID:27834614

  2. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis

    PubMed Central

    Yap, Hui-Yeng Y.; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395

  3. Anti-tumour therapeutic efficacy of OX40L in murine tumour model.

    PubMed

    Ali, Selman A; Ahmad, Murrium; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Choolun, Esther; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2004-09-09

    OX40 ligand (OX40L), a member of TNF superfamily, is a co-stimulatory molecule involved in T cell activation. Systemic administration of mOX40L fusion protein significantly inhibited the growth of experimental lung metastasis and subcutaneous (s.c.) established colon (CT26) and breast (4T1) carcinomas. Vaccination with OX40L was significantly enhanced by combination treatment with intra-tumour injection of a disabled infectious single cycle-herpes simplex virus (DISC-HSV) vector encoding murine granulocyte macrophage-colony stimulating factor (mGM-CSF). Tumour rejection in response to OX40L therapy required functional CD4+ and CD8+ T cells and correlated with splenocyte cytotoxic T lymphocytes (CTLs) activity against the AH-1 gp70 peptide of the tumour associated antigen expressed by CT26 cells. These results demonstrate the potential role of the OX40L in cancer immunotherapy.

  4. Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks.

    PubMed

    Han, L Q; Zhou, Z; Ma, Y; Batistel, F; Osorio, J S; Loor, J J

    2018-04-18

    Changes in the production of reactive oxygen species in the mammary gland of dairy cows during the periparturient period could lead to oxidative stress and potentially impair mammary function. Phosphorylation of the transcription factor nuclear factor erythroid 2-like 2 (NFE2L2), also known as nuclear factor-E2-related factor 2, controls mRNA abundance of genes encoding antioxidant proteins and enzymes. The hypothesis was that NFE2L2 phosphorylation status and target gene mRNA abundance in the mammary gland of dairy cows is altered around parturition. Total NFE2L2 protein, phosphorylated protein (p-NFE2L2), and ratio of p-NFE2L2 to NFE2L2 along with mRNA abundance of 24 genes related to the NFE2L2 signaling pathway, apoptosis, and cell proliferation were measured in mammary tissue samples from Holstein cows at -30, 1, 15, and 30 d relative to parturition. Although total NFE2L2 protein abundance did not differ, p-NFE2L2 and p-NFE2L2-to-NFE2L2 ratio were greater after parturition. The upregulation of DNA damage inducible transcript 3 (DDIT3) postpartum indicated a localized oxidative stress state. Among genes evaluated, thioredoxin (TXN), glutathione peroxidase 1 (GPX1), and glutathione S-transferase mu 1 (GSTM1) had the highest (37.1, 15.1, and 4.8% of total mRNA measured, respectively) abundance. The mRNA abundance of various target genes with detoxifying enzymatic functions and free radical scavenging activities [glutamate-cysteine ligase catalytic subunit (GCLC); glutathione reductase (GSR); ferrochelatase (FECH); TXN; thioredoxin reductase 1 (TXNRD1); and NAD(P)H quinone dehydrogenase 1 (NQO1)] were consistently upregulated (linear effect of time) as parturition approached and lactation began. Among the transcription regulators, NFE2L2 had the highest mRNA abundance (7.3% of total mRNA measured). Abundance of NFE2L2 and other transcription factors [nuclear factor kappa B subunit 1 (NFKB1), retinoid X receptor α (RXRA), and mitogen-activated protein kinase 14 (MAPK14)] were upregulated (linear effect of time) from -30 d to 30 d relative to parturition. Overall, NFE2L2 phosphorylation and downstream signaling leading to postpartal upregulation of genes associated with oxidative stress and inflammation in the mammary gland seem to be key components of normal cellular function to maintain proper redox homeostasis. However, if the longitudinal increases in mRNA and protein abundance of these antioxidant mechanisms are a reflection of cellular oxidative stress, then the likelihood of protein and DNA damage would be greater and might be one factor compromising cell viability and potentially lactation persistency. The actual cues coordinating these molecular responses remain to be determined. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Death Induced by CD95 or CD95 Ligand Elimination

    PubMed Central

    Hadji, Abbas; Ceppi, Paolo; Murmann, Andrea E.; Brockway, Sonia; Pattanayak, Abhinandan; Bhinder, Bhavneet; Hau, Annika; De Chant, Shirley; Parimi, Vamsi; Kolesza, Piotre; Richards, JoAnne; Chandel, Navdeep; Djaballah, Hakim; Peter, Marcus E.

    2014-01-01

    SUMMARY CD95 (Fas/APO-1), when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE) is characterized by an increase in cell size and production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising new way to kill cancer cells. PMID:24656822

  6. Expression of bacteriocin LsbB is dependent on a transcription terminator.

    PubMed

    Uzelac, Gordana; Miljkovic, Marija; Lozo, Jelena; Radulovic, Zorica; Tosic, Natasa; Kojic, Milan

    2015-10-01

    The production of LsbB, leaderless class II bacteriocin, is encoded by genes (lsbB and lmrB) located on plasmid pMN5 in Lactococcus lactis BGMN1-5. Heterologous expression of the lsbB gene using the pAZIL vector (pAZIL-lsbB) in L. lactis subsp. cremoris MG7284 resulted in a significant reduction (more than 30 times) of bacteriocin LsbB expression. Subcloning and deletion experiments with plasmid pMN5 revealed that full expression of LsbB requires the presence of a complete transcription terminator located downstream of the lsbB gene. RNA stability analysis revealed that the presence of a transcription terminator increased the RNA stability by three times and the expression of LsbB by 30 times. The study of the influence of transcription terminator on the expression of other bacteriocin genes (lcnB, for lactococcin B production) indicated that this translational terminator likely functions in a lsbB-specific manner rather than in a general manner. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis.

    PubMed

    Prasad, Sujata; Hu, Shuxian; Sheng, Wen S; Chauhan, Priyanka; Singh, Amar; Lokensgard, James R

    2017-04-13

    Previous work from our laboratory has demonstrated that during acute viral brain infection, glial cells modulate antiviral T cell effector responses through the PD-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. Here, we evaluated the PD-1: PD-L1 pathway in development of brain-resident memory T cells (bT RM ) following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of immune cells was performed at 7, 14, and 30 days post-infection (dpi) to assess the shift of brain-infiltrating CD8 + T cell populations from short-lived effector cells (SLEC) to memory precursor effector cells (MPEC), as well as generation of bT RMs . In wild-type (WT) animals, we observed a switch in the phenotype of brain-infiltrating CD8 + T cell populations from KLRG1 + CD127 - (SLEC) to KLRG1 - CD127 + (MPEC) during transition from acute through chronic phases of infection. At 14 and 30 dpi, the majority of CD8 + T cells expressed CD127, a marker of memory cells. In contrast, fewer CD8 + T cells expressed CD127 within brains of infected, PD-L1 knockout (KO) animals. Notably, in WT mice, a large population of CD8 + T cells was phenotyped as CD103 + CD69 + , markers of bT RM , and differences were observed in the numbers of these cells when compared to PD-L1 KOs. Immunohistochemical studies revealed that brain-resident CD103 + bT RM cells were localized to the parenchyma. Higher frequencies of CXCR3 were also observed among WT animals in contrast to PD-L1 KOs. Taken together, our results indicate that bT RMs are present within the CNS following viral infection and the PD-1: PD-L1 pathway plays a role in the generation of this brain-resident population.

  8. The Downregulation of the Expression of CD147 by Tumor Suppressor REIC/Dkk-3, and Its Implication in Human Prostate Cancer Cell Growth Inhibition.

    PubMed

    Mori, Akihiro; Watanabe, Masami; Sadahira, Takuya; Kobayashi, Yasuyuki; Ariyoshi, Yuichi; Ueki, Hideo; Wada, Koichiro; Ochiai, Kazuhiko; Li, Shun-Ai; Nasu, Yasutomo

    2017-04-01

    The cluster of differentiation 147 (CD147), also known as EMMPRIN, is a key molecule that promotes cancer progression. We previously developed an adenoviral vector encoding a tumor suppressor REIC/Dkk-3 gene (Ad-REIC) for cancer gene therapy. The therapeutic effects are based on suppressing the growth of cancer cells, but, the underlying molecular mechanism has not been fully clarified. To elucidate this mechanism, we investigated the effects of Ad-REIC on the expression of CD147 in LNCaP prostate cancer cells. Western blotting revealed that the expression of CD147 was significantly suppressed by Ad-REIC. Ad-REIC also suppressed the cell growth of LNCaP cells. Since other researchers have demonstrated that phosphorylated mitogen-activated protein kinases (MAPKs) and c-Myc protein positively regulate the expression of CD147, we investigated the correlation between the CD147 level and the activation of MAPK and c-Myc expression. Unexpectedly, no positive correlation was observed between CD147 and its possible regulators, suggesting that another signaling pathway was involved in the downregulation of CD147. This is the first study to show the downregulation of CD147 by Ad-REIC in prostate cancer cells. At least some of the therapeutic effects of Ad-REIC may be due to the downregulation of the cancer-progression factor, CD147.

  9. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress.

    PubMed

    Miladi, Hanene; Elabed, Hamouda; Ben Slama, Rihab; Rhim, Amel; Bakhrouf, Amina

    2017-03-01

    Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry. This ubiquity can be partly explained by the ability of the organism to grow and persist at very low temperatures, a consequence of its ability to accumulate cryoprotective compound called osmolytes. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the stress response genes opuCA and betL (encoding carnitine and betaine transporters, respectively) and the housekeeping gene 16S rRNA. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting cold and freezing stress, conditions usually used to preserve foods. We showed that expression of the two cold-adapted genes encoded the transporters of the cryoprotectants carnitine and betaine in ATCC 19115 and the food-isolated L. monocytogenes S1 is induced after cold and freezing stress exposure. Furthermore, transcriptional analysis of the genes encoding opuCA and betL revealed that each transporter is induced to different degrees upon cold shock of L. monocytogenes ATCC 19115 and S1. Our results confirm an increase in carnitine uptake at low temperatures more than in betaine after cold-shocked temperature compared to the non-stress control treatment. It was concluded the use of carnitine and betaine as cryoprotectants is essential for rapid induction of the tested stress response under conditions typically encountered during food preservation.

  10. Markers of apoptosis and proliferation related gene products as predictors of treatment outcome in childhood acute lymphoblastic leukemia.

    PubMed

    Hafez, Mohammad; Al-Tonbary, Youssef; El-Bayoumi, Mohammed A; Hatem, Nadia; Hawas, Samia; Mansour, Ahmed; Marzouk, Iman; Hafez, Mona M; Yahia, Sohier; Farahat, Nahla

    2007-06-01

    The aim of the study is to characterize markers of apoptosis in children with acute lymphoblastic leukemia (ALL) in relation to treatment outcome of the disease. The study was performed on 34 children with ALL and 39 healthy children as a control group. Apoptosis was assessed by cell morphology; DNA fragmentation; ELISA and RT-PCR for CD95, CD95L, BcL-2 and nuclear factor-kappa B (NF-kappaB); and flow cytometry for CD95, CD40, CD49d and CD11a. Apoptosis was significantly lower in patients than controls. Apoptosis detected by CD95 ligand was significantly lower in cases with no remission after treatment than those who achieved remission. Anti-apoptotic factors: CD40, BcL-2, and NF-kappaB were all found to be higher in cases than controls and in cases with no remission than those achieved remission. CD49d was significantly lower in cases than controls, and significantly lower in cases with who did not achieve remission. CD11a levels were similar in the various groups. Delayed apoptosis of ALL cells is genetically controlled either directly or indirectly by a network of oncogenes and tumor suppressor genes. CD40 appeared to stimulate both T and B lineage and is considered the most potent influencer and predictor of resistance to therapy. Inhibitors for the activity of CD40, Bcl-2 and NF-kappaB as well as stimulants to CD95 could have a potential therapeutic benefit.

  11. NYVAC vector modified by C7L viral gene insertion improves T cell immune responses and effectiveness against leishmaniasis.

    PubMed

    Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M

    2016-07-15

    The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates

    PubMed Central

    Padler-Karavani, Vered; Hurtado-Ziola, Nancy; Chang, Yung-Chi; Sonnenburg, Justin L.; Ronaghy, Arash; Yu, Hai; Verhagen, Andrea; Nizet, Victor; Chen, Xi; Varki, Nissi; Varki, Ajit; Angata, Takashi

    2014-01-01

    Siglecs are sialic acid-binding Ig-like lectins that recognize sialoglycans via amino-terminal V-set domains. CD33-related Siglecs (CD33rSiglecs) on innate immune cells recognize endogenous sialoglycans as “self-associated molecular patterns” (SAMPs), dampening immune responses via cytosolic immunoreceptor tyrosine-based inhibition motifs that recruit tyrosine phosphatases. However, sialic acid-expressing pathogens subvert this mechanism through molecular mimicry. Meanwhile, endogenous host SAMPs must continually evolve to evade other pathogens that exploit sialic acids as invasion targets. We hypothesized that these opposing selection forces have accelerated CD33rSiglec evolution. We address this by comparative analysis of major CD33rSiglec (Siglec-3, Siglec-5, and Siglec-9) orthologs in humans, chimpanzees, and baboons. Recombinant soluble molecules displaying ligand-binding domains show marked quantitative and qualitative interspecies differences in interactions with strains of the sialylated pathogen, group B Streptococcus, and with sialoglycans presented as gangliosides or in the form of sialoglycan microarrays, including variations such as N-glycolyl and O-acetyl groups. Primate Siglecs also show quantitative and qualitative intra- and interspecies variations in expression patterns on leukocytes, both in circulation and in tissues. Taken together our data explain why the CD33rSiglec-encoding gene cluster is undergoing rapid evolution via multiple mechanisms, driven by the need to maintain self-recognition by innate immune cells, while escaping 2 distinct mechanisms of pathogen subversion.—Padler-Karavani, V., Hurtado-Ziola, N., Chang, Y.-C., Sonnenburg, J. L., Ronaghy, A., Yu, H., Verhagen, A., Nizet, V., Chen, X., Varki, N., Varki, A., Angata, T. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. PMID:24308974

  13. Genomic structure and chromosomal localization of GML (GPI-anchored molecule-like protein), a gene induced by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Yasutoshi; Furuhata, Tomohisa; Nakamura, Yusuke

    1997-05-01

    Among its known functions, tumor suppressor gene p53 serves as a transcriptional regulator and mediates various signals through activation of downstream genes. We recently identified a novel gene, GML (glycosylphosphatidylinositol (GPI)-anchored molecule-like protein), whose expression is specifically induced by wildtype p53. To characterize the GML gene further, we determined 35.8 kb of DNA sequence that included a consensus binding sequence for p53 and the entire GML gene. The GML gene consists of four exons, and the p53-binding sequence is present in the 5{prime}-flanking region. In genomic organization this gene resembles genes encoding murine Ly-6 glycoproteins, a human homologue of themore » Ly-6 family called RIG-E, and CD59; products of these genes, known as GPI-anchored proteins, are variously involved in signal transduction, cell-cell adhesion, and cell-matrix attachment. FISH analysis revealed that the GML gene is located on human chromosome 8q24.3. Genes encoding at least two other GPI-anchored molecules, E48 and RIG-E, are also located in this region. 20 refs., 2 figs., 1 tab.« less

  14. Cloning and expression analysis of FaPR-1 gene in strawberry

    NASA Astrophysics Data System (ADS)

    Mo, Fan; Luo, Ya; Ge, Cong; Mo, Qin; Ling, Yajie; Luo, Shu; Tang, Haoru

    2018-04-01

    The FaPR-1 gene was cloned by RT-PCR from `Benihoppe' strawberry and its bioinformatics analysis was conducted. The results showed that the open reading frame was 483 bp encoding encoding l60 amino acids which protein molecular weight and theoretical isoelectricity were 17854.17 and 8.72 respectively. Subcellular localization prediction shows that this gene is located extracellularly. By comparing strawberry FaPR-l and other plant Pathogenesis-related protein, homology and phylogenetic tree construction showed that the homology with grapes, peach is relatively close. In the treatments of ABA, sucrose and the mixture of the two, the expression of FaPR-1 in strawberry fruit were significantly increased.

  15. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  16. Determining the locations of the various CIRC recording format information blocks (user data blocks, C2 and C1 words and EFM frames) on a recorded compact disc

    NASA Technical Reports Server (NTRS)

    Howe, Dennis G.

    1993-01-01

    Just prior to its being EFM modulated (i.e., converted to eight-to-fourteen channel data by the EFM encoder) and written to a Compact Disc (CD), information that passes through the CIRC Block Encoder is grouped into 33-byte blocks referred to as EFM frames. Twenty four of the bytes that make up a given EFM frame are user data that was input into the CIRC encoder at various (different) times, 4 of the bytes of this same EFM frame were created by the C2 ECC encoder (each at a different time), and another 4 were created by the C1 ECC encoder (again, each at a different time). The one remaining byte of the given EFM frame, which is known as the EFM frame C&D (for Control & Display) byte, carries information that identifies which portion of the current disc program track the given EFM frame belongs to and also specifies the location of the given EFM frame on the disc (in terms of a time stamp that has a resolution of l/75th second, or 98 EFM frames). (Note: since the program track and time information is stored as a 98-byte word, a logical group consisting of 98 consecutive EFM frames must be read, and their respective C&D bytes must be catenated and decoded, before the program track identification and time position information that pertains to the entire block of 98 EFM frames can be obtained.) The C&D byte is put at the start (0th byte) of an EFM frame in real time; its placement completes the construction of the EFM frame - it is assigned just before the EFM frame enters the EFM encoder. Four distinct blocks of data are referred to: 24-byte User Input Data Blocks; 28-byte C2 words; 32-byte C1 words; and 33-byte EFM frames.

  17. Functional Expression of a Bacterial Heavy Metal Transporter in Arabidopsis Enhances Resistance to and Decreases Uptake of Heavy Metals1[w

    PubMed Central

    Lee, Joohyun; Bae, Hyunju; Jeong, Jeeyon; Lee, Jae-Yun; Yang, Young-Yell; Hwang, Inhwan; Martinoia, Enrico; Lee, Youngsook

    2003-01-01

    Large parts of agricultural soil are contaminated with lead (Pb) and cadmium (Cd). Although most environments are not heavily contaminated, the low levels observed nonetheless pose a high risk of heavy metal accumulation in the food chain. Therefore, approaches to develop plants with reduced heavy metal uptake are important. Recently, many transgenic plants with increased heavy metal resistance and uptake of heavy metals were developed for the purpose of phytoremediation. However, to reduce heavy metal in the food chain, plants that transfer less heavy metals to the shoot are required. We tested whether an Escherichia coli gene, ZntA, which encodes a Pb(II)/Cd(II)/Zn(II) pump, could be useful for developing plants with reduced heavy metal content. Yeast cells transformed with this gene had improved resistance to Pb(II) and Cd(II). In Arabidopsis plants transformed with ZntA, ZntA was localized at the plasma membrane and improved the resistance of the plants to Pb(II) and Cd(II). The shoots of the transgenic plants had decreased Pb and Cd content. Moreover, the transgenic protoplasts showed lower accumulation of Cd and faster release of preloaded Cd than wild-type protoplasts. These results show that a bacterial transporter gene, ZntA, can be functionally expressed in plant cells, and that that it may be useful for the development of crop plants that are safe from heavy metal contamination. PMID:14512517

  18. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses.

    PubMed

    Qiao, Jing; Zhang, Qiang; Alali, Walid Q; Wang, Jiawei; Meng, Lingyuan; Xiao, Yingping; Yang, Hua; Chen, Sheng; Cui, Shenghui; Yang, Baowei

    2017-05-02

    Extended-spectrum β-lactamases (ESBLs)-producing Salmonella is considered a serious concern to public health worldwide. However, limited information is available on ESBLs-producing Salmonella in retail chicken products in China. The objective of this study was to characterize ESBLs-producing Salmonella isolates from retail chickens in China. A total of 890 Salmonella isolates from retail chicken carcasses collected from 4 provinces were firstly screened for ESBLs-production phenotype via the double-disk synergy test method. A total of 96 (10.8%, n=890) ESBLs-producing Salmonella were identified and subjected to PFGE analysis, characterization for the presence of ESBLs encoding genes, transposons, carbapenemase and virulence genes. A total of 59 PFGE profiles were detected in these 96 isolates, among which 57.3% were found to harbor bla TEM-1 , whereas 30.2%, 24.0%, 18.8% and 7.3% were carrying bla OXA-1 , bla CTX-M-15 , bla CTX-M-3 and bla PSE-1 genes, respectively. Moreover, 42 (43.8%) isolates co-carried 2 ESBLs-producing genes, and two (2.1%) isolates co-carried 3 genes. Furthermore, 24 (25.0%) ESBLs-producing isolates carried VIM and 10 (10.4%) carried KPC encoding genes that closely associated with carbapenems resistance. Eighty-eight isolates harbored transposons ranging from 4.2% for Tn903 to 76.0% for Tn21. Out of the 88 Salmonella that harbored transposons, 25%, 22.7%, 23.9%, 10.2% and 1.1% of isolates were found to carry 2, 3, 4, 5 and 6 transposons, respectively. The minimum inhibitory concentration (MIC) values for cephalosporins (ceftriaxone, cefoperazone and cefoxitin) to ESBLs-producing isolates were from 4 to 1024μg/mL, for nalidixic acid were from 64 to 512μg/mL, for fluoroquinolones (ciprofloxacin, levofloxacin and gatifloxacin) were from 4 to 256μg/mL. Twenty-nine virulence genes were detected in the 96 ESBLs-producing isolates with 2.1% harbored spvR (lowest) and 90.6% harbored marT and steB (highest). All isolates carried at least one virulence gene, 83.3% of the isolates co-carried ≥10, 17.7% co-carried ≥15, and 1.0% co-carried 23 virulence genes. Interestingly, 16.7% of the isolates resistant to >12 antibiotics tested and shown to carry >4 transposons and 10 virulence genes. Our findings indicated that ESBLs-producing Salmonella isolated from retail chicken meat in China were highly resistant to antibiotics, frequently harbored transposons, virulence genes, carbapenems hydrolysis enzymes and ESBLs encoding genes. These isolates can pose a significant public health risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed.

    PubMed

    Tornow, J; Santangelo, G M

    1994-06-01

    A duplicate copy of the RPL37A gene (encoding ribosomal protein L37) was cloned and sequenced. The coding region of RPL37B is very similar to that of RPL37A, with only one conservative amino-acid difference. However, the intron and flanking sequences of the two genes are extremely dissimilar. Disruption experiments indicate that the two loci are not functionally equivalent: disruption of RPL37B was insignificant, but disruption of RPL37A severely impaired the growth rate of the cell. When both RPL37 loci are disrupted, the cell is unable to grow at all, indicating that rpL37 is an essential protein. The functional disparity between the two RPL37 loci could be explained by differential gene expression. The results of two experiments support this idea: gene fusion of RPL37A to a reporter gene resulted in six-fold higher mRNA levels than was generated by the same reporter gene fused to RPL37B, and a modest increase in gene dosage of RPL37B overcame the lack of a functional RPL37A gene.

  20. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  1. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation.

    PubMed

    Zhyvoloup, Alexander; Melamed, Anat; Anderson, Ian; Planas, Delphine; Lee, Chen-Hsuin; Kriston-Vizi, Janos; Ketteler, Robin; Merritt, Andy; Routy, Jean-Pierre; Ancuta, Petronela; Bangham, Charles R M; Fassati, Ariberto

    2017-07-01

    HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation.

  2. Characterization of an N-Terminal Non-Core Domain of RAG1 Gene Disrupted Syrian Hamster Model Generated by CRISPR Cas9.

    PubMed

    Miao, Jinxin; Ying, Baoling; Li, Rong; Tollefson, Ann E; Spencer, Jacqueline F; Wold, William S M; Song, Seok-Hwan; Kong, Il-Keun; Toth, Karoly; Wang, Yaohe; Wang, Zhongde

    2018-05-06

    The accumulating evidence demonstrates that Syrian hamsters have advantages as models for various diseases. To develop a Syrian hamster ( Mesocricetus auratus ) model of human immunodeficiency caused by RAG1 gene mutations, we employed the CRISPR/Cas9 system and introduced an 86-nucleotide frameshift deletion in the hamster RAG1 gene encoding part of the N-terminal non-core domain of RAG1. Histological and immunohistochemical analyses demonstrated that these hamsters (referred herein as RAG1-86nt hamsters) had atrophic spleen and thymus, and developed significantly less white pulp and were almost completely devoid of splenic lymphoid follicles. The RAG1-nt86 hamsters had barely detectable CD3⁺ and CD4⁺ T cells. The expression of B and T lymphocyte-specific genes (CD3γ and CD4 for T cell-specific) and (CD22 and FCMR for B cell-specific) was dramatically reduced, whereas the expression of macrophage-specific (CD68) and natural killer (NK) cell-specific (CD94 and KLRG1) marker genes was increased in the spleen of RAG1-nt86 hamsters compared to wildtype hamsters. Interestingly, despite the impaired development of B and T lymphocytes, the RAG1-86nt hamsters still developed neutralizing antibodies against human adenovirus type C6 (HAdV-C6) upon intranasal infection and were capable of clearing the infectious viruses, albeit with slower kinetics. Therefore, the RAG1-86nt hamster reported herein (similar to the hypomorphic RAG1 mutations in humans that cause Omenn syndrome), may provide a useful model for studying the pathogenesis of the specific RAG1-mutation-induced human immunodeficiency, the host immune response to adenovirus infection and other pathogens as well as for evaluation of cell and gene therapies for treatment of this subset of RAG1 mutation patients.

  3. Molecular cloning and heterologous expression of a biosynthetic gene cluster for the antitubercular agent D-cycloserine produced by Streptomyces lavendulae.

    PubMed

    Kumagai, Takanori; Koyama, Yusuke; Oda, Kosuke; Noda, Masafumi; Matoba, Yasuyuki; Sugiyama, Masanori

    2010-03-01

    In the present study, we successfully cloned a 21-kb DNA fragment containing a d-cycloserine (DCS) biosynthetic gene cluster from a DCS-producing Streptomyces lavendulae strain, ATCC 11924. The putative gene cluster consists of 10 open reading frames (ORFs), designated dcsA to dcsJ. This cluster includes two ORFs encoding D-alanyl-D-alanine ligase (dcsI) and a putative membrane protein (dcsJ) as the self-resistance determinants of the producer organism, indicated by our previous work. When the 10 ORFs were introduced into DCS-nonproducing Streptomyces lividans 66 as a heterologous host cell, the transformant acquired DCS productivity. This reveals that the introduced genes are responsible for the biosynthesis of DCS. As anticipated, the disruption of dcsG, seen in the DCS biosynthetic gene cluster, made it possible for the strain ATCC 11924 to lose its DCS production. We here propose the DCS biosynthetic pathway. First, L-serine is O acetylated by a dcsE-encoded enzyme homologous to homoserine O-acetyltransferase. Second, O-acetyl-L-serine accepts hydroxyurea via an O-acetylserine sulfhydrylase homolog (dcsD product) and forms O-ureido-L-serine. The hydroxyurea must be supplied by the catalysis of a dcsB-encoded arginase homolog using the L-arginine derivative, N(G)-hydroxy-L-arginine. The resulting O-ureido-L-serine is then racemized to O-ureido-D-serine by a homolog of diaminopimelate epimerase. Finally, O-ureido-D-serine is cyclized to form DCS with the release of ammonia and carbon dioxide. The cyclization must be done by the dcsG or dcsH product, which belongs to the ATP-grasp fold family of protein.

  4. Genome Data Mining and Soil Survey for the Novel Group 5 [NiFe]-Hydrogenase To Explore the Diversity and Ecological Importance of Presumptive High-Affinity H2-Oxidizing Bacteria ▿†

    PubMed Central

    Constant, Philippe; Chowdhury, Soumitra Paul; Hesse, Laura; Pratscher, Jennifer; Conrad, Ralf

    2011-01-01

    Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H2 possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H2-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H2 oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 106 to 108 hhyL gene copies g (dry weight)−1. Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H2-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H2 oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H2 by soil, because high-affinity H2 oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur. PMID:21742924

  5. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Bin; Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582; Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +}more » T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.« less

  6. Determinants of gliadin-specific T cell selection in celiac disease.

    PubMed

    Petersen, Jan; van Bergen, Jeroen; Loh, Khai Lee; Kooy-Winkelaar, Yvonne; Beringer, Dennis X; Thompson, Allan; Bakker, Sjoerd F; Mulder, Chris J J; Ladell, Kristin; McLaren, James E; Price, David A; Rossjohn, Jamie; Reid, Hugh H; Koning, Frits

    2015-06-15

    In HLA-DQ8-associated celiac disease (CD), the pathogenic T cell response is directed toward an immunodominant α-gliadin-derived peptide (DQ8-glia-α1). However, our knowledge of TCR gene usage within the primary intestinal tissue of HLA-DQ8 (+) CD patients is limited. We identified two populations of HLA-DQ8-glia-α1 tetramer(+) CD4(+) T cells that were essentially undetectable in biopsy samples from patients on a gluten-free diet but expanded rapidly and specifically after antigenic stimulation. Distinguished by expression of TRBV9, both T cell populations displayed biased clonotypic repertoires and reacted similarly against HLA-DQ8-glia-α1. In particular, TRBV9 paired most often with TRAV26-2, whereas the majority of TRBV9(-) TCRs used TRBV6-1 with no clear TRAV gene preference. Strikingly, both tetramer(+)/TRBV9(+) and tetramer(+)/TRBV9(-) T cells possessed a non-germline-encoded arginine residue in their CDR3α and CDR3β loops, respectively. Comparison of the crystal structures of three TRBV9(+) TCRs and a TRBV9(-) TCR revealed that, as a result of distinct TCR docking modes, the HLA-DQ8-glia-α1 contacts mediated by the CDR3-encoded arginine were almost identical between TRBV9(+) and TRBV9(-) TCRs. In all cases, this interaction centered on two hydrogen bonds with a specific serine residue in the bound peptide. Replacement of serine with alanine at this position abrogated TRBV9(+) and TRBV9(-) clonal T cell proliferation in response to HLA-DQ8-glia-α1. Gluten-specific memory CD4(+) T cells with structurally and functionally conserved TCRs therefore predominate in the disease-affected tissue of patients with HLA-DQ8-mediated CD. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Characterization of the Tupaia rhabdovirus genome reveals a long open reading frame overlapping with P and a novel gene encoding a small hydrophobic protein.

    PubMed

    Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto

    2005-06-01

    Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses.

  8. Characterization of the Tupaia Rhabdovirus Genome Reveals a Long Open Reading Frame Overlapping with P and a Novel Gene Encoding a Small Hydrophobic Protein

    PubMed Central

    Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto

    2005-01-01

    Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses. PMID:15890917

  9. Phosphorylation of uridine and cytidine by uridine-cytidine kinase.

    PubMed

    Qian, Yahui; Ding, Qingbao; Li, Yanyu; Zou, Zhi; Yan, Bingkun; Ou, Ling

    2014-10-20

    Uridine 5'-monophosphate (5'-UMP) and cytidine 5'-monophosphate (5'-CMP) were biosynthesized by recombinant uridine-cytidine kinase (UCK) and acetate kinase (ACK). The ack and uck genes from Escherichia coli K12 and the uck1, uck2 and ack genes from Lactobacillus bulgaricus ATCC 11842 were cloned and inserted into the plasmid pET-28a. All of the recombinant E. coli strains were capable of overexpressing UCK and ACK, which catalyzed the reaction using guanosine 5'-triphosphate (GTP) as a phosphate intermediate that was regenerated by ACK from acetyl phosphate. The effect of several parameters, including the substrate concentration, the GTP concentration, the temperature and the reaction pH, were optimized. High efficiency was achieved if uridine or cytidine was phosphorylated by UCK encoded by uck from E. coli and ACK encoded by ack from L. bulgaricus. The maximum conversion yield of 5'-UMP and 5'-CMP was 97% at 37 °C and pH 7.5 when 30 mM uridine/cytidine and 0.5mM GTP in a total of 1 mL were used. In addition, the 5'-UMP and 5'-CMP products were very stable in the reaction system and did not undergo significant degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1(STEM) Mouse.

    PubMed

    Mercier, Francois E; Sykes, David B; Scadden, David T

    2016-06-14

    Defining the molecular regulators of hematopoietic stem and progenitor cells (HSPCs) requires in vivo functional analyses. Competitive bone marrow transplants (BMTs) compare control and test HSPCs to demonstrate the functional role of a genetic change or chemical perturbation. Competitive BMT is enabled by antibodies that specifically recognize hematopoietic cells from congenic mouse strains due to variants of the cell surface protein CD45, designated CD45.1 and CD45.2. The current congenic competitor strain, B6.SJL-Ptprc(a) Pepc(b)/BoyJ (CD45.1), has a substantial inherent disadvantage in competition against the C57BL/6 (CD45.2) strain, confounding experimental interpretation. Despite backcrossing, the congenic interval over which the B6.SJL-Ptprc(a) Pepc(b)/BoyJ strain differs is almost 40 Mb encoding ∼300 genes. Here, we demonstrate that a single amino acid change determines the CD45.1 epitope. Further, we report on the single targeted exon mutant (STEM) mouse strain, CD45.1(STEM), which is functionally equivalent to CD45.2 cells in competitive BMT. This strain will permit the precise definition of functional roles for candidate genes using in vivo HSPC assays. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice.

    PubMed

    Bandara, Aloka B; DeShazer, David; Inzana, Thomas J; Sriranganathan, Nammalwar; Schurig, Gerhardt G; Boyle, Stephen M

    2008-09-01

    Burkholderia mallei is the etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular mechanisms of B. mallei pathogenesis. The putative carboxy-terminal processing protease (CtpA) of B. mallei is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. All species and isolates of Burkholderia carry a highly conserved copy of ctpA. We studied the involvement of CtpA on growth, cell morphology, persistence, and pathogenicity of B. mallei. A sucrose-resistant strain of B. mallei was constructed by deleting a major portion of the sacB gene of the wild type strain ATCC 23344 by gene replacement, and designated as strain 23344DeltasacB. A portion of the ctpA gene (encoding CtpA) of strain 23344DeltasacB was deleted by gene replacement to generate strain 23344DeltasacBDeltactpA. In contrast to the wild type ATCC 23344 or the sacB mutant 23344DeltasacB, the ctpA mutant 23344DeltasacBDeltactpA displayed altered cell morphologies with partially or fully disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in J774.2 murine macrophages. The expression of mRNA of adtA, the gene downstream of ctpA was similar among the three strains suggesting that disruption of ctpA did not induce any polar effects. As with the wild type or the sacB mutant, the ctpA mutant exhibited a dose-dependent lethality when inoculated intraperitoneally into CD1 mice. The CD1 mice inoculated with a non-lethal dose of the ctpA mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth, cell morphology and intracellular survival of B. mallei, and a ctpA mutant protects CD1 mice against glanders.

  12. Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.

    PubMed

    Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B

    2013-02-01

    Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.

  13. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.

    PubMed

    Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas

    2007-11-01

    Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.

  14. Lactobacillus casei Ferments the N-Acetylglucosamine Moiety of Fucosyl-α-1,3-N-Acetylglucosamine and Excretes l-Fucose

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio

    2012-01-01

    We have previously characterized from Lactobacillus casei BL23 three α-l-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the l-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-l-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-l-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria. PMID:22544237

  15. Toxicological responses of Laeonereis acuta (Polychaeta, Nereididae) after acute, subchronic and chronic exposure to cadmium.

    PubMed

    Dolagaratz Carricavur, Arantxa; Chiodi Boudet, Leila; Romero, María Belén; Polizzi, Paula; Marcovecchio, Jorge Eduardo; Gerpe, Marcela

    2018-03-01

    The objective of this study was to analyze the toxicological responses of the estuarine polychaete Laeonereis acuta after acute (96h), subchronic (7 days) and chronic (14 days) exposure to cadmium (Cd). Concentrations of metallothioneins (MT), lipid peroxidation (LPO), total Cd and metal-rich granules (MRG) were evaluated. Seasonal variations of MT and LPO levels in the wild were also measured. Polychaetes were obtained in the Quequén estuary located southeast of Buenos Aires Province, Argentina. For the acute toxicity assay, individuals were exposed to 10; 30, 65; 310; 600; 1300; 2000; 4300; 8100; 16300µgCdL -1 , which included levels of environmental relevance and median lethal concentrations (LC 50 ) for related species of polychaete. Based on 96h LC 50 values, polychaetes were exposed to sublethal doses of Cd. The concentrations for both subchronic and chronic assays were: 10; 30; 65; 310; 600; 1300; 2000; 4300µgCdL -1 . The 96h LC 50 value was 8234.9µgL -1 , which was within the values reported for other species of polychaete, indicating a high tolerance to Cd. MT induction was not observed for any time exposure. In additoin, LPO levels showed no differences with respect to control levels, which indicated an absence of oxidative damage caused by Cd. However, the total Cd and MRG-Cd concentrations in L. acuta in all tested treatments showed significant differences with respect to control levels. L. acuta were able to accumulate Cd in their tissues in the form of granules which are the main mechanism of Cd detoxification. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Structural Insight into the Clostridium difficile Ethanolamine Utilisation Microcompartment

    PubMed Central

    Faulds-Pain, Alexandra; Lewis, Richard J.; Marles-Wright, Jon

    2012-01-01

    Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen. PMID:23144756

  17. [Effect of Inhibiting and Activating Wnt Signalling Pathway on NSC67657-inducing Monocytic Differentiation of HL-60 Cells].

    PubMed

    Wang, Wei-Jia; Zhang, Xiu-Ming; Zhang, Yan; Wang, Jin-Shu

    2016-04-01

    To investigate the effect of inhibiting and activating Wnt signalling pathway on monocyte differentiation of HL-60 cells induced with a new steroidal drug NSC67657 and its possible mechamism. The HL-60 cells were treated with 5, 10 and 20 µmol/L XAV-939 (inhibitor of Wnt signalling pathway) for 3 days, and with 10, 20 and 30 mmol/L LiCl (activator of Wnt signalling pathway) for 1 day; the expression levels of down-stream genes and proteins of Wnt signolling pathway were detected by RT-PCR and Western blot, respectively; the expression of cell surface differentiation antigen CD14 and early apoptosis of HL-60 cells was detected by flow cytometry, moreover the most suitable concentration of Wnt inhibitor and activator for HL-60 cells was determined. Then the HL-60 cells with inhibited and activated Wnt pathway were treated with NSC67657 of 10 µmol/L for 3 days; the expression levels of CD14 and down-stream target proteins of Wnt signalling pathway in blank control (culture mediam) group, simple NSC67657-treated group, NSC67657 combined with inhibitor group and NSC67657 combined activator group were compared and analyzed. 20 µmol/L XAV-939 and 20 mmol/L LiCl could effectively inhibit and activate Wnt signalling pathway of HL-60 cells respectively, could significantly down- and up-regulate the expression of cyclinD1, TCF1 and c-Jun genes (P < 0.05) and proteins (P < 0.05); moreover, the number of CD10(+) HL-60 cells in these conditions was below 1%, no early apoptosis of HL-60 cells was found. In the simple NSC67657-treated groups, the expression of cyclinD1, TCF1 and c-Jun proteins was down-regulated (P < 0.05), and the percentage of CD14(+) HL-60 cells accounted for 62.13 ± 9.44; after the HL-60 cells were treated with XAV-939, the NSC67657 could more significantly down-regulate the expression of cyclinD1, TCF1 and c-Jun proteins and the percentage of CD14(+) HL-60 cell accounted for 84.17 ± 5.39%, as compared with simple NSC67657-treated group; as compared with blank controls group, the expression of cyclinD1, TCF1 and c-Jun proteins was more obviously down-regulated and the percentage of CD14(+) HL-60 cells decreased to 33.99 ± 8.37% in NSC67657 combined LiC1 streated group, but which were higher than those in simple NSC67657-treated group (P < 0.05). 20 µmol/L XAV-939 and 20 mmol/L LiCl as effective inhabitor and activator of Wnt signalling pathway respectively can significantly down- and up-regulate the expression of Wnt down-stream pathway target genes and proteins. The influence of XAV-939 and LiC1 on differentiation of HL-60 cells induced by NSC67657 suggests that Wnt signalling pathway plays a key role in monocyte differentiction of HL-60 cells induced by NSC67657.

  18. Anion dependent self-assembly of 56-metal Cd-Ln nanoclusters with enhanced near-infrared luminescence properties

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Schipper, Desmond; Zhang, Lijie; Yang, Keqin; Huang, Shaoming; Jiang, Jijun; Su, Chengyong; Jones, Richard A.

    2014-08-01

    Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined.Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined. Electronic supplementary information (ESI) available: Full experimental and characterization details for 1-4. CCDC 972369-972372. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr03075c

  19. Histone Acetylation at the Ifng Promoter in Tolerized CD4 Cells Is Associated with Increased IFN-γ Expression during Subsequent Immunization to the Same Antigen1

    PubMed Central

    Long, Meixiao; Slaiby, Aaron M.; Wu, Shuang; Hagymasi, Adam T.; Mihalyo, Marianne A.; Bandyopadhyay, Suman; Vella, Anthony T.; Adler, Adam J.

    2010-01-01

    When naive CD4+ Th cells encounter cognate pathogen-derived Ags they expand and develop the capacity to express the appropriate effector cytokines for neutralizing the pathogen. Central to this differentiation process are epigenetic modifications within the effector cytokine genes that allow accessibility to the transcriptional machinery. In contrast, when mature self-reactive CD4 cells encounter their cognate epitopes in the periphery they generally undergo a process of tolerization in which they become hyporesponsive/anergic to antigenic stimulation. In the current study, we used a TCR transgenic adoptive transfer system to demonstrate that in a dose-dependent manner parenchymal self-Ag programs cognate naive CD4 cells to acetylate histones bound to the promoter region of the Ifng gene (which encodes the signature Th1 effector cytokine) during peripheral tolerization. Although the Ifng gene gains transcriptional competence, these tolerized CD4 cells fail to express substantial amounts of IFN-γ in response to antigenic stimulation apparently because a blockage in TCR-mediated signaling also develops. Nevertheless, responsiveness to antigenic stimulation is partially restored when self-Ag-tolerized CD4 cells are retransferred into mice infected with a virus expressing the same Ag. Additionally, there is preferential boosting in the ability of these CD4 cells to express IFN-γ relative to other cytokines with expression that also becomes impaired. Taken together, these results suggest that epigenetic modification of the Ifng locus during peripheral CD4 cell tolerization might allow for preferential expression of IFN-γ during recovery from tolerance. PMID:17947638

  20. Molecular Cloning and Analysis of the Tryptophan oxygenase Gene in the Silkworm, Bombyx mori

    PubMed Central

    Yan, Liu; Zhi-Qi, Meng; Bao-Long, Niu; Li-Hua, He; Hong-Biao, Weng; Wei-Feng, Shen

    2008-01-01

    A Bombyx mori L. (Lepidoptera: Bombycidae) gene encoding tryptophan oxygenase has been molecularly cloned and analyzed. The tryptophan oxygenase cDNA had 1374 nucleotides that encoded a 401 amino acid protein with an estimated molecular mass of 46.47 kDa and a PI of 5.88. RT-PCR analysis showed that the B. mori tryptophan oxygenase gene was transcribed in all examined stages. Tryptophan oxygenase proteins are relatively well conserved among different orders of arthropods. PMID:20331401

  1. Cloning of the cDNA for a hematopoietic cell-specific protein related to CD20 and the {beta} subunit of the high-affinity IgE receptor: Evidence for a family of proteins with four membrane-spanning regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adra, C.N.; Morrison, P.; Lim, B.

    1994-10-11

    The authors report the cloning of the cDNA for a human gene whose mRNA is expressed specifically in hematopoietic cells. A long open reading frame in the 1.7-kb mRNA encodes a 214-aa protein of 25 kDa with four hydrophobic regions consistent with a protein that traverses the membrane four times. To reflect the structure and expression of this gene in diverse hematopoietic lineages of lymphoid and myeloid origin, the authors named the gene HTm{sub 4}. The protein is about 20% homologous to two other {open_quotes}four-transmembrane{close_quotes} proteins; the B-cell-specific antigen CD20 and the {beta} subunit of the high-affinity receptor for IgE,more » Fc{sub {epsilon}}RI{beta}. The highest homologies among the three proteins are found in the transmembrane domains, but conserved residues are also recognized in the inter-transmembrane domains and in the N and C termini. Using fluorescence in situ hybridization, they localized HTm{sub 4} to human chromosome 11q12-13.1, where the CD20 and Fc{sub {epsilon}}RI{beta} genes are also located. Both the murine homologue for CD20, Ly-44, and the murine Fc{sub {epsilon}}RI{beta} gene map to the same region in murine chromosome 19. The authors propose that the HTm{sub 4}, CD20, and Fc{sub {epsilon}}RI{beta} genes evolved from the same ancestral gene to form a family of four-transmembrane proteins. It is possible that other related members exist. Similar to CD20 and Fc{sub {epsilon}}RI{beta}, it is likely that Htm{sub 4} has a role in signal transduction and, like Fc{sub {epsilon}}RI{beta}, might be a subunit associated with receptor complexes.« less

  2. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products.

    PubMed

    Owusu-Kwarteng, James; Wuni, Alhassan; Akabanda, Fortune; Tano-Debrah, Kwaku; Jespersen, Lene

    2017-03-14

    B. cereus are of particular interest in food safety and public health because of their capacity to cause food spoilage and disease through the production of various toxins. The aim of this study was to determine the prevalence, virulence factor genes and antibiotic resistance profile of B. cereus sensu lato isolated from cattle grazing soils and dairy products in Ghana. A total of 114 samples made up of 25 soil collected from cattle grazing farm land, 30 raw milk, 28 nunu (yoghurt-like product) and 31 woagashie (West African soft cheese). Ninety-six B. cereus sensu lato isolates from 54 positive samples were screened by PCR for the presence of 8 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK and entFM), and one emetic gene (ces). Phenotypic resistance to 15 antibiotics were also determined for 96 B. cereus sensu lato isolates. About 72% (18 of 25 soil), 47% (14 of 30 raw milk), 35% (10 of 28 nunu) and 39% (12 of 31 woagashi) were positive for B. cereus sensu lato with mean counts (log 10 cfu/g) of 4.2 ± 1.8, 3.3 ± 2.0, 1.8 ± 1.4 and 2.6 ± 1.8 respectively. The distribution of enterotoxigenic genes revealed that 13% (12/96 isolates) harboured all three gene encoding for haemolytic enterotoxin HBL complex genes (hblA, hblC and hblD), 25% (24/96 isolates) possessed no HBL gene, whereas 63% (60/96 isolates) possessed at least one of the three HBL genes. All three genes encoding for non-haemolytic enterotoxin (nheA, nheB and nheC) were detected in 60% (57/96) isolates, 14% (13/96) harboured only one gene, 19% (18/96) whereas 8% possessed none of the NHE genes. The detection rates of cytk, entFM, and ces genes were 75, 67 and 9% respectively. Bacillus cereus s. l. isolates were generally resistant to β-lactam antibiotics such as ampicillin (98%), oxacillin (92%), penicillin (100%), amoxicillin (100%), and cefepime (100%) but susceptible to other antibiotics tested. Bacillus cereus s. l. is prevalent in soil, raw milk and dairy products in Ghana. However, loads are at levels considered to be safe for consumption. Various enterotoxin genes associated with virulence of B. cereus are widespread among the isolates.

  3. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization.

    PubMed

    Rekoske, Brian T; Smith, Heath A; Olson, Brian M; Maricque, Brett B; McNeel, Douglas G

    2015-08-01

    DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date. ©2015 American Association for Cancer Research.

  4. Soluble CD26/CD30 levels in visceral leishmaniasis: markers of disease activity

    PubMed Central

    Ajdary, S; Riazi-Rad, F; Jafari-Shakib, R; Mohebbali, M

    2006-01-01

    Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis (VL). If untreated the disease could be fatal; however, in some cases the infection can run a subclinical course. In subclinical infections a Th1-response predominates, while Th2-responses and/or probably Treg cells are related to unfavourable outcome of the disease in active VL. In the present study we determined the levels of soluble (s) CD26 and CD30 co-stimulatory molecules in sera from patients with active VL, asymptomatic individuals and healthy volunteers. Results showed a significant difference in both sCD26 and sCD30 between infected cases and normal individuals (P ≤ 0·001). However, there was no significant difference in sCD26 levels between asymptomatic cases and patients, although the difference was not significant. sCD30 levels were significantly higher in VL patients than asymptomatic cases (P ≤ 0·001). These findings suggest a possible association between sCD26 and sCD30 levels and the clinical manifestation of L. infantum infection. PMID:16792672

  5. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice.

    PubMed

    Campos-Neto, A; Webb, J R; Greeson, K; Coler, R N; Skeiky, Y A W; Reed, S G

    2002-06-01

    We have recently shown that a cocktail containing two leishmanial recombinant antigens (LmSTI1 and TSA) and interleukin-12 (IL-12) as an adjuvant induces solid protection in both a murine and a nonhuman primate model of cutaneous leishmaniasis. However, because IL-12 is difficult to prepare, is expensive, and does not have the stability required for a vaccine product, we have investigated the possibility of using DNA as an alternative means of inducing protective immunity. Here, we present evidence that the antigens TSA and LmSTI1 delivered in a plasmid DNA format either as single genes or in a tandem digene construct induce equally solid protection against Leishmania major infection in susceptible BALB/c mice. Immunization of mice with either TSA DNA or LmSTI1 DNA induced specific CD4(+)-T-cell responses of the Th1 phenotype without a requirement for specific adjuvant. CD8 responses, as measured by cytotoxic-T-lymphocyte activity, were generated after immunization with TSA DNA but not LmSTI1 DNA. Interestingly, vaccination of mice with TSA DNA consistently induced protection to a much greater extent than LmSTI1 DNA, thus supporting the notion that CD8 responses might be an important accessory arm of the immune response for acquired resistance against leishmaniasis. Moreover, the protection induced by DNA immunization was specific for infection with Leishmania, i.e., the immunization had no effect on the course of infection of the mice challenged with an unrelated intracellular pathogen such as Mycobacterium tuberculosis. Conversely, immunization of BALB/c mice with a plasmid DNA that is protective against challenge with M. tuberculosis had no effect on the course of infection of these mice with L. major. Together, these results indicate that the protection observed with the leishmanial DNA is mediated by acquired specific immune response rather than by the activation of nonspecific innate immune mechanisms. In addition, a plasmid DNA containing a fusion construct of the two genes was also tested. Similarly to the plasmids encoding individual proteins, the fusion construct induced both specific immune responses to the individual antigens and protection against challenge with L. major. These results confirm previous observations about the possibility of DNA immunization against leishmaniasis and lend support to the idea of using a single polygenic plasmid DNA construct to achieve polyspecific immune responses to several distinct parasite antigens.

  6. A genome-wide nanotoxicology screen of Saccharomyces cerevisiae mutants reveals the basis for cadmium sulphide quantum dot tolerance and sensitivity.

    PubMed

    Marmiroli, M; Pagano, L; Pasquali, F; Zappettini, A; Tosato, V; Bruschi, C V; Marmiroli, N

    2016-01-01

    The use of cadmium sulphide quantum dots (CdS QDs) is increasing, particularly in the electronics industry. Their size (1-10 nm in diameter) is, however, such that they can be taken up by living cells. Here, a bakers' yeast (Saccharomyces cerevisiae) deletion mutant collection has been exploited to provide a high-throughput means of revealing the genetic basis for tolerance/susceptibility to CdS QD exposure. The deletion of 112 genes, some associated with the abiotic stress response, some with various metabolic processes, some with mitochondrial organization, some with transport and some with DNA repair, reduced the level of tolerance to CdS QDs. A gene ontology analysis highlighted the role of oxidative stress in determining the cellular response. The transformation of sensitive mutants with centromeric plasmids harbouring DNA from a wild type strain restored the wild type growth phenotype when the complemented genes encoded either HSC82, DSK2 or ALD3. The use of these simple eukaryote knock-out mutants for functional toxicogenomic analysis will inform studies focusing on higher organisms.

  7. Tobacco plants transformed with the bean. alpha. ai gene express an inhibitor of insect. alpha. -amylase in their seeds. [Nicotiana tabacum; Tenebrio molitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altabella, T.; Chrispeels, M.J.

    Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant {alpha}-amylases. We recently presented strong circumstantial evidence that this {alpha}-amylase inhibitor ({alpha}Al) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5{prime} and 3{prime} flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (M{submore » r} 10,000-18,000) that cross-react with antibodies to the bean {alpha}-amylase inhibitor. Most of these polypeptides bind to a pig pancreas {alpha}-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas {alpha}-amylase activity as well as the {alpha}-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called {alpha}ai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.« less

  8. A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality

    PubMed Central

    van der Geize, R.; de Jong, W.; Hessels, G. I.; Grommen, A. W. F.; Jacobs, A. A. C.; Dijkhuizen, L.

    2008-01-01

    A novel method to efficiently generate unmarked in-frame gene deletions in Rhodococcus equi was developed, exploiting the cytotoxic effect of 5-fluorocytosine (5-FC) by the action of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) enzymes. The opportunistic, intracellular pathogen R. equi is resistant to high concentrations of 5-FC. Introduction of Escherichia coli genes encoding CD and UPRT conferred conditional lethality to R. equi cells incubated with 5-FC. To exemplify the use of the codA::upp cassette as counter-selectable marker, an unmarked in-frame gene deletion mutant of R. equi was constructed. The supA and supB genes, part of a putative cholesterol catabolic gene cluster, were efficiently deleted from the R. equi wild-type genome. Phenotypic analysis of the generated ΔsupAB mutant confirmed that supAB are essential for growth of R. equi on cholesterol. Macrophage survival assays revealed that the ΔsupAB mutant is able to survive and proliferate in macrophages comparable to wild type. Thus, cholesterol metabolism does not appear to be essential for macrophage survival of R. equi. The CD-UPRT based 5-FC counter-selection may become a useful asset in the generation of unmarked in-frame gene deletions in other actinobacteria as well, as actinobacteria generally appear to be 5-FC resistant and 5-FU sensitive. PMID:18984616

  9. Functional Analysis of the Alternative Sigma-28 Factor FliA and Its Anti-Sigma Factor FlgM of the Nonflagellated Legionella Species L. oakridgensis.

    PubMed

    Tlapák, Hana; Rydzewski, Kerstin; Schulz, Tino; Weschka, Dennis; Schunder, Eva; Heuner, Klaus

    2017-06-01

    Legionella oakridgensis causes Legionnaires' disease but is known to be less virulent than Legionella pneumophila L. oakridgensis is one of the Legionella species that is nonflagellated. The genes of the flagellar regulon are absent, except those encoding the alternative sigma-28 factor (FliA) and its anti-sigma-28 factor (FlgM). Similar to L. oakridgensis , Legionella adelaidensis and Legionella londiniensis , located in the same phylogenetic clade, have no flagellar regulon, although both are positive for fliA and flgM Here, we investigated the role and function of both genes to better understand the role of FliA, the positive regulator of flagellin expression, in nonflagellated strains. We demonstrated that the FliA gene of L. oakridgensis encodes a functional sigma-28 factor that enables the transcription start from the sigma-28-dependent promoter site. The investigations have shown that FliA is necessary for full fitness of L. oakridgensis Interestingly, expression of FliA-dependent genes depends on the growth phase and temperature, as already shown for L. pneumophila strains that are flagellated. In addition, we demonstrated that FlgM is a negative regulator of FliA-dependent gene expression. FlgM seems to be degraded in a growth-phase- and temperature-dependent manner, instead of being exported into the medium as reported for most bacteria. The degradation of FlgM leads to an increase of FliA activity. IMPORTANCE A less virulent Legionella species, L. oakridgensis , causes Legionnaires' disease and is known to not have flagella, even though L. oakridgensis has the regulator of flagellin expression (FliA). This protein has been shown to be involved in the expression of virulence factors. Thus, the strain was chosen for use in this investigation to search for FliA target genes and to identify putative virulence factors of L. oakridgensis One of the five major target genes of FliA identified here encodes the anti-FliA sigma factor FlgM. Interestingly, in contrast to most homologs in other bacteria, FlgM in L. oakridgensis seems not to be transported from the cell so that FliA gets activated. In L. oakridgensis , FlgM seems to be degraded by protease activities. Copyright © 2017 American Society for Microbiology.

  10. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed Central

    Ali, Basharat; Gill, Rafaqat A.; Yang, Su; Gill, Muhammad B.; Farooq, Muhammad A.; Liu, Dan; Daud, Muhammad K.; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed. PMID:25909456

  11. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.)

    USDA-ARS?s Scientific Manuscript database

    The purpose of this research was to clone and characterize the expression pattern of a kenaf (Hibiscus cannabinus L.) F5H gene that encodes ferulate 5-hydroxylase in the phenylpropanoid pathway. Kenaf is well known as a fast growing dicotyledonous plant, which makes it a valuable biomass plant. The ...

  12. Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.).

    PubMed

    McMullen, M D; Kross, H; Snook, M E; Cortés-Cruz, M; Houchins, K E; Musket, T A; Coe, E H

    2004-01-01

    We utilized maize (Zea mays L.) lines expressing the salmon silk (sm) phenotype, quantitative trait locus analysis, and analytical chemistry of flavone compounds to establish the order of undefined steps in the synthesis of the flavone maysin in maize silks. In addition to the previously described sm1 gene, we identified a second sm locus, which we designate sm2, located on the long arm of maize chromosome 2. Our data indicate that the sm1 gene encodes or controls a glucose modification enzyme and sm2 encodes or controls a rhamnosyl transferase. The order of intermediates in the late steps of maysin synthesis was established as luteolin --> isoorientin --> rhamnosylisoorientin --> maysin. Copyright 2004 The American Genetic Association

  13. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    PubMed Central

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  14. RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways

    PubMed Central

    Stoltzfus, Jonathan D.; Minot, Samuel; Berriman, Matthew; Nolan, Thomas J.; Lok, James B.

    2012-01-01

    The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies. PMID:23145190

  15. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways.

    PubMed

    Stoltzfus, Jonathan D; Minot, Samuel; Berriman, Matthew; Nolan, Thomas J; Lok, James B

    2012-01-01

    The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies.

  16. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.

    PubMed

    Park, Jin Hwan; Jang, Yu-Sin; Lee, Jeong Wook; Lee, Sang Yup

    2011-05-01

    A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L-valine tolerance, was metabolically engineered for the production of L-valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L-valine, available for enhanced L-valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBN(mut) genes encoding feedback-resistant acetohydroxy acid synthase (AHAS) I and the L-valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid-based overexpression. The global regulator Lrp and L-valine exporter YgaZH were also amplified by plasmid-based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBN(mut) , ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L-valine by fed-batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L-valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K-12, which have so far been the most efficient L-valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Copyright © 2010 Wiley Periodicals, Inc.

  17. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    PubMed Central

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183

  18. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  19. Radiation and stress-induced apoptosis: A role for Fas/Fas ligand interactions

    PubMed Central

    Reap, Elizabeth A.; Roof, Kevin; Maynor, Kenrick; Borrero, Michelle; Booker, Jessica; Cohen, Philip L.

    1997-01-01

    The lpr gene encodes a defective form of Fas, a cell surface protein that mediates apoptosis. This defect blocks apoptotic deletion of autoreactive T and B cells, leading to lymphoproliferation and lupus-like autoantibody production. The effects of the lpr Fas mutation on other kinds of physiologically relevant apoptosis are largely undocumented. To assess whether some of the apoptosis known to occur after ionizing radiation might be mediated by Fas/Fas ligand (FasL) interactions, we quantitated in vitro apoptosis by flow cytometry measurement of DNA content in splenic T and B cells from irradiated 5- to 8-month-old B6/lpr mice. Total apoptosis of both lpr and control cells was substantial after treatment; however there was a significant difference between B6 (73%) and lpr (25%) lymphocyte apoptosis. Thy1, CD4, CD8, and IgM cells from lpr showed much lower levels of apoptosis than control cells after irradiation. Apoptosis induced by heat shock was also impaired in lpr. The finding that γ-irradiation increased Fas expression on B6 cells and that irradiation-induced apoptosis could be blocked with a Fas–Fc fusion protein further supported the possible involvement of Fas in this form of apoptosis. Fas/FasL interactions may thus play an important role in identifying and eliminating damaged cells after γ-irradiation and other forms of injury. PMID:9159145

  20. Nucleotide sequence analysis of the L gene of Newcastle disease virus: homologies with Sendai and vesicular stomatitis viruses.

    PubMed Central

    Yusoff, K; Millar, N S; Chambers, P; Emmerson, P T

    1987-01-01

    The nucleotide sequence of the L gene of the Beaudette C strain of Newcastle disease virus (NDV) has been determined. The L gene is 6704 nucleotides long and encodes a protein of 2204 amino acids with a calculated molecular weight of 248822. Mung bean nuclease mapping of the 5' terminus of the L gene mRNA indicates that the transcription of the L gene is initiated 11 nucleotides upstream of the translational start site. Comparison with the amino acid sequences of the L genes of Sendai virus and vesicular stomatitis virus (VSV) suggests that there are several regions of homology between the sequences. These data provide further evidence for an evolutionary relationship between the Paramyxoviridae and the Rhabdoviridae. A non-coding sequence of 46 nucleotides downstream of the presumed polyadenylation site of the L gene may be part of a negative strand leader RNA. Images PMID:3035486

  1. Fruitlet abscission: A cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh).

    PubMed

    Dal Cin, Valeriano; Barbaro, Enrico; Danesin, Marcello; Murayama, Hideki; Velasco, Riccardo; Ramina, Angelo

    2009-08-01

    Apple Malus X domestica fruitlet abscission is preceded by a stimulation of ethylene biosynthesis and a gain in sensitivity to the hormone. This phase was studied by a differential screening carried out by cDNA-AFLP in abscising (AF) and non-abscising (NAF) fruitlet populations. Fifty-three primer combinations allowed for the isolation of 131, 66 and 30 differentially expressed bands from cortex, peduncle and seed, respectively. All sequences were then classified as up- or down-regulated by comparing the profile in AFs and NAFs. Almost all of these sequences showed significant homology to genes encoding proteins with known or putative function. The gene ontology analysis of the TDFs isolated indicated a deep change in metabolism, plastid and hormonal status, especially auxin. Furthermore, some common elements between abscission and senescence were identified. The isolation of the full length of one of these TDFs allowed for the identification of a gene encoding an auxin hydrogen symporter (MdAHS). Bioinformatic analysis indicated that the deduced protein shares some features with other auxin efflux carriers, which include PINs. Nevertheless the 3D structure pointed out substantial differences and a conformation largely dissimilar from canonical ion transporters. The expression analysis demonstrated that this gene is regulated by light and development but not affected by ethylene or auxin.

  2. Molecular Gene Profiling of Clostridium botulinum Group III and Its Detection in Naturally Contaminated Samples Originating from Various European Countries

    PubMed Central

    Woudstra, Cedric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Bano, Luca; Koene, Miriam; Sansonetti, Marie-Hélène; Desoutter, Denise; Hansbauer, Eva-Maria; Dorner, Martin B.; Dorner, Brigitte G.

    2015-01-01

    We report the development of real-time PCR assays for genotyping Clostridium botulinum group III targeting the newly defined C. novyi sensu lato group; the nontoxic nonhemagglutinin (NTNH)-encoding gene ntnh; the botulinum neurotoxin (BoNT)-encoding genes bont/C, bont/C/D, bont/D, and bont/D/C; and the flagellin (fliC) gene. The genetic diversity of fliC among C. botulinum group III strains resulted in the definition of five major subgroups named fliC-I to fliC-V. Investigation of fliC subtypes in 560 samples, with various European origins, showed that fliC-I was predominant and found exclusively in samples contaminated by C. botulinum type C/D, fliC-II was rarely detected, no sample was recorded as fliC-III or fliC-V, and only C. botulinum type D/C samples tested positive for fliC-IV. The lack of genetic diversity of the flagellin gene of C. botulinum type C/D would support a clonal spread of type C/D strains in different geographical areas. fliC-I to fliC-III are genetically related (87% to 92% sequence identity), whereas fliC-IV from C. botulinum type D/C is more genetically distant from the other fliC types (with only 50% sequence identity). These findings suggest fliC-I to fliC-III have evolved in a common environment and support a different genetic evolution for fliC-IV. A combination of the C. novyi sensu lato, ntnh, bont, and fliC PCR assays developed in this study allowed better characterization of C. botulinum group III and showed the group to be less genetically diverse than C. botulinum groups I and II, supporting a slow genetic evolution of the strains belonging to C. botulinum group III. PMID:25636839

  3. Controlling and fine tuning the physical properties of two identical metal coordination sites in de novo designed three stranded coiled coil peptides.

    PubMed

    Iranzo, Olga; Chakraborty, Saumen; Hemmingsen, Lars; Pecoraro, Vincent L

    2011-01-19

    Herein we report how de novo designed peptides can be used to investigate whether the position of a metal site along a linear sequence that folds into a three-stranded α-helical coiled coil defines the physical properties of Cd(II) ions in either CdS(3) or CdS(3)O (O-being an exogenous water molecule) coordination environments. Peptides are presented that bind Cd(II) into two identical coordination sites that are located at different topological positions at the interior of these constructs. The peptide GRANDL16PenL19IL23PenL26I binds two Cd(II) as trigonal planar 3-coordinate CdS(3) structures whereas GRANDL12AL16CL26AL30C sequesters two Cd(II) as pseudotetrahedral 4-coordinate CdS(3)O structures. We demonstrate how for the first peptide, having a more rigid structure, the location of the identical binding sites along the linear sequence does not affect the physical properties of the two bound Cd(II). However, the sites are not completely independent as Cd(II) bound to one of the sites ((113)Cd NMR chemical shift of 681 ppm) is perturbed by the metalation state (apo or [Cd(pep)(Hpep)(2)](+) or [Cd(pep)(3)](-)) of the second center ((113)Cd NMR chemical shift of 686 ppm). GRANDL12AL16CL26AL30C shows a completely different behavior. The physical properties of the two bound Cd(II) ions indeed depend on the position of the metal center, having pK(a2) values for the equilibrium [Cd(pep)(Hpep)(2)](+) → [Cd(pep)(3)](-) + 2H(+) (corresponding to deprotonation and coordination of cysteine thiols) that range from 9.9 to 13.9. In addition, the L26AL30C site shows dynamic behavior, which is not observed for the L12AL16C site. These results indicate that for these systems one cannot simply assign a "4-coordinate structure" and assume certain physical properties for that site since important factors such as packing of the adjacent Leu, size of the intended cavity (endo vs exo) and location of the metal site play crucial roles in determining the final properties of the bound Cd(II).

  4. Draft genome sequence of Xylaria sp., the causal agent of taproot decline of soybean in the southern United States.

    PubMed

    Sharma, Sandeep; Zaccaron, Alex Z; Ridenour, John B; Allen, Tom W; Conner, Kassie; Doyle, Vinson P; Price, Trey; Sikora, Edward; Singh, Raghuwinder; Spurlock, Terry; Tomaso-Peterson, Maria; Wilkerson, Tessie; Bluhm, Burton H

    2018-04-01

    The draft genome of Xylaria sp. isolate MSU_SB201401, causal agent of taproot decline of soybean in the southern U.S., is presented here. The genome assembly was 56.7 Mb in size with an L50 of 246. A total of 10,880 putative protein-encoding genes were predicted, including 647 genes encoding carbohydrate-active enzymes and 1053 genes encoding secreted proteins. This is the first draft genome of a plant-pathogenic Xylaria sp. associated with soybean. The draft genome of Xylaria sp. isolate MSU_SB201401 will provide an important resource for future experiments to determine the molecular basis of pathogenesis.

  5. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  6. Recessive mutation in tetraspanin CD151 causes Kindler syndrome-like epidermolysis bullosa with multi-systemic manifestations including nephropathy.

    PubMed

    Vahidnezhad, Hassan; Youssefian, Leila; Saeidian, Amir Hossein; Mahmoudi, Hamidreza; Touati, Andrew; Abiri, Maryam; Kajbafzadeh, Abdol-Mohammad; Aristodemou, Sophia; Liu, Lu; McGrath, John A; Ertel, Adam; Londin, Eric; Kariminejad, Ariana; Zeinali, Sirous; Fortina, Paolo; Uitto, Jouni

    2018-03-01

    Epidermolysis bullosa (EB) is caused by mutations in as many as 19 distinct genes. We have developed a next-generation sequencing (NGS) panel targeting genes known to be mutated in skin fragility disorders, including tetraspanin CD151 expressed in keratinocytes at the dermal-epidermal junction. The NGS panel was applied to a cohort of 92 consanguineous families of unknown subtype of EB. In one family, a homozygous donor splice site mutation in CD151 (NM_139029; c.351+2T>C) at the exon 5/intron 5 border was identified, and RT-PCR and whole transcriptome analysis by RNA-seq confirmed deletion of the entire exon 5 encoding 25 amino acids. Immunofluorescence of proband's skin and Western blot of skin proteins with a monoclonal antibody revealed complete absence of CD151. Transmission electron microscopy showed intracellular disruption and cell-cell dysadhesion of keratinocytes in the lower epidermis. Clinical examination of the 33-year old proband, initially diagnosed as Kindler syndrome, revealed widespread blistering, particularly on pretibial areas, poikiloderma, nail dystrophy, loss of teeth, early onset alopecia, and esophageal webbing and strictures. The patient also had history of nephropathy with proteinuria. Collectively, the results suggest that biallelic loss-of-function mutations in CD151 underlie an autosomal recessive mechano-bullous disease with systemic features. Thus, CD151 should be considered as the 20th causative, EB-associated gene. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gene gun-mediated delivery of an interleukin-12 expression plasmid protects against infections with the intracellular protozoan parasites Leishmania major and Trypanosoma cruzi in mice

    PubMed Central

    Sakai, T; Hisaeda, H; Nakano, Y; Ishikawa, H; Maekawa, Y; Ishii, K; Nitta, Y; Miyazaki, J; Himeno, K

    2000-01-01

    An interleukin-12 (IL-12) expression plasmid was transferred, using a gene gun, to mice infected with Leishmania major or Trypanosoma cruzi. Transfer of the IL-12 gene to susceptible BALB/c mice resulted in regression of lesion size and reduced the number of parasites in draining lymph nodes (LN) at the site of L. major infection. Coincident with these protective effects, the T-helper type (Th) response shifted towards Th1, as evaluated by cytokine production in vitro and L. major-specific antibody responses. Protective effects of the IL-12 gene were also observed in T. cruzi infection. Treatment of BALB/c mice infected with T. cruzi enhanced the production of interferon-γ (IFN-γ) by spleen cells, while suppressed production of interleukin-10 (IL-10) compared with control mice. Administration of anti-CD4 or anti-CD8 monoclonal antibody (mAb) abolished the protective immunity against T. cruzi infection, and treatment with the IL-12 gene could not restore the resistance in these mice. Mice depleted of natural killer (NK) cells with anti-asialo GM1 also became susceptible to infection, while the resistance was restored when these mice were treated with the IL-12 gene. Thus, target cells for the treatment appear to be CD4+ and CD8+ T cells, which are ordinarily activated by NK cells. These results suggest that the transfer of cytokine genes using a gene gun is an effective method for investigating the roles of cytokines and gene therapy in infectious diseases. PMID:10792510

  8. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress.

    PubMed

    Schor-Fumbarov, Tamar; Goldsbrough, Peter B; Adam, Zach; Tel-Or, Elisha

    2005-12-01

    A cDNA encoding a type 2 metallothionein (MT) was isolated from Azolla filiculoides, termed AzMT2, accession no. AF482470. The AzMT2 transcript was expressed in sterile A. filiculoides that were free of the cyanobiont Anabaena azollae after erythromycin treatment, proving that AzMT2 is encoded by the fern genome. AzMT2 RNA expression was enhanced by the addition of Cd(+2), Cu(+2), Zn(+2) and Ni(+2) to the growth medium. The transcript level of AzMT2 correlated with the metal content in the plants. Temporal analysis of AzMT2 expression demonstrated that Cd(2+) and Ni(2+) induction of AzMT2 RNA expression occurred within 48 h. AzMT2-enhanced expression responded more intensely to the toxic Cd and Ni ions in A. filiculoides suggesting that AzMT2 may participate in detoxification mechanism. The more moderate response of AzMT2 to Zn and Cu ions, which are essential micronutrients, suggest a role for AzMT2 in metal homeostasis.

  9. Quantifying engineered nanomaterial toxicity: comparison of common cytotoxicity and gene expression measurements.

    PubMed

    Atha, Donald H; Nagy, Amber; Steinbrück, Andrea; Dennis, Allison M; Hollingsworth, Jennifer A; Dua, Varsha; Iyer, Rashi; Nelson, Bryant C

    2017-11-09

    When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks. The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity. This study can serve as a model for comparing traditional cytotoxicity assays and gene expression measurements and to determine candidate biomarkers for assessing the biocompatibility of ENMs.

  10. Diversity of Antisense and Other Non-Coding RNAs in Archaea Revealed by Comparative Small RNA Sequencing in Four Pyrobaculum Species

    PubMed Central

    Bernick, David L.; Dennis, Patrick P.; Lui, Lauren M.; Lowe, Todd M.

    2012-01-01

    A great diversity of small, non-coding RNA (ncRNA) molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs (sRNA) in archaea is limited. We employed RNA-seq to identify novel sRNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense sRNAs encoded opposite to key regulatory (ferric uptake regulator), metabolic (triose-phosphate isomerase), and core transcriptional apparatus genes (transcription factor B). We also found a large increase in the number of conserved C/D box sRNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these sRNAs indicates they are relatively recent, stable adaptations. PMID:22783241

  11. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation

    PubMed Central

    Planas, Delphine; Merritt, Andy; Routy, Jean-Pierre; Ancuta, Petronela; Bangham, Charles R. M.

    2017-01-01

    HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation. PMID:28727807

  12. High pretransplantation soluble CD30 levels: impact in renal transplantation.

    PubMed

    Giannoli, C; Bonnet, M C; Perrat, G; Houillon, A; Reydet, S; Pouteil-Noble, C; Villar, E; Lefrançois, N; Morelon, E; Dubois, V

    2007-10-01

    In a retrospective study, the impact of the level of pretransplantation soluble CD30 molecule (sCD30) was evaluated on 3 year transplant survival, as well as the number and grade of acute rejection episodes among kidney recipients engrafted between 2000 and 2002. One hundred and ninety sera of 190 patients sampled on the cross-match day were tested for sCD30 concentrations using an enzyme-linked immunosorbent assay (ELISA) kit (Biotest). For the analysis, a sCD30 cutoff level of 100 U/mL was chosen: 87 (46%) recipients had a level >100, and 103 (54%) <100. All cases (5) of immunological graft loss showed a high sCD30 level. The rate of biopsy-proven acute rejection was 26% in the sCD30 >100 group versus 22% in the sCD30 <100 groups. Among the first graft population (n = 157), the rate was 27% for sCD30 >100 versus 20% for the lower level. The difference was more important for grade II acute rejection (Banff criteria): 6/87 (7%) showed high sCD30 versus 2/103 (2%) with sCD30 <100. This analysis became significant for anti-HLA immunization: 11 (13%) recipients developed anti-HLA class II antibodies in the first group (sCD30 >100) versus 1 (1%) in the second group (sCD30 <100; P < .01). A high pretransplantation sCD30 was not a significant risk factor for an acute rejection episode, but it seemed to be more predictive for antibody-mediated acute rejection and immunological graft loss. However, many recipients showed an increased pretransplantation concentration without any rejection episode or graft loss. Consequently, sCD30 pregraft measurements cannot be used as a predictor for acute kidney rejection among our transplant center, nor as an aid to adapt the immunosuppressive regimen.

  13. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase

    PubMed Central

    Muralidharan, Mrinalini; Buss, Kristina; Larrimore, Katherine E.; Segerson, Nicholas A.; Kannan, Latha

    2013-01-01

    Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. PMID:23430565

  14. Genetic Variants in CD44 and MAT1A Confer Susceptibility to Acute Skin Reaction in Breast Cancer Patients Undergoing Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbrekar, Kamalesh Dattaram; Bola Sadashiva, Satish Rao; Kabekkodu, Shama Prasada

    Purpose: Heterogeneity in radiation therapy (RT)-induced normal tissue toxicity is observed in 10% of cancer patients, limiting the therapeutic outcomes. In addition to treatment-related factors, normal tissue adverse reactions also manifest from genetic alterations in distinct pathways majorly involving DNA damage–repair genes, inflammatory cytokine genes, cell cycle regulation, and antioxidant response. Therefore, the common sequence variants in these radioresponsive genes might modify the severity of normal tissue toxicity, and the identification of the same could have clinical relevance as a predictive biomarker. Methods and Materials: The present study was conducted in a cohort of patients with breast cancer to evaluatemore » the possible associations between genetic variants in radioresponsive genes described previously and the risk of developing RT-induced acute skin adverse reactions. We tested 22 genetic variants reported in 18 genes (ie, NFE2L2, OGG1, NEIL3, RAD17, PTTG1, REV3L, ALAD, CD44, RAD9A, TGFβR3, MAD2L2, MAP3K7, MAT1A, RPS6KB2, ZNF830, SH3GL1, BAX, and XRCC1) using TaqMan assay-based real-time polymerase chain reaction. At the end of RT, the severity of skin damage was scored, and the subjects were dichotomized as nonoverresponders (Radiation Therapy Oncology Group grade <2) and overresponders (Radiation Therapy Oncology Group grade ≥2) for analysis. Results: Of the 22 single nucleotide polymorphisms studied, the rs8193 polymorphism lying in the micro-RNA binding site of 3′-UTR of CD44 was significantly (P=.0270) associated with RT-induced adverse skin reactions. Generalized multifactor dimensionality reduction analysis showed significant (P=.0107) gene–gene interactions between MAT1A and CD44. Furthermore, an increase in the total number of risk alleles was associated with increasing occurrence of overresponses (P=.0302). Conclusions: The genetic polymorphisms in radioresponsive genes act as genetic modifiers of acute normal tissue toxicity outcomes after RT by acting individually (rs8193), by gene–gene interactions (MAT1A and CD44), and/or by the additive effects of risk alleles.« less

  15. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish.

    PubMed

    Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng

    2018-01-01

    The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy metals, which may become early sensitive and potential biomarkers for evaluating inflammatory response induced by heavy metals. This work reinforces the concept of the usefulness of gene expression assays in the evaluation of chemicals effects and helps to establish a background data as well as contributes to evaluate early environmental risk for chemicals, even predicting toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparative genomic and plasmid analysis of beer-spoiling and non-beer-spoiling Lactobacillus brevis isolates.

    PubMed

    Bergsveinson, Jordyn; Ziola, Barry

    2017-12-01

    Beer-spoilage-related lactic acid bacteria (BSR LAB) belong to multiple genera and species; however, beer-spoilage capacity is isolate-specific and partially acquired via horizontal gene transfer within the brewing environment. Thus, the extent to which genus-, species-, or environment- (i.e., brewery-) level genetic variability influences beer-spoilage phenotype is unknown. Publicly available Lactobacillus brevis genomes were analyzed via BlAst Diagnostic Gene findEr (BADGE) for BSR genes and assessed for pangenomic relationships. Also analyzed were functional coding capacities of plasmids of LAB inhabiting extreme niche environments. Considerable genetic variation was observed in L. brevis isolated from clinical samples, whereas 16 candidate genes distinguish BSR and non-BSR L. brevis genomes. These genes are related to nutrient scavenging of gluconate or pentoses, mannose, and metabolism of pectin. BSR L. brevis isolates also have higher average nucleotide identity and stronger pangenome association with one another, though isolation source (i.e., specific brewery) also appears to influence the plasmid coding capacity of BSR LAB. Finally, it is shown that niche-specific adaptation and phenotype are plasmid-encoded for both BSR and non-BSR LAB. The ultimate combination of plasmid-encoded genes dictates the ability of L. brevis to survive in the most extreme beer environment, namely, gassed (i.e., pressurized) beer.

  17. Molecular Characterization of Lactobacillus plantarum Genes for β-Ketoacyl-Acyl Carrier Protein Synthase III (fabH) and Acetyl Coenzyme A Carboxylase (accBCDA), Which Are Essential for Fatty Acid Biosynthesis

    PubMed Central

    Kiatpapan, Pornpimon; Kobayashi, Hajime; Sakaguchi, Maki; Ono, Hisayo; Yamashita, Mitsuo; Kaneko, Yoshinobu; Murooka, Yoshikatsu

    2001-01-01

    Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded β-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the β and α subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon. PMID:11133475

  18. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values

    PubMed Central

    Hikosaka, Okihide

    2014-01-01

    Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudate nucleus (CD), mediated by the substantia nigra pars reticulata (SNr), and aiming at the superior colliculus (SC). Notably, subregions of CD encode values of visual objects differently: stably by CD tail [CD(T)] vs. flexibly by CD head [CD(H)]. Are the stable and flexible value signals processed separately throughout the CD-SNr-SC circuit? To answer this question, we identified SNr neurons by their inputs from CD and outputs to SC and examined their sensitivity to object values. The direct input from CD was identified by SNr neuron's inhibitory response to electrical stimulation of CD. We found that SNr neurons were separated into two groups: 1) neurons inhibited by CD(T) stimulation, located in the caudal-dorsal-lateral SNr (cdlSNr), and 2) neurons inhibited by CD(H) stimulation, located in the rostral-ventral-medial SNr (rvmSNr). Most of CD(T)-recipient SNr neurons encoded stable values, whereas CD(H)-recipient SNr neurons tended to encode flexible values. The output to SC was identified by SNr neuron's antidromic response to SC stimulation. Among the antidromically activated neurons, many encoded only stable values, while some encoded only flexible values. These results suggest that CD(T)-cdlSNr-SC circuit and CD(H)-rvmSNr-SC circuit transmit stable and flexible value signals, largely separately, to SC. The speed of signal transmission was faster through CD(T)-cdlSNr-SC circuit than through CD(H)-rvmSNr-SC circuit, which may reflect automatic and controlled gaze orienting guided by these circuits. PMID:25540224

  19. Cyclic stretch-induced the cytoskeleton rearrangement and gene expression of cytoskeletal regulators in human periodontal ligament cells.

    PubMed

    Wu, Yaqin; Zhuang, Jiabao; Zhao, Dan; Zhang, Fuqiang; Ma, Jiayin; Xu, Chun

    2017-10-01

    This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.

  20. SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L.

    PubMed

    Bell, Andrew; Moreau, Carol; Chinoy, Catherine; Spanner, Rebecca; Dalmais, Marion; Le Signor, Christine; Bendahmane, Abdel; Klenell, Markus; Domoney, Claire

    2015-12-01

    Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.

  1. AtFXG1, an Arabidopsis Gene Encoding α-l-Fucosidase Active against Fucosylated Xyloglucan Oligosaccharides1

    PubMed Central

    de la Torre, Francisco; Sampedro, Javier; Zarra, Ignacio; Revilla, Gloria

    2002-01-01

    An α-l-fucosidase (EC 3.2.1.51) able to release the t-fucosyl residue from the side chain of xyloglucan oligosaccharides has been detected in the leaves of Arabidopsis plants. Moreover, an α-l-fucosidase with similar substrate specificity was purified from cabbage (Brassica oleracea) leaves to render a single band on SDS-PAGE. Two peptide sequences were obtained from this protein band, and they were used to identify an Arabidopsis gene coding for an α-fucosidase that we propose to call AtFXG1. In addition, an Arabidopsis gene with homology with known α-l-fucosidases has been also found, and we proposed to name it as AtFUC1. Both AtFXG1 and ATFUC1 were heterologously expressed in Pichia pastoris cells and the α-l-fucosidase activities secreted to the culture medium. The α-l-fucosidase encoded by AtFXG1 was active against the oligosaccharides from xyloglucan XXFG as well as against 2′-fucosyl-lactitol but not against p-nitrophenyl-α-l-fucopyranoside. However, the AtFUC1 heterologously expressed was active only against 2′-fucosyl-lactitol. Thus, the former must be related to xyloglucan metabolism. PMID:11788770

  2. AtFXG1, an Arabidopsis gene encoding alpha-L-fucosidase active against fucosylated xyloglucan oligosaccharides.

    PubMed

    de La Torre, Francisco; Sampedro, Javier; Zarra, Ignacio; Revilla, Gloria

    2002-01-01

    An alpha-L-fucosidase (EC 3.2.1.51) able to release the t-fucosyl residue from the side chain of xyloglucan oligosaccharides has been detected in the leaves of Arabidopsis plants. Moreover, an alpha-L-fucosidase with similar substrate specificity was purified from cabbage (Brassica oleracea) leaves to render a single band on SDS-PAGE. Two peptide sequences were obtained from this protein band, and they were used to identify an Arabidopsis gene coding for an alpha-fucosidase that we propose to call AtFXG1. In addition, an Arabidopsis gene with homology with known alpha-L-fucosidases has been also found, and we proposed to name it as AtFUC1. Both AtFXG1 and ATFUC1 were heterologously expressed in Pichia pastoris cells and the alpha-L-fucosidase activities secreted to the culture medium. The alpha-L-fucosidase encoded by AtFXG1 was active against the oligosaccharides from xyloglucan XXFG as well as against 2'-fucosyl-lactitol but not against p-nitrophenyl-alpha-L-fucopyranoside. However, the AtFUC1 heterologously expressed was active only against 2'-fucosyl-lactitol. Thus, the former must be related to xyloglucan metabolism.

  3. amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China

    PubMed Central

    Yang, Jian; Jiang, Hongchen; Dong, Hailiang; Wang, Huanye; Wu, Geng; Hou, Weiguo; Liu, Weiguo; Zhang, Chuanlun; Sun, Yongjuan; Lai, Zhongping

    2013-01-01

    All known ammonia-oxidizing archaea (AOA) belong to the phylum Thaumarchaeota within the domain Archaea. AOA possess the diagnostic amoA gene (encoding the alpha subunit of ammonia monooxygenase) and produce lipid biomarker thaumarchaeol. Although the abundance and diversity of amoA gene-encoding archaea (AEA) in freshwater lakes have been well-studied, little is known about AEA ecology in saline/hypersaline lakes. In this study, the distribution of the archaeal amoA gene and thaumarchaeol were investigated in nine Qinghai–Tibetan lakes with a salinity range from freshwater to salt-saturation (salinity: 325 g L-1). The results showed that the archaeal amoA gene was present in hypersaline lakes with salinity up to 160 g L-1. The archaeal amoA gene diversity in Tibetan lakes was different from those in other lakes worldwide, suggesting Tibetan lakes (high elevation, strong ultraviolet, and dry climate) may host a unique AEA population of different evolutionary origin from those in other lakes. Thaumarchaeol was present in all of the studied hypersaline lakes, even in those where no AEA amoA gene was observed. Future research is needed to determine the ecological function of AEA and possible sources of thaumarchaeol in the Qinghai–Tibetan hypersaline lakes. PMID:24273535

  4. Open Reading Frame S/L of Varicella-Zoster Virus Encodes a Cytoplasmic Protein Expressed in Infected Cells

    PubMed Central

    Kemble, George W.; Annunziato, Paula; Lungu, Octavian; Winter, Ruth E.; Cha, Tai-An; Silverstein, Saul J.; Spaete, Richard R.

    2000-01-01

    We report the discovery of a novel gene in the varicella-zoster virus (VZV) genome, designated open reading frame (ORF) S/L. This gene, located at the left end of the prototype VZV genome isomer, expresses a polyadenylated mRNA containing a splice within the 3′ untranslated region in virus-infected cells. Sequence analysis reveals significant differences between the ORF S/Ls of wild-type and attenuated strains of VZV. Antisera raised to a bacterially expressed portion of ORF S/L reacted specifically with a 21-kDa protein synthesized in cells infected with a VZV clinical isolate and with the original vaccine strain of VZV (Oka-ATCC). Cells infected with other VZV strains, including a wild-type strain that has been extensively passaged in tissue culture and commercially produced vaccine strains of Oka, synthesize a family of proteins ranging in size from 21 to 30 kDa that react with the anti-ORF S/L antiserum. MeWO cells infected with recombinant VZV harboring mutations in the C-terminal region of the ORF S/L gene lost adherence to the stratum and adjacent cells, resulting in an altered plaque morphology. Immunohistochemical analysis of VZV-infected cells demonstrated that ORF S/L protein localizes to the cytoplasm. ORF S/L protein was present in skin lesions of individuals with primary or reactivated infection and in the neurons of a dorsal root ganglion during virus reactivation. PMID:11070031

  5. The impact of sublethal concentrations of Cu, Pb and Cd on honey bee redox status, superoxide dismutase and catalase in laboratory conditions.

    PubMed

    Nikolić, Tatjana V; Kojić, Danijela; Orčić, Snežana; Batinić, Darko; Vukašinović, Elvira; Blagojević, Duško P; Purać, Jelena

    2016-12-01

    In this study, laboratory bioassays were performed to investigate the impact of sublethal concentrations of Cu (CuCl 2 : 1000, 100, 10 mg L -1 ), Pb (PbCl 2 : 10, 1, 0.1 mg L -1 ) and Cd (CdCl 2 : 0.1, 0.01, 0.001 mg L -1 ) on honey bee redox status and the activity of the main antioxidative enzymes and their gene expression. Our results show that exposure to these metals led to significant changes of gene expression, the levels of enzyme activity and redox status, but the effects are metal and dose dependent. In general, exposure of 48 h to given concentrations of Cu, Cd and Pb did not change the activity of antioxidative enzymes and the level of lipid peroxidation, with the exception of decreased activity of catalase at the lowest concentration of cadmium. Only lead produced increases in glutathione and thiol groups. Expression of genes for catalase and superoxide dismutase changed with exposure to cadmium and copper, whilst lead induced only expression of superoxide dismutase genes. The results from this study provide basic data for future research regarding the impacts of metal pollution on Apis mellifera and will be an important step towards a comprehensive risk assessment of the environmental stressors on honey bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cloning and characterization of the ddc homolog encoding L-2,4-diaminobutyrate decarboxylase in Enterobacter aerogenes.

    PubMed

    Yamamoto, S; Mutoh, N; Tsuzuki, D; Ikai, H; Nakao, H; Shinoda, S; Narimatsu, S; Miyoshi, S I

    2000-05-01

    L-2,4-diaminobutyrate decarboxylase (DABA DC) catalyzes the formation of 1,3-diaminopropane (DAP) from DABA. In the present study, the ddc gene encoding DABA DC from Enterobacter aerogenes ATCC 13048 was cloned and characterized. Determination of the nucleotide sequence revealed an open reading frame of 1470 bp encoding a 53659-Da protein of 490 amino acids, whose deduced NH2-terminal sequence was identical to that of purified DABA DC from E. aerogenes. The deduced amino acid sequence was highly similar to those of Acinetobacter baumannii and Haemophilus influenzae DABA DCs encoded by the ddc genes. The lysine-307 of the E. aerogenes DABA DC was identified as the pyridoxal 5'-phosphate binding residue by site-directed mutagenesis. Furthermore, PCR analysis revealed the distribution of E. aerogenes ddc homologs in some other species of Enterobacteriaceae. Such a relatively wide occurrence of the ddc homologs implies biological significance of DABA DC and its product DAP.

  7. G Protein-Coupled Receptor 30 (GPR30) Expression Pattern in Inflammatory Bowel Disease Patients Suggests its Key Role in the Inflammatory Process. A Preliminary Study.

    PubMed

    Włodarczyk, Marcin; Sobolewska-Włodarczyk, Aleksandra; Cygankiewicz, Adam I; Jacenik, Damian; Piechota-Polańczyk, Aleksandra; Stec-Michalska, Krystyna; Krajewska, Wanda M; Fichna, Jakub; Wiśniewska-Jarosińska, Maria

    2017-03-01

    G protein-coupled receptor 30 (GPR30) is a recently de-orphanized estrogen receptor that mediates the effects of estrogens on different cells. It has been postulated that in inflammatory bowel diseases (IBD) activation of GPR30 blocks the pathways dependent on pro-inflammatory cytokines. The aim of our study was to investigate GPR30 expression in patients with IBD and its potential implication in future therapies. Fifty-seven patients were enrolled in our study: 20 subjects with Crohn's disease (CD), 22 with ulcerative colitis (UC) and 15 controls. In each subject, biopsies were taken from various left-colonic locations. Gene and protein expression of GPR30 was quantified using real time RT-PCR or Western blot. GPR30 mRNA and protein expression were detected in all tested colonic tissues. No significant differences in GPR30 gene expression were observed. In non-inflamed areas, GPR30 protein was strongly increased in CD patients, but moderately in UC patients (p= 0.014 and p=0.143, respectively, vs. controls). In CD patients, a significantly lower GPR30 protein content in inflamed than in non-inflamed tissue was observed (p=0.039). The change was independent of patient gender. Our observations indicate that GPR30 may play a role in the development and progression of inflammatory lesions in IBD, thus affecting disease severity, and consequently IBD treatment. Therefore, GPR30 may become an attractive target for novel anti-IBD drugs, particularly in CD.

  8. Field Evaluation of a Fluorogenic Probe-Based PCR Assay for Identification of a Visceral Leishmaniasis Gene Target

    DTIC Science & Technology

    2004-06-01

    encodes protein required for amastigote development, which can ultimately be expressed in humans as VL (3, 4, 5). The leishmaniasises are also expressed ...Leishmania surveillance at Tallil Air Base, south central Iraq, expressed concern of a potential leishmaniasis outbreak situation. In response, we...site. That L. donovani promastigote-to-amastigote development, and VL pathogenesis, requires an A2 gene family encoded factor defines this protein

  9. Comparative Genomics of Two ST 195 Carbapenem-Resistant Acinetobacter baumannii with Different Susceptibility to Polymyxin Revealed Underlying Resistance Mechanism.

    PubMed

    Lean, Soo-Sum; Yeo, Chew Chieng; Suhaili, Zarizal; Thong, Kwai-Lin

    2015-01-01

    Acinetobacter baumannii is a Gram-negative nosocomial pathogen of importance due to its uncanny ability to acquire resistance to most antimicrobials. These include carbapenems, which are the drugs of choice for treating A. baumannii infections, and polymyxins, the drugs of last resort. Whole genome sequencing was performed on two clinical carbapenem-resistant A. baumannii AC29 and AC30 strains which had an indistinguishable ApaI pulsotype but different susceptibilities to polymyxin. Both genomes consisted of an approximately 3.8 Mbp circular chromosome each and several plasmids. AC29 (susceptible to polymyxin) and AC30 (resistant to polymyxin) belonged to the ST195 lineage and are phylogenetically clustered under the International Clone II (IC-II) group. An AbaR4-type resistance island (RI) interrupted the comM gene in the chromosomes of both strains and contained the bla OXA-23 carbapenemase gene and determinants for tetracycline and streptomycin resistance. AC29 harbored another copy of bla OXA-23 in a large (~74 kb) conjugative plasmid, pAC29b, but this gene was absent in a similar plasmid (pAC30c) found in AC30. A 7 kb Tn1548::armA RI which encodes determinants for aminoglycoside and macrolide resistance, is chromosomally-located in AC29 but found in a 16 kb plasmid in AC30, pAC30b. Analysis of known determinants for polymyxin resistance in AC30 showed mutations in the pmrA gene encoding the response regulator of the two-component pmrAB signal transduction system as well as in the lpxD, lpxC, and lpsB genes that encode enzymes involved in the biosynthesis of lipopolysaccharide (LPS). Experimental evidence indicated that impairment of LPS along with overexpression of pmrAB may have contributed to the development of polymyxin resistance in AC30. Cloning of a novel variant of the bla AmpC gene from AC29 and AC30, and its subsequent expression in E. coli also indicated its likely function as an extended-spectrum cephalosporinase.

  10. CARB-9, a Carbenicillinase Encoded in the VCR Region of Vibrio cholerae Non-O1, Non-O139 Belongs to a Family of Cassette-Encoded β-Lactamases†

    PubMed Central

    Petroni, Alejandro; Melano, Roberto G.; Saka, Héctor A.; Garutti, Alicia; Mange, Laura; Pasterán, Fernando; Rapoport, Melina; Miranda, Mariana; Faccone, Diego; Rossi, Alicia; Hoffman, Paul S.; Galas, Marcelo F.

    2004-01-01

    The gene blaCARB-9 was located in the Vibrio cholerae super-integron, but in a different location relative to blaCARB-7. CARB-9 (pI 5.2) conferred β-lactam MICs four to eight times lower than those conferred by CARB-7, differing at Ambler's positions V97I, L124F, and T228K. Comparison of the genetic environments of all reported blaCARB genes indicated that the CARB enzymes constitute a family of cassette-encoded β-lactamases. PMID:15388476

  11. Analysis of IL12B Gene Variants in Inflammatory Bowel Disease

    PubMed Central

    Wagner, Johanna; Olszak, Torsten; Fries, Christoph; Tillack, Cornelia; Friedrich, Matthias; Beigel, Florian; Stallhofer, Johannes; Steib, Christian; Wetzke, Martin; Göke, Burkhard; Ochsenkühn, Thomas; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2012-01-01

    Background IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD). However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. Methodology/Principal Findings We analyzed IL12B gene variants regarding association with Crohn's disease (CD) and ulcerative colitis (UC). Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695). Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01–1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99–1.31], p = 0.066) and UC (OR 1.18 [0.97–1.43], p = 0.092). CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10−5; OR = 2.84, 95% CI 1.66–4.84), while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14–0.92). In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694) in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05) but there was no epistasis between IL23R and IL12B variants. Conclusions/Significance The IL12B SNP rs6887695 modulates the susceptibility and the phenotype of IBD, although the effect on IBD susceptibilty is less pronounced than that of IL23R gene variants. PMID:22479607

  12. Characterization and phylogenetic analysis of lectin gene cDNA isolated from sea cucumber ( Apostichopus japonicus) body wall

    NASA Astrophysics Data System (ADS)

    Xue, Zhuang; Li, Hui; Liu, Yang; Zhou, Wei; Sun, Jing; Wang, Xiuli

    2017-12-01

    As a `living fossil' of species origin and `rich treasure' of food and nutrition development, sea cucumber has received a lot of attentions from researchers. The cDNA library construction and EST sequencing of blood had been conducted previously in our lab. The bioinformatic analysis provided a gene fragment which is highly homologous with the genes of lectin family, named AjL ( Apostichopus japonicus lectin). To characterize and determine the phylogeny of AjL genes in early evolution, we isolated a full-length cDNA of lectin gene from the body wall of A. japonicus. The open reading frame of this gene contained 489 bp and encoded a 163 amino acids secretory protein being homologous to lectins of mammals and aquatic organisms. The deduced protein included a lectin-like domain. SDS-PAGE analysis showed that AjL migrated as a specific band (about 36.09 kDa under reducing), and agglutinated against rabbit red blood cells. AjL was similar to chain A of CEL-IV in space structure. We predicted that AjL may play the same role of CEL-IV. Our results suggested that more than one lectin gene functioned in sea cucumber and most of other species, which was fused by uncertain sequences during the evolution and encoded different proteins with diverse functions. Our findings provided the insights into the function and characteristics of lectin genes invertebrates. The results will also be helpful for the identification and structural, functional, and evolutionary analyses of lectin genes.

  13. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice.

    PubMed

    Huynh, David N; Bessi, Valérie L; Ménard, Liliane; Piquereau, Jérôme; Proulx, Caroline; Febbraio, Maria; Lubell, William D; Carpentier, André C; Burelle, Yan; Ong, Huy; Marleau, Sylvie

    2018-02-01

    CD36 is a multiligand receptor involved in lipid metabolism. We investigated the mechanisms underlying the cardioprotective effect of CP-3(iv), an azapeptide belonging to a new class of selective CD36 ligands. The role of CP-3(iv) in mediating cardioprotection was investigated because CD36 signaling leads to activation of peroxisome proliferator-activated receptor-γ, a transcriptional regulator of adiponectin. CP-3(iv) pretreatment reduced infarct size by 54% and preserved hemodynamics in C57BL/6 mice subjected to 30 min coronary ligation and reperfusion but had no effect in CD36-deficient mice. The effects of CP-3(iv) were associated with an increase in circulating adiponectin levels, epididymal fat adiponectin gene expression, and adiponectin transcriptional regulators ( Pparg, Cebpb, Sirt1) after 6 h of reperfusion. Reduced myocardial oxidative stress and apoptosis were observed along with an increase in expression of myocardial adiponectin target proteins, including cyclooxygenase-2, phospho-AMPK, and phospho-Akt. Moreover, CP-3(iv) increased myocardial performance in isolated hearts, whereas blockade of adiponectin with an anti-adiponectin antibody abrogated it. CP-3(iv) exerts cardioprotection against myocardial ischemia and reperfusion (MI/R) injury and dysfunction, at least in part, by increasing circulating and myocardial adiponectin levels. Hence, both paracrine and endocrine effects of adiponectin may contribute to reduced reactive oxygen species generation and apoptosis after MI/R, in a CD36-dependent manner.-Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., Lubell, W. D., Carpentier, A. C., Burelle, Y., Ong, H., Marleau, S. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice.

  14. Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Zheng, Weite; Cao, Fangbin; Wu, Feibo

    2016-09-01

    Tobacco (Nicotiana tabacum L.) is more acclimated to cadmium (Cd) uptake and preferentially enriches Cd in leaves than other crops. MicroRNAs (miRNAs) play crucial roles in regulating expression of various stress response genes in plants. However, genome-wide expression of miRNAs and their target genes in response to Cd stress in tobacco are still unknown. Here, miRNA high-throughput sequencing technology was performed using two contrasting tobacco genotypes Guiyan 1 and Yunyan 2 of Cd-sensitive and tolerance. Comprehensive analysis of miRNA expression profiles in control and Cd treated plants identified 72 known (27 families) and 14 novel differentially expressed miRNAs in the two genotypes. Among them, 28 known (14 families) and 5 novel miRNAs were considered as Cd tolerance associated miRNAs, which mainly involved in cell growth, ion homeostasis, stress defense, antioxidant and hormone signaling. Finally, a hypothetical model of Cd tolerance mechanism in Yunyan 2 was presented. Our findings suggest that some miRNAs and their target genes and pathways may play critical roles in Cd tolerance.

  15. c-Myb promotes the survival of CD4+CD8+ double positive thymocytes through up-regulation of Bcl-xL1

    PubMed Central

    Yuan, Joan; Crittenden, Rowena B.; Bender, Timothy P.

    2010-01-01

    Mechanisms that regulate the lifespan of CD4+CD8+ double positive (DP) thymocytes help shape the peripheral T cell repertoire. However, the molecular mechanisms that control DP thymocyte survival remain poorly understood. The Myb proto-oncogene encodes a transcription factor required during multiple stages of T cell development. We demonstrate that Myb mRNA expression is up-regulated in the small, pre-selection DP stage during T cell development. Using a conditional deletion mouse model, we demonstrate that Myb deficient DP thymocytes undergo premature apoptosis, resulting in a limited Tcrα repertoire biased towards 5’ Jα segment usage. Premature apoptosis occurs in the small pre-selection DP compartment in an αβTCR independent manner and is a consequence of decreased Bcl-xL expression. Forced Bcl-xL expression is able to rescue survival and re-introduction of c-Myb restores both Bcl-xL expression and the small pre-selection DP compartment. We further demonstrate that thymocytes become dependent on Bcl-xL for survival upon entering the quiescent, small pre-selection DP stage and c-Myb promotes transcription at the Bclx locus via a genetic pathway that is independent of the expression of TCF-1 or RORγt, two transcription factors that induce Bcl-xL expression in T cell development. Thus, Bcl-xL is a novel mediator of c-Myb activity during normal T cell development. PMID:20142358

  16. Identification and Molecular Characterization of Two Acetylcholinesterases from the Salmon Louse, Lepeophtheirus salmonis

    PubMed Central

    Kaur, Kiranpreet; Bakke, Marit Jørgensen; Nilsen, Frank; Horsberg, Tor Einar

    2015-01-01

    Acetylcholinesterase (AChE) is an important enzyme in cholinergic synapses. Most arthropods have two genes (ace1 and ace2), but only one encodes the predominant synaptic AChE, the main target for organophosphates. Resistance towards organophosphates is widespread in the marine arthropod Lepeophtheirus salmonis. To understand this trait, it is essential to characterize the gene(s) coding for AChE(s). The full length cDNA sequences encoding two AChEs in L. salmonis were molecularly characterized in this study. The two ace genes were highly similar (83.5% similarity at protein level). Alignment to the L. salmonis genome revealed that both genes were located close to each other (separated by just 26.4 kbp on the L. salmonis genome), resulting from a recent gene duplication. Both proteins had all the typical features of functional AChE and clustered together with AChE-type 1 proteins in other species, an observation that has not been described in other arthropods. We therefore concluded the presence of two versions of ace1 gene in L. salmonis, named ace1a and ace1b. Ace1a was predominantly expressed in different developmental stages compared to ace1b and was possibly active in the cephalothorax, indicating that ace1a is more likely to play the major role in cholinergic synaptic transmission. The study is essential to understand the role of AChEs in resistance against organophosphates in L. salmonis. PMID:25938836

  17. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma

    PubMed Central

    Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won

    2018-01-01

    Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.

  18. A novel extracellular low-temperature active phytase from Bacillus aryabhattai RS1 with potential application in plant growth.

    PubMed

    Pal Roy, Moushree; Datta, Subhabrata; Ghosh, Shilpi

    2017-05-01

    Bacillus aryabhattai RS1 isolated from rhizosphere produced an extracellular, low temperature active phytase. The cultural conditions for enzyme production were optimized to obtain 35 U mL -1 of activity. Purified phytase had specific activity and molecular weight of 72.97 U mg -1 and ∼40 kDa, respectively. The enzyme was optimally active at pH 6.5 and 40°C and was highly specific to phytate. It exhibited higher catalytic activity at low temperature, retaining over 40% activity at 10°C. Phytase was more thermostable in presence of Ca 2+ ion and retained 100% residual activity on preincubation at 20-50°C for 30 min. Partial phytase encoding gene, phy B (816 bp) was cloned and sequenced. The encoded amino acid sequence (272 aa) contained two conserved motifs, DA[A/T/E]DDPA[I/L/V]W and NN[V/I]D[I/L/V]R[Y/D/Q] of β-propellar phytase and had lower sequence homology with other Bacillus phytases, indicating its novelty. Phytase and the bacterial inoculum were effective in improving germination and growth of chickpea seedlings under phosphate limiting condition. Moreover, the potential applications of the enzyme with relatively high activity at lower temperatures (20-30°C) could also be extended to aquaculture and food processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:633-641, 2017. © 2017 American Institute of Chemical Engineers.

  19. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    PubMed

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  20. Rab from the white shrimp Litopenaeus vannamei: characterization and its regulation upon environmental stress.

    PubMed

    Wang, Lei; Wang, Xiao-Rong; Liu, Jin; Chen, Chu-Xian; Liu, Yuan; Wang, Wei-Na

    2015-10-01

    With the destruction of the ecological environment, shrimp cultivation in China has been seriously affected by outbreaks of infectious diseases. Rab, which belong to small GTPase Ras superfamily, can regulate multiple steps in eukaryotic vesicle trafficking including vesicle budding, vesicle tethering, and membrane fusion. Knowledge of Rab in shrimp is essential to understanding regulation and detoxification mechanisms of environmental stress. In this study, we analyzed the functions of Rab from the Pacific white shrimp, Litopenaeus vannamei. Full-length cDNA of Rab was obtained, which was 751 bp long, with open reading frame encoding 206 amino acids. In this study, for the first time, the gene expression of Rab of L. vannamei was analyzed by quantitative real-time PCR after exposure to five kinds of environmental stresses (bacteria, pH, Cd, salinity and low temperature). The results demonstrate that Rab is sensitive and involved in bacteria, pH, and Cd stress responses and Rab is more sensitive to bacteria than other stresses. Therefore we infer that Rab may have relationship with the anti-stress mechanism induced by environment stress in shrimp and Rab could be used as critical biomarkers for environmental quality assessment.

  1. The Genetic Basis of Graves' Disease

    PubMed Central

    Płoski, Rafał; Szymański, Konrad; Bednarczuk, Tomasz

    2011-01-01

    The presented comprehensive review of current knowledge about genetic factors predisposing to Graves’ disease (GD) put emphasis on functional significance of observed associations. In particular, we discuss recent efforts aimed at refining diseases associations found within the HLA complex and implicating HLA class I as well as HLA-DPB1 loci. We summarize data regarding non-HLA genes such as PTPN22, CTLA4, CD40, TSHR and TG which have been extensively studied in respect to their role in GD. We review recent findings implicating variants of FCRL3 (gene for FC receptor-like-3 protein), SCGB3A2 (gene for secretory uteroglobin-related protein 1- UGRP1) as well as other unverified possible candidate genes for GD selected through their documented association with type 1 diabetes mellitus: Tenr–IL2–IL21, CAPSL (encoding calcyphosine-like protein), IFIH1(gene for interferon-induced helicase C domain 1), AFF3, CD226 and PTPN2. We also review reports on association of skewed X chromosome inactivation and fetal microchimerism with GD. Finally we discuss issues of genotype-phenotype correlations in GD. PMID:22654555

  2. Silicon-induced reversibility of cadmium toxicity in rice

    PubMed Central

    Farooq, Muhammad Ansar; Detterbeck, Amelie; Clemens, Stephan; Dietz, Karl-Josef

    2016-01-01

    Silicon (Si) modulates tolerance to abiotic stresses, but little is known about the reversibility of stress effects by supplementing previously stressed plants with Si. This is surprising since recovery experiments might allow mechanisms of Si-mediated amelioration to be addressed. Rice was exposed to 10 µM CdCl2 for 4 d in hydroponics, followed by 0.6mM Si(OH)4 supplementation for 4 d. Si reversed the effects of Cd, as reflected in plant growth, photosynthesis, elemental composition, and some biochemical parameters. Cd-dependent deregulation of nutrient homeostasis was partially reversed by Si supply. Photosynthetic recovery within 48h following Si supply, coupled with strong stimulation of the ascorbate–glutathione system, indicates efficient activation of defense. The response was further verified by transcript analyses with emphasis on genes encoding members of the stress-associated protein (SAP) family. The transcriptional response to Cd was mostly reversed following Si supply. Reprogramming of the Cd response was obvious for Phytochelatin synthase 1, SAP1 , SAP14, and the transcription factor genes AP2/Erf020, Hsf31, and NAC6 whose transcript levels were strongly activated in roots of Cd-stressed rice, but down-regulated in the presence of Si. These findings, together with changes in biochemical parameters, highlight the significance of Si in growth recovery of Cd-stressed rice and indicate a decisive role for readjusting cell redox homeostasis. PMID:27122572

  3. Canavan disease: an Arab scenario.

    PubMed

    Zayed, Hatem

    2015-04-10

    The autosomal recessive Canavan disease (CD) is a neurological disorder that begins in infancy. CD is caused by mutations in the gene encoding the ASPA enzyme. It has been reported with high frequency in patients with Jewish ancestry, and with low frequency in non-Jewish patients. This review will shed light on some updates regarding CD prevalence and causative mutations across the Arab World. CD was reported in several Arab countries such as Saudi Arabia, Egypt, Jordan, Yemen, Kuwait, and Tunisia. The population with the highest risk is in Saudi Arabia due the prevalent consanguineous marriage culture. In several studies, four novel mutations were found among Arabian CD patients, including two missense mutations (p.C152R, p.C152W), a 3346bp deletion leading to the removal of exon 3 of the ASPA gene, and an insertion mutation (698insC). Other previously reported mutations, which led to damage in the ASPA enzyme activities found among CD Arab patients are c.530 T>C (p.I177T), c.79G>A (p.G27R), IVS4+1G>T, and a 92kb deletion, which is 7.16kb upstream from the ASPA start site. This review will help in developing customized molecular diagnostic approaches and promoting CD carrier screening in the Arab world in areas where consanguineous marriage is common particularly within Saudi Arabia. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata.

    PubMed

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Huseth, Anders S; Lan, Que; Groves, Russell L

    2017-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of potatoes in the Central Sands production region of Wisconsin. Previous studies have shown that populations of L. decemlineata have become resistant to many classes of insecticides, including the neonicotinoid insecticide, imidacloprid. Furthermore, L. decemlineata has multiple mechanisms of resistance to deal with a pesticide insult, including enhanced metabolic detoxification by cytochrome p450s and glutathione S-transferases. With recent advances in the transcriptomic analysis of imidacloprid susceptible and resistant L. decemlineata populations, it is possible to investigate the role of candidate genes involved in imidacloprid resistance. A recently annotated transcriptome analysis of L. decemlineata was obtained from select populations of L. decemlineata collected in the Central Sands potato production region, which revealed a subset of mRNA transcripts constitutively up-regulated in resistant populations. We hypothesize that a portion of the up-regulated transcripts encoding for genes within the resistant populations also encode for pesticide resistance and can be suppressed to re-establish a susceptible phenotype. In this study, a discrete set of three up-regulated targets were selected for RNA interference experiments using a resistant L. decemlineata population. Following the successful suppression of transcripts encoding for a cytochrome p450, a cuticular protein, and a glutathione synthetase protein in a select L. decemlineata population, we observed reductions in measured resistance to imidacloprid that strongly suggest these genes control essential steps in imidacloprid metabolism in these field populations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Gene within gene configuration and expression of the Drosophila melanogaster genes lethal(2) neighbour of tid [l(2)not] and lethal(2) relative of tid[l(2)rot].

    PubMed

    Kurzik-Dumke, U; Kaymer, M; Gundacker, D; Debes, A; Labitzke, K

    1997-10-24

    In this paper, we describe the structure and temporal expression pattern of the Drosophila melanogaster genes l(2)not and l(2)rot located at locus 59F5 vis à vis the tumor suppressor gene l(2)tid described previously and exhibiting a gene within gene configuration. The l(2)not protein coding region, 1530 nt, is divided into two exons by an intron, 2645 nt, harboring the genes l(2)rot, co-transcribed from the same DNA strand, and l(2)tid, co-transcribed from the opposite DNA strand, located vis à vis. To determine proteins encoded by the genes described in this study polyclonal rabbit antibodies (Ab), anti-Not and anti-Rot, were generated. Immunostaining of developmental Western blots with the anti-Not Ab resulted in the identification of a 45-kDa protein, Not45, which is smaller than the Not56 protein predicted from the sequence. Its localization in endoplasmic reticulum (ER) was established by immunoelectron microscopy of Drosophila melanogaster Schneider 2 cells. Not45 shows significant homology to yeast ALG3 protein acting as a dolichol mannosyltransferase in the asparagine-linked glycosylation. It is synthesized ubiquitously throughout embryonic life. The protein predicted from the l(2)rot sequence, Rot57, shows a homology to the NS2B protein of the yellow fever virus1 (yefv1). The results of l(2)rot RNA analysis by developmental Northern blot and by in situ RNA localization, as well as the results of the protein analysis via Western blot and immunohistochemistry suggest that l(2)rot is transcribed but not translated. Since RNAs encoded by the genes l(2)tid and l(2)rot are complementary and l(2)rot is presumably not translated we performed preliminary experiments on the function of the l(2)rot RNA as a natural antisense RNA (asRNA) regulator of l(2)tid expression, expressed in the same temporal and spatial manner as the l(2)tid- and l(2)not RNA. l(2)tid knock-out by antisense RNA yielded late embryonic lethality resulting from multiple morphogenetic defects.

  6. Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-04-01

    To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.

  7. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke

    2015-10-05

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in Dinoroseobacter shibae

    PubMed Central

    Ebert, Matthias; Laaß, Sebastian; Thürmer, Andrea; Roselius, Louisa; Eckweiler, Denitsa; Daniel, Rolf; Härtig, Elisabeth; Jahn, Dieter

    2017-01-01

    The heterotrophic marine bacterium Dinoroseobacter shibae utilizes aerobic respiration and anaerobic denitrification supplemented with aerobic anoxygenic photosynthesis for energy generation. The aerobic to anaerobic transition is controlled by four Fnr/Crp family regulators in a unique cascade-type regulatory network. FnrL is utilizing an oxygen-sensitive Fe-S cluster for oxygen sensing. Active FnrL is inducing most operons encoding the denitrification machinery and the corresponding heme biosynthesis. Activation of gene expression of the high oxygen affinity cbb3-type and repression of the low affinity aa3-type cytochrome c oxidase is mediated by FnrL. Five regulator genes including dnrE and dnrF are directly controlled by FnrL. Multiple genes of the universal stress protein (USP) and cold shock response are further FnrL targets. DnrD, most likely sensing NO via a heme cofactor, co-induces genes of denitrification, heme biosynthesis, and the regulator genes dnrE and dnrF. DnrE is controlling genes for a putative Na+/H+ antiporter, indicating a potential role of a Na+ gradient under anaerobic conditions. The formation of the electron donating primary dehydrogenases is coordinated by FnrL and DnrE. Many plasmid encoded genes were DnrE regulated. DnrF is controlling directly two regulator genes including the Fe-S cluster biosynthesis regulator iscR, genes of the electron transport chain and the glutathione metabolism. The genes for nitrate reductase and CO dehydrogenase are repressed by DnrD and DnrF. Both regulators in concert with FnrL are inducing the photosynthesis genes. One of the major denitrification operon control regions, the intergenic region between nirS and nosR2, contains one Fnr/Dnr binding site. Using regulator gene mutant strains, lacZ-reporter gene fusions in combination with promoter mutagenesis, the function of the single Fnr/Dnr binding site for FnrL-, DnrD-, and partly DnrF-dependent nirS and nosR2 transcriptional activation was shown. Overall, the unique regulatory network of the marine bacterium D. shibae for the transition from aerobic to anaerobic growth composed of four Crp/Fnr family regulators was elucidated. PMID:28473807

  9. Esco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin.

    PubMed

    Banerji, Rajeswari; Eble, Diane M; Iovine, M Kathryn; Skibbens, Robert V

    2016-01-01

    Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related developmental malady termed Cornelia de Lange syndrome (CdLS). RBS and CdLS exhibit overlapping phenotypes, but RBS is thought to arise through mitotic failure and limited progenitor cell proliferation while CdLS arises through transcriptional dysregulation. Here, we use the zebrafish regenerating fin model to test the mechanism through which RBS-type phenotypes arise. esco2 is up-regulated during fin regeneration and specifically within the blastema. esco2 knockdown adversely affects both tissue and bone growth in regenerating fins-consistent with a role in skeletal morphogenesis. esco2-knockdown significantly diminishes cx43/gja1 expression which encodes the gap junction connexin subunit required for cell-cell communication. cx43 mutations cause the short fin (sof(b123) ) phenotype in zebrafish and oculodentodigital dysplasia (ODDD) in humans. Importantly, miR-133-dependent cx43 overexpression rescues esco2-dependent growth defects. These results conceptually link ODDD to cohesinopathies and provide evidence that ESCO2 may play a transcriptional role critical for human development. © 2015 Wiley Periodicals, Inc.

  10. Upregulation of voltage-gated Ca2+ channels in mouse astrocytes infected with Theiler's murine encephalomyelitis virus (TMEV).

    PubMed

    Rubio, N; Almanza, A; Mercado, F; Arévalo, M-Á; Garcia-Segura, L M; Vega, R; Soto, E

    2013-09-05

    Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice through a CD4(+) Th1 T cell-mediated immunopathological process. TMEV infection produces a syndrome in mice that resembles multiple sclerosis. In this work, we focused on the increased expression of the genes encoding voltage-gated Ca(2+) channel subunits in SJL/J mouse astrocytes infected in culture with a BeAn strain of TMEV. Affymetrix DNA murine genome U74v2 DNA microarray hybridized with cRNA from mock- and TMEV-infected astrocytes revealed the upregulation of four sequences encoding Ca(2+)-binding and Ca(2+) channel subunit proteins. The DNA hybridization results were further validated using conventional RT-PCR and quantitative RT-PCR, demonstrating the increased expression of mRNA encoding channel subunit proteins. Western blotting also showed the increased synthesis of L- and N-type channel subunit specific proteins after infection. The reduced expression and the functional upregulation of functional voltage-gated Ca(2+) channels in mock- and TMEV-infected cells, respectively, was demonstrated using voltage clamp experiments. TMEV infection in mouse astrocytes induced a Ca(2+) current with a density proportional to the amount of viral particles used for infection. The use of Ca(2+) channel blockers, nimodipine and ω-conotoxin-GVIA, showed that both functional L- and N-type Ca(2+) channels were upregulated in infected astrocytes. The upregulation of Ca(2+) channels in astrocytes after TMEV infection provides insight into the molecular processes and potential role of astrocyte Ca(2+) dysregulation in the pathophysiology of encephalomyelitis and is important for the development of novel therapeutic strategies leading to prevention of neurodegeneration. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Diverse expression levels of two codon-optimized genes that encode human papilloma virus type 16 major protein L1 in Hansenula polymorpha.

    PubMed

    Liu, Cunbao; Yang, Xu; Yao, Yufeng; Huang, Weiwei; Sun, Wenjia; Ma, Yanbing

    2014-05-01

    Two versions of an optimized gene that encodes human papilloma virus type 16 major protein L1 were designed according to the codon usage frequency of Pichia pastoris. Y16 was highly expressed in both P. pastoris and Hansenula polymorpha. M16 expression was as efficient as that of Y16 in P. pastoris, but merely detectable in H. polymorpha even though transcription levels of M16 and Y16 were similar. H. polymorpha had a unique codon usage frequency that contains many more rare codons than Saccharomyces cerevisiae or P. pastoris. These findings indicate that even codon-optimized genes that are expressed well in S. cerevisiae and P. pastoris may be inefficiently expressed in H. polymorpha; thus rare codons must be avoided when universal optimized gene versions are designed to facilitate expression in a variety of yeast expression systems, especially H. polymorpha is involved.

  12. Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes.

    PubMed

    Shu, Chang; Wang, Shanchen; Xu, Tianjun

    2015-05-01

    Dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN/CD209) and liver/lymph node-specific ICAM-grabbing non-integrin (L-SIGN/CD299) which are homologues of DC-SIGN are important members in C-type lectin receptors family as key molecules to recognize and eliminate pathogens in the innate immune system. DC-SIGN and L-SIGN have become hot topics in recent studies which both served as cell adhesion and phagocytic pathogen recognition receptors in mammals. However, there have been almost no studies of DC-SIGN and L-SIGN structure and characters in fish, only DC-SIGN in the zebrafish had been studied. In our study, we identified and characterized the full-length miiuy croaker (Miichthys miiuy) DC-SIGN (mmDC-SIGN) and L-SIGN (mmL-SIGN) genes. The sequence analysis results showed that mmDC-SIGN and mmL-SIGN have the same domains with other vertebrates except primates, and share some conserved motifs in CRD among all the vertebrates which play a crucial role in interacting with Ca(2+) and for recognizing mannose-containing motifs. Gene synteny of DC-SIGN and L-SIGN were analyzed for the first time and gene synteny of L-SIGN was conserved among the five fishes. Interestingly, one gene next to L-SIGN from gene synteny had high similarity with L-SIGN gene that was described as L-SIGN-like in fish species. While only one L-SIGN gene existed in other vertebrates, two L-SIGN in fish may be in consequence of the fish-specific genome duplication to adapt the specific environment. The evolutionary analysis showed that the ancestral lineages of L-SIGN gene in fishes experienced purifying selection and the current lineages of L-SIGN gene in fishes underwent positive selection, indicating that the ancestral lineages and current lineages of L-SIGN gene in fishes underwent different evolutionary patterns. Both mmDC-SIGN and mmL-SIGN were expressed in all tested tissues and ubiquitously up-regulated in infected liver, spleen and kidney at different sampling time points, indicating that the mmDC-SIGN and mmL-SIGN participated in the immune response to defense against bacteria infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The Geonomic Organization of the CD28 Gene. Implications for the Regulation of CD28 mRNA Expression and Heterogeneity

    DTIC Science & Technology

    1990-07-01

    doanrmsialecgtonptcelsvstsrtinrnsoa Partial primary structure of the alpha and beta chains of human tdomn ctmvity nat Nrento 320 ticl levsis.ti tasoa...L. Moretta. and C. MW. Croce. tlon and RNA splicing defects in five cloned j6- thalassaemia genes. 1987. Tp44 molecules Involved In antigen-independent T cell acti- Na t ure 302:59 1.

  14. Contribution of the activated catalase to oxidative stress resistance and γ-aminobutyric acid production in Lactobacillus brevis.

    PubMed

    Lyu, Changjiang; Hu, Sheng; Huang, Jun; Luo, Maiqi; Lu, Tao; Mei, Lehe; Yao, Shanjing

    2016-12-05

    Lactic acid bacteria (LAB) are generally sensitive to H 2 O 2 , a compound which can paradoxically produce themselves and lead to the growth arrest and cell death. To counteract the potentially toxic effects of this compound, the gene katE encoding a heme-dependent catalase (CAT) belonging to the family of monofunctional CATs was cloned from Lactobacillus brevis CGMCC1306. The enhanced homologous CAT expression was achieved using the NICE system. L. brevis cells with overexpressed CAT showed 685-fold and 823-fold higher survival when exposed to 30mmol/L of H 2 O 2 and long-term aerated stress (after 72h), respectively, than that of the wild type cells. Furtherly, the effects of activated CAT on GABA production in L. brevis were investigated. A GABA production level of 66.4g/L was achieved using two-step biotransformation that successively employed the growing and resting cells derived from engineering L. brevis CAT. These results demonstrated clearly that overexpression of the KatE gene in L. brevis led to a marked increased survival in oxidizing environment, and shed light on a novel feasible approach to enhance the GABA production level by improving the antioxidative properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Iron-regulated Transporter, MbNRAMP1, Isolated from Malus baccata is Involved in Fe, Mn and Cd Trafficking

    PubMed Central

    Xiao, Haihua; Yin, Liping; Xu, Xuefeng; Li, Tianzhong; Han, Zhenhai

    2008-01-01

    Background and Aims Iron deficiency is one of the most common nutritional disorders in plants, especially in fruit trees grown in calcareous soil. Malus baccata is widely used as an apple rootstock in north China and is highly resistant to low temperatures. There are few studies on iron absorption by this species at the molecular level. It is very important to understand the mechanism of iron uptake and transport in such woody plants. As a helpful tool, the aim of the present study was the cloning and functional analysis of NRAMP (natural resistance-associated macrophage protein) genes from the apple tree in relation to trafficking of micronutrients (Fe, Mn and Cd). Methods Reverse transcription-PCR (RT-PCR) combined with RACE (rapid amplification of cDNA ends) was adopted to isolate the full-length NRAMP1 cDNA. Southern blotting was used to test gene copy information, and northern blot was used to detect the gene's expression level. Complementation experiments using the yeast mutant strains DEY1453 and SLY8 were employed to confirm the iron- and manganese-transporting ability of NRAMP1 from apple, and inductively coupled plasma (ICP) spectrometry was used to measure Cd accumulation in yeast. NRAMP1–green fluorescent protein (GFP) fusion protein was used to determine the cellular localization in yeast. Key Results A 2090 bp cDNA was isolated and named MbNRAMP1. It encodes a predicted polypeptide of 551 amino acids. MbNRAMP1 exists in the M. baccata genome as a single copy and was expressed mainly in roots. MbNRAMP1 rescued the phenotype of yeast mutant strains DEY1453 and SLY8, and also increased Cd2+ sensitivity and accumulation. MbNRAMP1 expression in yeast was largely influenced by iron status, and the expression pattern of MbNRAMP1–GFP varied with the environmental iron nutrition status. Conclusions MbNRAMP1 encodes a functional metal transporter capable of mediating the distribution of ions as well as transport of the micronutrients, Fe and Mn, and the toxic metal, Cd. PMID:18819951

  16. L-Cysteine Metabolism and Fermentation in Microorganisms.

    PubMed

    Takagi, Hiroshi; Ohtsu, Iwao

    L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.

  17. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  18. Novel Cadmium Responsive MicroRNAs in Daphnia pulex.

    PubMed

    Chen, Shuai; McKinney, Garrett J; Nichols, Krista M; Colbourne, John K; Sepúlveda, Maria S

    2015-12-15

    Daphnia pulex is a widely used toxicological model and is known for its sensitivity to cadmium (Cd). Recent research suggests that microRNAs (miRNAs) play a critical role in animal responses to heavy metals. To investigate the functions of D. pulex miRNAs under Cd exposure, we analyzed the miRNA profiles of D. pulex after 48 h using miRNA microarrays and validated our findings by q-PCR. miRNA dpu-let-7 was identified as a stably expressed gene and used as a reference. We identified 22 and 21 differentially expressed miRNAs under low (20 μg/L CdCl2) and high-exposure (40 μg/L CdCl2) concentrations compared to controls, respectively. Cellular functions of predicted miRNA target Cd-responsive genes included oxidative stress, ion transport, mitochondrial damage, and DNA repair. An insulin-related network was also identified in relation to several Cd-responsive miRNAs. The expression of three predicted target genes for miR-71 and miR-210 were evaluated, and expression of two of them (SCN2A and SLC31A1) was negatively correlated with the expression of their regulator miRNAs. We show miR-210 is hypoxia-responsive in D. pulex and propose Cd and hypoxia induce miR-210 via a same HIF1α modulated pathway. Collectively, this research advances our understanding on the role of miRNAs in response to heavy-metal exposure.

  19. Rituximab, etoposide, methylprednisolone, high-dose cytarabine, and cisplatin in the treatment of secondary hemophagocytic lymphohistiocytosis with classical Hodgkin lymphoma: a case report and review of the literature.

    PubMed

    Hu, Steve; Bansal, Pranshu; Lynch, David; Rojas Hernandez, Cristhiam Mauricio; Dayao, Zoneddy

    2016-12-20

    Hemophagocytic lymphohistiocytosis is becoming an increasingly recognized disorder in adults. Classical Hodgkin lymphoma is a relatively uncommon etiology of hemophagocytic lymphohistiocytosis and may complicate treatment options. Rituximab, etoposide, methylprednisolone, high-dose cytarabine, and cisplatin are discussed here as a treatment regimen. A 66-year-old Hispanic man previously in good health presented with a 1-month history of recurrent fevers, chills, and night sweats and a 3-week history of new onset jaundice. A bone marrow biopsy revealed a normocellular bone marrow with increased histiocytes with areas of hemophagocytic activity. He met five out of eight criteria for hemophagocytic lymphohistiocytosis diagnosis including fevers, pancytopenia, hemophagocytosis, ferritin of 23,292 ng/mL (>500 ng/mL), and soluble-CD25 of 15,330 pg/mL (>1033 pg/mL). A right cervical lymph node biopsy revealed CD15, CD30, MUM-1, and Epstein-Barr virus-encoded small ribonucleic acid-positive cells with morphologic findings of classical Hodgkin lymphoma, lymphocyte-rich subtype. He completed 2 weeks of hemophagocytic lymphohistiocytosis-directed therapy with etoposide and dexamethasone, but then was switched to rituximab, etoposide, methylprednisolone, high-dose cytarabine, and cisplatin due to minimal improvement in his pancytopenia and hepatic impairment. He completed one full cycle of rituximab, etoposide, methylprednisolone, high-dose cytarabine, and cisplatin with notable improvement in serial hepatic function panels and had an undetectable Epstein-Barr virus viral load. However, he eventually died due to complications of Enterococcus faecalis bacteremia and colonic microperforation in the setting of persistent pancytopenia. This case discusses the challenges facing treatment of adult malignancy-associated hemophagocytic lymphohistiocytosis. Rituximab, etoposide, methylprednisolone, high-dose cytarabine, and cisplatin may be a viable option for patients with secondary hemophagocytic lymphohistiocytosis and Hodgkin lymphoma who cannot tolerate standard therapies due to hepatic impairment. Targeted therapy and immunotherapy are promising new areas of developing treatments.

  20. Optimization of a gene electrotransfer procedure for efficient intradermal immunization with an hTERT-based DNA vaccine in mice

    PubMed Central

    Calvet, Christophe Y; Thalmensi, Jessie; Liard, Christelle; Pliquet, Elodie; Bestetti, Thomas; Huet, Thierry; Langlade-Demoyen, Pierre; Mir, Lluis M

    2014-01-01

    DNA vaccination consists in administering an antigen-encoding plasmid in order to trigger a specific immune response. This specific vaccine strategy is of particular interest to fight against various infectious diseases and cancer. Gene electrotransfer is the most efficient and safest non-viral gene transfer procedure and specific electrical parameters have been developed for several target tissues. Here, a gene electrotransfer protocol into the skin has been optimized in mice for efficient intradermal immunization against the well-known telomerase tumor antigen. First, the luciferase reporter gene was used to evaluate gene electrotransfer efficiency into the skin as a function of the electrical parameters and electrodes, either non-invasive or invasive. In a second time, these parameters were tested for their potency to generate specific cellular CD8 immune responses against telomerase epitopes. These CD8 T-cells were fully functional as they secreted IFNγ and were endowed with specific cytotoxic activity towards target cells. This simple and optimized procedure for efficient gene electrotransfer into the skin using the telomerase antigen is to be used in cancer patients for the phase 1 clinical evaluation of a therapeutic cancer DNA vaccine called INVAC-1. PMID:26015983

Top