Science.gov

Sample records for genes encoding p450

  1. The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway.

    PubMed

    Tudzynski, B; Hedden, P; Carrera, E; Gaskin, P

    2001-08-01

    At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA(4). The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3' consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.

  2. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster.

    PubMed

    Gilbert, Lawrence I

    2004-02-27

    Mutation of members of the Halloween gene family results in embryonic lethality. We have shown that two of these genes code for enzymes responsible for specific steps in the synthesis of ecdysone, a polyhydroxylated sterol that is the precursor of the major molting hormone of all arthropods, 20-hydroxyecdysone. These two mitochondrial P450 enzymes, coded for by disembodied (dib) (CYP302A1) and shadow (sad) (CYP315A1), are the C22 and C2 hydroxylases, respectively, as shown by transfection of the gene into S2 cells and subsequent biochemical analysis. These are the last two enzymes in the ecdysone biosynthetic pathway. A third enzyme, necessary for the critical conversion of ecdysone to 20-hydroxyecdysone, the 20-monooxygenase, is encoded by shade (shd) (CYP314A1). All three enzymes are mitochondrial although shade has motifs suggesting both mitochondrial and microsomal locations. By tagging these enzymes, their subcellular location has been confirmed by confocal microscopy. Shade is present in several tissues as expected while disembodied and shadow are restricted to the ring gland. The paradigm used should allow us to define the enzymes mediating the entire ecdysteroid biosynthetic pathway.

  3. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis.

    PubMed Central

    Winkler, R G; Helentjaris, T

    1995-01-01

    Gibberellins (GAs) are phytohormones required for normal growth and development in higher plants. The Dwarf3 (D3) gene of maize encodes an early step in the GA biosynthesis pathway. We transposon-tagged the D3 gene using Robertson's Mutator (Mu) and showed that the mutant allele d3.2::Mu8 is linked to a Mu8 element. The DNA flanking the Mu8 element was cloned and shown to be linked to the d3 locus by mapping in a high-resolution population developed by selecting for recombination between d3 and linked genetic markers. To establish unambiguously the identity of the cloned gene as D3, a second mutant allele of D3 (d3.4) was also cloned and characterized using the d3.2::Mu8 sequences as a probe. d3.4 was found to have a novel insertion element, named Sleepy, inserted into an exon. A third mutant allele, d3.1, which has the same size 3' restriction fragments as d3.4 but different 5' restriction fragments, was found to contain a Sleepy insertion at the same position as d3.4. On the basis of the pedigree, Sleepy insertion, and restriction map, d3.1 appears to represent a recombinational derivative of d3.4. The D3 gene encodes a predicted protein with significant sequence similarity to cytochrome P450 enzymes. Analysis of D3 mRNA showed that the D3 transcript is expressed in roots, developing leaves, the vegetative meristem, and suspension culture cells. We detected reduced D3 mRNA levels in the mutant allele d3.5. PMID:7549486

  4. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B

    PubMed Central

    1993-01-01

    A human gene termed XB overlaps the P450c21B gene encoding steroid 21- hydroxylase and encodes a protein that closely resembles extracellular matrix proteins. Sequencing of phage and cosmid clones and of cDNA fragments shows that the XB gene spans 65 kb of DNA, consisting of 39 exons that encode a 12-kb mRNA. The predicted protein of over 400 kD consists of five distinct domains: a signal peptide, a hydrophobic domain containing three heptad repeats, a series of 18.5 EGF-like repeats, 29 fibronectin type III repeats, and a carboxy-terminal fibrinogen-like domain. Because the structure of the protein encoded by the XB gene closely resembles tenascin, we term this protein tenascin-X (TN-X), and propose a simplified nomenclature system for the family of tenascins. RNase protection experiments show that the TN-X transcript is expressed ubiquitously in human fetal tissues, with the greatest expression in the fetal testis and in fetal skeletal, cardiac, and smooth muscle. Two adrenal-specific transcripts, P450c21B (steroid 21- hydroxylase) and Y (an untranslated transcript) overlap the XB gene on the complementary strand of DNA, yielding a unique array of overlapping transcripts: a "polygene." In situ hybridization histochemistry experiments show that the TN-X transcript and the P450c21 and Y transcripts encoded on the complementary DNA strand are all expressed in the same cells of the human adrenal cortex. Genetic data suggest that TN-X may be essential for life. PMID:7686164

  5. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications.

    PubMed

    Rewitz, Kim F; Gilbert, Lawrence I

    2008-02-25

    In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E). Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs). In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E. To investigate the presence of these genes in crustaceans, the genome of Daphnia pulex was examined for orthologs of these genes, the Halloween genes, encoding those biosynthetic CYP enzymes. Single homologs of spook-CYP307A1, phantom-CYP306A1, disembodied-CYP302A1, shadow-CYP315A1 and shade-CYP314A1 were identified in the Daphnia data base. Phylogenetic analysis indicates an orthologous relationship between the insect and Daphnia genes. Conserved intron/exon structures and microsynteny further support the conclusion that these steroidogenic CYPs have been conserved in insects and crustaceans through some 400 million years of evolution. Although these arthropod steroidogenic CYPs are related to steroidogenic CYPs in Caenorhabditis elegans and vertebrates, the data suggest that the arthropod steroidogenic CYPs became functionally specialized in a common ancestor of arthropods and are unique to these animals.

  6. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: Evolutionary implications

    PubMed Central

    2008-01-01

    Background In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E). Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs). In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E. Results To investigate the presence of these genes in crustaceans, the genome of Daphnia pulex was examined for orthologs of these genes, the Halloween genes, encoding those biosynthetic CYP enzymes. Single homologs of spook-CYP307A1, phantom-CYP306A1, disembodied-CYP302A1, shadow-CYP315A1 and shade-CYP314A1 were identified in the Daphnia data base. Phylogenetic analysis indicates an orthologous relationship between the insect and Daphnia genes. Conserved intron/exon structures and microsynteny further support the conclusion that these steroidogenic CYPs have been conserved in insects and crustaceans through some 400 million years of evolution. Conclusion Although these arthropod steroidogenic CYPs are related to steroidogenic CYPs in Caenorhabditis elegans and vertebrates, the data suggest that the arthropod steroidogenic CYPs became functionally specialized in a common ancestor of arthropods and are unique to these animals. PMID:18298845

  7. Sekiguchi Lesion Gene Encodes a Cytochrome P450 Monooxygenase That Catalyzes Conversion of Tryptamine to Serotonin in Rice*

    PubMed Central

    Fujiwara, Tadashi; Maisonneuve, Sylvie; Isshiki, Masayuki; Mizutani, Masaharu; Chen, Letian; Wong, Hann Ling; Kawasaki, Tsutomu; Shimamoto, Ko

    2010-01-01

    Serotonin is a well known neurotransmitter in mammals and plays an important role in various mental functions in humans. In plants, the serotonin biosynthesis pathway and its function are not well understood. The rice sekiguchi lesion (sl) mutants accumulate tryptamine, a candidate substrate for serotonin biosynthesis. We isolated the SL gene by map-based cloning and found that it encodes CYP71P1 in a cytochrome P450 monooxygenase family. A recombinant SL protein exhibited tryptamine 5-hydroxylase enzyme activity and catalyzed the conversion of tryptamine to serotonin. This pathway is novel and has not been reported in mammals. Expression of SL was induced by the N-acetylchitooligosaccharide (chitin) elicitor and by infection with Magnaporthe grisea, a causal agent for rice blast disease. Exogenously applied serotonin induced defense gene expression and cell death in rice suspension cultures and increased resistance to rice blast infection in plants. We also found that serotonin-induced defense gene expression is mediated by the RacGTPase pathway and by the Gα subunit of the heterotrimeric G protein. These results suggest that serotonin plays an important role in rice innate immunity. PMID:20150424

  8. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice.

    PubMed

    Fujiwara, Tadashi; Maisonneuve, Sylvie; Isshiki, Masayuki; Mizutani, Masaharu; Chen, Letian; Wong, Hann Ling; Kawasaki, Tsutomu; Shimamoto, Ko

    2010-04-09

    Serotonin is a well known neurotransmitter in mammals and plays an important role in various mental functions in humans. In plants, the serotonin biosynthesis pathway and its function are not well understood. The rice sekiguchi lesion (sl) mutants accumulate tryptamine, a candidate substrate for serotonin biosynthesis. We isolated the SL gene by map-based cloning and found that it encodes CYP71P1 in a cytochrome P450 monooxygenase family. A recombinant SL protein exhibited tryptamine 5-hydroxylase enzyme activity and catalyzed the conversion of tryptamine to serotonin. This pathway is novel and has not been reported in mammals. Expression of SL was induced by the N-acetylchitooligosaccharide (chitin) elicitor and by infection with Magnaporthe grisea, a causal agent for rice blast disease. Exogenously applied serotonin induced defense gene expression and cell death in rice suspension cultures and increased resistance to rice blast infection in plants. We also found that serotonin-induced defense gene expression is mediated by the RacGTPase pathway and by the G alpha subunit of the heterotrimeric G protein. These results suggest that serotonin plays an important role in rice innate immunity.

  9. Expression of chimeric P450 genes encoding flavonoid-3', 5'-hydroxylase in transgenic tobacco and petunia plants(1).

    PubMed

    Shimada, Y; Nakano-Shimada, R; Ohbayashi, M; Okinaka, Y; Kiyokawa, S; Kikuchi, Y

    1999-11-19

    Flavonoid-3',5'-hydroxylase (F3'5'H), a member of the cytochrome P450 family, is the key enzyme in the synthesis of 3', 5'-hydroxylated anthocyanins, which are generally required for blue or purple flowers. A full-length cDNA, TG1, was isolated from prairie gentian by heterologous hybridization with a petunia cDNA, AK14, which encodes F3'5'H. To investigate the in vivo function of TG1 and AK14, they were subcloned into a plant expression vector and expressed under the control of the CaMV35S promoter in transgenic tobacco or petunia, both of which originally lack the enzyme. Transgenic petunia plants had a dramatic change in flower color from pink to magenta with a high content of 3',5'-hydroxylated anthocyanins. In contrast, transgenic tobacco plants had minimal color change with at most 35% 3',5'-hydroxylated anthocyanin content. These results indicate that the products of TG1 and AK14 have F3'5'H activity in planta and that interspecific gene transfer alters anthocyanin pigment synthesis. The difference in apparent F3'5'H activity between tobacco and petunia is discussed.

  10. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family.

    PubMed

    Bishop, G J; Harrison, K; Jones, J D

    1996-06-01

    To transposon tag the tomato Dwarf (D) gene, a tomato line that carries a T-DNA containing a maize Activator (Ac) transposable element closely linked to D was pollinated with a stock homozygous for the d mutation. Hybrid seedlings were screened for dwarf progeny, and three independent dwarf lines were obtained. Two of these lines showed inheritance of a recessive phenotype similar to that conferred by the extreme dwarf (dx) allele. Variegation for the dwarf phenotype in one of these lines suggested that D had been tagged by Ac. Genomic DNA adjacent to Ac in these two lines was isolated by use of the inverse polymerase chain reaction, and the two insertions mapped approximately 2 kb apart. Partial complementation of d was observed when the corresponding wild-type sequence was used in transformation experiments. A cDNA clone of D was sequenced, and the predicted amino acid sequence has homology to cytochrome P450 enzymes.

  11. Characterization of the cytochrome P450 monooxygenase genes (P450ome) from the carotenogenic yeast Xanthophyllomyces dendrorhous.

    PubMed

    Córdova, Pamela; Gonzalez, Ana-María; Nelson, David R; Gutiérrez, María-Soledad; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2017-07-19

    The cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases involved in the oxidative metabolism of an enormous diversity of substrates. These enzymes require electrons for their activity, and the electrons are supplied by NAD(P)H through a P450 electron donor system, which is generally a cytochrome P450 reductase (CPR). The yeast Xanthophyllomyces dendrorhous has evolved an exclusive P450-CPR system that specializes in the synthesis of astaxanthin, a carotenoid with commercial potential. For this reason, the aim of this work was to identify and characterize other potential P450 genes in the genome of this yeast using a bioinformatic approach. Thirteen potential P450-encoding genes were identified, and the analysis of their deduced proteins allowed them to be classified in ten different families: CYP51, CYP61, CYP5139 (with three members), CYP549A, CYP5491, CYP5492 (with two members), CYP5493, CYP53, CYP5494 and CYP5495. Structural analyses of the X. dendrorhous P450 proteins showed that all of them have a predicted transmembrane region at their N-terminus and have the conserved domains characteristic of the P450s, including the heme-binding region (FxxGxRxCxG); the PER domain, with the characteristic signature for fungi (PxRW); the ExxR motif in the K-helix region and the oxygen-binding domain (OBD) (AGxDTT); also, the characteristic secondary structure elements of all the P450 proteins were identified. The possible functions of these P450s include primary, secondary and xenobiotic metabolism reactions such as sterol biosynthesis, carotenoid synthesis and aromatic compound degradation. The carotenogenic yeast X. dendrorhous has thirteen P450-encoding genes having potential functions in primary, secondary and xenobiotic metabolism reactions, including some genes of great interest for fatty acid hydroxylation and aromatic compound degradation. These findings established a basis for future studies about the role of P450s in the

  12. Gene conversion in the CYP11B2 gene encoding P450c11AS is associated with, but does not cause, the syndrome of corticosterone methyloxidase II deficiency

    SciTech Connect

    Fardella, C.E.; Hum, D.W.; Rodriguez, H. |

    1996-01-01

    Cytochrome P450c11AS (aldosterone synthase) has 11{beta}hydroxylase, 18-hydroxylase, and 18-oxidase activities and is expressed solely in the adrenal zona glomerulosa. Corticosterone methyloxidase II (CMOII) deficiency denotes a rare disorder of adrenal steroidogenesis in which only the 18-oxidase activity of P450c11AS is disrupted, while the 11{beta}-hydroxylase and 18-hydroxylase activities persist. Such patients have elevated serum concentrations of corticosterone and 18-hydroxycorticosterone and very low or unmeasurable concentrations of aldosterone, often resulting in a clinical salt-losing crisis in infancy. We have sought mutations causing CMOII deficiency in outbred populations. In three of four unrelated P450c11AS alleles from two unrelated patients with CMOII deficiency, we found a gene conversion event in which exons 3 and 4 of the CYP11B2 gene encoding P450c11AS were changed to the sequence of the nearby CYP11B1 gene, which encodes the related enzyme P450c11{beta}. This conversion resulted in a mutant P450c11AS protein carrying three changes. We built seven vectors expressing P450c11AS carrying each mutation singly, each of the three possible pairs of mutations, and the triple mutation as found in the proband. The activities in steroidogenic MA-10 and JEG-3 cells were 10- to 20-fold higher. In these systems all of the mutants retained normal 18-oxidase activity, indicating that the detected gene conversion event is associated with but does not cause CMOII deficiency. None of the four CPY11B2 alleles in these two patients bore other identifiable mutations. These patients might have mutations in the promoters or other noncoding regions, or mutations in genes other than CYP11B2 may cause the syndrome of CMOII deficiency. 37 refs., 2 figs., 2 tabs.

  13. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta.

    PubMed

    Rewitz, Kim F; Rybczynski, Robert; Warren, James T; Gilbert, Lawrence I

    2006-03-01

    The insect molting hormone 20-hydroxyecdysone (20E) plays a central role in regulating gene expression during development and metamorphosis. In many Lepidoptera, the pro-hormone 3-dehydroecdysone (3DE), synthesized from cholesterol in the prothoracic gland, is rapidly converted to ecdysone (E) by a hemolymph reductase, and E is subsequently converted to 20E in various peripheral target tissues. Recently, four Drosophila melanogaster P450 enzymes, encoded by specific Halloween genes, were cloned and functionally characterized as mediating the last hydroxylation steps leading to 20E. We extended this work to the tobacco hornworm Manduca sexta, an established model for endocrinological and developmental studies. cDNA clones were obtained for three Manduca orthologs of CYP306A1 (phantom; phm, the 25-hydroxylase), CYP302A1 (disembodied; dib, the 22-hydroxylase) and CYP315A1 (shadow; sad, the 2-hydroxylase), expressed predominantly in the prothoracic gland during the fifth (final) larval instar and during pupal-adult development, with fifth instar mRNA levels closely paralleling the hemolymph ecdysteroid titer. The data indicate that transcriptional regulation of phm, dib and sad plays a role in the developmentally varying steroidogenic capacities of the prothoracic glands during the fifth instar. The consistent expression of the Halloween genes confirms the importance of the prothoracic glands in pupal-adult development. These studies establish Manduca as an excellent model for examining the regulation of the Halloween genes.

  14. Identification and expression patterns of Halloween genes encoding cytochrome P450s involved in ecdysteroid biosynthesis in the cotton bollworm Helicoverpa armigera.

    PubMed

    Zheng, J; Tian, K; Yuan, Y; Li, M; Qiu, X

    2017-02-01

    20-Hydroxyecdysone (20E) is a key hormone which regulates growth, development and reproduction in insects. Although cytochrome P450 enzymes (P450s) participating in the ecdysteroid biosynthesis of 20E have been characterized in a few model insects, no work has been published on the molecular entity of their orthologs in the cotton bollworm Helicoverpa armigera, a major pest insect in agriculture worldwide. In this study, four cytochrome P450 homologs, namely HarmCYP302A1, HarmCYP306A1, HarmCYP314A1 and HarmCYP315A1 from H. armigera, were identified and evolutional conservation of these Halloween genes were revealed among lepidopteran. Expression analyses showed that HarmCYP302A1 and HarmCYP315A1 were predominantly expressed in larval prothoracic glands, whereas this predominance was not always observed for HarmCYP306A1 and CYP314A1. The expression patterns of Halloween genes indicate that the fat bodies may play an important role in the conversion of ecdysone into 20E in larval-larval molt and in larval-pupal metamorphosis, and raise the possibility that HarmCYP315A1 plays a role in tissue-specific regulation in the steroid biosynthesis in H. armigera. These findings represent the first identification and expression characterization of four steriodogenic P450 genes and provide the groundwork for future functional and evolutionary study of steroid biosynthesis in this agriculturally important pest.

  15. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.

  16. Cytochrome P450 gene polymorphism and cancer.

    PubMed

    Agundez, Jose A G

    2004-06-01

    Human cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.

  17. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species.

    PubMed

    Koch, Aline; Kumar, Neelendra; Weber, Lennart; Keller, Harald; Imani, Jafargholi; Kogel, Karl-Heinz

    2013-11-26

    Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases.

  18. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species

    PubMed Central

    Koch, Aline; Kumar, Neelendra; Weber, Lennart; Keller, Harald; Imani, Jafargholi; Kogel, Karl-Heinz

    2013-01-01

    Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases. PMID:24218613

  19. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  20. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  1. Analysis of the p450 aromatase gene expression in the Xenopus brain and gonad.

    PubMed

    Iwabuchi, Junshin; Wako, Syun; Tanaka, Tatsuya; Ishikawa, Azusa; Yoshida, Yuki; Miyata, Shohei

    2007-01-01

    Analysis of 5'-RACE clones revealed two Cyp19 transcript variants (gonad p450 aroms 1 and 2) in the gonads and one Cyp transcript (brain p450 arom) in the brain that differed in their 5'-untranslated region (UTR). Since all cDNAs contained an identical open reading frame, it is considered that while Xenopus aromatase may be encoded by a single Cyp19 gene, it is transcribed by tissue-specific promoters, each of which may be regulated by a distinct set of transcriptional factors. While gonad p450 aroms 1 and 2 and brain p450 arom were expressed in the gonads, brain p450 arom was the predominantly expressed aromatase gene in the brain, with a low expression level of gonad p450 arom 1.

  2. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  3. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  4. Cloning of cDNA encoding steroid 11. beta. -hydroxylase (P450c11)

    SciTech Connect

    Chua, S.C.; Szabo, P.; Vitek, A.; Grzeschik, K.H.; John, M.; White, P.C.

    1987-10-01

    The authors have isolated bovine and human adrenal cDNA clones encoding the adrenal cytochrome P-450 specific for 11..beta..-hydroxylation (P450c11). A bovine adrenal cDNA library constructed in the bacteriophage lambda vector gt10 was probed with a previously isolated cDNA clone corresponding to part of the 3' untranslated region of the 4.2-kilobase (kb) mRNA encoding P450c11. Several clones with 3.2-kb cDNA inserts were isolated. Sequence analysis showed that they overlapped the original probe by 300 base pairs (bp). Combined cDNA and RNA sequence data demonstrated a continuous open reading frame of 1509 bases. P450c11 is predicted to contain 479 amino acid residues in the mature protein in addition to a 24-residue amino-terminal mitochondrial signal sequence. A bovine clone was used to isolate a homologous clone with a 3.5-kb insert from a human adrenal cDNA library. A region of 1100 bp was 81% homologous to 769 bp of the coding sequence of the bovine cDNA except for a 400-bp segment presumed to be an unprocessed intron. Hybridization of the human cDNA to DNA from a panel of human-rodent somatic cell hybrid lines and in situ hybridization to metaphase spreads of human chromosomes localized the gene to the middle of the long arm of chromosome 8. These data should be useful in developing reagents for heterozygote detection and prenatal diagnosis of 11..beta..-hydroxylase deficiency, the second most frequent cause of congenital adrenal hyperplasia.

  5. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  6. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  7. Identification of a novel cytochrome P-450 gene from the white rot fungus Phanerochaete chrysosporium.

    PubMed Central

    Kullman, S W; Matsumura, F

    1997-01-01

    A gene fragment belonging to the cytochrome P-450 superfamily has been cloned and identified from stationary cultures of the filamentous fungus Phanerochaete chrysosporium by reverse transcriptase (RT)-PCR. A set of degenerate primers homologous to highly conserved regions of known cytochrome P-450 sequences were used for initial RT-PCRs. Individual PCR products were cloned, sequenced, and identified as those belonging to the cytochrome P-450 superfamily based on amino acid sequence homologies and the presence of the highly conserved heme binding region. The nucleotide sequence of a single cDNA clone indicated the presence of an open reading frame encoding a partial cytochrome P-450 protein of 208 amino acids. Comparisons of the deduced amino acid sequence of the partial protein to other known cytochrome P-450 sequences indicate that it is the first member of a new family of cytochrome P-450s, designated CYP63-1A. Northern blot analysis suggests that CYP63-1A is expressed under both nitrogen-rich and nitrogen-deficient culture conditions and thus not under the same regulatory constraints as the well-studied lignin and manganese peroxidases. Western blot analyses using antibodies raised to the heme binding region of CYP63-1A indicate that the protein has a molecular mass of approximately 44,000 Da. PMID:9212420

  8. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  9. The beet R locus encodes a new cytochrome P450 required for red betalain production.

    PubMed

    Hatlestad, Gregory J; Sunnadeniya, Rasika M; Akhavan, Neda A; Gonzalez, Antonio; Goldman, Irwin L; McGrath, J Mitchell; Lloyd, Alan M

    2012-06-03

    Anthocyanins are red and violet pigments that color flowers, fruits and epidermal tissues in virtually all flowering plants. A single order, Caryophyllales, contains families in which an unrelated family of pigments, the betalains, color tissues normally pigmented by anthocyanins. Here we show that CYP76AD1 encoding a novel cytochrome P450 is required to produce the red betacyanin pigments in beets. Gene silencing of CYP76AD1 results in loss of red pigment and production of only yellow betaxanthin pigment. Yellow betalain mutants are complemented by transgenic expression of CYP76AD1, and an insertion in CYP76AD1 maps to the R locus that is responsible for yellow versus red pigmentation. Finally, expression of CYP76AD1 in yeast verifies its position in the betalain biosynthetic pathway. Thus, this cytochrome P450 performs the biosynthetic step that provides the cyclo-DOPA moiety of all red betacyanins. This discovery will contribute to our ability to engineer this simple, nutritionally valuable pathway into heterologous species.

  10. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    SciTech Connect

    Kogure, Takahisa; Takagi, Masamichi; Ohta, Akinori . E-mail: aaohta@mail.ecc.u-tokyo.ac.jp

    2005-04-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.

  11. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    PubMed Central

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  12. Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils

    DOE PAGES

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.; ...

    2016-03-11

    Members of the Fungi convert nitrate (NO3-) and nitrite (NO2-) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3- or NO2- in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, of which 151 produced N2O from NO2-. Novel PCR primersmore » targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation.« less

  13. A new family of cytochrome P450 genes (CYP41) from the cattle tick, Boophilus microplus.

    PubMed

    Crampton, A L; Baxter, G D; Barker, S C

    1999-09-01

    We isolated and sequenced a cytochrome P450 (CYP) gene that is sufficiently different from other CYP genes that a new CYP family, CYP41 was created. CYP41 encodes a protein of 518 residues and is most similar to genes from the family CYP3; it is 36% identical to CYP3A2 and 34% identical to CYP3A28. We hypothesise that CYP41 encodes an enzyme that metabolizes xenobiotic compounds i.e. compounds that are foreign to the cattle tick. The phylogenetic position of CYP41 could not be resolved because of the high level of sequence divergence at both the nucleotide and amino acid levels.

  14. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone.

    PubMed

    Rewitz, K F; Rybczynski, R; Warren, J T; Gilbert, L I

    2006-12-01

    The developmental events occurring during moulting and metamorphosis of insects are controlled by precisely timed changes in levels of ecdysteroids, the moulting hormones. The final four sequential hydroxylations of steroid precursors into the active ecdysteroid of insects, 20E (20-hydroxyecdysone), are mediated by four cytochrome P450 (P450) enzymes, encoded by genes in the Halloween family. Orthologues of the Drosophila Halloween genes phantom (phm; CYP306A1), disembodied (dib; CYP302A1), shadow (sad; CYP315A1) and shade (shd; CYP314A1) were obtained from the endocrinological model insect, the tobacco hornworm Manduca sexta. Expression of these genes was studied and compared with changes in the ecdysteroid titre that controls transition from the larval to pupal stage. phm, dib and sad, which encode P450s that mediate the final hydroxylations in the biosynthesis of ecdysone, were selectively expressed in the prothoracic gland, the primary source of ecdysone during larval and pupal development. Changes in their expression correlate with the haemolymph ecdysteroid titre during the fifth (final) larval instar. Shd, the 20-hydroxylase, which converts ecdysone into the more active 20E, is expressed in tissues peripheral to the prothoracic glands during the fifth instar. Transcript levels of shd in the fat body and midgut closely parallel the enzyme activity measured in vitro. The results indicate that these Halloween genes are transcriptionally regulated to support the high biosynthetic activity that produces the cyclic ecdysteroid pulses triggering moulting.

  15. Transgenic rice plants expressing human p450 genes involved in xenobiotic metabolism for phytoremediation.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2008-01-01

    Phytoremediation is the use of plants to remove xenobiotic compounds from the environment. Plants have the inherent ability to detoxify xenobiotic pollutants, but they are generally poor at degrading them. The introduction of genes involved in xenobiotic degradation is aimed at enhancing plants' potential further. Rice (Oryza sativa) is a good candidate for this purpose and has been transformed with genes encoding cytochrome P450 monooxygenases CYP1A1, CYP2B6, and CYP2C19. The transgenic plants were more tolerant to various herbicides than nontransgenic Nipponbare rice plants, owing to enhanced metabolism by the introduced P450 enzymes. Transgenic plants were able to remove atrazine and metolachlor from soil. Field testing and risk assessment are very important for developing transgenic plants for phytoremediation. Transgenic rice plants should become useful as herbicide-tolerant crops and for phytoremediation of xenobiotic pollutants in future.

  16. Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism.

    PubMed

    Annalora, Andrew J; Marcus, Craig B; Iversen, Patrick L

    2017-04-01

    The human genome encodes 57 cytochrome P450 genes, whose enzyme products metabolize hundreds of drugs, thousands of xenobiotics, and unknown numbers of endogenous compounds, including steroids, retinoids, and eicosanoids. Indeed, P450 genes are the first line of defense against daily environmental chemical challenges in a manner that parallels the immune system. Several National Institutes of Health databases, including PubMed, AceView, and Ensembl, were queried to establish a comprehensive analysis of the full human P450 transcriptome. This review describes a remarkable diversification of the 57 human P450 genes, which may be alternatively processed into nearly 1000 distinct mRNA transcripts to shape an individual's P450 proteome. Important P450 splice variants from families 1A, 1B, 2C, 2D, 3A, 4F, 19A, and 24A have now been documented, with some displaying alternative subcellular distribution or catalytic function directly linked to a disease pathology. The expansion of P450 transcript diversity involves tissue-specific splicing factors, transformation-sensitive alternate splicing, trans-splicing between gene transcripts, single-nucleotide polymorphisms, and epigenetic regulation of alternate splicing. Homeostatic regulation of variant P450 expression is influenced also by nuclear receptor signaling, suppression of nonsense-mediated decay or premature termination codons, mitochondrial dysfunction, or host infection. This review focuses on emergent aspects of the adaptive gene-splicing process, which when viewed through the lens of P450-nuclear receptor gene interactions, resembles a primitive immune-like system that can rapidly monitor, respond, and diversify to acclimate to fluctuations in endo-xenobiotic exposure. Insights gained from this review should aid future drug discovery and improve therapeutic management of personalized drug regimens. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils

    PubMed Central

    Welsh, Allana; Orellana, Luis H.; Konstantinidis, Konstantinos T.; Chee-Sanford, Joanne C.; Sanford, Robert A.; Schadt, Christopher W.

    2016-01-01

    ABSTRACT Members of the Fungi convert nitrate (NO3−) and nitrite (NO2−) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3− or NO2− in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2−. Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2−, whereas nirK (encoding the NO-forming NO2− reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation. IMPORTANCE A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification

  18. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of soybean genome sequence allows us to ident...

  19. Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase.

    PubMed Central

    Andersen, J F; Hutchinson, C R

    1992-01-01

    Previous studies of erythromycin biosynthesis have indicated that a cytochrome P-450 monooxygenase system is responsible for hydroxylation of 6-deoxyerythronolide B to erythronolide B as part of erythromycin biosynthesis in Saccharopolyspora erythraea (A. Shafiee and C. R. Hutchinson, Biochemistry 26:6204-6210 1987). The enzyme was previously purified to apparent homogeneity and found to have a catalytic turnover number of approximately 10(-3) min-1. More recently, disruption of a P-450-encoding sequence (eryF) in the region of ermE, the erythromycin resistance gene of S. erythraea, produced a 6-deoxyerythronolide B hydroxylation-deficient mutant (J. M. Weber, J. O. Leung, S. J. Swanson, K. B. Idler, and J. B. McAlpine, Science 252:114-116, 1991). In this study we purified the catalytically active cytochrome P-450 fraction from S. erythraea and found by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis that it consists of a major and a minor P-450 species. The gene encoding the major species (orf405) was cloned from genomic DNA and found to be distinct from eryF. Both the orf405 and eryF genes were expressed in Escherichia coli, and the properties of the proteins were compared. Heterologously expressed EryF and Orf405 both reacted with antisera prepared against the 6-deoxyerythronolide B hydroxylase described by Shafiee and Hutchinson (1987), and the EryF polypeptide comigrated with the minor P-450 species from S. erythraea on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. In comparisons of enzymatic activity, EryF hydroxylated a substrate with a turnover number of 53 min-1, whereas Orf405 showed no detectable activity with a 6-deoxyerythronolide B analog. Both enzymes showed weak activity in the O-dealkylation of 7-ethoxycoumarin. We conclude that the previously isolated 6-deoxyerythronolide B hydroxylase was a mixture of two P-450 enzymes and that only the minor form shows 6-deoxyerythronolide B hydroxylase activity. Images PMID

  20. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex

    PubMed Central

    Baldwin, William S; Marko, Peter B; Nelson, David R

    2009-01-01

    Background Cytochrome P450s (CYPs) in animals fall into two categories: those that synthesize or metabolize endogenous molecules and those that interact with exogenous chemicals from the diet or the environment. The latter form a critical component of detoxification systems. Results Data mining and manual curation of the Daphnia pulex genome identified 75 functional CYP genes, and three CYP pseudogenes. These CYPs belong to 4 clans, 13 families, and 19 subfamilies. The CYP 2, 3, 4, and mitochondrial clans are the same four clans found in other sequenced protostome genomes. Comparison of the CYPs from D. pulex to the CYPs from insects, vertebrates and sea anemone (Nematostella vectensis) show that the CYP2 clan, and to a lesser degree, the CYP4 clan has expanded in Daphnia pulex, whereas the CYP3 clan has expanded in insects. However, the expansion of the Daphnia CYP2 clan is not as great as the expansion observed in deuterostomes and the nematode C. elegans. Mapping of CYP tandem repeat regions demonstrated the unusual expansion of the CYP370 family of the CYP2 clan. The CYP370s are similar to the CYP15s and CYP303s that occur as solo genes in insects, but the CYP370s constitute ~20% of all the CYP genes in Daphnia pulex. Lastly, our phylogenetic comparisons provide new insights into the potential origins of otherwise mysterious CYPs such as CYP46 and CYP19 (aromatase). Conclusion Overall, the cladoceran, D. pulex has a wide range of CYPs with the same clans as insects and nematodes, but with distinct changes in the size and composition of each clan. PMID:19383150

  1. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    PubMed

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Collaborative contribution of six cytochrome P450 monooxygenase genes to fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval).

    PubMed

    Shi, L; Zhang, J; Shen, G; Xu, Z; Xu, Q; He, L

    2016-10-01

    Cytochrome P450 monooxygenases (P450s), as an important family of detoxification enzymes, participate in the metabolism of agrochemicals in almost all agricultural pests and play important roles in the development of insecticide resistance. Two P450 genes (CYP389B1 and CYP392A26) were identified and their expression patterns were investigated in our previous study. In this study, four more P450 gene sequences (CYP391A1, CYP384A1, CYP392D11 and CYP392A28) from the Clan 2, Clan 3 and Clan 4 families were identified and characterized. Quantitative PCR analysis showed that these four P450 genes were highly expressed in a fenpropathrin-resistant (FeR) strain of Tetranychus cinnabarinus. In addition, their expressions were much more sensitive to fenpropathrin induction in the FeR strain than the susceptible strain. Gene-silencing experiments via double-stranded RNA feeding were carried out. The results showed that mRNA levels of these six P450 genes were reduced in the FeR strain and the activities of P450s were decreased. Consequently mite susceptibilities to fenpropathrin were increased. Interestingly, silencing all six P450 genes simultaneously had an even greater effect on resistance than silencing them individually. This study increases our understanding of the molecular mechanisms of insecticide detoxification, suggesting that the overexpression of these six P450 genes might play important roles in fenpropathrin resistance in T. cinnabarinus collaboratively. © 2016 The Royal Entomological Society.

  3. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides.

    PubMed

    Hu, Bo; Zhang, Shu-Heng; Ren, Miao-Miao; Tian, Xiang-Rui; Wei, Qi; Mburu, David Kibe; Su, Jian-Ya

    2017-09-07

    Cytochrome P450 and UDP-glucosyltransferase as phase I and phase II metabolism enzymes respectively, play vital roles in the breakdown of endobiotics and xenobiotics. Insects can increase the expression of detoxification enzymes to cope with the stress from xenobiotics including insecticides. However, the molecular mechanisms for insecticide detoxification in Spodoptera exigua remain elusive, and the genes conferred insecticide metabolisms in this species are less reported. In this study, 68 P450 and 32 UGT genes were identified. Phylogenetic analysis showed gene expansions in CYP3 and CYP4 clans of P450 genes and UGT33 family of this pest. P450 and UGT genes exhibited specific tissue expression pattern. Insecticide treatments in fat body cells of S. exigua revealed that the expression levels of P450 and UGT genes were significantly influenced by challenges of abamectin, lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb respectively. Multiple genes for detoxification were affected in expression levels after insecticide exposures. The results demonstrated that lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb induced similar response in the expression of P450 and UGT genes in fat body cells, eight P450 genes and four UGT genes were co-up-regulated significantly, and no or only a few CYP/UGT genes were down-regulated significantly by these four insecticides. However, abamectin triggered a distinct response for P450 and UGT gene expression, more P450 and UGT genes were down-regulated by abamectin than by other four compounds. In conclusion, P450 and UGT genes from S. exigua were identified, and difference responses to abamectin suggest a different mechanism for insecticide detoxification. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Cloning and expression of cDNA encoding a bovine adrenal cytochrome P-450 specific for steroid 21-hydroxylation.

    PubMed Central

    White, P C; New, M I; Dupont, B

    1984-01-01

    We isolated a cDNA clone encoding a bovine adrenal cytochrome P-450 specific for steroid 21-hydroxylation (P-450C21). Serum from rabbits immunized with purified P-450C21 precipitated a single protein from the products of an in vitro translation reaction using bovine adrenal mRNA. This protein migrated with P-450C21 on NaDodSO4/polyacrylamide gel electrophoresis. After sucrose gradient sedimentation, mRNA encoding P-450C21 was found in the 19S fraction. This fraction was reverse transcribed into double-stranded cDNA and inserted into the Pst I site of pBR322 by the dC X dG tailing procedure. Escherichia coli cells transformed with recombinant plasmids were screened with an in situ immunoassay using anti-P-450C21 serum and 125I-labeled staphylococcal protein A. Two colonies consistently bound anti-P-450C21 serum. They were identified as carrying the same plasmid by restriction mapping. This plasmid, pC21a, contains an insert of 520 base pairs. It hybridizes with mRNA encoding P-450C21. The peptide encoded by the insert in pC21a is highly homologous to two peptides isolated from porcine P-450C21 and shows limited homology to the P-450 induced by phenobarbital in rat liver. This clone may be useful in studying the molecular genetics of human congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Images PMID:6609358

  5. Novel P450nor Gene Detection Assay Used To Characterize the Prevalence and Diversity of Soil Fungal Denitrifiers

    PubMed Central

    Novinscak, Amy; Goyer, Claudia; Zebarth, Bernie J.; Burton, David L.; Chantigny, Martin H.

    2016-01-01

    ABSTRACT Denitrifying fungi produce nitrous oxide (N2O), a potent greenhouse gas, as they generally lack the ability to convert N2O to dinitrogen. Contrary to the case for bacterial denitrifiers, the prevalence and diversity of denitrifying fungi found in the environment are not well characterized. In this study, denitrifying fungi were isolated from various soil ecosystems, and novel PCR primers targeting the P450nor gene, encoding the enzyme responsible for the conversion of nitric oxide to N2O, were developed, validated, and used to study the diversity of cultivable fungal denitrifiers. This PCR assay was also used to detect P450nor genes directly from environmental soil samples. Fungal denitrification capabilities were further validated using an N2O gas detection assay and a PCR assay targeting the nirK gene. A collection of 492 facultative anaerobic fungi was isolated from 15 soil ecosystems and taxonomically identified by sequencing the internal transcribed spacer sequence. Twenty-seven fungal denitrifiers belonging to 10 genera had the P450nor and the nirK genes and produced N2O from nitrite. N2O production is reported in strains not commonly known as denitrifiers, such as Byssochlamys nivea, Volutella ciliata, Chloridium spp., and Trichocladium spp. The prevalence of fungal denitrifiers did not follow a soil ecosystem distribution; however, a higher diversity was observed in compost and agricultural soils. The phylogenetic trees constructed using partial P450nor and nirK gene sequences revealed that both genes clustered taxonomically closely related strains together. IMPORTANCE A PCR assay targeting the P450nor gene involved in fungal denitrification was developed and validated. The newly developed P450nor primers were used on fungal DNA extracted from a collection of fungi isolated from various soil environments and on DNA directly extracted from soil. The results indicated that approximatively 25% of all isolated fungi possessed this gene and were able to

  6. The Molecular Evolution of Cytochrome P450 Genes within and between Drosophila Species

    PubMed Central

    Good, Robert T.; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-01-01

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes—with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. PMID:24751979

  7. Ontogeny of Novel Cytochrome P450 Gene Isoforms during Postnatal Liver Maturation in Mice

    PubMed Central

    Cui, Julia Yue; Renaud, Helen J.

    2012-01-01

    The ontogeny of the first four families of cytochromes P450 (P450s) (i.e., Cyp1–Cyp4) can affect the biotransformation of drugs and dietary chemicals in liver, resulting in unique pharmacological reactions in children. Because genome-scale investigations have identified many novel P450 isoforms, it is critical to perform a systematic characterization of these P450s during liver development. In this study, livers were collected from C57BL/6 mice 2 days before birth and at various postnatal ages (0–45 days of age). The mRNA levels for 75 P450 isoforms (Cyp1–Cyp4) were quantified with branched DNA assays and reverse transcription-polymerase chain reaction assays. More than half of the mouse P450s are conserved in humans, but there are more isoforms in mice. The P450 mRNA levels increased after birth in mouse liver, forming four distinct ontogenic patterns. The majority of P450s form a total of eight genomic clusters, namely, Cyp1a1 and Cyp1a2 genes on chromosome 9 (cluster 1), Cyp2a, Cyp2b, Cyp2f, Cyp2g, and Cyp2t genes on chromosome 7 (cluster 2), Cyp2c genes on chromosome 19 (cluster 3), Cyp2d genes on chromosome 15 (cluster 4), Cyp2j genes on chromosome 4 (cluster 5), Cyp3a genes on chromosome 5 (cluster 6), Cyp4a, Cyp4b, and Cyp4x genes on chromosome 4 (cluster 7), and Cyp4f genes on chromosome 17 (cluster 8). Some P450 isoforms within the same genomic cluster showed similar ontogenic patterns. In conclusion, the present study revealed four patterns of ontogeny for P450s in liver and showed that many P450s within a genomic cluster exhibited similar ontogenic patterns, which suggests that some P450s within a cluster are likely regulated by a common pathway during liver development. PMID:22446519

  8. Extracellular matrix and cytochrome P450 gene expression can distinguish steatohepatitis from steatosis in mice

    PubMed Central

    Hennig, Ewa E; Mikula, Michal; Goryca, Krzysztof; Paziewska, Agnieszka; Ledwon, Joanna; Nesteruk, Monika; Woszczynski, Marek; Walewska-Zielecka, Bozena; Pysniak, Kazimiera; Ostrowski, Jerzy

    2014-01-01

    One of the main questions regarding nonalcoholic fatty liver disease is the molecular background of the transition from simple steatosis (SS) to the inflammatory and fibrogenic condition of steatohepatitis (NASH). We examined the gene expression changes during progression from histologically normal liver to SS and NASH in models of obesity caused by hyperphagia or a high-fat diet. Microarray-based analysis revealed that the expression of 1445 and 264 probe sets was changed exclusively in SS and NASH samples, respectively, and 1577 probe sets were commonly altered in SS and NASH samples. Functional annotations indicated that transcriptome alterations that were common for NASH and SS, as well as exclusive for NASH, involved extracellular matrix (ECM)-related processes, although they differed in the type of matrix structure change. The expression of 80 genes was significantly changed in all three comparisons: SS versus control, NASH versus control and NASH versus SS. Of these genes, epithelial membrane protein 1, IKBKB interacting protein and decorin were progressively up-regulated in both SS and NASH compared to normal tissue. The molecular context of interactions of encoded 80 proteins revealed that they are highly interconnected and significantly enriched for processes involving metabolism by cytochrome P450. Validation of 10 selected mRNAs encoding genes related to ECM and cytochrome P450 with quantitative RT-PCR analysis showed consistent changes in their expression during NASH development. The expression profile of these genes has the potential to distinguish NASH from SS and normal tissue and may possibly be beneficial in the clinical diagnosis of NASH. PMID:24913135

  9. Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis).

    PubMed

    Ma, Bi; Luo, Yiwei; Jia, Ling; Qi, Xiwu; Zeng, Qiwei; Xiang, Zhonghuai; He, Ningjia

    2014-09-01

    Cytochrome P450s play critical roles in the biosynthesis of physiologically important compounds in plants. These compounds often act as defense toxins to prevent herbivory. In the present study, a total of 174 P450 genes of mulberry (Morus notabilis C.K.Schn) were identified based on bioinformatics analyses. These mulberry P450 genes were divided into nine clans and 47 families and were found to be expressed in a tissue-preferential manner. These genes were compared to the P450 genes in Arabidopsis thaliana. Families CYP80, CYP92, CYP728, CYP733, CYP736, and CYP749 were found to exist in mulberry, and they may play important roles in the biosynthesis of mulberry secondary metabolites. Analyses of the functional and metabolic pathways of these genes indicated that mulberry P450 genes may participate in the metabolism of lipids, other secondary metabolites, xenobiotics, amino acids, cofactors, vitamins, terpenoids, and polyketides. These results provide a foundation for understanding of the structures and biological functions of mulberry P450 genes. © 2013 Institute of Botany, Chinese Academy of Sciences.

  10. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W.; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-01-01

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification. PMID:25752830

  11. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation.

    PubMed

    Rewitz, Kim F; O'Connor, Michael B; Gilbert, Lawrence I

    2007-08-01

    The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.

  12. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance.

  13. Relationship between hepatic phenotype and changes in gene expression in cytochrome P450 reductase (POR) null mice

    PubMed Central

    Wang, Xiu Jun; Chamberlain, Mark; Vassieva, Olga; Henderson, Colin J.; Wolf, C. Roland

    2005-01-01

    Cytochrome P450 reductase is the unique electron donor for microsomal cytochrome P450s; these enzymes play a major role in the metabolism of endogenous and xenobiotic compounds. In mice with a liver-specific deletion of cytochrome P450 reductase, hepatic cytochrome P450 activity is ablated, with consequent changes in bile acid and lipid homoeostasis. In order to gain insights into the metabolic changes resulting from this phenotype, we have analysed changes in hepatic mRNA expression using microarray analysis and real-time PCR. In parallel with the perturbations in bile acid levels, changes in the expression of key enzymes involved in cholesterol and lipid homoeostasis were observed in hepatic cytochrome P450 reductase null mice. This was characterized by a reduced expression of Cyp7b1, and elevation of Cyp7a1 and Cyp8b1 expression. The levels of mRNAs for other cytochrome P450 genes, including Cyp2b10, Cyp2c29, Cyp3a11 and Cyp3a16, were increased, demonstrating that endogenous factors play a role in regulating the expression of these proteins and that the increases are due, at least in part, to altered levels of transcripts. In addition, levels of mRNAs encoding genes involved in glycolysis and lipid transport were also increased; the latter may provide an explanation for the increased hepatic lipid content observed in the hepatic null mice. Serum testosterone and oestradiol levels were lowered, accompanied by significantly decreased expression of Hsd3b2 (3β-hydroxy-Δ5-steroid dehydrogenase-2), Hsd3b5 (3β-hydroxy-Δ5-steroid dehydrogenase-5) and Hsd11b1 (11β-hydroxysteroid dehydrogenase type 1), key enzymes in steroid hormone metabolism. These microarray data provide important insights into the control of metabolic pathways by the cytochrome system. PMID:15717863

  14. [Establishment of prokaryotic expression and optimization ox expression conditions of Eleutherococcus senticosus P450 gene].

    PubMed

    Wu, Peng; Xiu, Le-shan; Li, Fei-fei; Xing, Zhao-bin

    2015-04-01

    According to the sequence of P450 cDNA of Eleutherococcus senticosus, specific primers were designed. Frokaryotic ex pression vector pET30a-P450 was constructed and the prokaryotic expression conditions were optimized. Results showed that the BL21 after being transformed with the recombinant expression vector accumulated the high amount of recombinant protein. SDS-PAGE analysis showed that the recombinant protein was about 53 kDa. The recombinant accumulated the highest amount of recombinant protein af ter IPTG (1 mmol x L(-1)) at 27-37 degrees C for 24 h. Consequently P450 gene of E. senticosus could be expressed successfully by prokaryotic expression vector pET30a-P450. Induction temperature, IPTG concentration, medium type and amount of induction time could all influence the expression of target protein, but the impact strength was different.

  15. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium : Evidence for gene duplications and extensive gene clustering

    PubMed Central

    Doddapaneni, Harshavardhan; Chakraborty, Ranajit; Yadav, Jagjit S

    2005-01-01

    Background Phanerochaete chrysosporium, the model white rot basidiomycetous fungus, has the extraordinary ability to mineralize (to CO2) lignin and detoxify a variety of chemical pollutants. Its cytochrome P450 monooxygenases have recently been implied in several of these biotransformations. Our initial P450 cloning efforts in P. chrysosporium and its subsequent whole genome sequencing have revealed an extraordinary P450 repertoire ("P450ome") containing at least 150 P450 genes with yet unknown function. In order to understand the functional diversity and the evolutionary mechanisms and significance of these hemeproteins, here we report a genome-wide structural and evolutionary analysis of the P450ome of this fungus. Results Our analysis showed that P. chrysosporium P450ome could be classified into 12 families and 23 sub-families and is characterized by the presence of multigene families. A genome-level structural analysis revealed 16 organizationally homogeneous and heterogeneous clusters of tandem P450 genes. Analysis of our cloned cDNAs revealed structurally conserved characteristics (intron numbers and locations, and functional domains) among members of the two representative multigene P450 families CYP63 and CYP505 (P450foxy). Considering the unusually complex structural features of the P450 genes in this genome, including microexons (2–10 aa) and frequent small introns (45–55 bp), alternative splicing, as experimentally observed for CYP63, may be a more widespread event in the P450ome of this fungus. Clan-level phylogenetic comparison revealed that P. chrysosporium P450 families fall under 11 fungal clans and the majority of these multigene families appear to have evolved locally in this genome from their respective progenitor genes, as a result of extensive gene duplications and rearrangements. Conclusion P. chrysosporium P450ome, the largest known todate among fungi, is characterized by tandem gene clusters and multigene families. This enormous P450

  16. Permethrin Induction of Multiple Cytochrome P450 Genes in Insecticide Resistant Mosquitoes, Culex quinquefasciatus

    PubMed Central

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance. PMID:24155662

  17. Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides.

    PubMed

    Yang, Yuan-Xue; Yu, Na; Zhang, Jian-Hua; Zhang, Yi-Xi; Liu, Ze-Wen

    2017-01-16

    Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85 ), and in N. lugens among three IMI doses (LD15 , LD50 and LD85 ). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Distinct organization of methylcholanthrene- and phenobarbital-inducible cytochrome P-450 genes in the rat.

    PubMed Central

    Sogawa, K; Gotoh, O; Kawajiri, K; Fujii-Kuriyama, Y

    1984-01-01

    The complete nucleotide sequence of the methylcholanthrene-inducible cytochrome P-450c gene was determined by sequence analysis of cloned genomic DNA and the sequence, consisting of 524 amino acids, of the protein was deduced therefrom. The gene for the cytochrome was approximately 6.0 kilobases long and was split into seven exons. Comparison of the gene with that of the phenobarbital-inducible cytochrome P-450e showed that the gene structures for the two types of cytochrome P-450 differ greatly; the location, number, and size of intervening sequences are very dissimilar. However, the sequence homology between the two types of cytochrome suggests that the two genes have evolved from a common ancestor. Images PMID:6089174

  19. Regulation of cytochrome P450 gene expression in human colon and breast tumour xenografts.

    PubMed Central

    Smith, G.; Harrison, D. J.; East, N.; Rae, F.; Wolf, H.; Wolf, C. R.

    1993-01-01

    It is extremely difficult to identify the factors which regulate the expression of drug-metabolising enzymes in man. To address this problem, we have developed a model involving the use of human tumours grown as xenografts in immune deficient mice. Mice bearing human colon or breast tumours as xenografts were challenged with a range of compounds, known from animal studies to be inducers of cytochrome P450s from a variety of gene families. Almost all of the compounds tested could induce human tumour P450 expression, measured either by Western blot or immunohistochemical analysis. Indeed, the levels of P450s from several distinct gene families or subfamilies including CYP2A, CYP2B, CYP2C, CYP3A and CYP4A were induced. Of particular interest was the profound induction of human P450s by 1,4 bis 2-(3,5dichloro-pyridyloxybenzene)(TCPOBOP), a compound which exhibits a marked species specificity in its ability to induce P450 expression in experimental animals. Induction of a human CYP2B protein by this compound was confirmed by Northern blot analysis and in situ hybridisation for mRNA, indicating that induction occurred at the level of transcription. These studies have a variety of implications: they provide a method for approaching the previously intractable problem of how environmental, hormonal and metabolic factors regulate human P450 genes and other genes involved in drug metabolism; they demonstrate that human tumours express P450s constitutively and that the levels of these proteins can be modulated by exogenous agents. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8318421

  20. Molecular identity and gene expression of aldosterone synthase cytochrome P450

    SciTech Connect

    Okamoto, Mitsuhiro . E-mail: mokamoto@mr-mbio.med.osaka-u.ac.jp; Nonaka, Yasuki; Takemori, Hiroshi; Doi, Junko

    2005-12-09

    11{beta}-Hydroxylase (CYP11B1) of bovine adrenal cortex produced corticosterone as well as aldosterone from 11-deoxycorticosterone in the presence of the mitochondrial P450 electron transport system. CYP11B1s of pig, sheep, and bullfrog, when expressed in COS-7 cells, also performed corticosterone and aldosterone production. Since these CYP11B1s are present in the zonae fasciculata and reticularis as well as in the zona glomerulosa, the zonal differentiation of steroid production may occur by the action of still-unidentified factor(s) on the enzyme-catalyzed successive oxygenations at C11- and C18-positions of steroid. In contrast, two cDNAs, one encoding 11{beta}-hydroxylase and the other encoding aldosterone synthase (CYP11B2), were isolated from rat, mouse, hamster, guinea pig, and human adrenals. The expression of CYP11B1 gene was regulated by cyclic AMP (cAMP)-dependent signaling, whereas that of CYP11B2 gene by calcium ion-signaling as well as cAMP-signaling. Salt-inducible protein kinase, a cAMP-induced novel protein kinase, was one of the regulators of CYP11B2 gene expression.

  1. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    PubMed

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cj1411c Encodes for a Cytochrome P450 Involved in Campylobacter jejuni 81-176 Pathogenicity

    PubMed Central

    Alvarez, Luis A. J.; Bourke, Billy; Pircalabioru, Gratiela; Georgiev, Atanas Y.; Knaus, Ulla G.; Daff, Simon; Corcionivoschi, Nicolae

    2013-01-01

    Cytochrome P450s are b-heme-containing enzymes that are able to introduce oxygen atoms into a wide variety of organic substrates. They are extremely widespread in nature having diverse functions at both biochemical and physiological level. The genome of C. jejuni 81-176 encodes a single cytochrome P450 (Cj1411c) that has no close homologues. Cj1411c is unusual in its genomic location within a cluster involved in the biosynthesis of outer surface structures. Here we show that E. coli expressed and affinity-purified C. jejuni cytochrome P450 is lipophilic, containing one equivalent Cys-ligated heme. Immunoblotting confirmed the association of cytochrome P450 with membrane fractions. A Cj1411c deletion mutant had significantly reduced ability to infect human cells and was less able to survive following exposure to human serum when compared to the wild type strain. Phenotypically following staining with Alcian blue, we show that a Cj1411c deletion mutant produces significantly less capsular polysaccharide. This study describes the first known membrane-bound bacterial cytochrome P450 and its involvement in Campylobacter virulence. PMID:24086558

  3. The expression of P450 genes mediating fenpropathrin resistance is regulated by CncC and Maf in Tetranychus cinnabarinus (Boisduval).

    PubMed

    Shi, Li; Wang, Mengyao; Zhang, Yichao; Shen, Guangmao; Di, Haishan; Wang, Yue; He, Lin

    2017-08-01

    Although overexpression of genes encoding detoxification enzymes is a well-known mechanism of pesticide resistance of mites, the regulators involved in this process are still illiterate. Previous studies in our laboratory demonstrated that the overexpression of six P450 genes contributes to fenpropathrin resistance in T. cinnabarinus. In this study, six transcription factor genes that likely regulate the expression of P450 genes were identified and characterized. Quantitative PCR (qPCR) analysis showed that three transcription factor genes were highly expressed in a fenpropathrin-resistant (FeR) strain of T. cinnabarinus. The cap 'n' collar isoform C (CncC) and muscle aponeurosis fibromatosis (Maf) family transcription factors were identified as the key regulator of P450 genes by RNA interference (RNAi). Furthermore, research on the promoters of these P450 genes using reporter assays identified that CncC and Maf influence the susceptibility of T. cinnabarinus to fenpropathrin through regulating the expression of P450 genes. This study increases our understanding of the molecular mechanisms underlying the regulation of P450 genes involved in detoxification of acaricides in T. cinnabarinus. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Integration and expression of a rabbit liver cytochrome P-450 gene in transgenic Nicotiana tabacum.

    PubMed Central

    Saito, K; Noji, M; Ohmori, S; Imai, Y; Murakoshi, I

    1991-01-01

    Cytochrome P-450 is involved in the oxidative metabolism of a broad range of substrates. We have made a chimeric construct, pSN002, containing the cDNA for rabbit liver cytochrome P-450 (IIC14) under the control of the TR2' promoter for mannopine synthase in the Agrobacterium Ti plasmid. Nicotiana tabacum was transformed with Agrobacterium tumefaciens harboring a cointegrated plasmid pSN002::pGV2260. The presence of mRNA and of the translated protein from the chimeric cytochrome P-450 gene in transgenic plants was confirmed by RNA blot hybridization and by Western blot and immunohistochemical analyses, respectively. The transformants in which the foreign cytochrome P-450 protein is expressed show marked phenotypic changes, notably a tendency rapidly to senesce. We detected 2-propenylpyrrolidine, a degradative metabolite of nicotine alkaloids, in transgenic tobacco showing this pronounced phenotypic change. Such metabolism is likely to be due to the effect of senescence and not directly to the presence of the cytochrome P-450. Images PMID:1714583

  5. Mechanism and consequences of the duplication of the human C4/P450c21/gene X locus

    SciTech Connect

    Gitelman, S.E.; Bristow, J.; Miller, W.L. )

    1992-05-01

    The adjacent C4 and P450c21 genes encode the fourth component of serum complement and steroid 21-hydroxylase respectively, and are tandemly duplicated in the human, murine, and bovine genomes. We recently cloned a cDNA for another duplicated gene, operationally termed X, which overlaps the 3' end of human P450c21 and has the opposite transcriptional orientation. Thus, the organization of the locus is 5'-C4A-21A-XA-C4B-21B-XB-3'. To determine how this locus was duplicated, we sequenced the DNA at the duplication boundaries and the 7 kb between P450c21A and C4B comprising the XA locus. The sequences located the duplication boundaries precisely and indicate that the duplication occurred by nonhomologous recombination. The boundaries are substantially different from those of the corresponding duplication in the mouse genome, suggesting that similar gene duplications may have occurred independently in ancestors of rodents and primates after mammalian speciation. Compared with XB, the XA gene is truncated at its 5' end and bears a 121-bp intragenic deletion causing a frameshift and premature translational stop signal. Nevertheless, XA is transcribed into a stable 2.6-kb polyadenylated RNA that is expressed uniquely in the adrenal gland. 61 refs., 8 figs.

  6. Identification of three cytochrome P450 genes in the Chagas' disease vector Triatoma infestans: Expression analysis in deltamethrin susceptible and resistant populations.

    PubMed

    Grosso, Carla G; Blariza, María J; Mougabure-Cueto, Gastón; Picollo, María I; García, Beatriz A

    2016-10-01

    Cytochrome P450 monooxygenases play a predominant role in the metabolism of insecticides. Many insect P450 genes have frequently been associated with detoxification processes allowing the insect to become tolerant or resistant to insecticides. The increases of expression of P450 genes at transcriptional level are often consider responsible for increasing the metabolism of insecticides and seems to be a common phenomenon in the evolution of resistance development in insects. As pyrethroid resistance has been detected in Triatoma infestans, it was of interest to analyze genes associated with resistance to insecticides such as those encoding for cytochromes P450. With this purpose, the cDNA sequences of three cytochrome P450 genes (CYP4EM7, CYP3085B1, and CYP3092A6) were identified in this species. Primers and specific Taqman probes were designed from these sequences to determine their expression by quantitative PCR. The mRNA levels of the cytochrome P450 genes identified were determined from total RNA extracted from pools of fat body collected from individuals of different resistant and susceptible strains of T. infestans, and at different interval times after the topical application of the lethal doses 50% (LD50) of deltamethrin on the ventral abdomen of insects belonging to the different populations analyzed. It was detected overexpression of the CYP4EM7 gene in the most resistant strain of T. infestans and the expression of the three cytochrome P450 genes isolated was induced by deltamethrin in the susceptible and resistant populations included in this study. These results suggest that these genes would be involved in the detoxification of deltamethrin and support the hypothesis that considers to the cytochrome P450 genes of importance in the development of pyrethroid resistance.

  7. Cloning and characterisation of NADPH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera.

    PubMed

    Zhao, Chunqing; Tang, Tao; Feng, Xiaoyun; Qiu, Lihong

    2014-01-01

    Previous studies in our laboratory showed that cytochrome P450 CYP6B7 plays a critical role in a Handan fenvalerate resistant strain (HDFR) of Helicoverpa armigera. As an important component of P450 enzyme systems, cytochrome P450 reductase (CPR) plays an essential role in transferring electrons from NADPH to the P450-substrate complex. However, little information about CPR in H. armigera (HaCPR) has been reported. A full-length cDNA (3525 bp) of HaCPR was cloned. The open reading frame of the HaCPR gene encoded 687 amino acids and shared 27.87-95.21% identities with other known CPRs. Bioinformatic analysis showed that HaCPR is a transmembrane protein with Mw of 77.4 kDa and contains conserved features. The results of real-time quantitative polymerase chain reaction showed that the expression level of HaCPR mRNA was 1.84-fold higher in midgut of 5th instars of the Handan susceptible strain than that in pupae, and the level in the midgut of HDFR strain was 2.02-fold higher than that of the Handan susceptible strain. The levels of HaCPR mRNA were induced by phenobarbital at concentrations of 2 and 4 mg g(-1) , which enhanced 5.20- and 17.45-fold, respectively, compared to that of the control after 48 h of phenobarbital treatment. The results indicate that HaCPR is important for the development of H. armigera and may play an essential role in the P450-mediated insecticide resistance of H. armigera to fenvalerate. © 2013 Society of Chemical Industry.

  8. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  9. Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms

    PubMed Central

    Nalwalk, Julia W.; Ding, Xinxin; Scheer, Nico

    2015-01-01

    Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity 3H-cimetidine (3HCIM) binding sites in the brain. 3HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c, 9 Cyp2d, and 7 Cyp3a genes were studied for deficiencies in 3HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal 3HCIM binding values, indicating that gene products of Cyp2d, Cyp3a, and Cyp2c are not 3HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration. PMID:26109562

  10. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum

    PubMed Central

    2013-01-01

    Background The functional and evolutionary diversification of insect cytochrome P450s (CYPs) shaped the success of insects. CYPs constitute one of the largest and oldest gene superfamilies that are found in virtually all aerobic organisms. Because of the availability of whole genome sequence and well functioning RNA interference (RNAi), the red flour beetle, Tribolium castaneum serves as an ideal insect model for conducting functional genomics studies. Although several T. castaneum CYPs had been functionally investigated in our previous studies, the roles of the majority of CYPs remain largely unknown. Here, we comprehensively analyzed the phylogenetic relationship of all T. castaneum CYPs with genes in other insect species, investigated the CYP6BQ gene cluster organization, function and evolution, as well as examined the mitochondrial CYPs gene expression patterns and intron-exon organization. Results A total 143 CYPs were identified and classified into 26 families and 59 subfamilies. The phylogenetic trees of CYPs among insects across taxa provided evolutionary insight for the genetic distance and function. The percentage of singleton (33.3%) in T. castaneum CYPs is much less than those in Drosophila melanogaster (52.5%) and Bombyx mori (51.2%). Most members in the largest CYP6BQ gene cluster may make contribution to deltamethrin resistance in QTC279 strain. T. castaneum genome encodes nine mitochondrial CYPs, among them CYP12H1 is only expressed in the final instar larval stage. The intron-exon organizations of these mitochondrial CYPs are highly diverse. Conclusion Our studies provide a platform to understand the evolution and functions of T. castaneum CYP gene superfamily which will help reveal the strategies employed by insects to cope with their environment. PMID:23497158

  11. Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils

    SciTech Connect

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.; Konstantinidis, Konstantinos T.; Chee-Sanford, Joanne C.; Sanford, Robert A.; Schadt, Christopher W.; Löffler, Frank E.

    2016-03-11

    Members of the Fungi convert nitrate (NO3-) and nitrite (NO2-) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3- or NO2- in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, of which 151 produced N2O from NO2-. Novel PCR primers targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation.

  12. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism

    PubMed Central

    Liu, Zhenhua; Tavares, Raquel; Forsythe, Evan S.; André, François; Lugan, Raphaël; Jonasson, Gabriella; Boutet-Mercey, Stéphanie; Tohge, Takayuki; Beilstein, Mark A.; Werck-Reichhart, Danièle; Renault, Hugues

    2016-01-01

    Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions. PMID:27713409

  13. Amplification of a Cytochrome P450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae

    PubMed Central

    Puinean, Alin M.; Foster, Stephen P.; Oliphant, Linda; Denholm, Ian; Field, Linda M.; Millar, Neil S.; Williamson, Martin S.; Bass, Chris

    2010-01-01

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2–16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae. PMID:20585623

  14. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq datasets

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals. Methods: We identifiedCYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish.Phylogenetic ...

  15. Identification of a Cyclosporine-Specific P450 Hydroxylase Gene through Targeted Cytochrome P450 Complement (CYPome) Disruption in Sebekia benihana

    PubMed Central

    Lee, Mi-Jin; Kim, Hyun-Bum; Yoon, Yeo Joon; Han, Kyuboem

    2013-01-01

    It was previously proposed that regio-specific hydroxylation of an immunosuppressive cyclosporine (CsA) at the 4th N-methyl leucine is mediated by cytochrome P450 hydroxylase (CYP) in the rare actinomycete Sebekia benihana. This modification is thought to be the reason for the hair growth-promoting side effect without the immunosuppressive activity of CsA. Through S. benihana genome sequencing and in silico analysis, we identified the complete cytochrome P450 complement (CYPome) of S. benihana, including 21 CYPs and their electron transfer partners, consisting of 7 ferredoxins (FDs) and 4 ferredoxin reductases (FDRs). Using Escherichia coli conjugation-based S. benihana CYPome-targeted disruption, all of the identified CYP, FD, and FDR genes in S. benihana were individually inactivated. Among the 32 S. benihana exconjugant mutants tested, only a single S. benihana CYP mutant, ΔCYP-sb21, failed to exhibit CsA hydroxylation activity. The hydroxylation was restored by CYP-sb21 gene complementation. Since all S. benihana FD and FDR disruption mutants maintained CsA hydroxylation activity, it can be concluded that CYP-sb21, a new member of the bacterial CYP107 family, is the only essential component of the in vivo regio-specific CsA hydroxylation process in S. benihana. Moreover, expression of an extra copy of the CYP-sb21 gene increased CsA hydroxylation in wild-type S. benihana and an NADPH-enriched Streptomyces coelicolor mutant, by 2-fold and 1.5-fold, respectively. These results show for the first time that regio-specific hydroxylation of CsA is carried out by a specific P450 hydroxylase present in S. benihana, and they set the stage for the biotechnological application of regio-specific CsA hydroxylation through heterologous CYP-sb21 expression. PMID:23354713

  16. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  17. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  18. Genetic polymorphisms and haplotypes of por, encoding cytochrome p450 oxidoreductase, in a Japanese population.

    PubMed

    Saito, Yoshiro; Yamamoto, Noboru; Katori, Noriko; Maekawa, Keiko; Fukushima-Uesaka, Hiromi; Sugimoto, Daisuke; Kurose, Kouichi; Sai, Kimie; Kaniwa, Nahoko; Sawada, Jun-Ichi; Kunitoh, Hideo; Ohe, Yuichiro; Yoshida, Teruhiko; Matsumura, Yasuhiro; Saijo, Nagahiro; Okuda, Haruhiro; Tamura, Tomohide

    2011-01-01

    Cytochrome P450 oxidoreductase (POR) transfers electrons from NADPH to all microsomal cytochrome P450 (CYP) enzymes and is necessary for microsomal CYP activities. In this study, to find genetic variations and to elucidate the haplotype structures of POR, we comprehensively screened the genetic variations in the 5'-flanking region, all the exons and their flanking introns of POR for 235 Japanese subjects. Seventy-five genetic variations including 26 novel ones were found: 7 were in the 5'-flanking region, 2 in the 5'-untranslated region (5'-UTR, non-coding exon 1), 16 in the coding exons (10 nonsynonymous and 6 synonymous), 45 in the introns, 4 in the 3'-UTR and 1 in the 3'-flanking region. Of these, 4 novel nonsynonymous variations, 86C>T (T29M), 1648C>T (R550W), 1708C>T (R570C) and 1975G>A (A659T), were detected with allele frequencies of 0.002. We also detected known nonsynonymous SNPs 683C>T (P228L), 1237G>A (G413S), 1453G>A (A485T), 1508C>T (A503V), 1510G>A (G504R) and 1738G>C (E580Q) with frequencies of 0.002, 0.009, 0.002, 0.434, 0.002 and 0.002, respectively. Based on the linkage disequilibrium (LD) profiles, the analyzed region could be divided into two LD blocks. For Blocks 1 and 2, 14 and 46 haplotypes were inferred, respectively, and 2 and 6 common haplotypes found in more than 0.03 frequencies accounted for more than 81% of the inferred haplotypes. This study provides fundamental and useful information for the pharmacogenetic studies of drugs metabolized by CYPs in the Japanese population.

  19. Cytochromes P450

    PubMed Central

    Werck-Reichhart, Danièle; Bak, Søren; Paquette, Suzanne

    2002-01-01

    There are 272 cytochrome P450 genes (including 26 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest families of proteins in higher plants. This explosion of the P450 family is thought to have occurred via gene duplication and conversion, and to result from the need of sessile plants to adapt to a harsh environment and to protect themselves from pathogens and predators. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions. Their biological functions range from the synthesis of structural macromolecules such as lignin, cutin or suberin, to the synthesis or catabolism of all types of hormone or signaling molecules, the synthesis of pigments and defense compounds, and to the metabolism of xenobiotics. In despite of a huge acceleration in our understanding of plant P450 functions in the recent years, the vast majority of these functions remain completely unknown. PMID:22303202

  20. Cytochrome P450 gene CYP337 and heritability of fitness traits in the Glanville fritillary butterfly.

    PubMed

    de Jong, M A; Wong, S C; Lehtonen, R; Hanski, I

    2014-04-01

    Fitness-related life history traits often show substantial heritable genetic variation in natural populations, but knowledge of the genetic architecture of these traits is limited. In the Glanville fritillary butterfly, we measured the heritability of key life history traits in a large outdoor population cage during 2 years and generations and combined this experiment with an association study of a set of candidate genes. The genes were selected on the basis of previous genomic and transcriptomic studies and have been linked to the physiology and life history of this or other arthropod species. Heritability was high and significant for two traits, post-diapause larval development time (h(2) = 0.37) and lifetime egg (and larval) production (h(2) = 0.62); the latter is closely related to lifetime reproductive success and therefore fitness. We discovered a strong association between genetic polymorphism in the cytochrome P450 gene CYP337 and lifetime egg production, which accounted for 14% of the additive variance in egg production. This gene belongs to a group of cytochrome P450 genes that have a well-documented role in host plant adaptations in Lepidoptera and other insects and is likely to play an important role in the ecology and microevolution of the Glanville fritillary. This study provides a prime example of a gene associated with heritable fitness variation, measured under semi-natural ecological conditions.

  1. Relative quantification of Cytochrome P450 1B1 gene expression in peripheral leukocytes using lightcycler.

    PubMed

    Helmig, Simone; Hadzaad, Bahar; Döhrel, Juliane; Schneider, Joachim

    2009-01-01

    The cytochrome P450 oxidase system is a multigene family of inducible enzymes that play a central role in the metabolic activation of various xenobiotics, including polycyclic hydrocarbons (PAH). To investigate the considerable variability of cytochrome P450 1B1 (Cyp1B1) expression due to the exogenous influence of tobacco smoke or the endogenous influence of genetic polymorphism, a sensitive quantitative determination of gene expression is necessary. A method is introduced for the analysis of Cyp 1B1 gene expression using real-time quantitative PCR and the comparative DeltaDeltaCT (threshold cycle) method. Blood samples from a smoker and non smoker were collected and total RNA was analysed in comparison to the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The expression of Cyp 1B1 was 16.43 times higher in the smoker than in the non-smoker. This approach provides a manageable method for examining large quantities of samples and could possibly be used to evaluate gene environmental interactions on the basics of gene expression analysis.

  2. Diversity and expression of P450 genes from Dendroctonus valens LeConte (Curculionidae: Scolytinae) in response to different kairomones.

    PubMed

    López, María Fernanda; Cano-Ramírez, Claudia; Cesar-Ayala, Ana K; Ruiz, Enrico A; Zúñiga, Gerardo

    2013-05-01

    Bark beetles (Curculionidae: Scolytinae) are major cause of woody plants death in the world. They colonize the stem and other parts of trees recognizing host-produced specific compounds (kairomones) and insect pheromones. Bark beetle's antennae and alimentary canal participate in the host selection identifying chemical compounds produced by trees and insects, and also in the metabolism and detoxification of these compounds. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an unaggressive species that colonize > 40 pine species (Pinaceae) in North and Central America. Several studies suggest that bark beetle cytochrome P450 enzymes are involved in monoterpene oxidation. In this study we identified by means of PCR, cloning, sequencing, and bioinformatic analysis, eleven full-length genes: five CYP4, four CYP6, and two CYP9 in the antennae and gut region of RTB, after stimulation with vapors of monoterpenes: (±)-α-pinene, (R)-(+)-α-pinene, (S)-(-)-β-pinene, (S)-(-)-α-pinene and (+)-3-carene; pine trees volatiles used by RTB as kairomones. The recovered cDNA of these genes vary from 1.5 kb to 1.8 kb and the open frame encodes from 496 to 562 amino acid proteins. The bioinformatic analysis suggests that the majority of P450 proteins encoded by these genes are membrane anchored in the endoplasmic reticulum. RT-qPCR assays showed differential expression of all CYP genes between male and female. The gene expression was dependent of monoterpenes and exposure time, with some of them sex, antennae and gut region specific. Significant differences among monoterpenes, gut region, antennae and exposure time were found. Our results suggest that some of these genes may be involved in the detoxification process of these compounds during tree colonization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Potentiation of Methoxymorpholinyl Doxorubicin Anti-Tumor Activity by P450 3A4 Gene Transfer#

    PubMed Central

    Lu, Hong; Chen, Chong-Sheng; Waxman, David J.

    2008-01-01

    Summary Preclinical and clinical studies of CYP gene-directed enzyme-prodrug therapy have focused on anticancer prodrugs activated by CYP2B enzymes, which have low endogenous expression in human liver; however, the gene therapeutic potential of CYP3A enzymes, which are highly expressed in human liver, remains unknown. This study investigated methoxymorpholinyl-doxorubicin (MMDX), a novel CYP3A-activated anticancer prodrug. Retroviral transfer of CYP3A4 increased 9L gliosarcoma cell chemosensitivity to MMDX 120-fold (IC50=0.2nM). In CHO cells, overexpression of P450 reductase in combination with CYP3A4 enhanced chemosensitivity to MMDX, and to ifosfamide, another CYP3A4 prodrug, 11–23-fold compared to CYP3A4 expression alone. CYP3A4 expression and MMDX chemosensitivity were increased in human lung (A549) and brain (U251) tumor cells infected with replication-defective adenovirus encoding CYP3A4. Co-infection with Onyx-017, a replication-conditional adenovirus that co-amplifies and co-replicates the Adeno-3A4 virus, led to large increases in CYP3A4 RNA but only modest increases in CYP3A4 protein and activity. MMDX induced remarkable growth delay of 9L/3A4 tumors, but not 9L tumors, in immunodeficient mice administered low-dose MMDX either i.v. or by direct intratumoral injection (60µg/kg, every 7-days ×3), with the intratumoral route being substantially less toxic to the mouse host. No antitumor activity was observed with i.p. MMDX treatment, suggesting a substantial hepatic first pass effect, and with activated MMDX metabolites formed in the liver having poor access to the tumor site. These studies demonstrate that human CYP3A4 has strong potential for MMDX prodrug activation therapy, and suggest that endogenous tumor cell expression of CYP3A4, and not hepatic CYP3A4 activity, is a key determinant of responsiveness to MMDX therapy in cancer patients in vivo. PMID:19011599

  4. Expression profile analysis of silkworm P450 family genes after phoxim induction.

    PubMed

    Li, Fanchi; Ni, Min; Zhang, Hua; Wang, Binbin; Xu, Kaizun; Tian, Jianghai; Hu, Jingsheng; Shen, Weide; Li, Bing

    2015-07-01

    Silkworm (Bombyx mori) is an important economic insect and a model species for Lepidopteran. Each year, O,O-diethyl O-(alpha-cyanobenzylideneamino) phosphorothioate (phoxim) pesticide poisoning in China results in huge economic losses in sericulture. Silkworm fat body is the main organ for nutrient storage, energy supply, intermediary metabolism, and detoxification. Microarray analysis of silkworm Cytochrome P450 detoxification enzyme genes revealed that all tested P450 4 (CYP4) family genes are expressed in the fat body. Quantitative Real-time PCR (QRT-PCR) was used to detect the expression of CYP4 family genes in silkworm fat body 0, 24, 48, and 72 h after phoxim exposure. The expression levels of silkworm molting hormone synthesis-related genes started to change 24 h after phoxim exposure, with those of CYP302A1, CYP306A1, and CYP314A1 being elevated by 1.38-, 1.33-, and 2.10-fold, respectively. The CYP18A1 gene that participates in steroid hormone inactivation and the CYP15C1 gene that participates in the epoxidation during the synthesis of juvenile hormone (JH) from methyl farnesoate (MF) were increased by 3.85- and 7.82-fold, respectively. Phylogenetic analysis indicated that these endogenous hormone metabolism-related genes belong to CYP mito clan and clan 2, and that phoxim exposure may affect silkworm development and metamorphosis. The CYP4, CYP6, and CYP9 families all showed some degrees of increases in gene expression; among them, CYP49A1, CYP4L6, CYP6AB4, CYP9G3, CYP9A19, and CYP9A22's transcription levels were significantly upregulated to 12.77-, 2.64-, 2.42-, 4.06-, 3.32-, and 2.98-fold, respectively, of the control levels. In the fat body, CYP49A1, CYP6AB4, CYP9A19, and CYP9A22 were constantly expressed at high levels after 24, 48, and 72 h of phoxim treatments; according to phylogenetic analysis, these genes belong to detoxification-related clan 3 and clan 4 CYP families. These genes may participate in the metabolism of phoxim in silkworm fat

  5. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes.

    PubMed

    Li, Xianchun; Schuler, Mary A; Berenbaum, May R

    2002-10-17

    Jasmonate and salicylate are plant-produced signals that activate plant defence genes after herbivory or pathogen attack. Amplification of these signals, evoked by either enemy attack or experimental manipulation, leads to an increase in the synthesis of toxic compounds (allelochemicals) and defence proteins in the plants. Although the jasmonate and salicylate signal cascades activate different sets of plant defence genes, or even act antagonistically, there is substantial communication between the pathways. Jasmonate and salicylate also contribute to protecting plants against herbivores by causing plants that experience insect damage to increase their production of volatile molecules that attract natural enemies of herbivorous insects. In response to plant defences, herbivores increase their production of enzymes that detoxify allelochemicals, including cytochrome P450s (refs 15, 16). But herbivores are potentially vulnerable to toxic allelochemicals in the duration between ingesting toxins and induction of detoxification systems. Here we show that the corn earworm Helicoverpa zea uses jasmonate and salicylate to activate four of its cytochrome P450 genes that are associated with detoxification either before or concomitantly with the biosynthesis of allelochemicals. This ability to 'eavesdrop' on plant defence signals protects H. zea against toxins produced by host plants.

  6. Transcriptional Regulation of the Human P450 Oxidoreductase Gene: Hormonal Regulation and Influence of Promoter Polymorphisms

    PubMed Central

    Tee, Meng Kian; Huang, Ningwu; Damm, Izabella

    2011-01-01

    P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at −325/−1 bp from the untranslated exon. Common human POR polymorphisms at −208 and −173 had little influence on transcription, but the polymorphism at −152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between −249 and −261 and binding of thyroid hormone receptor-β (TRβ) at −240/−245. Chromatin immunoprecipitation showed that Smad3, Smad4, TRα, TRβ, and estrogen receptor-α were bound between −374 and −149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T3 exerts major tropic effects via TRβ, with TRα, estrogen receptor-α, Smad3, and Smad4 exerting lesser, modulatory effects. T3 also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TRβ and Smad3/4 in its expression and indicating that the common polymorphism at −152 may play a role in genetic variation in steroid biosynthesis and drug metabolism. PMID:21393444

  7. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    PubMed

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages. © 2014 Wiley Periodicals, Inc.

  8. Molecular Characterization and Functional Analysis of Three Pathogenesis-Related Cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea)

    PubMed Central

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-01-01

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant. PMID:25756378

  9. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea).

    PubMed

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-03-06

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  10. Effects of 4-tert-pentylphenol on the gene expression of P450 11beta-hydroxylase in the gonad of medaka (Oryzias latipes).

    PubMed

    Yokota, Hirofumi; Abe, Tatsuo; Nakai, Makoto; Murakami, Hidekazu; Eto, Chizumi; Yakabe, Yoshikuni

    2005-01-26

    Alkylphenols including 4-tert-pentylphenol (4-PP) have been shown to alter sexual differentiation in fish due to their estrogenic properties. Medaka (Oryzias latipes) is so sensitive to these substances because morphological sex reversal and testis-ova induction are well developed in the exposed males. However, little work has been done to characterize the molecular effects of estrogenic substances on the morphological and gonadal feminization in male fish. Cytochrome P450 11beta-hydroxylase (P450(11beta)) is a key steroidogenic enzyme in production of 11-ketotestosterone which is the predominant androgen in male fish. In this study, we cloned a cDNA encoding medaka testicular P450(11beta), and then investigated the gene expression of P450(11beta) in the testes of genetically male medaka exposed to 4-PP. The cDNA contains 1740 nucleotides that encode a protein of 543 amino acids, which shares 68.9% and 73.4% homology with testicular P450(11beta)s from Japanese eel (Anguilla japonica) and rainbow trout (Oncorhynchus mykiss), respectively. HeLa cells transfected with an expression vector containing the open reading frame of medaka P450(11beta) cDNA showed 11beta-hydroxylating activity in the presence of exogenous testosterone. Analysis of tissue distribution by RT-PCR showed great abundance of P450(11beta) mRNA in testis. In the partial life-cycle exposure with 4-PP, morphologically sex-reversal was observed in XY medaka exposed to 4-PP concentrations of > or =238 microg/L. Furthermore, exposure to 4-PP completely inhibited P450(11beta) mRNA expression in the gonads of sex-reversed XY fish at 60-day posthatch. These results suggest that xeno-estrogen 4-PP may have inhibitory effects on the synthesis of testicular 11-oxygenated androgens through downregulation of P450(11beta) expression in the genetically male fish.

  11. Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals.

    PubMed

    Rosic, Nedeljka N; Pernice, Mathieu; Dunn, Simon; Dove, Sophie; Hoegh-Guldberg, Ove

    2010-05-01

    Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the "PERF" and "heme-binding" domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26 degrees C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6 degrees C increase to a temperature above the average sea temperature (29 degrees C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32 degrees C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26 degrees C and 29 degrees C) was followed by a decrease in expression under the greater thermal stress conditions at 32 degrees C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense.

  12. Differential Regulation by Heat Stress of Novel Cytochrome P450 Genes from the Dinoflagellate Symbionts of Reef-Building Corals▿

    PubMed Central

    Rosic, Nedeljka N.; Pernice, Mathieu; Dunn, Simon; Dove, Sophie; Hoegh-Guldberg, Ove

    2010-01-01

    Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the “PERF” and “heme-binding” domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26°C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6°C increase to a temperature above the average sea temperature (29°C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32°C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26°C and 29°C) was followed by a decrease in expression under the greater thermal stress conditions at 32°C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense. PMID:20228102

  13. Expression profile of hepatic genes in cynomolgus macaques bred in Cambodia, China, and Indonesia: implications for cytochrome P450 genes.

    PubMed

    Ise, Ryota; Nakanishi, Yasuharu; Kohara, Sakae; Yamashita, Hiroyuki; Yoshikawa, Tsuyoshi; Iwasaki, Kazuhide; Nagata, Ryoichi; Fukuzaki, Koichiro; Utoh, Masahiro; Nakamura, Chika; Yamazaki, Hiroshi; Uno, Yasuhiro

    2012-01-01

    Cynomolgus macaques, frequently used in drug metabolism studies, are bred mainly in the countries of Asia; however, comparative studies of drug metabolism between cynomolgus macaques bred in these countries have not been conducted. In this study, hepatic gene expression profiles of cynomolgus macaques bred in Cambodia (mfCAM), China (mfCHN), and Indonesia (mfIDN) were analyzed. Microarray analysis revealed that expression of most hepatic genes, including drug-metabolizing enzyme genes, was not substantially different between mfCAM, mfCHN, and mfIDN; only 1.1% and 3.0% of all the gene probes detected differential expression (>2.5-fold) in mfCAM compared with mfCHN and mfIDN, respectively. Quantitative polymerase chain reaction showed that the expression levels of 14 cytochromes P450 (P450s) important for drug metabolism did not differ (>2.5-fold) in mfCAM, mfCHN, and mfIDN, validating the microarray data. In contrast, expression of CYP2B6 and CYP3A4 differed (>2.5-fold, p < 0.05) between cynomolgus (mfCAM, mfCHN, or mfIDN) and rhesus macaques, indicating greater differences in expression of P450 genes between the two lineages. Moreover, metabolic activities measured using 14 P450 substrates did not differ substantially (<1.5-fold) between mfCAM and mfCHN. These results suggest that gene expression profiles, including drug-metabolizing enzyme genes such as P450 genes, are similar in mfCAM, mfCHN, and mfIDN.

  14. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes

    PubMed Central

    Asp, Torben; Kristensen, Michael

    2016-01-01

    Background Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. Results The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Conclusion Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s

  15. Red Carotenoid Coloration in the Zebra Finch Is Controlled by a Cytochrome P450 Gene Cluster.

    PubMed

    Mundy, Nicholas I; Stapley, Jessica; Bennison, Clair; Tucker, Rachel; Twyman, Hanlu; Kim, Kang-Wook; Burke, Terry; Birkhead, Tim R; Andersson, Staffan; Slate, Jon

    2016-06-06

    Bright-red colors in vertebrates are commonly involved in sexual, social, and interspecific signaling [1-8] and are largely produced by ketocarotenoid pigments. In land birds, ketocarotenoids such as astaxanthin are usually metabolically derived via ketolation of dietary yellow carotenoids [9, 10]. However, the molecular basis of this gene-environment mechanism has remained obscure. Here we use the yellowbeak mutation in the zebra finch (Taeniopygia guttata) to investigate the genetic basis of red coloration. Wild-type ketocarotenoids were absent in the beak and tarsus of yellowbeak birds. The yellowbeak mutation mapped to chromosome 8, close to a cluster of cytochrome P450 loci (CYP2J2-like) that are candidates for carotenoid ketolases. The wild-type zebra finch genome was found to have three intact genes in this cluster: CYP2J19A, CYP2J19B, and CYP2J40. In yellowbeak, there are multiple mutations: loss of a complete CYP2J19 gene, a modified remaining CYP2J19 gene (CYP2J19(yb)), and a non-synonymous SNP in CYP2J40. In wild-type birds, CYP2J19 loci are expressed in ketocarotenoid-containing tissues: CYP2J19A only in the retina and CYP2J19B in the beak and tarsus and to a variable extent in the retina. In contrast, expression of CYP2J19(yb) is barely detectable in the beak of yellowbeak birds. CYP2J40 has broad tissue expression and shows no differences between wild-type and yellowbeak. Our results indicate that CYP2J19 genes are strong candidates for the carotenoid ketolase and imply that ketolation occurs in the integument in zebra finches. Since cytochrome P450 enzymes include key detoxification enzymes, our results raise the intriguing possibility that red coloration may be an honest signal of detoxification ability.

  16. Identification of Cytochrome P450 ( CYP) genes in Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Guo, Huihui; Bao, Zhenmin; Du, Huixia; Zhang, Lingling; Wang, Shi; Sun, Luyang; Mou, Xiaoyu; Hu, Xiaoli

    2013-03-01

    Cytochrome P450 ( CYP) superfamily is one of the membership largest and function most diverse protein superfamily recogniozed among living beings. Members of this superfamily were further assigned to different families and subfamilies based on their amino acid similarities. According to their phylogenetic relationships, the CYP genes which likely diverged from common ancestor gene and may share common functions were grouped into one clan. Widely distributing scallops are a group of the most conspicuous bivalve; however the studies on their CYP is acarce. In this study, we searched the genome and expressed sequence tags of Zhikong scallop ( Chlamys farreri) for CYP genes. In total, 88 non-redundant CYP were identified, which were homed in 13 CYPs gene families. Phylogenetic analysis divided these genes into 4 CYP clans. As in deuterostomes, Clan 2 was the largest, which contained 33 genes belonging to CYP1, CYP2, CYP17 and CYP356 families. Clan 3 contgained 19 genes belonging to CYP3, CYP5 and CYP30 families. Clan 4 contained 23 genes, all belonging to CYP4 family. The mitochondrial CYP clan contained 9 genes belonging to CYP10 and CYP24 families. In comparison, protostomes ( C. farreri, D. pluex, D. melanogaster) contained more CYP genes than deuterostomes ( S. purpuratus and vertebrates) in Clan 2 but less genes in Clan 3 and Clan 4. Our findings will aid to deciphering CYP function and evolution in scallops and bivalves.

  17. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  18. Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene.

    PubMed

    Bertea, C M; Schalk, M; Karp, F; Maffei, M; Croteau, R

    2001-06-15

    (+)-Menthofuran is an undesirable monoterpenoid component of peppermint (Mentha x piperita) essential oil that is derived from the alpha,beta-unsaturated ketone (+)-pulegone. Microsomal preparations, from the oil gland secretory cells of a high (+)-menthofuran-producing chemotype of Mentha pulegium, transform (+)-pulegone to (+)-menthofuran in the presence of NADPH and molecular oxygen, implying that menthofuran is synthesized by a mechanism analogous to that of mammalian liver cytochrome P450s involving the hydroxylation of the syn-methyl group of (+)-pulegone, spontaneous intramolecular cyclization to the hemiketal, and dehydration to the furan. An abundant cytochrome P450 clone from a peppermint oil gland cell cDNA library was functionally expressed in Saccharomyces cerevisiae and Escherichia coli and shown to encode the (+)-menthofuran synthase (i.e., (+)-pulegone-9-hydroxylase). The full-length cDNA contains 1479 nucleotides, and encodes a protein of 493 amino acid residues of molecular weight 55,360, which bears all of the anticipated primary structural elements of a cytochrome P450 and most closely resembles (35% identity) a cytochrome P450 monoterpene hydroxylase, (+)-limonene-3-hydroxylase, from the same source. The availability of this gene permits transgenic manipulation of peppermint to improve the quality of the derived essential oil. Copyright 2001 Academic Press.

  19. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus.

    PubMed

    Liu, Nannan; Li, Ting; Reid, William R; Yang, Ting; Zhang, Lee

    2011-01-01

    Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.

  20. A gene-fusion approach to enabling plant cytochromes p450 for biocatalysis.

    PubMed

    Schückel, Julia; Rylott, Elizabeth L; Grogan, Gideon; Bruce, Neil C

    2012-12-21

    Cytochromes P450 from plants have the potential to be valuable catalysts for industrial hydroxylation reactions, but their application is hindered by poor solubility, the lack of suitable expression systems and the requirement of P450s for auxiliary redox-transport proteins for the delivery of reducing equivalents from NAD(P)H. In the interests of enabling useful P450 activity from plants, we have developed a suite of vectors for the expression of plant P450s as non-natural genetic fusions with reductase proteins. First, we have fused the P450 isoflavone synthase (IFS) from Glycine max with the bacterial P450 reductase domain (Rhf-RED) from Rhodococcus sp., by using our LICRED vector developed previously (F. Sabbadin, R. Hyde, A. Robin, E.-M. Hilgarth, M. Delenne, S. Flitsch, N. Turner, G. Grogan, N. C. Bruce, ChemBioChem 2010, 11, 987-994) creating the first active bacterial-plant fusion P450 enzyme. We have then created a complementary vector, ACRyLIC for the fusion of selected plant P450 enzymes to the P450 reductase ATR2 from Arabidopsis thaliana. The applicability of this vector to the creation of active P450 fusion enzymes was demonstrated using both IFS1 and the cinnamate-4-hydroxylase (C4H) from A. thaliana. Overall the fusion vector systems will allow the rapid creation of libraries of plant P450s with the aim of identifying enzyme activities with possible applications in industrial biocatalysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Alkane-induced expression, substrate binding profile, and immunolocalization of a cytochrome P450 encoded on the nifD excision element of Anabaena 7120

    PubMed Central

    Torres, Sergio; Fjetland, Conrad R; Lammers, Peter J

    2005-01-01

    Background Alkanes have been hypothesized to act as universal inducers of bacterial cytochrome P450 gene expression. We tested this hypothesis on an unusual P450 gene (cyp110) found on a conserved 11 kilobase episomal DNA element of unknown function found in filamentous cyanobacteria. We also monitored the binding of potential substrates to the P450 protein and explored the distribution of P450 protein in vegetative cells and nitrogen-fixing heterocysts using immuno-electron microscopy. Results Hexadecane treatments resulted in a two-fold increase in mRNA, and a four-fold increase in P450 protein levels relative to control cultures. Hexane, octane and dodecane were toxic and induced substantial changes in membrane morphology. Long-chain saturated and unsaturated fatty acids were shown to bind the CYP110 protein using a spectroscopic spin-shift assay, but alkanes did not bind. CYP110 protein was detected in vegetative cells but not in differentiated heterocysts where nitrogen fixation occurs. Conclusion Hexadecane treatment was an effective inducer of CYP110 expression in cyanobacteria. Based on substrate binding profiles and amino acid sequence similarities it is hypothesized that CYP110 is a fatty acid ω-hydroxylase in photosynthetic cells. CYP110 was found associated with membrane fractions unlike other soluble microbial P450 proteins, and in this regard CYP110 more closely resembles eukarytotic P450s. Substrate stablization is an unlikely mechanism for alkane induction because alkanes did not bind to purified CYP110 protein. PMID:15790415

  2. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    PubMed Central

    Chen, Song; Li, Xianchun

    2007-01-01

    Background Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes. PMID:17381843

  3. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    PubMed

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila.

    PubMed Central

    Waters, L C; Zelhof, A C; Shaw, B J; Ch'ang, L Y

    1992-01-01

    P450-A and P450-B are electrophoretically defined subsets of cytochrome P450 enzymes in Drosophila melanogaster. P450-A is present among all strains tested, whereas expression of P450-B is associated with resistance to insecticides. Monoclonal antibodies were used to obtain cDNA clones for an enzyme from each P450 subset (i.e., P450-A1 and P450-B1). The P450-B1 cDNA was sequenced and shown to code for a P450 of 507 amino acids. Its gene has been named CYP6A2. Comparative molecular analyses of a pair of susceptible, 91-C, and resistant, 91-R, Drosophila strains were made. There was 20-30 times more P450-B1 mRNA in 91-R than in 91-C, and the small amount of P450-B1 mRNA in 91-C was significantly larger in size than that in 91-R. The P450-B1 gene in 91-R was structurally different from that in 91-C but was not amplified. The P450-B1 gene in 91-C contained a solitary long terminal repeat of transposable element 17.6 in its 3' untranslated region. It was absent in the P450-B1 gene of 91-R. On the basis of features of the long terminal repeat and its location in the gene of the susceptible fly, we propose that a posttranscriptional mechanism involving mRNA stability could be involved in regulating P450-B1 gene expression. Images PMID:1317576

  5. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  6. Transcriptional Regulation of Grape Cytochrome P450 Gene Expression in Response to Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Plant cytochrome P450 monooxygenases are versatile redox proteins that mediate biosynthesis of lignins, terpenes, alkaloids, and a variety of other secondary compounds as plant defense agents against a range of pathogens and insects. To determine if cytochrome P450 monooxygenases are involved in the...

  7. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  8. Computational Identification and Systematic Classification of Novel Cytochrome P450 Genes in Salvia miltiorrhiza

    PubMed Central

    Nelson, David R.; Wu, Kai; Liu, Chang

    2014-01-01

    Salvia miltiorrhiza is one of the most economically important medicinal plants. Cytochrome P450 (CYP450) genes have been implicated in the biosynthesis of its active components. However, only a dozen full-length CYP450 genes have been described, and there is no systematic classification of CYP450 genes in S. miltiorrhiza. We obtained 77,549 unigenes from three tissue types of S. miltiorrhiza using RNA-Seq technology. Combining our data with previously identified CYP450 sequences and scanning with the CYP450 model from Pfam resulted in the identification of 116 full-length and 135 partial-length CYP450 genes. The 116 genes were classified into 9 clans and 38 families using standard criteria. The RNA-Seq results showed that 35 CYP450 genes were co-expressed with CYP76AH1, a marker gene for tanshinone biosynthesis, using r≥0.9 as a cutoff. The expression profiles for 16 of 19 randomly selected CYP450 obtained from RNA-Seq were validated by qRT-PCR. Comparing against the KEGG database, 10 CYP450 genes were found to be associated with diterpenoid biosynthesis. Considering all the evidence, 3 CYP450 genes were identified to be potentially involved in terpenoid biosynthesis. Moreover, we found that 15 CYP450 genes were possibly regulated by antisense transcripts (r≥0.9 or r≤–0.9). Lastly, a web resource (SMCYP450, http://www.herbalgenomics.org/samicyp450) was set up, which allows users to browse, search, retrieve and compare CYP450 genes and can serve as a centralized resource. PMID:25493946

  9. Interaction of the 4S polycyclic hydrocarbon-binding protein with the cytochrome P450c gene

    SciTech Connect

    Houser, W.H.; Cunningham, C.K.; Hines, R.N.; Bresnick, E.

    1987-05-01

    The 4S polycyclic hydrocarbon binding protein has been purified from rat liver and its properties examined. The protein was incubated with subclones from the P450c gene; it specifically interacted with a plasmid that contained the 5'-half of intron 1, exon 1 and 5'-flanking sequences. Exonuclease foot-printing after binding of the 4S protein to portions of the P450c gene showed protection at -200 and -400 bp from exon 1. The region -882 to +2545bp was constructed before a reporter, chloramphenicol acetyl transferase (CAT) gene in a plasmid that contained the SV40 ori, polyA signals, ampicillin resist gene. The P450c region contained promoter and putative regulatory sequences. The construct was transfected into rat hepatocytes, RL-PR-C and into rat hepatoma cells, H-4-11-E. After addition of 3-methylcholanthrene (3MC), CAT expression was induced. When the plasmid was constructed with the P450c fragment inverted, no CAT expression was seen. Deletion of -95 to -665 or from -238 to -660 bp eliminated the expression of CAT in response to 3MC. These experiments indicated the importance of this region in the induction of P450c by 3MC.

  10. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  11. A P450 gene associated with robust resistance to DDT in ciliated protozoan, Tetrahymena thermophila by efficient degradation.

    PubMed

    Feng, Lifang; Fu, Chengjie; Yuan, Dongxia; Miao, Wei

    2014-04-01

    Analysis of metabolic mechanisms of dichlorodiphenyltrichloroethane (DDT) accumulation and degradation in microorganisms, which could be used to reduce its hazard to higher organisms at the higher in the food chain, have not been investigated. Robust resistance to DDT (grows well in 256 mg/L DDT) and a surprising ability to degrade DDT (more than 70% DDT within 4h) were found in the ciliated protozoan Tetrahymena thermophila. A P450 gene (CYP5013C2) was found to respond specifically to DDT treatment. In the presence of 256 mg/L DDT, cells with overexpressing CYP5013C2 (p450-OE) grew faster and degraded DDT more efficiently than wild-type (WT) cells, while cells with CYP5013C2 partially knocked down (p450-KD) grew slower and exhibited reduced ability to degrade DDT compared to WT cells. Both dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) were detected in cells after exposure to DDT, and the concentration of DDD in the p450-OE strain gradually decreased from 0.5 to 4h. Thus, we argue that this P450 gene (CYP5013C2), by efficiently degrading DDT to DDD, is associated with robust resistance to DDT in Tetrahymena, and that a strain overexpressing this gene has the potential to serve as bioreactor that degrades environmental DDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Molecular population genetics of the NADPH cytochrome P450 reductase (CPR) gene in Anopheles minimus.

    PubMed

    Srivastava, Hemlata; Huong, Ngo Thi; Arunyawat, Uraiwan; Das, Aparup

    2014-08-01

    Development of insecticide resistance (IR) in mosquito vectors is a primary huddle to malaria control program. Since IR has genetic basis, and genes constantly evolve with response to environment for adaptation to organisms, it is important to know evolutionary pattern of genes conferring IR in malaria vectors. The mosquito Anopheles minimus is a major malaria vector of the Southeast (SE) Asia and India and is susceptible to all insecticides, and thus of interest to know if natural selection has shaped variations in the gene conferring IR. If not, the DNA fragment of such a gene could be used to infer population structure and demography of this species of malaria vector. We have therefore sequenced a ~569 bp DNA segment of the NADPH cytochrome P450 reductase (CPR) gene (widely known to confer IR) in 123 individuals of An. minimus collected in 10 different locations (eight Indian, one Thai and one Vietnamese). Two Indian population samples were completely mono-morphic in the CPR gene. In general, low genetic diversity was found with no evidence of natural selection in this gene. The data were therefore analyzed to infer population structure and demography of this species. The 10 populations could be genetically differentiated into four different groups; the samples from Thailand and Vietnam contained high nucleotide diversity. All the 10 populations conform to demographic equilibrium model with signature of past population expansion in four populations. The results in general indicate that the An. minimus mosquitoes sampled in the two SE Asian localities contain several genetic characteristics of being parts of the ancestral population.

  13. Quantitative Assessment of the Influence of Cytochrome P450 1A2 Gene Polymorphism and Colorectal Cancer Risk

    PubMed Central

    Rewuti, Abudouaini; Ma, Yu-Shui; Wang, Xiao-Feng; Xia, Qing; Fu, Da; Han, Yu-Song

    2013-01-01

    Cytochrome P450 1A2 (CYP1A2) encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). The CYP1A2*C (rs2069514) and CYP1A2*F (rs762551) polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83–1.00, P = 0.04), and 0.91 (95% CI: 0.68–1.22, P = 0.53), for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians. PMID:23951174

  14. ISOLATION OF THE CANDIDA TROPICALIS GENE FOR P450 LANOSTEROL DEMETHYLASE AND ITS EXPRESSION IN SACCAROMYCES CEREVISIAE

    EPA Science Inventory

    We have isolated the gene for cytochrome P450 lanosterol 14-demethylase (14DM) from the yeast Candida tropicalis. This was accomplished by screening genomic libraries of strain ATCC750 in E. coli using a DNA fragment containing the yeast Saccharomyces cerevisiae 14DM gene. Identi...

  15. ISOLATION OF THE CANDIDA TROPICALIS GENE FOR P450 LANOSTEROL DEMETHYLASE AND ITS EXPRESSION IN SACCAROMYCES CEREVISIAE

    EPA Science Inventory

    We have isolated the gene for cytochrome P450 lanosterol 14-demethylase (14DM) from the yeast Candida tropicalis. This was accomplished by screening genomic libraries of strain ATCC750 in E. coli using a DNA fragment containing the yeast Saccharomyces cerevisiae 14DM gene. Identi...

  16. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines

    PubMed Central

    Tudzynski, Paul; Humpf, Hans-Ulrich

    2016-01-01

    Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster. PMID:27390873

  17. Transcriptional regulation of rat P-450 2C gene subfamily members by the sexually dimorphic pattern of growth hormone secretion.

    PubMed

    Legraverend, C; Mode, A; Westin, S; Ström, A; Eguchi, H; Zaphiropoulos, P G; Gustafsson, J A

    1992-02-01

    The onset of the sexually dimorphic pattern of GH secretion and increased hepatic GH-binding capacity in rats at puberty is temporally correlated with the developmental induction of three hepatic cytochrome P-450s with steroid hydroxylase activity, P-450 IIC11, P-450 IIC12, and P-450 IIC13, and one cytochrome P-450 with vitamin A hydroxylase activity, P-450 IIC7. In this study we demonstrate that expression of the 2C11, 2C12, and 2C13 genes is modulated by GH at the level of transcriptional initiation both in vivo and in primary cultures of adult hepatocytes. In an effort to define the minimum sequence responsible for the inductive effects of GH, we have analyzed the ability of a 0.7-kilobase fragment isolated from the 5'-flank of the 2C12 gene, including the natural promoter, to drive transcription of a 320-basepair G-less cassette in vitro. We were unable to detect any substantial difference in RNA polymerase-II-dependent transcriptional efficiency toward the 2C12 promoter between liver nuclear extracts from normal and hypophysectomized rats of both sexes. This observation supports the assumption that the sequence information contained between bases -700 and 1 is sufficient to support basal transcription of the 2C12 gene. Sequence information residing 5' or 3' of the 0.7-kilobase 5'-flank or a higher ordered chromatin structure may be necessary for the sex-specific transcriptional activation of the 2C12 gene.

  18. Induction of cytochrome P450IA1 gene expression in rat epidermis and human keratinocytes by. beta. -napthoflavone and benzanthracene

    SciTech Connect

    Khan, I.U.; Mukhtar, H.; Bickers, D.R.; Haqqi, T.M. )

    1991-03-15

    Cytochrome P450IA1 (P450IA1) plays a major role in the bioactivation of procarcinogens in various tissues including skin. However, factors controlling the expression of P450IA1 gene message in mammalian skin are unknown. In this study, the polymerase chain reaction (PCR) using specific primers was employed to study the expression of P450IA1 mRNA transcripts in rat epidermis and human keratinocytes (HK) treated with {beta}-napthoflavone ({beta}NF) and benzanthracene (BA). Total RNA was extracted from the epidermis of control and inducer-treated 4-day-old and adult Sprague Dawley rats, and from control and inducer-treated HL. cDNAs were synthesized using random primers and reverse transcriptase. PCR products were analyzed on agarose gel and quantitated by densitometry. Inducer treatment of rats and HK resulted in several-fold increases in aryl hydrocarbon hydroxylase (AHH) activity. The level of P450IA1 gene message increased 2-5-fold in treated animals as compared to controls; higher basal level and inducibility in adult than in 4-day-old rats. This induction occurred as early as 4 h after {beta}NF application, reached a maximum at 16 h and returned to basal levels by 36 h. Exposure to {beta}NF and BA resulted in 2-3-fold increase in gene message in HK. Northern blot analysis complemented PCR data. These results indicate that in mammalian skin P450IA1 gene expression is increased by the inducers of epidermal AHH activity.

  19. The MrCYP52 Cytochrome P450 Monoxygenase Gene of Metarhizium robertsii Is Important for Utilizing Insect Epicuticular Hydrocarbons

    PubMed Central

    Lin, Liangcai; Fang, Weiguo; Liao, Xinggang; Wang, Fengqing; Wei, Dongzhi; St. Leger, Raymond J.

    2011-01-01

    Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52) gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10), extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures). Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella) confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes. PMID:22194968

  20. Nuclear receptor CAR requires early growth response 1 to activate the human cytochrome P450 2B6 gene.

    PubMed

    Inoue, Kaoru; Negishi, Masahiko

    2008-04-18

    The nuclear receptor CAR (constitutive active/androstane receptor) is a drug-sensing transcription factor, regulating the hepatic genes that encode various drug-metabolizing enzymes. We have now characterized the novel regulatory mechanism by which the signal molecule EGR1 (early growth response 1) determines CAR-mediated activation of the human CYP2B6 (cytochrome P450 2B6) gene. The CYP2B6 enzyme metabolizes commonly used therapeutics and also activates pro-drugs. The CAR directly binds to the distal enhancer element of the CYP2B6 promoter, which is essential in converging to its drug-sensing function onto promoter activity. However, this binding alone is not sufficient to activate the CYP2B6 promoter; the promoter requires EGR1 to enable CAR to activate the CYP2B6 promoter. Upon stimulation by protein kinase C, EGR1 directly binds to the proximal promoter and coordinates the nearby HNF4alpha (hepatocyte-enriched nuclear factor 4alpha) with CAR at the distal enhancer element to activate the promoter. Thus, synergy of drug activation and the stimulation of cellular signal are necessary for CAR to activate the CYP2B6 gene.

  1. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide.

    PubMed

    Tao, Xiao-Yuan; Xue, Xue-Yi; Huang, Yong-Ping; Chen, Xiao-Ya; Mao, Ying-Bo

    2012-09-01

    Cotton plants accumulate phytotoxins, including gossypol and related sesquiterpene aldehydes, to resist insect herbivores and pathogens. To counteract these defensive plant secondary metabolites, cotton bollworms (Helicoverpa armigera) elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases (P450s). Besides their tolerance to phytotoxin, cotton bollworms have quickly developed resistance to deltamethrin, a widely used pyrethroid insecticide in cotton field. However, the relationship between host plant secondary metabolites and bollworm insecticide resistance is poorly understood. Here, we show that exogenously expressed CYP6AE14, a gossypol-inducible P450 of cotton bollworm, has epoxidation activity towards aldrin, an organochlorine insecticide, indicating that gossypol-induced P450s participate in insecticide metabolism. Gossypol-ingested cotton bollworm larvae showed higher midgut P450 enzyme activities and exhibited enhanced tolerance to deltamethrin. The midgut transcripts of bollworm larvae administrated with different phytochemicals and deltamethrin were then compared by microarray analysis, which showed that gossypol and deltamethrin induced the most similar P450 expression profiles. Gossypol-induced P450s exhibited high divergence and at least five of them (CYP321A1, CYP9A12, CYP9A14, CYP6AE11 and CYP6B7) contributed to cotton bollworm tolerance to deltamethrin. Knocking down one of them, CYP9A14, by plant-mediated RNA interference (RNAi) rendered the larvae more sensitive to the insecticide. These data demonstrate that generalist insects can take advantage of secondary metabolites from their major host plants to elaborate defence systems against other toxic chemicals, and impairing this defence pathway by RNAi holds a potential for reducing the required dosages of agrochemicals in pest control. © 2012 Blackwell Publishing Ltd.

  2. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    PubMed

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  3. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1.

    PubMed

    Brezna, Barbara; Kweon, Ohgew; Stingley, Robin L; Freeman, James P; Khan, Ashraf A; Polek, Bystrik; Jones, Richard C; Cerniglia, Carl E

    2006-07-01

    Mycobacterium vanbaalenii PYR-1 has the ability to degrade low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). In addition to dioxygenases, cytochrome P450 monooxygenases have been implicated in PAH degradation. Three cytochrome P450 genes, cyp151 (pipA), cyp150, and cyp51, were detected and amplified by polymerase chain reaction from M. vanbaalenii PYR-1. The complete sequence of these genes was determined. The translated putative proteins were > or = 80% identical to other GenBank-listed mycobacterial CYP151, CYP150, and CYP51. Genes pipA and cyp150 were cloned, and the proteins partially expressed in Escherichia coli as soluble heme-containing cytochrome P450s that exhibited a characteristic peak at 450 nm in reduced carbon monoxide difference spectra. Monooxygenation metabolites of pyrene, dibenzothiophene, and 7-methylbenz[alpha]anthracene were detected in whole cell biotransformations, with E. coli expressing pipA or cyp150 when analyzed by gas chromatography/mass spectrometry. The cytochrome P450 inhibitor metyrapone strongly inhibited the S-oxidation of dibenzothiophene. Thirteen other Mycobacterium strains were screened for the presence of pipA, cyp150, and cyp51 genes, as well as the initial PAH dioxygenase (nidA and nidB). The results indicated that many of the Mycobacterium spp. surveyed contain both monooxygenases and dioxygenases to degrade PAHs. Our results provide further evidence for the diverse enzymatic capability of Mycobacterium spp. to metabolize polycyclic aromatic hydrocarbons.

  4. PRIMARY STRUCTURE OF THE P450 LANOSTEROL DEMETHYLASE GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have sequenced the structural gene and flanking regions for lanosterol 14 alpha-demethylase (14DM) from Saccharomyces cerevisiae. An open reading frame of 530 codons encodes a 60.7-kDa protein. When this gene is disrupted by integrative transformation, the resulting strain req...

  5. PRIMARY STRUCTURE OF THE P450 LANOSTEROL DEMETHYLASE GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have sequenced the structural gene and flanking regions for lanosterol 14 alpha-demethylase (14DM) from Saccharomyces cerevisiae. An open reading frame of 530 codons encodes a 60.7-kDa protein. When this gene is disrupted by integrative transformation, the resulting strain req...

  6. Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals.

    PubMed

    Petersen, Rebecca A; Niamsup, Hataichanoke; Berenbaum, May R; Schuler, Mary A

    2003-02-17

    Papilio polyxenes, a lepidopteran continually exposed to toxic furanocoumarins in its hostplants, owes its tolerance to these compounds to the transcriptional induction of the CYP6B1 gene encoding a P450 capable of metabolizing linear furanocoumarins, such as xanthotoxin, at high rates. Transient expression of various lengths of wild-type and mutant CYP6B1v3 promoter in lepidopteran Sf9 cells defines a positive element (XRE-xan) from -136 to -119 required for both basal and xanthotoxin-inducible transcription and a negative element from -228 to -146 that represses basal transcription. Fusion of the CYP6B1v3 XRE-xan element to the Drosophila melanogaster Eip28/29 core promoter indicates that the XRE-xan functions in conjunction with its own core promoter but not with a heterologous core promoter. Sequence searches of the CYP6B1v3 proximal promoter region revealed a number of putative elements (XRE-AhR, ARE, OCT-1, EcRE, C/EBP, Inr) sharing sequence similarity with those in other regulated vertebrate and insect promoters. Mutation of TGAC nucleotides shared by the overlapping EcRE/ARE/XRE-xan indicates that this sequence is essential for basal and regulated transcription of this gene. Mutagenesis in the non-overlapping region of the EcRE indicates it modulates basal transcription. These findings are incorporated into a working model for regulation of this toxin-inducible promoter.

  7. Cloning and characterization of the NADPH cytochrome P450 oxidoreductase gene from the filamentous fungus Aspergillus niger.

    PubMed

    van den Brink, H J; van Zeijl, C M; Brons, J F; van den Hondel, C A; van Gorcom, R F

    1995-08-01

    In this paper, we describe the cloning and molecular characterization of the Aspergillus niger cytochrome P450 reductase (CPR) gene, cprA. Attempts to clone the cprA gene by heterologous hybridization techniques were unsuccessful. Using the polymerase chain reaction (PCR) with degenerate primers based on conserved regions found in cpr genes from other organisms, we were able to isolate a fragment that contained part of the gene. With the aid of this fragment, a genomic fragment containing the entire coding region and 5' and 3' untranslated ends of the cprA gene was isolated and sequenced. The cprA gene was introduced in multiple copies in A. niger strain N402 using the amdS transformation system. One of the resulting transformants, AB2-2, showed a 14-fold increase in CPR activity, indicating that the cloned cprA gene is functional. We analyzed the induction of cprA gene expression by several generally used cytochrome P450 inducers but did not find any induction of cprA gene expression. However, A. niger cprA gene expression could be induced by benzoic acid, which is the substrate of the highly inducible A. niger cytochrome P450 gene, bphA (cyp53). On the basis of a comparison of the deduced protein sequence of the A. niger cprA gene with CPR proteins isolated from other organisms, the structure-function relationship of some conserved regions is discussed.

  8. Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica.

    PubMed

    Iida, T; Ohta, A; Takagi, M

    1998-11-01

    A gene encoding cytochrome P450 involved in n-alkane utilization was cloned from an n-alkane assimilating yeast, Yarrowia lipolytica CX161-1B. The RT-PCR was performed on the mRNA prepared from the cells grown on n-alkane as a template using degenerated PCR primers designed for the conserved amino acid sequences of the CYP52 family. The RT-PCR amplified fragment was then used as a probe to isolate genes coding for P450 of the CYP52 family from the genomic DNA library of the strain CX161-1B. The nucleotide sequence of one of the positive clones was determined. An open reading frame which had the same nucleotide sequence as the RT-PCR-amplified fragment was identified. It was of 523 amino acid residues, 60.2 kDa in molecular mass, and had 30-45% sequence identity with the other members of the CYP52 family of Candida species so far analysed. The expression of the P450 gene that was named as YlALK1 was induced by n-tetradecane and repressed by glycerol. A YlALK1 gene disruptant did not grow well on n-decane, but grew on longer-chain n-alkanes such as hexadecane as a sole carbon source. Introduction of YlALK1 on a plasmid to the disruptant restored the decane assimilation. These results suggest that the YlALK1 gene product is the major P450A1k to metabolize short-chain n-alkanes such as decane and dodecane in Y. lipolytica.

  9. Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis1

    PubMed Central

    Bancoş, Simona; Nomura, Takahito; Sato, Tatsuro; Molnár, Gergely; Bishop, Gerard J.; Koncz, Csaba; Yokota, Takao; Nagy, Ferenc; Szekeres, Miklós

    2002-01-01

    Cytochrome P450 enzymes of the closely related CYP90 and CYP85 families catalyze essential oxidative reactions in the biosynthesis of brassinosteroid (BR) hormones. Arabidopsis CYP90B1/DWF4 and CYP90A1/CPD are responsible for respective C-22 and C-23 hydroxylation of the steroid side chain and CYP85A1 catalyzes C-6 oxidation of 6-deoxo intermediates, whereas the functions of CYP90C1/ROT3, CYP90D1, and CYP85A2 are still unknown. Semiquantitative reverse transcriptase-polymerase chain reaction analyses show that transcript levels of CYP85 and CYP90 genes are down-regulated by brassinolide, the end product of the BR biosynthesis pathway. Feedback control of the CYP90C1, CYP90D1, and CYP85A2 genes by brassinolide suggests that the corresponding enzymes might also participate in BR synthesis. CYP85 and CYP90 mRNAs show strong and transient accumulation during the 1st week of seedling development, as well as characteristic organ-specific distribution. Transcripts of CYP90A1 and CYP85A2 are preferentially represented in shoots and CYP90C1, CYP90D1, and CYP85A1 mRNAs are more abundant in roots, whereas CYP90B1 is ubiquitously expressed. Remarkably, the spatial pattern of CYP90A1 expression is maintained in the BR-insensitive cbb2 mutant, indicating the independence of organ-specific and BR-dependent regulation. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in shoots and roots of Arabidopsis, pea (Pisum sativum), and tomato (Lycopersicon esculentum) reveal similar partitioning patterns of BR intermediates in these species. Inverse correlation between CYP90A1/CPD transcript levels and the amounts of the CYP90A1 substrate 6-deoxocathasterone in shoots and roots suggests that transcriptional regulation plays an important role in controlling BR biosynthesis. PMID:12226529

  10. Structure, genetic mapping, and function of the cytochrome P450 3A37 gene in the turkey (Meleagris gallopavo).

    PubMed

    Rawal, S; Mendoza, K M; Reed, K M; Coulombe, R A

    2009-01-01

    Cytochromes P450 (P450 for protein; CYP for gene) are a superfamily of membrane-bound hemoproteins that oxidize a large number of endogenous and exogenous compounds. Through oxidation reactions, these enzymes are often responsible for the toxic and carcinogenic effects of natural food-borne toxicants, such as the mycotoxin aflatoxin B1 (AFB1). Previous studies in our laboratory have shown that the extreme sensitivity of turkeys to AFB1 is in part explained by efficient hepatic P450-mediated epoxidation to the toxic and reactive metabolite the exo-AFB1-8,9-epoxide (AFBO). Using 3'-5'-rapid amplification of cDNA ends (RACE), we amplified CYP3A37 from turkey liver RNA, the E. coli-expressed protein which efficiently epoxidates AFB(1). Turkey CYP3A37 has an ORF of 1512 bp, and the protein is predicted to be 504 amino acids with 97% homology to chicken CYP3A37. The turkey gene is organized into 13 exons and 12 introns. A single nucleotide polymorphism in the 11th intron was used to assign CYP3A37 to turkey linkage group 10 (corresponding to chicken chromosome 14, GGA14). Because of the important role of P450s in the extreme sensitivity of turkeys to the toxic effects of AFB(1), this study will contribute to the identifying allelic variants of this important gene in poultry. Copyright 2009 S. Karger AG, Basel.

  11. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Within the Arabidopsis genome, there are 272 cytochrome P450 monooxygenase (P450) genes. However, the biological functions of the majority of these P450s remain unknown. The CYP709B family of P450s includes three gene members, CYP709B1, CYP709B2 and CYP709B3, which have high amino acid sequence similarity and lack reports elucidating biological functions. Results We identified T-DNA insertion-based null mutants of the CYP709B subfamily of genes. No obvious morphological phenotypes were exhibited under normal growth conditions. When the responses to ABA and salt stress were studied in these mutants, only the cyp709b3 mutant showed sensitivity to ABA and salt during germination. Under moderate salt treatment (150 mM NaCl), cyp709b3 showed a higher percentage of damaged seedlings, indicating a lower tolerance to salt stress. CYP709B3 was highly expressed in all analyzed tissues and especially high in seedlings and leaves. In contrast, CYP709B1 and CYP709B2 were highly expressed in siliques, but were at very low levels in other tissues. Under salt stress condition, CYP709B3 gene expression was induced after 24 hr and remained at high expression level. Expression of the wild type CYP709B3 gene in the cyp709b3 mutant fully complemented the salt intolerant phenotype. Furthermore, metabolite profiling analysis revealed some differences between wild type and cyp709b3 mutant plants, supporting the salt intolerance phenotype of the cyp709b3 mutant. Conclusions These results suggest that CYP709B3 plays a role in ABA and salt stress response and provides evidence to support the functions of cytochrome P450 enzymes in plant stress response. PMID:24164720

  12. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  13. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  14. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  15. Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous

    PubMed Central

    Alcaíno, Jennifer; Barahona, Salvador; Carmona, Marisela; Lozano, Carla; Marcoleta, Andrés; Niklitschek, Mauricio; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor

    2008-01-01

    Background The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid with high commercial interest. The proposed biosynthetic route in this organism is isopentenyl-pyrophosphate (IPP) → geranyleranyl pyrophosphate (GGPP) → phytoene → lycopene → β-carotene → astaxanthin. Recently, it has been published that the conversion of β-carotene into astaxanthin requires only one enzyme, astaxanthin synthase or CrtS, encoded by crtS gene. This enzyme belongs to the cytochrome P450 protein family. Results In this work, a crtR gene was isolated from X. dendrorhous yeast, which encodes a cytochrome P450 reductase (CPR) that provides CrtS with the necessary electrons for substrate oxygenation. We determined the structural organization of the crtR gene and its location in the yeast electrophoretic karyotype. Two transformants, CBSTr and T13, were obtained by deleting the crtR gene and inserting a hygromycin B resistance cassette. The carotenoid composition of the transformants was altered in relation to the wild type strain. CBSTr forms yellow colonies because it is unable to produce astaxanthin, hence accumulating β-carotene. T13 forms pale colonies because its astaxanthin content is reduced and its β-carotene content is increased. Conclusion In addition to the crtS gene, X. dendrorhous requires a novel gene, crtR, for the conversion of β-carotene to astaxanthin. PMID:18837978

  16. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    SciTech Connect

    Kim, Sangsoo Daniel; Antenos, Monica; Squires, E. James; Kirby, Gordon M.

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  17. Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses.

    PubMed

    Zhu, Ming; Zhang, Weixing; Liu, Feng; Chen, Xiaobo; Li, Han; Xu, Baohua

    2016-06-15

    Cytochrome P450 monooxygenases (P450), widely distributed multifunctional enzymes, that play an important role in the oxidative metabolism of endogenous compounds and xenobiotics. Studies have found that these enzymes show peroxidase-like activity and may thus be involved in protecting organisms against reactive oxygen species (ROS). In this work, Apis cerana cerana was used to investigate the molecular mechanisms of P450 family genes in resisting ROS damage. A cytochrome P450 gene was isolated, AccCYP336A1. The open reading frame (ORF) of AccCYP336A1 is 1491bp in length and encodes a predicted protein of 496 amino acids. The obtained amino acid sequence of AccCYP336A1 shared a high sequence identity with homologous proteins and contained the highly conserved features of this protein family. Quantitative real-time PCR (qRT-PCR) analysis showed that AccCYP336A1 was present in some fast developmental stages and had a higher expression in the epidermis than in other tissues. Additionally, the expression levels of AccCYP336A1 were up-regulated by cold (4 °C), heat (42 °C), ultraviolet (UV) radiation, H2O2 and pesticide (thiamethoxam, deltamethrin, methomyl and phoxim) treatments. These results were confirmed by the western blot assays. Furthermore, the recombinant AccCYP336A1 protein acted as an antioxidant that resisted paraquat-induced oxidative stress. Taken together, these results suggest that AccCYP336A1 may play a very significant role in antioxidant defense against ROS damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Metazoan cytochrome P450 evolution.

    PubMed

    Nelson, D R

    1998-11-01

    There are 37 cytochrome P450 families currently identified in animals. The concept of higher order groupings of P450 families called P450 CLANS is introduced. The mammalian CYP3 and CYP5 families belong to the same clan as insect CYP6 and CYP9. All mitochondrial P450s seem to belong to the same clan. Lack of mitochondrial P450s in C. elegans suggests that mitochondrial P450s probably arose from the mistargeting of a microsomal P450 after the coelomates diverged from acoelomates and pseudocoelomates. Different taxonomic groups appear to have recruited different ancestral P450s for expansion as they evolved, since each major taxon seems to have one large cluster of P450s. In insects, this cluster derives from the ancestor to the CYP4 family. Vertebrates and C. elegans may have used the same ancestor independently to generate the CYP1, 2, 17, and 21 families in vertebrates and a large distinctive clan with 45 genes in C. elegans.

  19. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  20. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    PubMed Central

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  1. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides

    PubMed Central

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds. PMID:26393579

  2. Polymorphisms in catechol-O-methyltransferase and cytochrome p450 subfamily 19 genes predispose towards Madurella mycetomatis-induced mycetoma susceptibility.

    PubMed

    van de Sande, Wendy W J; Fahal, Ahmed; Tavakol, Mehri; van Belkum, Alex

    2010-11-01

    Mycetoma caused by Madurella mycetomatis is a devastating and neglected disease which primarily affects males. Since this predominance cannot be easily explained by behaviour differences between men and women, other factors, including sex hormones, could be the cause. To monitor for possible deficiencies in hormone synthesis among mycetoma patients, we investigated the types and allele frequencies of the genes encoding for catechol-O-methyltransferase (COMT), cytochrome p450 subfamily 1 (CYP1B1), cytochrome p450 subfamily 17 (CYP17), cytochrome p450 subfamily 19 (CYP19) and hydroxysteroid dehydrogenase 3B (HSD3B). Significant differences in allele distribution were demonstrated for CYP19 (P=0.004) and COMT (P=0.005), as well as gender dimorphism for both CYP19 and COMT polymorphisms. The COMT polymorphism was associated with lesion size. The genotypes obtained for COMT and CYP19 were connected with higher 17β-estradiol production, which was confirmed by significantly elevated serum levels of 17β-estradiol in male patients. In contrast, lowered levels of dehydroepiandrosteron (DHEA) were found in mycetoma patients. The in vitro growth of M. mycetomatis was not influenced by 17β-estradiol, progesterone, DHEA and testosterone. The differences in hormone levels we noted between mycetoma patients and healthy controls did not directly affect the fungus itself. Indirect effects on the patients' hormone regulated immune states are the more likely explanations for mycetoma susceptibility.

  3. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides.

    PubMed

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-09-18

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds.

  4. Cloning and Functional Expression of a Cytochrome P450 cDNA Encoding 2-Hydroxyisoflavanone Synthase Involved in Biosynthesis of the Isoflavonoid Skeleton in Licorice1

    PubMed Central

    Akashi, Tomoyoshi; Aoki, Toshio; Ayabe, Shin-ichi

    1999-01-01

    Isoflavonoids are distributed predominantly in leguminous plants and play critical roles in plant physiology. A cytochrome P450 (P450), 2-hydroxyisoflavanone synthase, is the key enzyme in their biosynthesis. In cultured licorice (Glycyrrhiza echinata L., Fabaceae) cells, the production of both an isoflavonoid-derived phytoalexin (medicarpin) and a retrochalcone (echinatin) is rapidly induced upon elicitation. In this study, we obtained a full-length P450 cDNA, CYP Ge-8 (CYP93C2), from the cDNA library of elicited G. echinata cells. When the flavanones liquiritigenin and naringenin were incubated with the recombinant yeast microsome expressing CYP93C2, major products emerged and were readily converted to the isoflavones daidzein and genistein by acid treatment. The chemical structures of the products from liquiritigenin (2-hydroxyisoflavanone and isoflavone) were confirmed by mass spectrometry. CYP93C2 was thus shown to encode 2-hydroxyisoflavanone synthase, which catalyzes the hydroxylation associated with 1,2-aryl migration of flavanones. Northern-blot analysis revealed that transcripts of CYP93C2, in addition to those of other P450s involved in phenylpropanoid/flavonoid pathways, transiently accumulate upon elicitation. PMID:10557230

  5. A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification.

    PubMed

    Khan, Rana; Tan, Reynold; Mariscal, Amanda Galvez; Straney, David

    2003-07-01

    The PDA1 gene of the filamentous fungus Nectria haematococca MPVI (anamorph: Fusarium solani) encodes pisatin demethylase, a cytochrome P450. Pisatin is a fungistatic isoflavonoid produced by garden pea (Pisum sativum), a host for this fungus. Pisatin demethylase detoxifies pisatin and functions as a virulence factor for this fungus. Pisatin induces PDA1 expression both in cultured mycelia as well as during pathogenesis on pea. The regulatory element within PDA1 that provides pisatin-responsive expression was identified using a combination of in vivo functional analysis and in vitro binding analysis. The 40 bp pisatin-responsive element is located 635 bp upstream of the PDA1 transcription start site. This element was sufficient to provide strong pisatin-induced expression to a minimal promoter in vivo and was required for pisatin regulation of the PDA1 promoter. A gene encoding a DNA-binding protein specific to this 40 bp element was isolated from a N. haematococca cDNA library using the yeast one-hybrid screen. The cloned gene possesses sequence motifs found in the binuclear zinc (Cys 6-Zn 2) family of transcription factors unique to fungi. The results suggest that it is a regulator of this fungal cytochrome P450 gene and may provide pisatin-responsive regulation.

  6. Cloning and expression of a putative cytochrome P450 gene that influences the colour of Phalaenopsis flowers.

    PubMed

    Su, Vincent; Hsu, Ban-Dar

    2003-11-01

    Anthocyanins are responsible for reds through blues in flowers. Blue and violet flowers generally contain derivatives of delphinidin, whereas red and pink flowers contain derivatives of cyanidin or pelargonidin. Differences in hydroxylation patterns of these three major classes of anthocyanidins are controlled by the cytochrome P450 enzymes. Flavonoid-3',5'-hydroxylase, a member of the cytochrome P450 family, is the key enzyme in the synthesis of 3',5'-hydroxylated anthocyanins, generally required for blue or purple flowers. Here we report on the isolation of a cDNA clone of a putative flavonoid-3',5'-hydroxylase gene from Phalaenopsis that was then cloned into a plant expression vector. Transient transformation was achieved by particle bombardment of Phalaenopsis petals. The transgenic petals changed from pink to magenta, indicating that the product of the putative flavonoid-3',5'-hydroxylase gene influences anthocyanin pigment synthesis.

  7. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    PubMed

    Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen

    2017-04-01

    Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  8. Expression analysis of two P450 monooxygenase genes of the tobacco cutworm moth (Spodoptera litura) at different developmental stages and in response to plant allelochemicals.

    PubMed

    Wang, Rui-Long; Li, Jun; Staehelin, Christian; Xin, Xiao-Wei; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects are known to be involved in the metabolism or detoxification of plant allelochemicals and insecticides. Spodoptera litura (Lepidoptera, Noctuidae) is a polyphagous moth responsible for severe yield losses in many crops. In this study, two full-length P450 genes, CYP6B48 and CYP6B58, were cloned from S. litura. The cDNA sequences encode proteins with 503 and 504 amino acids, respectively. Phylogenetic analysis revealed that CYP6B48 and CYP6B58 belong to the CYP6B subfamily of P450s. Quantitative real-time PCR analyses showed that CYP6B48 and CYP6B58 were expressed only at larval stage, but not at pupal and adult stages. The highest levels of transcripts were found in the midguts and fat bodies of the larvae. No expression was detected in the ovary or hemolymph. Feeding with diets containing cinnamic acid, quercetin, or coumarin did not affect expression of CYP6B48. In contrast, diet supplemented with xanthotoxin dramatically increased the levels of CYP6B48 transcript in the midgut and fat bodies. Larvae fed with flavone had high levels of transcript of CYP6B48 in the midgut, whereas only slightly elevated levels were found in the fat bodies. Effects of the tested allelochemicals on CYP6B58 expression were minor. Hence, our findings show that S. litura responds to specific allelochemicals such as xanthotoxin with the accumulation of CYP6B48 transcripts, suggesting that specific signals in the food control the insect's ability to convert toxic allelochemicals to less harmful forms at the transcriptional level.

  9. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa

    PubMed Central

    2013-01-01

    Background Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago. Results We estimate that ~43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as ~76,400 years and CYP3A5*6 as ~218,400 years. Finally we report that global CYP3A5 expression

  10. Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China.

    PubMed

    Yang, Xin; Xie, Wen; Wang, Shao-li; Wu, Qing-jun; Pan, Hui-peng; Li, Ru-mei; Yang, Ni-na; Liu, Bai-ming; Xu, Bao-yun; Zhou, Xiaomao; Zhang, You-jun

    2013-11-01

    The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64).

  11. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    PubMed Central

    2010-01-01

    Background Plant cytochrome P450 monooxygenases (CYP) mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf) infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS) in the upstream region and three candidate polyadenylation (PolyA) sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression during growth

  12. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway.

    PubMed Central

    Teutsch, H G; Hasenfratz, M P; Lesot, A; Stoltz, C; Garnier, J M; Jeltsch, J M; Durst, F; Werck-Reichhart, D

    1993-01-01

    Cinnamate 4-hydroxylase [CA4H; trans-cinnamate,NADPH:oxygen oxidoreductase (4-hydroxylating), EC 1.14.13.11] is a cytochrome P450 that catalyzes the first oxygenation step of the general phenylpropanoid metabolism in higher plants. The compounds formed are essential for lignification and defense against predators and pathogens. We recently reported the purification of this enzyme from Mn(2+)-induced Jerusalem artichoke (Helianthus tuberosus L.) tuber tissues. Highly selective polyclonal antibodies raised against the purified protein were used to screen a lambda gt11 cDNA expression library from wound-induced Jerusalem artichoke, allowing isolation of a 1130-base-pair insert. Typical P450 domains were identified in this incomplete sequence, which was used as a probe for the isolation of a 1.7-kilobase clone in a lambda gt10 library. A full-length open reading frame of 1515 base pairs, encoding a P450 protein of 505 residues (M(r) = 57,927), was sequenced. The N terminus, essentially composed of hydrophobic residues, matches perfectly the microsequenced N terminus of the purified protein. The calculated pI is 9.78, in agreement with the chromatographic behavior and two-dimensional electrophoretic analysis of CA4H. Synthesis of the corresponding mRNA is induced in wounded plant tissues, in correlation with CA4H enzymatic activity. This P450 protein exhibits the most similarity (28% amino acid identity) with avocado CYP71, but also good similarity with CYP17 and CYP21, or with CYP1 and CYP2 families. According to current criteria, it qualifies as a member of a new P450 family. Images Fig. 4 PMID:8097885

  13. Differential expression and functional characterization of the NADPH cytochrome P450 reductase genes from Nothapodytes foetida.

    PubMed

    Huang, Fong-Chin; Sung, Pin-Hui; Do, Yi-Yin; Huang, Pung-Ling

    2012-07-01

    Three unique NADPH:cytochrome P450 reductase (CPR) cDNAs have been isolated from a Nothapodytes foetida cDNA library and characterized. Phylogenetic analysis showed that NfCPR1 is a class I isoform, whereas NfCPR2 and NfCPR3 are class II isoforms. Both NfCPR1 and NfCPR2 transcripts were detected in all examined organs of N. foetida, with the highest level for NfCPR1 being in the seeds whereas for NfCPR2 predominantly in leaves. In contrast, NfCPR3 transcripts were only detected in flower buds and seeds at almost equal expression levels. Moreover, NfCPR1 expression did not change during wounding treatment, whereas NfCPR2 and NfCPR3 were induced in response to wounding. Microsomes isolated from insect cells co-expressing NfCPR2 and cytochrome P450 enzyme geraniol 10-hydroxylase (G10H) enhanced the production of eriodictyol from naringenin approximately 11-fold relative to control G10H-only insect cells, indicating the supportive role of NfCPR2 for G10H activity in insect cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-12-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria.

  15. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed Central

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-01-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria. Images PMID:2123860

  16. A cytochrome P450 gene plays a role in the recognition of sex pheromones in the tobacco cutworm, Spodoptera litura.

    PubMed

    Feng, B; Zheng, K; Li, C; Guo, Q; Du, Y

    2017-08-01

    Cytochrome P450 (P450 or CYP) genes are involved in fundamental physiological functions, and might be also associated with the olfactory recognition of sex pheromones in beetles and moths. A P450 gene, Spodoptera litura CYP4L4 (SlituCYP4L4), was cloned for the first time from the antennae of S. litura. SlituCYP4L4 was almost exclusively expressed in the adult stage and predominantly expressed in the adult antennae. In situ hybridization showed that SlituCYP4L4 localized mainly at the base of the long sensilla trichoidea, which responds to sex pheromone components. Pretreatment with an S. litura sex pheromone significantly reduced the expression levels of SlituCYP4L4, consistent with other genes involved in sex pheromone recognition. The expression level of SlituCYP4L4 was different in moths collected with different ratios of sex pheromone lures and collected in different geographical locations. After gene knockdown of SlituCYP4L4 in the antennae, the electroantennogram (EAG) responses of male and female moths to (9Z,11E)-tetradecadienyl acetate or (9Z,12E)-tetradecadienyl acetate were significantly decreased. In contrast, EAG responses to plant volatiles and sex pheromones of other moth species were not significantly influenced in these moths. SlituCYP4L4 was also expressed in the gustatory tissues and sensilla, which suggests that SlituCYP4L4 may have other functions in the chemosensory system. Our results have shown for the first time the function of a CYP gene with appendage-specific expression in insect sex pheromone recognition, especially in adult moths. © 2017 The Royal Entomological Society.

  17. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  18. Characterization and expression of cDNAs encoding P450c17-II (cyp17a2) in Japanese eel during induced ovarian development.

    PubMed

    Su, Ting; Ijiri, Shigeho; Kanbara, Hirokazu; Hagihara, Seishi; Wang, De-Shou; Adachi, Shinji

    2015-09-15

    Estradiol-17β (E2) and maturation-inducing hormone (MIH) are two steroid hormones produced in the teleost ovary that are required for vitellogenic growth and final oocyte maturation and ovulation. During this transition, the main steroid hormone produced in the ovary shifts from estrogens to progestogens. In the commercially important Japanese eel (Anguilla japonica), the MIH 17α,20β-dihydroxy-4-pregnen-3-one (DHP) is generated from its precursor by P450c17, which has both 17α-hydroxylase and C17-20 lyase activities. In order to elucidate the regulatory mechanism underlying the steroidogenic shift from E2 to DHP and the mechanistic basis for the failure of this shift in artificially matured eels, the cDNA for cyp17a2-which encodes P450c17-II-was isolated from the ovary of wild, mature Japanese eel and characterized, and the expression patterns of cyp17a1 and cyp17a2 during induced ovarian development were investigated in cultured eel ovaries. Five cDNAs (types I-V) encoding P450c17-II were identified that had minor sequence variations. HEK293T cells transfected with all but type II P450c17-II converted exogenous progesterone to 17α-hydroxyprogesterone (17α-P), providing evidence for 17α-hydroxylase activity; however, a failure to convert 17α-P to androstenedione indicated that C17-20 lyase activity was absent. Cyp17a2 mRNA was expressed mainly in the head kidney, ovary, and testis, and quantitative PCR analysis demonstrated that expression in the ovary increased during induced vitellogenesis and oocyte maturation/ovulation. In contrast, P450c17-I showed both 17α-hydroxylase and C17-20 lyase activities, and cyp17a1 expression increased until the mid-vitellogenic stage and remained high thereafter. Considering the high level of cyp17a2 transcript in the eel ovary at the migratory nucleus stage together with our previous report demonstrating that eel ovaries have strong 17α-P-to-DHP conversion activity, the failure of artificially maturing eels to produce

  19. Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Jianzhen; Yu, Rongrong; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2012-05-01

    Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms, play an important role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins. We have previously evaluated the responses of the oriental migratory locust (Locusta migratoria) to the pyrethroid insecticide deltamethrin and revealed that increased cytochrome P450 enzyme activity was due to increased transcription of multiple cytochrome P450 genes. In this study, we identified for the first time two new cytochrome P450 genes, which belong to two novel cytochrome P450 gene families. CYP409A1 belongs to CYP409 family whereas CYP408B1 belongs to CYP408 family. Our molecular analysis indicated that CYP409A1 was mainly expressed in fatbodies, midgut, gastric caecum, foregut and Malpighian tubules of the third- and fourth-instar nymphs, whereas CYP408B1 was mainly expressed in foregut, hindgut and muscle of the insects at all developmental stages examined. The expression of these two cytochrome P450 genes were differentially affected by three representative insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid). The exposure of the locust to carbaryl, malathion and deltamethrin resulted in reduced, moderately increased and significantly increased transcript levels, respectively, of the two cytochrome P450 genes. Our further analysis of their detoxification roles by using RNA interference followed by deltamethrin bioassay showed increased nymph mortalities by 21.1% and 16.7%, respectively, after CYP409A1 and CYP408B1 were silenced. These results strongly support our notion that these two new cytochrome P450 genes play an important role in deltamethrin detoxification in the locust.

  20. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activity

    PubMed Central

    Tian, Li; Musetti, Valeria; Kim, Joonyul; Magallanes-Lundback, Maria; DellaPenna, Dean

    2004-01-01

    Lutein, a dihydroxy xanthophyll, is the most abundant carotenoid in plant photosynthetic tissues and plays crucial structural and functional roles in the light-harvesting complexes. Carotenoid β-and ε-hydroxylases catalyze the formation of lutein from α-carotene (β,ε-carotene). In contrast to the well studied β-hydroxylases that have been cloned and characterized from many organisms, the ε-hydroxylase has only been genetically defined by the lut1 mutation in Arabidopsis. We have isolated the LUT1 gene by positional cloning and found that, in contrast to all known carotenoid hydroxylases, which are the nonheme diiron monooxygenases, LUT1 encodes a cytochrome P450-type monooxygenase, CYP97C1. Introduction of a null mutant allele of LUT1, lut1-3, into the β-hydroxylase 1/β-hydroxylase 2 (b1 b2) double-mutant background, in which both Arabidopsis β-hydroxylases are disrupted, yielded a genotype (lut1-3 b1 b2) in which all three known carotenoid hydroxylase activities are eliminated. Surprisingly, hydroxylated β-rings were still produced in lut1-3 b1 b2, suggesting that a fourth unknown carotenoid β-hydroxylase exists in vivo that is structurally unrelated to β-hydroxylase 1 or 2. A second chloroplast-targeted member of the CYP97 family, CYP97A3, is 49% identical to LUT1 and hypothesized as a likely candidate for this additional β-ring hydroxylation activity. Overall, LUT1 defines a class of carotenoid hydroxylases that has evolved independently from and uses a different mechanism than nonheme diiron β-hydroxylases. PMID:14709673

  1. Regulation of human pregnane X receptor and its target gene cytochrome P450 3A by praeruptorin A isolated from the herbal medicine Peucedanum praeruptorum.

    PubMed

    Huang, Ling; Bi, Hui-chang; Li, Yu-Hua; Zhang, Jun-Qing; Kuang, Shao-Yi; Zhang, Li; Wang, Yi-Tao; Huang, Min

    2013-11-01

    Qianhu, the dried roots of Peucedanum praeruptorum, is a well-known traditional Chinese medicinal herb which was officially listed in the Chinese Pharmacopoeia. Praeruptorin A is the major active constituent of Qianhu. Our previous studies show that praeruptorin effectively transactivated the protein expression and catalytic activity of cytochrome P450 3A4 via the constitutive androstane receptor-mediated pathway. However, the effect of praeruptorin on the transactivation of cytochrome P450 3A4 through pregnane X receptor pathway is still unclear. To further elucidate the role of the pregnane X receptor pathway in the up-regulation of cytochrome P450 3A4 by praeruptorin, in this study, the effect of praeruptorin on the cytochrome P450 3A4 gene expression was investigated in mouse primary hepatocytes after knockdown of the pregnane X receptor by transient transfection of its siRNA; and the gene expression, protein expression, and catalytic activity of cytochrome P450 3A4 in the LS174T cells with pregnane X receptor overexpression were determined by real-time PCR, Western blot analysis, and LC-MS/MS-based cytochrome P450 3A4 substrate assay, respectively. We found that the level of cytochrome P450 3a11 gene expression in mouse primary hepatocytes was significantly increased by praeruptorin, but such an induction was suppressed after knockdown of pregnane X receptor by its siRNA. Praeruptorin significantly induced cytochrome P450 3A4 mRNA, protein expression, and functional activity through pregnane X receptor-mediated pathway in pregnane X receptor-overexpression LS174T cells; conversely, induction was not found in LS174T cells untransfected with pregnane X receptor plasmids. These findings suggest that praeruptorin can significantly up-regulate cytochrome P450 3A4 gene via the pregnane X receptor-mediated pathway, and this should be taken into consideration in potential herb-drug interactions.

  2. Characterization of the Critical Amino Acids of an Aspergillus parasiticus Cytochrome P-450 Monooxygenase Encoded by ordA That Is Involved in the Biosynthesis of Aflatoxins B1, G1, B2, and G2

    PubMed Central

    Yu, Jiujiang; Chang, Perng-Kuang; Ehrlich, Kenneth C.; Cary, Jeffrey W.; Montalbano, Beverly; Dyer, John M.; Bhatnagar, Deepak; Cleveland, Thomas E.

    1998-01-01

    The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee. PMID:9835571

  3. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong

    2016-09-26

    Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparative Genomics of Rice and Arabidopsis. Analysis of 727 Cytochrome P450 Genes and Pseudogenes from a Monocot and a Dicot1[w

    PubMed Central

    Nelson, David R.; Schuler, Mary A.; Paquette, Suzanne M.; Werck-Reichhart, Daniele; Bak, Søren

    2004-01-01

    Data mining methods have been used to identify 356 Cyt P450 genes and 99 related pseudogenes in the rice (Oryza sativa) genome using sequence information available from both the indica and japonica strains. Because neither of these genomes is completely available, some genes have been identified in only one strain, and 28 genes remain incomplete. Comparison of these rice genes with the 246 P450 genes and 26 pseudogenes in the Arabidopsis genome has indicated that most of the known plant P450 families existed before the monocot-dicot divergence that occurred approximately 200 million years ago. Comparative analysis of P450s in the Pinus expressed sequence tag collections has identified P450 families that predated the separation of gymnosperms and flowering plants. Complete mapping of all available plant P450s onto the Deep Green consensus plant phylogeny highlights certain lineage-specific families maintained (CYP80 in Ranunculales) and lineage-specific families lost (CYP92 in Arabidopsis) in the course of evolution. PMID:15208422

  5. Cytochrome P450 Gene Variants, Race, and Mortality Among Clopidogrel Treated Patients Following Acute Myocardial Infarction

    PubMed Central

    Cresci, Sharon; Depta, Jeremiah P.; Lenzini, Petra A.; Li, Allie Y.; Lanfear, David E.; Province, Michael A.; Spertus, John A.; Bach, Richard G.

    2014-01-01

    Background Clopidogrel is recommended after acute myocardial infarction (AMI) but has variable efficacy and safety, in part related to the effect of cytochrome P450 (CYP) polymorphisms on its metabolism. The effect of CYP polymorphisms on cardiovascular events among clopidogrel-treated patients after AMI remains controversial, and no studies to date have investigated the association of CYP variants with outcomes in African American patients. Methods and Results 2732 subjects (2062 Caucasians; 670 African Americans) hospitalized with AMI enrolled in the prospective, multicenter TRIUMPH study were genotyped for CYP polymorphisms. The majority of Caucasians (79%) and African Americans (64.4%) were discharged on clopidogrel. Among Caucasians, carriers of the loss-of-function CYP2C19*2 allele had significantly increased 1-year mortality (adjusted HR: 1.70; CI: 1.01 to 2.86; p=0.046), and a trend toward increased rate of recurrent MI (adjusted HR: 2.10; CI 0.95 to 4.63; p= 0.066). Among African Americans, increased 1-year mortality was associated with the gain of function CYP2C19*17 allele (adjusted HR for *1/*17 vs. *1/*1: 2.02; CI: 0.92 to 4.44; *17/*17 vs. *1/*1: 8.97; CI: 3.34 to 24.10; p< 0.0001) and the CYP1A2*1C allele (adjusted HR for *1/*1C vs. *1/*1: 1.89; CI: 0.85 to 4.22; *1C/*1C vs. *1/*1: 4.96; CI: 1.69 to 14.56; p= 0.014). Bleeding events were significantly more common among African American carriers of CYP2C19*17 or CYP1A2*1C. Conclusions Both loss of function and gain of function CYP polymorphisms affecting clopidogrel metabolism are associated with increased mortality among clopidogrel treated patients following AMI; the specific polymorphism and the putative mechanism vary according to race. PMID:24762860

  6. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    SciTech Connect

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.

  7. [Association of cytochrome P450 2A6 gene polymorphisms with smoking behaviors:a Meta-analysis].

    PubMed

    Pan, Lulu; Li, Suyun; Zhou, Yunping; Yang, Xiaorong; Jia, Chongqi

    2015-02-01

    A Meta-analysis was performed to assess the association of defective hepatic cytochrome P450 2A6 (CYP2A6) gene with smoking behaviors. All eligible studies published up to 2014 were searched out from PubMed, China National Knowledge Internet (CNKI), ISI Web of knowledge (ISI), vip citation databases (VIP), Chinese BioMedical Literature (CBM) and Elsevier Science Direct, searching words were "smok*","nicotine dependence","CYP2A6","cytochrome P450 2A6","polymorphism","mut*"and"varia*", while 436 articles were concluded. Meta-analysis was performed using Statal 3.1. A total of ten studies were finally included. We didn't find a significant effect of defective CYP2A6 gene on smoking initiation (fixed effect model (FEM): OR = 0.90, 95%CI: 0.78-1.03, I(2) = 25.8%), smoking persistence (random effect model (REM): OR = 0.85, 95%CI: 0.59-1.23, I(2) = 66.3%) and smoking cessation (REM: OR = 0.89, 95%CI: 0.57-1.40, I(2) = 67.1%). But it showed a significant protective effect of CYP2A6*4 on smoking initiation (FEM: OR = 0.78, 95%CI: 0.61-0.99, I(2) = 28.2%), smoking persistence (FEM: OR = 0.53, 95%CI: 0.36-0.77, I(2) = 41.0%) and smoking cessation (REM: OR = 0.49, 95%CI: 0.31-0.80, I(2) = 0.0%). This Meta-analysis suggested that there was not a protective effect of defective CYP2A6 gene against smoking behaviors. But smokers with whole CYP2A6 gene deletion would be less likely to start smoking, less smoking persistence and more likely to quit smoking successful than smokers with wild CYP2A6 gene.

  8. Molecular Cloning, Heterologous Expression, and Functional Characterization of an NADPH-Cytochrome P450 Reductase Gene from Camptotheca acuminata, a Camptothecin-Producing Plant

    PubMed Central

    Chen, Fei; Yang, Yun; Yang, Lixia; Zhang, Guolin; Luo, Yinggang

    2015-01-01

    Camptothecin (CAM), a complex pentacyclic pyrroloqinoline alkaloid, is the starting material for CAM-type drugs that are well-known antitumor plant drugs. Although many chemical and biological research efforts have been performed to produce CAM, a few attempts have been made to uncover the enzymatic mechanism involved in the biosynthesis of CAM. Enzyme-catalyzed oxidoreduction reactions are ubiquitously presented in living organisms, especially in the biosynthetic pathway of most secondary metabolites such as CAM. Due to a lack of its reduction partner, most catalytic oxidation steps involved in the biosynthesis of CAM have not been established. In the present study, an NADPH-cytochrome P450 reductase (CPR) encoding gene CamCPR was cloned from Camptotheca acuminata, a CAM-producing plant. The full length of CamCPR cDNA contained an open reading frame of 2127-bp nucleotides, corresponding to 708-amino acid residues. CamCPR showed 70 ~ 85% identities to other characterized plant CPRs and it was categorized to the group II of CPRs on the basis of the results of multiple sequence alignment of the N-terminal hydrophobic regions. The intact and truncate CamCPRs with N- or C-terminal His6-tag were heterologously overexpressed in Escherichia coli. The recombinant enzymes showed NADPH-dependent reductase activity toward a chemical substrate ferricyanide and a protein substrate cytochrome c. The N-terminal His6-tagged CamCPR showed 18- ~ 30-fold reduction activity higher than the C-terminal His6-tagged CamCPR, which supported a reported conclusion, i.e., the last C-terminal tryptophan of CPRs plays an important role in the discrimination between NADPH and NADH. Co-expression of CamCPR and a P450 monooxygenase, CYP73A25, a cinnamate 4-hydroxylase from cotton, and the following catalytic formation of p-coumaric acid suggested that CamCPR transforms electrons from NADPH to the heme center of P450 to support its oxidation reaction. Quantitative real-time PCR analysis showed that

  9. Molecular Cloning, Heterologous Expression, and Functional Characterization of an NADPH-Cytochrome P450 Reductase Gene from Camptotheca acuminata, a Camptothecin-Producing Plant.

    PubMed

    Qu, Xixing; Pu, Xiang; Chen, Fei; Yang, Yun; Yang, Lixia; Zhang, Guolin; Luo, Yinggang

    2015-01-01

    Camptothecin (CAM), a complex pentacyclic pyrroloqinoline alkaloid, is the starting material for CAM-type drugs that are well-known antitumor plant drugs. Although many chemical and biological research efforts have been performed to produce CAM, a few attempts have been made to uncover the enzymatic mechanism involved in the biosynthesis of CAM. Enzyme-catalyzed oxidoreduction reactions are ubiquitously presented in living organisms, especially in the biosynthetic pathway of most secondary metabolites such as CAM. Due to a lack of its reduction partner, most catalytic oxidation steps involved in the biosynthesis of CAM have not been established. In the present study, an NADPH-cytochrome P450 reductase (CPR) encoding gene CamCPR was cloned from Camptotheca acuminata, a CAM-producing plant. The full length of CamCPR cDNA contained an open reading frame of 2127-bp nucleotides, corresponding to 708-amino acid residues. CamCPR showed 70 ~ 85% identities to other characterized plant CPRs and it was categorized to the group II of CPRs on the basis of the results of multiple sequence alignment of the N-terminal hydrophobic regions. The intact and truncate CamCPRs with N- or C-terminal His6-tag were heterologously overexpressed in Escherichia coli. The recombinant enzymes showed NADPH-dependent reductase activity toward a chemical substrate ferricyanide and a protein substrate cytochrome c. The N-terminal His6-tagged CamCPR showed 18- ~ 30-fold reduction activity higher than the C-terminal His6-tagged CamCPR, which supported a reported conclusion, i.e., the last C-terminal tryptophan of CPRs plays an important role in the discrimination between NADPH and NADH. Co-expression of CamCPR and a P450 monooxygenase, CYP73A25, a cinnamate 4-hydroxylase from cotton, and the following catalytic formation of p-coumaric acid suggested that CamCPR transforms electrons from NADPH to the heme center of P450 to support its oxidation reaction. Quantitative real-time PCR analysis showed that

  10. Glucocorticoid regulation of a phenobarbital-inducible cytochrome P-450 gene: the presence of a functional glucocorticoid response element in the 5'-flanking region of the CYP2B2 gene.

    PubMed Central

    Jaiswal, A K; Haaparanta, T; Luc, P V; Schembri, J; Adesnik, M

    1990-01-01

    The rat cytochrome P450 CYP2B2 gene encodes one of the two major phenobarbital-inducible forms of hepatic microsomal cytochrome P-450. The sequence of a 1.4 Kb DNA segment from the 5' flanking region of this region [Jaiswal, A., Rivkin, E. and Adesnik, M. Nucl. Acids. Res. 15: 6755 (1987)] reveals the presence of a pentadecameric oligonucleotide sequence, located approximately 1.3 Kb upstream of the transcription initiation site, which is highly similar to the sequences of glucocorticoid response elements (GREs) that mediate the hormone-dependent transcriptional activation of many other genes. The putative GRE in the CYP2B2 gene 5' flanking region is shown to be functional by demonstrating that segments of DNA that contain it, including one that is only 25bp long, are capable of conferring dexamethasone inducibility on a chloramphenicol acetyltransfer-ase gene whose transcription is driven by the Herpes virus thymidine kinase gene promoter. Moreover, binding of a protein contained in a rat liver nuclear extract to a 25 bp synthetic DNA segment that contains the putative GRE was demonstrated in a gel mobility shift assay. This binding was specifically competed away by a DNA segment that contains the murine mammary tumor virus long terminal repeat which encompasses several well characterized GRE elements. The implications of these findings for the in vivo regulation of the P450IIB2 gene by glucocorticoids are discussed. Images PMID:2377462

  11. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol.

    PubMed

    Mao, Ying-Bo; Cai, Wen-Juan; Wang, Jia-Wei; Hong, Gao-Jie; Tao, Xiao-Yuan; Wang, Ling-Jian; Huang, Yong-Ping; Chen, Xiao-Ya

    2007-11-01

    We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.

  12. Interethnic differences of cytochrome P450 gene polymorphisms may influence outcome of taxane therapy in Roma and Hungarian populations.

    PubMed

    Szalai, Renata; Ganczer, Alma; Magyari, Lili; Matyas, Petra; Bene, Judit; Melegh, Bela

    2015-12-01

    Taxanes are widely used microtubule-stabilizing chemotherapeutic agents in the treatment of cancers. Several cytochrome P450 gene variants have been proven to influence taxane metabolism and therapy. The purpose of this work was to determine the distribution of genetic variations of CYP1B1, CYP2C8 and CYP3A5 genes as the first report on taxane metabolizer cytochrome P450 gene polymorphisms in Roma and Hungarian populations. A total of 397 Roma and 412 Hungarian healthy subjects were genotyped for CYP1B1 c.4326C > G, CYP2C8 c.792C > G and CYP3A5 c.6986A > G variant alleles by PCR-RFLP assay and direct sequencing. We found significant differences in the frequencies of homozygous variant genotypes of CYP1B1 4326 GG (p = 0.002) and CYP3A5 6986 GG (p < 0.001) between Roma and Hungarian populations. Regarding minor allele frequencies, for CYP2C8 a significantly increased prevalence was found in 792G allele frequency in the Hungarian population compared to the Roma population (5.83% vs. 2.14%, p = 0.001). Our results can be used as possible predictive factors in population specific treatment algorithms to developing effective programs for a better outcome in patients treated with taxanes. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  13. Identification of Cytochrome P450 Oxidoreductase Gene Variants That Are Significantly Associated with the Interindividual Variations in Warfarin Maintenance Dose

    PubMed Central

    Zhang, Xiuling; Li, Lei; Kaminsky, Laurence S.

    2011-01-01

    Cytochrome P450 oxidoreductase (POR) is required for drug metabolism by all microsomal cytochrome P450 enzymes. The aim of this study was to investigate whether any of the common single nucleotide polymorphisms (SNPs) in the POR gene and its flanking intergenic sequences correlate with interindividual variations in the warfarin maintenance dose (which is determined partly by rates of warfarin metabolism) in patients undergoing anticoagulation therapy. Warfarin dose and patients' demographic and clinical information were collected from 124 patients, who had attained a stable warfarin dose while receiving treatment at the Stratton VA Medical Center. Genomic DNAs were isolated from blood samples and were genotyped for 15 SNPs (including 10 SNPs on the POR gene). Association analysis was performed on 122 male patients by linear regression. Simple regression analysis revealed that vitamin K epoxide reductase complex subunit 1 (VKORC1) −1639A>G, CYP2C9*2, CYP2C9*3, age, and chronic aspirin therapy were significantly associated with warfarin dose. In contrast, multiple regression analysis revealed that, in addition to several known factors contributing to the variations in warfarin maintenance dose (VKORC1 −1639A>G, CYP2C9*2, CYP2C9*3, CYP4F2 rs2108622, and chronic aspirin therapy), three common POR SNPs (−173C>A, −208C>T, and rs2868177) were also significantly associated with variations in warfarin maintenance dose. These results indicate, for the first time, that three common SNPs in the POR gene may contribute to the interindividual variability in warfarin maintenance dose. Further studies on functional characterization of the POR SNPs identified, including their impact on the in vivo metabolism of additional drugs, are needed. PMID:21562147

  14. Identification of a new plasmid-encoded cytochrome P450 CYP107DY1 from Bacillus megaterium with a catalytic activity towards mevastatin.

    PubMed

    Milhim, Mohammed; Putkaradze, Natalia; Abdulmughni, Ammar; Kern, Fredy; Hartz, Philip; Bernhardt, Rita

    2016-12-20

    In the current work, we describe the identification and characterization of the first plasmid-encoded P450 (CYP107DY1) from a Bacillus species. The recombinant CYP107DY1 exhibits characteristic P450 absolute and reduced CO-bound difference spectra. Reconstitution with different redox systems revealed the autologous one, consisting of BmCPR and Fdx2, as the most effective one. Screening of a library of 18 pharmaceutically relevant compounds displayed activity towards mevastatin to produce pravastatin. Pravastatin is an important therapeutic drug to treat hypercholesterolemia, which was described to be produced by oxyfunctionlization of mevastatin (compactin) by members of CYP105 family. The hydroxylation at C6 of mevastatin was also suggested by docking this compound into a computer model created for CYP107DY1. Moreover, in view of the biotechnological application, CYP107DY1 as well as its redox partners (BmCPR and Fdx2) were successfully utilized to establish an E. coli based whole-cell system for an efficient biotransformation of mevastatin. The in vitro and in vivo application of the CYP07DY1 also offers the possibility for the screening of more substrates, which could open up further biotechnological usage of this enzyme.

  15. Peganum harmala L. differentially modulates cytochrome P450 gene expression in human hepatoma HepG2 cells.

    PubMed

    El Gendy, Mohamed A M; El-Kadi, Ayman O S

    2009-12-01

    Peganum harmala L. (Zygophyllaceae) is a common plant in Middle East and it is still used traditionally to treat several diseases. The effect of P. harmala extract on the expression of different cytochrome P450's (CYP) involved in drug metabolism was examined in human HepG2 cells. Therefore, HepG2 cells were incubated with increasing concentrations of plant extract and the CYP gene expression was determined by real-time PCR. Our results showed that P. harmala extract significantly increased the expression of CYP1A2, 2C19, and 3A4 whereas; CYP 2B6, 2D6 and 2E1 was significantly decreased. We concluded that care should be taken when P. harmala is co-administered with other drugs.

  16. Transcriptional Regulation of the Grape Cytochrome P450 Monooxygenase Gene CYP736B Expression in Response to Xylella fastidiosa Infection

    USDA-ARS?s Scientific Manuscript database

    Plant cytochrome P450 monooxygenases are a group of versatile redox proteins that mediate the biosynthesis of lignins, terpenes, alkaloids, and a variety of other secondary compounds which act as plant defense agents. To determine if cytochrome P450 monooxygenases are involved in defense response to...

  17. Selective Usage of Transcription Initiation and Polyadenylation Sites in Grape Cytochrome P450 Monooxygenase Gene CYP736B Expression

    USDA-ARS?s Scientific Manuscript database

    Plant cytochrome P450 monooxygenases are versatile redox proteins that mediate biosynthesis of lignins, terpenes, alkaloids, and a variety of other secondary compounds as plant defense agents against a range of pathogens and insects. To determine if cytochrome P450 monooxygenases are involved in the...

  18. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  19. Identification and phylogenetic analysis of novel cytochrome P450 1A genes from ungulate species.

    PubMed

    Darwish, Wageh Sobhy; Kawai, Yusuke; Ikenaka, Yoshinori; Yamamoto, Hideaki; Muroya, Tarou; Ishizuka, Mayumi

    2010-09-01

    As part of an ongoing effort to understand the biological response of wild and domestic ungulates to different environmental pollutants such as dioxin-like compounds, cDNAs encoding for CYP1A1 and CYP1A2 were cloned and characterized. Four novel CYP1A cDNA fragments from the livers of four wild ungulates (elephant, hippopotamus, tapir and deer) were identified. Three fragments from hippopotamus, tapir and deer were classified as CYP1A2, and the other fragment from elephant was designated as CYP1A1/2. The deduced amino acid sequences of these fragment CYP1As showed identities ranging from 76 to 97% with other animal CYP1As. The phylogenetic analysis of these fragments showed that both elephant and hippopotamus CYP1As made separate branches, while tapir and deer CYP1As were located beside that of horse and cattle respectively in the phylogenetic tree. Analysis of dN/dS ratio among the identified CYP1As indicated that odd toed ungulate CYP1A2s were exposed to different selection pressure.

  20. Polymorphisms of Cytochrome P450 Genes in Three Ethnic Groups from Russia

    PubMed Central

    Korytina, Gülnaz; Kochetova, Olga; Akhmadishina, Leysan; Viktorova, Elena; Victorova, Tatyana

    2012-01-01

    Objective: To determine the prevalence of the most common allelic variants of CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2E1, CYP2F1, CYP2J2 and CYP2S1 in a representative sample of the three ethnic groups (Russians, Tatars and Bashkirs) from Republic of Bashkortostan (Russia), and compare the results with existing data published for other populations. Material and Methods: CYPs genotypes were determined in 742 DNA samples of healthy unrelated individuals representative of three ethnic groups. The CYPs gene polymorphisms were examined using the PCR-RLFP method. Results: Analysis of the CYP1A1 (rs1048943, rs4646903), CYP1A2 (rs762551), CYP2E1 (rs2031920) allele, genotype and haplotype frequencies revealed significant differences among healthy residents of the Republic of Bashkortostan of different ethnicities. Distribution of allele and genotype frequencies of CYP1A2 (rs35694136), CYP1B1 (rs1056836), CYP2C9 (rs1799853, rs1057910), CYP2F1 (rs11399890), CYP2J2 (rs890293), CYP2S1 (rs34971233, rs338583) genes were similar in Russians, Tatars, and Bashkirs. Analysis of the CYPs genes allele frequency distribution patterns among the ethnic groups from the Republic of Bashkortostan in comparison with the different populations worldwide was conducted. Conclusion: The peculiarities of the allele frequency distribution of CYPs genes in the ethnic groups of the Republic of Bashkortostan should be taken into consideration in association and pharmacogenetic studies. The results of the present investigation will be of great help in elucidating the genetic background of drug response, susceptibility to cancer and complex diseases, as well as in determining the toxic potentials of environmental pollutants in our region. PMID:25207010

  1. Evidence for polymorphism in the cytochrome P450 2D50 gene in horses.

    PubMed

    Corado, C R; McKemie, D S; Young, A; Knych, H K

    2016-06-01

    Metabolism is an essential factor in the clearance of many drugs and as such plays a major role in the establishment of dosage regimens and withdrawal times. CYP2D6, the human orthologue to equine CYP2D50, is a drug-metabolizing enzyme that is highly polymorphic in humans leading to widely differing levels of metabolic activity. As CYP2D6 is highly polymorphic, in this study it was hypothesized that the gene coding for the equine orthologue, CYP2D50, may also be prone to polymorphism. Blood samples were collected from 150 horses, the CYP2D50 gene was cloned and sequenced; and full-length sequences were analyzed for single nucleotide polymorphisms (SNPs), deletions, or insertions. Pharmacokinetic data were collected from a subset of horses following the administration of a single oral dose of tramadol and probit analysis used to calculate metabolic ratios. Prior to drug administration, the ability of recombinant CYP2D50 to metabolize tramadol to O-desmethyltramadol was confirmed. Sequencing of CYP2D50 identified 126 exonic SNPs, with 31 of those appearing in multiple horses. Oral administration of tramadol to a subset of these horses revealed variable metabolic ratios (tramadol: O-desmethyltramadol) in individual horses and separation into three metabolic groups. While a limited number of horses of primarily a single breed were studied, the variability in tramadol metabolism to O-desmethyltramadol between horses and preliminary evidence of what appears to be poor, extensive, and ultra-rapid metabolizers supports further study of the potential for genetic polymorphisms in the CYP2D50 gene in horses. © 2015 John Wiley & Sons Ltd.

  2. Combination effect of cytochrome P450 1A1 gene polymorphisms on uterine leiomyoma: A case-control study

    PubMed Central

    Salimi, Saeedeh; Sajadian, Mojtaba; Khodamian, Maryam; Yazdi, Atefeh; Rezaee, Soodabeh; Mohammadpour-Gharehbagh, Abbas; Mokhtari, Mojgan; Yaghmaie, Minoo

    2016-01-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus, and estrogen metabolizing enzymes affect its progression. This study aimed to evaluate the association between two single-nucleotide polymorphisms of cytochrome P450 1A1 (CYP1A1) gene and UL risk. The study consisted of 105 patients with UL and 112 healthy women as controls. Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene were analyzed by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism methods, respectively. The findings indicated no association between Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene and UL (p < 0.05). However, the combination effect of TT/AG genotypes of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms was associated with 4.3-fold higher risk of UL. In addition, haplotype analysis revealed that TG haplotype of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms could increase the UL risk nearly 4.9-fold. Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms of CYP1A1 gene were not associated with UL susceptibility; however, the combination of the TT/AG genotypes and TG haplotype could increase the UL risk. PMID:27333216

  3. Cloning and Expression of Multiple Cytochrome P450 Genes: Induction by Fipronil in Workers of the Red Imported Fire Ant (Solenopsis invicta Buren).

    PubMed

    Zhang, Baizhong; Zhang, Lei; Cui, Rukun; Zeng, Xinnian; Gao, Xiwu

    2016-01-01

    Both exogenous and endogenous compounds can induce the expression of cytochrome P450 genes. The insect cytochrome P450 genes related to insecticide resistance are likely to be expressed as the "first line of defense" when challenged with insecticides. In this study, four cytochrome P450 genes, SinvCYP6B1, SinvCYP6A1, SinvCYP4C1, and SinvCYP4G15, were firstly isolated from workers of the red imported fire ant (Solenopsis invicta) through rapid amplification of cDNA ends (RACE) and sequenced. The fipronil induction profiles of the four cytochrome P450 genes and the two previously isolated CYP4AB1 and CYP4AB2 were characterized in workers. The results revealed that the expression of SinvCYP6B1, SinvCYP6A1, CYP4AB2, and SinvCYP4G15, increased 1.4-fold and 1.3-fold more than those of acetone control, respectively, after 24 h exposure to fipronil at concentrations of 0.25 μg mL-1 (median lethal dose) and 0.56 μg mL-1 (90% lethal dose), while no significant induction of the expression of CYP4AB1 and SinvCYP4C1 was detected. Among these genes, SinvCYP6B1 was the most significantly induced, and its maximum expression was 3.6-fold higher than that in acetone control. These results might suggest that multiple cytochrome P450 genes are co-up-regulated in workers of the fire ant through induction mechanism when challenged with fipronil. These findings indicated that cytochrome P450 genes play an important role in the detoxification of insecticides and provide a theoretical basis for the mechanisms of insecticide metabolism in the fire ant.

  4. Expression of two cytochrome P450 aromatase genes is regulated by endocrine disrupting chemicals in rare minnow Gobiocypris rarus juveniles.

    PubMed

    Wang, Jingjing; Liu, Xiaolin; Wang, Houpeng; Wu, Tingting; Hu, Xiaoqi; Qin, Fang; Wang, Zaizhao

    2010-09-01

    To elucidate the effects of endocrine disrupting chemicals (EDCs) on aromatase, the rare minnow ovarian and brain P450 aromatase (cyp19a1a and cyp19a1b) cDNA and their 5'-flanking regions were isolated and characterized. RT-PCR analysis revealed that the rare minnow cyp19a1a mRNA was predominantly expressed in ovary while cyp19a1b was predominantly expressed in brain. Sequences for binding sites of steroidogenic factor-1, peroxisome proliferators-activated receptor, aryl hydrocarbon receptor, CCAAT/enhancer binding protein, estrogen responsive element, glucocorticoid responsive element, and retinoic acid receptor were identified on promoter regions of cyp19a1 genes. The influence of several EDCs on the transcript abundance of cyp19a1a and cyp19a1b was investigated in rare minnow juveniles. Clofibrate did not influence the expression of either cyp19a1 genes. Exposure to 1nM ethinylestradiol (EE2) for 3days significantly downregulated the expression of cyp19a1a gene, however 0.1 and 1 nM EE2 significantly increased the gene expression of cyp19a1b. Exposure to 100 and 1000 nM 4-nonylphenol (NP) significantly suppressed the cyp19a1a expression, but it had no effect on the expression of cyp19a1b gene. Bisphenol A (BPA) strongly suppressed the cyp19a1b gene expression from 0.1 to 10 nM and significantly suppressed the gene expression of cyp19a1a only at 10 nM. These results indicate that EDCs may influence the expression of cyp19a1 genes through differential transcriptional modulation in rare minnow juveniles.

  5. Insecticidal activity and expression of cytochrome P450 family 4 genes in Aedes albopictus after exposure to pyrethroid mosquito coils.

    PubMed

    Avicor, Silas W; Wajidi, Mustafa F F; El-Garj, Fatma M A; Jaal, Zairi; Yahaya, Zary S

    2014-10-01

    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.

  6. Identification and functional analysis of a cytochrome P450 gene CYP9AQ2 involved in deltamethrin detoxification from Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Xueyao; Wu, Haihua; Yu, Rongrong; Zhang, Jianzhen; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2015-07-01

    A 1578-bp cDNA of a cytochrome P450 gene (CYP9AQ2) was sequenced from the migratory locust, Locusta migratoria. It contains an open reading frame (ORF) of 1557 bp that encodes 519 amino acid residues. As compared with other known insect cytochrome P450 enzymes, the overall structure of its deduced protein is highly conserved. The expression of CYP9AQ2 was relatively higher in nymphal stages than in egg and adult stages, and the highest expression was found in fourth-instar nymphs, which was 8.7-fold higher than that of eggs. High expression of CYP9AQ2 was observed in foregut, followed by hindgut, Malpighian tubules, brain and fat bodies, which were 75~142-fold higher than that in hemolymph. Low expression was found in midgut, gastric cecum and hemolymph. The expression of CYP9AQ2 was up-regulated by deltamethrin at the concentrations of 0.04, 0.08, and 0.12 µg/mL and the maximal up-regulation was 2.6-fold at LD10 (0.04 µg/mL). RNA interference-mediated silencing of CYP9AQ2 led to an increased mortality of 25.3% when the nymphs were exposed to deltamethrin, suggesting that CYP9AQ2 plays an important role in deltamethrin detoxification in L. migratoria. Computational docking studies suggested that hydroxylation of the phenoxybenzyl moiety might be one of the deltamethrin metabolic pathways by CYP9AQ2. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development.

    PubMed

    Ivamoto, Suzana T; Sakuray, Leonardo M; Ferreira, Lucia P; Kitzberger, Cíntia S G; Scholz, Maria B S; Pot, David; Leroy, Thierry; Vieira, Luiz G E; Domingues, Douglas S; Pereira, Luiz F P

    2017-02-01

    Lipids are among the major chemical compounds present in coffee beans, and they affect the flavor and aroma of the coffee beverage. Coffee oil is rich in kaurene diterpene compounds, mainly cafestol (CAF) and kahweol (KAH), which are related to plant defense mechanisms and to nutraceutical and sensorial beverage characteristics. Despite their importance, the final steps of coffee diterpenes biosynthesis remain unknown. To understand the molecular basis of coffee diterpenes biosynthesis, we report the content dynamics of CAF and KAH in several Coffea arabica tissues and the transcriptional analysis of cytochrome P450 genes (P450). We measured CAF and KAH concentrations in leaves, roots, flower buds, flowers and fruit tissues at seven developmental stages (30-240 days after flowering - DAF) using HPLC. Higher CAF levels were detected in flower buds and flowers when compared to fruits. In contrast, KAH concentration increased along fruit development, peaking at 120 DAF. We did not detect CAF or KAH in leaves, and higher amounts of KAH than CAF were detected in roots. Using P450 candidate genes from a coffee EST database, we performed RT-qPCR transcriptional analysis of leaves, flowers and fruits at three developmental stages (90, 120 and 150 DAF). Three P450 genes (CaCYP76C4, CaCYP82C2 and CaCYP74A1) had transcriptional patterns similar to CAF concentration and two P450 genes (CaCYP71A25 and CaCYP701A3) have transcript accumulation similar to KAH concentration. These data warrant further investigation of these P450s as potential candidate genes involved in the final stages of the CAF and KAH biosynthetic pathways.

  8. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  9. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum).

    PubMed

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-19

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  10. Identification of novel enzyme-prodrug combinations for use in cytochrome P450-based gene therapy for cancer.

    PubMed

    Baldwin, Alex; Huang, Zeqi; Jounaidi, Youssef; Waxman, David J

    2003-01-01

    Gene-directed enzyme prodrug therapy can be used to increase the therapeutic activity of anti-cancer prodrugs that undergo liver cytochrome P450 (CYP)-catalyzed prodrug to active drug conversion. The present report describes a cell-culture-based assay to identify CYP gene-CYP prodrug combinations that generate bystander cytotoxic metabolites and that may potentially be useful for CYP-based gene therapy for cancer. A panel of rat liver microsomes, comprising distinct subsets of drug-inducible hepatic CYPs, was evaluated for prodrug activation in a four-day 9L gliosarcoma cell growth inhibition assay. A strong NADPH- and liver microsome-dependent increase in 9L cytotoxicity was observed for the CYP prodrugs cyclophosphamide, ifosfamide, and methoxymorpholinyl doxorubicin (MMDX) but not with three other CYP prodrugs, procarbazine, dacarbazine, and tamoxifen. MMDX activation was potentiated approximately 250-fold by liver microsomes from dexamethasone-induced rats (IC(50) (MMDX) approximately 0.1nM), suggesting that dexamethasone-inducible CYP3A enzymes contribute to activation of this novel anthracycline anti-tumor agent. This CYP3A dependence was verified in studies using liver microsomes from uninduced male and female rats and by using the CYP3A-selective inhibitors troleandomycin and ketoconazole. These findings highlight the advantages of using cell culture assays to identify novel CYP prodrug-CYP gene combinations that are characterized by production of cell-permeable, cytotoxic metabolites and that may potentially be incorporated into CYP-based gene therapies for cancer treatment.

  11. Cytochrome P450 1B1 gene polymorphisms as predictors of anticancer drug activity: studies with in vitro models.

    PubMed

    Laroche-Clary, Audrey; Le Morvan, Valérie; Yamori, Takao; Robert, Jacques

    2010-12-01

    Cytochrome P450 1B1 (CYP1B1) is found in tumor tissue and is suspected to play a role in oncogenesis and drug resistance. CYP1B1 gene polymorphisms have been associated with the risk of developing lung and other cancers. They may be associated with tumor response to anticancer drugs. We have determined 4 frequent nonsynonymous gene polymorphisms of CYP1B1 in the human tumor cell lines panels of the National Cancer Institute (NCI) and the Japanese Foundation for Cancer Research (JFCR): rs10012 (R48G), rs1056827 (A119S), rs1056836 (L432V), and rs1800440 (N453S). Numerous anticancer drugs have been tested against these panels that offer the opportunity to detect associations between gene polymorphisms and drug sensitivity. CYP1B1 single nucleotide polymorphisms were in marked linkage disequilibrium. The L432V allelic variants were significantly associated with reduced sensitivity to DNA-interacting anticancer agents, alkylators, camptothecins, topoisomerase II inhibitors, and some antimetabolites. For instance, in the NCI panel, cell lines homozygous for the V432 allele were globally 2-fold resistant to alkylating agents (P = 5 × 10(-10)) and 4.5-fold to camptothecins (P = 6.6 × 10(-9)) than cell lines homozygous for the L432 allele. Similar features were exhibited by the JFCR panel. Cell lines homozygous for the V432 allele were globally less sensitive to DNA-interfering drugs than cell lines having at least 1 common allele. There was no significant association between mRNA expression of CYP1B1 and CYP1B1 genotype, and no significant association between CYP1B1 mRNA expression and drug cytotoxicity. These observations open the way to clinical studies exploring the role of CYP1B1 gene polymorphisms for predicting tumor sensitivity to chemotherapy.

  12. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6.

    PubMed

    Qiao, Wanqiong; Yang, Yao; Sebra, Robert; Mendiratta, Geetu; Gaedigk, Andrea; Desnick, Robert J; Scott, Stuart A

    2016-03-01

    The cytochrome P450-2D6 (CYP2D6) enzyme metabolizes ∼25% of common medications, yet homologous pseudogenes and copy number variants (CNVs) make interrogating the polymorphic CYP2D6 gene with short-read sequencing challenging. Therefore, we developed a novel long-read, full gene CYP2D6 single molecule real-time (SMRT) sequencing method using the Pacific Biosciences platform. Long-range PCR and CYP2D6 SMRT sequencing of 10 previously genotyped controls identified expected star (*) alleles, but also enabled suballele resolution, diplotype refinement, and discovery of novel alleles. Coupled with an optimized variant-calling pipeline, CYP2D6 SMRT sequencing was highly reproducible as triplicate intra- and inter-run nonreference genotype results were completely concordant. Importantly, targeted SMRT sequencing of upstream and downstream CYP2D6 gene copies characterized the duplicated allele in 15 control samples with CYP2D6 CNVs. The utility of CYP2D6 SMRT sequencing was further underscored by identifying the diplotypes of 14 samples with discordant or unclear CYP2D6 configurations from previous targeted genotyping, which again included suballele resolution, duplicated allele characterization, and discovery of a novel allele and tandem arrangement. Taken together, long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis, and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications.

  13. Transcript pattern of cytochrome P450, antioxidant and ginsenoside biosynthetic pathway genes under heavy metal stress in Panax ginseng Meyer.

    PubMed

    Balusamy, Sri Renuka Devi; Kim, Yu-Jin; Rahimi, Shadi; Senthil, Kalai Selvi; Lee, Ok Ran; Lee, Sungyoung; Yang, Deok-Chun

    2013-02-01

    The differential transcript patterns of five antioxidant genes, four genes related to the ginsenoside pathway and five P450 genes related to defense mechanism were investigated in in vitro adventitious roots of Panax ginseng after exposure to two different concentrations of heavy metals for 7 days. PgSOD-1 and PgCAT transcription increased in a dose-dependent manner during the exposure to CuCl(2), NiCl(2), and CdCl(2), while all other tested scavenging enzymes didn't show significant increase during heavy metal exposure. Conversely, the mRNA transcripts of PgSQE, PgDDS were highly responsive to CuCl(2) compared to NiCl(2) exposure. However, the transcript profile of Pgβ-AS was highly induced upon NiCl(2) treatment compared to CuCl(2) and CdCl(2) exposure. The expressions of PgCYP716A42, PgCYP71A50U, and PgCYP82C22 were regulated in similar manners, and all showed the highest transcript profile at 100 μM of CuCl(2), CdCl(2), and NiCl(2) except PgCYP71D184, which showed the highest transcript level when subjected to 10 μM CuCl(2) and NiCl(2). Thus it may suggest that in P. ginseng heavy metal interaction on cell membrane induced expression of various defense related genes via jasmonic acid pathway and also possesses cross talk networks with other defense related pathways.

  14. Molecular evolution and population genetics of two Drosophila mettleri cytochrome P450 genes involved in host plant utilization

    PubMed Central

    Bono, Jeremy M.; Matzkin, Luciano M.; Castrezana, Sergio; Markow, Therese A.

    2009-01-01

    Understanding the genetic basis of adaptation is one of the primary goals of evolutionary biology. The evolution of xenobiotic resistance in insects has proven to be an especially suitable arena for studying the genetics of adaptation, and resistant phenotypes are known to result from both coding and regulatory changes. In this study, we examine the evolutionary history and population genetics of two Drosophila mettleri cytochrome P450 genes that are putatively involved in the detoxification of alkaloids present in two of its cactus hosts: saguaro (Carnegiea gigantea) and senita (Lophocereus schottii). Previous studies demonstrated that Cyp28A1 was highly upregulated following exposure to rotting senita tissue while Cyp4D10 was highly upregulated following exposure to rotting saguaro tissue. Here, we show that a subset of sites in Cyp28A1 experienced adaptive evolution specifically in the D. mettleri lineage. Moreover, neutrality tests in several populations were also consistent with a history of selection on Cyp28A1. In contrast, we did not find evidence for positive selection on Cyp4D10, though this certainly does not preclude its involvement in host plant use. A surprising result that emerged from our population genetic analyses was the presence of significant genetic differentiation between flies collected from different host plant species (saguaro and senita) at Organ Pipe National Monument, Arizona, USA. This preliminary evidence suggests that D. mettleri may have evolved into distinctive host races that specialize on different hosts, a possibility that warrants further investigation. PMID:18510584

  15. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis

    PubMed Central

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD. PMID:28270609

  16. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis.

    PubMed

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-03-21

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD.

  17. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say).

    PubMed

    Kalsi, Megha; Palli, Subba Reddy

    2017-04-01

    Colorado potato beetle (CPB), Leptinotarsa decemlineata is a notorious pest of potato. Co-evolution with Solanaceae plants containing high levels of toxins (glycoalkaloids) helped this insect to develop an efficient detoxification system and resist almost every chemical insecticide introduced for its control. Even though the cross-resistance between plant allelochemicals and insecticides is well acknowledged, the underlying molecular mechanisms are not understood. Here, we investigated the molecular mechanisms involved in detoxification of potato plant allelochemicals and imidacloprid resistance in the field-collected CPB. Our results showed that the imidacloprid-resistant beetles employ metabolic detoxification of both potato plant allelochemicals and imidacloprid by upregulation of common cytochrome P450 genes. RNAi aided knockdown identified four cytochromes P450 genes (CYP6BJ(a/b), CYP6BJ1v1, CYP9Z25, and CYP9Z29) that are required for defense against both natural and synthetic chemicals. These P450 genes are regulated by the xenobiotic transcription factors Cap n Collar C, CncC and muscle aponeurosis fibromatosis, Maf. Studies on the CYP9Z25 promoter using the luciferase reporter assay identified two binding sites (i.e. GCAGAAT and GTACTGA) for CncC and Maf. Overall, these data showed that CPB employs the metabolic resistance mediated through xenobiotic transcription factors CncC and Maf to regulate multiple P450 genes and detoxify both imidacloprid and potato plant allelochemicals.

  18. Cytochrome P450 and actin genes expressed in Helicoverpa zea and Helicoverpa armigera: paralogy/orthology identification, gene conversion and evolution.

    PubMed

    Li, Xianchun; Berenbaum, May R; Schuler, Mary A

    2002-03-01

    Molecular phylogenetic analysis was conducted using conserved cytoplasmic actin and diversified cytochrome P450 (P450) sequences isolated from Helicoverpa zea and Helicoverpa armigera, two species thought to be closely related based on allozyme analyses. These sequences were compared in turn with published sequences from other insects to gain insight into how different gene families evolve. In Bombyx mori and these Helicoverpa species, cytoplasmic actin genes are present as a pair of tandemly duplicated paralogs with coding sequence identities as high as 95.5% (B. mori), 98.9% (H. zea) and 98.5% (H. armigera) due to recent 5'-polar gene conversions. Phylogeny and interspecies comparisons assign the six actin genes into two orthologous groups: HaA3a/HzA3a/BmA3 and HaA3b/HzA3b/BmA4, which exhibit more similarities between H. zea and H. armigera than between Helicoverpa species and B. mori. Like the actin genes in H. zea, four CYP6B genes exist as two pairs of duplicated paralogs with recent 5'-polar gene conversions. Interspecific comparisons and phylogeny analysis identified three groups of orthologous CYP6B genes: H. zea CYP6B8 or CYP6B28/H. armigera CYP6B7, H. zea CYP6B27/H. armigera CYP6B6, and H. zea CYP6B9/H. armigera CYP6B2/Heliothis virescens CYP6B10. The low degree of divergence in the first two of these groups is comparable to allelic variation within a single species. These orthologous relationships and the high degrees of similarity in both actin and P450 genes strongly indicate that these Helicoverpa species are extremely closely related.

  19. Dextromethorphan and debrisoquine metabolism and polymorphism of the gene for cytochrome P450 isozyme 2D50 in Thoroughbreds.

    PubMed

    Corado, Carley R; McKemie, Daniel S; Knych, Heather K

    2016-09-01

    OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-β-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored. RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50.

  20. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Chen, Nan; Fan, Yong-Liang; Bai, Yu; Li, Xiang-Dong; Zhang, Zhan-Feng; Liu, Tong-Xian

    2016-09-01

    Terrestrial insects deposit a layer of hydrocarbons (HCs) as waterproofing agents on their epicuticle. The insect-specific CYP4G genes, subfamily members of P450, have been found in all insects with sequenced genomes to date. They are critical for HC biosynthesis in Drosophila; however, their functional roles in other insects including the piercing-sucking hemipterous aphids remain unknown. In this study, we presented the molecular characterization and a functional study of the CYP4G51 gene in the pea aphid, Acyrthosiphon pisum (Harris). CYP4G51 transcript was detectable across the whole life cycle of A. pisum, and was prominently expressed in the aphid head and abdominal cuticle. Up-regulation of CYP4G51 under desiccation stress was more significant in the third instar nymphs compared with the adults. Also, up-regulation of CYP4G51 was observed when the aphids fed on an artificial diet compared with those fed on the broad bean plant, and was positively correlated with a high level of cuticular HCs (CHCs). RNAi knockdown of CYP4G51 significantly reduced its expression and caused reductions in both internal and external HCs. A deficiency in CHCs resulted in aphids being more susceptible to desiccation, with increased mortality under desiccation stress. The current results confirm that CYP4G51 modulates HC biosynthesis to protect aphids from desiccation. Moreover, our data also indicate that saturated and straight-chain HCs play a major role in cuticular waterproofing in the pea aphid. A. pisum CYP4G51 could be considered as a novel RNAi target in the field of insect pest management.

  1. Differences in the Epigenetic Regulation of Cytochrome P450 Genes between Human Embryonic Stem Cell-Derived Hepatocytes and Primary Hepatocytes.

    PubMed

    Park, Han-Jin; Choi, Young-Jun; Kim, Ji Woo; Chun, Hang-Suk; Im, Ilkyun; Yoon, Seokjoo; Han, Yong-Mahn; Song, Chang-Woo; Kim, Hyemin

    2015-01-01

    Human pluripotent stem cell-derived hepatocytes have the potential to provide in vitro model systems for drug discovery and hepatotoxicity testing. However, these cells are currently unsuitable for drug toxicity and efficacy testing because of their limited expression of genes encoding drug-metabolizing enzymes, especially cytochrome P450 (CYP) enzymes. Transcript levels of major CYP genes were much lower in human embryonic stem cell-derived hepatocytes (hESC-Hep) than in human primary hepatocytes (hPH). To verify the mechanism underlying this reduced expression of CYP genes, including CYP1A1, CYP1A2, CYP1B1, CYP2D6, and CYP2E1, we investigated their epigenetic regulation in terms of DNA methylation and histone modifications in hESC-Hep and hPH. CpG islands of CYP genes were hypermethylated in hESC-Hep, whereas they had an open chromatin structure, as represented by hypomethylation of CpG sites and permissive histone modifications, in hPH. Inhibition of DNA methyltransferases (DNMTs) during hepatic maturation induced demethylation of the CpG sites of CYP1A1 and CYP1A2, leading to the up-regulation of their transcription. Combinatorial inhibition of DNMTs and histone deacetylases (HDACs) increased the transcript levels of CYP1A1, CYP1A2, CYP1B1, and CYP2D6. Our findings suggest that limited expression of CYP genes in hESC-Hep is modulated by epigenetic regulatory factors such as DNMTs and HDACs.

  2. Differences in the Epigenetic Regulation of Cytochrome P450 Genes between Human Embryonic Stem Cell-Derived Hepatocytes and Primary Hepatocytes

    PubMed Central

    Park, Han-Jin; Choi, Young-Jun; Kim, Ji Woo; Chun, Hang-Suk; Im, Ilkyun; Yoon, Seokjoo; Han, Yong-Mahn; Song, Chang-Woo; Kim, Hyemin

    2015-01-01

    Human pluripotent stem cell-derived hepatocytes have the potential to provide in vitro model systems for drug discovery and hepatotoxicity testing. However, these cells are currently unsuitable for drug toxicity and efficacy testing because of their limited expression of genes encoding drug-metabolizing enzymes, especially cytochrome P450 (CYP) enzymes. Transcript levels of major CYP genes were much lower in human embryonic stem cell-derived hepatocytes (hESC-Hep) than in human primary hepatocytes (hPH). To verify the mechanism underlying this reduced expression of CYP genes, including CYP1A1, CYP1A2, CYP1B1, CYP2D6, and CYP2E1, we investigated their epigenetic regulation in terms of DNA methylation and histone modifications in hESC-Hep and hPH. CpG islands of CYP genes were hypermethylated in hESC-Hep, whereas they had an open chromatin structure, as represented by hypomethylation of CpG sites and permissive histone modifications, in hPH. Inhibition of DNA methyltransferases (DNMTs) during hepatic maturation induced demethylation of the CpG sites of CYP1A1 and CYP1A2, leading to the up-regulation of their transcription. Combinatorial inhibition of DNMTs and histone deacetylases (HDACs) increased the transcript levels of CYP1A1, CYP1A2, CYP1B1, and CYP2D6. Our findings suggest that limited expression of CYP genes in hESC-Hep is modulated by epigenetic regulatory factors such as DNMTs and HDACs. PMID:26177506

  3. Genetic polymorphisms of cytochrome P450cl7alpha (CYP17) and progesterone receptor genes (PROGINS) in the assessment of endometriosis risk.

    PubMed

    De Carvalho, Cristina Valleta; Nogueira-De-Souza, Naiara Correa; Costa, Ana Maria Massad; Baracat, Edmund Chada; Girão, Manoel J B C; D'Amora, Paulo; Schor, Eduardo; da Silva, Ismael D C G

    2007-01-01

    We designed the present study in order to evaluate the eventual role of polymorphisms in the genes encoding cytochrome P450c17alpha (CYP17) and the progesterone receptor (PROGINS) as risk factors for endometriosis development. Eligible cases consisted of 121 women with surgically confirmed endometriosis who underwent treatment in a hospital in São Paulo, Brazil during the period from September 2003 to September 2005. The 281 controls were participants with normal gynecological as well as pelvic ultrasound evaluation, who did not have any gynecological conditions during their reproductive lives such as pelvic pain and/or dyspareunia nor infertility history. Genomic DNA was obtained from buccal cells and processed for DNA extraction using the GFX DNA extraction kit (GE Healthcare). The CYP17 (-34T-->C) polymerase chain reaction-restriction fragment length polymorphism assay has been described previously, as has the progesterone receptor polymorphism (PROGINS) detection assay. PROGINS heterozygosis genotype frequencies were shown to be statistically higher in endometriosis cases compared with controls. On the other hand, differences in the CYP17 polymorphism (-34T-->C) frequencies were not even close to significance (p = 0.278) according to our findings.

  4. RNAi construct of a P450 gene blocks an early step in Hemigossypolone and Gossypol synthesis in transgenic cotton plants

    USDA-ARS?s Scientific Manuscript database

    Naturally occurring terpenoid aldehydes from cotton such as gossypol, hemigossypolone, and heliocides, are important components of disease and herbivory resistance in cotton. These terpenoids are predominately found in the glands. Differential screening identified a P450 cDNA clone (GHC28) that on...

  5. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis

    PubMed Central

    Höfer, Rene; Briesen, Isabel; Beck, Martina; Pinot, Franck; Schreiber, Lukas; Franke, Rochus

    2008-01-01

    The lipophilic biopolyester suberin forms important boundaries to protect the plant from its surrounding environment or to separate different tissues within the plant. In roots, suberin can be found in the cell walls of the endodermis and the hypodermis or periderm. Apoplastic barriers composed of suberin accomplish the challenge to restrict water and nutrient loss and prevent the invasion of pathogens. Despite the physiological importance of suberin and the knowledge of the suberin composition of many plants, very little is known about its biosynthesis and the genes involved. Here, a detailed analysis of the Arabidopsis aliphatic suberin in roots at different developmental stages is presented. This study demonstrates some variability in suberin amount and composition along the root axis and indicates the importance of ω-hydroxylation for suberin biosynthesis. Using reverse genetics, the cytochrome P450 fatty acid ω-hydroxylase CYP86A1 (At5g58860) has been identified as a key enzyme for aliphatic root suberin biosynthesis in Arabidopsis. The corresponding horst mutants show a substantial reduction in ω-hydroxyacids with a chain length

  6. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines.

    PubMed

    Scheer, Nico; Kapelyukh, Yury; Chatham, Lynsey; Rode, Anja; Buechel, Sandra; Wolf, C Roland

    2012-12-01

    Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction.

  7. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae).

    PubMed

    Liu, Su; Liang, Qing-Mei; Huang, Yuan-Jie; Yuan, Xin; Zhou, Wen-Wu; Qiao, Fei; Cheng, Jiaan; Gurr, Geoff M; Zhu, Zeng-Rong

    2013-01-01

    NADPH-cytochrome P450 reductase (CPR) is one of the most important components of the cytochrome P450 enzyme system. It catalyzes electron transfer from NADPH to all known P450s, thus plays central roles not only in the metabolism of exogenous xenobiotics but also in the regulation of endogenous hormones in insects. In this study, a full-length cDNA encoding of a CPR (named CsCPR) was isolated from the Asiatic rice striped stem borer, Chilo suppressalis, by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. The cDNA contains a 2061 bp open reading frame, which encodes an enzyme of 686 amino acid residues, with a calculated molecular mass of 77.6 kDa. The deduced peptide has hallmarks of typical CPR, including an N-terminal membrane anchor and the FMN, FAD and NADPH binding domains. The N-terminal-truncated protein fused with a 6 × His·tag was heterologously expressed in Escherichia coli Rosetta (DE3) cells and purified, specific activity and the Km values of the recombinant enzyme were determined. Tissue- and developmental stage-dependent expression of CsCPR mRNA was investigated by real-time quantitative PCR. The CsCPR mRNA was noticeably expressed in the digestive, metabolic, and olfactory organs of the larvae and adults of C. suppressalis. Our initial results would provide valuable information for further study on the interactions between CPR and cytochrome P450 enzyme systems.

  8. Ah Receptor-mediated impairment of interrenal steroidogenesis involves StAR protein and P450scc gene attenuation in rainbow trout.

    PubMed

    Aluru, Neelakanteswar; Renaud, Rick; Leatherland, John F; Vijayan, Mathilakath M

    2005-04-01

    The objective of the study was to investigate the impact of aryl hydrocarbon receptor (AhR) activation on interrenal steroidogenesis in rainbow trout. To this end, fish were fed AhR agonist (beta-naphthoflavone (BNF): 10 mg/kg body mass/day) and antagonist (alpha-naphthoflavone (ANF): 10 mg/kg body mass/day) either singly or in combination (ABNF) for 5 days to elucidate the mechanisms involved in AhR-mediated depression of cortisol production. Liver AhR protein expression was significantly elevated only with ABNF, but not with BNF and ANF compared to the control group. However, all three treatments (BNF, ANF, and ABNF) significantly elevated cytochrome P450 1A1 (CYP1A1) gene and protein expression in the kidney and liver, respectively. Also, these three treatment groups had significantly depressed ACTH-stimulated cortisol production in vitro compared to the control group. This attenuation of interrenal steroidogenesis corresponded with a lower mRNA abundance of steroidogenic acute regulatory (StAR) protein and cytochrome P450 cholesterol side chain cleavage enzyme (P450scc), but not 11beta-hydroxylase. Furthermore, in vitro incubation of head kidney pieces with 7-3H-pregnenolone failed to show any treatment effects on pathways downstream of P450scc, except for a significantly higher conversion to progesterone in the BNF and ANF groups. Plasma cortisol and glucose levels showed no significant change between the treated groups and control, but liver and brain glucocorticoid receptor (GR) protein expression was higher in the BNF group, and ANF abolished this response. Taken together, both BNF and ANF impaired cortisol production, and the mechanism may involve attenuation of StAR and P450scc, the rate limiting steps in steroidogenesis. Overall, endocrine disruption by xenobiotics acting via AhR includes impaired cortisol biosynthesis and abnormal cortisol target tissue GR responses in rainbow trout.

  9. Formation of P450P450 Complexes and Their Effect on P450 Function

    PubMed Central

    Reed, James R.; Backes, Wayne L.

    2011-01-01

    Cytochromes P450 (P450) are membrane-bound enzymes that catalyze the monooxygenation of a diverse array of xenobiotic and endogenous compounds. The P450s responsible for foreign compound metabolism generally are localized in the endoplasmic reticulum of the liver, lung and small intestine. P450 enzymes do not act alone but require an interaction with other electron transfer proteins such as NADPH-cytochrome P450 reductase (CPR) and cytochrome b5. Because P450s are localized in the endoplasmic reticulum with these and other ER-resident proteins, there is a potential for protein-protein interactions to influence P450 function. There has been increasing evidence that P450 enzymes form complexes in the ER, with compelling support that formation of P450P450 complexes can significantly influence their function. Our goal is to review the research supporting the formation of P450P450 complexes, their specificity, and how drug metabolism may be affected. This review describes the potential mechanisms by which P450s may interact, and provides evidence to support each of the possible mechanisms. Additionally, evidence for the formation of both heteromeric and homomeric P450 complexes are reviewed. Finally, direct physical evidence for P450 complex formation in solution and in membranes is summarized, and questions directing the future research of functional P450 interactions are discussed with respect to their potential impact on drug metabolism. PMID:22155419

  10. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2017-09-23

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  11. Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis.

    PubMed

    Wang, Baoju; Shahzad, Muhammad Faisal; Zhang, Zan; Sun, Haina; Han, Ping; Li, Fei; Han, Zhaojun

    2014-01-10

    The Cytochrome P450 (CYP) superfamily is a large group of ancient proteins with enzymatic activities involved in various physiological processes. The rice striped stem borer, Chilo suppressalis, is an important insect pest in rice production. Here, we report the identification and characterization of 77 CYP genes from rice striped stem borer (SSB) through genome and transcriptome sequence analyses. All these CYP genes were confirmed by RT-PCR and direct sequencing. Twenty-eight CYP transcripts have full open reading frame (ORF) and four additional transcripts have a nearly full length coding region. The SSB CYP genes were classified into four clans, the mitochondrial, CYP2, CYP3, and CYP4. Phylogenetic analysis indicated that there was an apparent expansion of the CYP3 clan in insects. The CYP6AB subfamily of the CYP3 clan had nine members in SSB. Evolutionary analysis showed that this subfamily was expanded only in lepidopteran insects. In this study, we identified a new P450 subfamily, CYP321F, which is unique to SSB and located in the genome as tandem repeats. Our work provided a foundation for future studies on the functions and mechanism of P450s in the destructive rice pest.

  12. Novel Detection of Insecticide Resistance Related P450 Genes and Transcriptome Analysis of the Hemimetabolous Pest Erthesina fullo (Thunberg) (Hemiptera: Heteroptera)

    PubMed Central

    Liu, Yang; Wu, Haoyang; Xie, Qiang; Bu, Wenjun

    2015-01-01

    Erthesina fullo (Thunberg, 1783) is an economically important heteropteran species in China. Since only three nucleotide sequences of this species (COI, 16S rRNA, and 18S rRNA) appear in the GenBank database so far, no analysis of the molecular mechanisms underlying E. fullo’s resistance to insecticide and environmental stress has been accomplished. We reported a de novo assembled and annotated transcriptome for adult E. fullo using the Illumina sequence system. A total of 53,359,458 clean reads of 4.8 billion nucleotides (nt) were assembled into 27,488 unigenes with an average length of 750 bp, of which 17,743 (64.55%) were annotated. In the present study, we identified 88 putative cytochrome P450 sequences and analyzed the evolution of cytochrome P450 superfamilies, genes of the CYP3 clan related to metabolizing xenobiotics and plant natural compounds, in E. fullo, increasing the candidate genes for the molecular mechanisms of insecticide resistance in P450. The sequenced transcriptome greatly expands the available genomic information and could allow a better understanding of the mechanisms of insecticide resistance at the systems biology level. PMID:25955554

  13. Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-01-29

    Cytochrome P450s play an important role in plant growth and are involved in multiple stresses response. However, little is known about the functions of cytochrome P450s in apple. Here, a Malus × domestica cytochrome P450 monooxygenase 1 gene, MdCYPM1, was identified and subsequently cloned from apple 'Gala' (Malus × domestica). To verify the functions of MdCYPM1, we generated transgenic Arabidopsis plants expressing the apple MdCYPM1 gene under the control of the Cauliflower mosaic virus 35S promoter. Four transgenic lines (#3, #5, #7 and #8) were selected for further study. The transgenic plants exhibited a series of skotomorphogenesis phenotypes relative to wild-type controls, such as reduction of the chlorophyll, anthocyanins content and hypocotyls elongation. In addition, overexpression of MdCYPM1 influenced auxin transport and flowering time in transgenic Arabidopsis. Furthermore, MdCYPM1 expression was induced by salt and mannitol treatments, and the transgenic plants were negatively regulated by salinity and osmotic stresses during germination. These results suggest that MdCYPM1 plays a vital role in plant growth and development. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Human cytochromes P450 in health and disease

    PubMed Central

    Nebert, Daniel W.; Wikvall, Kjell; Miller, Walter L.

    2013-01-01

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  15. A world of cytochrome P450s.

    PubMed

    Nelson, David R

    2013-02-19

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450.

  16. Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2012-03-01

    Cytochrome P450 family members participate in xenobiotic transformation as a detoxification mechanism. We have characterized a CYP gene, assigned to the 4G family, in Chironomus riparius, a reference organism in aquatic toxicology. Due to the potential interest of CYP genes and P450 proteins for monitoring pollution effects at the molecular level, the alterations in the pattern of expression of this gene, induced by different xenobiotics, were analyzed. Different compounds, such as the biocide tributyltin (TBTO) and two other well-known endocrine disruptors, nonylphenol (NP) and bisphenol A (BPA), were tested at different concentrations and acute exposures. Upregulation of the CrCYP4G gene was found after exposures to TBTO (1 ng/L 24h-0.1 ng/L 96 h) and, as measured by RT-PCR mRNA quantification, its level was up to twofold that of controls. However, in contrast, NP (1, 10, 100 μg/L, 24h) and BPA (0.5mg/L 24h-3mg/L 96 h) downregulated the gene (by around a half of the control level) suggesting that this gene responds specifically to particular chemicals in the environment. Glutathione-S-transferase (GST) enzymatic activity was also evaluated for each condition. A fairly good correlation was found with CYP4G gene behavior, as it was activated by TBTO (96 h), but inhibited by NP and BPA (24h). Only the higher concentration of BPA tested activated GST, whereas it inhibited CYP4G activity. The results show that different xenobiotics can induce distinct responses in the detoxification pathway, suggesting multiple xenobiotic transduction mechanisms. This work confirms that specific P450 codifying genes, as well as GST enzyme activities, could be suitable biomarkers for ecotoxicological studies.

  17. Variation in Human Cytochrome P-450 Drug-Metabolism Genes: A Gateway to the Understanding of Plasmodium vivax Relapses

    PubMed Central

    Silvino, Ana Carolina Rios; Costa, Gabriel Luiz; de Araújo, Flávia Carolina Faustino; Ascher, David Benjamin; Pires, Douglas Eduardo Valente; Fontes, Cor Jesus Fernandes; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves; Sousa, Tais Nobrega

    2016-01-01

    Although Plasmodium vivax relapses are classically associated with hypnozoite activation, it has been proposed that a proportion of these cases are due to primaquine (PQ) treatment failure caused by polymorphisms in cytochrome P-450 2D6 (CYP2D6). Here, we present evidence that CYP2D6 polymorphisms are implicated in PQ failure, which was reinforced by findings in genetically similar parasites, and may explain a number of vivax relapses. Using a computational approach, these polymorphisms were predicted to affect the activity of CYP2D6 through changes in the structural stability that could lead to disruption of the PQ-enzyme interactions. Furthermore, because PQ is co-administered with chloroquine (CQ), we investigated whether CQ-impaired metabolism by cytochrome P-450 2C8 (CYP2C8) could also contribute to vivax recurrences. Our results show that CYP2C8-mutated patients frequently relapsed early (<42 days) and had a higher proportion of genetically similar parasites, suggesting the possibility of recrudescence due to CQ therapeutic failure. These results highlight the importance of pharmacogenetic studies as a tool to monitor the efficacy of antimalarial therapy. PMID:27467145

  18. A Glycine Insertion in the Estrogen-Related Receptor (ERR) Is Associated with Enhanced Expression of Three Cytochrome P450 Genes in Transgenic Drosophila melanogaster

    PubMed Central

    Sun, Weilin; Valero, M. Carmen; Seong, Keon Mook; Steele, Laura D.; Huang, I-Ting; Lee, Chien-Hui; Clark, John M.; Qiu, Xinghui; Pittendrigh, Barry R.

    2015-01-01

    Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4’-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera. PMID:25761142

  19. Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation.

    PubMed

    Srivastava, Sudhakar; Sangwan, Rajender Singh; Tripathi, Sandhya; Mishra, Bhawana; Narnoliya, L K; Misra, L N; Sangwan, Neelam S

    2015-11-01

    Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control

  20. Human ethanol-inducible P450IIE1: complete gene sequence, promoter characterization, chromosome mapping, and cDNA-directed expression

    SciTech Connect

    Umeno, M.; McBride, W.; Yang, C.S.; Gelboin, H.V.; Gonzalez, F.J.

    1988-12-13

    The human P450IIE1 gene, coding for an ethanol-inducible nitrosamine-metabolizing P-450, was isolated from a lambdaEMBL3 genomic library and completely sequenced. The human gene spanned 11413 base pairs and contained nine exons and a typical TATA box. Upstream and downstream DNAs of 2788 and 559 base pairs were also sequenced and compared to the rat gene. Significant areas of sequence similarity were observed within 140 base pairs upstream of the transcription start site in the rat and human genes. Human DNA 539 base pairs upstream of the transcription start site was inserted into the expression vector pSVOAL..delta..5', and luciferase activity was detected when the constructs were introduced into a rat hepatoma cell line. The activity was over 100-fold lower than that of pRSVL, a Rous sarcoma virus LTR-driven luciferase gene. By use of panel of rodent-human cell hybrids, the gene was mapped to chromosome 10 (CYP2E locus). A full-length cDNA, constructed with the first exon of the genomic clone and a partial cDNA clone, was expressed in COS cells and found to code for N-nitrosodimethylamine demethylase activity.

  1. Genomic and bioinformatic analysis of NADPH-cytochrome P450 reductase in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suwanchaichinda, C; Brattsten, L B

    2014-01-01

    The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Genomic and Bioinformatic Analysis of NADPH-Cytochrome P450 Reductase in Anopheles stephensi (Diptera: Culicidae)

    PubMed Central

    Suwanchaichinda, C.; Brattsten, L. B.

    2014-01-01

    Abstract The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system. PMID:25368081

  3. Comparison of orthologous cytochrome P450 genes relative expression patterns in the bark beetles Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae) during host colonization.

    PubMed

    Obregón-Molina, G; Cesar-Ayala, A K; López, M F; Cano-Ramírez, C; Zúñiga, G

    2015-12-01

    Bark beetles of the genus Dendroctonus are important components of coniferous forests. During host colonization, they must overcome the chemical defences of their host trees, which are metabolized by cytochrome P450 (CYP or P450) enzymes to compounds that are readily excreted. In this study, we report the relative expression (quantitative real-time PCR) of four orthologous cytochrome P450 genes (CYP6BW5, CYP6DG1, CYP6DJ2 and CYP9Z20) in Dendroctonus rhizophagus and Dendroctonus valens forced to attack host trees at 8 and 24 h following forced attack and in four stages during natural colonization [solitary females boring the bark (T1); both male and female members of couples before oviposition (T2); both male and female members of couples during oviposition (T3), and solitary females inside the gallery containing eggs (T4)]. For both species gene expression was different compared with that observed in insects exposed to single monoterpenes in the laboratory, and the expression patterns were significantly different amongst species, sex, gut region and exposure time or natural colonization stage. The induction of genes (CYP6BW5v1, CYP6DJ2v1 and CYP9Z20v1 from D. rhizophagus, as well as CYP6DG1v3 from D. valens) correlated with colonization stage as well as with the increase in oxygenated monoterpenes in the gut of both species throughout the colonization of the host. Our results point to different functions of these orthologous genes in both species. © 2015 The Royal Entomological Society.

  4. Characterization of orphan human cytochromes P450.

    PubMed

    Stark, Katarina; Guengerich, F Peter

    2007-01-01

    Of the 57 human cytochromes P450 (P450) and 58 pseudogenes discovered to date, (http://drnelson.utmem.edu/CytochromeP450.html ), 1/4 still remain "orphans" in the sense that their function, expression sites, and regulation are still largely not elucidated. The post-human genome-sequencing project era has presented the research community with novel challenges. Despite many insights gathered about gene location and genetic variations in our human genome, we still lack important knowledge about these novel P450 enzymes and their functions in endogenous and exogenous metabolism, as well as their possible roles in the metabolism of toxicants and carcinogens. Our own list of such orphans currently consists of 13 members: P450 2A7, 2S1, 2U1, 2W1, 3A43, 4A22, 4F11, 4F22, 4V2, 4X1, 4Z1, 20A1, and 27C1. Some of the orphans, e.g. P450s 2W1 and 2U1, already have putative assigned functions in arachidonic acid metabolism and may activate carcinogens. However, at this point, for the majority of them more knowledge is available about their genes and single nucleotide polymorphisms than of their biological functions. It is noteworthy that most P450 orphans express high interspecies sequence conservation and have orthologs in rodents (e.g. CYP4X1/Cyp4x1, CYP4V2/Cyp4v3). This review summarizes recent knowledge about the P450 orphans and questions remaining about their specific roles in human metabolism.

  5. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes.

    PubMed

    Cano-Ramírez, Claudia; López, María Fernanda; Cesar-Ayala, Ana K; Pineda-Martínez, Verónica; Sullivan, Brian T; Zúñiga, Gerardo

    2013-05-10

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i.e., the olfactory organs used for perception of airborne defensive monoterpenes as well as other host-associated compounds and pheromones). We identified ten new CYP genes in the pine beetle Dendroctonus rhizophagus in either antennae or gut tissue after stimulation with the vapors of major host monoterpenes α-pinene, β-pinene and 3-carene. Five genes belong to the CYP4 family, four to the CYP6 family and one to the CYP9 family. Differential expression of almost all of the CYP genes was observed between sexes, and within these significant differences among time, stimuli, anatomical region, and their interactions were found upon exposure to host monoterpenes. Increased expression of cytochrome P450 genes suggests that they play a role in the detoxification of monoterpenes released by this insect's host trees. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Quantitative Assessment of the Effect of Cytochrome P450 2C9 Gene Polymorphism and Colorectal Cancer

    PubMed Central

    Zhang, Liang; Wang, Yichao; Ma, Yushui; Zhang, Feng; Fu, Da; Wang, Xiaofeng

    2013-01-01

    CYP2C9 enzyme activity is involved in the metabolism of substances related to colorectal cancer (CRC), and it is functionally linked to a genetic polymorphism. Two allelic variants of the CYP2C9 gene, namely CYP2C9*2 and CYP2C9*3, differ from wild-type CYP2C9*1 by single amino acid substitutions. These mutated alleles encode enzymes with altered properties that are associated with impaired metabolism. In the past decade, a number of case-control studies have been carried out to investigate the relationship between the CYP2C9 polymorphism and CRC susceptibility, but the results were conflicting. To investigate this inconsistency, we performed a meta-analysis of 13 studies involving a total of 20,879 subjects for CYP2C9*2 and *3 polymorphisms to evaluate the effect of CYP2C9 on genetic susceptibility for CRC. Overall, the summary odds ratio of CRC was 0.94 (95%CI: 0.87–1.03, P = 0.18) and 1.00 (95%CI: 0.86–1.16, P = 0.99) for CYP2C9 *2 and *3 carriers, respectively. No significant results were observed in heterozygous and homozygous when compared with wild genotype for these polymorphisms. In the stratified analyses according to ethnicity, sample size, diagnostic criterion, HWE status and sex, no evidence of any gene-disease association was obtained. Our result suggest that the *2, *3 polymorphisms of CYP2C9 gene are not associated with CRC susceptibility. PMID:23577132

  7. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor

    PubMed Central

    Tian, Zhenghua; Cheng, Qian; Yoshimoto, Francis K.; Lei, Li; Lamb, David C.; Guengerich, F. Peter

    2013-01-01

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed ‘bld’ (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules. PMID:23357279

  8. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  9. A novel cytochrome P450 CYP6AB14 gene in spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  10. Effects of phenol on ovarian P450arom gene expression and aromatase activity in vivo and antioxidant metabolism in common carp Cyprinus carpio.

    PubMed

    Das, Sumana; Majumder, Suravi; Gupta, Shreyasi; Dutta, Sharmistha; Mukherjee, Dilip

    2016-02-01

    Ovarian cyp19a mRNA expression and P450 aromatase activity were measured in vivo in common carp Cyprinus carpio exposed to phenol for 96 h. Production of reactive oxygen species (ROS) and parameters of antioxidant defense system in serum ovary and liver of this fish after long-term phenol exposure were also studied. In vivo exposure of fish to sublethal dose of phenol for 96 h caused marked attenuation of ovarian cyp19a1a gene expression and P450 aromatase activity. Production of ROS like hydrogen peroxide and hydroxyl radicals in serum, liver and ovary in fish exposed to phenol for 15 days elevated significantly from day 1 to day 7 with no further significant increase thereafter compared to their respective control values. Total superoxide dismutase (SOD) and catalase activities in serum and ovary decreased gradually and significantly from day 1 to day 4, which then increased significantly for the rest of the exposure days. Liver SOD activity seemed to be distinctly responsive to phenol. SOD activity in liver of phenol-exposed fish started to increase gradually from day 1 to 4 with no further increase thereafter. Catalase activities in all the tissues showed significant inhibition up to day 4 which then increased gradually and significantly up to day 15 of phenol exposure compared to their respective control values. From our results, it appears that sublethal dose of phenol has the endocrine disruptive potential and effect is mediated via inhibition of ovarian P450arom gene expression and aromatase activity in vivo. Sublethal dose of phenol also caused oxidative stress, and antioxidant systems are very much effective to prevent the damages caused by the generation of ROS.

  11. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens

    PubMed Central

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-01-01

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance. Furthermore, we analyzed the interaction of imidacloprid and CYP6ER1 monooxygenase by using dynamic simulations and molecular docking. We found that Nitrogen atoms in the heterocycle of the imidacloprid molecule may bind to iron atoms in the center of the homology model of CYP6ER1 via 4,5-dihedro-1H-imidazole. This finding contributes to a better understanding of how CYP6ER1 takes part in the insecticide metabolism. PMID:27721443

  12. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution.

  13. LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria.

    PubMed

    Yu, Zhitao; Zhang, Xueyao; Wang, Yiwen; Moussian, Bernard; Zhu, Kun Yan; Li, Sheng; Ma, Enbo; Zhang, Jianzhen

    2016-07-22

    Cytochrome P450 superfamily proteins play important roles in detoxification of xenobiotics and during physiological and developmental processes. To contribute to our understanding of this large gene family in insects, we have investigated the function of the cytochrome P450 gene LmCYP4G102 in the migratory locust Locusta migratoria. Suppression of LmCYP4G102 expression by RNA interference (RNAi) does not interfere with moulting but causes rapid loss of body weight - probably due to massive loss of water, and death soon after moulting. Accordingly, maintaining these animals at 90% relative humidity prevented lethality. Consistently, RNAi against LmCYP4G102 provoked a decrease in the content of cuticular alkanes, which as an important fraction of cuticular hydrocarbons have been shown to confer desiccation resistance. In addition, the cuticle of LmCYP4G102-knockdown locusts was fragile and easier deformable than in control animals. Presumably, this phenotype is due to decreased amounts of cuticular water that is reported to modulate cuticle mechanics. Interestingly, LmCYP4G102 was not expressed in the epidermis that produces the cuticle but in the sub-epdiermal hepatocyte-like oenocytes. Together, our results suggest that the oenocyte-specific LmCYP4G102 plays a critical role in the synthesis of cuticular hydrocarbons, which are important for cuticle waterproofing and mechanical stability in L. migratoria.

  14. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus

    PubMed Central

    Ishak, Intan H.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  15. LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria

    PubMed Central

    Yu, Zhitao; Zhang, Xueyao; Wang, Yiwen; Moussian, Bernard; Zhu, Kun Yan; Li, Sheng; Ma, Enbo; Zhang, Jianzhen

    2016-01-01

    Cytochrome P450 superfamily proteins play important roles in detoxification of xenobiotics and during physiological and developmental processes. To contribute to our understanding of this large gene family in insects, we have investigated the function of the cytochrome P450 gene LmCYP4G102 in the migratory locust Locusta migratoria. Suppression of LmCYP4G102 expression by RNA interference (RNAi) does not interfere with moulting but causes rapid loss of body weight - probably due to massive loss of water, and death soon after moulting. Accordingly, maintaining these animals at 90% relative humidity prevented lethality. Consistently, RNAi against LmCYP4G102 provoked a decrease in the content of cuticular alkanes, which as an important fraction of cuticular hydrocarbons have been shown to confer desiccation resistance. In addition, the cuticle of LmCYP4G102-knockdown locusts was fragile and easier deformable than in control animals. Presumably, this phenotype is due to decreased amounts of cuticular water that is reported to modulate cuticle mechanics. Interestingly, LmCYP4G102 was not expressed in the epidermis that produces the cuticle but in the sub-epdiermal hepatocyte-like oenocytes. Together, our results suggest that the oenocyte-specific LmCYP4G102 plays a critical role in the synthesis of cuticular hydrocarbons, which are important for cuticle waterproofing and mechanical stability in L. migratoria PMID:27444410

  16. Cytochrome P450, CYP93A1, as a defense marker in soybean

    USDA-ARS?s Scientific Manuscript database

    CYP93A1 is a cytochrome P450 that is involved in the synthesis of the phytoalexin glyceollin in soybean (Glycine max L. Merr). The gene encoding CYP93A1 has been used as a defense marker in soybean cell cultures, however, little is known regarding how this gene is expressed in the intact plant. To f...

  17. The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum.

    PubMed

    Sang, Wen; Ma, Wei-Hua; Qiu, Lin; Zhu, Zhi-Hui; Lei, Chao-Liang

    2012-06-01

    Sunlight is an important environmental factor that affects all living organisms on Earth. Ultraviolet A (UV-A) is one of the many frequency bands found in sunlight. Many animals use UV-A to attain visual cues, for example, in foraging and mate selection. However, UV-A can also induce damage, such as oxidative stress, DNA lesions and apoptosis. In the present study, we investigated the effects of UV-A on the survival, fecundity and expression profiles of several stress-responsive genes belonging to the heat shock protein (Hsp) and the cytochrome CYP6BQ families from the adult red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). The results showed that short-term UV-A exposure (365 nm, <4h) did not influence the survival or fecundity of the beetles; however, Hsp27, Hsp68, Hsp83, CYP6BQ4 and CYP6BQ8 mRNA levels significantly increased during the first 2h of UV-A exposure. Among them, Hsp68 was the most highly up-regulated, increasing by 8.9-fold. These results indicate that these genes may participate in the defense against harmful UV-A radiation. In addition, we investigated the potential transcription factor binding motifs (TFBMs) in the promoter sequences of genes induced in similar pattern from the Hsp and P450 gene families; the results indicated that, these motifs are highly homologous to environmental stress transcription factor binding sites in mammals. Our experiments revealed that UV-A irradiation could influence the expression profile of stress-responsive genes, such as Hsps and P450s, which have universal TFBMs, and that these genes may be involved in reducing the ecological challenges posed by irradiation.

  18. Porcine Hypothalamic Aromatase Cytochrome P450: Isoform Characterization, Sex-Dependent Activity, Regional Expression, and Regulation by Enzyme Inhibition in Neonatal Boars

    USDA-ARS?s Scientific Manuscript database

    Domestic pigs have three CYP19 genes encoding functional paralogues of the enzyme aromatase cytochrome P450 (P450arom) that are expressed in the gonads, placenta and pre-implantation blastocyst. All catalyze estrogen synthesis, but the “gonadal” type enzyme is unique in also synthesizing a nonaromat...

  19. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns.

    PubMed

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong

    2017-09-01

    Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong

    2015-01-01

    Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261

  1. Expression of cytochrome P450 regulators in cynomolgus macaque.

    PubMed

    Uno, Yasuhiro; Yamazaki, Hiroshi

    2017-09-11

    1. Cytochrome P450 (P450) regulators including nuclear receptors and transcription factors have not been fully investigated in cynomolgus macaques, an important species used in drug metabolism studies. In this study, we analyzed 17 P450 regulators by sequence and phylogenetic analysis, and tissue expression. 2. Gene and genome structures of 17 P450 regulators were similar to the human orthologs, and the deduced amino acid sequences showed high sequence identities (92-95%) and more closely clustered in a phylogenetic tree, with the human orthologs. 3. Many of the P450 regulator mRNAs were preferentially expressed in the liver, kidney, and/or jejunum. Among the P450 regulator mRNAs, PXR was most abundant in the liver and jejunum, and HNF4α in the kidney. In the liver, the expression of most P450 regulator mRNAs did not show significant differential expression (>2.5-fold) between cynomolgus macaques bred in Cambodia, China, and Indonesia, or rhesus macaques. 4. By correlation analysis, most of the P450 regulators were significantly (p < 0.05) correlated to other P450 regulators, and many of them were also significantly (p < 0.05) correlated with P450s. 5. These results suggest that 17 P450 regulators of cynomolgus macaques had similar molecular characteristics to the human orthologs.

  2. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    PubMed Central

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  3. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance.

    PubMed

    Hu, Z; Lin, Q; Chen, H; Li, Z; Yin, F; Feng, X

    2014-12-01

    Insect cytochrome P450 monooxygenases (P450s) play an important role in catalysis of many reactions leading to insecticides resistance. Our previous studies on transcriptome analysis of chlorantraniliprole-resistant development in the diamondback moth, Plutella xylostella revealed that up-regulation of cytochrome P450s are one of the main factors leading to the development of chlorantraniliprole resistance. Here, we report for the first time a novel cytochrome P450 gene CYP321E1, which belongs to the cytochrome P450 gene family CYP321. Real-time quantitative PCR (RT-qPCR) analyses indicated that CYP321E1 was expressed at all developmental stages of P. xylostella but was highest in the fourth-instar larvae; furthermore, the relatively high expression was observed in the midgut of the fourth-instar larvae, followed by fat bodies and epidermis. The expression of CYP321E1 in P. xylostella was differentially affected by three representative insecticides, including alphamethrin, abamectin and chlorantraniliprole. Among them, the exposure to chlorantraniliprole resulted in the largest transcript level of this cytochrome P450 gene. The findings suggested potential involvement of CYP321E1 in chlorantraniliprole resistance of P. xylostella. To assess the functional link of CYP321E1 to chlorantraniliprole resistance, RNA interference (RNAi)-mediated gene silencing by double stranded RNA (dsRNA) injecting was used. Results revealed that injection delivery of dsRNA can greatly reduce gene expression after 24 h. As a consequence of RNAi, a significant increment in mortality of larvae injected CYP321E1 dsRNA was observed after 24 h of exposure to chlorantraniliprole. These results strongly support our notion that this novel cytochrome P450 gene plays an important role in chlorantraniliprole detoxification in the diamondback moth and is partly responsible for its resistance.

  4. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    PubMed

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant

  5. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    PubMed Central

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise

  6. Comparison of mercury sulfides with mercury chloride and methylmercury on hepatic P450, phase-2 and transporter gene expression in mice.

    PubMed

    Xu, S F; Wu, Q; Zhang, B B; Li, H; Xu, Y S; Du, Y Z; Wei, L X; Liu, J

    2016-09-01

    Zuotai (mainly β-HgS) and Zhusha (also called as cinnabar, mainly α-HgS) are used in traditional medicines in combination with herbs or even drugs in the treatment of various disorders, while mercury chloride (HgCl2) and methylmercury (MeHg) do not have known medical values but are highly toxic. This study aimed to compare the effects of mercury sulfides with HgCl2 and MeHg on hepatic drug processing gene expression. Mice were orally administrated with Zuotai (β-HgS, 30mg/kg), α-HgS (HgS, 30mg/kg), HgCl2 (33.6mg/kg), or MeHg (3.1mg/kg) for 7days, and the expression of genes related to phase-1 drug metabolism (P450), phase-2 conjugation, and phase-3 (transporters) genes were examined. The mercurials at the dose and duration used in the study did not have significant effects on the expression of cytochrome P450 1-4 family genes and the corresponding nuclear receptors, except for a slight increase in PPARα and Cyp4a10 by HgCl2. The expressions of UDP-glucuronosyltransferase and sulfotransferase were increased by HgCl2 and MeHg, but not by Zuotai and HgS. HgCl2 decreased the expression of organic anion transporter (Oatp1a1), but increased Oatp1a4. Both HgCl2 and MeHg increased the expression of multidrug resistance-associated protein genes (Mrp1, Mrp2, Mrp3, and Mrp4). Zuotai and HgS had little effects on these transporter genes. In conclusion, Zuotai and HgS are different from HgCl2 and MeHg in hepatic drug processing gene expression; suggesting that chemical forms of mercury not only affect their disposition and toxicity, but also affect their effects on the expression of hepatic drug processing genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. De novo sequence analysis of cytochrome P450 1-3 genes expressed in ostrich liver with highest expression of CYP2G19.

    PubMed

    Kawai, Yusuke K; Watanabe, Kensuke P; Ishii, Akihiro; Ohnuma, Aiko; Sawa, Hirofumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2013-09-01

    The cytochrome P450 (CYP) 1-3 families are involved in xenobiotic metabolism, and are expressed primarily in the liver. Ostriches (Struthio camelus) are members of Palaeognathae with the earliest divergence from other bird lineages. An understanding of genes coding for ostrich xenobiotic metabolizing enzyme contributes to knowledge regarding the xenobiotic metabolisms of other Palaeognathae birds. We investigated CYP1-3 genes expressed in female ostrich liver using a next-generation sequencer. We detected 10 CYP genes: CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2W2, CYP2AC1, CYP2AC2, CYP2AF1, and CYP3A37. We compared the gene expression levels of CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2AF1, and CYP3A37 in ostrich liver and determined that CYP2G19 exhibited the highest expression level. The mRNA expression level of CYP2G19 was approximately 2-10 times higher than those of other CYP genes. The other CYP genes displayed similar expression levels. Our results suggest that CYP2G19, which has not been a focus of previous bird studies, has an important role in ostrich xenobiotic metabolism.

  8. Cyp15F1: A novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite R. flavipes

    USDA-ARS?s Scientific Manuscript database

    Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...

  9. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  10. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. Sequences promoting the transcription of the human XA gene overlapping P450c21A correctly predict the presence of a novel, adrenal-specific, truncated form of tenascin-X

    SciTech Connect

    Tee, Meng Kian; Thomson, A.A.; Bristow, J.; Miller, W.L.

    1995-07-20

    A compact region in the human class III major histocompatibility locus contains the human genes for the fourth component of human complement (C4) and steroid 21-hydroxylase (P450c21) in one transcriptional orientation, while the gene for the extracellular matrix protein tenascin-X (TN-X) overlaps the last exon of P450c21 on the opposite strand of DNA in the opposite transcriptional orientation. This complex locus is duplicated into A and B loci, so that the organization is 5{prime}-C4A-21A-XA-C4B-21B-XB-3{prime}. Although this duplication event truncated the 65-kb X(B) gene to a 4.5-kb XA gene, the XA gene is transcriptionally active in the adrenal cortex. To examine the basis of the tissue-specific expression of XA and C4B, we cloned the 1763-bp region that lies between the cap sites for XA and C4B and analyzed its promoter activity in both the XA and the C4 orientations. Powerful, liver-specific sequences lie within the first 75 to 138 bp from the C4B cap site, and weaker elements lie within 128 bp of the XA cap site that function in both liver and adrenal cells. Because these 128 bp upstream from the XA cap site are perfectly preserved in the XB gene encoding TN-X, we sought to determine whether a transcript similar to XA arises within the SB gene. RNase protection assays, cDNA cloning, and RT/PCR show that adrenal cells contain a novel transcript, termed short XB (XB-S), which has the same open reading frame as TN-X. Cell-free translation and immunoblotting show that this transcript encodes a novel 74-kDa XB-S protein that is identical to the carboxy-terminal 673 residues of TN-X. Because this protein consists solely of fibronectin type III repeats and a fibrinogen-like domain, it appears to correspond to an evolutionary precursor of the tenascin family of extracellular matrix proteins. 40 refs., 6 figs.

  12. Engineering Cytochrome P450 Biocatalysts for Biotechnology, Medicine, and Bioremediation

    PubMed Central

    Kumar, Santosh

    2009-01-01

    Importance of the field: Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: 1) synthesis of novel drugs and drug metabolites, 2) targeted cancer gene therapy, 3) biosensor design, and 4) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. Areas covered in this review: In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency, and utilization of alternate oxidants. What the reader will gain: The review will provide a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine, and bioremediation. Take home message: Because of its wide applications, academic and pharmaceutical researchers, environmental scientists, and health care providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts. PMID:20064075

  13. Seasonal expression of P450arom and estrogen receptors in scented glands of muskrats (Ondatra zibethicus).

    PubMed

    Zhang, Haolin; Lu, Lu; Zhu, Manyu; Zhang, Fengwei; Sheng, Xia; Yuan, Zhengrong; Han, Yingying; Watanabe, Gen; Taya, Kazuyoshi; Weng, Qiang

    2017-03-01

    Male muskrats have one pair of scented glands that grow and involute annually. To investigate the annual changes in the scented gland, we measured the expressions of aromatase cytochrome P-450 (P450arom) and estrogen receptors (ERs) in the scented glands. P450arom was expressed in glandular cells and epithelial cells in the scented glands during the breeding season, and only in glandular cells during the nonbreeding season. ERα and ERβ were also detected in different types of cells in the scented gland during the breeding and nonbreeding seasons. Both mRNA and protein levels of P450arom, ERα, and ERβ were higher in the scented glandular tissues during the breeding season than those during the nonbreeding season. In addition, small RNA sequencing showed that the predicted targets of the significantly changed microRNAs might be the genes encoding P450arom and ERs. In conclusion, the seasonal changes in the expression of P450arom and ERs may be involved in the regulation of scented gland functions.

  14. Association of polymorphisms and haplotypes in the cytochrome P450 1B1 gene with uterine leiomyoma: A case control study

    PubMed Central

    SALIMI, SAEEDEH; KHODAMIAN, MARYAM; NAROOIE-NEJAD, MEHRNAZ; HAJIZADEH, AZAM; FAZELI, KIMIA; NAMAZI, LIDA; YAGHMAEI, MINOO

    2015-01-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus and estrogen metabolizing enzymes affect its promotion and progression. The aim of the present study was to evaluate the association between four single-nucleotide polymorphisms (SNPs) of the cytochrome P450 1B1 (CYP1B1) gene and UL risk. Four SNPs of the CYP1B1 gene in 105 UL patients and 112 unrelated healthy controls were genotyped using a direct sequencing method. Haplotype analyses were performed with UNPHASED software and linkage disequilibrium (LD) was assessed by Haploview software. There were no associations between Leu432Val (rs1056836), Asp449Asp (rs1056837) and Asn453Ser (rs1800440) polymorphisms of the CYP1B1 gene and UL. Although the genotypic frequencies of the Arg368His (rs79204362) polymorphism did not differ between the two groups, the frequency of A (His) allele was significantly higher in UL females (P=0.02). In addition, the frequency of GTAA haplotype was significantly higher in the controls and played a protective role in UL susceptibility. A strong LD between the three common SNPs (rs1056836, rs1056837 and rs1800440) in the CYP1B1 gene was observed in the population. In conclusion, a higher frequency of the CYP1B1 368His (A) allele was observed in UL females. The frequency of the GTAA haplotype was significantly higher in healthy females and this haplotype played a protective role in UL susceptibility. PMID:26075073

  15. Association of polymorphisms and haplotypes in the cytochrome P450 1B1 gene with uterine leiomyoma: A case control study.

    PubMed

    Salimi, Saeedeh; Khodamian, Maryam; Narooie-Nejad, Mehrnaz; Hajizadeh, Azam; Fazeli, Kimia; Namazi, Lida; Yaghmaei, Minoo

    2015-03-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus and estrogen metabolizing enzymes affect its promotion and progression. The aim of the present study was to evaluate the association between four single-nucleotide polymorphisms (SNPs) of the cytochrome P450 1B1 (CYP1B1) gene and UL risk. Four SNPs of the CYP1B1 gene in 105 UL patients and 112 unrelated healthy controls were genotyped using a direct sequencing method. Haplotype analyses were performed with UNPHASED software and linkage disequilibrium (LD) was assessed by Haploview software. There were no associations between Leu432Val (rs1056836), Asp449Asp (rs1056837) and Asn453Ser (rs1800440) polymorphisms of the CYP1B1 gene and UL. Although the genotypic frequencies of the Arg368His (rs79204362) polymorphism did not differ between the two groups, the frequency of A (His) allele was significantly higher in UL females (P=0.02). In addition, the frequency of GTAA haplotype was significantly higher in the controls and played a protective role in UL susceptibility. A strong LD between the three common SNPs (rs1056836, rs1056837 and rs1800440) in the CYP1B1 gene was observed in the population. In conclusion, a higher frequency of the CYP1B1 368His (A) allele was observed in UL females. The frequency of the GTAA haplotype was significantly higher in healthy females and this haplotype played a protective role in UL susceptibility.

  16. Immobilized Cytochrome P450 for Monitoring of P450-P450 Interactions and Metabolism.

    PubMed

    Bostick, Chris D; Hickey, Katherine M; Wollenberg, Lance A; Flora, Darcy R; Tracy, Timothy S; Gannett, Peter M

    2016-05-01

    Cytochrome P450 (P450) protein-protein interactions have been shown to alter their catalytic activity. Furthermore, these interactions are isoform specific and can elicit activation, inhibition, or no effect on enzymatic activity. Studies show that these effects are also dependent on the protein partner cytochrome P450 reductase (CPR) and the order of protein addition to purified reconstituted enzyme systems. In this study, we use controlled immobilization of P450s to a gold surface to gain a better understanding of P450-P450 interactions between three key drug-metabolizing isoforms (CYP2C9, CYP3A4, and CYP2D6). Molecular modeling was used to assess the favorability of homomeric/heteromeric P450 complex formation. P450 complex formation in vitro was analyzed in real time utilizing surface plasmon resonance. Finally, the effects of P450 complex formation were investigated utilizing our immobilized platform and reconstituted enzyme systems. Molecular modeling shows favorable binding of CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-CYP2C9, and CYP2C9-CYP3A4, in rank order.KDvalues obtained via surface plasmon resonance show strong binding, in the nanomolar range, for the above pairs, with CYP2C9-CYP2D6 yielding the lowestKD, followed by CYP2C9-CYP2C9, CYP2C9-CPR, and CYP2C9-CYP3A4. Metabolic incubations show that immobilized CYP2C9 metabolism was activated by homomeric complex formation. CYP2C9 metabolism was not affected by the presence of CYP3A4 with saturating CPR concentrations. CYP2C9 metabolism was activated by CYP2D6 at saturating CPR concentrations in solution but was inhibited when CYP2C9 was immobilized. The order of addition of proteins (CYP2C9, CYP2D6, CYP3A4, and CPR) influenced the magnitude of inhibition for CYP3A4 and CYP2D6. These results indicate isoform-specific P450 interactions and effects on P450-mediated metabolism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. ssociation of Cytochrome P450-1B1 Gene Polymorphisms with Risk of Breast Cancer: an Egyptian Study.

    PubMed

    Ibrahim, Mona H; Rashed, Reham A; Hassan, Naglaa M; Al-Azhary, Nevin M; Salama, Asmaa I; Mostafa, Marwa N

    2016-01-01

    It is thought that population characteristics of breast cancer may be due to a variation in the frequency of different alleles of genes such as CYP1B1. We aimed to determine the association of CYP1B1 polymorphisms in 200 breast cancer cases and 40 controls by PCR-RFLP. Frequencies were assessed with clinical and risk factors in Egyptian patients. The genotype LV and the Leu allele frequencies for patients and controls were 42.9% and 50%, and 52.9% and 53.3%, respectively), with no significant differences observed (P values = 0.8 and 0.6, respectively). There was also no significant association between genotypes and any risk factors for cases (>0.05) except laterality and metastasis of the tumor (P values=0.006 and 0.06, respectively). The CYP1B1 polymorphism Val432Leu was not associated with breast cancer in Egypt, but may provide clues for future studies into early detection of the disease.

  18. Prenatal exposure to drinking-water chlorination by-products, cytochrome P450 gene polymorphisms and small-for-gestational-age neonates.

    PubMed

    Bonou, Samuella G; Levallois, Patrick; Giguère, Yves; Rodriguez, Manuel; Bureau, Alexandre

    2017-07-31

    Genetic susceptibility may modulate chlorination by-products (CBPs) effects on fetal growth, especially genes coding for the cytochrome P450 involved in the metabolism of CBPs and steroidogenesis. In a case-control study of 1432 mother-child pairs, we assessed the association between maternal and child single nucleotide polymorphisms (SNPs) within CYP1A2, CYP2A6, CYP2D6 and CYP17A1 genes and small-for-gestational-age neonates (SGA<10th percentile) as well as interaction between these SNPs and maternal exposure to trihalomethanes or haloacetic acids (HAAs) during the third trimester of pregnancy. Interactions were found between mother and neonate carrying CYP17A1 rs4919687A and rs743572G alleles and maternal exposure to total trihalomethanes or five regulated HAAs species. However, these interactions became non statistically significant after correction for multiple testing. There is some evidence, albeit weak, of a potential effect modification of the association between CBPs and SGA by SNPs in CYP17A1 gene. Further studies are needed to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo[a]pyrene-exposed monogonont rotifer Brachionus koreanus.

    PubMed

    Kim, Ryeo-Ok; Kim, Bo-Mi; Jeong, Chang-Bum; Nelson, David R; Lee, Jae-Seong; Rhee, Jae-Sung

    2013-12-03

    Cytochrome P450 (CYP) proteins are involved in the first line of detoxification mechanism against diverse polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P). In aquatic invertebrates, there is still a lack of knowledge on the CYP genes involved in the molecular response to B[a]P exposure due to limited gene information. In this study, we cloned the entire 25 CYP genes in the monogonont rotifer Brachionus koreanus with the aid of next generation sequencing (NGS) technologies and analyzed their transcript profiles with a real-time RT-PCR array to better understand B[a]P-triggered molecular response over different time courses. As a result, B[a]P exposure induced CYP2/3-involved detoxification mechanisms and defensome, including phase II detoxification and antioxidant systems with a modulation of the chaperone heat shock protein (hsp) expression but did not change expression of other CYP clans in B. koreanus . Therefore, we found that B[a]P induced a strong detoxification mechanism to overcome detrimental effects of B[a]P associated with B[a]P-induced growth retardation as a trade-off in fitness costs. Also, this approach revealed that the entire CYP profiling can be a way of providing a better understanding on the mode of action of B[a]P in B. koreanus with respect to molecular defense metabolism.

  20. Regulation of human pregnane X receptor and its target gene cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking study.

    PubMed

    Liu, Ya-He; Mo, Sui-Lin; Bi, Hui-Chang; Hu, Bing-Fang; Li, Chun Guang; Wang, Yi-Tao; Huang, Ling; Huang, Min; Duan, Wei; Liu, Jun-Ping; Wei, Ming Qian; Zhou, Shu-Feng

    2011-04-01

    The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb-drug interactions.

  1. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m(2), and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m(2)) induced developmental delays, and higher doses (6-18kJ/m(2)) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m(2)) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  2. Analysis of the Functional Polymorphism in the Cytochrome P450 CYP2C8 Gene rs11572080 with Regard to Colorectal Cancer Risk

    PubMed Central

    Ladero, José M.; Agúndez, José A. G.; Martínez, Carmen; Amo, Gemma; Ayuso, Pedro; García-Martín, Elena

    2012-01-01

    In addition to the known effects on drug metabolism and response, functional polymorphisms of genes coding for xenobiotic-metabolizing enzymes (XME) play a role in cancer. Genes coding for XME act as low-penetrance genes and confer modest but consistent and significant risks for a variety of cancers related to the interaction of environmental and genetic factors. Consistent evidence supports a role for polymorphisms of the cytochrome P450 CYP2C9 gene as a protecting factor for colorectal cancer susceptibility. It has been shown that CYP2C8 and CYP2C9 overlap in substrate specificity. Because CYP2C8 has the common functional polymorphisms rs11572080 and rs10509681 (CYP2C8*3), it could be speculated that part of the findings attributed to CYP2C9 polymorphisms may actually be related to the presence of polymorphisms in the CYP2C8 gene. Nevertheless, little attention has been paid to the role of the CYP2C8 polymorphism in colorectal cancer. We analyzed the influence of the CYP2C8*3 allele in the risk of developing colorectal cancer in genomic DNA from 153 individuals suffering colorectal cancer and from 298 age- and gender-matched control subjects. Our findings do not support any effect of the CYP2C8*3 allele (OR for carriers of functional CYP2C8 alleles = 0.50 (95% CI = 0.16–1.59; p = 0.233). The absence of a relative risk related to CYP2C8*3 did not vary depending on the tumor site. We conclude that the risk of developing colorectal cancer does not seem to be related to the commonest functional genetic variation in the CYP2C8 gene. PMID:23420707

  3. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset

    PubMed Central

    Gordon, Adam S.; Tabor, Holly K.; Johnson, Andrew D.; Snively, Beverly M.; Assimes, Themistocles L.; Auer, Paul L.; Ioannidis, John P.A.; Peters, Ulrike; Robinson, Jennifer G.; Sucheston, Lara E.; Wang, Danxin; Sotoodehnia, Nona; Rotter, Jerome I.; Psaty, Bruce M.; Jackson, Rebecca D.; Herrington, David M.; O'Donnell, Christopher J.; Reiner, Alexander P.; Rich, Stephen S.; Rieder, Mark J.; Bamshad, Michael J.; Nickerson, Deborah A.

    2014-01-01

    The study of genetic influences on drug response and efficacy (‘pharmacogenetics’) has existed for over 50 years. Yet, we still lack a complete picture of how genetic variation, both common and rare, affects each individual's responses to medications. Exome sequencing is a promising alternative method for pharmacogenetic discovery as it provides information on both common and rare variation in large numbers of individuals. Using exome data from 2203 AA and 4300 Caucasian individuals through the NHLBI Exome Sequencing Project, we conducted a survey of coding variation within 12 Cytochrome P450 (CYP) genes that are collectively responsible for catalyzing nearly 75% of all known Phase I drug oxidation reactions. In addition to identifying many polymorphisms with known pharmacogenetic effects, we discovered over 730 novel nonsynonymous alleles across the 12 CYP genes of interest. These alleles include many with diverse functional effects such as premature stop codons, aberrant splicesites and mutations at conserved active site residues. Our analysis considering both novel, predicted functional alleles as well as known, actionable CYP alleles reveals that rare, deleterious variation contributes markedly to the overall burden of pharmacogenetic alleles within the populations considered, and that the contribution of rare variation to this burden is over three times greater in AA individuals as compared with Caucasians. While most of these impactful alleles are individually rare, 7.6–11.7% of individuals interrogated in the study carry at least one newly described potentially deleterious alleles in a major drug-metabolizing CYP. PMID:24282029

  4. Gene sequences for cytochromes p450 1A1 and 1A2: the need for biomarker development in sea otters (Enhydra lutris).

    PubMed

    Hook, Sharon E; Cobb, Michael E; Oris, James T; Anderson, Jack W

    2008-11-01

    There has been recent public concern regarding the impacts of environmental pollution on populations of otters. Population level impacts have been seen with otter (Lutra lutra) populations in Europe due to polychlorinated biphenyls, and with some segments of the Prince William Sound, AK, sea otter (Enhydra lutris) population following the Exxon Valdez oil spill. Despite public interest in these animals and their ecological significance, there are few tools that allow for the study of otter's response to contaminant exposure. Cytochrome p450 1A (CYP1A) performs the first step in metabolizing many xenobiotics, including many polychlorinated biphenyls and polycyclic aromatic hydrocarbons. CYP1A induction is a frequently used biomarker of exposure to these compounds. Despite the potential importance of this gene in ecological risk assessment, the complete coding sequence has not been published for any otter species. This study's objective was to isolate the gene for CYP1A1 and CYP1A2 in sea otters using a series of PCR-based approaches. The coding sequences from CYP1A1 and CYP1A2 from sea otters were identified and published in GenBank. Both CYP1A sequences are homologous to those obtained from marine mammals and other carnivores. These sequences will be useful as tools for researchers assessing contaminant exposure in mustelid populations.

  5. Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content.

    PubMed

    Shirasaka, Y; Chaudhry, A S; McDonald, M; Prasad, B; Wong, T; Calamia, J C; Fohner, A; Thornton, T A; Isoherranen, N; Unadkat, J D; Rettie, A E; Schuetz, E G; Thummel, K E

    2016-08-01

    Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration.The Pharmacogenomics Journal advance online publication, 1 September 2015; doi:10.1038/tpj.2015.58.

  6. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset.

    PubMed

    Gordon, Adam S; Tabor, Holly K; Johnson, Andrew D; Snively, Beverly M; Assimes, Themistocles L; Auer, Paul L; Ioannidis, John P A; Peters, Ulrike; Robinson, Jennifer G; Sucheston, Lara E; Wang, Danxin; Sotoodehnia, Nona; Rotter, Jerome I; Psaty, Bruce M; Jackson, Rebecca D; Herrington, David M; O'Donnell, Christopher J; Reiner, Alexander P; Rich, Stephen S; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A

    2014-04-15

    The study of genetic influences on drug response and efficacy ('pharmacogenetics') has existed for over 50 years. Yet, we still lack a complete picture of how genetic variation, both common and rare, affects each individual's responses to medications. Exome sequencing is a promising alternative method for pharmacogenetic discovery as it provides information on both common and rare variation in large numbers of individuals. Using exome data from 2203 AA and 4300 Caucasian individuals through the NHLBI Exome Sequencing Project, we conducted a survey of coding variation within 12 Cytochrome P450 (CYP) genes that are collectively responsible for catalyzing nearly 75% of all known Phase I drug oxidation reactions. In addition to identifying many polymorphisms with known pharmacogenetic effects, we discovered over 730 novel nonsynonymous alleles across the 12 CYP genes of interest. These alleles include many with diverse functional effects such as premature stop codons, aberrant splicesites and mutations at conserved active site residues. Our analysis considering both novel, predicted functional alleles as well as known, actionable CYP alleles reveals that rare, deleterious variation contributes markedly to the overall burden of pharmacogenetic alleles within the populations considered, and that the contribution of rare variation to this burden is over three times greater in AA individuals as compared with Caucasians. While most of these impactful alleles are individually rare, 7.6-11.7% of individuals interrogated in the study carry at least one newly described potentially deleterious alleles in a major drug-metabolizing CYP.

  7. Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content

    PubMed Central

    Shirasaka, Y; Chaudhry, A S; McDonald, M; Prasad, B; Wong, T; Calamia, J C; Fohner, A; Thornton, T A; Isoherranen, N; Unadkat, J D; Rettie, A E; Schuetz, E G; Thummel, K E

    2016-01-01

    Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration. PMID:26323597

  8. High expression of Cyp6g1, a cytochrome P450 gene, does not necessarily confer DDT resistance in Drosophila melanogaster.

    PubMed

    Kuruganti, Srilalitha; Lam, Vita; Zhou, Xuguo; Bennett, Gary; Pittendrigh, Barry R; Ganguly, Ranjan

    2007-02-15

    Cytochrome P450 monooxygenases, a family of detoxifying enzymes, are thought to confer resistance to various insecticides including DDT. Daborn et al. [Daborn, P., Yen, J.L., Bogwitz, M., Le Goff, G., Feil, et al. 2002. A single p450 allele associated with insecticide resistance in Drosophila. Science 297, 2253-2256.] suggested that the Accord transposable element causes overexpression of a Cyp6g1 allele, which has spread globally and is the basis of DDT resistance in Drosophila melanogaster populations. To determine whether the same phenomenon also operates in other Drosophila strains, we investigated 91-R, 91-C, ry(506), Wisconsin, Canton-SH and Hikone-RH strains. While the LC(50) values for the 91-R and Wisconsin strains are 8348 microg and 447 microg of DDT, respectively, values for the other four strains range between 0.74 to 20.9 microg. As expected, the susceptible ry(506) and 91-C strains have about 16-33-fold lower levels of CYP6G1 mRNA than the resistant 91-R and Wisconsin strains. Surprisingly, CYP6G1 mRNA and protein levels in the Canton-SH and Hikone-RH strains are as high as in the two resistant strains, yet they are as susceptible as the 91-C strain. The susceptible phenotype of the Canton-SH and Hikone-RH strains is not due to mutation in the Cyp6g1 gene; sequence analysis showed that Cyp6g1 alleles of resistant and susceptible strains are very similar and cannot be classified into resistant and susceptible alleles. As observed by others, we also found that only the 5'-upstream DNA of overexpressing alleles of Cyp6g1 has an insertional DNA, which is similar to Accord and Ninja elements. To examine the role of Cyp6g1 in DDT resistance, we substituted the Cyp6g1 allele of the 91-R strain with the allele from the susceptible 91-C strain via recombination and synthesized three recombinant lines. All three lines lacked Accord insertion and showed low expression of Cyp6g1 like the 91-C strain, yet they were as highly resistant as the 91-R strain. We

  9. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora.

    PubMed

    Syed, Khajamohiddin; Nelson, David R; Riley, Robert; Yadav, Jagjit S

    2013-01-01

    Genomewide annotation of cytochrome P450 monooxygenases (P450s) in three white-rot species of the fungal order Polyporales, namely Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora, revealed a large contingent of P450 genes (P450ome) in their genomes. A total of 199 P450 genes in B. adusta and 209 P450 genes each in Ganoderma sp. and P. brevispora were identified. These P450omes were classified into families and subfamilies as follows: B. adusta (39 families, 86 subfamilies), Ganoderma sp. (41 families, 105 subfamilies) and P. brevispora (42 families, 111 subfamilies). Of note, the B. adusta genome lacked the CYP505 family (P450foxy), a group of P450-CPR fusion proteins. The three polypore species revealed differential enrichment of individual P450 families in their genomes. The largest CYP families in the three genomes were CYP5144 (67 P450s), CYP5359 (46 P450s) and CYP5344 (43 P450s) in B. adusta, Ganoderma sp. and P. brevispora, respectively. Our analyses showed that tandem gene duplications led to expansions in certain P450 families. An estimated 33% (72 P450s), 28% (55 P450s) and 23% (49 P450s) of P450ome genes were duplicated in P. brevispora, B. adusta and Ganoderma sp., respectively. Family-wise comparative analysis revealed that 22 CYP families are common across the three Polypore species. Comparative P450ome analysis with Ganoderma lucidum revealed the presence of 143 orthologs and 56 paralogs in Ganoderma sp. Multiple P450s were found near the characteristic biosynthetic genes for secondary metabolites, namely polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), terpene cyclase and terpene synthase in the three genomes, suggesting a likely role of these P450s in secondary metabolism in these Polyporales. Overall, the three species had a richer P450 diversity both in terms of the P450 genes and P450 subfamilies as compared to the model white-rot and brown-rot polypore species Phanerochaete chrysosporium and Postia placenta.

  10. Expressions of cytochrome P450, UDP-glucuronosyltranferase, and transporter genes in monolayer carcinoma cells change in subcutaneous tumors grown as xenografts in immunodeficient nude mice.

    PubMed

    Sugawara, Michiko; Okamoto, Kiyoshi; Kadowaki, Tadashi; Kusano, Kazutomi; Fukamizu, Akiyoshi; Yoshimura, Tsutomu

    2010-03-01

    Human tumors grown as xenografts in immunodeficient nude mice are widely used to investigate the pharmacological activities of anticancer drugs. Drug-metabolizing enzymes and transporters are expressed in tumor cell lines and changes in drug metabolism and pharmacokinetics (DMPK)-related gene expression after inoculation of the tumor cell may affect the pharmacological activity of the drug under consideration. The aims of the current study were to characterize DMPK-related gene expression profiles and responses to typical cytochrome P450 inducers in monolayer carcinoma cells grown in tissue culture versus those inoculated into a xenograft model. We used the human hepatocellular carcinoma cell line PLC/PRF/5 for this study and comprehensively assessed changes in DMPK-related gene expression by reverse transcription-polymerase chain reaction quantitation. CYP3A4 and UDP-glucuronosyltransferase 1A protein amounts were also analyzed by immunoprecipitation followed by immunoblotting. We found that the expression of many DMPK-related genes was elevated in the inoculated tumor compared with the monolayer carcinoma cells, indicating changes in their gene regulation pathways, presumably due to modulation of the nuclear receptor family of transcription factors. In addition, monolayer carcinoma versus inoculated tumor cells showed different responses to rifampicin, but similar responses to dexamethasone or 3-methylcholanthrene. These results suggest that inoculation of tumor cells results in the activation of drug metabolism and transport function, leading to changes in the responses to pregnane X receptor ligands and consequent discrepancies in the pharmacological activities between in vitro monolayer carcinoma cells and in vivo xenograft models.

  11. Microbial P450 enzymes in biotechnology.

    PubMed

    Urlacher, V B; Lutz-Wahl, S; Schmid, R D

    2004-04-01

    Oxidations are key reactions in chemical syntheses. Biooxidations using fermentation processes have already conquered some niches in industrial oxidation processes since they allow the introduction of oxygen into non-activated carbon atoms in a sterically and optically selective manner that is difficult or impossible to achieve by synthetic organic chemistry. Biooxidation using isolated enzymes is limited to oxidases and dehydrogenases. Surprisingly, cytochrome P450 monooxygenases have scarcely been studied for use in biooxidations, although they are one of the largest known superfamilies of enzyme proteins. Their gene sequences have been identified in various organisms such as humans, bacteria, algae, fungi, and plants. The reactions catalyzed by P450s are quite diverse and range from biosynthetic pathways (e.g. those of animal hormones and secondary plant metabolites) to the activation or biodegradation of hydrophobic xenobiotic compounds (e.g. those of various drugs in the liver of higher animals). From a practical point of view, the great potential of P450s is limited by their functional complexity, low activity, and limited stability. In addition, P450-catalyzed reactions require a constant supply of NAD(P)H which makes continuous cell-free processes very expensive. Quite recently, several groups have started to investigate cost-efficient ways that could allow the continuous supply of electrons to the heme iron. These include, for example, the use of electron mediators, direct electron supply from electrodes, and enzymatic approaches. In addition, methods of protein design and directed evolution have been applied in an attempt to enhance the activity of the enzymes and improve their selectivity. The promising application of bacterial P450s as catalyzing agents in biocatalytic reactions and recent progress made in this field are both covered in this review.

  12. Cytochrome P450c17 (steroid 17. cap alpha. -hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues

    SciTech Connect

    Chung, B.; Picado-Leonard, J.; Haniu, M.; Bienkowski, M.; Hall, P.F.; Shively, J.E.; Miller, W.L.

    1987-01-01

    P450c17 is the single enzyme mediating both 17..cap alpha..-hydroxylase (steroid 17..cap alpha..-monooxygenase, EC 1.14.99.9) and 17,20 lyase activities in the synthesis of steroid hormones. It has been suggested that different P450c17 isozymes mediate these activities in the adrenal gland and testis. The authors sequenced 423 of the 509 amino acids (83%) of the porcine adrenal enzyme; based on this partial sequence, a 128-fold degenerate 17-mer was synthesized and used to screen a porcine adrenal cDNA library. This yielded a 380-base cloned cDNA, which in turn was used to isolate several human adrenal cDNAs. The longest of these, lambda hac 17-2, is 1754 base pairs long and includes the full-length coding region, the complete 3'-untranslated region, and 41 bases of the 5'-untranslated region. This cDNA encodes a protein of 508 amino acids having a predicted molecular weight of 57,379.82. High-stringency screening of a human testicular cDNA library yielded a partial clone containing 1303 identical bases. RNA gel blots and nuclease S1-protection experiments confirm that the adrenal and testicular P450c17 mRNAs are indistinguishable. These data indicate that the testis possesses a P450c17 identical to that in the adrenal. The human amino acid sequence is 66.7% homologous to the corresponding regions of the porcine sequence, and the human cDNA and amino acid sequences are 80.1 and 70.3% homologous, respectively, to bovine adrenal P450c17 cDNA. Both comparisons indicate that a central region comprising amino acid residues 160-268 is hypervariable among these species of P450c17.

  13. Multiple P450s and Variation in Neuronal Genes Underpins the Response to the Insecticide Imidacloprid in a Population of Drosophila melanogaster.

    PubMed

    Denecke, Shane; Fusetto, Roberto; Martelli, Felipe; Giang, Alex; Battlay, Paul; Fournier-Level, Alexandre; O' Hair, Richard A; Batterham, Philip

    2017-09-12

    Insecticide resistance is an economically important example of evolution in response to intense selection pressure. Here, the genetics of resistance to the neonicotinoid insecticide imidacloprid is explored using the Drosophila Genetic Reference Panel, a collection of inbred Drosophila melanogaster genotypes derived from a single population in North Carolina. Imidacloprid resistance varied substantially among genotypes, and more resistant genotypes tended to show increased capacity to metabolize and excrete imidacloprid. Variation in resistance level was then associated with genomic and transcriptomic variation, implicating several candidate genes involved in central nervous system function and the cytochrome P450s Cyp6g1 and Cyp6g2. CRISPR-Cas9 mediated removal of Cyp6g1 suggested that it contributed to imidacloprid resistance only in backgrounds where it was already highly expressed. Cyp6g2, previously implicated in juvenile hormone synthesis via expression in the ring gland, was shown to be expressed in metabolically relevant tissues of resistant genotypes. Cyp6g2 overexpression was shown to both metabolize imidacloprid and confer resistance. These data collectively suggest that imidacloprid resistance is influenced by a variety of previously known and unknown genetic factors.

  14. Mutation R96W in cytochrome P450c17 gene causes combined 17{alpha}-hydroxylase/17-20-lyase deficiency in two french canadian patients

    SciTech Connect

    LaFlamme, N.; Leblanc, J.F.; Mailloux, J.

    1996-01-01

    Congenital adrenal hyperplasia (CAH) is the most frequent cause of adrenal insufficiency and ambiguous genitalia in newborn children. In contrast to CAH caused by 21{alpha}-hydroxylase and 11{beta}-hydroxylase deficiencies, which impairs steroid formation in the adrenal exclusively, 17{alpha}-hydroxylase/17,20-lyase deficiency impairs steroid biosynthesis in the adrenals and gonads. The sequence of CYP17 gene was determined by direct sequencing of asymmetric PCR products in two French-Canadian 46,XY pseudohermaphrodite siblings suffering from combined 17{alpha}-hydroxylase/17,20-lyase deficiency. The two patients are homozygous for the novel missense mutation R96W caused by a C to T transition converting codon Arg{sup 96} (CGG) into a Trp (TGG) in exon 1. Both parents are heterozygous for this missense mutation. We assessed the effect of the R96W mutation on 17{alpha}-hydroxylase/17,20-lyase activity by analysis of mutant enzyme, generated by site-directed mutagenesis, expressed in COS-1 cells. The presence of R96W substitution almost completely abolished the activity of the mutant protein. The present findings provide a molecular explanation for the signs and symptoms of combined 17 {alpha}-hydroxylase/17,20-lyase deficiency in these two patients and provide useful information on the structure-activity relationships of the P450c17 enzyme. 31 refs., 4 figs., 1 tab.

  15. Induced overexpression of cytochrome P450 sterol 14α-demethylase gene (CYP51) correlates with sensitivity to demethylation inhibitors (DMIs) in Sclerotinia homoeocarpa.

    PubMed

    Ma, Bangya; Tredway, Lane P

    2013-12-01

    The fungus Sclerotinia homoeocarpa causes dollar spot, the most important turfgrass disease worldwide. Demethylation inhibitor (DMI) fungicides have been relied upon heavily to manage this disease. Presently, populations of S. homoeocarpa with reduced sensitivity or resistance to DMIs are widespread in the United States. Cytochrome P450 sterol 14α-demethylase (ShCYP51) and its flanking regions were identified and sequenced in 29 isolates of S. homoeocarpa with a range of DMI sensitivities. No modifications were found in the gene coding and upstream regions that were consistently related to DMI sensitivity. In the absence of propiconazole, ShCYP51 was expressed at a similar low level among DMI baseline and resistant isolates. In the presence of propiconazole, DMI-resistant isolates were induced to express ShCYP51 at significantly higher levels than baseline isolates by propiconazole at 5 mg L(-1) for 5 h or at 0.5 mg L(-1) for 72 h. The ShCYP51 expression level after 72 h exposure to 0.5 mg L(-1) of propiconazole was linearly related to EC50 values and ΔRG (the change in relative growth rate over time), with R(2) values equal to 83.7 and 90.0% respectively. Induced overexpression of ShCYP51 in resistant isolates following DMI exposure is an important factor determining DMI sensitivity in S. homoeocarpa. © 2013 Society of Chemical Industry.

  16. Novel CAR-mediated mechanism for synergistic activation of two distinct elements within the human cytochrome P450 2B6 gene in HepG2 cells.

    PubMed

    Swales, Karen; Kakizaki, Satoru; Yamamoto, Yukio; Inoue, Kaoru; Kobayashi, Kaoru; Negishi, Masahiko

    2005-02-04

    The constitutive active receptor (CAR) regulates the induction of the cytochrome P450 2B6 (CYP2B6) gene by phenobarbital-type inducers, such as 1,4 bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) via the distal phenobarbital-responsive enhancer module (PBREM, at -1732/-1685 bp). Activation of the PBREM by TCPOBOP generated a 10-fold induction of CYP2B6 mRNA in HepG2 cells stably expressing mouse CAR (Ym17). Co-treatment with the protein phosphatase inhibitor okadaic acid (OA) synergistically increased this induction over 100-fold without directly activating CAR or the PBREM. Although OA synergy required the presence of PBREM, deletion assays delineated the OA-responsive activity to a proximal 24-bp (-256/-233) sequence (OARE) in the CYP2B6 promoter. CAR did not directly bind to the OARE in electrophoretic mobility shift assays. However, both DNA affinity and chromatin immunoprecipitation assays showed a significant increase in CAR association with the OARE after co-treatment with TCPOBOP and OA, indicating the indirect binding of CAR to the OARE. The two cis-acting elements, the distal PBREM and the proximal OARE, within the chromatin structure are both regulated by CAR in response to TCPOBOP and OA, respectively, to maximally induce the CYP2B6 promoter. This functional interaction between the two sites expands the current understanding of the mechanism of CAR-mediated inducible transcription.

  17. Stimulatory effect of sesamin on hepatic cytochrome P450 activities in Atlantic salmon (Salmo salar L.) is not directly associated with expression of genes related to xenobiotic metabolism.

    PubMed

    Zlabek, Vladimir; Vestergren, AnnaLotta Schiller; Trattner, Sofia; Wagner, Liane; Pickova, Jana; Zamaratskaia, Galia

    2015-01-01

    1. This study examined hepatic cytochrome P450 (CYP450) response to dietary sesamin in combination with different n-6/n-3 fatty acid ratios in fish diet. Over a period of 4 months, fish were fed seven different experimental diets an n-6/n-3 FA ratio of either 0.5 or 1.0 in combination with two sesamin levels: low sesamin = 1.16 g/kg feed and high sesamin = 5.8 g/kg feed. Control diets did not contain sesamin. 2. The CYP450-associated activities of ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD), pentoxyresorufin O-depentylase (PROD), coumarin hydroxylase (COH), methoxyresorufin O-deethylase (MROD) and p-nitrophenol hydroxylase (PNPH) were significantly induced by dietary sesamin in a dose-related manner. 3. Expressions of the genes CYP1A1, CYP1A3, CYP3A, AhR1α, AhR2β, AhR2δ and PXR involved in the regulation of CYP450 activities, was not the primary source of this induction.

  18. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: Its possible translocation to nucleus

    SciTech Connect

    Fujisawa-Sehara, Atsuko; Yamane, Miyuki; Fujii-Kuriyama, Yoshiaki

    1988-08-01

    Transcription of the drug-metabolizing cytochrome P-450c gene is induced by 3-methylcholanthrene or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Previously, the authors defined two xenobiotic responsive elements (XREs) of {approx}15 base pairs, both of which activate transcription in cis in response to these xenobiotics. Using a gel mobility shift assay, they have identified a factor that specifically binds to the XREs. This factor appears in nuclei of mouse hepatoma cell line Hepa-1 only when the cells are treated with the xenobiotics, while the factor is undetectable in the nuclei of a 3-methylcholanthrene-treated mutant of Hepa-1 with defective function of a xenobiotic receptor. In addition, the nuclear factor bound to the XRE in the gel was found to be associated with ({sup 3}H)TCDD when the cells were treated with it, suggesting that the xenobiotic receptor is at least a component of the DNA-binding factor. The cytoplasmic fraction from nontreated Hepa-1 cells also contains the factor as a cryptic form and prominently reveals its DNA-binding activity by incubation with 3-methylcholanthrene in vitro. These results not only suggest the involvement of the XRE-binding factor in transcriptional activation via XREs but also provide evidence that the binding of ligands to the preexisting factor in a cryptic form induces its XRE-binding activity, which is probably followed by its translocation from cytoplasm to nucleus.

  19. Cytochromes P450 in Nanodiscs

    PubMed Central

    Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Nanodiscs have proven to be a versatile tool for the study all types of membrane proteins, including receptors, transporters, enzymes and viral antigens. The self-assembled Nanodisc system provides a robust and common means for rendering these targets soluble in aqueous media while providing a native like bilayer environment that maintains functional activity. This system has thus provided a means for studying the extensive collection of membrane bound cytochromes P450 with the same biochemical and biophysical tools that have been previously limited to use with the soluble P450s. These include a plethora of spectroscopic, kinetic and surface based methods. Significant improvements in homogeneity and stability of these preparations open new possibilities for detailed analysis of equilibrium and steady-state kinetic characteristics of catalytic mechanisms of human cytochromes P450 involved in xenobiotic metabolism and in steroid biosynthesis. The experimental methods developed for physico-chemical and functional studies of membrane cytochromes P450 incorporated in Nanodiscs allow for more detailed understanding of the scientific questions along the lines pioneered by Professor Klaus Ruckpaul and his array of colleagues and collaborators. PMID:20685623

  20. A Kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley

    2017-08-14

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1,25(OH)2D3, occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by local factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles: first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  1. Cytochrome P450 oxidoreductase deficiency caused by R457H mutation in POR gene in Chinese: case report and literature review.

    PubMed

    Bai, Yang; Li, Jinhui; Wang, Xiaoli

    2017-03-14

    Cytochrome P450 oxidoreductase deficiency (PORD) is a rare disease exhibiting a variety of clinical manifestations. It can be difficult to differentiate with other diseases such as 21-hydroxylase deficiency (21-OHD), polycystic ovary syndrome (PCOS) and Antley-Bixler syndrome (ABS). Nearly 100 cases of PORD have been reported worldwide. However, the genetic characters and clinical management are still unclear, especially in China. In this study, we report a 27-year-old female Chinese patient who first presented with amenorrhea and recurrence of large ovary cyst. She was misdiagnosed with PCOS and non-classical 21-OHD due to ovary cysts and elevated 17-hydroxy-progesterone. The patient's complaining of a mild difficulty of bending the metacarpophalangeal joints reminded us to consider PORD, which usually presents with skeletal deformities and sexual dysfunction. The diagnosis of PORD was confirmed by genetic analyses, which showed the patient harboring a homozygous missense mutation in the POR gene (R457H) and her parents carrying the heterozygous mutation. The patient was treated with low-dose corticosteroids and estrogen/progesterone sequential therapy, and her ovarian cyst gradually reduced with regular menstruation in the follow-up. Moreover, the clinical and genetic characteristics of 104 previously reported PORD cases were also summarized and analyzed. PORD is a very rare disease which can be easily misdiagnosed in mild cases. Clinicians should keep in mind of this disease in patients with sexual dysfunction, especially combined with special skeletal deformities. Our data could provide a consciously understanding of this disease for clinic practicers. Low-dose corticosteroids combined with estrogen/progesterone sequential therapy will be effective in PORD patients with recurrence of large ovary cyst. The fact that the reported PORD patients in China carrying an identical variant R457H in POR gene also give us a viewpoint that R457H mutation in POR gene maybe

  2. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Coy, Monique R; Scharf, Michael E

    2012-07-01

    Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation.

  3. An RNAi construct of the P450 gene CYP82D109 leads to increased resistance to Fusarium oxysporum f. sp. vasinfectum (Fov11) and increased feeding by Helicoverpa Zea larvae

    USDA-ARS?s Scientific Manuscript database

    The P450 CYP82D109 gene codes for an early step enzyme in the gossypol pathway in Gossypium. The terminal leaves of RNAi plants had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels compared to wild-type (WT) plants. Previous studies comparing glanded...

  4. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 contributing to oxidative activation of chlorpyrifos

    USDA-ARS?s Scientific Manuscript database

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Functional analysis of CtCYP6EX3 confirmed its atrazine-induced oxidative activation for chlorpyrifos by using a nanoparticle-based RNA inter...

  5. Cytochrome P450 CYP2 genes in the common cormorant: Evolutionary relationships with 130 diapsid CYP2 clan sequences and chemical effects on their expression.

    PubMed

    Kubota, Akira; Stegeman, John J; Goldstone, Jared V; Nelson, David R; Kim, Eun-Young; Tanabe, Shinsuke; Iwata, Hisato

    2011-04-01

    Cytochrome P450 CYP2 family enzymes are important in a variety of physiological and toxicological processes. CYP2 genes are highly diverse and orthologous relationships remain clouded among CYP2s in different taxa. Sequence and expression analyses of CYP2 genes in diapsids including birds and reptiles may improve understanding of this CYP family. We sought CYP2 genes in a liver cDNA library of the common cormorant (Phalacrocorax carbo), and in the genomes of other diapsids, chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and anole lizard (Anolis carolinensis), for phylogenetic and/or syntenic analyses. Screening of the cDNA library yielded four CYP2 cDNA clones that were phylogenetically classified as CYP2C45, CYP2J25, CYP2AC1, and CYP2AF1. There are numerous newly identified diapsid CYP2 genes that include genes related to the human CYP2Cs, CYP2D6, CYP2G2P, CYP2J2, CYP2R1, CYP2U1, CYP2W1, CYP2AB1P, and CYP2AC1P. Syntenic relationships show that avian CYP2Hs are orthologous to CYP2C62P in humans, CYP2C23 in rats, and Cyp2c44 in mice, and suggest that avian CYP2Hs, along with human CYP2C62P and mouse Cyp2c44, could be renamed as CYP2C23, based upon the nomenclature rules. Analysis of sequence and synteny identifies cormorant and finch CYPs that are apparent orthologs of phenobarbital-inducible chicken CYP2C45. Transcripts of all four cormorant CYP2 genes were detected in the liver of birds from Lake Biwa, Japan. The transcript levels bore no significant relationship to levels of chlorinated organic pollutants in the liver, including polychlorinated biphenyls and dichlorodiphenyltrichloroethane and its metabolites. In contrast, concentrations of perfluorooctane sulfonate and perfluorononanoic acid were negatively correlated with levels of CYP2C45 and/or CYP2J25, suggesting down-regulation of expression by these environmental pollutants. This study expands our view of the phylogeny and evolution of CYP2s, and provides evolutionary insight into the chemical

  6. Cohesin protein SMC1 represses the nuclear receptor CAR-mediated synergistic activation of a human P450 gene by xenobiotics.

    PubMed

    Inoue, Kaoru; Borchers, Christoph H; Negishi, Masahiko

    2006-08-15

    CAR (constitutive active/androstane receptor) regulates both the distal enhancer PBREM (phenobarbital-responsive enhancer module) and the proximal element OARE [OA (okadaic acid) response element] to synergistically up-regulate the endogenous CYP2B6 (where CYP is cytochrome P450) gene in HepG2 cells. In this up-regulation, CAR acts as both a transcription factor and a co-regulator, directly binding to and enhancing PBREM upon activation by xenobiotics such as TCPOBOP {1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene} and indirectly associating with the OARE in response to OA [Swales, Kakizaki, Yamamoto, Inoue, Kobayashi and Negishi (2005) J. Biol. Chem. 280, 3458-3466]. We have now identified the cohesin protein SMC1 (structural maintenance of chromosomes 1) as a CAR-binding protein and characterized it as a negative regulator of OARE activity, thus repressing synergy. Treatment with SMC1 small interfering RNA augmented the synergistic up-regulation of CYP2B6 expression 20-fold in HepG2 cells, while transient co-expression of spliced form of SMC1 abrogated the synergistic activation of a 1.8 kb CYP2B6 promoter. SMC1 indirectly binds to a 19 bp sequence (-236/-217) immediately downstream from the OARE in the CYP2B6 promoter. Both DNA affinity and chromatin immunoprecipitation assays showed that OA treatment dissociates SMC1 from the CYP2B6 promoter, reciprocating the indirect binding of CAR to OARE. These results are consistent with the conclusion that SMC1 binding represses OARE activity and its dissociation allows the recruitment of CAR to the OARE, synergizing PBREM activity and the expression of the CYP2B6 gene.

  7. RNAi construct of a cytochrome P450 gene CYP82D109 blocks an early step in the biosynthesis of hemigossypolone and gossypol in transgenic cotton plants.

    PubMed

    Wagner, Tanya A; Liu, Jinggao; Puckhaber, Lorraine S; Bell, Alois A; Williams, Howard; Stipanovic, Robert D

    2015-07-01

    Naturally occurring terpenoid aldehydes from cotton, such as hemigossypol, gossypol, hemigossypolone, and the heliocides, are important components of disease and herbivory resistance in cotton. These terpenoids are predominantly found in the glands. Differential screening identified a cytochrome P450 cDNA clone (CYP82D109) from a Gossypium hirsutum cultivar that hybridized to mRNA from glanded cotton but not glandless cotton. Both the D genome cotton Gossypium raimondii and A genome cotton Gossypium arboreum possessed three additional paralogs of the gene. G. hirsutum was transformed with a RNAi construct specific to this gene family and eight transgenic plants were generated stemming from at least five independent transformation events. HPLC analysis showed that RNAi plants, when compared to wild-type Coker 312 (WT) plants, had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels in the terminal leaves, respectively. Analysis of volatile terpenes by GC-MS established presence of an additional terpene (MW: 218) from the RNAi leaf extracts. The (1)H and (13)C NMR spectroscopic analyses showed this compound was δ-cadinen-2-one. Double bond rearrangement of this compound gives 7-hydroxycalamenene, a lacinilene C pathway intermediate. δ-Cadinen-2-one could be derived from δ-cadinene via a yet to be identified intermediate, δ-cadinen-2-ol. The RNAi construct of CYP82D109 blocks the synthesis of desoxyhemigossypol and increases the induction of lacinilene C pathway, showing that these pathways are interconnected. Lacinilene C precursors are not constitutively expressed in cotton leaves, and blocking the gossypol pathway by the RNAi construct resulted in a greater induction of the lacinilene C pathway compounds when challenged by pathogens.

  8. CYP51--the omnipotent P450.

    PubMed

    Lepesheva, Galina I; Waterman, Michael R

    2004-02-27

    Sterol 14 alpha-demethylase (CYP51) is the single cytochrome P450 (CYP) required for sterol biosynthesis in different phyla, and it is the most widely distributed P450 gene family being found in all biological kingdoms. It catalyzes the first step following cyclization in sterol biosynthesis such as removal of the 14 alpha-methyl group from lanosterol in the cholesterol biosynthetic pathway, leading to formation of the initial substrate in steroid hormone biosynthesis. CYP51 from different phyla have low sequence similarity across kingdoms and contain only about 40 conserved amino acid residues in the whole family. An attempt to predict the possible role of these conserved residues is being made by a combination of the results of site-directed mutagenesis and information from the known crystal structure of sterol 14 alpha-demethylase from Mycobacterium tuberculosis.

  9. Multiple DNA-binding factors interact with overlapping specificities at the aryl hydrocarbon response element of the cytochrome P450IA1 gene.

    PubMed Central

    Saatcioglu, F; Perry, D J; Pasco, D S; Fagan, J B

    1990-01-01

    Three nuclear factors, the Ah receptor, XF1, and XF2, bind sequence specifically to the Ah response elements or xenobiotic response elements (XREs) of the cytochrome P450IA1 (P450c) gene. The interactions of these factors with the Ah response element XRE1 were compared by three independent methods, methylation interference footprinting, orthophenanthroline-Cu+ footprinting, and mobility shift competition experiments, using a series of synthetic oligonucleotides with systematic alterations in the XRE core sequence. These studies established the following (i) all three factors interact sequence specifically with the core sequence of XRE1; (ii) the pattern of contacts made with this sequence by the Ah receptor are different from those made by XF1 and XF2; and (iii) although XF1 and XF2 can be distinguished by the mobility shift assay, the sequence specificities of their interactions with XRE1 are indistinguishable. Further characterization revealed the following additional differences among these three factors: (i) XF1 and XF2 could be extracted from nuclei under conditions quite different from those required for extraction of the Ah receptor; (ii) XF1 and XF2 were present in the nuclei of untreated cells and did not respond to polycyclic compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and beta-napthoflavone, while nuclear Ah receptor was undetectable in untreated cells and rapidly increased in response to TCDD; (iii) inhibition of protein synthesis did not affect the TCDD-induced appearance of the Ah receptor but substantially decreased the constitutive activities of XF1 and XF2, suggesting that the Ah receptor must be present in untreated cells in an inactive form that can be rapidly activated by polycyclic compounds, while the constitutive expression of XF1 and XF2 depends on the continued synthesis of a relatively unstable protein; (iv) the receptor-deficient and nuclear translocation-defective mutants of the hepatoma cell line Hepa1, which are known

  10. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  11. Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450.

    PubMed

    Sakaki, Toshiyuki; Sugimoto, Hiroshi; Hayashi, Keiko; Yasuda, Kaori; Munetsuna, Eiji; Kamakura, Masaki; Ikushiro, Shinichi; Shiro, Yoshitsugu

    2011-01-01

    Bioconversion processes, including specific hydroxylations, promise to be useful for practical applications because chemical syntheses often involve complex procedures. One of the successful applications of P450 reactions is the bioconversion of vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Recently, a cytochrome P450 gene encoding a vitamin D hydroxylase from the CYP107 family was cloned from Pseudonocardia autotrophica and is now applied in the bioconversion process that produces 1α,25-dihydroxyvitamin D₃. In addition, the directed evolution study of CYP107 has significantly enhanced its activity. On the other hand, we found that Streptomyces griseolus CYP105A1 can convert vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Site-directed mutagenesis of CYP105A1 based on its crystal structure dramatically enhanced its activity. To date, multiple vitamin D hydroxylases have been found in bacteria, fungi, and mammals, suggesting that vitamin D is a popular substrate of the enzymes belonging to the P450 superfamily. A combination of these cytochrome P450s would produce a large number of compounds from vitamin D and its analogs. Therefore, we believe that the bioconversion of vitamin D and its analogs is one of the most promising P450 reactions in terms of practical application. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Long-term p-nitrophenol exposure can disturb liver metabolic cytochrome P450 genes together with aryl hydrocarbon receptor in Japanese quail.

    PubMed

    Ahmed, Eman; Nagaoka, Kentaro; Fayez, Mostafa; Samir, Haney; Watanabe, Gen

    2015-08-01

    P-Nitrophenol is a major metabolite of some organophosphorus compounds. It is considered to be one of nitrophenol derivatives of diesel exhaust particles that induce substantial hazards impacts on human and animal health. P-Nitrophenol (PNP) is a persistent organic pollutant. Consequently, bioaccumulation of PNP potentiates toxicity. The objectives of the current study were to assess the potential hepatic toxicity and pathway associated with long-term exposure to PNP. Japanese quails were orally administered different doses of PNP for 75 days. Liver and plasma samples were collected at days 45 (45D), days 60 (60D) and days 75 (75D). Liver histological changes and plasma corticosterone levels were assessed. Basal mRNA level of cytochromes P450 (CYP 450) (CYP1A4, 1A5, 1B1), heme oxygenase (HO-1), and aryl hydrocarbon receptor 1 (AhR1), from the liver of exposed birds and primary hepatocytes cultured for 24 hr with PNP, were analyzed using quantitative real-time PCR. The results revealed various histopathological changes in the liver, such as lymphocytes aggregation and hepatocytes degeneration. Significant increases in corticosterone levels were reported. After 60-days of in vivo exposure, the birds exhibited an overexpression in the liver CYP1A4, 1B1, AhR1, and HO-1. Furthermore, with continuous PNP administration, an overall downregulation of the tested genes was observed. In vitro, although a significant overexpression of CYP1A4, 1B1, and HO-1 was observed, CYP1A5 was downregulated. In conclusion, PNP can interfere with the liver CYP 450 enzymes and modulate HO-1 expression in the in vitro and in vivo experiments. Hence, it could have serious deleterious effects on humans, livestock, and wild animals.

  13. Organ-specific distribution of 7-chlorinated benz[a]anthracene and regulation of selected cytochrome P450 genes in rats.

    PubMed

    Sakakibara, Hiroyuki; Ohura, Takashi; Kido, Taketoshi; Yamanaka, Noriko; Tanimura, Nobuhiko; Shimoi, Kayoko; Guruge, Keerthi S

    2013-02-01

    We previously reported that 14-day exposure to 7-chlorinated benz[a]anthracene (7-Cl-BaA), a new environmental pollutant, selectively induced hepatic cytochrome P450 (CYP)1A2 in rats, although treatment with its parent, benz[a]anthracene (BaA), induced CYP1A1, CYP1A2, and CYP1B1. In this study, to better understand the relative contribution of chlorination to the toxicity of polycyclic aromatic hydrocarbons (PAHs), we investigated the organ-specific distributions of 7-Cl-BaA and BaA in F334 rats. After 14 days of oral administration of 7-Cl-BaA or BaA at a concentration of 1 or 10 mg/kg body weight/day, both chemicals were detected in their plasma, which was collected 24 hr after the last administration, even at the lower dosage. Dose-dependent accumulation patterns were observed in the liver, muscle, kidney, spleen, heart, and lung. The 7-Cl-BaA concentrations in the organs were higher than those of the BaA. Furthermore, at the end of the exposure, 7-Cl-BaA specifically regulated several CYP genes in the heart more so than in other organs, although these inductions were not significant in the BaA treatment. 7-Cl-BaA might also stimulate the metabolic pathways of chemicals other than AhR-mediated metabolism, which is specific to normal PAHs, because of the alterations of CYP2J4, CYP4B1, and CYP17A1 expression in rats. In conclusion, our results imply that the chlorination of PAHs may change their organ-specific distribution and consequently alter their toxicological impacts compared to their parent PAHs.

  14. Relationship between leaf litter identity, expression of cytochrome P450 genes and life history traits of Aedes aegypti and Aedes albopictus.

    PubMed

    Kim, Chang-Hyun; Muturi, Ephantus J

    2012-04-01

    The role of toxic component of leaf litter in mediating the outcome of mosquito species interactions is not well documented. To examine the effect of leaf litter toxins on mosquito performance and interspecific interactions, we reared monospecific and heterospecific cultures of Aedes aegypti L. and Aedes albopictus Skuse larvae in microcosms with one of five leaf species and measured the expression of five cytochrome P450 genes and life history traits of the two mosquito species. For both mosquito species, survival to adulthood was significantly higher in black alder, black walnut, and cypress infusion compared to sugar maple and eastern white pine infusion. In pine but not in other leaf treatments, the presence of A. albopictus had significant positive effects on A. aegypti wing length and development time to adulthood. A. albopictus from heterospecific cultures were larger than those from monospecific cultures and were smaller and took longer to develop in pine and sugar maple infusions than in the other infusions. Up regulation of CYP6Z6 and CYP9M9 in A. aegypti and A. albopictus respectively appeared to be closely associated with the deleterious effects of sugar maple infusion on mosquito performance as was the down regulation of CYP6N12 (in A. aegypti) and lack of induction of CYP6Z6 and CYP9M9 (in A. aegypti and A. albopictus respectively) in pine infusion. Results suggest that metabolic capabilities that enable the two species to tolerate natural xenobiotics are associated with a fitness cost. Published by Elsevier B.V.

  15. Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis.

    PubMed

    Pottier, M-A; Bozzolan, F; Chertemps, T; Jacquin-Joly, E; Lalouette, L; Siaussat, D; Maïbèche-Coisne, M

    2012-12-01

    Cytochrome P450 enzymes (P450s) are involved in many physiological functions in insects, such as the metabolism of signal molecules, adaptation to host plants and insecticide resistance. Several P450s have been reported in the olfactory organs of insects, the antennae, and have been proposed to play a role in odorant processing and/or xenobiotic metabolism. Despite recent transcriptomic analyses in several species, the diversity of antennal P450s in insects has not yet been investigated. Here, we report the identification of 37 putative P450s expressed in the antennae of the pest moth Spodoptera littoralis, as well as the characterization of a redox partner, cytochrome P450 reductase (CPR). Phylogenetic analysis revealed that S. littoralis P450s belong to four clades defined by their conservation with vertebrate P450s and their cellular localization. Interestingly, the CYP3 and CYP4 clans, which have been described to be mainly involved in the metabolism of plant compounds and xenobiotics, were largely predominant. More surprisingly, two P450s related to ecdysteroid metabolism were also identified. Expression patterns in adult and larval tissues were studied. Eight P450s appeared to be specific to the chemosensory organs, ie the antennae and proboscis, suggesting a specific role in odorant and tastant processing. Moreover, exposure of males to a plant odorant down-regulated the transcript level of CPR, revealing for the first time the regulation of this gene by odorants within insect antennae. This work suggests that the antennae of insects are a key site for P450-mediated metabolism of a large range of exogenous and endogenous molecules. © 2012 Royal Entomological Society.

  16. Pharmacogenomics of human P450 oxidoreductase

    PubMed Central

    Pandey, Amit V.; Sproll, Patrick

    2014-01-01

    Cytochrome P450 oxidoreductase (POR) supports reactions of microsomal cytochrome P450 which metabolize drugs and steroid hormones. Mutations in POR cause disorders of sexual development. P450 oxidoreductase deficiency (PORD) was initially identified in patients with Antley–Bixler syndrome (ABS) but now it has been established as a separate disorder of sexual development (DSD). Here we are summarizing the work on variations in POR related to metabolism of drugs and xenobiotics. We have compiled mutation data on reported cases of PORD from clinical studies. Mutations found in patients with defective steroid profiles impact metabolism of steroid hormones as well as drugs. Some trends are emerging that establish certain founder mutations in distinct populations, with Japanese (R457H), Caucasian (A287P), and Turkish (399–401) populations showing repeated findings of similar mutations. Most other mutations are found as single occurrences. A large number of different variants in POR gene with more than 130 amino acid changes are now listed in databases. Among the polymorphisms, the A503V is found in about 30% of all alleles but there are some differences across different population groups. PMID:24847272

  17. RNAi construct of a P450 gene CYP82D109 blocks an early step in the biosynthesis of hemigossypolone and gossypol in transgenic cotton plants

    USDA-ARS?s Scientific Manuscript database

    Naturally occurring terpenoid aldehydes from cotton, such as hemigossypol, gossypol, hemigossypolone, and the heliocides, are important components of disease and herbivory resistance in cotton. These terpenoids are predominately found in the glands. Differential screening identified a P450 cDNA cl...

  18. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Treesearch

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo. and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....

  19. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Hagihira, Yuya; Murayama, Norie; Shimizu, Makiko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2015-01-01

    1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.

  20. Cytochrome P450 1B1, a new keystone in gene-environment interactions related to human head and neck cancer?

    PubMed

    Thier, Ricarda; Brüning, Thomas; Roos, Peter H; Bolt, Hermann M

    2002-06-01

    Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu ( CYP1B1*3) and Asn453Ser ( CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism ( CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.

  1. A three-dimensional model of aromatase cytochrome P450.

    PubMed Central

    Graham-Lorence, S.; Amarneh, B.; White, R. E.; Peterson, J. A.; Simpson, E. R.

    1995-01-01

    P450 hemeproteins comprise a large gene superfamily that catalyzes monooxygenase reactions in the presence of a redox partner. Because the mammalian members are, without exception, membrane-bound proteins, they have resisted structure-function analysis by means of X-ray crystallographic methods. Among P450-catalyzed reactions, the aromatase reaction that catalyzes the conversion of C19 steroids to estrogens is one of the most complex and least understood. Thus, to better understand the reaction mechanism, we have constructed a three-dimensional model of P450arom not only to examine the active site and those residues potentially involved in catalysis, but to study other important structural features such as substrate recognition and redox-partner binding, which require examination of the entire molecule (excepting the putative membrane-spanning region). This model of P450arom was built based on a "core structure" identified from the structures of the soluble, bacterial P450s (P450cam, P450terp, and P450BM-P) rather than by molecular replacement, after which the less conserved elements and loops were added in a rational fashion. Minimization and dynamic simulations were used to optimize the model and the reasonableness of the structure was evaluated. From this model we have postulated a membrane-associated hydrophobic region of aliphatic and aromatic residues involved in substrate recognition, a redox-partner binding region that may be unique compared to other P450s, as well as residues involved in active site orientation of substrates and an inhibitor of P450arom, namely vorozole. We also have proposed a scheme for the reaction mechanism in which a "threonine switch" determines whether oxygen insertion into the substrate molecule involves an oxygen radical or a peroxide intermediate. PMID:7549871

  2. Canine cytochrome P-450 pharmacogenetics.

    PubMed

    Court, Michael H

    2013-09-01

    The cytochrome P-450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Cytochrome P450-activated prodrugs

    PubMed Central

    Ortiz de Montellano, Paul R

    2013-01-01

    A prodrug is a compound that has negligible, or lower, activity against a specified pharmacological target than one of its major metabolites. Prodrugs can be used to improve drug delivery or pharmacokinetics, to decrease toxicity, or to target the drug to specific cells or tissues. Ester and phosphate hydrolysis are widely used in prodrug design because of their simplicity, but such approaches are relatively ineffective for targeting drugs to specific sites. The activation of prodrugs by the cytochrome P450 system provides a highly versatile approach to prodrug design that is particularly adaptable for targeting drug activation to the liver, to tumors or to hypoxic tissues. PMID:23360144

  4. Effects of phenol on metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis larvae.

    PubMed

    Cao, C W; Sun, L L; Niu, F; Liu, P; Chu, D; Wang, Z Y

    2016-02-01

    Phenol, also known as carbolic acid or phenic acid, is a priority pollutant in aquatic ecosystems. The present study has investigated metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis under phenol stress. Exposure of C. kiinensis larvae to three sublethal doses of phenol (1, 10 and 100 µM) inhibited cytochrome P450 enzyme activity during the 96 h exposure period. The P450 activity measured after the 24 h exposure to phenol stress could be used to assess the level (low or high) of phenol contamination in the environment. To investigate the potential of cytochrome P450 genes as molecular biomarkers to monitor phenol contamination, the cDNA of ten CYP6 genes from the transcriptome of C. kiinensis were identified and sequenced. The open reading frames of the CYP6 genes ranged from 1266 to 1587 bp, encoding deduced polypeptides composed of between 421 and 528 amino acids, with predicted molecular masses from 49.01 to 61.94 kDa and isoelectric points (PI) from 6.01 to 8.89. Among the CYP6 genes, the mRNA expression levels of the CYP6EW3, CYP6EV9, CYP6FV1 and CYP6FV2 genes significantly altered in response to phenol exposure; therefore, these genes could potentially serve as biomarkers in the environment. This study shows that P450 activity combined with one or multiple CYP6 genes could be used to monitor phenol pollution.

  5. Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice.

    PubMed

    Jennings, Brett L; Moore, Joseph A; Pingili, Ajeeth K; Estes, Anne M; Fang, Xiao R; Kanu, Alie; Gonzalez, Frank J; Malik, Kafait U

    2015-05-01

    Recently, we demonstrated in female mice that protection against ANG II-induced hypertension and associated cardiovascular changes depend on cytochrome P-450 (CYP)1B1. The present study was conducted to determine if Cyp1b1 gene disruption ameliorates renal dysfunction and organ damage associated with ANG II-induced hypertension in female mice. ANG II (700 ng·kg(-1)·min(-1)) infused by miniosmotic pumps for 2 wk in female Cyp1b1(+/+) mice did not alter water consumption, urine output, Na(+) excretion, osmolality, or protein excretion. However, in Cyp1b1(-/-) mice, ANG II infusion significantly increased (P < 0.05) water intake (5.50 ± 0.42 ml/24 h with vehicle vs. 8.80 ± 0.60 ml/24 h with ANG II), urine output (1.44 ± 0.37 ml/24 h with vehicle vs. 4.30 ± 0.37 ml/24 h with ANG II), and urinary Na(+) excretion (0.031 ± 0.016 mmol/24 h with vehicle vs. 0.099 ± 0.010 mmol/24 h with ANG II), decreased osmolality (2,630 ± 79 mosM/kg with vehicle vs. 1,280 ± 205 mosM/kg with ANG II), and caused proteinuria (2.60 ± 0.30 mg/24 h with vehicle vs. 6.96 ± 0.55 mg/24 h with ANG II). Infusion of ANG II caused renal fibrosis, as indicated by an accumulation of renal interstitial α-smooth muscle actin, collagen, and transforming growth factor-β in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. ANG II also increased renal production of ROS and urinary excretion of thiobarburic acid-reactive substances and reduced the activity of antioxidants and urinary excretion of nitrite/nitrate and the 17β-estradiol metabolite 2-methoxyestradiol in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. These data suggest that Cyp1b1 plays a critical role in female mice in protecting against renal dysfunction and end-organ damage associated with ANG II-induced hypertension, in preventing oxidative stress, and in increasing activity of antioxidant systems, most likely via generation of 2-methoxyestradiol from 17β-estradiol.

  6. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    SciTech Connect

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-12-15

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.

  7. Cytochrome P450 2E1 Gene Polymorphisms/Haplotypes and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort

    PubMed Central

    Tang, Shaowen; Lv, Xiaozhen; Zhang, Yuan; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Tu, Dehua; Deng, Peiyuan; Ma, Yu; Chen, Dafang; Zhan, Siyan

    2013-01-01

    Objective The pathogenic mechanism of anti-tuberculosis (anti-TB) drug-induced hepatitis is associated with drug metabolizing enzymes. No tagging single-nucleotide polymorphisms (tSNPs) of cytochrome P450 2E1(CYP2E1) in the risk of anti-TB drug-induced hepatitis have been reported. The present study was aimed at exploring the role of tSNPs in CYP2E1 gene in a population-based anti-TB treatment cohort. Methods and Design A nested case-control study was designed. Each hepatitis case was 14 matched with controls by age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected by using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing, and detected by using TaqMan allelic discrimination technology. Results Eighty-nine anti-TB drug-induced hepatitis cases and 356 controls were included in this study. 6 tSNPs (rs2031920, rs2070672, rs915908, rs8192775, rs2515641, rs2515644) were genotyped and minor allele frequencies of these tSNPs were 21.9%, 23.0%, 19.1%, 23.6%, 20.8% and 44.4% in the cases and 20.9%, 22.7%, 18.9%, 23.2%, 18.2% and 43.2% in the controls, respectively. No significant difference was observed in genotypes or allele frequencies of the 6 tSNPs between case group and control group, and neither of haplotypes in block 1 nor in block 2 was significantly associated with the development of hepatitis. Conclusion Based on the Chinese anti-TB treatment cohort, we did not find a statistically significant association between genetic polymorphisms of CYP2E1 and the risk of anti-TB drug-induced hepatitis. None of the haplotypes showed a significant association with the development of hepatitis in Chinese TB population. PMID:23460870

  8. Point mutation of Arg440 to his in cytochrome P450c17 causes severe 17{alpha}-hydroxylase deficiency

    SciTech Connect

    Fardella, C.E.; Hum, D.W.; Miller, W.L.; Homoki, J.

    1994-07-01

    Genetic disorders in the gene encoding P450c17 cause 17{alpha}-hydroxylase deficiency. The consequent defects in the synthesis of cortisol and sex steroids cause sexual infantilism and a female phenotype in both genetic sexes as well as mineralorcorticoid excess and hypertension. A 15-yr-old patient from Germany was seen for absent pubertal development and mild hypertension with hypokalemia, high concentrations of 17-deoxysteroids, and hypergonadotropic hypogonadism. Analysis of her P450c17 gene by polymerase chain reaction amplification and direct sequencing showed mutation of codon 440 from CGC (Arg) to CAC (His). Expression of a vector encoding this mutated form of P450c17 in transfected nonsteroidogenic COS-1 cells showed that the mutant P450c17 protein was produced, but it lacked both 17{alpha}-hydroxylase and 17,20-lyase activities. To date, 15 different P450c17 mutations have been described in 23 patients with 17{alpha}-hydroxylase deficiency, indicating that mutations in this gene are due to random events. 36 refs., 3 figs., 2 tabs.

  9. Zonation of hepatic cytochrome P-450 expression and regulation.

    PubMed Central

    Oinonen, T; Lindros, K O

    1998-01-01

    The CYP genes encode enzymes of the cytochrome P-450 superfamily. Cytochrome P-450 (CYP) enzymes are expressed mainly in the liver and are active in mono-oxygenation and hydroxylation of various xenobiotics, including drugs and alcohols, as well as that of endogenous compounds such as steroids, bile acids, prostaglandins, leukotrienes and biogenic amines. In the liver the CYP enzymes are constitutively expressed and commonly also induced by chemicals in a characteristic zonated pattern with high expression prevailing in the downstream perivenous region. In the present review we summarize recent studies, mainly based on rat liver, on the factors regulating this position-dependent expression and induction. Pituitary-dependent signals mediated by growth hormone and thyroid hormone seem to selectively down-regulate the upstream periportal expression of certain CYP forms. It is at present unknown to what extent other hormones that also affect total hepatic CYP activities, i.e. insulin, glucagon, glucocorticoids and gonadal hormones, act zone-specifically. The expression and induction of CYP enzymes in the perivenous region probably have important toxicological implications, since many CYP-activated chemicals cause cell injury primarily in this region of the liver. PMID:9405271

  10. The Cytochrome P450 Gene CsCYP85A1 Is a Putative Candidate for Super Compact-1 (Scp-1) Plant Architecture Mutation in Cucumber (Cucumis sativus L.)

    PubMed Central

    Wang, Hui; Li, Wanqing; Qin, Yaguang; Pan, Yupeng; Wang, Xiaofeng; Weng, Yiqun; Chen, Peng; Li, Yuhong

    2017-01-01

    The dwarf or compact plant architecture is an important trait in plant breeding. A number of genes controlling plant height have been cloned and functionally characterized which often involve in biosynthesis or signaling of plant hormones such as brassinosteroids (BRs). No genes for plant height or vine length have been cloned in cucurbit crops (family Cucurbitaceae). From an EMS-induced mutagenesis population, we identified a super compact (SCP) mutant C257 which was extremely dwarf due to practically no internode elongation. Under dark growing condition, C257 did not undergo skotomorphogenesis and its mutant phenotype could be rescued with exogenous application of brassinolide (BL), suggesting SCP might be a BR-deficient mutant. Segregation analysis revealed a single recessive gene scp-1 that was responsible for the SCP mutation. Map-based cloning combined with a modified MutMap identified CsCYP85A1, a member of the plant cytochrome P450 monooxygenase gene family, as the most possible candidate gene for scp-1, which encodes a BR-C6-oxidase in the BR biosynthesis pathway. We show that a SNP within the second exon of scp-1 candidate gene caused the SCP phenotype. Three copies of the CsCYP85A gene are present in the cucumber genome, but only the scp-1/CsCYP85A1 gene seemed active. The expression of CsCYP85A1 was higher in flowers than in the leaves and stem; its expression in the wild type (WT) was feedback regulated by BL application. Its expression was reduced in C257 as compared with the WT. This was the first report of map-based cloning of a plant height gene in cucurbit crops. The research highlighted the combined use of linkage mapping, an improved MutMap method and allelic diversity analysis in natural populations in quick cloning of simply inherited genes in cucumber. The roles of CsCYP85A1 in regulation of internode elongation in cucumber was discussed. PMID:28303144

  11. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment.

    PubMed Central

    Burgener-Kairuz, P; Zuber, J P; Jaunin, P; Buchman, T G; Bille, J; Rossier, M

    1994-01-01

    PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively. Images PMID:7989540

  12. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  13. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  14. Expression of constitutive androstane receptor, hepatic nuclear factor 4 alpha, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of a broad scope of xenobiotic metabolism genes in the human liver.

    PubMed

    Wortham, Matthew; Czerwinski, Maciej; He, Lin; Parkinson, Andrew; Wan, Yu-Jui Yvonne

    2007-09-01

    Identification of genetic variation predictive of clearance rate of a wide variety of prescription drugs could lead to cost-effective personalized medicine. Here we identify regulatory genes whose variable expression level among individuals may have widespread effects upon clearance rate of a variety of drugs. Twenty liver samples with variable CYP3A activity were profiled for expression level and activity of xenobiotic metabolism genes as well as genes involved in the regulation thereof. Regulatory genes whose expression level accounted for the highest degree of collinearity among expression levels of xenobiotic metabolism genes were identified as possible master regulators of drug clearance rate. Significant linear correlations (p < 0.05) were identified among mRNA levels of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, MRP2, OATP2, P450 oxidoreductase (POR), and UDP-glucuronosyltranferase 1A1, suggesting that these xenobiotic metabolism genes are coregulated at the transcriptional level. Using partial regression analysis, constitutive androstane receptor (CAR) and hepatic nuclear factor 4 alpha (HNF4 alpha) were identified as the nuclear receptors whose expression levels are most strongly associated with expression of coregulated xenobiotic metabolism genes. POR expression level, which is also associated with CAR and HNF4 alpha expression level, was found to be strongly associated with the activity of many cytochromes P450. Thus, interindividual variation in the expression level of CAR, HNF4 alpha, and POR probably determines variation in expression and activity of a broad scope of xenobiotic metabolism genes and, accordingly, clearance rate of a variety of xenobiotics. Identification of polymorphisms in these candidate master regulator genes that account for their variable expression among individuals may yield readily detectable biomarkers that could serve as predictors of xenobiotic clearance rate.

  15. Reactive intermediates in cytochrome p450 catalysis.

    PubMed

    Krest, Courtney M; Onderko, Elizabeth L; Yosca, Timothy H; Calixto, Julio C; Karp, Richard F; Livada, Jovan; Rittle, Jonathan; Green, Michael T

    2013-06-14

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.

  16. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  17. [Exon 5 alternative splicing of the cytochrome P450 aromatase could be a regulatory mechanism for estrogen production in humans].

    PubMed

    Pepe, Carolina M; Saraco, Nora I; Baquedano, María Sonia; Guercio, Gabriela; Vaiani, Elisa; Berensztein, Esperanza; Rivarola, Marco A; Belgorosky, Alicia

    2007-01-01

    P450 aromatase (P450Aro), involved in androgen to estrogen conversion, is encoded by the CYP19 gene. P450Aro c655G>A mutation described in heterozygous form in a girl and in homozygous form in an adult male with P450Aro deficiency results in an aberrant splicing due to disruption of a donor splice site. A truncated inactive protein would be expected if intron5 is retained. Surprisingly, the girl described with this mutation showed spontaneous breast development and pubertal estradiol (E2) levels suggesting residual P450Aro activity (AA). Formerly, we postulate the in frame E5 skipping as a consequence of this mutation generating a protein with some degree of activity. When P450Aro mRNA expression was analysed from patient's lymphocytes, an aberrant spliced mRNA lacking E5 (-E5mRNA) was detected, suggesting an association between E5 skipping and the presence of the mutation. Splicing assays in Y1 cells confirmed this association. -Ex5 cDNA expression in Y1 cells resulted in an inactive protein that could not explain patient's phenotype. Exon 5 might be predicted as a poorly defined exon suggesting a susceptibility to splicing mutations and physiological alternative splicing (AS) events. Therefore, -Ex5mRNA was assessed as a natural occurring alternative transcript in normal human steroidogenic tissues. As P450Aro -E5mRNA expression was detected in human term placenta, prepubertal testis and prepubertal adrenal, we might speculate that AS of P450Aro coding region would occur in humans and would be involved in the complex AA regulation. Furthermore, tissue specific regulation of AS might suggest low expression of +E5mRNA from the c655G>A allele explaining residual AA evidenced in the affected girl.

  18. Evolutionary origin of mitochondrial cytochrome P450.

    PubMed

    Omura, Tsuneo; Gotoh, Osamu

    2017-05-01

    Different molecular species of cytochrome P450 (P450) are distributed between endoplasmic reticulum (microsomes) and mitochondria in animal cells. Plants and fungi have many microsomal P450s, but no mitochondrial P450 has so far been reported. To elucidate the evolutionary origin of mitochondrial P450s in animal cells, available evidence is examined, and the virtual absence of mitochondrial P450 in plants and fungi is confirmed. It is also suggested that a microsomal P450 is the ancestor of animal mitochondrial P450s. It is likely that the endoplasmic reticulum-targeting sequence at the amino-terminus of a microsomal P450 was converted to a mitochondria-targeting sequence possibly by point mutations of a few amino acid residues or by an exon-shuffling/moving event shortly after animal lineage diverged from plants and fungi in the course of evolution of eukaryotes. It is suggested that the microsome-type P450 first imported into mitochondria utilized the existing ferredoxin in the matrix to receive electrons from NADPH, retained its oxygenase activity in the mitochondria, and gradually diversified to several P450s with different substrate specificities in the course of the evolution of animals. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. Cytochrome P450 1B1 gene disruption minimizes deoxycorticosterone acetate-salt-induced hypertension and associated cardiac dysfunction and renal damage in mice.

    PubMed

    Jennings, Brett L; Estes, Anne M; Anderson, Larry J; Fang, Xiao R; Yaghini, Fariborz A; Fan, Zheng; Gonzalez, Frank J; Campbell, William B; Malik, Kafait U

    2012-12-01

    Previously, we showed that the cytochrome P450 1B1 inhibitor 2,3',4,5'-tetramethoxystilbene reversed deoxycorticosterone acetate (DOCA)-salt-induced hypertension and minimized endothelial and renal dysfunction in the rat. This study was conducted to test the hypothesis that cytochrome P450 1B1 contributes to cardiac dysfunction, and renal damage and inflammation associated with DOCA-salt-induced hypertension, via increased production of reactive oxygen species and modulation of neurohumoral factors and signaling molecules. DOCA-salt increased systolic blood pressure, cardiac and renal cytochrome P450 1B1 activity, and plasma levels of catecholamines, vasopressin, and endothelin-1 in wild-type (Cyp1b1(+/+)) mice that were minimized in Cyp1b1(-/-) mice. Cardiac function, assessed by echocardiography, showed that DOCA-salt increased the thickness of the left ventricular posterior and anterior walls during diastole, the left ventricular internal diameter, and end-diastolic and end-systolic volume in Cyp1b1(+/+) but not in Cyp1b1(-/-) mice; stroke volume was not altered in either genotype. DOCA-salt increased renal vascular resistance and caused vascular hypertrophy and renal fibrosis, increased renal infiltration of macrophages and T lymphocytes, caused proteinuria, increased cardiac and renal nicotinamide adenine dinucleotide phosphate-oxidase activity, caused production of reactive oxygen species, and increased activities of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and cellular-Src; these were all reduced in DOCA-salt-treated Cyp1b1(-/-) mice. Renal and cardiac levels of eicosanoids were not altered in either genotype of mice. These data suggest that, in DOCA-salt hypertension in mice, cytochrome P450 1B1 plays a pivotal role in cardiovascular dysfunction, renal damage, and inflammation, and increased levels of catecholamines, vasopressin, and endothelin-1, consequent to generation of reactive oxygen species and activation of

  20. Cloning and expression of a member of a new cytochrome P-450 family: cytochrome P-450lin (CYP111) from Pseudomonas incognita.

    PubMed Central

    Ropp, J D; Gunsalus, I C; Sligar, S G

    1993-01-01

    Cytochrome P-450lin catalyzes the 8-methyl hydroxylation of linalool as the first committed step of its utilization by Pseudomonas incognita as the sole carbon source. By using a polymerase chain reaction-based cloning strategy, a 2.1-kb DNA fragment containing the cytochrome P-450lin gene (linC) was isolated. An open reading frame of 406 amino acids has been identified as that of P-450lin on the basis of amino acid sequence data from peptides of the native protein. Heterologous expression of functional holoprotein is exhibited by Escherichia coli transformed with pUC18 containing the subcloned linC gene under constitutive transcriptional control of the lac promoter. The G+C content of linC was found to be 55% overall and 58% in the third codon position. An optimized amino acid sequence alignment of P-450lin with cytochrome P-450cam shows that the two enzymes have only 25% identity. P-450lin was found to exhibit the expected conservation in the axial cysteine heme ligand-containing peptide and the threonine region postulated to form an O2-binding pocket (T. L. Poulos, B. C. Finzel, and A. J. Howard, J. Mol. Biol. 195:687-700, 1987). The low amino acid sequence identity between P-450lin and all other P-450 sequences has shown that P-450lin is the first member of the CYP111 P-450 gene family. PMID:8376348

  1. Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase, and 20alpha-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486.

    PubMed

    Stocco, C O; Chedrese, J; Deis, R P

    2001-10-01

    A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.

  2. Unusual Cytochrome P450 Enzymes and Reactions*

    PubMed Central

    Guengerich, F. Peter; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 enzymes primarily catalyze mixed-function oxidation reactions, plus some reductions and rearrangements of oxygenated species, e.g. prostaglandins. Most of these reactions can be rationalized in a paradigm involving Compound I, a high-valent iron-oxygen complex (FeO3+), to explain seemingly unusual reactions, including ring couplings, ring expansion and contraction, and fusion of substrates. Most P450s interact with flavoenzymes or iron-sulfur proteins to receive electrons from NAD(P)H. In some cases, P450s are fused to protein partners. Other P450s catalyze non-redox isomerization reactions. A number of permutations on the P450 theme reveal the diversity of cytochrome P450 form and function. PMID:23632016

  3. Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation.

    PubMed

    Choi, Kwon-Young; Jung, EunOk; Yun, Hyungdon; Yang, Yung-Hun; Kim, Byung-Gee

    2014-10-01

    Daidzein C6 hydroxylase (6-DH, nfa12130), which is a class I type of cytochrome P450 enzyme, catalyzes a hydroxylation reaction at the C6-position of the daidzein A-ring and requires auxiliary electron transfer proteins. Current utilization of cytochrome P450 (CYP) enzymes is limited by low coupling efficiency, which necessitates extramolecular electron transfers, and low driving forces, which derive electron flows from tightly regulated NADPH redox balances into the heterogeneous CYP catalytic cycle. To overcome such limitations, the heme domain of the 6-DH enzyme was genetically fused with the NADPH-reductase domain of self-sufficient CYP102D1 to enhance electron transfer efficiencies through intramolecular electron transfer and switching cofactor preference from NADH into NADPH. 6-DH-reductase fusion enzyme displayed distinct spectral properties of both flavoprotein and heme proteins and catalyzed daidzein hydroxylation more efficiently with a k cat/K m value of 120.3 ± 11.5 [10(3) M(-1) s(-1)], which was about three times higher than that of the 6-DH-FdxC-FdrA reconstituted system. Moreover, to obtain a higher redox driving force, a Streptomyces avermitilis host system was developed for heterologous expression of fusion 6-DH enzyme and whole cell biotransformation of daidzein. The whole cell reaction using the final recombinant strain, S. avermitilisΔcyp105D7::fusion 6-DH (nfa12130), resulted in 8.3 ± 1.4 % of 6-OHD yield from 25.4 mg/L of daidzein.

  4. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in pejerrey, Odontesthes bonariensis.

    PubMed

    Karube, Makiko; Fernandino, Juan Ignacio; Strobl-Mazzulla, Pablo; Strüssmann, Carlos Augusto; Yoshizaki, Goro; Somoza, Gustavo Manuel; Patiño, Reynaldo

    2007-11-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature-dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17 degrees C, 100% females), mixed-sex producing (24 and 25 degrees C, 73.3 and 26.7% females, respectively), and masculinizing (29 degrees C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. (c) 2007 Wiley-Liss, Inc.

  5. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in Pejerrey, Odontesthes bonariensis

    USGS Publications Warehouse

    Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.

    2007-01-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.

  6. Technology evaluation: MetXia-P450, Oxford Biomedica.

    PubMed

    Hunt, S

    2001-12-01

    Oxford BioMedica is developing gene therapies for treating various forms of cancer. The therapies comprise the transfer of several anticancer genes at a time using a recombinant retrovirus approach based on the company's proprietary LTR Deleted Vector and Accelerated Vector Evolution technologies [238147]. MetXia-P450 is a gene therapy construct containing the cytochrome P450 gene CYP2B6, and is designed to be injected directly into tumors to convert them into 'drug factories'. This is achieved because CYP2B6 converts the inactive produg form cyclophosphamide into the active cytotoxic drug. MetXia-P450 is in phase I/II trials for breast cancer [339582].

  7. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s

    PubMed Central

    Nelson, David R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution. PMID:23297357

  8. Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily.

    PubMed

    Dueholm, Bjørn; Krieger, Célia; Drew, Damian; Olry, Alexandre; Kamo, Tsunashi; Taboureau, Olivier; Weitzel, Corinna; Bourgaud, Frédéric; Hehn, Alain; Simonsen, Henrik Toft

    2015-06-26

    Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects. A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two of the subclades were functionally assigned to the biosynthesis of furanocoumarins. Six substrate recognition sites (SRS1-6) important for the enzymatic conversion were investigated in the described cytochromes P450 and display significant variability within the CYP71AJ subfamily. Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ. Two subclades functionally assigned to the biosynthesis of furanocoumarins and four other subclades were identified and shown to be part of two distinct clades within the CYP71AJ subfamily. The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 'blooms' in response to environmental pressures.

  9. Molecular cloning and characterization of brain and ovarian cytochrome P450 aromatase genes in the catfish Heteropneustes fossilis: Sex, tissue and seasonal variation in, and effects of gonadotropin on gene expression.

    PubMed

    Chaube, Radha; Rawat, Arpana; Joy, Keerrikkattil P

    2015-09-15

    Cytochrome P450 aromatase (Cyp19arom) is the rate-limiting enzyme controlling estrogen biosynthesis, coded by Cyp19a1 in most gnathostomes. Most teleosts have two forms expressed differentially in ovary (cyp19a1a) and neural tissue (cyp19a1b). In this study, full length cDNAs of 2006 bp and 1913 bp with ORFs of 1575 bp and 1488 bp were isolated from the brain and ovary, respectively, of the catfish Heteropneustes fossilis, an air-breathing species with high aquaculture potential. The ORFs encode predicted proteins of 495 and 524 amino acid residues, respectively. The proteins show 62% identity with each other and cluster in two distinct clades (the brain type and ovary type) in the teleost taxon, separated from the tetrapod type. In the in situ localization study, both cyp19a1a and cyp19a1b transcripts were localized in the brain but the signal intensity was higher for the brain type paralog. The transcript signals were observed in the radial glial cells and in neuronal populations of the dorso-lateral region of the telencephalon, pre-tectum, hypothalamus and medulla oblongata. In the ovary, both paralogs were expressed in the follicular layer with a high signal intensity of the ovarian type (cyp19a1a). The differential expression of the gene paralogs was evident from qPCR analysis. Cyp19a1b has relatively a high abundance in the female brain, followed by other peripheral tissues (gonads, liver, gill, kidney and muscle). On the other hand, cyp19a1a has relatively a high transcript abundance in the ovary and female brain, followed by the testis and male brain, and female liver and muscle. The expression was low in male liver and muscle, and the lowest in the gill and kidney. The expression of the two paralogs exhibit brain regional differences; both types have relatively a high transcript abundance in telencephalon-preoptic area with the cyp19a1b expression higher in females than males. In hypothalamus, the expression of both types is higher in males than females

  10. Flower colour and cytochromes P450

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  11. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa.

    PubMed

    Huber, D P W; Erickson, M L; Leutenegger, C M; Bohlmann, J; Seybold, S J

    2007-06-01

    We have identified cDNAs and characterized the expression of 13 novel cytochrome P450 genes of potential importance in host colonization and reproduction by the California fivespined ips, Ips paraconfusus. Twelve are of the Cyp4 family and one is of the Cyp9 family. Following feeding on host Pinus ponderosa phloem, bark beetle transcript levels of several of the Cyp4 genes increased or decreased in males only or in both sexes. In one instance (IparaCyp4A5) transcript accumulated significantly in females, but declined significantly in males. The Cyp9 gene (Cyp9T1) transcript levels in males were > 85 000 x higher at 8 h and > 25 000 x higher at 24 h after feeding compared with nonfed controls. Transcript levels in females were approximately 150 x higher at 24 h compared with nonfed controls. Cyp4G27 transcript was present constitutively regardless of sex or feeding and served as a better housekeeping gene than beta-actin or 18S rRNA for the real-time TaqMan polymerase chain reaction analysis. The expression patterns of Cyp4AY1, Cyp4BG1, and, especially, Cyp9T1 in males suggest roles for these genes in male-specific aggregation pheromone production. The differential transcript accumulation patterns of these bark beetle P450s provide insight into ecological interactions of I. paraconfusus with its host pines.

  12. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast

    PubMed Central

    Schoendorf, Anne; Rithner, Christopher D.; Williams, Robert M.; Croteau, Rodney B.

    2001-01-01

    The early steps in the biosynthesis of Taxol involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation at C5, acetylation of this intermediate, and a second cytochrome P450-dependent hydroxylation at C10 to yield taxadien-5α-acetoxy-10β-ol. Subsequent steps of the pathway involve additional cytochrome P450 catalyzed oxygenations and CoA-dependent acylations. The limited feasibility of reverse genetic cloning of cytochrome P450 oxygenases led to the use of Taxus cell cultures induced for Taxol production and the development of an approach based on differential display of mRNA-reverse transcription-PCR, which ultimately provided full-length forms of 13 unique but closely related cytochrome P450 sequences. Functional expression of these enzymes in yeast was monitored by in situ spectrophotometry coupled to in vivo screening of oxygenase activity by feeding taxoid substrates. This strategy yielded a family of taxoid-metabolizing enzymes and revealed the taxane 10β-hydroxylase as a 1494-bp cDNA that encodes a 498-residue cytochrome P450 capable of transforming taxadienyl acetate to the 10β-hydroxy derivative; the identity of this latter pathway intermediate was confirmed by chromatographic and spectrometric means. The 10β-hydroxylase represents the initial cytochrome P450 gene of Taxol biosynthesis to be isolated by an approach that should provide access to the remaining oxygenases of the pathway. PMID:11171980

  13. Cytochrome P450 3A, NADPH cytochrome P450 reductase and cytochrome b5 in the upper airways in horse.

    PubMed

    Tydén, E; Olsén, L; Tallkvist, J; Tjälve, H; Larsson, P

    2008-08-01

    Gene and protein expression as well as catalytic activity of cytochrome P450 (CYP) 3A were studied in the nasal olfactory and respiratory mucosa and the tracheal mucosa of the horse. We also examined the activity of NADPH cytochrome P450 reductase (NADPH P450 reductase), the amount of cytochrome b(5) and the total CYP content in these tissues. Comparative values for the above were obtained using liver as a control. The CYP3A related catalytic activity in the tissues of the upper airways was considerably higher than in the liver. The CYP3A gene and protein expression, on the other hand, was higher in the liver than in the upper airway tissues. Thus, the pattern of CYP3A metabolic activity does not correlate with the CYP3A gene and protein expression. Our results showed that the activity of NADPH P450 reductase and the level of cytochrome b(5) in the relation to the gene and protein expression of CYP3A were higher in the tissues of the upper airways than in the liver. It is concluded that CYP3A related metabolism in horse is not solely dependent on the expression of the enzyme but also on adequate levels of NADPH P450 reductase and cytochrome b(5).

  14. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  15. Polymorphic genetic variations of cytochrome P450 19A1 and T-cell leukemia 1A genes in the Tamil population.

    PubMed

    Umamaheswaran, Gurusamy; Kadambari, Dharanipragada; Kumar, Annan Sudarsan Arun; Revathy, Mohan; Anjana, Raj; Adithan, Chandrasekaran; Dkhar, Steven Aibor

    2015-01-01

    Aromatase inhibitors (AIs) are anti-neoplastic drugs widely used for the treatment of endocrine responsive breast carcinoma in postmenopausal women. Drug disposition, efficacy and tolerability of these agents are influenced by germ-line polymorphisms in the sequence of the genes encoding CYP19A1 and TCL1A proteins. In the current work, we aimed to determine the haplotype structures, linkage disequilibrium (LD) patterns, and allele and genotype frequency distribution of pharmacologically important variants from two genes (CYP19A1 and TCL1A) in Tamil population and assessed their ethnic differences. DNA derived from peripheral leukocytes of 111 healthy subjects were genotyped for 15 pharmacogenetic variants by real time thermocycler through allelic discrimination method using TaqMan 5' nuclease genotyping assay. The polymorphic variant allele frequencies of CYP19A1 were 42.3% (rs4646, T), 18% (rs10046, T), 36% (rs700519, T), 16.7% (rs700518, G), 26.1% (rs727479, G), 18% (rs4775936, T), 32% (rs10459592, G), 15.3% (rs1062033, C), 33.8% (rs749292, A), 40.1% (rs6493497, T) and 40.1% (rs7176005, G). TCL1A gene allele frequencies were 26.1% (rs7158782, G), 27% (rs7159713, G), 21.2% (rs2369049, G) and 27.5% (rs11849538, G). Comparing our data across the 5 HapMap populations (CEU, GIH, HCB, JPT and YRI) huge inter-ethnic differences were exhibited in the variant allele frequencies, LD patterns and haplotype blocks. Our results emphasize the importance of normative frequency documentation and will offer significant clinical relevance in personalizing AIs therapy.

  16. Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions

    PubMed Central

    Davydov, Dmitri R.

    2011-01-01

    Introduction There is increasing evidence of physical interactions (association) among cytochromes P450 in the membranes of the endoplasmic reticulum. Functional consequences of these interactions are often underestimated. Areas covered This article provides a comprehensive overview of available experimental material regarding P450-P450 interactions. Special emphasis is given to the interactions between different P450 species and to the functional consequences of homo- and heterooligomerization. Expert opinion Recent advances provide conclusive evidence for a substantial degree of P450 oligomerization in membranes. Interactions between different P450 species resulting in the formation of mixed oligomers with altered activity and substrate specificity have been demonstrated clearly. There are important indications that oligomerization of cytochromes P450 impedes electron flow to a fraction of the P450 population, which render some P450 species non-functional. Functional consequences of P450-P450 interactions make the integrated properties of the microsomal monooxygenase remarkably different from a simple summation of the properties of the individual P450 species. This complexity compromises the predictive power of the current in vitro models of drug metabolism and warrants an urgent need for development of new model systems that consider the interactions of multiple P450 species. PMID:21395496

  17. Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis.

    PubMed

    Economopoulos, Konstantinos P; Sergentanis, Theodoros N

    2010-07-01

    Cytochrome P450 1B1 (CYP1B1) is a P450 enzyme implicated in the metabolism of exogenous and endogenous substrates. The metabolism of polycyclic aromatic hydrocarbons and other procarcinogens through CYP1B1 may well lead to their activation. Apart from the extensively studied Val432Leu polymorphism, three single nucleotide polymorphisms in CYP1B1 have been studied concerning their potential implication in terms of breast cancer risk: Arg48Gly, Ala119Ser and Asn453Ser. This meta-analysis aims to examine whether the three aforementioned polymorphisms are associated with breast cancer risk. Eligible articles were identified by a search of MEDLINE bibliographical database for the period up to December 2009. Concerning Arg48Gly polymorphism, 10 studies were eligible (11,321 cases and 13,379 controls); 11 studies were eligible for Ala119Ser (10,715 cases and 11,678 controls); 12 cases were eligible regarding Asn453Ser (11,630 cases and 14,053 controls). Pooled odds ratios (OR) were appropriately derived form fixed-effects or random-effects models. Sensitivity analysis excluding studies whose genotype frequencies in controls significantly deviated from Hardy-Weinberg equilibrium was performed. Concerning Arg48Gly, the pooled ORs (95% CI) were 0.933 (0.808-1.078) for heterozygous and 0.819 (0.610-1.100) for homozygous Gly subjects. Regarding Ala119Ser, the pooled ORs were 0.992 (0.896-1.097) for heterozygous and 0.935 (0.729-1.198) for homozygous Ser subjects. With respect to Asn453Ser, the pooled ORs were 0.961 (0.906-1.019) for heterozygous and 0.984 (0.846-1.144) for homozygous Ser subjects. In conclusion, this meta-analysis suggests that CYP1B1 Arg48Gly, Ala119Ser and Asn453Ser polymorphisms are not associated with breast cancer risk. Studies on Chinese populations are needed, to elucidate race-specific effects on East Asian populations, if any.

  18. Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy.

    PubMed

    Hu, Lei; Zhuo, Wei; He, Yi-Jing; Zhou, Hong-Hao; Fan, Lan

    2012-11-01

    The redox reaction of cytochrome P450 enzymes (CYP) is an important physiological and biochemical reaction in the human body, as it is involved in the oxidative metabolism of both endogenous and exogenous substrates. Cytochrome P450 oxidoreductase (POR) is the only obligate electron donor for all of the hepatic microsomal CYP enzymes. It plays a crucial role in drug metabolism and treatment by not only acting as an electron donor involved in drug metabolism mediated by CYP enzymes but also by directly inducing the transformation of some antitumor precursors. Studies have found that the gene encoding human POR is highly polymorphic, which is of considerable clinical significance as it affects the metabolism and curative effects of clinically used drugs. This review aims to discuss the effect of POR and its genetic polymorphisms on drug metabolism and therapy, as well as the potential mechanisms of POR pharmacogenetics.

  19. Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells.

    PubMed

    Wang, Dahai; Hirase, Tetsuaki; Nitto, Takeaki; Soma, Masaaki; Node, Koichi

    2009-12-01

    ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects. We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662. These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation.

  20. Gravity Persistent Signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism.

    PubMed

    Withers, John C; Shipp, Matthew J; Rupasinghe, Sanjeewa G; Sukumar, Poornima; Schuler, Mary A; Muday, Gloria K; Wyatt, Sarah E

    2013-01-01

    Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.

  1. Effects of norfloxacin on hepatic genes expression of P450 isoforms (CYP1A and CYP3A), GST and P-glycoprotein (P-gp) in Swordtail fish (Xiphophorus Helleri).

    PubMed

    Liang, Ximei; Wang, Lan; Ou, Ruikang; Nie, Xiangping; Yang, YuFeng; Wang, Fang; Li, Kaibin

    2015-10-01

    The presence of antibiotics including norfloxacin in the aquatic environment may cause adverse effects in non-target organisms. But the toxic mechanisms of fluoroquinolone to fish species are still not completely elucidated. Thus, it is essential to investigate the response of fish to the exposure of fluoroquinolone at molecular or cellular level for better and earlier prediction of these environmental pollutants toxicity. The sub-chronic toxic effects of norfloxacin (NOR) on swordtail fish (Xiphophoru s helleri) were investigated by measuring mRNA expression of cytochrome P450 1A (CYP1A), cytochrome P450 3A (CYP3A), glutathione S-transferase (GST) and P-glycoprotein (P-gp) and their corresponding enzyme activities (including ethoxyresorufin O-deethylase, erythromycin N-demethylase and GST. Results showed that NOR significantly affected the expression of CYP1A, CYP3A, GST and P-gp genes in swordtails. The gene expressions were more responsive to NOR exposure than their corresponding enzyme activities. Moreover, sexual differences were found in gene expression and enzyme activities of swordtails exposed to NOR. Females displayed more dramatic changes than males. The study further demonstrated that the combined biochemical and molecular parameters were considered as useful biomarkers to improve our understanding of potential ecotoxicological risks of NOR exposure to aquatic organisms.

  2. Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome P450 gene in the brassinosteroid pathway.

    PubMed

    Rizal, Govinda; Thakur, Vivek; Dionora, Jacqueline; Karki, Shanta; Wanchana, Samart; Acebron, Kelvin; Larazo, Nikki; Garcia, Richard; Mabilangan, Abigail; Montecillo, Florencia; Danila, Florence; Mogul, Reychelle; Pablico, Paquito; Leung, Hei; Langdale, Jane A; Sheehy, John; Kelly, Steven; Quick, William Paul

    2015-10-01

    The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C(4) traits into C(3) plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C(4) plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C(4) species from C(3) species. To identify genetic factors that specify C(4) leaf anatomy, we generated ethyl methanesulfonate- and γ-ray-mutagenized populations of the C(4) species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F(2) populations as homozygous recessive alleles. Bulk segregant analysis using next-generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C(4) and C(3) leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.

  3. Comparative modelling of cytochromes P450.

    PubMed

    Kirton, Stewart B; Baxter, Carol A; Sutcliffe, Michael J

    2002-03-31

    The superfamily of enzymes known as the cytochromes P450 (P450s) comprises a wide-ranging class of proteins with diverse functions. They are known, amongst other things, to be involved in the hormonal regulation of metabolism and reproduction, as well as having a major clinical significance through their association with diseases such as cancer, diabetes and hepatitis. Knowledge of the three-dimensional (3D) structure of a protein gives insight into its function. The 3D structures of P450s are therefore of considerable scientific interest. A number of high-resolution structures of P450s have been determined by X-ray crystallography and studies of these structures have provided valuable insights into the mechanism of these enzymes. Only one of these structures is mammalian and as yet there is no structural information on human P450s in the public domain. Until such a structure is solved it is necessary to employ alternative methods to gain structural insight into how human P450s perform their biological function. Here we report on the use of comparative modelling to predict the structure of human P450s based on knowledge of their amino acid sequences plus the 3D structures of other (not human) P450s. As an illustrative example of these techniques we have modelled the structure of P450 2C5 using five bacterial P450 structures as templates. We examine the importance of selecting suitable templates, obtaining a good amino acid sequence alignment, and evaluating the models generated. To improve the quality of the models an iterative cycle of sequence alignment, model building, and model evaluation is employed. The result is a model with excellent stereochemistry, good amino acid side chain environment properties, and a Calpha trace similar to the crystal structure.

  4. Phosphorylation of Human Cytochrome P450c17 by p38α Selectively Increases 17,20 Lyase Activity and Androgen Biosynthesis*

    PubMed Central

    Tee, Meng Kian; Miller, Walter L.

    2013-01-01

    Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event. PMID:23836902

  5. Mechanisms that Regulate Production of Reactive Oxygen Species by Cytochrome P450

    SciTech Connect

    Zangar, Richard C.; Davydov, Dmitri R.; Verma, Seema

    2004-09-15

    Mammalian cytochromes P450 (P450) are a family of heme-thiolate enzymes involved in the oxidative metabolism of a variety of endogenous and exogenous lipophilic compounds. Poor coupling of the P450 catalytic cycle results in continuous production of reactive oxygen species (ROS), which affect signaling pathways and other cellular functions. P450 generation of ROS is tightly controlled by regulation of gene transcription, as well as by modulation of interactions between protein constituents of the monooxygenase that affects its activity, coupling and stability. Malfunction of these mechanisms may result in a burst of ROS production, which can cause lipid peroxidation and oxidative stress. In turn, oxidative stress downregulates P450 levels by a variety of feedback mechanisms. This review provides an overview of recent advances in our understanding of these feedback mechanisms that serve to limit P450 production of ROS. Some of the more likely physiological and cellular effects of P450 generation of ROS are also discussed.

  6. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  7. Identification and location of alpha-helices in mammalian cytochromes P450.

    PubMed

    Edwards, R J; Murray, B P; Boobis, A R; Davies, D S

    1989-05-02

    A model of the alpha-helical structure of mammalian cytochromes P450 is proposed. The location and sequence of alpha-helices in mammalian cytochromes P450 were predicted from their homology with those of cytochrome P450cam, and these sequences were generally confirmed as helical in nature by using a secondary structure prediction method. These analyses were applied to 26 sequences in 6 gene families of cytochrome P450. Mammalian cytochromes P450 consist of approximately 100 amino acid residues more than cytochrome P450cam. This difference was accounted for by three major areas of insertion: (1) at the N-terminus, (2) between helices C and D and between helices D and E, and (3) between helices J and K. Insertion 1 has been suggested by others as a membrane anchoring sequence, but the apparent insertions at 2 and 3 are novel observations; it is suggested that they may be involved in the binding of cytochrome P450 reductase. Only the mitochondrial cytochrome P450 family appeared to show a major variation from this pattern, as insertion 2 was absent, replaced by an insertion between helices G and H and between helices H and I. This may reflect the difference in electron donor proteins that bind to members of this cytochrome P450 family. Other than these differences the model of mammalian cytochromes P450 proposed maintains the general structure of cytochrome P450cam as determined by its alpha-helical composition.

  8. A CAR-responsive enhancer element locating approximately 31 kb upstream in the 5'-flanking region of rat cytochrome P450 (CYP) 3A1 gene.

    PubMed

    Gamou, Toshie; Habano, Wataru; Terashima, Jun; Ozawa, Shogo

    2015-04-01

    Constitutive androstane receptor (CAR) is one of the principal regulators of hepatic cytochrome P450s (CYPs) 3A (CYP3A). cDNA-mediated expression of a mature rat CAR (rCAR) into rat hepatoma cells induced CYP3A1 and CYP2B mRNAs. Aberrant rCAR failed in these inductions. Three important human CYP3A4 regulatory elements (REs), proximal ER6 (proER6), xenobiotic responsive enhancer module (XREM) and constitutive liver enhancer module (CLEM), support constitutive and inducible expression of CYP3As mediated by CAR and pregnane X receptor (PXR). NHR-scan software predicted proER6, XREM and CLEM at -255 b, -8 kb and -11.5 kb, respectively of CYP3A4, but neither XREM nor CLEM was predicted in rat CYP3A. A luciferase reporter construct carrying a 5'-flanking sequence of CYP3A1 (-31,739 to -31,585 from its transcription initiation site) revealed important for the rCAR-dependent transactivation of CYP3A1. This region includes two putative binding motifs of nuclear receptors (DR4 and DR2), a putative hepatocyte nuclear factor-1 binding motif (HNF1), nuclear factor-kappa B binding motif (NFκB), activator protein 1 binding motif (AP-1), and ecotropic viral integration site 1 binding motif (Evi1). We hereby conclude DR4 and/or DR2 motifs being primarily responsible and HNF1 being synergistically functioning elements for the rCAR-mediated transcription of CYP3A1. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  9. Disruption of Mouse Cytochrome P450 4f14 (Cyp4f14 Gene) Causes Severe Perturbations in Vitamin E Metabolism*

    PubMed Central

    Bardowell, Sabrina A.; Duan, Faping; Manor, Danny; Swanson, Joy E.; Parker, Robert S.

    2012-01-01

    Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450–4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14−/− mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12′-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14−/− mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo. PMID:22665481

  10. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  11. Developmental variation in cytochrome P450 expression in Papilio polyxenes in response to xanthotoxin, a hostplant allelochemical.

    PubMed

    Harrison, T L; Zangerl, A R; Schuler, M A; Berenbaum, M R

    2001-12-01

    Although developmental variation in activity and inducibility is typical of cytochrome P450 monooxygenases (P450s) in insects, the adaptive significance of such variation is often unclear, in part because the natural function of insect P450s is rarely known. In this study, we examined developmental variation in expression of CYP6B1 and CYP6B3 in Papilio polyxenes, the black swallowtail. Enzymes encoded by these genes have been implicated in the metabolism of xanthotoxin, a furanocoumarin characteristic of the apiaceous hostplants of P. polyxenes. In each life stage-egg, five larval instars, pupa, and adult-we examined individuals exposed to foliage with and without supplemental xanthotoxin. For each stage, we conducted enzyme assays to estimate xanthotoxin metabolism, Northern analysis to detect constitutive and induced mRNA levels, and RT-PCR amplification and Southern analysis to differentiate among P450 genes expressed. Inducible xanthotoxin metabolism, previously reported in fifth instars, was observed in four of five larval stages but was absent or undetectable in all stages that do not feed on foliage; the highest levels of activity were in early larval instars. The same pattern was observed in both Northern and RT-PCR gel blot analyses. In inducible larval stages, inducibility of CYP6B1 transcripts by xanthotoxin was greater than the inducibility of CYP6B3 transcripts. These findings support earlier suggestions that these two P450s contribute to xanthotoxin metabolism in this species and that expression of these P450 genes is regulated in an adaptive fashion with respect to probability of exposure to hostplant toxins over the course of development. Copyright 2001 Wiley-Liss, Inc.

  12. Genome mining in Amycolatopsis balhimycina for ferredoxins capable of supporting cytochrome P450 enzymes involved in glycopeptide antibiotic biosynthesis.

    PubMed

    Geib, Nina; Weber, Tilmann; Wörtz, Tanja; Zerbe, Katja; Wohlleben, Wolfgang; Robinson, John A

    2010-05-01

    Ferredoxins are required to supply electrons to the cytochrome P450 enzymes involved in cross-linking reactions during the biosynthesis of the glycopeptide antibiotics balhimycin and vancomycin. However, the biosynthetic gene clusters for these antibiotics contain no ferredoxin- or ferredoxin reductase-like genes. In a search for potential ferredoxin partners for these P450s, here, we report an in silico analysis of the draft genome sequence of the balhimycin producer Amycolatopsis balhimycina, which revealed 11 putative Fe-S-containing ferredoxin genes. We show that two members (balFd-V and balFd-VII), produced as native-like holo-[3Fe-4S] ferredoxins in Escherichia coli, could supply electrons to the P450 OxyB (CYP165B) from both A. balhimycina and the vancomycin producer Amycolatopsis orientalis, and support in vitro turnover of peptidyl carrier protein-bound peptide substrates into monocyclic cross-linked products. These results show that ferredoxins encoded in the antibiotic-producing strain can act in a degenerate manner in supporting the catalytic functions of glycopeptide biosynthetic P450 enzymes from the same as well as heterologous gene clusters.

  13. Molecular Cloning and Sequence Analysis of Novel Cytochrome P450 cDNA Fragments from Dastarcus helophoroides

    PubMed Central

    Wang, Hai-Dong; Li, Fei-Fei; He, Cai; Cui, Jun; Song, Wang; Li, Meng-Lou

    2014-01-01

    The predatory beetle Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is a natural enemy of many longhorned beetles and is mainly distributed in both China and Japan. To date, no research on D. helophoroides P450 enzymes has been reported. In our study, for the better understanding of P450 enzymes in D. helophoroides, 100 novel cDNA fragments encoding cytochrome P450 were amplified from the total RNA of adult D. helophoroides abdomens using five pairs of degenerate primers designed according to the conserved amino acid sequences of the CYP6 family genes in insects through RT-PCR. The obtained nucleotide sequences were 250 bp, 270 bp, and 420 bp in length depending on different primers. Ninety-six fragments were determined to represent CYP6 genes, mainly from CYP6BK, CYP6BQ, and CYP6BR subfamilies, and four fragments were determined to represent CYP9 genes. Twenty-two fragments, submitted to GenBank, were selected for further homologous analysis, which revealed that some fragments of different sizes might be parts of the same P450 gene. PMID:25373175

  14. Molecular cloning and sequence analysis of novel cytochrome P450 cDNA fragments from Dastarcus helophoroides.

    PubMed

    Wang, Hai-Dong; Li, Fei-Fei; He, Cai; Cui, Jun; Song, Wang; Li, Meng-Lou

    2014-02-26

    The predatory beetle Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is a natural enemy of many longhorned beetles and is mainly distributed in both China and Japan. To date, no research on D. helophoroides P450 enzymes has been reported. In our study, for the better understanding of P450 enzymes in D. helophoroides, 100 novel cDNA fragments encoding cytochrome P450 were amplified from the total RNA of adult D. helophoroides abdomens using five pairs of degenerate primers designed according to the conserved amino acid sequences of the CYP6 family genes in insects through RT-PCR. The obtained nucleotide sequences were 250 bp, 270 bp, and 420 bp in length depending on different primers. Ninety-six fragments were determined to represent CYP6 genes, mainly from CYP6BK, CYP6BQ, and CYP6BR subfamilies, and four fragments were determined to represent CYP9 genes. Twenty-two fragments, submitted to GenBank, were selected for further homologous analysis, which revealed that some fragments of different sizes might be parts of the same P450 gene.

  15. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B sub 1

    SciTech Connect

    Doehmer, J.; Dogra, S.; Friedberg, T.; Monier, S.; Adesnik, M.; Glatt, H.; Oesch, F. )

    1988-08-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltranferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B{sub 1}, which is activated by this enzyme.

  16. Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana.

    PubMed

    Han, Jeonghoon; Kim, Duck-Hyun; Seo, Jung Soo; Kim, Il-Chan; Nelson, David R; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an "orphan" gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.

  17. Molecular cloning of P450 aromatase from the leopard gecko and its expression in the ovary.

    PubMed

    Endo, Daisuke; Park, Min Kyun

    2005-07-01

    In this study, we identified the cDNA of P450 aromatase in the leopard gecko, a lizard with temperature-dependent sex determination. The cDNA encodes a putative protein of 505 amino acids. The deduced amino acid sequence of leopard gecko aromatase cDNA showed 80% identity with that of turtles, 70% with humans and 77% with chickens. This is the first report of the identification of P450 aromatase cDNA in squamata species. It has been reported that this gene is expressed in different layers of cells in the ovary of mammalian species and avian species. Thus, we also investigated cells expressing the mRNA of this gene in the ovary of the leopard gecko by RT-PCR and in situ hybridization. The mRNA expression of leopard gecko P450 aromatase was localized in both the thecal and granulosa cell layers in the ovary. The expression in thecal and granulosa cell layers was examined in the largest follicle, second largest follicle and third largest follicle by RT-PCR. A higher level of mRNA expression was observed in the granulosa cell layer of the second largest follicle than in other cell layers. This result may reflect the characteristics of follicles in species with automonochronic ovulation.

  18. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous

    PubMed Central

    Gutiérrez, María Soledad; Rojas, María Cecilia; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous. PMID:26466337

  19. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous.

    PubMed

    Gutiérrez, María Soledad; Rojas, María Cecilia; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous.

  20. Functional characterization and tissue expression of marmoset cytochrome P450 2E1.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Tomioka, Etsuko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-09-01

    Common marmosets (Callithrix jacchus) have attracted increasing attention as a useful small non-human primate model in preclinical research. However, studies on marmoset cytochrome P450 (P450) 2E enzyme have scarcely been conducted. In this study, the full-length cDNA encoding P450 2E1 enzyme was isolated from marmoset livers by reverse transcription (RT)-polymerase chain reaction (PCR). Marmoset P450 2E1 amino acid sequences were highly identical (>88%) to those of cynomolgus monkey and human P450 2E1 enzymes. Phylogenetic analysis indicated a close evolutionary relationship among marmoset, cynomolgus monkey, and human P450 2E1 enzymes. The tissue expression pattern analyzed by real-time RT-PCR and immunoblotting demonstrated that marmoset P450 2E1 mRNA and proteins were predominantly expressed in livers. Marmoset P450 2E1 enzyme heterologously expressed in Escherichia coli catalyzed the hydroxylation of p-nitrophenol, chlorzoxazone, and theophylline, similar to cynomolgus monkey and human P450 2E1 enzymes. By kinetic analyses, those P450 2E1 enzymes catalyzed p-nitrophenol hydroxylation with similar affinities and relatively high intrinsic clearance efficiencies. These results indicated that tissue distribution and enzyme-substrate specificity of marmoset P450 2E1 were similar to cynomolgus monkey and human P450 2E1 enzymes, suggesting that marmosets are a suitable primate model for P450 2E1-dependent drug and xenobiotic metabolism. Copyright © 2017 John Wiley & Sons, Ltd.

  1. [Overexpression, homology modeling and coenzyme docking studies of the cytochrome P450nor2 from Cylindrocarpon tonkinense].

    PubMed

    Li, N; Zhang, Y Z; Li, D D; Niu, Y H; Liu, J; Li, S X; Yuan, Y Z; Chen, S L; Geng, H; Liu, D L

    2016-01-01

    Cytochrome P450nor catalyzes an unusual reaction that transfers electrons from NADP/NADPH to bound heme directly. To improve the expression level of P450nor2 from Cylindrocarpon tonkinense (C.P450nor2), Escherichia coli system was utilized to substitute the yeast system we constructed for expression of the P450nor2 gene, and the protein was purified in soluble form using Ni(+)-NTA affinity chromatography. In contrast to P450nor from Fusarium oxysporum (F.P450nor) and P450nor1 from Cylindrocarpon tonkinense (C.P450nor1), C.P450nor2 shows a dual specificity for using NADH or NADPH as electron donors. The present study developed a computational approach in order to illustrate the coenzyme specificity of C.P450nor2 for NADH and NADPH. This study involved homology modeling of C.P450nor2 and docking analyses of NADH and NADPH into the crystal structure of F.P450nor and the predictive model of C.P450nor2, respectively. The results suggested that C.P450nor2 and F.P450nor have different coenzyme specificity for NADH and NADPH; whilst the space around the B'-helix of the C.P450nor2, especially the Ser79 and Gly81, play a crucial role for the specificity of C.P450nor2. In the absence of the experimental structure of C.P450nor2, we hope that our model will be useful to provide rational explanation on coenzyme specificity of C.P450nor2.

  2. P450 (Cytochrome) Oxidoreductase Gene (POR) Common Variant (POR*28) Significantly Alters CYP2C9 Activity in Swedish, But Not in Korean Healthy Subjects.

    PubMed

    Hatta, Fazleen H M; Aklillu, Eleni

    2015-12-01

    CYP2C9 enzyme contributes to the metabolism of several pharmaceuticals and xenobiotics and yet displays large person-to-person and interethnic variation. Understanding the mechanisms of CYP2C9 variation is thus of immense importance for personalized medicine and rational therapeutics. A genetic variant of P450 (cytochrome) oxidoreductase (POR), a CYP450 redox partner, is reported to influence CYP2C9 metabolic activity in vitro. We investigated the impact of a common variant, POR*28, on CYP2C9 metabolic activity in humans. 148 healthy Swedish and 146 healthy Korean volunteers were genotyped for known CYP2C9 defective variant alleles (CYP2C9*2, *3). The CYP2C9 phenotype was determined using a single oral dose of 50 mg losartan. Excluding oral contraceptive (OC) users and carriers of 2C9*2 and *3 alleles, 117 Korean and 65 Swedish were genotyped for POR*5, *13 and *28 using Taqman assays. The urinary losartan to its metabolite E-3174 metabolic ratio (MR) was used as an index of CYP2C9 metabolic activity. The allele frequency of the POR*28 variant allele in Swedes and Koreans was 29% and 44%, respectively. POR*5 and *13 were absent in both study populations. Considering the CYP2C9*1/*1 genotypes only, the CYP2C9 metabolic activity was 1.40-fold higher in carriers of POR*28 allele than non-carriers among Swedes (p = 0.02). By contrast, no influence of the POR*28 on CYP2C9 activity was found in Koreans (p = 0.68). The multivariate analysis showed that ethnicity, POR genotype, and smoking were strong predictors of CYP2C9 MR (p < 0.05). This is the first report to implicate the importance of POR*28 genetic variation for CYP2C9 metabolic activity in humans. These findings contribute to current efforts for global personalized medicine and using medicines by taking into account pharmacogenetic and phenotypic variations.

  3. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  4. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  5. Expression patterns of bark beetle cytochromes P450 during host colonization: Likely physiological functions and potential targets for pest management

    Treesearch

    Dezene P. W. Huber; Melissa Erickson; Christian Leutenegger; Joerg Bohlmann; Steven J. Seybold

    2007-01-01

    Cytochromes P450 family genes (P450s) are found in a diverse array of organisms ranging from bacteria to mammals to plants to arthropods. Although there are exceptions to this rule, organisms generally contain a fairly large number of P450 genes and pseudogenes in their genomes. For instance, among arthropods whose genomes are well characterized, the mosquito,

  6. Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit.

    PubMed Central

    Bozak, K R; Yu, H; Sirevåg, R; Christoffersen, R E

    1990-01-01

    The ripening of avocado fruit is associated with the expression of a number of mRNAs concomitant with overt changes in texture and flavor. Two overlapping cDNAs for a mRNA that accumulates during ripening were identified. Sequence analysis of these two cDNAs revealed a polypeptide of 471 amino acids with characteristics of a typical P-450: an N-terminal hydrophobic membrane anchor, a conserved heme-binding domain in the C-terminal region, and patches of similarity to various P-450 family members. Further evidence that this polypeptide represents a cytochrome P-450 oxidase comes from the recent isolation and characterization of a cytochrome P-450 from ripe avocado mesocarp [O'Keefe, D. P. & Leto, K. J. (1989) Plant Physiol. 89, 1141-1149]. The N terminus of the predicted polypeptide in the cDNAs is identical to the N terminus of the purified avocado P-450. Gel blot analysis of RNA from fruit at various stages of ripening showed the accumulation of an 1800-nucleotide P-450 mRNA that hybridized to the P-450 cDNA. The P-450 protein predicted by the avocado cDNA sequence shares less than 40% positional identity with any known P-450 gene family. We propose therefore that it be placed in a separate family, P450LXXI, and that the corresponding gene from avocado be named cyp71A1. Images PMID:1692626

  7. Novel Marmoset Cytochrome P450 2C19 in Livers Efficiently Metabolizes Human P450 2C9 and 2C19 Substrates, S-Warfarin, Tolbutamide, Flurbiprofen, and Omeprazole.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Kawano, Mirai; Shimizu, Makiko; Toda, Akiko; Utoh, Masahiro; Sasaki, Erika; Yamazaki, Hiroshi

    2015-10-01

    The common marmoset (Callithrix jacchus), a small New World monkey, has the potential for use in human drug development due to its evolutionary closeness to humans. Four novel cDNAs, encoding cytochrome P450 (P450) 2C18, 2C19, 2C58, and 2C76, were cloned from marmoset livers to characterize P450 2C molecular properties, including previously reported P450 2C8. The deduced amino acid sequence showed high sequence identities (>86%) with those of human P450 2Cs, except for marmoset P450 2C76, which has a low sequence identity (∼70%) with any human P450 2Cs. Phylogenetic analysis showed that marmoset P450 2Cs were more closely clustered with those of humans and macaques than other species investigated. Quantitative polymerase chain reaction analysis showed that all of the marmoset P450 2C mRNAs were predominantly expressed in liver as opposed to the other tissues tested. Marmoset P450 2C proteins were detected in liver by immunoblotting using antibodies against human P450 2Cs. Among marmoset P450 2Cs heterologously expressed in Escherichia coli, marmoset P450 2C19 efficiently catalyzed human P450 2C substrates, S-warfarin, diclofenac, tolbutamide, flurbiprofen, and omeprazole. Marmoset P450 2C19 had high Vmax and low Km values for S-warfarin 7-hydroxylation that were comparable to those in human liver microsomes, indicating warfarin stereoselectivity similar to findings in humans. Faster in vivo S-warfarin clearance than R-warfarin after intravenous administration of racemic warfarin (0.2 mg/kg) to marmosets was consistent with the in vitro kinetic parameters. These results indicated that marmoset P450 2C enzymes had functional characteristics similar to those of humans, and that P450 2C-dependent metabolic properties are likewise similar between marmosets and humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. )

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  9. Phylogenetic analysis of Bacillus P450 monooxygenases and evaluation of their activity towards steroids.

    PubMed

    Furuya, Toshiki; Shibata, Daisuke; Kino, Kuniki

    2009-11-01

    Cytochrome P450 (P450) open reading frames (ORFs) identified in genome sequences of Bacillus species are potential resources for new oxidation biocatalysts. Phylogenetic analysis of 29 Bacillus P450 ORFs revealed that the P450s consist of a limited number of P450 families, CYP102, CYP106, CYP107, CYP109, CYP134, CYP152, and CYP197. Previously, we identified the catalytic activities of three P450s of Bacillus subtilis towards steroids by rapid substrate screening using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). Here, we further applied this method to evaluate the activity of Bacillus cereus P450s towards steroids. Five P450 genes were cloned from B. cereus ATCC 10987 based on its genomic sequence and were expressed in Escherichia coli. These P450s were reacted with a mixture of 30 compounds that mainly included steroids, and the reaction mixtures were analyzed using FT-ICR/MS. We found that BCE_2659 (CYP106) catalyzed the monooxygenation of methyltestosterone, progesterone, 11-ketoprogesterone, medroxyprogesterone acetate, and chlormadinone acetate. BCE_2654 (CYP107) monooxygenated testosterone enanthate, and BCE_3250 (CYP109) monooxygenated testosterone and compactin. Based on the phylogenetic relationship and the known substrate specificities including ones identified in this study, we discuss the catalytic potential of Bacillus P450s towards steroids.

  10. Identification of Microbial Gene Biomarkers for in situ RDX Biodegradation

    DTIC Science & Technology

    2012-12-01

    Cloning and characterization of the genes encoding a cytochrome P450 (PipA) involved in piperidine and pyrrolidine utilization and...Depot xplA Flavodoxin- cytochrome P450 gene XplA Flavodoxin- cytochrome P450 protein xplB Flavodoxin reductase gene XplB Flavodoxin reductase ...system composed of the fused flavodoxin- cytochrome P450 enzyme, XplA, and a flavodoxin reductase , XplB (Rylott et al. 2006; Seth-Smith et al.

  11. Systematic Identification and Evolutionary Analysis of Catalytically Versatile Cytochrome P450 Monooxygenase Families Enriched in Model Basidiomycete Fungi

    PubMed Central

    Syed, Khajamohiddin; Shale, Karabo; Pagadala, Nataraj Sekhar; Tuszynski, Jack

    2014-01-01

    Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin’s theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our

  12. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis.

    PubMed

    Sutherland, T D; Unnithan, G C; Andersen, J F; Evans, P H; Murataliev, M B; Szabo, L Z; Mash, E A; Bowers, W S; Feyereisen, R

    1998-10-27

    A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca. The levels of CYP4C7 mRNA in the CA, measured by ribonuclease protection assays, were linked to the activity cycle of the glands. In adult females, CYP4C7 expression increased immediately after the peak of JH synthesis, reaching a maximum on day 7, just before oviposition. mRNA levels then declined after oviposition and during pregnancy. The CYP4C7 protein was produced in Escherichia coli as a C-terminal His-tagged recombinant protein. In a reconstituted system with insect NADPH cytochrome P450 reductase, cytochrome b5, and NADPH, the purified CYP4C7 metabolized (2E,6E)-farnesol to a more polar product that was identified by GC-MS and by NMR as (10E)-12-hydroxyfarnesol. CYP4C7 converted JH III to 12-trans-hydroxy JH III and metabolized other JH-like sesquiterpenoids as well. This omega-hydroxylation of sesquiterpenoids appears to be a metabolic pathway in the corpora allata that may play a role in the suppression of JH biosynthesis at the end of the gonotrophic cycle.

  13. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine

    SciTech Connect

    Johansson, I.; Lundqvist, E.; Ingelman-Sundberg, M. ); Bertilsson, L.; Dahl, M.L.; Sjoeqvist, F. )

    1993-11-15

    Deficient hydroxylation of debrisoquine is an autosomal recessive trait that affects [approx]7% of the Caucasian population. These individuals (poor metabolizers) carry deficient:CYP2D6 gene variants and have an impaired metabolism of several commonly used drugs. The opposite phenomenon also exists, and certain individuals metabolize the drugs very rapidly, resulting in subtherapeutic plasma concentrations at normal doses. In the present study, the authors have investigated the molecular genetic basis for ultrarapid metabolism of debrisoquine. Restriction fragment length polymorphism analysis of the CYP2D locus in two families with very rapid metabolism of debrisoquine [metabolic ratio (MR) for debrisoquine = 0.01-0.1] revealed the variant CYP2D6 gene CYP2D6L. EcoRI RFLP and Xba I pulsed-field gel electrophoresis analyses showed that this gene had been amplified 12-fold in three members (father and his two children) of one of the families, and two copies were present among members of the other family. The CYP2D6L gene had an open reading frame and carried two mutations causing amino acid substitutions: one in exon 6, yielding an Arg-296[yields]Cys exchange and one in exon 9 causing Ser-486[yields]Thr. The MR of subjects carrying one copy of the CYP2D6L gene did not significantly differ from that of those with the wild-type gene, indicating that the structural alterations were not of importance for the catalytic properties of the gene product. Examination of the MR among subjects carrying wild-type CYP2D6, CYP2D6L, or deficient alleles revealed a relationship between the number of active genes and MR. The data show the principle of inherited amplification of an active gene. Furthermore, the finding of a specific haplotype with two or more active CYP2D6 genes allows genotyping for ultrarapid drug metabolizers. This genotyping could be of predictive value for individualized and more efficient drug therapy.

  14. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-07-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes.

  15. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes

    PubMed Central

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members’ duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes. PMID:26129850

  16. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm moth (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura (Lepidoptera, Noctuidae) has been shown to be resistant to a wide range of insecticides. In this stu...

  17. Effects of trimethoprim on life history parameters, oxidative stress, and the expression of cytochrome P450 genes in the copepod Tigriopus japonicus.

    PubMed

    Han, Jeonghoon; Lee, Min-Chul; Kim, Duck-Hyun; Lee, Young Hwan; Park, Jun Chul; Lee, Jae-Seong

    2016-09-01

    Trimethoprim (TMP) is an antibiotic that has been detected in various environments including marine habitats; however, the toxic effects of TMP are poorly understood in non-target marine organisms. In this study, the effects of TMP on mortality, development, reproduction, intracellular reactive oxygen species (ROS) levels, and transcription levels of antioxidant and xenobiotic detoxification-related enzyme genes were investigated in the copepod Tigriopus japonicus. The TMP half lethal dose at 48 h (LC50-48 h) in nauplius and TMP LC50-96 h in adult T. japonicus copepods was determined as 156 mg/L and 200 mg/L, respectively. In TMP-exposed T. japonicus, delayed developmental time and impaired reproduction were observed as harmful effects on the life history parameters. Increased ROS levels were also shown in response to TMP exposure at the highest concentration (100 mg/L TMP) and the expression of antioxidant- (e.g. GST-kappa, GST-sigma) and xenobiotic detoxification (e.g. CYPs)-related genes were upregulated in a time and/or dose-dependent manner in response to TMP. Particularly, significant upregulation of three CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) were examined, suggesting that these CYP genes are likely playing an important role in the TMP detoxification metabolism in T. japonicus. In summary, we found that TMP induced oxidative stress via the transcriptional regulation of antioxidant- and xenobiotic detoxification-related genes, leading to changes in life history parameters such as developmental delay and reproduction impairment. Three Tj-CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) could be useful as potential T. japonicus biomarkers in response to antibiotics.

  18. Substrate Binding to Cytochromes P450

    PubMed Central

    Isin, Emre M.; Guengerich, F. Peter

    2016-01-01

    P450s have attracted tremendous attention due not only to their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s including, mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active site features. Some of the substrate binding studies extending over a period of more than forty years of dedicated work has been summarized in this review and categorized by the techniques employed in the binding studies. PMID:18622598

  19. Regulation of cytochrome P450 expression in Drosophila: Genomic insights

    PubMed Central

    Giraudo, Maeva; Unnithan, G. Chandran; Le Goff, Gaëlle; Feyereisen, René

    2009-01-01

    Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the “phenobarbital-type” induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from “detox” microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action. PMID:20582327

  20. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes

    PubMed Central

    Shimada, Tsutomu; Takenaka, Shigeo; Murayama, Norie; Yamazaki, Hiroshi; Kim, Joo-Hwan; Kim, Donghak; Yoshimoto, Francis K.; Guengerich, F. Peter; Komori, Masayuki

    2016-01-01

    Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH) pollutants, were incubated at 50 µM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1, 1A2, 2C9, and 3A4 and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and di-oxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of 1-acenaphthenol as a major product, with turnover rates of 6.7, 4.5, and 3.6 nmol product formed/min/nmol P450 for P450 2A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and di-oxygenated products. P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (Ks 1.8 and 0.16 µM, respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6 and 2A13. Neither these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and di-oxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans. PMID:25642975

  1. Basal and 3,3',4,4',5-pentachlorobiphenyl-induced expression of cytochrome P450 1A, 1B and 1C genes in zebrafish

    SciTech Connect

    Joensson, Maria E. . E-mail: mjonsson@whoi.edu; Orrego, Rodrigo; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2007-05-15

    The cytochrome P4501C (CYP1C) gene subfamily was recently discovered in fish, and zebrafish (Danio rerio) CYP1C1 transcript has been cloned. Here we cloned the paralogous CYP1C2, showing that the amino acid sequence is 78% identical to CYP1C1, and examined gene structure and expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2. Xenobiotic response elements were observed upstream of the coding regions in all four genes. Zebrafish adults and embryos were exposed (24 h) to 100 nM 3,3',4,4',5-polychlorinated biphenyl (PCB126) or 20 ppm acetone and subsequently held in clean water for 24 h (adults) or 48 h (embryos). All adult organs examined (eye, gill, heart, liver, kidney, brain, gut, and gonads) and embryos showed basal expression of the four genes. CYP1A was most strongly expressed in liver, whereas CYP1B1, CYP1C1, and CYP1C2 were most strongly expressed in heart and eye. CYP1B1 and the CYP1C genes showed an expression pattern similar to one another and to mammalian CYP1B1. In embryos CYP1C1 and CYP1C2 tended to have a higher basal expression than CYP1A and CYP1B1. PCB126 induced CYP1A in all organs, and CYP1B1 and CYP1C1 in all organs except gonads, or gonads and brain, respectively. CYP1C2 induction was significant only in the liver. However, in embryos all four genes were induced strongly by PCB126. The results are consistent with CYP1C1 and CYP1C2, as well as CYP1A and CYP1B1, being regulated by the aryl hydrocarbon receptor. While CYP1A may have a protective role against AHR agonists in liver and gut, CYP1B1, CYP1C1, and CYP1C2 may also play endogenous roles in eye and heart and possibly other organs, as well as during development.

  2. Nerval influences on liver cytochrome P450.

    PubMed

    Klinger, W; Karge, E; Danz, M; Krug, M

    1995-09-01

    In male young adult Wistar rats the influences of nucleus raphe electrocoagulation, spinal cord dissection (cordotomy between C7 and Th1), vagotomy and denervation of liver hilus by phenol on liver cytochrome P450-system (cytochrome P450 concentration, ethylmorphine N-demethylation and ethoxycoumarin O-deethylation activities, hexobarbitone sleeping time) were investigated. In general the influences were small or negligible when compared with sham operated controls, only after vagotomy the depressing effect of sham operation was abolished. In all cases sham operation had a depressing effect until up to five weeks after operation.

  3. Polymorphisms in the cytochrome P-450 (CYP) 1A1 and 17 genes are not associated with acne vulgaris in the Polish population

    PubMed Central

    Zabłotna, Monika; Dobosz-Kawałko, Magdalena; Michajłowski, Igor; Mędrzycka-Dąbrowska, Wioletta; Nowicki, Roman; Sokołowska-Wojdyło, Małgorzata

    2015-01-01

    Introduction The pathogenesis of acne is complex, multifactorial and not well understood. The genetic background of this dermatosis is well documented. Aim To assess the frequency of –34 T > C single nucleotide polymorphism in the promoter of the CYP17 gene as well as m1 (+6,235 T > C) and m2 (+4,889 A > G) mutation in the coding region CYP1A1 gene acne patients from the Northern Polish population. Material and methods The study included 115 acne patients and 94 healthy controls (aged over 20) without acne in anamnesis. The CYP1A1 polymorphism was analyzed by polymerase chain reaction (PCR). The restriction fragment length polymorphism (RFLP) was used to analyze m1 mutation and allele-specific PCR in the case of m2 mutation. The CYP17 polymorphism was analyzed by RFLP. The results were evaluated by the Pearson's χ2 test. Results There were no statistically significant associations between allele and genotype frequencies between the acne and the control group. Conclusions We did not confirm the role of the CYP1A1 and CYP17 gene as predictor factors for acne development in the Polish population. PMID:26759538

  4. Characterization of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens.

    PubMed

    Persans, M W; Wang, J; Schuler, M A

    2001-02-01

    Plants use a diverse array of cytochrome P450 monooxygenases in their biosynthetic and detoxification pathways. To determine the extent to which various maize P450s are induced in response to chemical inducers, such as naphthalic anhydride (NA), triasulfuron (T), phenobarbital, and bacterial pathogens (Erwinia stuartii, Acidovorax avenae), we have analyzed the response patterns of seven P450 transcripts after treatment of seedlings with these inducers. Each of these P450 transcripts has distinct developmental, tissue-specific, and chemical cues regulating their expression even when they encode P450s within the same biosynthetic pathway. Most notably, the CYP71C1 and CYP71C3 transcripts, encoding P450s in the DIMBOA biosynthetic pathway, are induced to the same level in response to wounding and NA treatment of younger seedlings and differentially in response to NA/T treatment of younger seedlings and NA and NA/T treatment of older seedlings. NA and T induce expression of both CYP92A1 and CYP72A5 transcripts in older seedling shoots, whereas phenobarbital induces CYP92A1 expression in older seedling shoots and highly induces CYP72A5 expression in young and older seedling roots. Expressed sequence tag (EST) 6c06b11 transcripts, encoding an undefined P450 activity, are highly induced in seedling shoots infected with bacterial pathogens.

  5. Characterization of Maize Cytochrome P450 Monooxygenases Induced in Response to Safeners and Bacterial Pathogens1

    PubMed Central

    Persans, Michael W.; Wang, Jian; Schuler, Mary A.

    2001-01-01

    Plants use a diverse array of cytochrome P450 monooxygenases in their biosynthetic and detoxification pathways. To determine the extent to which various maize P450s are induced in response to chemical inducers, such as naphthalic anhydride (NA), triasulfuron (T), phenobarbital, and bacterial pathogens (Erwinia stuartii, Acidovorax avenae), we have analyzed the response patterns of seven P450 transcripts after treatment of seedlings with these inducers. Each of these P450 transcripts has distinct developmental, tissue-specific, and chemical cues regulating their expression even when they encode P450s within the same biosynthetic pathway. Most notably, the CYP71C1 and CYP71C3 transcripts, encoding P450s in the DIMBOA biosynthetic pathway, are induced to the same level in response to wounding and NA treatment of younger seedlings and differentially in response to NA/T treatment of younger seedlings and NA and NA/T treatment of older seedlings. NA and T induce expression of both CYP92A1 and CYP72A5 transcripts in older seedling shoots, whereas phenobarbital induces CYP92A1 expression in older seedling shoots and highly induces CYP72A5 expression in young and older seedling roots. Expressed sequence tag (EST) 6c06b11 transcripts, encoding an undefined P450 activity, are highly induced in seedling shoots infected with bacterial pathogens. PMID:11161067

  6. Cytochromes P450 in the bioactivation of chemicals.

    PubMed

    Ioannides, Costas; Lewis, David F V

    2004-01-01

    The initial view that the cytochrome P450 enzyme system functions simply in the deactivation of xenobiotics is anachronistic on the face of mounting evidence that this system can also transform many innocuous chemicals to toxic products. However, not all xenobiotic-metabolising cytochrome P450 subfamilies show the same propensity in the bioactivation of chemicals. For example, the CYP2C, 2B and 2D subfamilies play virtually no role in the bioactivation of toxic and carcinogenic chemicals, whereas the CYP1A, 1B and 2E subfamilies are responsible for the bioactivation of the majority of xenobiotics. Electronic and molecular structural features of organic chemicals appear to predispose them to either bioactivation by one cytochrome P450 enzyme or deactivation by another. Consequently, the fate of a chemical in the body is largely dependent on the cytochrome P450 profile at the time of exposure. Any factor that modulates the enzymes involved in the metabolism of a certain chemical will also influence its toxicity and carcinogenicity. For example, many chemical carcinogens bioactivated by CYP1, on repeated administration, selectively induce this family, thus exacerbating their carcinogenicity. CYP1 induction potency by chemicals appears to be determined by a combination of their molecular shape and electron activation. The function of cytochromes P450 in the bioactivation of chemicals is currently being exploited to design systems that can be used clinically to facilitate the metabolic conversion of prodrugs to their biologically-active metabolites in cells that poorly express them, such as tumour cells, in the so-called gene-directed prodrug therapy.

  7. Canine cytochrome P450 (CYP) pharmacogenetics

    PubMed Central

    Court, Michael H.

    2013-01-01

    Synopsis The cytochrome P450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences. Canine CYP1A2, which metabolizes phenacetin, caffeine, and theophylline, is the most widely studied polymorphic canine CYP. A single nucleotide polymorphism resulting in a CYP1A2 premature stop codon (c.1117C>T; R383X) with a complete lack of enzyme is highly prevalent in certain dog breeds including Beagle and Irish wolfhound. This polymorphism was shown to substantially affect the pharmacokinetics of several experimental compounds in Beagles during preclinical drug development. However, the impact on the pharmacokinetics of phenacetin (a substrate specific for human CYP1A2) was quite modest probably because other canine CYPs are capable of metabolizing phenacetin. Other canine CYPs with known genetic polymorphisms include CYP2C41 (gene deletion), as well as CYP2D15, CYP2E1, and CYP3A12 (coding SNPs). However the impact of these variants on drug metabolism in vitro or on drug pharmacokinetics is unknown. Future systematic investigations are needed to comprehensively identify CYP genetic polymorphisms that are predictive of drug effects in canine patients. PMID:23890236

  8. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease.

    PubMed

    Nicoli, Elena-Raluca; Al Eisa, Nada; Cluzeau, Celine V M; Wassif, Christopher A; Gray, James; Burkert, Kathryn R; Smith, David A; Morris, Lauren; Cologna, Stephanie M; Peer, Cody J; Sissung, Tristan M; Uscatu, Constantin-Daniel; Figg, William D; Pavan, William J; Vite, Charles H; Porter, Forbes D; Platt, Frances M

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients.

  9. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  10. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance

    PubMed Central

    Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A.; Halberg, Kenneth A.; Dow, Julian A.T.; Davies, Shireen-A.

    2015-01-01

    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. PMID:26073628

  11. Keeping the spotlight on cytochrome P450.

    PubMed

    Shalan, Hadil; Kato, Mallory; Cheruzel, Lionel

    2017-06-06

    This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017. Published by Elsevier B.V.

  12. P450 AND METABOLISM IN TOXICOLOGY

    EPA Science Inventory

    The cytochromes P450 catalyze the initial phase of detoxification of many environmental chemicals, xenobiotic, drugs and the secondary metabolic product of plants. Plant secondary chemicals can be highly toxic, and they evolved in a coevolving plant - animal warfare - the plants ...

  13. P450 AND METABOLISM IN TOXICOLOGY

    EPA Science Inventory

    The cytochromes P450 catalyze the initial phase of detoxification of many environmental chemicals, xenobiotic, drugs and the secondary metabolic product of plants. Plant secondary chemicals can be highly toxic, and they evolved in a coevolving plant - animal warfare - the plants ...

  14. Novel extrahepatic cytochrome P450s

    SciTech Connect

    Karlgren, Maria . E-mail: Maria.Karlgren@imm.ki.se; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-09-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis.

  15. Cyclooxygenase-2 directly regulates gene expression of P450 Cyp19 aromatase promoter regions pII, pI.3 and pI.7 and estradiol production in human breast tumor cells.

    PubMed

    Prosperi, Jenifer R; Robertson, Fredika M

    2006-10-01

    The present studies evaluated the direct effects of the presence of human cyclooxygenase-2 (Cox-2) on gene expression of specific promoter regions of the P450 Cyp19 enzyme aromatase enzyme and its product, estradiol, in Cox-2 null estrogen-dependent MCF-7 breast tumor cells and in a stable clone of MCF-7 cells containing transfected Cox-2 cDNA, designated as MCF-7/Cox-2 Clone 10. Clone 10 human breast tumor cells have significantly increased gene expression of total mRNA of the P450 Cyp19 enzyme aromatase, with high levels of gene expression of specific aromatase promoter (p) regions pII, pI.3, and p1.7, with no significant change in mRNA levels of p1.4. Clone 10 human breast tumor cells produced significantly increased amounts of both prostaglandin E2 (PGE2) derived from Cox-2 enzyme activity and estradiol derived from aromatase enzyme activity (p<0.01), compared to MCF-7/vector control cells. The greatest inhibition of PGE2 or estradiol production was observed by the combination of the selective Cox-2 inhibitor celecoxib (25 microM) and the aromatase inhibitor, formestane (10nM) (p<0.01). The greatest anti-proliferative effect in Cox-2 null MCF-7/vector control cells was observed with the combination of 25 microM celecoxib and 10nM formestane but not with 10 microM celecoxib, suggesting that there are Cox-2-independent mechanisms involved in the anti-proliferative effect of this agent at doses greater than 10 microM. Celecoxib (25 microM) also significantly inhibited proliferation of MCF-7/Cox-2 Clone 10 human breast tumor cells, with no further anti-proliferative activity with the addition of 10 nM formestane observed at either 24 or 48 h of treatment. These studies demonstrate that Cox-2 directly regulates gene expression of specific aromatase promoter regions and regulates aromatase enzyme activity. Agents that inhibit Cox-2 or block the biological effects of PGE2 may be useful in significantly limiting aromatase activity and proliferation of human breast

  16. Chronic toxicity of pesticides to the mRNA expression levels of metallothioneins and cytochrome P450 1A genes in rainbow trout.

    PubMed

    Ceyhun, Saltuk Bugrahan; Aksakal, Ercüment; Kirim, Birsen; Atabeyoglu, Kübra; Erdogan, Orhan

    2012-03-01

    The hazardous effects of pesticides on various metabolic pathways are a great problem for environmental health and should be well determined. In the present study, the authors treated rainbow trout with 0.6 μg/L deltamethrin for 28 days and 1.6 mg/L 2,2-dichlorovinyl dimethyl phosphate for 21 days. After this time period, the authors observed alterations in mRNA expression levels of MT-A, MT-B and CYP-1A. Chronic exposure to low levels of pesticides may have a more significant effect on fish populations than acute poisoning. While both pesticides caused a significant increase on mRNA levels of MT-A and CYP-1A, MT-B mRNA levels were increased significantly only upon deltamethin administration. The significant increase in mRNA levels of the corresponding genes may be considered as a defence mechanism in addition to the antioxidants against oxidative stress, as well as a detoxification mechanism against adverse effects of pesticides.

  17. A Novel Null Mutation in P450 Aromatase Gene (CYP19A1) Associated with Development of Hypoplastic Ovaries in Humans

    PubMed Central

    Akçurin, Sema; Türkkahraman, Doğa; Kim, Woo-Young; Durmaz, Erdem; Shin, Jae-Gook; Lee, Su-Jun

    2016-01-01

    Objective: The CYP19A1 gene product aromatase is responsible for estrogen synthesis and androgen/estrogen equilibrium in many tissues, particularly in the placenta and gonads. Aromatase deficiency can cause various clinical phenotypes resulting from excessive androgen accumulation and insufficient estrogen synthesis during the pre- and postnatal periods. In this study, our aim was to determine the clinical characteristics and CYP19A1 mutations in three patients from a large Turkish pedigree. Methods: The cases were the newborns referred to our clinic for clitoromegaly and labial fusion. Virilizing signs such as severe acne formation, voice deepening, and clitoromegaly were noted in the mothers during pregnancy. Preliminary diagnosis was aromatase deficiency. Therefore, direct DNA sequencing of CYP19A1 was performed in samples from parents (n=5) and patients (n=3). Results: In all patients, a novel homozygous insertion mutation in the fifth exon (568insC) was found to cause a frameshift in the open reading frame and to truncate the protein prior to the heme-binding region which is crucial for enzymatic activity. The parents were found to be heterozygous for this mutation. Additionally, all patients had hypoplastic ovaries instead of cystic and enlarged ovaries. Conclusion: A novel 568C insertion mutation in CYP19A1 can lead to severe aromatase deficiency. Homozygosity for this mutation is associated with the development of hypoplastic ovaries. This finding provides an important genetic marker for understanding the physiological function of aromatase in fetal ovarian development. PMID:27086564

  18. Polymorphisms of cytochrome P450 1A1, glutathione s-transferases M1 and T1 genes in Ouangolodougou (Northern Ivory Coast)

    PubMed Central

    2010-01-01

    In this study, the frequencies of CYP1A1, GSTM1, and GSTT1 gene polymorphisms were determined in 133 healthy individuals from Ouangolodougou, a small rural town situated in the north of the Ivory Coast. As appeared in several published studies, ethnic differences in these frequencies have been found to play an important role in the metabolism of a relevant number of human carcinogens. In the studied sample, the frequencies of Ile/Ile (wild type), Ile/Val (heterozygous variant), and Val/Val (homozygous variant) CYP1A1 genotypes were 0.271, 0.692, and 0.037, respectively. Frequencies of GSTM1 and GSTT1 null genotypes were 0.361 and 0.331, respectively. No significant differences were noted between men and women. In contrast to published data for Africans, CYP1A1 *Val Allele frequency (0.383) was significantly high (p < 0.001) in this specific population. For the GSTT1 null genotype, no differences were found between the studied and other African populations, the contrary to what occurred for the GSTM1 null genotype in relation to Gambia and Egypt. PMID:21637409

  19. Cloning, Functional Expression, and Subcellular Localization of Multiple NADPH-Cytochrome P450 Reductases from Hybrid Poplar1

    PubMed Central

    Ro, Dae-Kyun; Ehlting, Jürgen; Douglas, Carl J.

    2002-01-01

    NADPH:cytochrome P450 reductase (CPR) provides reducing equivalents to diverse cytochrome P450 monooxygenases. We isolated cDNAs for three CPR genes (CPR1, CPR2, and CPR3) from hybrid poplar (Populus trichocarpa × Populus deltoides). Deduced CPR2 and CPR3 amino acid sequences were 91% identical, but encoded isoforms divergent from CPR1 (72% identity). CPR1 and CPR2 were co-expressed together with the P450 enzyme cinnamate-4-hydroxylase (C4H) in yeast (Saccharomyces cerevisiae). Microsomes isolated from strains expressing CPR1/C4H or CPR2/C4H enhanced C4H activities approximately 10-fold relative to the C4H-only control strain, and catalyzed NADPH-dependent cytochrome c reduction. The divergent CPR isoforms (CPR1 and CPR2/3) contained entirely different N-terminal sequences, which are conserved in other plant CPRs and are diagnostic for two distinct classes of CPRs within the angiosperms. C-terminal green fluorescent protein fusions to CPR1 and CPR2 were constructed and expressed in both yeast and Arabidopsis. The fusion proteins expressed in yeast retained the ability to support C4H activity and, thus, were catalytically active. Both CPR::green fluorescent protein fusion proteins were strictly localized to the endoplasmic reticulum in transgenic Arabidopsis. The lack of localization of either isoform to chloroplasts, where P450s are known to be present, suggests that an alternative P450 reduction system may be operative in this organelle. Transcripts for the three poplar CPR genes were present ubiquitously in all tissues examined, but CPR2 showed highest expression in young leaf tissue. PMID:12481067

  20. Procarcinogens – Determination and Evaluation by Yeast-Based Biosensor Transformed with Plasmids Incorporating RAD54 Reporter Construct and Cytochrome P450 Genes

    PubMed Central

    Bui, Van Ngoc; Nguyen, Thi Thu Huyen; Mai, Chi Thanh; Bettarel, Yvan; Hoang, Thi Yen; Trinh, Thi Thuy Linh; Truong, Nam Hai; Chu, Hoang Ha; Nguyen, Vu Thanh Thanh; Nguyen, Huu Duc

    2016-01-01

    In Vietnam, a great number of toxic substances, including carcinogens and procarcinogens, from industrial and agricultural activities, food production, and healthcare services are daily released into the environment. In the present study, we report the development of novel yeast-based biosensor systems to determine both genotoxic carcinogens and procarcinogens by cotransformation with two plasmids. One plasmid is carrying human CPR and CYP (CYP3A4, CYP2B6, or CYP2D6) genes, while the other contains the RAD54-GFP reporter construct. The three resulting coexpression systems bearing both CPR-CYP and RAD54-GFP expression cassettes were designated as CYP3A4/CYP2B6/CYP2D6 + RAD54 systems, respectively and used to detect and evaluate the genotoxic potential of carcinogens and procarcinogens by selective activation and induction of both CPR-CYP and RAD54-GFP expression cassettes in response to DNA damage. Procarcinogens were shown to be predominantly, moderately or not bioactivated by one of the CYP enzymes and thus selectively detected by the specific coexpression system. Aflatoxin B1 and benzo(a)pyrene were predominantly detected by the CYP3A4 + RAD54 system, while N-nitrosodimethylamine only moderately activated the CYP2B6 + RAD54 reporter system and none of them was identified by the CYP2D6 + RAD54 system. In contrast, the genotoxic carcinogen, methyl methanesulfonate, was detected by all systems. Our yeast-reporter system can be performed in 384-well microplates to provide efficient genotoxicity testing to identify various carcinogenic compounds and reduce chemical consumption to about 53% as compared with existing 96-well genotoxicity bioassays. In association with a liquid handling robot, this platform enables rapid, cost-effective, and high-throughput screening of numerous analytes in a fully automated and continuous manner without the need for user interaction. PMID:28006013

  1. The planetary biology of cytochrome P450 aromatases

    PubMed Central

    Gaucher, Eric A; Graddy, Logan G; Li, Tang; Simmen, Rosalia CM; Simmen, Frank A; Schreiber, David R; Liberles, David A; Janis, Christine M; Benner, Steven A

    2004-01-01

    Background Joining a model for the molecular evolution of a protein family to the paleontological and geological records (geobiology), and then to the chemical structures of substrates, products, and protein folds, is emerging as a broad strategy for generating hypotheses concerning function in a post-genomic world. This strategy expands systems biology to a planetary context, necessary for a notion of fitness to underlie (as it must) any discussion of function within a biomolecular system. Results Here, we report an example of such an expansion, where tools from planetary biology were used to analyze three genes from the pig Sus scrofa that encode cytochrome P450 aromatases–enzymes that convert androgens into estrogens. The evolutionary history of the vertebrate aromatase gene family was reconstructed. Transition redundant exchange silent substitution metrics were used to interpolate dates for the divergence of family members, the paleontological record was consulted to identify changes in physiology that correlated in time with the change in molecular behavior, and new aromatase sequences from peccary were obtained. Metrics that detect changing function in proteins were then applied, including KA/KS values and those that exploit structural biology. These identified specific amino acid replacements that were associated with changing substrate and product specificity during the time of presumed adaptive change. The combined analysis suggests that aromatase paralogs arose in pigs as a result of selection for Suoidea with larger litters than their ancestors, and permitted the Suoidea to survive the global climatic trauma that began in the Eocene. Conclusions This combination of bioinformatics analysis, molecular evolution, paleontology, cladistics, global climatology, structural biology, and organic chemistry serves as a paradigm in planetary biology. As the geological, paleontological, and genomic records improve, this approach should become widely useful to make

  2. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    PubMed

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  3. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  4. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: Evidence for involvement in host-plant allelochemical resistance

    PubMed Central

    Danielson, Phillip B.; MacIntyre, Ross J.; Fogleman, James C.

    1997-01-01

    Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification. PMID:9380713

  5. [Purification of cytochrome P-450 and NADPH cytochrome p-450 reductase from human liver].

    PubMed

    Isa, M; Cumps, J; Fossoul, C; Atassi, G

    1990-01-01

    Two methods for the purification of cytochromes-P450 from microsomes of human liver are described. Method A: Cyt-P450 were solubilized from microsomes using a non ionic detergent, the Lubrol. The Cyt-P450 were purified by affinity, hydrophobicity followed by ion-exchange chromatography on DEAE-5PW column (HPLC) with an overall yield of 18% and a specific activity of 10 nmole/mg of protein. The recovery of NADPH Cyt-P450 reductase by method A (affinity) is about 60% with a specific activity of 16.2 U.I./mg of protein. Method B: Cyt-P450 were solubilized from microsomes using a zwitterionic detergent, the CHAPS. Cyt-P450 were filtered and separated by chromatofocusing on Mono-P column (HPLC). By this method it was possible to increase strongly the specific activity keeping a yield of 50% of Cyt-P450. Also it was possible to apply this method to small samples of human liver like biopsies (0.5 to 2.5 g).

  6. Functional Analysis of the Tandem-Duplicated P450 Genes SPS/BUS/CYP79F1 and CYP79F2 in Glucosinolate Biosynthesis and Plant Development by Ds Transposition-Generated Double Mutants1

    PubMed Central

    Tantikanjana, Titima; Mikkelsen, Michael Dalgaard; Hussain, Mumtaz; Halkier, Barbara Ann; Sundaresan, Venkatesan

    2004-01-01

    A significant fraction (approximately 17%) of Arabidopsis genes are members of tandemly repeated families and pose a particular challenge for functional studies. We have used the Ac-Ds transposition system to generate single- and double-knockout mutants of two tandemly duplicated cytochrome P450 genes, SPS/BUS/CYP79F1 and CYP79F2. We have previously described the Arabidopsis supershoot mutants in CYP79F1 that exhibit massive overproliferation of shoots. Here we use a cytokinin-responsive reporter ARR5::uidA and an auxin-responsive reporter DR5::uidA in the sps/cyp79F1 mutant to show that increased levels of cytokinin, but not auxin, correlate well with the expression pattern of the SPS/CYP79F1 gene, supporting the involvement of this gene in cytokinin homeostasis. Further, we isolated Ds gene trap insertions in the CYP79F2 gene, and find these mutants to be defective mainly in the root system, consistent with a root-specific expression pattern. Finally, we generated double mutants in CYP79F1 and CYP79F2 using secondary transpositions, and demonstrate that the phenotypes are additive. Previous biochemical studies have suggested partially redundant functions for SPS/CYP79F1 and CYP79F2 in aliphatic glucosinolate synthesis. Our analysis shows that aliphatic glucosinolate biosynthesis is completely abolished in the double-knockout plants, providing genetic proof for the proposed biochemical functions of these genes. This study also provides further demonstration of how gluconisolate biosynthesis, regarded as secondary metabolism, is intricately linked with hormone homeostatis and hence with plant growth and development. PMID:15194821

  7. Genome mining of the biosynthetic gene cluster of the polyene macrolide antibiotic tetramycin and characterization of a P450 monooxygenase involved in the hydroxylation of the tetramycin B polyol segment.

    PubMed

    Cao, Bo; Yao, Fen; Zheng, Xiaoqing; Cui, Dongbing; Shao, Yucheng; Zhu, Changxiong; Deng, Zixin; You, Delin

    2012-10-15

    A polyene macrolide antibiotic tetramycin biosynthetic gene cluster was identified by genome mining and isolated from Streptomyces hygrospinosus var. beijingensis. Genetic and in silico analyses gave insights into the mechanism of biosynthesis of tetramycin, and a model of the tetramycin biosynthetic pathway is proposed. Inactivation of a cytochrome P450 monooxygenase gene, tetrK, resulted in the production of a tetramycin B precursor: tetramycin A, which lacks a hydroxy group in its polyol region. TetrK was subsequently overexpressed heterologously in E. coli with a His(6) tag, and purified TetrK efficiently hydroxylated tetramycin A to afford tetramycin B. Kinetic studies revealed no inhibition of TetrK by substrate or product. Surprisingly, sequence-alignment analysis showed that TetrK, as a hydroxylase, has much higher homology with epoxidase PimD than with hydroxylases NysL and AmphL. The 3D structure of TetrK was then constructed by homology modeling with PimD as reference. Although TetrK and PimD catalyzed different chemical reactions, homology modeling indicated that they might share the same catalytic sites, despite also possessing some different sites correlated with substrate binding and substrate specificity. These findings offer good prospects for the production of improved antifungal polyene analogues.

  8. Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea).

    PubMed

    Cocci, Paolo; Mosconi, Gilberto; Palermo, Francesco Alessandro

    2013-10-01

    The objective of the present study was to investigate the modulatory effects of the xenoestrogen 4-nonylphenol (4-NP) on hepatic peroxisome proliferator-activated receptor (PPAR) α and β gene expression patterns in relation to the detoxification pathways mediated by cytochrome P450 isoforms (CYP1A1 and CYP3A4). Waterborne 4-NP-induced effects were compared with those of 10(-8)M 17β-estradiol (E2) by using in vivo dose-response experiments carried out with juvenile sole (Solea solea). Compared to the controls, significantly higher levels of PPARα mRNAs were found in fish treated with E2 or 4-NP (10(-6)M) 3 d after exposure; the highest dose of 4-NP also caused up-regula