Separate enrichment analysis of pathways for up- and downregulated genes.
Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng
2014-03-06
Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.
Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.
Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas
2017-01-21
We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.
Comparative study on gene set and pathway topology-based enrichment methods.
Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim
2015-10-22
Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-01-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.
Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-11-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.
Multi-membership gene regulation in pathway based microarray analysis
2011-01-01
Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531
Multi-membership gene regulation in pathway based microarray analysis.
Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M
2011-09-22
Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.
PathwaySplice: An R package for unbiased pathway analysis of alternative splicing in RNA-Seq data.
Yan, Aimin; Ban, Yuguang; Gao, Zhen; Chen, Xi; Wang, Lily
2018-04-24
Pathway analysis of alternative splicing would be biased without accounting for the different number of exons or junctions associated with each gene, because genes with higher number of exons or junctions are more likely to be included in the "significant" gene list in alternative splicing. We present PathwaySplice, an R package that (1) Performs pathway analysis that explicitly adjusts for the number of exons or junctions associated with each gene; (2) Visualizes selection bias due to different number of exons or junctions for each gene and formally tests for presence of bias using logistic regression; (3) Supports gene sets based on the Gene Ontology terms, as well as more broadly defined gene sets (e.g. MSigDB) or user defined gene sets; (4) Identifies the significant genes driving pathway significance and (5) Organizes significant pathways with an enrichment map, where pathways with large number of overlapping genes are grouped together in a network graph. https://bioconductor.org/packages/release/bioc/html/PathwaySplice.html. lily.wangg@gmail.com, xi.steven.chen@gmail.com.
Yi, Ming; Mudunuri, Uma; Che, Anney; Stephens, Robert M
2009-06-29
One of the challenges in the analysis of microarray data is to integrate and compare the selected (e.g., differential) gene lists from multiple experiments for common or unique underlying biological themes. A common way to approach this problem is to extract common genes from these gene lists and then subject these genes to enrichment analysis to reveal the underlying biology. However, the capacity of this approach is largely restricted by the limited number of common genes shared by datasets from multiple experiments, which could be caused by the complexity of the biological system itself. We now introduce a new Pathway Pattern Extraction Pipeline (PPEP), which extends the existing WPS application by providing a new pathway-level comparative analysis scheme. To facilitate comparing and correlating results from different studies and sources, PPEP contains new interfaces that allow evaluation of the pathway-level enrichment patterns across multiple gene lists. As an exploratory tool, this analysis pipeline may help reveal the underlying biological themes at both the pathway and gene levels. The analysis scheme provided by PPEP begins with multiple gene lists, which may be derived from different studies in terms of the biological contexts, applied technologies, or methodologies. These lists are then subjected to pathway-level comparative analysis for extraction of pathway-level patterns. This analysis pipeline helps to explore the commonality or uniqueness of these lists at the level of pathways or biological processes from different but relevant biological systems using a combination of statistical enrichment measurements, pathway-level pattern extraction, and graphical display of the relationships of genes and their associated pathways as Gene-Term Association Networks (GTANs) within the WPS platform. As a proof of concept, we have used the new method to analyze many datasets from our collaborators as well as some public microarray datasets. This tool provides a new pathway-level analysis scheme for integrative and comparative analysis of data derived from different but relevant systems. The tool is freely available as a Pathway Pattern Extraction Pipeline implemented in our existing software package WPS, which can be obtained at http://www.abcc.ncifcrf.gov/wps/wps_index.php.
Feng, Yinling; Wang, Xuefeng
2017-03-01
In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.
Foroushani, Amir B.K.; Brinkman, Fiona S.L.
2013-01-01
Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/. PMID:24432194
Zhang, Chaoyang; Peng, Li; Zhang, Yaqin; Liu, Zhaoyang; Li, Wenling; Chen, Shilian; Li, Guancheng
2017-06-01
Liver cancer is a serious threat to public health and has fairly complicated pathogenesis. Therefore, the identification of key genes and pathways is of much importance for clarifying molecular mechanism of hepatocellular carcinoma (HCC) initiation and progression. HCC-associated gene expression dataset was downloaded from Gene Expression Omnibus database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between liver cancer samples and normal samples. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software, were applied for the identification of pathways in which DEGs significantly enriched. Cytoscape software was for the construction of protein-protein interaction (PPI) network and module analysis to find the hub genes and key pathways. Finally, weighted correlation network analysis (WGCNA) was conducted to further screen critical gene modules with similar expression pattern and explore their biological significance. Significance analysis identified 1230 DEGs with fold change >2, including 632 significantly down-regulated DEGs and 598 significantly up-regulated DEGs. GO term enrichment analysis suggested that up-regulated DEG significantly enriched in immune response, cell adhesion, cell migration, type I interferon signaling pathway, and cell proliferation, and the down-regulated DEG mainly enriched in response to endoplasmic reticulum stress and endoplasmic reticulum unfolded protein response. KEGG pathway analysis found DEGs significantly enriched in five pathways including complement and coagulation cascades, focal adhesion, ECM-receptor interaction, antigen processing and presentation, and protein processing in endoplasmic reticulum. The top 10 hub genes in HCC were separately GMPS, ACACA, ALB, TGFB1, KRAS, ERBB2, BCL2, EGFR, STAT3, and CD8A, which resulted from PPI network. The top 3 gene interaction modules in PPI network enriched in immune response, organ development, and response to other organism, respectively. WGCNA revealed that the confirmed eight gene modules significantly enriched in monooxygenase and oxidoreductase activity, response to endoplasmic reticulum stress, type I interferon signaling pathway, processing, presentation and binding of peptide antigen, cellular response to cadmium and zinc ion, cell locomotion and differentiation, ribonucleoprotein complex and RNA processing, and immune system process, respectively. In conclusion, we identified some key genes and pathways closely related with HCC initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying HCC occurrence and progression, holding promise for acting as biomarkers and potential therapeutic targets.
Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh
2017-01-01
Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397
Xiang, Bo; Yu, Minglan; Liang, Xuemei; Lei, Wei; Huang, Chaohua; Chen, Jing; He, Wenying; Zhang, Tao; Li, Tao; Liu, Kezhi
2017-12-10
To explore common biological pathways for attention deficit hyperactivity disorder (ADHD) and low birth weight (LBW). Thei-Gsea4GwasV2 software was used to analyze the result of genome-wide association analysis (GWAS) for LBW (pathways were derived from Reactome), and nominally significant (P< 0.05, FDR< 0.25) pathways were tested for replication in ADHD.Significant pathways were analyzed with DAPPLE and Reatome FI software to identify genes involved in such pathways, with each cluster enriched with the gene ontology (GO). The Centiscape2.0 software was used to calculate the degree of genetic networks and the betweenness value to explore the core node (gene). Weighed gene co-expression network analysis (WGCNA) was then used to explore the co-expression of genes in these pathways.With gene expression data derived from BrainSpan, GO enrichment was carried out for each gene module. Eleven significant biological pathways was identified in association with LBW, among which two (Selenoamino acid metabolism and Diseases associated with glycosaminoglycan metabolism) were replicated during subsequent ADHD analysis. Network analysis of 130 genes in these pathways revealed that some of the sub-networksare related with morphology of cerebellum, development of hippocampus, and plasticity of synaptic structure. Upon co-expression network analysis, 120 genes passed the quality control and were found to express in 3 gene modules. These modules are mainly related to the regulation of synaptic structure and activity regulation. ADHD and LBW share some biological regulation processes. Anomalies of such proces sesmay predispose to ADHD.
Identification of key target genes and pathways in laryngeal carcinoma
Liu, Feng; Du, Jintao; Liu, Jun; Wen, Bei
2016-01-01
The purpose of the present study was to screen the key genes associated with laryngeal carcinoma and to investigate the molecular mechanism of laryngeal carcinoma progression. The gene expression profile of GSE10935 [Gene Expression Omnibus (GEO) accession number], including 12 specimens from laryngeal papillomas and 12 specimens from normal laryngeal epithelia controls, was downloaded from the GEO database. Differentially expressed genes (DEGs) were screened in laryngeal papillomas compared with normal controls using Limma package in R language, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape software and modules were analyzed using MCODE plugin from the PPI network. Furthermore, significant biological pathway regions (sub-pathway) were identified by using iSubpathwayMiner analysis. A total of 67 DEGs were identified, including 27 up-regulated genes and 40 down-regulated genes and they were involved in different GO terms and pathways. PPI network analysis revealed that Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) was a hub protein. The sub-pathway analysis identified 9 significantly enriched sub-pathways, including glycolysis/gluconeogenesis and nitrogen metabolism. Genes such as phosphoglycerate kinase 1 (PGK1), carbonic anhydrase II (CA2), and carbonic anhydrase XII (CA12) whose node degrees were >10 were identified in the disease risk sub-pathway. Genes in the sub-pathway, such as RASSF1, PGK1, CA2 and CA12 were presumed to serve critical roles in laryngeal carcinoma. The present study identified DEGs and their sub-pathways in the disease, which may serve as potential targets for treatment of laryngeal carcinoma. PMID:27446427
Huan, Jinliang; Wang, Lishan; Xing, Li; Qin, Xianju; Feng, Lingbin; Pan, Xiaofeng; Zhu, Ling
2014-01-01
Estrogens are known to regulate the proliferation of breast cancer cells and to alter their cytoarchitectural and phenotypic properties, but the gene networks and pathways by which estrogenic hormones regulate these events are only partially understood. We used global gene expression profiling by Affymetrix GeneChip microarray analysis, with KEGG pathway enrichment, PPI network construction, module analysis and text mining methods to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells. Of the genes queried on the Affymetrix Human Genome U133 plus 2.0 microarray, we identified 628 (12h), 852 (24h) and 880 (48 h) differentially expressed genes (DEGs) that showed a robust pattern of regulation by E2. From pathway enrichment analysis, we found out the changes of metabolic pathways of E2 treated samples at each time point. At 12h time point, the changes of metabolic pathways were mainly focused on pathways in cancer, focal adhesion, and chemokine signaling pathway. At 24h time point, the changes were mainly enriched in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction and calcium signaling pathway. At 48 h time point, the significant pathways were pathways in cancer, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), axon guidance and ErbB signaling pathway. Of interest, our PPI network analysis and module analysis found that E2 treatment induced enhancement of PRSS23 at the three time points and PRSS23 was in the central position of each module. Text mining results showed that the important genes of DEGs have relationship with signal pathways, such as ERbB pathway (AREG), Wnt pathway (NDP), MAPK pathway (NTRK3, TH), IP3 pathway (TRA@) and some transcript factors (TCF4, MAF). Our studies highlight the diverse gene networks and metabolic and cell regulatory pathways through which E2 operates to achieve its widespread effects on breast cancer cells. © 2013 Elsevier B.V. All rights reserved.
WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data
Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M
2006-01-01
Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281
Gao, Haiyan; Yang, Mei; Zhang, Xiaolan
2018-04-01
The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.
Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang
2018-01-01
DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE. PMID:29257335
Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy.
Kirk, Jon; Shah, Nirav; Noll, Braxton; Stevens, Craig B; Lawler, Marshall; Mougeot, Farah B; Mougeot, Jean-Luc C
2018-08-01
Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.
Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei
2017-08-16
Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Li, Xiaofang; Tian, Run; Gao, Hugh; Yan, Feng; Ying, Le; Yang, Yongkang; Yang, Pei
2018-01-01
Cervical cancer is the leading cause of death with gynecological malignancies. We aimed to explore the molecular mechanism of carcinogenesis and biomarkers for cervical cancer by integrated bioinformatic analysis. We employed RNA-sequencing details of 254 cervical squamous cell carcinomas and 3 normal samples from The Cancer Genome Atlas. To explore the distinct pathways, messenger RNA expression was submitted to a Gene Set Enrichment Analysis. Kyoto Encyclopedia of Genes and Genomes and protein–protein interaction network analysis of differentially expressed genes were performed. Then, we conducted pathway enrichment analysis for modules acquired in protein–protein interaction analysis and obtained a list of pathways in every module. After intersecting the results from the 3 approaches, we evaluated the survival rates of both mutual pathways and genes in the pathway, and 5 survival-related genes were obtained. Finally, Cox hazards ratio analysis of these 5 genes was performed. DNA replication pathway (P < .001; 12 genes included) was suggested to have the strongest association with the prognosis of cervical squamous cancer. In total, 5 of the 12 genes, namely, minichromosome maintenance 2, minichromosome maintenance 4, minichromosome maintenance 5, proliferating cell nuclear antigen, and ribonuclease H2 subunit A were significantly correlated with survival. Minichromosome maintenance 5 was shown as an independent prognostic biomarker for patients with cervical cancer. This study identified a distinct pathway (DNA replication). Five genes which may be prognostic biomarkers and minichromosome maintenance 5 were identified as independent prognostic biomarkers for patients with cervical cancer. PMID:29642758
Jiang, Zhiquan; Gui, Songbo; Zhang, Yazhuo
2010-09-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors.
JIANG, ZHIQUAN; GUI, SONGBO; ZHANG, YAZHUO
2010-01-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors. PMID:22993617
Biomarkers of the Hedgehog/Smoothened pathway in healthy volunteers
Kadam, Sunil K; Patel, Bharvin K R; Jones, Emma; Nguyen, Tuan S; Verma, Lalit K; Landschulz, Katherine T; Stepaniants, Sergey; Li, Bin; Brandt, John T; Brail, Leslie H
2012-01-01
The Hedgehog (Hh) pathway is involved in oncogenic transformation and tumor maintenance. The primary objective of this study was to select surrogate tissue to measure messenger ribonucleic acid (mRNA) levels of Hh pathway genes for measurement of pharmacodynamic effect. Expression of Hh pathway specific genes was measured by quantitative real time polymerase chain reaction (qRT-PCR) and global gene expression using Affymetrix U133 microarrays. Correlations were made between the expression of specific genes determined by qRT-PCR and normalized microarray data. Gene ontology analysis using microarray data for a broader set of Hh pathway genes was performed to identify additional Hh pathway-related markers in the surrogate tissue. RNA extracted from blood, hair follicle, and skin obtained from healthy subjects was analyzed by qRT-PCR for 31 genes, whereas 8 samples were analyzed for a 7-gene subset. Twelve sample sets, each with ≤500 ng total RNA derived from hair, skin, and blood, were analyzed using Affymetrix U133 microarrays. Transcripts for several Hh pathway genes were undetectable in blood using qRT-PCR. Skin was the most desirable matrix, followed by hair follicle. Whether processed by robust multiarray average or microarray suite 5 (MAS5), expression patterns of individual samples showed co-clustered signals; both normalization methods were equally effective for unsupervised analysis. The MAS5- normalized probe sets appeared better suited for supervised analysis. This work provides the basis for selection of a surrogate tissue and an expression analysis-based approach to evaluate pathway-related genes as markers of pharmacodynamic effect with novel inhibitors of the Hh pathway. PMID:22611475
Ye, Yaqiong; Lin, Shumao; Mu, Heping; Tang, Xiaohong; Ou, Yangdan; Chen, Jian; Ma, Yongjiang; Li, Yugu
2014-01-01
Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF-β/SMAD3 and Wnt/catenin-β pathway). PMID:24757673
Prioritizing biological pathways by recognizing context in time-series gene expression data.
Lee, Jusang; Jo, Kyuri; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2016-12-23
The primary goal of pathway analysis using transcriptome data is to find significantly perturbed pathways. However, pathway analysis is not always successful in identifying pathways that are truly relevant to the context under study. A major reason for this difficulty is that a single gene is involved in multiple pathways. In the KEGG pathway database, there are 146 genes, each of which is involved in more than 20 pathways. Thus activation of even a single gene will result in activation of many pathways. This complex relationship often makes the pathway analysis very difficult. While we need much more powerful pathway analysis methods, a readily available alternative way is to incorporate the literature information. In this study, we propose a novel approach for prioritizing pathways by combining results from both pathway analysis tools and literature information. The basic idea is as follows. Whenever there are enough articles that provide evidence on which pathways are relevant to the context, we can be assured that the pathways are indeed related to the context, which is termed as relevance in this paper. However, if there are few or no articles reported, then we should rely on the results from the pathway analysis tools, which is termed as significance in this paper. We realized this concept as an algorithm by introducing Context Score and Impact Score and then combining the two into a single score. Our method ranked truly relevant pathways significantly higher than existing pathway analysis tools in experiments with two data sets. Our novel framework was implemented as ContextTRAP by utilizing two existing tools, TRAP and BEST. ContextTRAP will be a useful tool for the pathway based analysis of gene expression data since the user can specify the context of the biological experiment in a set of keywords. The web version of ContextTRAP is available at http://biohealth.snu.ac.kr/software/contextTRAP .
Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun
2016-01-01
Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609
Ozerov, Ivan V; Lezhnina, Ksenia V; Izumchenko, Evgeny; Artemov, Artem V; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N; Labat, Ivan; West, Michael D; Buzdin, Anton; Cantor, Charles R; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-11-16
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.
Ozerov, Ivan V.; Lezhnina, Ksenia V.; Izumchenko, Evgeny; Artemov, Artem V.; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N.; Labat, Ivan; West, Michael D.; Buzdin, Anton; Cantor, Charles R.; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-01-01
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy. PMID:27848968
Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris
2014-01-01
Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed () with 12 of the 22 SNPs showing . Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, ), NRP1 (rs722988, ), BAD (rs694739, ), CTSB (rs1296023, ), FYN (rs11964650, ), UBE2G1 (rs9906760, ), MAP3K14 (rs17759555, ), ITGB1 (rs1557150, ), and IL7R (rs1445898, ). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. PMID:25371288
Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079
Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.
Tang, Hongwei; Wei, Peng; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Holly, Elizabeth A; Petersen, Gloria; Bracci, Paige M; McWilliams, Robert R; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolph; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui
2014-05-01
Cigarette smoking is the best established modifiable risk factor for pancreatic cancer. Genetic factors that underlie smoking-related pancreatic cancer have previously not been examined at the genome-wide level. Taking advantage of the existing Genome-wide association study (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study in 2028 cases and 2109 controls to examine gene-smoking interactions at pathway/gene/single nucleotide polymorphism (SNP) level. Using the likelihood ratio test nested in logistic regression models and ingenuity pathway analysis (IPA), we examined 172 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 3 manually curated gene sets, 3 nicotine dependency gene ontology pathways, 17 912 genes and 468 114 SNPs. None of the individual pathway/gene/SNP showed significant interaction with smoking after adjusting for multiple comparisons. Six KEGG pathways showed nominal interactions (P < 0.05) with smoking, and the top two are the pancreatic secretion and salivary secretion pathways (major contributing genes: RAB8A, PLCB and CTRB1). Nine genes, i.e. ZBED2, EXO1, PSG2, SLC36A1, CLSTN1, MTHFSD, FAT2, IL10RB and ATXN2 had P interaction < 0.0005. Five intergenic region SNPs and two SNPs of the EVC and KCNIP4 genes had P interaction < 0.00003. In IPA analysis of genes with nominal interactions with smoking, axonal guidance signaling $$\\left(P=2.12\\times 1{0}^{-7}\\right)$$ and α-adrenergic signaling $$\\left(P=2.52\\times 1{0}^{-5}\\right)$$ genes were significantly overrepresented canonical pathways. Genes contributing to the axon guidance signaling pathway included the SLIT/ROBO signaling genes that were frequently altered in pancreatic cancer. These observations need to be confirmed in additional data set. Once confirmed, it will open a new avenue to unveiling the etiology of smoking-associated pancreatic cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less
Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia
2015-01-01
Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156
Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R
2018-01-10
With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.
Screening key candidate genes and pathways involved in insulinoma by microarray analysis.
Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin
2018-06-01
Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.
Krieg, S A; Fan, X; Hong, Y; Sang, Q-X; Giaccia, A; Westphal, L M; Lathi, R B; Krieg, A J; Nayak, N R
2012-09-01
Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P < 0.05), with 22 genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage.
Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun
2017-11-20
Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wilson, Paul; Larminie, Christopher; Smith, Rona
2016-01-01
To use literature mining to catalogue Behçet's associated genes, and advanced computational methods to improve the understanding of the pathways and signalling mechanisms that lead to the typical clinical characteristics of Behçet's patients. To extend this technique to identify potential treatment targets for further experimental validation. Text mining methods combined with gene enrichment tools, pathway analysis and causal analysis algorithms. This approach identified 247 human genes associated with Behçet's disease and the resulting disease map, comprising 644 nodes and 19220 edges, captured important details of the relationships between these genes and their associated pathways, as described in diverse data repositories. Pathway analysis has identified how Behçet's associated genes are likely to participate in innate and adaptive immune responses. Causal analysis algorithms have identified a number of potential therapeutic strategies for further investigation. Computational methods have captured pertinent features of the prominent disease characteristics presented in Behçet's disease and have highlighted NOD2, ICOS and IL18 signalling as potential therapeutic strategies.
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-03-09
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-01-01
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824
minepath.org: a free interactive pathway analysis web server.
Koumakis, Lefteris; Roussos, Panos; Potamias, George
2017-07-03
( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid
2017-02-02
Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.
Guo, Sheng-Min; Wang, Jian-Xiong; Li, Jin; Xu, Fang-Yuan; Wei, Quan; Wang, Hai-Ming; Huang, Hou-Qiang; Zheng, Si-Lin; Xie, Yu-Jie; Zhang, Chi
2018-06-15
Osteoarthritis (OA) significantly influences the quality life of people around the world. It is urgent to find an effective way to understand the genetic etiology of OA. We used weighted gene coexpression network analysis (WGCNA) to explore the key genes involved in the subchondral bone pathological process of OA. Fifty gene expression profiles of GSE51588 were downloaded from the Gene Expression Omnibus database. The OA-associated genes and gene ontologies were acquired from JuniorDoc. Weighted gene coexpression network analysis was used to find disease-related networks based on 21756 gene expression correlation coefficients, hub-genes with the highest connectivity in each module were selected, and the correlation between module eigengene and clinical traits was calculated. The genes in the traits-related gene coexpression modules were subject to functional annotation and pathway enrichment analysis using ClusterProfiler. A total of 73 gene modules were identified, of which, 12 modules were found with high connectivity with clinical traits. Five modules were found with enriched OA-associated genes. Moreover, 310 OA-associated genes were found, and 34 of them were among hub-genes in each module. Consequently, enrichment results indicated some key metabolic pathways, such as extracellular matrix (ECM)-receptor interaction (hsa04512), focal adhesion (hsa04510), the phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway (PI3K-AKT) (hsa04151), transforming growth factor beta pathway, and Wnt pathway. We intended to identify some core genes, collagen (COL)6A3, COL6A1, ITGA11, BAMBI, and HCK, which could influence downstream signaling pathways once they were activated. In this study, we identified important genes within key coexpression modules, which associate with a pathological process of subchondral bone in OA. Functional analysis results could provide important information to understand the mechanism of OA. © 2018 Wiley Periodicals, Inc.
Wang, Ting-Ting; Li, Jin-Mei; Zhou, Dong
2016-01-01
With great interest, we read the paper "Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis" (by Chen PQ et al.) [1], which has reached important conclusions about the relationship between polymorphisms in interleukin (IL)-4/IL-13 pathway genes and glioma risk. Through quantitative analysis, the meta-analysis found no association between IL-4/IL-13 pathway genetic polymorphisms and glioma risk (Chen et al. in Tumor Biol 36:121-127, 2015). The meta-analysis is the most comprehensive study of polymorphisms in the IL-4/IL-13 pathway and glioma risk. Nevertheless, some deficiencies still exist in this meta-analysis that we would like to raise.
Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju
2017-04-27
Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang
2016-05-01
Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
PathFinder: reconstruction and dynamic visualization of metabolic pathways.
Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert
2002-01-01
Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.
van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B
2015-01-01
Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.
Pathway Distiller - multisource biological pathway consolidation
2012-01-01
Background One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. Methods After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. Results We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. Conclusions By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments. PMID:23134636
Pathway Distiller - multisource biological pathway consolidation.
Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong
2012-01-01
One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.
Time course of gene expression during mouse skeletal muscle hypertrophy
Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.
2013-01-01
The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy. PMID:23869057
Time course of gene expression during mouse skeletal muscle hypertrophy.
Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J
2013-10-01
The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.
Yu, Tonghu; Zhang, Huaping; Qi, Hong
2018-01-01
The aim of the present study was to investigate more colon cancer-related genes in different stages. Gene expression profile E-GEOD-62932 was extracted for differentially expressed gene (DEG) screening. Series test of cluster analysis was used to obtain significant trending models. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, functional and pathway enrichment analysis were processed and a pathway relation network was constructed. Gene co-expression network and gene signal network were constructed for common DEGs. The DEGs with the same trend were clustered and in total, 16 clusters with statistical significance were obtained. The screened DEGs were enriched into small molecule metabolic process and metabolic pathways. The pathway relation network was constructed with 57 nodes. A total of 328 common DEGs were obtained. Gene signal network was constructed with 71 nodes. Gene co-expression network was constructed with 161 nodes and 211 edges. ABCD3, CPT2, AGL and JAM2 are potential biomarkers for the diagnosis of colon cancer. PMID:29928385
Identifying novel glioma associated pathways based on systems biology level meta-analysis.
Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong
2013-01-01
With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.
Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.; ...
2018-04-20
A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.
A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less
Wang, Jack P; Matthews, Megan L; Williams, Cranos M; Shi, Rui; Yang, Chenmin; Tunlaya-Anukit, Sermsawat; Chen, Hsi-Chuan; Li, Quanzi; Liu, Jie; Lin, Chien-Yuan; Naik, Punith; Sun, Ying-Hsuan; Loziuk, Philip L; Yeh, Ting-Feng; Kim, Hoon; Gjersing, Erica; Shollenberger, Todd; Shuford, Christopher M; Song, Jina; Miller, Zachary; Huang, Yung-Yun; Edmunds, Charles W; Liu, Baoguang; Sun, Yi; Lin, Ying-Chung Jimmy; Li, Wei; Chen, Hao; Peszlen, Ilona; Ducoste, Joel J; Ralph, John; Chang, Hou-Min; Muddiman, David C; Davis, Mark F; Smith, Chris; Isik, Fikret; Sederoff, Ronald; Chiang, Vincent L
2018-04-20
A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.
Jo, Kyuri; Kwon, Hawk-Bin; Kim, Sun
2014-06-01
Measuring expression levels of genes at the whole genome level can be useful for many purposes, especially for revealing biological pathways underlying specific phenotype conditions. When gene expression is measured over a time period, we have opportunities to understand how organisms react to stress conditions over time. Thus many biologists routinely measure whole genome level gene expressions at multiple time points. However, there are several technical difficulties for analyzing such whole genome expression data. In addition, these days gene expression data is often measured by using RNA-sequencing rather than microarray technologies and then analysis of expression data is much more complicated since the analysis process should start with mapping short reads and produce differentially activated pathways and also possibly interactions among pathways. In addition, many useful tools for analyzing microarray gene expression data are not applicable for the RNA-seq data. Thus a comprehensive package for analyzing time series transcriptome data is much needed. In this article, we present a comprehensive package, Time-series RNA-seq Analysis Package (TRAP), integrating all necessary tasks such as mapping short reads, measuring gene expression levels, finding differentially expressed genes (DEGs), clustering and pathway analysis for time-series data in a single environment. In addition to implementing useful algorithms that are not available for RNA-seq data, we extended existing pathway analysis methods, ORA and SPIA, for time series analysis and estimates statistical values for combined dataset by an advanced metric. TRAP also produces visual summary of pathway interactions. Gene expression change labeling, a practical clustering method used in TRAP, enables more accurate interpretation of the data when combined with pathway analysis. We applied our methods on a real dataset for the analysis of rice (Oryza sativa L. Japonica nipponbare) upon drought stress. The result showed that TRAP was able to detect pathways more accurately than several existing methods. TRAP is available at http://biohealth.snu.ac.kr/software/TRAP/. Copyright © 2014 Elsevier Inc. All rights reserved.
Del Sorbo, Maria Rosaria; Balzano, Walter; Donato, Michele; Draghici, Sorin
2013-11-01
Differential expression of genes detected with the analysis of high throughput genomic experiments is a commonly used intermediate step for the identification of signaling pathways involved in the response to different biological conditions. The impact analysis was the first approach for the analysis of signaling pathways involved in a certain biological process that was able to take into account not only the magnitude of the expression change of the genes but also the topology of signaling pathways including the type of each interactions between the genes. In the impact analysis, signaling pathways are represented as weighted directed graphs with genes as nodes and the interactions between genes as edges. Edges weights are represented by a β factor, the regulatory efficiency, which is assumed to be equal to 1 in inductive interactions between genes and equal to -1 in repressive interactions. This study presents a similarity analysis between gene expression time series aimed to find correspondences with the regulatory efficiency, i.e. the β factor as found in a widely used pathway database. Here, we focused on correlations among genes directly connected in signaling pathways, assuming that the expression variations of upstream genes impact immediately downstream genes in a short time interval and without significant influences by the interactions with other genes. Time series were processed using three different similarity metrics. The first metric is based on the bit string matching; the second one is a specific application of the Dynamic Time Warping to detect similarities even in presence of stretching and delays; the third one is a quantitative comparative analysis resulting by an evaluation of frequency domain representation of time series: the similarity metric is the correlation between dominant spectral components. These three approaches are tested on real data and pathways, and a comparison is performed using Information Retrieval benchmark tools, indicating the frequency approach as the best similarity metric among the three, for its ability to detect the correlation based on the correspondence of the most significant frequency components. Copyright © 2013. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Prastowo, S.; Widyas, N.
2018-03-01
AMP-activated protein kinase (AMPK) is cellular energy censor which works based on ATP and AMP concentration. This protein interacts with mitochondria in determine its activity to generate energy for cell metabolism purposes. For that, this paper aims to compare the protein to protein interaction of AMPK and mitochondrial activity genes in the metabolism of known animal farm (domesticated) that are cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In silico study was done using STRING V.10 as prominent protein interaction database, followed with biological function comparison in KEGG PATHWAY database. Set of genes (12 in total) were used as input analysis that are PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PRKAG3, PPARGC1, ACC, CPT1B, NRF2 and SOD. The first 7 genes belong to gene in AMPK family, while the last 5 belong to mitochondrial activity genes. The protein interaction result shows 11, 8 and 5 metabolism pathways in Bos taurus, Sus scrofa and Gallus gallus, respectively. The top pathway in Bos taurus is AMPK signaling pathway (10 genes), Sus scrofa is Adipocytokine signaling pathway (8 genes) and Gallus gallus is FoxO signaling pathway (5 genes). Moreover, the common pathways found in those 3 species are Adipocytokine signaling pathway, Insulin signaling pathway and FoxO signaling pathway. Genes clustered in Adipocytokine and Insulin signaling pathway are PRKAA2, PPARGC1A, PRKAB1 and PRKAG2. While, in FoxO signaling pathway are PRKAA2, PRKAB1, PRKAG2. According to that, we found PRKAA2, PRKAB1 and PRKAG2 are the common genes. Based on the bioinformatics analysis, we can demonstrate that protein to protein interaction shows distinct different of metabolism in different species. However, further validation is needed to give a clear explanation.
ESEA: Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis
Han, Junwei; Shi, Xinrui; Zhang, Yunpeng; Xu, Yanjun; Jiang, Ying; Zhang, Chunlong; Feng, Li; Yang, Haixiu; Shang, Desi; Sun, Zeguo; Su, Fei; Li, Chunquan; Li, Xia
2015-01-01
Pathway analyses are playing an increasingly important role in understanding biological mechanism, cellular function and disease states. Current pathway-identification methods generally focus on only the changes of gene expression levels; however, the biological relationships among genes are also the fundamental components of pathways, and the dysregulated relationships may also alter the pathway activities. We propose a powerful computational method, Edge Set Enrichment Analysis (ESEA), for the identification of dysregulated pathways. This provides a novel way of pathway analysis by investigating the changes of biological relationships of pathways in the context of gene expression data. Simulation studies illustrate the power and performance of ESEA under various simulated conditions. Using real datasets from p53 mutation, Type 2 diabetes and lung cancer, we validate effectiveness of ESEA in identifying dysregulated pathways. We further compare our results with five other pathway enrichment analysis methods. With these analyses, we show that ESEA is able to help uncover dysregulated biological pathways underlying complex traits and human diseases via specific use of the dysregulated biological relationships. We develop a freely available R-based tool of ESEA. Currently, ESEA can support pathway analysis of the seven public databases (KEGG; Reactome; Biocarta; NCI; SPIKE; HumanCyc; Panther). PMID:26267116
Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio
2012-06-01
Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants.
Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni
2013-01-01
Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function. PMID:24278029
Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni
2013-11-01
Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function.
Liu, Y T; Li, S R; Wang, Z; Xiao, J Z
2016-09-13
Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.
Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan
2016-09-01
To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.
Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia
2013-05-01
Various 'omics' technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways.
Zaravinos, Apostolos; Pieri, Myrtani; Mourmouras, Nikos; Anastasiadou, Natassa; Zouvani, Ioanna; Delakas, Dimitris; Deltas, Constantinos
2014-01-01
Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cell carcinoma (RCC). It is one of the most therapy-resistant carcinomas, responding very poorly or not at all to radiotherapy, hormonal therapy and chemotherapy. A more comprehensive understanding of the deregulated pathways in ccRCC can lead to the development of new therapies and prognostic markers. We performed a meta- analysis of 5 publicly available gene expression datasets and identified a list of co- deregulated genes, for which we performed extensive bioinformatic analysis coupled with experimental validation on the mRNA level. Gene ontology enrichment showed that many proteins are involved in response to hypoxia/oxygen levels and positive regulation of the VEGFR signaling pathway. KEGG analysis revealed that metabolic pathways are mostly altered in ccRCC. Similarly, Ingenuity Pathway Analysis showed that the antigen presentation, inositol metabolism, pentose phosphate, glycolysis/gluconeogenesis and fructose/mannose metabolism pathways are altered in the disease. Cellular growth, proliferation and carbohydrate metabolism, were among the top molecular and cellular functions of the co-deregulated genes. qRT-PCR validated the deregulated expression of several genes in Caki-2 and ACHN cell lines and in a cohort of ccRCC tissues. NNMT and NR3C1 increased expression was evident in ccRCC biopsies from patients using immunohistochemistry. ROC curves evaluated the diagnostic performance of the top deregulated genes in each dataset. We show that metabolic pathways are mostly deregulated in ccRCC and we highlight those being most responsible in its formation. We suggest that these genes are candidate predictive markers of the disease. PMID:25594006
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano; Fontana, Paolo
2017-02-01
Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact:paolo.fontana@fmach.it
Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.
Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P
Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Ding, Yang; Ao, Jingqun; Hu, Songnian; Chen, Xinhua
2014-01-01
The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. PMID:24820969
Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong
2017-09-12
A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4 + T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.
Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy
2013-08-01
Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association to obesity compared to pathways identified from the original databases.
Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K.
2018-01-01
The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly. PMID:29470400
Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A
2018-02-22
The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly.
Eleftherohorinou, Hariklia; Hoggart, Clive J; Wright, Victoria J; Levin, Michael; Coin, Lachlan J M
2011-09-01
Rheumatoid arthritis (RA) is the commonest chronic, systemic, inflammatory disorder affecting ∼1% of the world population. It has a strong genetic component and a growing number of associated genes have been discovered in genome-wide association studies (GWAS), which nevertheless only account for 23% of the total genetic risk. We aimed to identify additional susceptibility loci through the analysis of GWAS in the context of biological function. We bridge the gap between pathway and gene-oriented analyses of GWAS, by introducing a pathway-driven gene stability-selection methodology that identifies potential causal genes in the top-associated disease pathways that may be driving the pathway association signals. We analysed the WTCCC and the NARAC studies of ∼5000 and ∼2000 subjects, respectively. We examined 700 pathways comprising ∼8000 genes. Ranking pathways by significance revealed that the NARAC top-ranked ∼6% laid within the top 10% of WTCCC. Gene selection on those pathways identified 58 genes in WTCCC and 61 in NARAC; 21 of those were common (P(overlap)< 10(-21)), of which 16 were novel discoveries. Among the identified genes, we validated 10 known RA associations in WTCCC and 13 in NARAC, not discovered using single-SNP approaches on the same data. Gene ontology functional enrichment analysis on the identified genes showed significant over-representation of signalling activity (P< 10(-29)) in both studies. Our findings suggest a novel model of RA genetic predisposition, which involves cell-membrane receptors and genes in second messenger signalling systems, in addition to genes that regulate immune responses, which have been the focus of interest previously.
A human functional protein interaction network and its application to cancer data analysis
2010-01-01
Background One challenge facing biologists is to tease out useful information from massive data sets for further analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship networks. We are building such a pathway-based analysis system. Results We have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers. Conclusions We have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases. PMID:20482850
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-01-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS. PMID:28949383
Methods and approaches in the topology-based analysis of biological pathways
Mitrea, Cristina; Taghavi, Zeinab; Bokanizad, Behzad; Hanoudi, Samer; Tagett, Rebecca; Donato, Michele; Voichiţa, Călin; Drăghici, Sorin
2013-01-01
The goal of pathway analysis is to identify the pathways significantly impacted in a given phenotype. Many current methods are based on algorithms that consider pathways as simple gene lists, dramatically under-utilizing the knowledge that such pathways are meant to capture. During the past few years, a plethora of methods claiming to incorporate various aspects of the pathway topology have been proposed. These topology-based methods, sometimes referred to as “third generation,” have the potential to better model the phenomena described by pathways. Although there is now a large variety of approaches used for this purpose, no review is currently available to offer guidance for potential users and developers. This review covers 22 such topology-based pathway analysis methods published in the last decade. We compare these methods based on: type of pathways analyzed (e.g., signaling or metabolic), input (subset of genes, all genes, fold changes, gene p-values, etc.), mathematical models, pathway scoring approaches, output (one or more pathway scores, p-values, etc.) and implementation (web-based, standalone, etc.). We identify and discuss challenges, arising both in methodology and in pathway representation, including inconsistent terminology, different data formats, lack of meaningful benchmarks, and the lack of tissue and condition specificity. PMID:24133454
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections
Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael
2016-01-01
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573
Pathway analysis of high-throughput biological data within a Bayesian network framework.
Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H
2011-06-15
Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.
Diverse Genome-wide Association Studies Associate the IL12/IL23 Pathway with Crohn Disease
Wang, Kai; Zhang, Haitao; Kugathasan, Subra; Annese, Vito; Bradfield, Jonathan P.; Russell, Richard K.; Sleiman, Patrick M.A.; Imielinski, Marcin; Glessner, Joseph; Hou, Cuiping; Wilson, David C.; Walters, Thomas; Kim, Cecilia; Frackelton, Edward C.; Lionetti, Paolo; Barabino, Arrigo; Van Limbergen, Johan; Guthery, Stephen; Denson, Lee; Piccoli, David; Li, Mingyao; Dubinsky, Marla; Silverberg, Mark; Griffiths, Anne; Grant, Struan F.A.; Satsangi, Jack; Baldassano, Robert; Hakonarson, Hakon
2009-01-01
Previous genome-wide association (GWA) studies typically focus on single-locus analysis, which may not have the power to detect the majority of genuinely associated loci. Here, we applied pathway analysis using Affymetrix SNP genotype data from the Wellcome Trust Case Control Consortium (WTCCC) and uncovered significant association between Crohn Disease (CD) and the IL12/IL23 pathway, harboring 20 genes (p = 8 × 10−5). Interestingly, the pathway contains multiple genes (IL12B and JAK2) or homologs of genes (STAT3 and CCR6) that were recently identified as genuine susceptibility genes only through meta-analysis of several GWA studies. In addition, the pathway contains other susceptibility genes for CD, including IL18R1, JUN, IL12RB1, and TYK2, which do not reach genome-wide significance by single-marker association tests. The observed pathway-specific association signal was subsequently replicated in three additional GWA studies of European and African American ancestry generated on the Illumina HumanHap550 platform. Our study suggests that examination beyond individual SNP hits, by focusing on genetic networks and pathways, is important to unleashing the true power of GWA studies. PMID:19249008
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-01
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher’s exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO’s usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher. PMID:26750448
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-11
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.
On the Nature of Expansion of Paget’s Disease of Bone
2012-10-01
signaling pathway. Gene expression normalized to normal adjacent bone samples. 5 Global expression analysis revealed genes downstream of the Hedgehog ... Hedgehog (Hh) signaling pathway (Figure 5). Again, as in the TLR signaling pathway, specific elements of the Hh signaling pathway showed increased...mutations upregulated expression of genes in the Hedgehog signaling pathway. 7. Discovery that an osteoblastic cell line (PSV10) derived from a PDB
Impact of constitutional copy number variants on biological pathway evolution.
Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca
2013-01-23
Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.
Impact of constitutional copy number variants on biological pathway evolution
2013-01-01
Background Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. Results We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. Conclusions The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations. PMID:23342974
Algorithms on Flag Manifolds for Knowledge Discovery in N-way Arrays
2015-11-20
that three of 18 subjects will become symptomatic after only 8 hours. Host pathway analysis of a human endotoxin gene expression data set revealed a 14...pathway analysis of a human endotoxin gene expression data set revealed a 14 pathway signature that identified symptomatic subjects within 2-3 hours post
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano
2017-01-01
Abstract Summary: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Availability and Implementation: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact: paolo.fontana@fmach.it PMID:28158604
Sitras, V; Fenton, C; Acharya, G
2015-02-01
Cardiovascular disease (CVD) and preeclampsia (PE) share common clinical features. We aimed to identify common transcriptomic signatures involved in CVD and PE in humans. Meta-analysis of individual raw microarray data deposited in GEO, obtained from blood samples of patients with CVD versus controls and placental samples from women with PE versus healthy women with uncomplicated pregnancies. Annotation of cases versus control samples was taken directly from the microarray documentation. Genes that showed a significant differential expression in the majority of experiments were selected for subsequent analysis. Hypergeometric gene list analysis was performed using Bioconductor GOstats package. Bioinformatic analysis was performed in PANTHER. Seven studies in CVD and 5 studies in PE were eligible for meta-analysis. A total of 181 genes were found to be differentially expressed in microarray studies investigating gene expression in blood samples obtained from patients with CVD compared to controls and 925 genes were differentially expressed between preeclamptic and healthy placentas. Among these differentially expressed genes, 22 were common between CVD and PE. Bioinformatic analysis of these genes revealed oxidative stress, p-53 pathway feedback, inflammation mediated by chemokines and cytokines, interleukin signaling, B-cell activation, PDGF signaling, Wnt signaling, integrin signaling and Alzheimer disease pathways to be involved in the pathophysiology of both CVD and PE. Metabolism, development, response to stimulus, immune response and cell communication were the associated biologic processes in both conditions. Gene set enrichment analysis showed the following overlapping pathways between CVD and PE: TGF-β-signaling, apoptosis, graft-versus-host disease, allograft rejection, chemokine signaling, steroid hormone synthesis, type I and II diabetes mellitus, VEGF signaling, pathways in cancer, GNRH signaling, Huntingtons disease and Notch signaling. CVD and PE share same common traits in their gene expression profile indicating common pathways in their pathophysiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vivar, Juan C.; Sarzynski, Mark A.; Sung, Yun Ju; Timmons, James A.; Bouchard, Claude; Rankinen, Tuomo
2013-01-01
We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation. PMID:23990238
Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris
2014-12-01
Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed (P=9.85×10-11) with 12 of the 22 SNPs showing P<0.05. Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, P=7.86×10-9), NRP1 (rs722988, 4.88×10-8), BAD (rs694739, 2.37×10-7), CTSB (rs1296023, 2.79×10-7), FYN (rs11964650, P=5.60×10-7), UBE2G1 (rs9906760, 5.08×10-7), MAP3K14 (rs17759555, 9.67×10-7), ITGB1 (rs1557150, 1.93×10-6), and IL7R (rs1445898, 2.76×10-6). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. © 2014 The Authors. ** Genetic Epidemiology published by Wiley Periodicals, Inc.
Graphite Web: web tool for gene set analysis exploiting pathway topology
Sales, Gabriele; Calura, Enrica; Martini, Paolo; Romualdi, Chiara
2013-01-01
Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further divided into ‘topological’ and ‘non-topological’ methods according to their ability to gain power from pathway topology. Biological pathways are, in fact, not only gene lists but can be represented through a network where genes and connections are, respectively, nodes and edges. To this day, the most used approaches are non-topological and univariate although they miss the relationship among genes. On the contrary, topological and multivariate approaches are more powerful, but difficult to be used by researchers without bioinformatic skills. Here we present Graphite web, the first public web server for pathway analysis on gene expression data that combines topological and multivariate pathway analyses with an efficient system of interactive network visualizations for easy results interpretation. Specifically, Graphite web implements five different gene set analyses on three model organisms and two pathway databases. Graphite Web is freely available at http://graphiteweb.bio.unipd.it/. PMID:23666626
Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia
2013-01-01
Various ‘omics’ technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways. PMID:23482392
Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang
2017-12-01
The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .
Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K
2016-01-01
In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.
Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M
2010-10-07
Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways--selenoamino acid metabolism and steroid biosynthesis--illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.
2010-01-01
Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581
Guo, Leilei; Song, Chunhua; Wang, Peng; Dai, Liping; Zhang, Jianying; Wang, Kaijuan
2015-11-01
The aim of the present study was to explore key molecular pathways contributing to gastric cancer (GC) and to construct an interaction network between significant pathways and potential biomarkers. Publicly available gene expression profiles of GSE29272 for GC, and data for the corresponding normal tissue, were downloaded from Gene Expression Omnibus. Pre‑processing and differential analysis were performed with R statistical software packages, and a number of differentially expressed genes (DEGs) were obtained. A functional enrichment analysis was performed for all the DEGs with a BiNGO plug‑in in Cytoscape. Their correlation was analyzed in order to construct a network. The modularity analysis and pathway identification operations were used to identify graph clusters and associated pathways. The underlying molecular mechanisms involving these DEGs were also assessed by data mining. A total of 249 DEGs, which were markedly upregulated and downregulated, were identified. The extracellular region contained the most significantly over‑represented functional terms, with respect to upregulated and downregulated genes, and the closest topological matches were identified for taste transduction and regulation of autophagy. In addition, extracellular matrix‑receptor interactions were identified as the most relevant pathway associated with the progression of GC. The genes for fibronectin 1, secreted phosphoprotein 1, collagen type 4 variant α‑1/2 and thrombospondin 1, which are involved in the pathways, may be considered as potential therapeutic targets for GC. A series of associations between candidate genes and key pathways were also identified for GC, and their correlation may provide novel insights into the pathogenesis of GC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences
2013-10-01
The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less
Ghosh, Sujoy; Vivar, Juan; Nelson, Christopher P; Willenborg, Christina; Segrè, Ayellet V; Mäkinen, Ville-Petteri; Nikpay, Majid; Erdmann, Jeannette; Blankenberg, Stefan; O'Donnell, Christopher; März, Winfried; Laaksonen, Reijo; Stewart, Alexandre FR; Epstein, Stephen E; Shah, Svati H; Granger, Christopher B; Hazen, Stanley L; Kathiresan, Sekar; Reilly, Muredach P; Yang, Xia; Quertermous, Thomas; Samani, Nilesh J; Schunkert, Heribert; Assimes, Themistocles L; McPherson, Ruth
2016-01-01
Objective Genome-wide association (GWA) studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks. Approaches and Results Employing pathways (gene sets) from Reactome, we carried out a two-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CADGWAS data sets (9,889 cases/11,089 controls), nominally significant gene-sets were tested for replication in a meta-analysis of 9 additional studies (15,502 cases/55,730 controls) from the CARDIoGRAM Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication p<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix integrity, innate immunity, axon guidance, and signaling by PDRF, NOTCH, and the TGF-β/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (e.g. semaphorin regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared to random networks (p<0.001). Network centrality analysis (‘degree’ and ‘betweenness’) further identified genes (e.g. NCAM1, FYN, FURIN etc.) likely to play critical roles in the maintenance and functioning of several of the replicated pathways. Conclusions These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD. PMID:25977570
Tejera, Eduardo; Cruz-Monteagudo, Maykel; Burgos, Germán; Sánchez, María-Eugenia; Sánchez-Rodríguez, Aminael; Pérez-Castillo, Yunierkis; Borges, Fernanda; Cordeiro, Maria Natália Dias Soeiro; Paz-Y-Miño, César; Rebelo, Irene
2017-08-08
Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis. We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways. The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism. Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further explored in preeclampsia pathogenesis through experimental approaches.
Chang, Tzu-Hao; Chen, Mien-Cheng; Chang, Jen-Ping; Huang, Hsien-Da; Ho, Wan-Chun; Lin, Yu-Sheng; Pan, Kuo-Li; Huang, Yao-Kuang; Liu, Wen-Hao; Wu, Chia-Chen
2016-01-01
Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients. PMID:27907007
Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin
2015-01-01
Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis. PMID:25706977
Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin
2015-01-01
Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.
RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG
2015-01-01
The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-11-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.
Zhou, Junhua; Lam, Brian; Neogi, Sudeshna G; Yeo, Giles S H; Azizan, Elena A B; Brown, Morris J
2016-12-01
Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism. © 2016 The Authors.
Zhou, Lei-Lei; Xu, Xiao-Yue; Ni, Jie; Zhao, Xia; Zhou, Jian-Wei; Feng, Ji-Feng
2018-06-01
Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lee, Hyeonjeong; Shin, Miyoung
2017-01-01
The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into distinctive associations between pathway activities in case and control samples.
Liu, Yanqing; Wang, Yueqiu; Zhang, Yanxia; Liu, Zhiyong; Xiang, Hongfei; Peng, Xianbo
2017-01-01
Objectives. We aimed to find the key pathways associated with the development of osteoporosis. Methods. We downloaded expression profile data of GSE35959 and analyzed the differentially expressed genes (DEGs) in 3 comparison groups (old_op versus middle, old_op versus old, and old_op versus senescent). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses were carried out. Besides, Venn diagram analysis and gene functional interaction (FI) network analysis were performed. Results. Totally 520 DEGs, 966 DEGs, and 709 DEGs were obtained in old_op versus middle, old_op versus old, and old_op versus senescent groups, respectively. Lysosome pathway was the significantly enriched pathways enriched by intersection genes. The pathways enriched by subnetwork modules suggested that mitotic metaphase and anaphase and signaling by Rho GTPases in module 1 had more proteins from module. Conclusions. Lysosome pathway, mitotic metaphase and anaphase, and signaling by Rho GTPases may be involved in the development of osteoporosis. Furthermore, Rho GTPases may regulate the balance of bone resorption and bone formation via controlling osteoclast and osteoblast. These 3 pathways may be regarded as the treatment targets for osteoporosis. PMID:28466021
Shaheen, Safa; Fawaz, Febin; Shah, Shaheen; Büsselberg, Dietrich
2018-06-19
Triple-negative breast cancer (TNBC) is among the most notorious types of breast cancer, the treatment of which does not give consistent results due to the absence of the three receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) as well as high amount of molecular variability. Drug resistance also contributes to treatment unresponsiveness. We studied differentially expressed genes, their biological roles, as well as pathways from RNA-Seq datasets of two different TNBC drug-resistant cell lines of Basal B subtype SUM159 and MDA-MB-231 treated with drugs JQ1 and Dexamethasone, respectively, to elucidate the mechanism of drug resistance. RNA sequencing(RNA-Seq) data analysis was done using edgeR which is an efficient program for determining the most significant Differentially Expressed Genes (DEGs), Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. iPathway analysis was further used to obtain validated results using analysis that takes into consideration type, function, and interactions of genes in the pathway. The significant similarities and differences throw light into the molecular heterogeneity of TNBC, giving clues into the aspects that can be focused to overcome drug resistance. From this study, cytokine-cytokine receptor interaction pathway appeared to be a key factor in TNBC drug resistance.
Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu
2016-10-10
Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA. Copyright © 2016 Elsevier B.V. All rights reserved.
Mathematical Justification of Expression-Based Pathway Activation Scoring (PAS).
Aliper, Alexander M; Korzinkin, Michael B; Kuzmina, Natalia B; Zenin, Alexander A; Venkova, Larisa S; Smirnov, Philip Yu; Zhavoronkov, Alex A; Buzdin, Anton A; Borisov, Nikolay M
2017-01-01
Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members. For example, our algorithm OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data in the objects of the interest.Yet, the question of assessment of the relative importance for each gene product in a molecular pathway remains unclear unless one call for the methods of parameter sensitivity /stiffness analysis in the interactomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.Here we show two principal points: 1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time- and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS is kinetically justified. 2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large numbers, allows restoring the correlation between the similar samples that were examined using different transcriptome investigation techniques.
Liu, Guiyou; Zhang, Fang; Jiang, Yongshuai; Hu, Yang; Gong, Zhongying; Liu, Shoufeng; Chen, Xiuju; Jiang, Qinghua; Hao, Junwei
2017-02-01
Much effort has been expended on identifying the genetic determinants of multiple sclerosis (MS). Existing large-scale genome-wide association study (GWAS) datasets provide strong support for using pathway and network-based analysis methods to investigate the mechanisms underlying MS. However, no shared genetic pathways have been identified to date. We hypothesize that shared genetic pathways may indeed exist in different MS-GWAS datasets. Here, we report results from a three-stage analysis of GWAS and expression datasets. In stage 1, we conducted multiple pathway analyses of two MS-GWAS datasets. In stage 2, we performed a candidate pathway analysis of the large-scale MS-GWAS dataset. In stage 3, we performed a pathway analysis using the dysregulated MS gene list from seven human MS case-control expression datasets. In stage 1, we identified 15 shared pathways. In stage 2, we successfully replicated 14 of these 15 significant pathways. In stage 3, we found that dysregulated MS genes were significantly enriched in 10 of 15 MS risk pathways identified in stages 1 and 2. We report shared genetic pathways in different MS-GWAS datasets and highlight some new MS risk pathways. Our findings provide new insights on the genetic determinants of MS.
Liu, Chuan-He; Fan, Chao
2016-01-01
A remarkable characteristic of pineapple is its ability to undergo floral induction in response to external ethylene stimulation. However, little information is available regarding the molecular mechanism underlying this process. In this study, the differentially expressed genes (DEGs) in plants exposed to 1.80 mL·L−1 (T1) or 2.40 mL·L−1 ethephon (T2) compared with Ct plants (control, cleaning water) were identified using RNA-seq and gene expression profiling. Illumina sequencing generated 65,825,224 high-quality reads that were assembled into 129,594 unigenes with an average sequence length of 1173 bp. Of these unigenes, 24,775 were assigned to specific KEGG pathways, of which metabolic pathways and biosynthesis of secondary metabolites were the most highly represented. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority were involved in metabolic and cellular processes, cell and cell part, catalytic activity and binding. Gene expression profiling analysis revealed 3788, 3062, and 758 DEGs in the comparisons of T1 with Ct, T2 with Ct, and T2 with T1, respectively. GO analysis indicated that these DEGs were predominantly annotated to metabolic and cellular processes, cell and cell part, catalytic activity, and binding. KEGG pathway analysis revealed the enrichment of several important pathways among the DEGs, including metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Thirteen DEGs were identified as candidate genes associated with the process of floral induction by ethephon, including three ERF-like genes, one ETR-like gene, one LTI-like gene, one FT-like gene, one VRN1-like gene, three FRI-like genes, one AP1-like gene, one CAL-like gene, and one AG-like gene. qPCR analysis indicated that the changes in the expression of these 13 candidate genes were consistent with the alterations in the corresponding RPKM values, confirming the accuracy and credibility of the RNA-seq and gene expression profiling results. Ethephon-mediated induction likely mimics the process of vernalization in the floral transition in pineapple by increasing LTI, FT, and VRN1 expression and promoting the up-regulation of floral meristem identity genes involved in flower development. The candidate genes screened can be used in investigations of the molecular mechanisms of the flowering pathway and of various other biological mechanisms in pineapple. PMID:26955375
Chen, X Y; Chen, Y H; Zhang, L J; Wang, Y; Tong, Z C
2017-02-16
Osteosarcoma (OS) is the most common primary bone malignancy, but current therapies are far from effective for all patients. A better understanding of the pathological mechanism of OS may help to achieve new treatments for this tumor. Hence, the objective of this study was to investigate ego modules and pathways in OS utilizing EgoNet algorithm and pathway-related analysis, and reveal pathological mechanisms underlying OS. The EgoNet algorithm comprises four steps: constructing background protein-protein interaction (PPI) network (PPIN) based on gene expression data and PPI data; extracting differential expression network (DEN) from the background PPIN; identifying ego genes according to topological features of genes in reweighted DEN; and collecting ego modules using module search by ego gene expansion. Consequently, we obtained 5 ego modules (Modules 2, 3, 4, 5, and 6) in total. After applying the permutation test, all presented statistical significance between OS and normal controls. Finally, pathway enrichment analysis combined with Reactome pathway database was performed to investigate pathways, and Fisher's exact test was conducted to capture ego pathways for OS. The ego pathway for Module 2 was CLEC7A/inflammasome pathway, while for Module 3 a tetrasaccharide linker sequence was required for glycosaminoglycan (GAG) synthesis, and for Module 6 was the Rho GTPase cycle. Interestingly, genes in Modules 4 and 5 were enriched in the same pathway, the 2-LTR circle formation. In conclusion, the ego modules and pathways might be potential biomarkers for OS therapeutic index, and give great insight of the molecular mechanism underlying this tumor.
Chen, X.Y.; Chen, Y.H.; Zhang, L.J.; Wang, Y.; Tong, Z.C.
2017-01-01
Osteosarcoma (OS) is the most common primary bone malignancy, but current therapies are far from effective for all patients. A better understanding of the pathological mechanism of OS may help to achieve new treatments for this tumor. Hence, the objective of this study was to investigate ego modules and pathways in OS utilizing EgoNet algorithm and pathway-related analysis, and reveal pathological mechanisms underlying OS. The EgoNet algorithm comprises four steps: constructing background protein-protein interaction (PPI) network (PPIN) based on gene expression data and PPI data; extracting differential expression network (DEN) from the background PPIN; identifying ego genes according to topological features of genes in reweighted DEN; and collecting ego modules using module search by ego gene expansion. Consequently, we obtained 5 ego modules (Modules 2, 3, 4, 5, and 6) in total. After applying the permutation test, all presented statistical significance between OS and normal controls. Finally, pathway enrichment analysis combined with Reactome pathway database was performed to investigate pathways, and Fisher's exact test was conducted to capture ego pathways for OS. The ego pathway for Module 2 was CLEC7A/inflammasome pathway, while for Module 3 a tetrasaccharide linker sequence was required for glycosaminoglycan (GAG) synthesis, and for Module 6 was the Rho GTPase cycle. Interestingly, genes in Modules 4 and 5 were enriched in the same pathway, the 2-LTR circle formation. In conclusion, the ego modules and pathways might be potential biomarkers for OS therapeutic index, and give great insight of the molecular mechanism underlying this tumor. PMID:28225867
A chain reaction approach to modelling gene pathways.
Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen
2012-08-01
BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By applying it to microarray data, the chain reaction model computed a set of reaction rates to examine the effects of three polyphenols (EGCG, genistein, and resveratrol) on gene expression in this pathway during puberty. We first performed statistical analysis to test the time factor on the estrogen synthesis pathway. Global tests were used to evaluate an overall gene expression change during puberty for each experimental group. Then, a chain reaction model was employed to simulate the estrogen synthesis pathway. Specifically, the model computed the reaction rates in a set of ordinary differential equations to describe interactions between genes in the pathway (A reaction rate K of A to B represents gene A will induce gene B per unit at a rate of K; we give details in the "method" section). Since disparate changes of gene expression may cause numerical error problems in solving these differential equations, we used an implicit scheme to address this issue. We first applied the chain reaction model to obtain the reaction rates for the control group. A sensitivity study was conducted to evaluate how well the model fits to the control group data at Day 50. Results showed a small bias and mean square error. These observations indicated the model is robust to low random noises and has a good fit for the control group. Then the chain reaction model derived from the control group data was used to predict gene expression at Day 50 for the three polyphenol groups. If these nutrients affect the estrogen synthesis pathways during puberty, we expect discrepancy between observed and expected expressions. Results indicated some genes had large differences in the EGCG (e.g., Hsd3b and Sts) and the resveratrol (e.g., Hsd3b and Hrmt12) groups. CONCLUSIONS: In the present study, we have presented (I) experimental studies of the effect of nutrient diets on the gene expression changes in a selected estrogen synthesis pathway. This experiment is valuable because it allows us to examine how the nutrient-containing diets regulate gene expression in the estrogen synthesis pathway during puberty; (II) global tests to assess an overall association of this particular pathway with time factor by utilizing generalized linear models to analyze microarray data; and (III) a chain reaction model to simulate the pathway. This is a novel application because we are able to translate the gene pathway into the chemical reactions in which each reaction channel describes gene-gene relationship in the pathway. In the chain reaction model, the implicit scheme is employed to efficiently solve the differential equations. Data analysis results show the proposed model is capable of predicting gene expression changes and demonstrating the effect of nutrient-containing diets on gene expression changes in the pathway. One of the objectives of this study is to explore and develop a numerical approach for simulating the gene expression change so that it can be applied and calibrated when the data of more time slices are available, and thus can be used to interpolate the expression change at a desired time point without conducting expensive experiments for a large amount of time points. Hence, we are not claiming this is either essential or the most efficient way for simulating this problem, rather a mathematical/numerical approach that can model the expression change of a large set of genes of a complex pathway. In addition, we understand the limitation of this experiment and realize that it is still far from being a complete model of predicting nutrient-gene interactions. The reason is that in the present model, the reaction rates were estimated based on available data at two time points; hence, the gene expression change is dependent upon the reaction rates and a linear function of the gene expressions. More data sets containing gene expression at various time slices are needed in order to improve the present model so that a non-linear variation of gene expression changes at different time can be predicted.
Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi
2018-06-01
Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.
van Wieringen, Wessel N; van de Wiel, Mark A
2011-05-01
Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.
Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.
Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin
2017-02-21
To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim
2014-10-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Jiang, Z; Gui, S; Zhang, Y
2011-05-01
Nonfunctioning pituitary adenomas (NFPAs) are relatively common, accounting for 30% of all pituitary adenomas; however, their pathogenesis remains enigmatic. To explore the possible pathogenesis of NFPAs, we used fiber-optic BeadArray to examine gene expression in 5 NFPAs compared with 3 normal pituitaries. 4 differentially expressed genes were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG). The array analysis indentified significant increases in the expression of 1,402 genes and 383 expressed sequence tags (ESTs), and decreases in 1,697 genes and 113 ESTs in the NFPAs. Bioinformatic and pathway analysis showed that the genes HIGD1B, FAM5C, PMAIP1 and the pathway cell-cycle regulation may play an important role in tumorigenesis and progression of NFPAs. Our data suggest fiber-optic BeadArray combined with pathway analysis of differential gene expression profile appears to be a valid approach for investigating the pathogenesis of tumors. © Georg Thieme Verlag KG Stuttgart · New York.
Chen, Xian-Hua; Ma, Li; Hu, Yi-Xiang; Wang, Dan-Xian; Fang, Li; Li, Xue-Lai; Zhao, Jin-Chuan; Yu, Hai-Rong; Ying, Hua-Zhong; Yu, Chen-Huan
2016-01-01
Tris (2-ethylhexyl) trimellitate (TOTM) is commonly used as an alternative plasticizer for medical devices. But very little information was available on its biological effects. In this study, we investigated toxicity effects of TOTM on hepatic differential gene expression analyzed by using high-throughput sequencing analysis for over-represented functions and phenotypically anchored to complementary histopathologic, and biochemical data in the liver of mice. Among 1668 candidate genes, 694 genes were up-regulated and 974 genes were down-regulated after TOTM exposure. Using Gene Ontology analysis, TOTM affected three processes: the cell cycle, metabolic process and oxidative activity. Furthermore, 11 key genes involved in the above processes were validated by real time PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these genes were involved in the cell cycle pathway, lipid metabolism and oxidative process. It revealed the transcriptome gene expression response to TOTM exposure in mouse, and these data could contribute to provide a clearer understanding of the molecular mechanisms of TOTM-induced hepatotoxicity in human. Copyright © 2015 Elsevier B.V. All rights reserved.
Carbonetto, Peter; Stephens, Matthew
2013-01-01
Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study. PMID:24098138
Ghosh, Sujoy; Vivar, Juan; Nelson, Christopher P; Willenborg, Christina; Segrè, Ayellet V; Mäkinen, Ville-Petteri; Nikpay, Majid; Erdmann, Jeannette; Blankenberg, Stefan; O'Donnell, Christopher; März, Winfried; Laaksonen, Reijo; Stewart, Alexandre F R; Epstein, Stephen E; Shah, Svati H; Granger, Christopher B; Hazen, Stanley L; Kathiresan, Sekar; Reilly, Muredach P; Yang, Xia; Quertermous, Thomas; Samani, Nilesh J; Schunkert, Heribert; Assimes, Themistocles L; McPherson, Ruth
2015-07-01
Genome-wide association studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks. Using pathways (gene sets) from Reactome, we carried out a 2-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CAD genome-wide association study data sets (9889 cases/11 089 controls), nominally significant gene sets were tested for replication in a meta-analysis of 9 additional studies (15 502 cases/55 730 controls) from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication P<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix (ECM) integrity, innate immunity, axon guidance, and signaling by PDRF (platelet-derived growth factor), NOTCH, and the transforming growth factor-β/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (eg, semaphoring-regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared with random networks (P<0.001). Network centrality analysis (degree and betweenness) further identified genes (eg, NCAM1, FYN, FURIN, etc) likely to play critical roles in the maintenance and functioning of several of the replicated pathways. These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD. © 2015 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yongbaek; Thai-Vu Ton; De Angelo, Anthony B.
2006-07-15
This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo arrays, with over 20,000 target genes, were used to evaluate o-NT- and BCA-induced RPMs, when compared to a non-transformed mesothelial cell line (Fred-PE). Analysis using Ingenuity Pathway Analysis software revealed 169 cancer-related genes that were categorized into binding activity, growth and proliferation, cell cycle progression, apoptosis, and invasion and metastasis. The microarray data were validated by positive correlation with quantitative real-time RT-PCRmore » on 16 selected genes including igf1, tgfb3 and nov. Important carcinogenic pathways involved in RPM formation included insulin-like growth factor 1 (IGF-1), p38 MAPkinase, Wnt/{beta}-catenin and integrin signaling pathways. This study demonstrated that mesotheliomas in rats exposed to o-NT- and BCA were similar to mesotheliomas in humans, at least at the cellular and molecular level.« less
Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis.
Zhang, Zhi-guo; Niu, Xu-yan; Lu, Ai-ping; Xiao, Gary Guishan
2015-02-01
To re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin. Microarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis. A total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway. Genes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.
Text Mining in Cancer Gene and Pathway Prioritization
Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter
2014-01-01
Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes. PMID:25392685
Text mining in cancer gene and pathway prioritization.
Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter
2014-01-01
Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.
[Transcriptome analysis of Dunaliella viridis].
Zhu, Shuai-qi; Gong, Yi-fu; Hang, Yu-qing; Liu, Hao; Wang, He-yu
2015-08-01
In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis.
Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L
2017-01-01
Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.
Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong
2016-01-01
Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.
Pathway analysis of genome-wide association datasets of personality traits.
Kim, H-N; Kim, B-H; Cho, J; Ryu, S; Shin, H; Sung, J; Shin, C; Cho, N H; Sung, Y A; Choi, B-O; Kim, H-L
2015-04-01
Although several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Valenzuela-Muñoz, V; Gallardo-Escárate, C
2014-02-01
The Toll and IMD signaling pathways represent one of the first lines of innate immune defense in invertebrates like Drosophila. However, for crustaceans like Caligus rogercresseyi, there is very little genomic information and, consequently, understanding of immune mechanisms. Massive sequencing data obtained for three developmental stages of C. rogercresseyi were used to evaluate in silico the expression patterns and presence of SNPs variants in genes involved in the Toll and IMD pathways. Through RNA-seq analysis, which used 20 contigs corresponding to relevant genes of the Toll and IMD pathways, an overexpression of genes linked to the Toll pathway, such as toll3 and Dorsal, were observed in the copepod stage. For the chalimus and adult stages, overexpression of genes in both pathways, such as Akirin and Tollip and IAP and Toll9, respectively, were observed. On the other hand, PCA statistical analysis inferred that in the chalimus and adult stages, the immune response mechanism was more developed, as evidenced by a relation between these two stages and the genes of both pathways. Moreover, 136 SNPs were identified for 20 contigs in genes of the Toll and IMD pathways. This study provides transcriptomic information about the immune response mechanisms of Caligus, thus providing a foundation for the development of new control strategies through blocking the innate immune response. Copyright © 2013 Elsevier Ltd. All rights reserved.
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim
2014-01-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300
Microarray analysis reveals key genes and pathways in Tetralogy of Fallot
He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai
2017-01-01
The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF. PMID:28713939
Gene expression profiles in liver of mouse after chronic exposure to drinking water.
Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei
2009-10-01
cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.
Wang, Lingyan; Yu, Xiaoling; Wu, Chao; Zhu, Teng; Wang, Wenming; Zheng, Xiaofeng; Jin, Hongzhong
2018-06-05
Generalized pustular psoriasis (GPP) is a rare, episodic, potentially life-threatening inflammatory disease. However, the pathogenesis of GPP, and universally accepted therapies for treating it, remain undefined. To better understand the disease mechanism of GPP, we performed a transcriptome analysis to profile the gene expression of peripheral blood mononuclear cells (PBMCs) from patients enrolled at the time of diagnosis and receiving follow-up treatment for up to 6 months. RNA sequencing data revealed that gene expression in five GPP patients' PBMCs was profoundly altered following acitretin treatment. Differentially expressed gene (DEG) analysis suggested that genes related to psoriatic inflammation, including CXCL1, CXCL8 (IL-8), S100A8, S100A9, S100A12 and LCN2, were significantly downregulated in patients in remission from GPP. Functional enrichment and annotation analysis unveiled a cluster of DEGs significantly associated with the function of leukocytes, particularly neutrophils. Pathway analysis suggested that a variety of pro-inflammatory pathways were inhibited in patients in remission. This analysis not only reaffirmed known signaling pathways in GPP pathogenesis, but also implicated novel factors and pathways, such as cell cycle regulation pathways. Furthermore, regulator network analysis provided bioinformatics-based support for upstream molecules as potential therapeutic targets such as oncostatin M. This longitudinal analysis of blood transcriptomes provides the first evidence that dysregulated gene expression in peripheral blood may significantly contribute to psoriatic inflammation in GPP patients. Novel canonical pathways and biomarkers identified in the current research may provide insights to help understand GPP pathobiology and advance novel therapeutics.
Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice
NASA Astrophysics Data System (ADS)
Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun
2017-01-01
Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.
Lin, Huapeng; Zhang, Qian; Li, Xiaocheng; Wu, Yushen; Liu, Ye; Hu, Yingchun
2018-01-01
Abstract Hepatitis B virus-associated acute liver failure (HBV-ALF) is a rare but life-threatening syndrome that carried a high morbidity and mortality. Our study aimed to explore the possible molecular mechanisms of HBV-ALF by means of bioinformatics analysis. In this study, genes expression microarray datasets of HBV-ALF from Gene Expression Omnibus were collected, and then we identified differentially expressed genes (DEGs) by the limma package in R. After functional enrichment analysis, we constructed the protein–protein interaction (PPI) network by the Search Tool for the Retrieval of Interacting Genes online database and weighted genes coexpression network by the WGCNA package in R. Subsequently, we picked out the hub genes among the DEGs. A total of 423 DEGs with 198 upregulated genes and 225 downregulated genes were identified between HBV-ALF and normal samples. The upregulated genes were mainly enriched in immune response, and the downregulated genes were mainly enriched in complement and coagulation cascades. Orosomucoid 1 (ORM1), orosomucoid 2 (ORM2), plasminogen (PLG), and aldehyde oxidase 1 (AOX1) were picked out as the hub genes that with a high degree in both PPI network and weighted genes coexpression network. The weighted genes coexpression network analysis found out 3 of the 5 modules that upregulated genes enriched in were closely related to immune system. The downregulated genes enriched in only one module, and the genes in this module majorly enriched in the complement and coagulation cascades pathway. In conclusion, 4 genes (ORM1, ORM2, PLG, and AOX1) with immune response and the complement and coagulation cascades pathway may take part in the pathogenesis of HBV-ALF, and these candidate genes and pathways could be therapeutic targets for HBV-ALF. PMID:29384847
Dubovenko, Alexey; Nikolsky, Yuri; Rakhmatulin, Eugene; Nikolskaya, Tatiana
2017-01-01
Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive database of molecular interactions of different types, pathways, network models, and ten functional ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for the identification of over- and under-connected proteins in the dataset, and a biological network analysis module made up of network generation algorithms and filters. The suite also features Advanced Search, an application for combinatorial search of the database content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and translational and personalized medicine).
Fan, Wufeng; Zhou, Yuhan; Li, Hao
2017-01-01
In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM) based on pathway interaction network (PIN) which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA) was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs), and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate whether the PIN method was feasible or not, we compared the introduced method with standard network centrality measures. The pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one pathway set (9 dysregulated pathways) with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and DNA replication owned a higher number of pathway genes and DEGs. These dysregulated pathways work together to influence the progression of LM infection, and they will be available as biomarkers to diagnose LM infection.
Identification of pivotal genes and pathways for spinal cord injury via bioinformatics analysis
Zhu, Zonghao; Shen, Qiang; Zhu, Liang; Wei, Xiaokang
2017-01-01
The present study aimed to identify key genes and pathways associated with spinal cord injury (SCI) and subsequently investigate possible therapeutic targets for the condition. The array data of GSE20907 was downloaded from the Gene Expression Omnibus database and 24 gene chips, including 3-day, 4-day, 1-week, 2-week and 1-month post-SCI together with control propriospinal neurons, were used for the analysis. The raw data was normalized and then the differentially expressed genes (DEGs) in the (A) 2-week post-SCI group vs. control group, (B) 1-month post-SCI group vs. control group, (C) 1-month and 2-week post-SCI group vs. control group, and (D) all post-SCI groups vs. all control groups, were analyzed with a limma package. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for DEGs were performed. Cluster analysis was performed using ClusterOne plugins. All the DEGs identified were associated with immune and inflammatory responses. Signal transducer and activator of transcription 3 (STAT3), erb-B2 receptor tyrosine kinase 4 (ERBB4) and cytochrome B-245, α polypeptide (CYBA) were in the network diagrams of (A), (C) and (D), respectively. The enrichment analysis of DEGs identified in all samples demonstrated that the DEGs were also enriched in the chemokine signaling pathway (enriched in STAT3) and the high-affinity immunoglobulin E receptor (FcεRI) signaling pathway [enriched in proto-oncogene, src family tyrosine kinase (LYN)]. Immune and inflammatory responses serve significant roles in SCI. STAT3, ERBB4 and CYBA may be key genes associated with SCI at certain stages. Furthermore, STAT3 and LYN may be involved in the development of SCI via the chemokine and FcεRI signaling pathways, respectively. PMID:28731189
Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie
2017-01-06
Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.
Sgadò, Paola; Provenzano, Giovanni; Dassi, Erik; Adami, Valentina; Zunino, Giulia; Genovesi, Sacha; Casarosa, Simona; Bozzi, Yuri
2013-12-19
Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.
Ling, JunJun; Yang, Shengyou; Huang, Yi; Wei, Dongfeng; Cheng, Weidong
2018-06-01
Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be critical for Mn neurotoxicity prevention and Mn-induced AD treatment.
Huang, Ruili; Wallqvist, Anders; Covell, David G
2006-03-01
We have analyzed the level of gene coregulation, using gene expression patterns measured across the National Cancer Institute's 60 tumor cell panels (NCI(60)), in the context of predefined pathways or functional categories annotated by KEGG (Kyoto Encyclopedia of Genes and Genomes), BioCarta, and GO (Gene Ontology). Statistical methods were used to evaluate the level of gene expression coherence (coordinated expression) by comparing intra- and interpathway gene-gene correlations. Our results show that gene expression in pathways, or groups of functionally related genes, has a significantly higher level of coherence than that of a randomly selected set of genes. Transcriptional-level gene regulation appears to be on a "need to be" basis, such that pathways comprising genes encoding closely interacting proteins and pathways responsible for vital cellular processes or processes that are related to growth or proliferation, specifically in cancer cells, such as those engaged in genetic information processing, cell cycle, energy metabolism, and nucleotide metabolism, tend to be more modular (lower degree of gene sharing) and to have genes significantly more coherently expressed than most signaling and regular metabolic pathways. Hierarchical clustering of pathways based on their differential gene expression in the NCI(60) further revealed interesting interpathway communications or interactions indicative of a higher level of pathway regulation. The knowledge of the nature of gene expression regulation and biological pathways can be applied to understanding the mechanism by which small drug molecules interfere with biological systems.
Zhang, Jing; Blessing, Danso; Wu, Chenyu; Liu, Na; Li, Juan; Qin, Sheng
2017-01-01
Wings of Bombyx mori (B. mori) develop from the primordium, and different B. mori strains have different wing types. In order to identify the key factors influencing B. mori wing development, we chose strains P50 and U11, which are typical for normal wing and minute wing phenotypes, respectively. We dissected the wing disc on the 1st-day of wandering stage (P50D1 and U11D1), 2nd-day of wandering stage (P50D2 and U11D2), and 3rd-day of wandering stage (P50D3 and U11D3). Subsequently, RNA-sequencing (RNA-Seq) was performed on both strains in order to construct their gene expression profiles. P50 exhibited 628 genes differentially expressed to U11, 324 up-regulated genes, and 304 down-regulated genes. Five enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these differentially expressed genes (DEGs). KEGG enrichment analysis results showed that the DEGs were enriched in five pathways; of these, we identified three pathways related to the development of wings. The three pathways include amino sugar and nucleotide sugar metabolism pathway, proteasome signaling pathway, and the Hippo signaling pathway. The representative genes in the enrichment pathways were further verified by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNA-Seq and qRT-PCR results were largely consistent with each other. Our results also revealed that the significantly different genes obtained in our study might be involved in the development of the size of B. mori wings. In addition, several KEGG enriched pathways might be involved in the regulation of the pathways of wing formation. These results provide a basis for further research of wing development in B. mori. PMID:28617839
Iskandar, Christelle F; Cailliez-Grimal, Catherine; Rahman, Abdur; Rondags, Emmanuel; Remenant, Benoît; Zagorec, Monique; Leisner, Jorgen J; Borges, Frédéric; Revol-Junelles, Anne-Marie
2016-09-01
The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gilabert, Aude; Curran, David M; Harvey, Simon C; Wasmuth, James D
2016-06-27
Signalling pathways underlie development, behaviour and pathology. To understand patterns in the evolution of signalling pathways, we undertook a comprehensive investigation of the pathways that control the switch between growth and developmentally quiescent dauer in 24 species of nematodes spanning the phylum. Our analysis of 47 genes across these species indicates that the pathways and their interactions are not conserved throughout the Nematoda. For example, the TGF-β pathway was co-opted into dauer control relatively late in a lineage that led to the model species Caenorhabditis elegans. We show molecular adaptations described in C. elegans that are restricted to its genus or even just to the species. Similarly, our analyses both identify species where particular genes have been lost and situations where apparently incorrect orthologues have been identified. Our analysis also highlights the difficulties of working with genome sequences from non-model species as reliance on the published gene models would have significantly restricted our understanding of how signalling pathways evolve. Our approach therefore offers a robust standard operating procedure for genomic comparisons.
Yang, Hong; Zhang, Xin; Cai, Xiao-Yong; Wen, Dong-Yue; Ye, Zhi-Hua; Liang, Liang; Zhang, Lu; Wang, Han-Lin; Chen, Gang; Feng, Zhen-Bo
2017-01-01
Liver hepatocellular carcinoma accounts for the overwhelming majority of primary liver cancers and its belated diagnosis and poor prognosis call for novel biomarkers to be discovered, which, in the era of big data, innovative bioinformatics and computational techniques can prove to be highly helpful in. Big data aggregated from The Cancer Genome Atlas and Natural Language Processing were integrated to generate differentially expressed genes. Relevant signaling pathways of differentially expressed genes went through Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes and Panther pathway enrichment analysis and protein-protein interaction network. The pathway ranked high in the enrichment analysis was further investigated, and selected genes with top priority were evaluated and assessed in terms of their diagnostic and prognostic values. A list of 389 genes was generated by overlapping genes from The Cancer Genome Atlas and Natural Language Processing. Three pathways demonstrated top priorities, and the one with specific associations with cancers, 'pathways in cancer,' was analyzed with its four highlighted genes, namely, BIRC5, E2F1, CCNE1, and CDKN2A, which were validated using Oncomine. The detection pool composed of the four genes presented satisfactory diagnostic power with an outstanding integrated AUC of 0.990 (95% CI [0.982-0.998], P < 0.001, sensitivity: 96.0%, specificity: 96.5%). BIRC5 ( P = 0.021) and CCNE1 ( P = 0.027) were associated with poor prognosis, while CDKN2A ( P = 0.066) and E2F1 ( P = 0.088) demonstrated no statistically significant differences. The study illustrates liver hepatocellular carcinoma gene signatures, related pathways and networks from the perspective of big data, featuring the cancer-specific pathway with priority, 'pathways in cancer.' The detection pool of the four highlighted genes, namely BIRC5, E2F1, CCNE1 and CDKN2A, should be further investigated given its high evidence level of diagnosis, whereas the prognostic powers of BIRC5 and CCNE1 are equally attractive and worthy of attention.
Cannistraci, Carlo V; Ogorevc, Jernej; Zorc, Minja; Ravasi, Timothy; Dovc, Peter; Kunej, Tanja
2013-02-14
Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The collected data will further facilitate development of novel genetic markers and could be of interest for functional studies in animals and human. The proposed network-based systems biology approach elucidates molecular mechanisms underlying co-presence of cryptorchidism and cardiomyopathy in RASopathies. Such approach could also aid in molecular explanation of co-presence of diverse and apparently unrelated clinical manifestations in other syndromes.
Suresh, Rahul; Li, Xing; Chiriac, Anca; Goel, Kashish; Terzic, Andre; Perez-Terzic, Carmen; Nelson, Timothy J
2014-09-01
Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for high-risk cardiovascular diseases. However, the feasibility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Whole-genome expression microarray on blood samples from normal cardiac function controls (n=21) and first-time AMI patients (n=31) within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways. To determine molecular signatures at the time of AMI associated with long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially-expressed genes. Bioinformatic analysis of this differential gene-set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of genes involved in the developmental epithelial-to-mesenchymal transition pathway, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. Differentially regulated genes and modulated pathways were identified that were associated with recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients and warrants further study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hu, Wei Qi; Wang, Wei; Fang, Di Long; Yin, Xue Feng
2018-05-24
BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.
Pathway Analysis in Attention Deficit Hyperactivity Disorder: An Ensemble Approach
Mooney, Michael A.; McWeeney, Shannon K.; Faraone, Stephen V.; Hinney, Anke; Hebebrand, Johannes; Nigg, Joel T.; Wilmot, Beth
2016-01-01
Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. PMID:27004716
Serial analysis of gene expression in a rat lung model of asthma.
Yin, Lei-Miao; Jiang, Gong-Hao; Wang, Yu; Wang, Yan; Liu, Yan-Yan; Jin, Wei-Rong; Zhang, Zen; Xu, Yu-Dong; Yang, Yong-Qing
2008-11-01
The pathogenesis and molecular mechanism underlying asthma remain undetermined. The purpose of this study was to identify genes and pathways involved in the early airway response (EAR) phase of asthma by using serial analysis of gene expression (SAGE). Two SAGE tag libraries of lung tissues derived from a rat model of asthma and controls were generated. Bioinformatic analyses were carried out using the Database for Annotation, Visualization and IntegratedDiscovery Functional Annotation Tool, Gene Ontology (GO) TreeMachine and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A total of 26 552 SAGE tags of asthmatic rat lung were obtained, of which 12 221 were unique tags. Of the unique tags, 55.5% were matched with known genes. By comparison of the two libraries, 186 differentially expressed tags (P < 0.05) were identified, of which 103 were upregulated and 83 were downregulated. Using the bioinformatic tools these genes were classified into 23 functional groups, 15 KEGG pathways and 37 enriched GO categories. The bioinformatic analyses of gene distribution, enriched categories and the involvement of specific pathways in the SAGE libraries have provided information on regulatory networks of the EAR phase of asthma. Analyses of the regulated genes of interest may inform new hypotheses, increase our understanding of the disease and provide a foundation for future research.
Gene expression analysis of colorectal cancer by bioinformatics strategy.
Cui, Meng; Yuan, Junhua; Li, Jun; Sun, Bing; Li, Tao; Li, Yuantao; Wu, Guoliang
2014-10-01
We used bioinformatics technology to analyze gene expression profiles involved in colorectal cancer tissue samples and healthy controls. In this paper, we downloaded the gene expression profile GSE4107 from Gene Expression Omnibus (GEO) database, in which a total of 22 chips were available, including normal colonic mucosa tissue from normal healthy donors (n=10), colorectal cancer tissue samples from colorectal patients (n=33). To further understand the biological functions of the screened DGEs, the KEGG pathway enrichment analysis were conducted. Then we built a transcriptome network to study differentially co-expressed links. A total of 3151 DEGs of CRC were selected. Besides, total 164 DCGs (Differentially Coexpressed Gene, DCG) and 29279 DCLs (Differentially Co-expressed Link, DCL) were obtained. Furthermore, the significantly enriched KEGG pathways were Endocytosis, Calcium signaling pathway, Vascular smooth muscle contraction, Linoleic acid metabolism, Arginine and proline metabolism, Inositol phosphate metabolism and MAPK signaling pathway. Our results show that the generation of CRC involves multiple genes, TFs and pathways. Several signal and immune pathways are linked to CRC and give us more clues in the process of CRC. Hence, our work would pave ways for novel diagnosis of CRC, and provided theoretical guidance into cancer therapy.
Chen, Xiao-Min; Feng, Ming-Jun; Shen, Cai-Jie; He, Bin; Du, Xian-Feng; Yu, Yi-Bo; Liu, Jing; Chu, Hui-Min
2017-07-01
The present study was designed to develop a novel method for identifying significant pathways associated with human hypertrophic cardiomyopathy (HCM), based on gene co‑expression analysis. The microarray dataset associated with HCM (E‑GEOD‑36961) was obtained from the European Molecular Biology Laboratory‑European Bioinformatics Institute database. Informative pathways were selected based on the Reactome pathway database and screening treatments. An empirical Bayes method was utilized to construct co‑expression networks for informative pathways, and a weight value was assigned to each pathway. Differential pathways were extracted based on weight threshold, which was calculated using a random model. In order to assess whether the co‑expression method was feasible, it was compared with traditional pathway enrichment analysis of differentially expressed genes, which were identified using the significance analysis of microarrays package. A total of 1,074 informative pathways were screened out for subsequent investigations and their weight values were also obtained. According to the threshold of weight value of 0.01057, 447 differential pathways, including folding of actin by chaperonin containing T‑complex protein 1 (CCT)/T‑complex protein 1 ring complex (TRiC), purine ribonucleoside monophosphate biosynthesis and ubiquinol biosynthesis, were obtained. Compared with traditional pathway enrichment analysis, the number of pathways obtained from the co‑expression approach was increased. The results of the present study demonstrated that this method may be useful to predict marker pathways for HCM. The pathways of folding of actin by CCT/TRiC and purine ribonucleoside monophosphate biosynthesis may provide evidence of the underlying molecular mechanisms of HCM, and offer novel therapeutic directions for HCM.
The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.
2012-01-01
Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The carotenoid metabolic pathway is well characterised, and the genes and enzymes have been studied in a number of plants. The study of the 42 carotenoid pathway genes of grapevine showed that they share a high degree of similarity with other eudicots. Expression and pigment profiling of developing berries provided insights into the most complete grapevine carotenoid pathway representation. This study represents an important reference study for further characterisation of carotenoid biosynthesis and catabolism in grapevine. PMID:22702718
Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher
2014-01-01
Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulou, Myrto, E-mail: myrto.dimopoulou@wur.nl
Differential gene expression analysis in the rat whole embryo culture (WEC) assay provides mechanistic insight into the embryotoxicity of test compounds. In our study, we hypothesized that comparative analysis of the transcriptomes of rat embryos exposed to six azoles (flusilazole, triadimefon, ketoconazole, miconazole, difenoconazole and prothioconazole) could lead to a better mechanism-based understanding of their embryotoxicity and pharmacological action. For evaluating embryotoxicity, we applied the total morphological scoring system (TMS) in embryos exposed for 48 h. The compounds tested showed embryotoxicity in a dose-response fashion. Functional analysis of differential gene expression after 4 h exposure at the ID{sub 10} (effectivemore » dose for 10% decreased TMS), revealed the sterol biosynthesis pathway and embryonic development genes, dominated by genes in the retinoic acid (RA) pathway, albeit in a differential way. Flusilazole, ketoconazole and triadimefon were the most potent compounds affecting the RA pathway, while in terms of regulation of sterol function, difenoconazole and ketoconazole showed the most pronounced effects. Dose-dependent analysis of the effects of flusilazole revealed that the RA pathway related genes were already differentially expressed at low dose levels while the sterol pathway showed strong regulation at higher embryotoxic doses, suggesting that this pathway is less predictive for the observed embryotoxicity. A similar analysis at the 24-hour time point indicated an additional time-dependent difference in the aforementioned pathways regulated by flusilazole. In summary, the rat WEC assay in combination with transcriptomics could add a mechanistic insight into the embryotoxic potency ranking and pharmacological mode of action of the tested compounds. - Highlights: • Embryonic exposure to azoles revealed concentration-dependent malformations. • Transcriptomics could enhance the mechanistic knowledge of embryotoxicants. • Retinoic acid gene set identifies early embryotoxic responses to azoles. • Toxic versus pharmacologic potency determines functional efficacy.« less
Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla
2016-08-02
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.
Muthusamy, Senthilkumar K; Lenka, Sangram K; Katiyar, Amit; Chinnusamy, Viswanathan; Singh, Ashok K; Bansal, Kailash C
2018-06-19
Photosynthetic fixation of CO 2 is more efficient in C 4 than in C 3 plants. Rice is a C 3 plant and a potential target for genetic engineering of the C 4 pathway. It is known that genes encoding C 4 enzymes are present in C 3 plants. However, no systematic analysis has been conducted to determine if these C 4 gene family members are expressed in diverse rice genotypes. In this study, we identified 15 genes belonging to the five C 4 gene families in rice genome through BLAST search using known maize C 4 photosynthetic pathway genes. Phylogenetic relationship of rice C 4 photosynthetic pathway genes and their isoforms with other grass genomes (Brachypodium, maize, Sorghum and Setaria), showed that these genes were highly conserved across grass genomes. Spatiotemporal, hormone, and abiotic stress specific expression pattern of the identified genes revealed constitutive as well as inductive responses of the C 4 photosynthetic pathway in different tissues and developmental stages of rice. Expression levels of C 4 specific gene family members in flag leaf during tillering stage were quantitatively analyzed in five rice genotypes covering three species, viz. Oryza sativa, ssp. japonica (cv. Nipponbare), Oryza sativa, ssp. indica (cv IR64, Swarna), and two wild species Oryza barthii and Oryza australiensis. The results showed that all the identified genes expressed in rice and exhibited differential expression pattern during different growth stages, and in response to biotic and abiotic stress conditions and hormone treatments. Our study concludes that C 4 photosynthetic pathway genes present in rice play a crucial role in stress regulation and might act as targets for C 4 pathway engineering via CRISPR-mediated breeding.
Dai, Hongying; Wu, Guodong; Wu, Michael; Zhi, Degui
2016-01-01
Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker-single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Formula: see text], compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Formula: see text]). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.
Han, Yike; Wang, Xianyun; Zhao, Fengyue; Gao, Shang; Wei, Aimin; Chen, Zhengwu; Liu, Nan; Zhang, Zhenxian; Du, Shengli
2018-05-01
Cucumber ( Cucumis sativus L. ) pollen development involves a diverse range of gene interactions between sporophytic and gametophytic tissues. Previous studies in our laboratory showed that male sterility was controlled by a single recessive nuclear gene, and occurred in pollen mother cell meiophase. To fully explore the global gene expression and identify genes related to male sterility, a RNA-seq analysis was adopted in this study. Young male flower-buds (1-2 mm in length) from genetic male sterility (GMS) mutant and homozygous fertile cucumber (WT) were collected for two sequencing libraries. Total 545 differentially expressed genes (DEGs), including 142 up-regulated DEGs and 403 down-regulated DEGs, were detected in two libraries (Fold Change ≥ 2, FDR < 0.01). These genes were involved in a variety of metabolic pathways, like ethylene-activated signaling pathway, sporopollenin biosynthetic pathway, cell cycle and DNA damage repair pathway. qRT-PCR analysis was performed and showed that the correlation between RNA-Seq and qRT-PCR was 0.876. These findings contribute to a better understanding of the mechanism that leads to GMS in cucumber.
Yue, Zongliang; Zheng, Qi; Neylon, Michael T; Yoo, Minjae; Shin, Jimin; Zhao, Zhiying; Tan, Aik Choon
2018-01-01
Abstract Integrative Gene-set, Network and Pathway Analysis (GNPA) is a powerful data analysis approach developed to help interpret high-throughput omics data. In PAGER 1.0, we demonstrated that researchers can gain unbiased and reproducible biological insights with the introduction of PAGs (Pathways, Annotated-lists and Gene-signatures) as the basic data representation elements. In PAGER 2.0, we improve the utility of integrative GNPA by significantly expanding the coverage of PAGs and PAG-to-PAG relationships in the database, defining a new metric to quantify PAG data qualities, and developing new software features to simplify online integrative GNPA. Specifically, we included 84 282 PAGs spanning 24 different data sources that cover human diseases, published gene-expression signatures, drug–gene, miRNA–gene interactions, pathways and tissue-specific gene expressions. We introduced a new normalized Cohesion Coefficient (nCoCo) score to assess the biological relevance of genes inside a PAG, and RP-score to rank genes and assign gene-specific weights inside a PAG. The companion web interface contains numerous features to help users query and navigate the database content. The database content can be freely downloaded and is compatible with third-party Gene Set Enrichment Analysis tools. We expect PAGER 2.0 to become a major resource in integrative GNPA. PAGER 2.0 is available at http://discovery.informatics.uab.edu/PAGER/. PMID:29126216
Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.
Marquardt, S; Boss, P K; Hadfield, J; Dean, C
2006-01-01
A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical set of activities the autonomous promotion pathway comprises sub-pathways of genes with different biochemical functions that all share FLC as a target. One sub-pathway involves FCA and FY, which interact to regulate RNA processing of FLC. Several of the identified components (FY, FVE, and FLD) are homologous to yeast and mammalian proteins with rather generic roles in gene regulation. So why do mutations in these genes specifically show a late-flowering phenotype in Arabidopsis? One reason, found during the analysis of fy alleles, is that the mutant alleles identified in flowering screens can be hypomorphic, they still have partial function. A broader role for the autonomous promotion pathway is supported by a microarray analysis which has identified genes mis-regulated in fca mutants, and whose expression is also altered in fy mutants.
Reyes-Gibby, Cielito C; Yuan, Christine; Wang, Jian; Yeung, Sai-Ching J; Shete, Sanjay
2015-06-05
Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling. Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.
Ramanan, Vijay K; Kim, Sungeun; Holohan, Kelly; Shen, Li; Nho, Kwangsik; Risacher, Shannon L; Foroud, Tatiana M; Mukherjee, Shubhabrata; Crane, Paul K; Aisen, Paul S; Petersen, Ronald C; Weiner, Michael W; Saykin, Andrew J
2012-12-01
Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer's disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value < 0.05) against this composite memory score. Processes classically understood to be involved in memory consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions.
Hester, Susan D; Wolf, Douglas C; Nesnow, Stephen; Thai, Sheau-Fung
2006-01-01
Conazoles are a class of fungicides used as pharmaceutical and agricultural agents. In chronic bioassays in rats, triadimefon was hepatotoxic and induced follicular cell adenomas in the thyroid gland, whereas, propiconazole and myclobutanil were hepatotoxic but had no effect on the thyroid gland. These conazoles administered in the feed to male Wistar/Han rats were found to induce hepatomegaly, induce high levels of pentoxyresorufin-O-dealkylase, increase cell proliferation in the liver, increase serum cholesterol, decrease serum T3 and T4, and increase hepatic uridine diphosphoglucuronosyl transferase activity. The goal of the present study was to define pathways that explain the biologic outcomes. Male Wistar/Han rats (3 per group), were exposed to the 3 conazoles in the feed for 4, 30, or 90 days of treatment at tumorigenic and nontumorigenic doses. Hepatic gene expression was determined using high-density Affymetrix GeneChips (Rat 230_2). Differential gene expression was assessed at the probe level using Robust Multichip Average analysis. Principal component analysis by treatment and time showed within group sample similarity and that the treatment groups were distinct from each other. The number of altered genes varied by treatment, dose, and time. The greatest number of altered genes was induced by triadimefon and propiconazole after 90 days of treatment, while myclobutanil had minimal effects at that time point. Pathway level analyses revealed that after 90 days of treatment the most significant numbers of altered pathways were related to cell signaling, growth, and metabolism. Pathway level analysis for triadimefon and propiconazole resulted in 71 altered pathways common to both chemicals. These pathways controlled cholesterol metabolism, activation of nuclear receptors, and N-ras and K-ras signaling. There were 37 pathways uniquely changed by propiconazole, and triadimefon uniquely altered 34 pathways. Pathway level analysis of altered gene expression resulted in a more complete description of the associated toxicological effects that can distinguish triadimefon from propiconazole and myclobutanil.
Wei, Qingyi Wei
2012-01-01
Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene–environment interactions. To determine gene–asbestos interactions in lung cancer risk, we conducted genome-wide gene–environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10–6, which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10–5). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene–asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk. Abbreviations:CIconfidence intervalEenvironmentFDRfalse discovery rateGgeneGSEAgene-set-enrichment analysisGWASgenome-wide association studiesi-GSEAimproved gene-set-enrichment analysis approachORodds ratioSNPsingle nucleotide polymorphism PMID:22637743
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes
Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J. Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R. Scott; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M.; Fisher, William E.; Brunicardi, F. Charles; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M.
2012-01-01
Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M
2012-11-15
Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.
Pathway and network analysis of cancer genomes.
Creixell, Pau; Reimand, Jüri; Haider, Syed; Wu, Guanming; Shibata, Tatsuhiro; Vazquez, Miguel; Mustonen, Ville; Gonzalez-Perez, Abel; Pearson, John; Sander, Chris; Raphael, Benjamin J; Marks, Debora S; Ouellette, B F Francis; Valencia, Alfonso; Bader, Gary D; Boutros, Paul C; Stuart, Joshua M; Linding, Rune; Lopez-Bigas, Nuria; Stein, Lincoln D
2015-07-01
Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.
Vazquez-Martin, Alejandro; Anatskaya, Olga V.; Giuliani, Alessandro; Erenpreisa, Jekaterina; Huang, Sui; Salmina, Kristine; Inashkina, Inna; Huna, Anda; Nikolsky, Nikolai N.; Vinogradov, Alexander E.
2016-01-01
The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer. PMID:27655693
Wang, Ruoxin; Su, Chao; Wang, Xinting; Fu, Qiang; Gao, Xingjie; Zhang, Chunyan; Yang, Jie; Yang, Xi; Wei, Minxin
2018-01-01
Mammalian cardiomyocytes may permanently lose their ability to proliferate after birth. Therefore, studying the proliferation and growth arrest of cardiomyocytes during the postnatal period may enhance the current understanding regarding this molecular mechanism. The present study identified the differentially expressed genes in hearts obtained from 24 h‑old mice, which contain proliferative cardiomyocytes; 7‑day‑old mice, in which the cardiomyocytes are undergoing a proliferative burst; and 10‑week‑old mice, which contain growth‑arrested cardiomyocytes, using global gene expression analysis. Furthermore, myocardial proliferation and growth arrest were analyzed from numerous perspectives, including Gene Ontology annotation, cluster analysis, pathway enrichment and network construction. The results of a Gene Ontology analysis indicated that, with increasing age, enriched gene function was not only associated with cell cycle, cell division and mitosis, but was also associated with metabolic processes and protein synthesis. In the pathway analysis, 'cell cycle', proliferation pathways, such as the 'PI3K‑AKT signaling pathway', and 'metabolic pathways' were well represented. Notably, the cluster analysis revealed that bone morphogenetic protein (BMP)1, BMP10, cyclin E2, E2F transcription factor 1 and insulin like growth factor 1 exhibited increased expression in hearts obtained from 7‑day‑old mice. In addition, the signal transduction pathway associated with the cell cycle was identified. The present study primarily focused on genes with altered expression, including downregulated anaphase promoting complex subunit 1, cell division cycle (CDC20), cyclin dependent kinase 1, MYC proto-oncogene, bHLH transcription factor and CDC25C, and upregulated growth arrest and DNA damage inducible α in 10-week group, which may serve important roles in postnatal myocardial cell cycle arrest. In conclusion, these data may provide important information regarding myocardial proliferation and development.
Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi
2017-09-01
This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p < 0.001, OR: 0.25, 95% CI 0.16-0.38). Dominance analysis showed that the most important predictor for smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.
Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di
2015-01-01
Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.
Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A
2014-11-15
Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sofia, Valentina Maria; Da Sacco, Letizia; Surace, Cecilia; Tomaiuolo, Anna Cristina; Genovese, Silvia; Grotta, Simona; Gnazzo, Maria; Petrocchi, Stefano; Ciocca, Laura; Alghisi, Federico; Montemitro, Enza; Martemucci, Luigi; Elce, Ausilia; Lucidi, Vincenzina; Castaldo, Giuseppe; Angioni, Adriano
2016-05-26
Genetic features of Chronic Pancreatitis (CP) have been extensively investigated mainly testing genes associated to the trypsinogen activation pathway. However, different molecular pathways involving other genes may be implicated in CP pathogenesis. 80 patients with Idiopathic CP were investigated using Next Generation Sequencing approach with a panel of 70 genes related to six different pancreatic pathways: premature activation of trypsinogen; modifier genes of Cystic Fibrosis phenotype; pancreatic secretion and ion homeostasis; Calcium signalling and zymogen granules exocytosis; autophagy; autoimmune pancreatitis related genes. We detected mutations in 34 out of 70 genes examined; 64/80 patients (80.0%) were positive for mutations in one or more genes, 16/80 patients (20.0%) had no mutations. Mutations in CFTR were detected in 32/80 patients (40.0%) and 22 of them exhibited at least one mutation in genes of other pancreatic pathways. Of the remaining 48 patients, 13/80 (16.3%) had mutations in genes involved in premature activation of trypsinogen and 19/80 (23.8%) had mutations only in genes of the other pathways: 38/64 patients positive for mutations showed variants in two or more genes (59.3%). Our data, although to be extended with functional analysis of novel mutations, suggest a high rate of genetic heterogeneity in chronic pancreatitis and that trans-heterozygosity may predispose to the idiopathic CP phenotype.
Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.
Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu
2015-01-01
Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.
Yang, Hong; Lin, Shan; Cui, Jingru
2014-02-10
Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.
Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua
2015-05-01
Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the change in TIA accumulation does not correlate with expression of the associated genes. Our previous research found significant accumulation of vinblastine in response to high concentration of ethylene and Cu suggesting the involvement of posttranscriptional and posttranslational mechanisms in a spatial and temporal manner. In this study, meta-analysis reveals ERF and MPK form a positive feedback loop connecting two pathways actively involved in response of TIA pathway genes to ethylene and copper in C. roseus.
Plant Reactome: a resource for plant pathways and comparative analysis
Naithani, Sushma; Preece, Justin; D'Eustachio, Peter; Gupta, Parul; Amarasinghe, Vindhya; Dharmawardhana, Palitha D.; Wu, Guanming; Fabregat, Antonio; Elser, Justin L.; Weiser, Joel; Keays, Maria; Fuentes, Alfonso Munoz-Pomer; Petryszak, Robert; Stein, Lincoln D.; Ware, Doreen; Jaiswal, Pankaj
2017-01-01
Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX. PMID:27799469
Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott
2010-04-01
An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.
Liu, Xiaozhen; Jin, Gan; Qian, Jiacheng; Yang, Hongjian; Tang, Hongchao; Meng, Xuli; Li, Yongfeng
2018-04-23
This study aimed to screen sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer. In this study, Illumina digital gene expression sequencing technology was applied and differentially expressed genes (DEGs) between patients presenting pathological complete response (pCR) and non-pathological complete response (NpCR) were identified. Further, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed. The genes in significant enriched pathways were finally quantified by quantitative real-time PCR (qRT-PCR) to confirm that they were differentially expressed. Additionally, GSE23988 from Gene Expression Omnibus database was used as the validation dataset to confirm the DEGs. After removing the low-quality reads, 715 DEGs were finally detected. After mapping to KEGG pathways, 10 DEGs belonging to the ubiquitin proteasome pathway (HECTD3, PSMB10, UBD, UBE2C, and UBE2S) and cytokine-cytokine receptor interactions (CCL2, CCR1, CXCL10, CXCL11, and IL2RG) were selected for further analysis. These 10 genes were finally quantified by qRT-PCR to confirm that they were differentially expressed (the log 2 fold changes of selected genes were - 5.34, 7.81, 6.88, 5.74, 3.11, 19.58, 8.73, 8.88, 7.42, and 34.61 for HECTD3, PSMB10, UBD, UBE2C, UBE2S, CCL2, CCR1, CXCL10, CXCL11, and IL2RG, respectively). Moreover, 53 common genes were confirmed by the validation dataset, including downregulated UBE2C and UBE2S. Our results suggested that these 10 genes belonging to these two pathways might be useful as sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.
Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I
2003-12-16
Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.
Li, Chaoxing; Liu, Li; Dinu, Valentin
2018-01-01
Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes of HCC are HCC subtype-associated specifically. In conclusion, PoTRA is a new approach to explore and discover pathways involved in cancer. PoTRA can be used as a complement to other existing methods to broaden our understanding of the biological mechanisms behind cancer at the system-level.
Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis
Luo, Shouling; Cao, Nannan; Tang, Yao; Gu, Weirong
2017-01-01
Preeclampsia is a leading cause of perinatal maternal–foetal mortality and morbidity. The aim of this study is to identify the key microRNAs and genes in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE84260 and the gene expression profile of GSE73374 from the Gene Expression Omnibus database. Differentially expressed miRNAs and genes were identified and compared to miRNA-target information from MiRWalk 2.0, and a total of 65 differentially expressed miRNAs (DEMIs), including 32 up-regulated miRNAs and 33 down-regulated miRNAs, and 91 differentially expressed genes (DEGs), including 83 up-regulated genes and 8 down-regulated genes, were identified. The pathway enrichment analyses of the DEMIs showed that the up-regulated DEMIs were enriched in the Hippo signalling pathway and MAPK signalling pathway, and the down-regulated DEMIs were enriched in HTLV-I infection and miRNAs in cancers. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses of the DEGs were performed using Multifaceted Analysis Tool for Human Transcriptome. The up-regulated DEGs were enriched in biological processes (BPs), including the response to cAMP, response to hydrogen peroxide and cell-cell adhesion mediated by integrin; no enrichment of down-regulated DEGs was identified. KEGG analysis showed that the up-regulated DEGs were enriched in the Hippo signalling pathway and pathways in cancer. A PPI network of the DEGs was constructed by using Cytoscape software, and FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1, LDHA, MCL1, MET, and ZFP36 were identified as the hub genes. The current study illustrates a characteristic microRNA profile and gene profile in preeclampsia, which may contribute to the interpretation of the progression of preeclampsia and provide novel biomarkers and therapeutic targets for preeclampsia. PMID:28594854
Roy, Raktim; Shilpa, P Phani; Bagh, Sangram
2016-09-01
Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
GenePublisher: Automated analysis of DNA microarray data.
Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, Thomas; Friis, Carsten
2003-07-01
GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with a specification of the data. The server performs normalization, statistical analysis and visualization of the data. The results are run against databases of signal transduction pathways, metabolic pathways and promoter sequences in order to extract more information. The results of the entire analysis are summarized in report form and returned to the user.
NASA Astrophysics Data System (ADS)
Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram
2016-09-01
Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.
Possible pathways used to predict different stages of lung adenocarcinoma.
Chen, Xiaodong; Duan, Qiongyu; Xuan, Ying; Sun, Yunan; Wu, Rong
2017-04-01
We aimed to find some specific pathways that can be used to predict the stage of lung adenocarcinoma.RNA-Seq expression profile data and clinical data of lung adenocarcinoma (stage I [37], stage II 161], stage III [75], and stage IV [45]) were obtained from the TCGA dataset. The differentially expressed genes were merged, correlation coefficient matrix between genes was constructed with correlation analysis, and unsupervised clustering was carried out with hierarchical clustering method. The specific coexpression network in every stage was constructed with cytoscape software. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed with KOBAS database and Fisher exact test. Euclidean distance algorithm was used to calculate total deviation score. The diagnostic model was constructed with SVM algorithm.Eighteen specific genes were obtained by getting intersection of 4 group differentially expressed genes. Ten significantly enriched pathways were obtained. In the distribution map of 10 pathways score in different groups, degrees that sample groups deviated from the normal level were as follows: stage I < stage II < stage III < stage IV. The pathway score of 4 stages exhibited linear change in some pathways, and the score of 1 or 2 stages were significantly different from the rest stages in some pathways. There was significant difference between dead and alive for these pathways except thyroid hormone signaling pathway.Those 10 pathways are associated with the development of lung adenocarcinoma and may be able to predict different stages of it. Furthermore, these pathways except thyroid hormone signaling pathway may be able to predict the prognosis.
Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Cai, Yu-Dong
2017-01-01
Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.
Liu, Li; Dinu, Valentin
2018-01-01
Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes of HCC are HCC subtype-associated specifically. In conclusion, PoTRA is a new approach to explore and discover pathways involved in cancer. PoTRA can be used as a complement to other existing methods to broaden our understanding of the biological mechanisms behind cancer at the system-level. PMID:29666752
Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka
2017-09-05
Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic approach for ADPKD redressal. Copyright © 2017 Elsevier B.V. All rights reserved.
Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Fuchs, Charles S.; Gallinger, Steven; Gross, Myron; Hartge, Patricia; Hoover, Robert N.; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Mandelson, Margaret T.; Petersen, Gloria; Zheng, Wei; Agalliu, Ilir; Albanes, Demetrius; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Buring, Julie E.; Canzian, Federico; Chang, Kenneth; Chanock, Stephen J.; Cotterchio, Michelle; Gaziano, J.Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hoffman Bolton, Judith A.; Hunter, David J.; Hutchinson, Amy; Jacobs, Kevin B.; Jenab, Mazda; Khaw, Kay-Tee; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; McWilliams, Robert R.; Mendelsohn, Julie B.; Patel, Alpa V.; Rabe, Kari G.; Riboli, Elio; Shu, Xiao-Ou; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Visvanathan, Kala; Watters, Joanne; Yu, Herbert; Zeleniuch-Jacquotte, Anne; Stolzenberg-Solomon, Rachael Z.
2012-01-01
Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case–control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10−6, 1.6 × 10−5, 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10−5), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H. pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer. PMID:22523087
Chan, Kei Hang K; Huang, Yen-Tsung; Meng, Qingying; Wu, Chunyuan; Reiner, Alexander; Sobel, Eric M; Tinker, Lesley; Lusis, Aldons J; Yang, Xia; Liu, Simin
2014-12-01
Although cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D) share many common risk factors, potential molecular mechanisms that may also be shared for these 2 disorders remain unknown. Using an integrative pathway and network analysis, we performed genome-wide association studies in 8155 blacks, 3494 Hispanic American, and 3697 Caucasian American women who participated in the national Women's Health Initiative single-nucleotide polymorphism (SNP) Health Association Resource and the Genomics and Randomized Trials Network. Eight top pathways and gene networks related to cardiomyopathy, calcium signaling, axon guidance, cell adhesion, and extracellular matrix seemed to be commonly shared between CVD and T2D across all 3 ethnic groups. We also identified ethnicity-specific pathways, such as cell cycle (specific for Hispanic American and Caucasian American) and tight junction (CVD and combined CVD and T2D in Hispanic American). In network analysis of gene-gene or protein-protein interactions, we identified key drivers that included COL1A1, COL3A1, and ELN in the shared pathways for both CVD and T2D. These key driver genes were cross-validated in multiple mouse models of diabetes mellitus and atherosclerosis. Our integrative analysis of American women of 3 ethnicities identified multiple shared biological pathways and key regulatory genes for the development of CVD and T2D. These prospective findings also support the notion that ethnicity-specific susceptibility genes and process are involved in the pathogenesis of CVD and T2D. © 2014 American Heart Association, Inc.
Simpson, Julie E; Hosny, Ola; Wharton, Stephen B; Heath, Paul R; Holden, Hazel; Fernando, Malee S; Matthews, Fiona; Forster, Gill; O'Brien, John T; Barber, Robert; Kalaria, Raj N; Brayne, Carol; Shaw, Pamela J; Lewis, Claire E; Ince, Paul G
2009-02-01
White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.
Pathway-based variant enrichment analysis on the example of dilated cardiomyopathy.
Backes, Christina; Meder, Benjamin; Lai, Alan; Stoll, Monika; Rühle, Frank; Katus, Hugo A; Keller, Andreas
2016-01-01
Genome-wide association (GWA) studies have significantly contributed to the understanding of human genetic variation and its impact on clinical traits. Frequently only a limited number of highly significant associations were considered as biologically relevant. Increasingly, network analysis of affected genes is used to explore the potential role of the genetic background on disease mechanisms. Instead of first determining affected genes or calculating scores for genes and performing pathway analysis on the gene level, we integrated both steps and directly calculated enrichment on the genetic variant level. The respective approach has been tested on dilated cardiomyopathy (DCM) GWA data as showcase. To compute significance values, 5000 permutation tests were carried out and p values were adjusted for multiple testing. For 282 KEGG pathways, we computed variant enrichment scores and significance values. Of these, 65 were significant. Surprisingly, we discovered the "nucleotide excision repair" and "tuberculosis" pathways to be most significantly associated with DCM (p = 10(-9)). The latter pathway is driven by genes of the HLA-D antigen group, a finding that closely resembles previous discoveries made by expression quantitative trait locus analysis in the context of DCM-GWA. Next, we implemented a sub-network-based analysis, which searches for affected parts of KEGG, however, independent on the pre-defined pathways. Here, proteins of the contractile apparatus of cardiac cells as well as the FAS sub-network were found to be affected by common polymorphisms in DCM. In this work, we performed enrichment analysis directly on variants, leveraging the potential to discover biological information in thousands of published GWA studies. The applied approach is cutoff free and considers a ranked list of genetic variants as input.
Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.
Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei
2015-05-09
A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.
Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao
2015-01-01
Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.
Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.
Xiong, Fen; Du, Xinhua; Hu, Jianyan; Li, Tingting; Du, Shanshan; Wu, Qiang
2014-07-01
MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR evolution.
Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing
2016-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033
Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing
2016-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects.
Yang, Chun-Feng; Gou, Wei-Hui; Dai, Xin-Lun; Li, Yu-Mei
2018-06-01
Staphylococcus aureus (S. aureus) is a versatile pathogen found in many environments and can cause nosocomial infections in the community and hospitals. S. aureus infection is an increasingly serious threat to global public health that requires action across many government bodies, medical and health sectors, and scientific research institutions. In the present study, S. aureus N315 genes that have been shown in the literature to be pathogenic were extracted using a bibliometric method for functional enrichment analysis of pathways and operons to statistically discover novel pathogenic genes associated with S. aureus N315. A total of 383 pathogenic genes were mined from the literature using bibliometrics, and subsequently a few new pathogenic genes of S. aureus N315 were identified by functional enrichment analysis of pathways and operons. The discovery of these novel S. aureus N315 pathogenic genes is of great significance to treat S. aureus induced diseases and identify potential diagnostic markers, thus providing theoretical fundamentals for epidemiological prevention.
Use of a bovine genome chip to identify new biological pathways for beef quality in cattle.
Guifen, Liu; Xiaomu, Liu; Fachun, Wan; Xiuwen, Tan; Haijian, Cheng; Enliang, Song
2012-12-01
The accumulation of muscle is largely influenced by the genetic background of cattle. Muscle tissue was collected from the longissimus muscle of Lilu beef cattle at 12, 18, 24 and 30 months old. Using meat quality analysis, we found that the Lilu beef cattle have good production and slaughter performance, the performance meets the criterion of beef cattle. Microarray analysis was able to identify a total of 4,219 genes that are differentially expressed (P ≤ 0.01) between the two groups of cattle (12 vs 18; 18 vs 24; 24 vs 30). Bioinformatics analysis results suggested that most of the differentially expressed genes are involved in the metabolic pathways and neuroactive ligand-receptor interaction pathways. In the future study that aims to look for genes relating to growth and meat quality, we will focus on the genes that have been shown to have a significant variation between groups and are involved in the two pathways.
A System-Level Pathway-Phenotype Association Analysis Using Synthetic Feature Random Forest
Pan, Qinxin; Hu, Ting; Malley, James D.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.
2015-01-01
As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS) has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms (SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain the pathway-phenotype associations using SEN. The bladder cancer associated pathways we found are both consistent with existing biological knowledge and reveal novel and plausible hypotheses for future biological validations. PMID:24535726
Gene expression profiling in whole blood of patients with coronary artery disease
Taurino, Chiara; Miller, William H.; McBride, Martin W.; McClure, John D.; Khanin, Raya; Moreno, María U.; Dymott, Jane A.; Delles, Christian; Dominiczak, Anna F.
2010-01-01
Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease. PMID:20528768
Drug-Path: a database for drug-induced pathways
Zeng, Hui; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661
Drug-Path: a database for drug-induced pathways.
Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.
Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-06-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.
Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-01-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418
Construction and engineering of large biochemical pathways via DNA assembler
Shao, Zengyi; Zhao, Huimin
2015-01-01
Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442
Fang, H; Tong, W; Perkins, R; Shi, L; Hong, H; Cao, X; Xie, Q; Yim, SH; Ward, JM; Pitot, HC; Dragan, YP
2005-01-01
Background The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. Results In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. Conclusion The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation. PMID:16026603
2011-01-01
Background Sporadic amyotrophic lateral sclerosis (sALS) is a motor neuron disease with poorly understood etiology. Results of gene expression profiling studies of whole blood from ALS patients have not been validated and are difficult to relate to ALS pathogenesis because gene expression profiles depend on the relative abundance of the different cell types present in whole blood. We conducted microarray analyses using Agilent Human Whole Genome 4 × 44k Arrays on a more homogeneous cell population, namely purified peripheral blood lymphocytes (PBLs), from ALS patients and healthy controls to identify molecular signatures possibly relevant to ALS pathogenesis. Methods Differentially expressed genes were determined by LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses. The SAFE (Significance Analysis of Function and Expression) procedure was used to identify molecular pathway perturbations. Proteasome inhibition assays were conducted on cultured peripheral blood mononuclear cells (PBMCs) from ALS patients to confirm alteration of the Ubiquitin/Proteasome System (UPS). Results For the first time, using SAFE in a global gene ontology analysis (gene set size 5-100), we show significant perturbation of the KEGG (Kyoto Encyclopedia of Genes and Genomes) ALS pathway of motor neuron degeneration in PBLs from ALS patients. This was the only KEGG disease pathway significantly upregulated among 25, and contributing genes, including SOD1, represented 54% of the encoded proteins or protein complexes of the KEGG ALS pathway. Further SAFE analysis, including gene set sizes >100, showed that only neurodegenerative diseases (4 out of 34 disease pathways) including ALS were significantly upregulated. Changes in UBR2 expression correlated inversely with time since onset of disease and directly with ALSFRS-R, implying that UBR2 was increased early in the course of ALS. Cultured PBMCs from ALS patients accumulated more ubiquitinated proteins than PBMCs from healthy controls in a serum-dependent manner confirming changes in this pathway. Conclusions Our study indicates that PBLs from sALS patients are strong responders to systemic signals or local signals acquired by cell trafficking, representing changes in gene expression similar to those present in brain and spinal cord of sALS patients. PBLs may provide a useful means to study ALS pathogenesis. PMID:22027401
Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong
2017-12-15
Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear. The publicly available Gene Expression Omnibus (GEO) datasets of patients suffered from cirrhosis were extracted for integrated analysis. Differentially expressed miRNAs (DEMs) and genes (DEGs) were identified using GEO2R web tool. Putative target gene prediction of DEMs was carried out using the intersection of five major algorithms: DIANA-microT, TargetScan, miRanda, PICTAR5 and miRWalk. Functional miRNA-gene regulatory network (FMGRN) was constructed based on the computational target predictions at the sequence level and the inverse expression relationships between DEMs and DEGs. DAVID web server was selected to perform KEGG pathway enrichment analysis. Functional miRNA-gene regulatory module was generated based on the biological interpretation. Internal connections among genes in liver fibrosis-related module were determined using String database. MiRNA-gene regulatory modules related to liver fibrosis were experimentally verified in recombinant human TGFβ1 stimulated and specific miRNA inhibitor treated LX-2 cells. We totally identified 85 and 923 dysregulated miRNAs and genes in liver cirrhosis biopsy samples compared to their normal controls. All evident miRNA-gene pairs were identified and assembled into FMGRN which consisted of 990 regulations between 51 miRNAs and 275 genes, forming two big sub-networks that were defined as down-network and up-network, respectively. KEGG pathway enrichment analysis revealed that up-network was prominently involved in several KEGG pathways, in which "Focal adhesion", "PI3K-Akt signaling pathway" and "ECM-receptor interaction" were remarked significant (adjusted p<0.001). Genes enriched in these pathways coupled with their regulatory miRNAs formed a functional miRNA-gene regulatory module that contains 7 miRNAs, 22 genes and 42 miRNA-gene connections. Gene interaction analysis based on String database revealed that 8 out of 22 genes were highly clustered. Finally, we experimentally confirmed a functional regulatory module containing 5 miRNAs (miR-130b-3p, miR-148a-3p, miR-345-5p, miR-378a-3p, and miR-422a) and 6 genes (COL6A1, COL6A2, COL6A3, PIK3R3, COL1A1, CCND2) associated with liver fibrosis. Our integrated analysis of miRNA and gene expression profiles highlighted a functional miRNA-gene regulatory module associated with liver fibrosis, which, to some extent, may provide important clues to better understand the underlying pathogenesis of liver fibrosis. Copyright © 2017. Published by Elsevier B.V.
He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie
2018-04-01
The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the top three terms. Angiogenesis, the endothelial growth factor receptor signaling pathway and the fibroblast growth factor signaling pathway were identified as the most significant terms in the PANTHER pathway analysis. The present study confirmed that miR-124-3p acts as a tumor suppressor in HCC. miR-124-3p may target multiple genes, exerting its effect spatiotemporally, or in combination with a diverse range of processes in HCC. Functional characterization of miR-124-3p targets will offer novel insight into the molecular changes that occur in HCC progression.
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2014-01-01
Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate expression changes at a pathway level. Although many statistical and computational methods have been proposed for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed. Among different related data sets collected for the same or similar study purposes, it is important to identify pathways or gene sets with concordant enrichment. We categorize the underlying true states of differential expression into three representative categories: no change, positive change and negative change. Due to data noise, what we observe from experiments may not indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and calculate its related probability based on a three-component multivariate normal mixture model. The related false discovery rate can be calculated and used to rank different gene sets. We used three published lung cancer microarray gene expression data sets to illustrate our proposed method. One analysis based on the first two data sets was conducted to compare our result with a previous published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates. A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway collection showed that a majority of these pathways could be identified by our proposed method. This study illustrates that we can improve detection power and discovery consistency through a concordant integrative analysis of multiple large-scale two-sample gene expression data sets.
Yu, Yao; Tu, Kang; Zheng, Siyuan; Li, Yun; Ding, Guohui; Ping, Jie; Hao, Pei; Li, Yixue
2009-08-25
In the post-genomic era, the development of high-throughput gene expression detection technology provides huge amounts of experimental data, which challenges the traditional pipelines for data processing and analyzing in scientific researches. In our work, we integrated gene expression information from Gene Expression Omnibus (GEO), biomedical ontology from Medical Subject Headings (MeSH) and signaling pathway knowledge from sigPathway entries to develop a context mining tool for gene expression analysis - GEOGLE. GEOGLE offers a rapid and convenient way for searching relevant experimental datasets, pathways and biological terms according to multiple types of queries: including biomedical vocabularies, GDS IDs, gene IDs, pathway names and signature list. Moreover, GEOGLE summarizes the signature genes from a subset of GDSes and estimates the correlation between gene expression and the phenotypic distinction with an integrated p value. This approach performing global searching of expression data may expand the traditional way of collecting heterogeneous gene expression experiment data. GEOGLE is a novel tool that provides researchers a quantitative way to understand the correlation between gene expression and phenotypic distinction through meta-analysis of gene expression datasets from different experiments, as well as the biological meaning behind. The web site and user guide of GEOGLE are available at: http://omics.biosino.org:14000/kweb/workflow.jsp?id=00020.
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-07-14
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-01-01
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis. PMID:27411928
Truong, Anh Duc; Rengaraj, Deivendran; Hong, Yeojin; Hoang, Cong Thanh; Hong, Yeong Ho; Lillehoj, Hyun S
2017-05-01
The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate the expression of candidate JAK-STAT pathway genes and their regulators and interactors in the intestinal mucosal layer of two genetically disparate chicken lines [Marek's disease (MD)-resistant line 6.3 and MD-susceptible line 7.2] induced with necrotic enteritis (NE). Through RNA-sequencing, we investigated 116 JAK-STAT signaling pathway-related genes that were significant and differentially expressed between the intestinal mucosa of the two lines compared with respective uninfected controls. About 15 JAK-STAT pathway genes were further verified by qRT-PCR, and the results were in agreement with our sequencing data. All the identified 116 genes were annotated through Gene Ontology and mapped to the KEGG chicken JAK-STAT signaling pathway. To the best of our knowledge, this is the first study to represent the transcriptional analysis of a large number of candidate genes, regulators, and potential interactors in the JAK-STAT pathway of the two chicken lines induced with NE. Several key genes of the interactome, namely, STAT1/3/4, STAT5B, JAK1-3, TYK2, AKT1/3, SOCS1-5, PIAS1/2/4, PTPN6/11, and PIK3, were determined to be differentially expressed in the two lines. Moreover, we detected 68 known miRNAs variably targeting JAK-STAT pathway genes and differentially expressed in the two lines induced with NE. The RNA-sequencing and bioinformatics analyses in this study provided an abundance of data that will be useful for future studies on JAK-STAT pathways associated with the functions of two genetically disparate chicken lines induced with NE. Copyright © 2017 Elsevier B.V. All rights reserved.
Pathways Impacted by Genomic Alterations in Pulmonary Carcinoid Tumors.
Asiedu, Michael K; Thomas, Charles F; Dong, Jie; Schulte, Sandra C; Khadka, Prasidda; Sun, Zhifu; Kosari, Farhad; Jen, Jin; Molina, Julian; Vasmatzis, George; Kuang, Ray; Aubry, Marie Christine; Yang, Ping; Wigle, Dennis A
2018-04-01
Purpose: Pulmonary carcinoid tumors account for up to 5% of all lung malignancies in adults, comprise 30% of all carcinoid malignancies, and are defined histologically as typical carcinoid (TC) and atypical carcinoid (AC) tumors. The role of specific genomic alterations in the pathogenesis of pulmonary carcinoid tumors remains poorly understood. We sought to identify genomic alterations and pathways that are deregulated in these tumors to find novel therapeutic targets for pulmonary carcinoid tumors. Experimental Design: We performed integrated genomic analysis of carcinoid tumors comprising whole genome and exome sequencing, mRNA expression profiling and SNP genotyping of specimens from normal lung, TC and AC, and small cell lung carcinoma (SCLC) to fully represent the lung neuroendocrine tumor spectrum. Results: Analysis of sequencing data found recurrent mutations in cancer genes including ATP1A2, CNNM1, MACF1, RAB38, NF1, RAD51C, TAF1L, EPHB2, POLR3B , and AGFG1 The mutated genes are involved in biological processes including cellular metabolism, cell division cycle, cell death, apoptosis, and immune regulation. The top most significantly mutated genes were TMEM41B, DEFB127, WDYHV1, and TBPL1 Pathway analysis of significantly mutated and cancer driver genes implicated MAPK/ERK and amyloid beta precursor protein (APP) pathways whereas analysis of CNV and gene expression data suggested deregulation of the NF-κB and MAPK/ERK pathways. The mutation signature was predominantly C>T and T>C transitions with a minor contribution of T>G transversions. Conclusions: This study identified mutated genes affecting cancer relevant pathways and biological processes that could provide opportunities for developing targeted therapies for pulmonary carcinoid tumors. Clin Cancer Res; 24(7); 1691-704. ©2018 AACR . ©2018 American Association for Cancer Research.
Arakawa, Yusuke; Shimada, Mitsuo; Utsunomiya, Tohru; Imura, Satoru; Morine, Yuji; Ikemoto, Tetsuya; Mori, Hiroki; Kanamoto, Mami; Iwahashi, Shuichi; Saito, Yu; Takasu, Chie
2014-08-01
In general, the spleen is one of the abdominal organs connected by the portal system, and a splenectomy improves hepatic functions in the settings of partial hepatectomy (Hx) for portal hypertensive cases or living donor liver transplantation with excessive portal vein flow. Those precise mechanisms remain still unclear; therefore, we investigated the DNA expression profile in the spleen after 90% Hx in rats using complementary DNA microarray and pathway analysis. Messenger RNAs (mRNAs) were prepared from three rat spleens at each time point (0, 3, and 6 h after 90% Hx). Using the gene chip, mRNA was hybridized to Affymetrix GeneChip Rat Genome 230 2.0 Array (Affymetrix®) and pathway analysis was done with Ingenuity Pathway Analysis (IPA®). We determined the 3-h or 6-h/0-h ratio to assess the influence of Hx, and cut-off values were set at more than 2.0-fold or less than 1/2 (0.5)-fold. Chemokine activity-related genes including Cxcl1 (GRO1) and Cxcl2 (MIP-2) related pathway were upregulated in the spleen. Also, immediate early response genes including early growth response-1 (EGR1), FBJ murine osteosarcoma (FOS) and activating transcription factor 3 (ATF3) related pathway were upregulated in the spleen. We concluded that in the spleen the expression of numerous inflammatory-related genes would occur after 90% Hx. The spleen could take a harmful role and provide a negative impact during post Hx phase due to the induction of chemokine and transcription factors including GRO1 and EGR1. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.
Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C
2014-01-01
The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (<2.8 × 10(-5)), including the PTEN pathway (7.8 × 10(-7)), the gene set up-regulated under heat shock (3.6 × 10(-6)), the gene sets involved in the immune profile for rejection of kidney transplantation (9.2 × 10(-6)) and for transcriptional control of leukocytes (2.2 × 10(-5)), and the ganglioside biosynthesis pathway (2.7 × 10(-5)). In conclusion, we present a new method for pathway analyses of copy number data, and causal mechanisms of the five pathways require further study.
Wu, Jeff; Pappas, Apostolos; Mirmirani, Paradi; McCormick, Thomas S.; Cooper, Kevin D.; Schastnaya, Jane; Ozerov, Ivan V.; Aliper, Alexander; Zhavoronkov, Alex
2017-01-01
ABSTRACT Androgenetic alopecia is the most common form of hair loss. Minoxidil has been approved for the treatment of hair loss, however its mechanism of action is still not fully clarified. In this study, we aimed to elucidate the effects of 5% minoxidil topical foam on gene expression and activation of signaling pathways in vertex and frontal scalp of men with androgenetic alopecia. We identified regional variations in gene expression and perturbed signaling pathways using in silico Pathway Activation Network Decomposition Analysis (iPANDA) before and after treatment with minoxidil. Vertex and frontal scalp of patients showed a generally similar response to minoxidil. Both scalp regions showed upregulation of genes that encode keratin associated proteins and downregulation of ILK, Akt, and MAPK signaling pathways after minoxidil treatment. Our results provide new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia. PMID:28594262
Stamatas, Georgios N; Wu, Jeff; Pappas, Apostolos; Mirmirani, Paradi; McCormick, Thomas S; Cooper, Kevin D; Consolo, Mary; Schastnaya, Jane; Ozerov, Ivan V; Aliper, Alexander; Zhavoronkov, Alex
2017-01-01
Androgenetic alopecia is the most common form of hair loss. Minoxidil has been approved for the treatment of hair loss, however its mechanism of action is still not fully clarified. In this study, we aimed to elucidate the effects of 5% minoxidil topical foam on gene expression and activation of signaling pathways in vertex and frontal scalp of men with androgenetic alopecia. We identified regional variations in gene expression and perturbed signaling pathways using in silico Pathway Activation Network Decomposition Analysis (iPANDA) before and after treatment with minoxidil. Vertex and frontal scalp of patients showed a generally similar response to minoxidil. Both scalp regions showed upregulation of genes that encode keratin associated proteins and downregulation of ILK, Akt, and MAPK signaling pathways after minoxidil treatment. Our results provide new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia.
Uddin, Raihan; Singh, Shiva M.
2017-01-01
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in “learning and memory” related functions and pathways. Subsequent differential network analysis of this “learning and memory” module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning. PMID:29066959
Uddin, Raihan; Singh, Shiva M
2017-01-01
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning.
Nozue, Kazunari; Harmer, Stacey L.; Maloof, Julin N.
2011-01-01
Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway. PMID:21430186
Yang, Jinfeng; Wang, Nan; Chen, Deying; Yu, Jiong; Pan, Qiaoling; Wang, Dan; Liu, Jingqi; Shi, Xiaowei; Dong, Xiaotian; Cao, Hongcui; Li, Liang; Li, Lanjuan
2017-01-01
Green fluorescent protein (GFP) is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs). The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP + hPMSCs. A sensitive 13 C/ 12 C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.
Shih, Wei-Liang; Kao, Chung-Feng; Chuang, Li-Chung; Kuo, Po-Hsiu
2012-01-01
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators that are involved in the etiology of complex psychiatric traits. The present study aimed to incorporate miRNAs information into pathway analysis using a genome-wide association dataset to identify relevant biological pathways for bipolar disorder (BPD). We selected psychiatric- and neurological-associated miRNAs (N = 157) from PhenomiR database. The miRNA target genes (miTG) predictions were obtained from microRNA.org. Canonical pathways (N = 4,051) were downloaded from the Molecule Signature Database. We employed a novel weighting scheme for miTGs in pathway analysis using methods of gene set enrichment analysis and sum-statistic. Under four statistical scenarios, 38 significantly enriched pathways (P-value < 0.01 after multiple testing correction) were identified for the risk of developing BPD, including pathways of ion channels associated (e.g., gated channel activity, ion transmembrane transporter activity, and ion channel activity) and nervous related biological processes (e.g., nervous system development, cytoskeleton, and neuroactive ligand receptor interaction). Among them, 19 were identified only when the weighting scheme was applied. Many miRNA-targeted genes were functionally related to ion channels, collagen, and axonal growth and guidance that have been suggested to be associated with BPD previously. Some of these genes are linked to the regulation of miRNA machinery in the literature. Our findings provide support for the potential involvement of miRNAs in the psychopathology of BPD. Further investigations to elucidate the functions and mechanisms of identified candidate pathways are needed. PMID:23264780
2014-01-01
Background Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. Methods By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. Results The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. Conclusions We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST. PMID:24410935
Song, Kwang Hoon; Kim, Yun Hee; Kim, Bu-Yeo
2014-01-11
Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST.
Kwon, Deug-Nam; Chang, Byung-Soo; Kim, Jin-Hoi
2014-01-01
Background N-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases. Methodology/Principal Findings To identify differential gene expression profiles associated with the loss of Neu5Gc expression, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip, using the main tissues (lung, kidney, and heart) from control mice and CMP-Neu5Ac hydroxylase (Cmah) gene knock-out mice, respectively. Out of a total of 25,697 genes, 204, 162, and 147 genes were found to be significantly modulated in the lung, kidney, and heart tissues of the Cmah null mouse, respectively. In this study, we examined the gene expression profiles, using three commercial pathway analysis software packages: Ingenuity Pathways Analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Pathway Studio. The gene ontology analysis revealed that the top 6 biological processes of these genes included protein metabolism and modification, signal transduction, lipid, fatty acid, and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, immunity and defense, and carbohydrate metabolism. Gene interaction network analysis showed a common network that was common to the different tissues of the Cmah null mouse. However, the expression of most sialytransferase mRNAs of Hanganutziu-Deicher antigen, sialy-Tn antigen, Forssman antigen, and Tn antigen was significantly down-regulated in the liver tissue of Cmah null mice. Conclusions/Significance Mice bearing a human-like deletion of the Cmah gene serve as an important model for the study of abnormal pathogenesis and/or metabolism caused by the evolutionary loss of Neu5Gc synthesis in humans. PMID:25229777
Plant Reactome: a resource for plant pathways and comparative analysis.
Naithani, Sushma; Preece, Justin; D'Eustachio, Peter; Gupta, Parul; Amarasinghe, Vindhya; Dharmawardhana, Palitha D; Wu, Guanming; Fabregat, Antonio; Elser, Justin L; Weiser, Joel; Keays, Maria; Fuentes, Alfonso Munoz-Pomer; Petryszak, Robert; Stein, Lincoln D; Ware, Doreen; Jaiswal, Pankaj
2017-01-04
Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Tong, Luqing; Yi, Li; Liu, Peidong; Abeysekera, Iruni Roshanie; Hai, Long; Li, Tao; Tao, Zhennan; Ma, Haiwen; Xie, Yang; Huang, Yubao; Yu, Shengping; Li, Jiabo; Yuan, Feng; Yang, Xuejun
2018-07-01
Glioblastoma multiforme (GBM) is a fatal cancer with varying life expectancy, even for patients undergoing the same standard therapy. Identification of differentially expressed genes in GBM patients with different survival rates may benefit the development of effective therapeutic strategies. In the present study, key pathways and genes correlated with survival in GBM patients were screened with bioinformatic analysis. Included in the study were 136 eligible patients who had undertaken surgical resection of GBM followed by temozolomide (TMZ) chemoradiation and long-term therapy with TMZ. A total of 383 differentially expressed genes (DEGs) related to GBM survival were identified. Gene Ontology and pathway enrichment analysis as well as hub gene screening and module analysis were performed. As expected, angiogenesis and migration of GBM cells were closely correlated with a poor prognosis. Importantly, the results also indicated that cell dormancy was an essential contributor to the reduced survival of GBM patients. Given the lack of specific targeted genes and pathways known to be involved in tumour cell dormancy, we proposed enriched candidate genes related to the negative regulation of cell proliferation, signalling pathways regulating pluripotency of stem cells and neuroactive ligand-receptor interaction, and 3 hub genes (FTH1, GRM1 and DDIT3). Maintaining persistent cell dormancy or preventing tumour cells from entering dormancy during chemoradiation should be a promising therapeutic strategy.
Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia
2014-01-01
The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi–piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. PMID:24846630
New Statistics for Testing Differential Expression of Pathways from Microarray Data
NASA Astrophysics Data System (ADS)
Siu, Hoicheong; Dong, Hua; Jin, Li; Xiong, Momiao
Exploring biological meaning from microarray data is very important but remains a great challenge. Here, we developed three new statistics: linear combination test, quadratic test and de-correlation test to identify differentially expressed pathways from gene expression profile. We apply our statistics to two rheumatoid arthritis datasets. Notably, our results reveal three significant pathways and 275 genes in common in two datasets. The pathways we found are meaningful to uncover the disease mechanisms of rheumatoid arthritis, which implies that our statistics are a powerful tool in functional analysis of gene expression data.
Genetic variations and patient-reported quality of life among patients with lung cancer.
Sloan, Jeff A; de Andrade, Mariza; Decker, Paul; Wampfler, Jason; Oswold, Curtis; Clark, Matthew; Yang, Ping
2012-05-10
Recent evidence has suggested a relationship between the baseline quality of life (QOL) self-reported by patients with cancer and genetic disposition. We report an analysis exploring relationships among baseline QOL assessments and candidate genetic variations in a large cohort of patients with lung cancer. QOL data were provided by 1,299 patients with non-small-cell lung cancer observed at the Mayo Clinic between 1997 and 2007. Overall QOL and subdomains were assessed by either Lung Cancer Symptom Scale or Linear Analog Self Assessment measures; scores were transformed to a scale of 0 to 10, with higher scores representing better status. Baseline QOL scores assessed within 1 year of diagnosis were dichotomized as clinically deficient (CD) or not. A total of 470 single nucleotide polymorphisms (SNPs) in 56 genes of three biologic pathways were assessed for association with QOL measures. Logistic regression with training/validation samples was used to test the association of SNPs with CD QOL. Six SNPs on four genes were replicated using our split schemes. Three SNPs in the MGMT gene (adjusted analysis, rs3858300; unadjusted analysis, rs10741191 and rs3852507) from DNA repair pathway were associated with overall QOL. Two SNPs (rs2287396 [GSTZ1] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with fatigue in unadjusted analysis. In adjusted analysis, two SNPs (rs2756109 [ABCC2] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with pain. We identified three SNPs in three glutathione metabolic pathway genes and three SNPs in two DNA repair pathway genes associated with QOL measures in patients with non-small-cell lung cancer.
Yi, Ming; Stephens, Robert M.
2008-01-01
Analysis of microarray and other high throughput data often involves identification of genes consistently up or down-regulated across samples as the first step in extraction of biological meaning. This gene-level paradigm can be limited as a result of valid sample fluctuations and biological complexities. In this report, we describe a novel method, SLEPR, which eliminates this limitation by relying on pathway-level consistencies. Our method first selects the sample-level differentiated genes from each individual sample, capturing genes missed by other analysis methods, ascertains the enrichment levels of associated pathways from each of those lists, and then ranks annotated pathways based on the consistency of enrichment levels of individual samples from both sample classes. As a proof of concept, we have used this method to analyze three public microarray datasets with a direct comparison with the GSEA method, one of the most popular pathway-level analysis methods in the field. We found that our method was able to reproduce the earlier observations with significant improvements in depth of coverage for validated or expected biological themes, but also produced additional insights that make biological sense. This new method extends existing analyses approaches and facilitates integration of different types of HTP data. PMID:18818771
Computational analysis of microRNA function in heart development.
Liu, Ganqiang; Ding, Min; Chen, Jiajia; Huang, Jinyan; Wang, Haiyun; Jing, Qing; Shen, Bairong
2010-09-01
Emerging evidence suggests that specific spatio-temporal microRNA (miRNA) expression is required for heart development. In recent years, hundreds of miRNAs have been discovered. In contrast, functional annotations are available only for a very small fraction of these regulatory molecules. In order to provide a global perspective for the biologists who study the relationship between differentially expressed miRNAs and heart development, we employed computational analysis to uncover the specific cellular processes and biological pathways targeted by miRNAs in mouse heart development. Here, we utilized Gene Ontology (GO) categories, KEGG Pathway, and GeneGo Pathway Maps as a gene functional annotation system for miRNA target enrichment analysis. The target genes of miRNAs were found to be enriched in functional categories and pathway maps in which miRNAs could play important roles during heart development. Meanwhile, we developed miRHrt (http://sysbio.suda.edu.cn/mirhrt/), a database aiming to provide a comprehensive resource of miRNA function in regulating heart development. These computational analysis results effectively illustrated the correlation of differentially expressed miRNAs with cellular functions and heart development. We hope that the identified novel heart development-associated pathways and the database presented here would facilitate further understanding of the roles and mechanisms of miRNAs in heart development.
Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu
2003-11-07
To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s).
Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu
2003-01-01
Background To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. Results We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. Conclusion PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s). PMID:14604444
Chen, Dafu; Guo, Rui; Xu, Xijian; Xiong, Cuiling; Liang, Qin; Zheng, Yanzhen; Luo, Qun; Zhang, Zhaonan; Huang, Zhijian; Kumar, Dhiraj; Xi, Weijun; Zou, Xuan; Liu, Min
2017-07-20
Honeybees are susceptible to a variety of diseases, including chalkbrood, which is capable of causing huge losses of both the number of bees and colony productivity. This research is designed to characterize the transcriptome profiles of Ascosphaera apis-treated and un-treated larval guts of Apis mellifera ligustica in an attempt to unravel the molecular mechanism underlying the immune responses of western honeybee larval guts to mycosis. In this study, 24, 296 and 2157 genes were observed to be differentially expressed in A. apis-treated Apis mellifera (4-, 5- and 6-day-old) compared with un-treated larval guts. Moreover, the expression patterns of differentially expressed genes (DEGs) were examined via trend analysis, and subsequently, gene ontology analysis and KEGG pathway enrichment analysis were conducted for DEGs involved in up- and down-regulated profiles. Immunity-related pathways were selected for further analysis, and our results demonstrated that a total of 13 and 50 DEGs were annotated in the humoral immune-related and cellular immune-related pathways, respectively. Additionally, we observed that many DEGs up-regulated in treated guts were part of cellular immune pathways, such as the lysosome, ubiquitin mediated proteolysis, and insect hormone biosynthesis pathways and were induced by A. apis invasion. However, more down-regulated DEGs were restrained. Surprisingly, a majority of DEGs within the Toll-like receptor signaling pathway, and the MAPK signaling pathway were up-regulated in treated guts, while all but two genes involved in the NF-κB signaling pathway were down-regulated, which suggested that most genes involved in humoral immune-related pathways were activated in response to the invasive fungal pathogen. This study's findings provide valuable information regarding the investigation of the molecular mechanism of immunity defenses of A. m. ligustica larval guts to infection with A. apis. Furthermore, these studies lay the groundwork for future researches on key genes controlling the susceptibility of A. m. ligustica larvae to chalkbrood. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma
Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong
2017-01-01
Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052
Dozmorov, Igor; Dominguez, Nicolas; Sestak, Andrea L.; Robertson, Julie M.; Harley, John B.; James, Judith A.; Guthridge, Joel M.
2013-01-01
Recent application of gene expression profiling to the immune system has shown a great potential for characterization of complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients. PMID:23977035
Lee, Won Jun; Kim, Sang Cheol; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Yu, Kyung-Sang; Lim, Johan; Kwon, Sung Won
2014-01-01
Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic carcinogens for health care and pharmaceutical industry safety. Additionally, investigating the difference between the mechanisms of genotoxic and non-genotoxic carcinogens could provide the foundation for a mechanism-based classification for unknown compounds. In this study, we investigated the gene expression of HepG2 cells treated with genotoxic or non-genotoxic carcinogens and compared their mechanisms of action. To enhance our understanding of the differences in the mechanisms of genotoxic and non-genotoxic carcinogens, we implemented a gene set analysis using 12 compounds for the training set (12, 24, 48 h) and validated significant gene sets using 22 compounds for the test set (24, 48 h). For a direct biological translation, we conducted a gene set analysis using Globaltest and selected significant gene sets. To validate the results, training and test compounds were predicted by the significant gene sets using a prediction analysis for microarrays (PAM). Finally, we obtained 6 gene sets, including sets enriched for genes involved in the adherens junction, bladder cancer, p53 signaling pathway, pathways in cancer, peroxisome and RNA degradation. Among the 6 gene sets, the bladder cancer and p53 signaling pathway sets were significant at 12, 24 and 48 h. We also found that the DDB2, RRM2B and GADD45A, genes related to the repair and damage prevention of DNA, were consistently up-regulated for genotoxic carcinogens. Our results suggest that a gene set analysis could provide a robust tool in the investigation of the different mechanisms of genotoxic and non-genotoxic carcinogens and construct a more detailed understanding of the perturbation of significant pathways.
Lee, Won Jun; Kim, Sang Cheol; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Yu, Kyung-Sang; Lim, Johan; Kwon, Sung Won
2014-01-01
Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic carcinogens for health care and pharmaceutical industry safety. Additionally, investigating the difference between the mechanisms of genotoxic and non-genotoxic carcinogens could provide the foundation for a mechanism-based classification for unknown compounds. In this study, we investigated the gene expression of HepG2 cells treated with genotoxic or non-genotoxic carcinogens and compared their mechanisms of action. To enhance our understanding of the differences in the mechanisms of genotoxic and non-genotoxic carcinogens, we implemented a gene set analysis using 12 compounds for the training set (12, 24, 48 h) and validated significant gene sets using 22 compounds for the test set (24, 48 h). For a direct biological translation, we conducted a gene set analysis using Globaltest and selected significant gene sets. To validate the results, training and test compounds were predicted by the significant gene sets using a prediction analysis for microarrays (PAM). Finally, we obtained 6 gene sets, including sets enriched for genes involved in the adherens junction, bladder cancer, p53 signaling pathway, pathways in cancer, peroxisome and RNA degradation. Among the 6 gene sets, the bladder cancer and p53 signaling pathway sets were significant at 12, 24 and 48 h. We also found that the DDB2, RRM2B and GADD45A, genes related to the repair and damage prevention of DNA, were consistently up-regulated for genotoxic carcinogens. Our results suggest that a gene set analysis could provide a robust tool in the investigation of the different mechanisms of genotoxic and non-genotoxic carcinogens and construct a more detailed understanding of the perturbation of significant pathways. PMID:24497971
Gao, Ji; Li, Hongyan; Liu, Lei; Song, Lide; Lv, Yanting; Han, Yuping
2017-12-01
The aim of the present study was to investigate risk-related microRNAs (miRs) for bladder urothelial carcinoma (BUC) prognosis. Clinical and microRNA expression data downloaded from the Cancer Genome Atlas were utilized for survival analysis. Risk factor estimation was performed using Cox's proportional regression analysis. A microRNA-regulated target gene network was constructed and presented using Cytoscape. In addition, the Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, followed by protein-protein interaction (PPI) network analysis. Finally, the K-clique method was applied to analyze sub-pathways. A total of 16 significant microRNAs, including hsa-miR-3622a and hsa-miR-29a, were identified (P<0.05). Following Cox's proportional regression analysis, hsa-miR-29a was screened as a prognostic marker of BUC risk (P=0.0449). A regulation network of hsa-miR-29a comprising 417 target genes was constructed. These target genes were primarily enriched in GO terms, including collagen fibril organization, extracellular matrix (ECM) organization and pathways, such as focal adhesion (P<0.05). A PPI network including 197 genes and 510 interactions, was constructed. The top 21 genes in the network module were enriched in GO terms, including collagen fibril organization and pathways, such as ECM receptor interaction (P<0.05). Finally, 4 sub-pathways of cysteine and methionine metabolism, including paths 00270_4, 00270_1, 00270_2 and 00270_5, were obtained (P<0.01) and identified to be enriched through DNA (cytosine-5)-methyltransferase ( DNMT)3A, DNMT3B , methionine adenosyltransferase 2α ( MAT2A ) and spermine synthase ( SMS ). The identified microRNAs, particularly hsa-miR-29a and its 4 associated target genes DNMT3A, DNMT3B, MAT2A and SMS , may participate in the prognostic risk mechanism of BUC.
Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping
2015-01-27
Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.
Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2017-01-25
With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.
Malhotra, Nikhil; Kumar, Varun; Sood, Hemant; Singh, Tiratha Raj; Chauhan, Rajinder Singh
2014-12-01
Aconitum heterophyllum Wall, popularly known as Atis or Patis, is an important medicinal herb of North-Western and Eastern Himalayas. No information exists on molecular aspects of aconites biosynthesis, including atisine- the major chemical constituent of A. heterophyllum. Atisine content ranged from 0.14% to 0.37% and total alkaloids (aconites) from 0.20% to 2.49% among 14 accessions of A. heterophyllum. Two accessions contained the highest atisine content with 0.30% and 0.37% as well as the highest alkaloids content with 2.22% and 2.49%, respectively. No atisine was detected in leaves and shoots of A. heterophyllum, thereby, suggesting that the biosynthesis and accumulation of aconite alkaloids occur mainly in roots. Quantitative expression analysis of 15 genes of MVA/MEP pathways in roots versus shoots, differing for atisine content (0-2.2 folds) showed 11-100 folds increase in transcript amounts of 4 genes of MVA pathway; HMGS, HMGR, PMK, IPPI, and 4 genes of MEP pathway; DXPS, ISPD, HDS, GDPS, respectively. The overall expression of 8 genes decreased to 5-12 folds after comparative expression analysis between roots of high (0.37%) versus low (0.14%) atisine content accessions, but their relative transcript amounts remained higher in high content accessions, thereby implying their role in atisine biosynthesis and accumulation. PCA analysis revealed a positive correlation between MVA/MEP pathways genes and alkaloids content. The current study provides first report wherein partial sequences of 15 genes of MVA/MEP pathways have been cloned and studied for their possible role in aconites biosynthesis. The outcome of study has potential applications in the genetic improvement of A. heterophyllum. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H
2011-10-04
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
2012-01-01
Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577
Identification of personalized dysregulated pathways in hepatocellular carcinoma.
Li, Hong; Jiang, Xiumei; Zhu, Shengjie; Sui, Lihong
2017-04-01
Hepatocellular carcinoma (HCC) is the most common liver malignancy, and ranks the fifth most prevalent malignant tumors worldwide. In general, HCC are detected until the disease is at an advanced stage and may miss the best chance for treatment. Thus, elucidating the molecular mechanisms is critical to clinical diagnosis and treatment for HCC. The purpose of this study was to identify dysregulated pathways of great potential functional relevance in the progression of HCC. Microarray data of 72 pairs of tumor and matched non-tumor surrounding tissues of HCC were transformed to gene expression data. Differentially expressed genes (DEG) between patients and normal controls were identified using Linear Models for Microarray Analysis. Personalized dysregulated pathways were identified using individualized pathway aberrance score module. 169 differentially expressed genes (DEG) were obtained with |logFC|≥1.5 and P≤0.01. 749 dysregulated pathways were obtained with P≤0.01 in pathway statistics, and there were 93 DEG overlapped in the dysregulated pathways. After performing normal distribution analysis, 302 pathways with the aberrance probability≥0.5 were identified. By ranking pathway with aberrance probability, the top 20 pathways were obtained. Only three DEGs (TUBA1C, TPR, CDC20) were involved in the top 20 pathways. These personalized dysregulated pathways and overlapped genes may give new insights into the underlying biological mechanisms in the progression of HCC. Particular attention can be focused on them for further research. Copyright © 2017 Elsevier GmbH. All rights reserved.
Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-01-01
Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus. PMID:28885552
Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-09-08
Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.
Rengaraj, Deivendran; Lee, Bo Ram; Jang, Hyun-Jun; Kim, Young Min; Han, Jae Yong
2013-01-01
Metabolism provides energy and nutrients required for the cellular growth, maintenance, and reproduction. When compared with genomics and proteomics, metabolism studies provide novel findings in terms of cellular functions. In this study, we examined significant and differentially expressed genes in primordial germ cells (PGCs), gonadal stromal cells, and chicken embryonic fibroblasts compared with blastoderms using microarray. All upregulated genes (1001, 1118, and 974, respectively) and downregulated genes (504, 627, and 1317, respectively) in three test samples were categorized into functional groups according to gene ontology. Then all selected genes were tested to examine their involvement in metabolic pathways through Kyoto Encyclopedia of Genes and Genomes pathway database using overrepresentation analysis. In our results, most of the upregulated and downregulated genes were involved in at least one subcategory of seven major metabolic pathways. The main objective of this study is to compare the PGC expressed genes and their metabolic pathways with blastoderms, gonadal stromal cells, and chicken embryonic fibroblasts. Among the genes involved in metabolic pathways, a higher number of PGC upregulated genes were identified in retinol metabolism, and a higher number of PGC downregulated genes were identified in sphingolipid metabolism. In terms of the fold change, acyl-CoA synthetase medium-chain family member 3 (ACSM3), which is involved in butanoate metabolism, and N-acetyltransferase, pineal gland isozyme NAT-10 (PNAT10), which is involved in energy metabolism, showed higher expression in PGCs. To validate these gene changes, the expression of 12 nucleotide metabolism-related genes in chicken PGCs was examined by real-time polymerase chain reaction. The results of this study provide new information on the expression of genes associated with metabolism function of PGCs and will facilitate more basic research on animal PGC differentiation and function. Copyright © 2013 Elsevier Inc. All rights reserved.
Inferring molecular interactions pathways from eQTL data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Imran; McDermott, Jason E.; Samudrala, Ram
Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype, gene expression levels, and phenotype. However, standard statistical genetics can only attribute changes in expression levels to loci on the genome, not specific genes. Each locus can contain many genes, making it very difficult to discover which gene is controlling the expression levels of other genes. Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for controlling the expression levels. Here we describe a series of techniques for finding explanatory pathways by exploring graphs of molecular interactions. We show several simple methodsmore » can find complete pathways the explain the mechanism of differential expression in eQTL data.« less
Enriched pathways for major depressive disorder identified from a genome-wide association study.
Kao, Chung-Feng; Jia, Peilin; Zhao, Zhongming; Kuo, Po-Hsiu
2012-11-01
Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.
Convergent evidence from systematic analysis of GWAS revealed genetic basis of esophageal cancer.
Gao, Xue-Xin; Gao, Lei; Wang, Jiu-Qiang; Qu, Su-Su; Qu, Yue; Sun, Hong-Lei; Liu, Si-Dang; Shang, Ying-Li
2016-07-12
Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were found to have significantly differential gene expression in esophageal tissues by eQTL analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were enriched into 38 significant GO terms and 17 significant KEGG pathways, which were significantly grouped into 9 sub-networks by pathway grouped network analysis. The 9 groups of interconnected pathways were mainly involved with muscle cell proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol oxidation, which might participate in the development of EC.Our findings provide genetic evidence and new insight for exploring the molecular mechanisms of EC.
Yang, Yujia; Fu, Qiang; Wang, Xiaozhu; Liu, Yang; Zeng, Qifan; Li, Yun; Gao, Sen; Bao, Lisui; Liu, Shikai; Gao, Dongya; Dunham, Rex; Liu, Zhanjiang
2018-05-25
Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment, and to reveal genes, their expression patterns and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish, under hypoxic condition as compared to untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway (nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway (itga6, g6pc, and cdkn1a), Ras signaling pathway (efna3 and ksr2), and signaling by VEGF (fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.
Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di
2015-01-01
Purpose: Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). Methods: In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. Results: The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. Conclusion: The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI. PMID:26823722
Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)).
Liu, Feng; Wang, Yu; Ding, Zhaotang; Zhao, Lei; Xiao, Jun; Wang, Linjun; Ding, Shibo
2017-10-05
Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Exercise-driven metabolic pathways in healthy cartilage.
Blazek, A D; Nam, J; Gupta, R; Pradhan, M; Perera, P; Weisleder, N L; Hewett, T E; Chaudhari, A M; Lee, B S; Leblebicioglu, B; Butterfield, T A; Agarwal, S
2016-07-01
Exercise is vital for maintaining cartilage integrity in healthy joints. Here we examined the exercise-driven transcriptional regulation of genes in healthy rat articular cartilage to dissect the metabolic pathways responsible for the potential benefits of exercise. Transcriptome-wide gene expression in the articular cartilage of healthy Sprague-Dawley female rats exercised daily (low intensity treadmill walking) for 2, 5, or 15 days was compared to that of non-exercised rats, using Affymetrix GeneChip arrays. Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO)-term enrichment and Functional Annotation analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genome (KEGG) pathway mapper was used to identify the metabolic pathways regulated by exercise. Microarray analysis revealed that exercise-induced 644 DEGs in healthy articular cartilage. The DAVID bioinformatics tool demonstrated high prevalence of functional annotation clusters with greater enrichment scores and GO-terms associated with extracellular matrix (ECM) biosynthesis/remodeling and inflammation/immune response. The KEGG database revealed that exercise regulates 147 metabolic pathways representing molecular interaction networks for Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organismal Systems, and Diseases. These pathways collectively supported the complex regulation of the beneficial effects of exercise on the cartilage. Overall, the findings highlight that exercise is a robust transcriptional regulator of a wide array of metabolic pathways in healthy cartilage. The major actions of exercise involve ECM biosynthesis/cartilage strengthening and attenuation of inflammatory pathways to provide prophylaxis against onset of arthritic diseases in healthy cartilage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You
Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less
Analyzing the differentially expressed genes and pathway cross-talk in aggressive breast cancer.
Chen, Wen-Yan; Wu, Fang; You, Zhen-Yu; Zhang, Zhan-Min; Guo, Yu-Ling; Zhong, Lu-Xing
2015-01-01
The aim of this study was to explore the genes and pathways involved in the aggressive breast cancer cells. The gene expression profiles of GSE40057, including four aggressive breast cell lines and six less aggressive cell lines, were downloaded from the Gene Expression Omnibus (GEO) database. The gene differential expression analysis was carried out with limma software with the method of Bayes for multiple tests. The gene ontology (GO) term enrichment and pathway cross-talk analysis were performed with the online tool of DAVID and Cytoscape software. A total of 401 differentially expressed genes (DEG), such as pentraxin 3 (PTX3), snail family zinc finger 2 (SNAI2), interleukin-8/6 (IL-8/6), osteonectin (SPARC), matrix metallopeptidase-1 (MMP-1) and Ras-related protein Rab-25 (Rab 25), were identified between aggressive and less aggressive cell lines. They were mainly enriched in the GO terms of response to wounding, negative regulation of cell proliferation and calcium binding. Pathways in cancer dysfunctionally interacted with glyoxylate and dicarboxylate metabolism (P < 0.0001), basal transcription factors (P < 0.0001), tyrosine metabolism (P < 0.0001), calcium signaling pathway (P = 0.0021), FcγR-mediated phagocytosis (P = 0.0022), metabolism of xenobiotics by cytochrome P450 (P = 0.0097) and phagosome (P = 0.0102). The screened aggressive cancer-associated DEG (PTX3, SNAI2, IL-8/6, SPARC, MMP-1 and Rab25) and significant pathways (calcium signaling pathway, tyrosine metabolism, alanine, aspartate and glutamate metabolism) give us new insights into the mechanism of aggressive breast cancer cells, and these DEG may become promising target genes in the treatment of metastatic breast cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
Martyniuk, Christopher J; Prucha, Melinda S; Doperalski, Nicholas J; Antczak, Philipp; Kroll, Kevin J; Falciani, Francesco; Barber, David S; Denslow, Nancy D
2013-01-01
Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.
Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts
Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W
2011-01-01
Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412
Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang
2014-02-10
Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.
Pathways Involved in Sasang Constitution from Genome-Wide Analysis in a Korean Population
Yu, Sung-Gon; Kim, Jong-Yeol; Song, Kwang Hoon
2012-01-01
Abstract Objective Sasang constitution (SC) medicine, a branch of Korean traditional medicine, classifies the individual into one of four constitutional types (Taeum, TE; Soeum, SE; Soyang, SY; and Taeyang, TY) based on physiologic characteristics. The authors of the current article recently reported individual genetic elements associated with SC types via genome-wide association (GWA) analysis. However, to understand the biologic mechanisms underlying constitution, a comprehensive approach that combines individual genetic effects was applied. Design Genotypes of 1222 subjects of defined constitution types were measured for 341,998 genetic loci across the entire genome. The biologic pathways associated with SC types were identified via GWA analysis using three different algorithms—namely, the Z-static method, a restandardized gene set assay, and a gene set enrichment assay. Results Distinct pathways were associated (p<0.05) with each constitution type. The TE type was significantly associated with cytoskeleton-related pathways. The SE type was significantly associated with cardio- and amino-acid metabolism–related pathways. The SY type was associated with enriched melanoma-related pathways. TY subjects were excluded because of the small size of that sample. Among these functionally related pathways, core-node genes regulating multiple pathways were identified. TJP1, PTK2, and SRC were selected as core-nodes for TE; RHOA, and MAOA/MAOB for SE; and GNAO1 for SY (p<0.05), respectively. Conclusions The current authors systematically identified the biologic pathways and core-node genes associated with SC types from the GWA study; this information should provide insights regarding the molecular mechanisms inherent in constitutional pathophysiology. PMID:22889377
Chon, Hye Sook; Marchion, Douglas C; Xiong, Yin; Chen, Ning; Bicaku, Elona; Stickles, Xiaomang Ba; Bou Zgheib, Nadim; Judson, Patricia L; Hakam, Ardeshir; Gonzalez-Bosquet, Jesus; Wenham, Robert M; Apte, Sachin M; Lancaster, Johnathan M
2012-01-01
To identify pathways that influence endometrial cancer (EC) cell sensitivity to cisplatin and to characterize the BCL2 antagonist of cell death (BAD) pathway as a therapeutic target to increase cisplatin sensitivity. Eight EC cell lines (Ishikawa, MFE296, RL 95-2, AN3CA, KLE, MFE280, MFE319, HEC-1-A) were subjected to Affymetrix Human U133A GeneChip expression analysis of approximately 22,000 probe sets. In parallel, endometrial cell line sensitivity to cisplatin was quantified by MTS assay, and IC(50) values were calculated. Pearson's correlation test was used to identify genes associated with response to cisplatin. Genes associated with cisplatin responsiveness were subjected to pathway analysis. The BAD pathway was identified and subjected to targeted modulation, and the effect on cisplatin sensitivity was evaluated. Pearson's correlation analysis identified 1443 genes associated with cisplatin resistance (P<0.05), which included representation of the BAD-apoptosis pathway. Small interfering RNA (siRNA) knockdown of BAD pathway protein phosphatase PP2C expression was associated with increased phosphorylated BAD (serine-155) levels and a parallel increase in cisplatin resistance in Ishikawa (P=0.004) and HEC-1-A (P=0.02) cell lines. In contrast, siRNA knockdown of protein kinase A expression increased cisplatin sensitivity in the Ishikawa (P=0.02) cell line. The BAD pathway influences EC cell sensitivity to cisplatin, likely via modulation of the phosphorylation status of the BAD protein. The BAD pathway represents an appealing therapeutic target to increase EC cell sensitivity to cisplatin. Copyright © 2011 Elsevier Inc. All rights reserved.
Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami
2018-05-29
Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.
Luo, Jun; Zhou, Linlin; Wang, Hongren; Qin, Zhen; Xiang, Li; Zhu, Jie; Huang, Xiaojun; Yang, Yuan; Li, Wanyi; Wang, Baoning; Li, Mingyuan
2017-12-22
Influenza A virus (IAV) and Streptococcus pneumoniae (SP) are two major upper respiratory tract pathogens that can also cause infection in polarized bronchial epithelial cells to exacerbate disease in coinfected individuals which may result in significant morbidity. However, the underlying molecular mechanism is poorly understood. Here, we employed BALB/c ByJ mice inflected with SP, IAV, IAV followed by SP (IAV+SP) and PBS (Control) as models to survey the global gene expression using digital gene expression (DGE) profiling. We attempt to gain insights into the underlying genetic basis of this synergy at the expression level. Gene expression profiles were obtain using the Illimina/Hisseq sequencing technique, and further analyzed by enrichment analysis of Gene Ontology (GO) and Pathway function. The hematoxylin-eosin (HE) staining revealed different tissue changes in groups during which IAV+SP group showed the most severe cell apoptosis. Compared with Control, a total of 2731, 3221 and 3946 differentially expressed genes (DEGs) were detected in SP, IAV and IAV+SP respectively. Besides, sixty-two GO terms were identified by Gene Ontology functional enrichment analysis, such as cell killing, biological regulation, response to stimulus, signaling, biological adhesion, enzyme regulator activity, receptor regulator activity and translation regulator activity. Pathway significant enrichment analysis indicated the dysregulation of multiple pathways, including apoptosis pathway. Among these, five selected genes were further verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). This study shows that infection with SP, IAV or IAV+SP induces apoptosis with different degrees which might provide insights into the molecular mechanisms to facilitate further research.
Tcof1-Related Molecular Networks in Treacher Collins Syndrome.
Dai, Jiewen; Si, Jiawen; Wang, Minjiao; Huang, Li; Fang, Bing; Shi, Jun; Wang, Xudong; Shen, Guofang
2016-09-01
Treacher Collins syndrome (TCS) is a rare, autosomal-dominant disorder characterized by craniofacial deformities, and is primarily caused by mutations in the Tcof1 gene. This article was aimed to perform a comprehensive literature review and systematic bioinformatic analysis of Tcof1-related molecular networks in TCS. First, the up- and down-regulated genes in Tcof1 heterozygous haploinsufficient mutant mice embryos and Tcof1 knockdown and Tcof1 over-expressed neuroblastoma N1E-115 cells were obtained from the Gene Expression Omnibus database. The GeneDecks database was used to calculate the 500 genes most closely related to Tcof1. Then, the relationships between 4 gene sets (a predicted set and sets comparing the wildtype with the 3 Gene Expression Omnibus datasets) were analyzed using the DAVID, GeneMANIA and STRING databases. The analysis results showed that the Tcof1-related genes were enriched in various biological processes, including cell proliferation, apoptosis, cell cycle, differentiation, and migration. They were also enriched in several signaling pathways, such as the ribosome, p53, cell cycle, and WNT signaling pathways. Additionally, these genes clearly had direct or indirect interactions with Tcof1 and between each other. Literature review and bioinformatic analysis finds imply that special attention should be given to these pathways, as they may offer target points for TCS therapies.
NFκB pathway analysis: An approach to analyze gene co-expression networks employing feedback cycles.
Dillenburg, Fabiane Cristine; Zanotto-Filho, Alfeu; Fonseca Moreira, José Cláudio; Ribeiro, Leila; Carro, Luigi
2018-02-01
The genes of the NFκB pathway are involved in the control of a plethora of biological processes ranking from inhibition of apoptosis to metastasis in cancer. It has been described that Gliobastoma multiforme (GBM) patients carry aberrant NFκB activation, but the molecular mechanisms are not completely understood. Here, we present a NFκB pathway analysis in tumor specimens of GBM compared to non-neoplasic brain tissues, based on the different kind of cycles found among genes of a gene co-expression network constructed using quantized data obtained from the microarrays. A cycle is a closed walk with all vertices distinct (except the first and last). Thanks to this way of finding relations among genes, a more robust interpretation of gene correlations is possible, because the cycles are associated with feedback mechanisms that are very common in biological networks. In GBM samples, we could conclude that the stoichiometric relationship between genes involved in NFκB pathway regulation is unbalanced. This can be measured and explained by the identification of a cycle. This conclusion helps to understand more about the biology of this type of tumor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A
2017-05-24
Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
Ling, Jing; Wu, Xiaoli; Fu, Ziyi; Tan, Jie; Xu, Qing
2015-10-01
Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956, FBLN2, C10orf35, HOXD12, CACNG7, and LOC100134279. Our study explored gene expression patterns after miR-197 overexpression and confirmed 17 dominantly dys-regulated genes, which could expand the insights into the function of miR-197 and the molecular mechanisms during the development and progression of uterine leiomyomas. This study might afford new clues for understanding the pathogenesis of uterine leiomyomas, and it could likely provide a unique method for diagnosing or predicting prognosis in the clinical treatment of leiomyoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Tian, Honglai; Guan, Donghui; Li, Jianmin
2018-06-01
Osteosarcoma (OS), the most common malignant bone tumor, accounts for the heavy healthy threat in the period of children and adolescents. OS occurrence usually correlates with early metastasis and high death rate. This study aimed to better understand the mechanism of OS metastasis.Based on Gene Expression Omnibus (GEO) database, we downloaded 4 expression profile data sets associated with OS metastasis, and selected differential expressed genes. Weighted gene co-expression network analysis (WGCNA) approach allowed us to investigate the most OS metastasis-correlated module. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to give annotation of selected OS metastasis-associated genes.We select 897 differential expressed genes from OS metastasis and OS non-metastasis groups. Based on these selected genes, WGCNA further explored 142 genes included in the most OS metastasis-correlated module. Gene Ontology functional and KEGG pathway enrichment analyses showed that significantly OS metastasis-associated genes were involved in pathway correlated with insulin-like growth factor binding.Our research figured out several potential molecules participating in metastasis process and factors acting as biomarker. With this study, we could better explore the mechanism of OS metastasis and further discover more therapy targets.
Global expression analysis of gene regulatory pathways during endocrine pancreatic development.
Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A
2004-01-01
To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.
Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong
2016-08-17
Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.
Amano, Ikuko; Kitajima, Sakihito; Suzuki, Hideyuki; Koeduka, Takao
2018-01-01
The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants. PMID:29902274
Soliman, Bangly; Salem, Ahmed; Ghazy, Mohamed; Abu-Shahba, Nourhan; El Hefnawi, Mahmoud
2018-05-01
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V; Buitelaar, Jan K; Arias-Vásquez, Alejandro
2013-11-01
Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Genetic association of impulsivity in young adults: a multivariate study
Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D
2014-01-01
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255
Pathway-Based Concentration Response Profiles from Toxicogenomics Data
Microarray analysis of gene expression of in vitro systems could be a powerful tool for assessing chemical hazard. Differentially expressed genes specific to cells, chemicals, and concentrations can be organized into molecular pathways that inform mode of action. An important par...
Bioinformatics approach reveals systematic mechanism underlying lung adenocarcinoma.
Wu, Xiya; Zhang, Wei; Hu, Yunhua; Yi, Xianghua
2015-01-01
The purpose of this work was to explore the systematic molecular mechanism of lung adenocarcinoma and gain a deeper insight into it. Comprehensive bioinformatics methods were applied. Initially, significant differentially expressed genes (DEGs) were analyzed from the Affymetrix microarray data (GSE27262) deposited in the Gene Expression Omnibus (GEO). Subsequently, gene ontology (GO) analysis was performed using online Database for Annotation, Visualization and Integration Discovery (DAVID) software. Finally, significant pathway crosstalk was investigated based on the information derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. According to our results, the N-terminal globular domain of the type X collagen (COL10A1) gene and transmembrane protein 100 (TMEM100) gene were identified to be the most significant DEGs in tumor tissue compared with the adjacent normal tissues. The main GO categories were biological process, cellular component and molecular function. In addition, the crosstalk was significantly different between non-small cell lung cancer pathways and inositol phosphate metabolism pathway, focal adhesion signal pathway, vascular smooth muscle contraction signal pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway and calcium signaling pathway in tumor. Dysfunctional genes and pathways may play key roles in the progression and development of lung adenocarcinoma. Our data provide a systematic perspective for understanding this mechanism and may be helpful in discovering an effective treatment for lung adenocarcinoma.
Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.
Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui
2017-01-01
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.
Jiang, Zhenhong; He, Fei; Zhang, Ziding
2017-07-01
Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study will deepen our understanding of plant metabolism in plant immunity and provide new insights into disease-resistant crop improvement.
NASA Astrophysics Data System (ADS)
Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula
2015-10-01
Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.
Pathway results from the chicken data set using GOTM, Pathway Studio and Ingenuity softwares
Bonnet, Agnès; Lagarrigue, Sandrine; Liaubet, Laurence; Robert-Granié, Christèle; SanCristobal, Magali; Tosser-Klopp, Gwenola
2009-01-01
Background As presented in the introduction paper, three sets of differentially regulated genes were found after the analysis of the chicken infection data set from EADGENE. Different methods were used to interpret these results. Results GOTM, Pathway Studio and Ingenuity softwares were used to investigate the three lists of genes. The three softwares allowed the analysis of the data and highlighted different networks. However, only one set of genes, showing a differential expression between primary and secondary response gave significant biological interpretation. Conclusion Combining these databases that were developed independently on different annotation sources supplies a useful tool for a global biological interpretation of microarray data, even if they may contain some imperfections (e.g. gene not or not well annotated). PMID:19615111
Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang
2018-06-05
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.
Gene Expression Profiling of Gastric Cancer
Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh
2015-01-01
Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788
A systematic analysis of genomic changes in Tg2576 mice.
Tan, Lu; Wang, Xiong; Ni, Zhong-Fei; Zhu, Xiuming; Wu, Wei; Zhu, Ling-Qiang; Liu, Dan
2013-06-01
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by intelligence decline, behavioral disorders and cognitive disability. The purpose of this study was to investigate gene expression in AD, based on published microarray data on Tg2576 mice. Hierarchical Cluster Analysis and Gene Ontology were employed to group genes together on the basis of their product characteristics and annotation data. Genes with prominent alterations were clustered into apoptosis and axon guidance pathways. Based on our findings and those of previous studies, we propose that the mitochondria-mediated apoptotic pathway plays a crucial role in the neuronal loss and synaptic dysfunction associated with AD. Furthermore, based on the findings of Positional Gene Enrichment analysis and Gene Set Enrichment analysis, we propose that the regulation of transcription of AD genes may be an important pathogenic factor in this neurodegenerative disease. Our results highlight the importance of genes that could subsequently be examined for their potential as prognostic markers for AD.
Khadka, Manoj; Salem, Mohamed; Leblond, Jeffrey D
2015-01-01
Vitrella brassicaformis is the second discovered species in the Chromerida, and first in the family Vitrellaceae. Chromera velia, the first discovered species, forms an independent photosynthetic lineage with V. brassicaformis, and both are closely related to peridinin-containing dinoflagellates and nonphotosynthetic apicomplexans; both also show phylogenetic closeness with red algal plastids. We have utilized gas chromatography/mass spectrometry to identify two free sterols, 24-ethylcholest-5-en-3β-ol, and a minor unknown sterol which appeared to be a C(28:4) compound. We have also used RNA Seq analysis to identify seven genes found in the nonmevalonate/methylerythritol pathway (MEP) for sterol biosynthesis. Subsequent genome analysis of V. brassicaformis showed the presence of two mevalonate (MVA) pathway genes, though the genes were not observed in the transcriptome analysis. Transcripts from four genes (dxr, ispf, ispd, and idi) were selected and translated into proteins to study the phylogenetic relationship of sterol biosynthesis in V. brassicaformis and C. velia to other groups of algae and apicomplexans. On the basis of our genomic and transcriptomic analyses, we hypothesize that the MEP pathway was the primary pathway that apicomplexans used for sterol biosynthesis before they lost their sterol biosynthesis ability, although contribution of the MVA pathway cannot be discounted. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
Lan, Daoliang; Xiong, Xianrong; Huang, Cai; Mipam, Tserang Donko; Li, Jian
2016-01-01
Yaks (Bos grunniens) are endemic species that can adapt well to thin air, cold temperatures, and high altitude. These species can survive in harsh plateau environments and are major source of animal production for local residents, being an important breed in the Qinghai-Tibet Plateau. However, compared with ordinary cattle that live in the plains, yaks generally have lower fertility. Investigating the basic physiological molecular features of yak ovary and identifying the biological events underlying the differences between the ovaries of yak and plain cattle is necessary to understand the specificity of yak reproduction. Therefore, RNA-seq technology was applied to analyze transcriptome data comparatively between the yak and plain cattle estrous ovaries. After deep sequencing, 3,653,032 clean reads with a total of 4,828,772,880 base pairs were obtained from yak ovary library. Alignment analysis showed that 16992 yak genes mapped to the yak genome, among which, 12,731 and 14,631 genes were assigned to Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, comparison of yak and cattle ovary transcriptome data revealed that 1307 genes were significantly and differentially expressed between the two libraries, wherein 661 genes were upregulated and 646 genes were downregulated in yak ovary. Functional analysis showed that the differentially expressed genes were involved in various Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. GO annotations indicated that the genes related to "cell adhesion," "hormonal" biological processes, and "calcium ion binding," "cation transmembrane transport" molecular events were significantly active. KEGG pathway analysis showed that the "complement and coagulation cascade" pathway was the most enriched in yak ovary transcriptome data, followed by the "cytochrome P450" related and "ECM-receptor interaction" pathways. Moreover, several novel pathways, such as "circadian rhythm," were significantly enriched despite having no evident associations with the reproductive function. Our findings provide a molecular resource for further investigation of the general molecular mechanism of yak ovary and offer new insights to understand comprehensively the specificity of yak reproduction.
Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia
2014-05-19
The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi-piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Ryan, Margaret M; Ryan, Brigid; Kyrke-Smith, Madeleine; Logan, Barbara; Tate, Warren P; Abraham, Wickliffe C; Williams, Joanna M
2012-01-01
Long-term potentiation (LTP) is widely accepted as a cellular mechanism underlying memory processes. It is well established that LTP persistence is strongly dependent on activation of constitutive and inducible transcription factors, but there is limited information regarding the downstream gene networks and controlling elements that coalesce to stabilise LTP. To identify these gene networks, we used Affymetrix RAT230.2 microarrays to detect genes regulated 5 h and 24 h (n = 5) after LTP induction at perforant path synapses in the dentate gyrus of awake adult rats. The functional relationships of the differentially expressed genes were examined using DAVID and Ingenuity Pathway Analysis, and compared with our previous data derived 20 min post-LTP induction in vivo. This analysis showed that LTP-related genes are predominantly upregulated at 5 h but that there is pronounced downregulation of gene expression at 24 h after LTP induction. Analysis of the structure of the networks and canonical pathways predicted a regulation of calcium dynamics via G-protein coupled receptors, dendritogenesis and neurogenesis at the 5 h time-point. By 24 h neurotrophin-NFKB driven pathways of neuronal growth were identified. The temporal shift in gene expression appears to be mediated by regulation of protein synthesis, ubiquitination and time-dependent regulation of specific microRNA and histone deacetylase expression. Together this programme of genomic responses, marked by both homeostatic and growth pathways, is likely to be critical for the consolidation of LTP in vivo.
Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang
2018-03-01
Heat stress (HS) causes detrimental effects on plant morphology, physiology, and biochemistry that lead to drastic reduction in plant biomass production and economic yield worldwide. To date, little is known about HS-responsive genes involved in thermotolerance mechanism in radish. In this study, a total of 6600 differentially expressed genes (DEGs) from the control and Heat24 cDNA libraries of radish were isolated by high-throughput sequencing. With Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, some genes including MAPK, DREB, ERF, AP2, GST, Hsf, and Hsp were predominantly assigned in signal transductions, metabolic pathways, and biosynthesis and abiotic stress-responsive pathways. These pathways played significant roles in reducing stress-induced damages and enhancing heat tolerance in radish. Expression patterns of 24 candidate genes were validated by reverse-transcription quantitative PCR (RT-qPCR). Based mainly on the analysis of DEGs combining with the previous miRNAs analysis, the schematic model of HS-responsive regulatory network was proposed. To counter the effects of HS, a rapid response of the plasma membrane leads to the opening of specific calcium channels and cytoskeletal reorganization, after which HS-responsive genes are activated to repair damaged proteins and ultimately facilitate further enhancement of thermotolerance in radish. These results could provide fundamental insight into the regulatory network underlying heat tolerance in radish and facilitate further genetic manipulation of thermotolerance in root vegetable crops.
Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian
2017-01-01
Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes.
Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian
2017-01-01
Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes. PMID:28729848
Vascular tone pathway polymorphisms in relation to primary open-angle glaucoma.
Kang, J H; Loomis, S J; Yaspan, B L; Bailey, J C; Weinreb, R N; Lee, R K; Lichter, P R; Budenz, D L; Liu, Y; Realini, T; Gaasterland, D; Gaasterland, T; Friedman, D S; McCarty, C A; Moroi, S E; Olson, L; Schuman, J S; Singh, K; Vollrath, D; Wollstein, G; Zack, D J; Brilliant, M; Sit, A J; Christen, W G; Fingert, J; Forman, J P; Buys, E S; Kraft, P; Zhang, K; Allingham, R R; Pericak-Vance, M A; Richards, J E; Hauser, M A; Haines, J L; Wiggs, J L; Pasquale, L R
2014-06-01
Vascular perfusion may be impaired in primary open-angle glaucoma (POAG); thus, we evaluated a panel of markers in vascular tone-regulating genes in relation to POAG. We used Illumina 660W-Quad array genotype data and pooled P-values from 3108 POAG cases and 3430 controls from the combined National Eye Institute Glaucoma Human Genetics Collaboration consortium and Glaucoma Genes and Environment studies. Using information from previous literature and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we compiled single-nucleotide polymorphisms (SNPs) in 186 vascular tone-regulating genes. We used the 'Pathway Analysis by Randomization Incorporating Structure' analysis software, which performed 1000 permutations to compare the overall pathway and selected genes with comparable randomly generated pathways and genes in their association with POAG. The vascular tone pathway was not associated with POAG overall or POAG subtypes, defined by the type of visual field loss (early paracentral loss (n=224 cases) or only peripheral loss (n=993 cases)) (permuted P≥0.20). In gene-based analyses, eight were associated with POAG overall at permuted P<0.001: PRKAA1, CAV1, ITPR3, EDNRB, GNB2, DNM2, HFE, and MYL9. Notably, six of these eight (the first six listed) code for factors involved in the endothelial nitric oxide synthase activity, and three of these six (CAV1, ITPR3, and EDNRB) were also associated with early paracentral loss at P<0.001, whereas none of the six genes reached P<0.001 for peripheral loss only. Although the assembled vascular tone SNP set was not associated with POAG, genes that code for local factors involved in setting vascular tone were associated with POAG.
Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.
Mocellin, Simone; Tropea, Saveria; Benna, Clara; Rossi, Carlo Riccardo
2018-02-19
Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs). Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n = 15,748; controls, n = 18,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n = 14,160; controls, n = 12,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n = 12,160; controls, n = 16,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma. We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value = 1.9 × 10 -6 ; top gene RORA, gene P value = 0.0003), prostate (pathway P value = 4.1 × 10 -6 ; top gene ARNTL, gene P value = 0.0002) and lung cancer (pathway P value = 6.9 × 10 -7 ; top gene RORA, gene P value = 2.0 × 10 -6 ), as well as all their subgroups. Out of 17 genes investigated, 15 were found to be significantly associated with the risk of cancer: four genes were shared by all three malignancies (ARNTL, CLOCK, RORA and RORB), two by breast and lung cancer (CRY1 and CRY2) and three by prostate and lung cancer (NPAS2, NR1D1 and PER3), whereas four genes were specific for lung cancer (ARNTL2, CSNK1E, NR1D2 and PER2) and two for breast cancer (PER1, RORC). Our findings, based on the largest series ever utilized for ARTP-based gene and pathway analysis, support the hypothesis that circadian pathway genetic variation is involved in cancer predisposition.
Malhotra, Jyoti; Sartori, Samantha; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Świątkowska, Beata; Rudnai, Peter; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Gaborieau, Valerie; Stücker, Isabelle; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo
2015-03-01
Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR. ©2015 American Association for Cancer Research.
Mining featured biomarkers associated with prostatic carcinoma based on bioinformatics.
Piao, Guanying; Wu, Jiarui
2013-11-01
To analyze the differentially expressed genes and identify featured biomarkers from prostatic carcinoma. The software "Significance Analysis of Microarray" (SAM) was used to identify the differentially coexpressed genes (DCGs). The DCGs existed in two datasets were analyzed by GO (Gene Ontology) functional annotation. A total of 389 DCGs were obtained. By GO analysis, we found these DCGs were closely related with the acinus development, TGF-β receptor and signal transduction pathways. Furthermore, five featured biomarkers were discovered by interaction analysis. These important signal pathways and oncogenes may provide potential therapeutic targets for prostatic carcinoma.
Wang, Anping; Zhang, Guibin
2017-11-01
The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The 'limma' data packet in 'R' software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using 'RobustRankAggreg' package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in 'neurotransmitter:sodium symporter activity' and 'neurotransmitter transporter activity', which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in 'protein processing in endoplasmic reticulum', which can affect protein processing in endoplasmic reticulum. The results showed that: i) 167 differentially expressed genes were identified from two gene chips after integration; and ii) protein interaction network was established, and GO and KEGG pathway analyses were successfully performed to identify and annotate the key gene, which provide new insights for the studies on GBN at gene level.
Gourh, Pravitt; Remmers, Elaine F; Boyden, Steven E; Alexander, Theresa; Morgan, Nadia D; Shah, Ami A; Mayes, Maureen D; Doumatey, Ayo; Bentley, Amy R; Shriner, Daniel; Domsic, Robyn T; Medsger, Thomas A; Steen, Virginia D; Ramos, Paula S; Silver, Richard M; Korman, Benjamin; Varga, John; Schiopu, Elena; Khanna, Dinesh; Hsu, Vivien; Gordon, Jessica K; Saketkoo, Lesley Ann; Gladue, Heather; Kron, Brynn; Criswell, Lindsey A; Derk, Chris T; Bridges, S Louis; Shanmugam, Victoria K; Kolstad, Kathleen D; Chung, Lorinda; Jan, Reem; Bernstein, Elana J; Goldberg, Avram; Trojanowski, Marcin; Kafaja, Suzanne; Maksimowicz-McKinnon, Kathleen M; Mullikin, James C; Adeyemo, Adebowale; Rotimi, Charles; Boin, Francesco; Kastner, Daniel L; Wigley, Fredrick M
2018-05-06
Whole-exome sequencing (WES) studies in systemic sclerosis (SSc) patients of European American (EA) ancestry have identified variants in the ATP8B4 gene and enrichment of variants in genes in the extracellular matrix (ECM)-related pathway increasing SSc susceptibility. Our goal was to evaluate the association of the ATP8B4 gene and the ECM-related pathway with SSc in a cohort of African Americans (AA). SSc patients of AA ancestry were enrolled from 23 academic centers across the United States under the Genome Research in African American Scleroderma Patients (GRASP) consortium. Unrelated AA individuals without serological evidence of autoimmunity enrolled in the Howard University Family Study were used as unaffected controls. Functional variants in genes reported in the two WES studies in EA SSc were selected for gene association testing using the optimized sequence kernel association test (SKAT-O) and pathway analysis by Ingenuity pathway analysis in 379 patients and 411 controls. Principal components analysis demonstrated that the patients and controls had similar ancestral backgrounds with about equal proportions of mean European admixture. Using SKAT-O, we examined the association of individual genes that were previously reported in EAs, and none remained significant including ATP8B4 (P U nCorr =0.98). However, we confirm the previously reported association of the ECM-related pathway with enrichment of variants within the COL13A1, COL18A1, COL22A1, COL4A3, COL4A4, COL5A2, PROK1, and SERPINE1 genes (P C orr =1.95×10 -4 ). This is the largest genetic study in AAs with SSc to date, corroborating the role of functional variants aggregating in a fibrotic pathway and increasing SSc susceptibility. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes
Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.
2016-01-01
The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954
Voyle, Nicola; Keohane, Aoife; Newhouse, Stephen; Lunnon, Katie; Johnston, Caroline; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela; Kiddle, Steven; Dobson, Richard Jb
2016-01-01
Recent studies indicate that gene expression levels in blood may be able to differentiate subjects with Alzheimer's disease (AD) from normal elderly controls and mild cognitively impaired (MCI) subjects. However, there is limited replicability at the single marker level. A pathway-based interpretation of gene expression may prove more robust. This study aimed to investigate whether a case/control classification model built on pathway level data was more robust than a gene level model and may consequently perform better in test data. The study used two batches of gene expression data from the AddNeuroMed (ANM) and Dementia Case Registry (DCR) cohorts. Our study used Illumina Human HT-12 Expression BeadChips to collect gene expression from blood samples. Random forest modeling with recursive feature elimination was used to predict case/control status. Age and APOE ɛ4 status were used as covariates for all analysis. Gene and pathway level models performed similarly to each other and to a model based on demographic information only. Any potential increase in concordance from the novel pathway level approach used here has not lead to a greater predictive ability in these datasets. However, we have only tested one method for creating pathway level scores. Further, we have been able to benchmark pathways against genes in datasets that had been extensively harmonized. Further work should focus on the use of alternative methods for creating pathway level scores, in particular those that incorporate pathway topology, and the use of an endophenotype based approach.
Li, Xihong; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen; Shi, Guohui
2013-01-01
Background The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq) technology provides a powerful and efficient method for transcript analysis and immune gene discovery. Methods/Principal Findings A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL−1) was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr) database. For function classification and pathway assignment, 18,734 (36.00%) unigenes were categorized to three Gene Ontology (GO) categories, 12,243 (23.51%) were classified to 25 Clusters of Orthologous Groups (COG), and 8,983 (17.25%) were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. Conclusions/Significance This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab. PMID:23874555
Chen, Long; Zhang, Chunhua; Wang, Yanling; Li, Yuqian; Han, Qiaoqiao; Yang, Huixin; Zhu, Yuechun
2017-08-01
Human glucose-6-phosphate dehydrogenase (G6PD) is a crucial enzyme in the pentose phosphate pathway, and serves an important role in biosynthesis and the redox balance. G6PD deficiency is a major cause of neonatal jaundice and acute hemolyticanemia, and recently, G6PD has been associated with diseases including inflammation and cancer. The aim of the present study was to conduct a search of the National Center for Biotechnology Information PubMed library for articles discussing G6PD. Genes that were identified to be associated with G6PD were recorded, and the frequency at which each gene appeared was calculated. Gene ontology (GO), pathway and network analyses were then performed. A total of 98 G6PD‑associated genes and 33 microRNAs (miRNAs) that potentially regulate G6PD were identified. The 98 G6PD‑associated genes were then sub‑classified into three functional groups by GO analysis, followed by analysis of function, pathway, network, and disease association. Out of the 47 signaling pathways identified, seven were significantly correlated with G6PD‑associated genes. At least two out of four independent programs identified the 33 miRNAs that were predicted to target G6PD. miR‑1207‑5P, miR‑1 and miR‑125a‑5p were predicted by all four software programs to target G6PD. The results of the present study revealed that dysregulation of G6PD was associated with cancer, autoimmune diseases, and oxidative stress‑induced disorders. These results revealed the potential roles of G6PD‑regulated signaling and metabolic pathways in the etiology of these diseases.
Chen, Long; Zhang, Chunhua; Wang, Yanling; Li, Yuqian; Han, Qiaoqiao; Yang, Huixin; Zhu, Yuechun
2017-01-01
Human glucose-6-phosphate dehydrogenase (G6PD) is a crucial enzyme in the pentose phosphate pathway, and serves an important role in biosynthesis and the redox balance. G6PD deficiency is a major cause of neonatal jaundice and acute hemolyticanemia, and recently, G6PD has been associated with diseases including inflammation and cancer. The aim of the present study was to conduct a search of the National Center for Biotechnology Information PubMed library for articles discussing G6PD. Genes that were identified to be associated with G6PD were recorded, and the frequency at which each gene appeared was calculated. Gene ontology (GO), pathway and network analyses were then performed. A total of 98 G6PD-associated genes and 33 microRNAs (miRNAs) that potentially regulate G6PD were identified. The 98 G6PD-associated genes were then sub-classified into three functional groups by GO analysis, followed by analysis of function, pathway, network, and disease association. Out of the 47 signaling pathways identified, seven were significantly correlated with G6PD-associated genes. At least two out of four independent programs identified the 33 miRNAs that were predicted to target G6PD. miR-1207-5P, miR-1 and miR-125a-5p were predicted by all four software programs to target G6PD. The results of the present study revealed that dysregulation of G6PD was associated with cancer, autoimmune diseases, and oxidative stress-induced disorders. These results revealed the potential roles of G6PD-regulated signaling and metabolic pathways in the etiology of these diseases. PMID:28627690
Zhao, Chen; Mao, Jinghe; Ai, Junmei; Shenwu, Ming; Shi, Tieliu; Zhang, Daqing; Wang, Xiaonan; Wang, Yunliang; Deng, Youping
2013-01-01
Insulin resistance is a key element in the pathogenesis of type 2 diabetes mellitus. Plasma free fatty acids were assumed to mediate the insulin resistance, while the relationship between lipid and glucose disposal remains to be demonstrated across liver, skeletal muscle and blood. We profiled both lipidomics and gene expression of 144 total peripheral blood samples, 84 from patients with T2D and 60 from healthy controls. Then, factor and partial least squares models were used to perform a combined analysis of lipidomics and gene expression profiles to uncover the bioprocesses that are associated with lipidomic profiles in type 2 diabetes. According to factor analysis of the lipidomic profile, several species of lipids were found to be correlated with different phenotypes, including diabetes-related C23:2CE, C23:3CE, C23:4CE, ePE36:4, ePE36:5, ePE36:6; race-related (African-American) PI36:1; and sex-related PE34:1 and LPC18:2. The major variance of gene expression profile was not caused by known factors and no significant difference can be directly derived from differential gene expression profile. However, the combination of lipidomic and gene expression analyses allows us to reveal the correlation between the altered lipid profile with significantly enriched pathways, such as one carbon pool by folate, arachidonic acid metabolism, insulin signaling pathway, amino sugar and nucleotide sugar metabolism, propanoate metabolism, and starch and sucrose metabolism. The genes in these pathways showed a good capability to classify diabetes samples. Combined analysis of gene expression and lipidomic profiling reveals type 2 diabetes-associated lipid species and enriched biological pathways in peripheral blood, while gene expression profile does not show direct correlation. Our findings provide a new clue to better understand the mechanism of disordered lipid metabolism in association with type 2 diabetes.
2010-01-01
Background Osteosarcoma (OSA) spontaneously arises in the appendicular skeleton of large breed dogs and shares many physiological and molecular biological characteristics with human OSA. The standard treatment for OSA in both species is amputation or limb-sparing surgery, followed by chemotherapy. Unfortunately, OSA is an aggressive cancer with a high metastatic rate. Characterization of OSA with regard to its metastatic potential and chemotherapeutic resistance will improve both prognostic capabilities and treatment modalities. Methods We analyzed archived primary OSA tissue from dogs treated with limb amputation followed by doxorubicin or platinum-based drug chemotherapy. Samples were selected from two groups: dogs with disease free intervals (DFI) of less than 100 days (n = 8) and greater than 300 days (n = 7). Gene expression was assessed with Affymetrix Canine 2.0 microarrays and analyzed with a two-tailed t-test. A subset of genes was confirmed using qRT-PCR and used in classification analysis to predict prognosis. Systems-based gene ontology analysis was conducted on genes selected using a standard J5 metric. The genes identified using this approach were converted to their human homologues and assigned to functional pathways using the GeneGo MetaCore platform. Results Potential biomarkers were identified using gene expression microarray analysis and 11 differentially expressed (p < 0.05) genes were validated with qRT-PCR (n = 10/group). Statistical classification models using the qRT-PCR profiles predicted patient outcomes with 100% accuracy in the training set and up to 90% accuracy upon stratified cross validation. Pathway analysis revealed alterations in pathways associated with oxidative phosphorylation, hedgehog and parathyroid hormone signaling, cAMP/Protein Kinase A (PKA) signaling, immune responses, cytoskeletal remodeling and focal adhesion. Conclusions This profiling study has identified potential new biomarkers to predict patient outcome in OSA and new pathways that may be targeted for therapeutic intervention. PMID:20860831
A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer.
Yang, Mary Qu; Li, Dan; Yang, William; Zhang, Yifan; Liu, Jun; Tong, Weida
2017-01-01
Clear cell renal cell carcinoma (ccRCC) is the most common and most aggressive form of renal cell cancer (RCC). The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1 , as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways.
Functional pathway analysis of genes associated with response to treatment for chronic hepatitis C.
Birerdinc, A; Afendy, A; Stepanova, M; Younossi, I; Manyam, G; Baranova, A; Younossi, Z M
2010-10-01
Chronic hepatitis C (CH-C) is among the most common causes of chronic liver disease. Approximately 50% of patients with CH-C treated with pegylated interferon-α and ribavirin (PEG-IFN-α + RBV) achieve a sustained virological response (SVR). Several factors such as genotype 1, African American (AA) race, obesity and the absence of an early virological response (EVR) are associated with low SVR. This study elucidates molecular pathways deregulated in patients with CH-C with negative predictors of response to antiviral therapy. Sixty-eight patients with CH-C who underwent a full course of treatment with PEG-IFN-α + RBV were included in the study. Pretreatment blood samples were collected in PAXgene™ RNA tubes. EVR, complete EVR (cEVR), and SVR rates were 76%, 57% and 41%, respectively. Total RNA was extracted from pretreatment peripheral blood mononuclear cells, quantified and used for one-step RT-PCR to profile 154 mRNAs. The expression of mRNAs was normalized with six 'housekeeping' genes. Differentially expressed genes were separated into up and downregulated gene lists according to the presence or absence of a risk factor and subjected to KEGG Pathway Painter which allows high-throughput visualization of the pathway-specific changes in expression profiles. The genes were consolidated into the networks associated with known predictors of response. Before treatment, various genes associated with core components of the JAK/STAT pathway were activated in the cohorts least likely to achieve SVR. Genes related to focal adhesion and TGF-β pathways were activated in some patients with negative predictors of response. Pathway-centred analysis of gene expression profiles from treated patients with CH-C points to the Janus kinase-signal transducers and activators of transcription signalling cascade as the major pathogenetic component responsible for not achieving SVR. In addition, focal adhesion and TGF-β pathways are associated with some predictors of response. © 2009 Blackwell Publishing Ltd.
Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang
2018-06-15
Investigating the potential biological function of differential changed genes through integrating multiple omics data including miRNA and mRNA expression profiles, is always hot topic. However, how to evaluate the repression effect on target genes integrating miRNA and mRNA expression profiles are not fully solved. In this study, we provide an analyzing method by integrating both miRNAs and mRNAs expression data simultaneously. Difference analysis was adopted based on the repression score, then significantly repressed mRNAs were screened out by DEGseq. Pathway analysis for the significantly repressed mRNAs shows that multiple pathways such as MAPK signaling pathway, TGF-beta signaling pathway and so on, may correlated to the colorectal cancer(CRC). Focusing on the MAPK signaling pathway, a miRNA-mRNA network that centering the cell fate genes was constructed. Finally, the miRNA-mRNAs that potentially important in the CRC carcinogenesis were screened out and scored by impact index. Copyright © 2018 Elsevier B.V. All rights reserved.
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccas e 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like ( Sil1 ), scavenger receptor class C ( Src ), and scavenger receptor class B ( Srb3 and Srb4 ) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.
Khosravi, Claire; Kun, Roland Sándor; Visser, Jaap; Aguilar-Pontes, María Victoria; de Vries, Ronald P; Battaglia, Evy
2017-11-06
The genes of the non-phosphorylative L-rhamnose catabolic pathway have been identified for several yeast species. In Schefferomyces stipitis, all L-rhamnose pathway genes are organized in a cluster, which is conserved in Aspergillus niger, except for the lra-4 ortholog (lraD). The A. niger cluster also contains the gene encoding the L-rhamnose responsive transcription factor (RhaR) that has been shown to control the expression of genes involved in L-rhamnose release and catabolism. In this paper, we confirmed the function of the first three putative L-rhamnose utilisation genes from A. niger through gene deletion. We explored the identity of the inducer of the pathway regulator (RhaR) through expression analysis of the deletion mutants grown in transfer experiments to L-rhamnose and L-rhamnonate. Reduced expression of L-rhamnose-induced genes on L-rhamnose in lraA and lraB deletion strains, but not on L-rhamnonate (the product of LraB), demonstrate that the inducer of the pathway is of L-rhamnonate or a compound downstream of it. Reduced expression of these genes in the lraC deletion strain on L-rhamnonate show that it is in fact a downstream product of L-rhamnonate. This work showed that the inducer of RhaR is beyond L-rhamnonate dehydratase (LraC) and is likely to be the 2-keto-3-L-deoxyrhamnonate.
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean. PMID:29773992
1-CMDb: A Curated Database of Genomic Variations of the One-Carbon Metabolism Pathway.
Bhat, Manoj K; Gadekar, Veerendra P; Jain, Aditya; Paul, Bobby; Rai, Padmalatha S; Satyamoorthy, Kapaettu
2017-01-01
The one-carbon metabolism pathway is vital in maintaining tissue homeostasis by driving the critical reactions of folate and methionine cycles. A myriad of genetic and epigenetic events mark the rate of reactions in a tissue-specific manner. Integration of these to predict and provide personalized health management requires robust computational tools that can process multiomics data. The DNA sequences that may determine the chain of biological events and the endpoint reactions within one-carbon metabolism genes remain to be comprehensively recorded. Hence, we designed the one-carbon metabolism database (1-CMDb) as a platform to interrogate its association with a host of human disorders. DNA sequence and network information of a total of 48 genes were extracted from a literature survey and KEGG pathway that are involved in the one-carbon folate-mediated pathway. The information generated, collected, and compiled for all these genes from the UCSC genome browser included the single nucleotide polymorphisms (SNPs), CpGs, copy number variations (CNVs), and miRNAs, and a comprehensive database was created. Furthermore, a significant correlation analysis was performed for SNPs in the pathway genes. Detailed data of SNPs, CNVs, CpG islands, and miRNAs for 48 folate pathway genes were compiled. The SNPs in CNVs (9670), CpGs (984), and miRNAs (14) were also compiled for all pathway genes. The SIFT score, the prediction and PolyPhen score, as well as the prediction for each of the SNPs were tabulated and represented for folate pathway genes. Also included in the database for folate pathway genes were the links to 124 various phenotypes and disease associations as reported in the literature and from publicly available information. A comprehensive database was generated consisting of genomic elements within and among SNPs, CNVs, CpGs, and miRNAs of one-carbon metabolism pathways to facilitate (a) single source of information and (b) integration into large-genome scale network analysis to be developed in the future by the scientific community. The database can be accessed at http://slsdb.manipal.edu/ocm/. © 2017 S. Karger AG, Basel.
Zhang, Yu; Mo, Wei-Jia; Wang, Xiao; Zhang, Tong-Tong; Qin, Yuan; Wang, Han-Lin; Chen, Gang; Wei, Dan-Ming; Dang, Yi-Wu
2018-05-02
The long non‑coding RNA (lncRNA) PVT1 plays vital roles in the tumorigenesis and development of various types of cancer. However, the potential expression profiling, functions and pathways of PVT1 in HCC remain unknown. PVT1 was knocked down in SMMC‑7721 cells, and a miRNA microarray analysis was performed to detect the differentially expressed miRNAs. Twelve target prediction algorithms were used to predict the underlying targets of these differentially expressed miRNAs. Bioinformatics analysis was performed to explore the underlying functions, pathways and networks of the targeted genes. Furthermore, the relationship between PVT1 and the clinical parameters in HCC was confirmed based on the original data in the TCGA database. Among the differentially expressed miRNAs, the top two upregulated and downregulated miRNAs were selected for further analysis based on the false discovery rate (FDR), fold‑change (FC) and P‑values. Based on the TCGA database, PVT1 was obviously highly expressed in HCC, and a statistically higher PVT1 expression was found for sex (male), ethnicity (Asian) and pathological grade (G3+G4) compared to the control groups (P<0.05). Furthermore, Gene Ontology (GO) analysis revealed that the target genes were involved in complex cellular pathways, such as the macromolecule biosynthetic process, compound metabolic process, and transcription. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the MAPK and Wnt signaling pathways may be correlated with the regulation of the four candidate miRNAs. The results therefore provide significant information on the differentially expressed miRNAs associated with PVT1 in HCC, and we hypothesized that PVT1 may play vital roles in HCC by regulating different miRNAs or target gene expression (particularly MAPK8) via the MAPK or Wnt signaling pathways. Thus, further investigation of the molecular mechanism of PVT1 in HCC is needed.
A Pathway-Centered Analysis of Pig Domestication and Breeding in Eurasia
Leno-Colorado, Jordi; Hudson, Nick J.; Reverter, Antonio; Pérez-Enciso, Miguel
2017-01-01
Ascertaining the molecular and physiological basis of domestication and breeding is an active area of research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig (Sus scrofa) is an excellent model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium (nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a q-value < 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin. Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes present in >10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance (ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding. Different levels of recombination cannot explain these results, since we found no correlation between Fst and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs. wild populations, suggesting a relaxed functional constraint associated with the domestication and breeding processes. Purifying selection was, nevertheless, stronger in significantly differentiated pathways than in random pathways, mainly in Europe. We conclude that pathway analysis facilitates the biological interpretation of genome-wide studies. Notably, in the case of pig, behavior played an important role, among other physiological and developmental processes. PMID:28500056
A Pathway-Centered Analysis of Pig Domestication and Breeding in Eurasia.
Leno-Colorado, Jordi; Hudson, Nick J; Reverter, Antonio; Pérez-Enciso, Miguel
2017-07-05
Ascertaining the molecular and physiological basis of domestication and breeding is an active area of research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig ( Sus scrofa ) is an excellent model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium (nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a q -value < 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin. Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes present in >10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance (ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding. Different levels of recombination cannot explain these results, since we found no correlation between Fst and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs. wild populations, suggesting a relaxed functional constraint associated with the domestication and breeding processes. Purifying selection was, nevertheless, stronger in significantly differentiated pathways than in random pathways, mainly in Europe. We conclude that pathway analysis facilitates the biological interpretation of genome-wide studies. Notably, in the case of pig, behavior played an important role, among other physiological and developmental processes. Copyright © 2017 Leno-Colorado et al.
Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.
2013-01-01
Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166
Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon
2012-01-01
Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath. We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that often hamper effective use of pathway databases. We have included four organisms in the current release of IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath.
Transcriptomics of cortical gray matter thickness decline during normal aging
Kochunov, P; Charlesworth, J; Winkler, A; Hong, LE; Nichols, T; Curran, JE; Sprooten, E; Jahanshad, N; Thompson, PM; Johnson, MP; Kent, JW; Landman, BA; Mitchell, B; Cole, SA; Dyer, TD; Moses, EK; Goring, HHH; Almasy, L; Duggirala, R; Olvera, RL; Glahn, DC; Blangero, J
2013-01-01
Introduction We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathways analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging Methods Transcriptome and GMT data were availabe for 379 individuals (age range=28–85) community-dwelling members of large extended Mexican-American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800µm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Results Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10−6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Conclusion Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. PMID:23707588
Transcriptomics of cortical gray matter thickness decline during normal aging.
Kochunov, P; Charlesworth, J; Winkler, A; Hong, L E; Nichols, T E; Curran, J E; Sprooten, E; Jahanshad, N; Thompson, P M; Johnson, M P; Kent, J W; Landman, B A; Mitchell, B; Cole, S A; Dyer, T D; Moses, E K; Goring, H H H; Almasy, L; Duggirala, R; Olvera, R L; Glahn, D C; Blangero, J
2013-11-15
We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. Transcriptome and GMT data were available for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800 μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10(-6)) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Yue; Shen, Qi; Lin, Renan; Zhao, Zhuangliu; Shen, Chenjia; Sun, Chongbo
2017-10-01
Artificial control of flowering time is pivotal for the ornamental value of orchids including the genus Dendrobium. Although various flowering pathways have been revealed in model plants, little information is available on the genetic regualtion of flowering in Dendrobium. To identify the critical genes associated with flowering, transcriptomes from four organs (leaf, root, stem and flower) of D. officinale were analyzed in our study. In total, 2645 flower-specific transcripts were identified. Functional annotation and classification suggested that several metabolic pathways, including four sugar-related pathways and two fatty acid-related pathways, were enriched. A total of 24 flowering-related transcripts were identified in D. officinale according to the similarities to their homologous genes from Arabidopsis, suggesting that most classical flowering pathways existed in D. officinale. Furthermore, phylogenetic analysis suggested that the FLOWERING LOCUS T homologs in orchids are highly conserved during evolution process. In addition, expression changes in nine randomly-selected critical flowering-related transcripts between the vegetative stage and reproductive stage were quantified by qRT-PCR analysis. Our study provided a number of candidate genes and sequence resources for investigating the mechanisms underlying the flowering process of the Dendrobium genus. Copyright © 2017. Published by Elsevier Masson SAS.
Down-weighting overlapping genes improves gene set analysis
2012-01-01
Background The identification of gene sets that are significantly impacted in a given condition based on microarray data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless how specific they are to a given gene set. Results In this work we propose a new gene set analysis method that computes a gene set score as the mean of absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). Unlike most gene set analysis methods which are validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal assumptions and eliminates the need for possibly biased human assessments of the analysis results. Conclusions PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/or http://www.bioconductor.org. PMID:22713124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming
2013-04-15
Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strainsmore » enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.« less
Hicks, Chindo; Kumar, Ranjit; Pannuti, Antonio; Miele, Lucio
2012-01-01
Variable response and resistance to tamoxifen treatment in breast cancer patients remains a major clinical problem. To determine whether genes and biological pathways containing SNPs associated with risk for breast cancer are dysregulated in response to tamoxifen treatment, we performed analysis combining information from 43 genome-wide association studies with gene expression data from 298 ER(+) breast cancer patients treated with tamoxifen and 125 ER(+) controls. We identified 95 genes which distinguished tamoxifen treated patients from controls. Additionally, we identified 54 genes which stratified tamoxifen treated patients into two distinct groups. We identified biological pathways containing SNPs associated with risk for breast cancer, which were dysregulated in response to tamoxifen treatment. Key pathways identified included the apoptosis, P53, NFkB, DNA repair and cell cycle pathways. Combining GWAS with transcription profiling provides a unified approach for associating GWAS findings with response to drug treatment and identification of potential drug targets.
USDA-ARS?s Scientific Manuscript database
A gene co-expression network was generated using a dual RNA-seq study with the fungal pathogen A. flavus and its plant host Z. mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network reveal...
Zhao, Min; Li, XiaoMo; Qu, Hong
2013-12-01
Eating disorder is a group of physiological and psychological disorders affecting approximately 1% of the female population worldwide. Although the genetic epidemiology of eating disorder is becoming increasingly clear with accumulated studies, the underlying molecular mechanisms are still unclear. Recently, integration of various high-throughput data expanded the range of candidate genes and started to generate hypotheses for understanding potential pathogenesis in complex diseases. This article presents EDdb (Eating Disorder database), the first evidence-based gene resource for eating disorder. Fifty-nine experimentally validated genes from the literature in relation to eating disorder were collected as the core dataset. Another four datasets with 2824 candidate genes across 601 genome regions were expanded based on the core dataset using different criteria (e.g., protein-protein interactions, shared cytobands, and related complex diseases). Based on human protein-protein interaction data, we reconstructed a potential molecular sub-network related to eating disorder. Furthermore, with an integrative pathway enrichment analysis of genes in EDdb, we identified an extended adipocytokine signaling pathway in eating disorder. Three genes in EDdb (ADIPO (adiponectin), TNF (tumor necrosis factor) and NR3C1 (nuclear receptor subfamily 3, group C, member 1)) link the KEGG (Kyoto Encyclopedia of Genes and Genomes) "adipocytokine signaling pathway" with the BioCarta "visceral fat deposits and the metabolic syndrome" pathway to form a joint pathway. In total, the joint pathway contains 43 genes, among which 39 genes are related to eating disorder. As the first comprehensive gene resource for eating disorder, EDdb ( http://eddb.cbi.pku.edu.cn ) enables the exploration of gene-disease relationships and cross-talk mechanisms between related disorders. Through pathway statistical studies, we revealed that abnormal body weight caused by eating disorder and obesity may both be related to dysregulation of the novel joint pathway of adipocytokine signaling. In addition, this joint pathway may be the common pathway for body weight regulation in complex human diseases related to unhealthy lifestyle.
Han, Rongchun; Takahashi, Hiroki; Nakamura, Michimi; Bunsupa, Somnuk; Yoshimoto, Naoko; Yamamoto, Hirobumi; Suzuki, Hideyuki; Shibata, Daisuke; Yamazaki, Mami; Saito, Kazuki
2015-01-01
Sophora flavescens AITON (kurara) has long been used to treat various diseases. Although several research findings revealed the biosynthetic pathways of its characteristic chemical components as represented by matrine, insufficient analysis of transcriptome data hampered in-depth analysis of the underlying putative genes responsible for the biosynthesis of pharmaceutical chemical components. In this study, more than 200 million fastq format reads were generated by Illumina's next-generation sequencing approach using nine types of tissue from S. flavescens, followed by CLC de novo assembly, ultimately yielding 83,325 contigs in total. By mapping the reads back to the contigs, reads per kilobase of the transcript per million mapped reads values were calculated to demonstrate gene expression levels, and overrepresented gene ontology terms were evaluated using Fisher's exact test. In search of the putative genes relevant to essential metabolic pathways, all 1350 unique enzyme commission numbers were used to map pathways against the Kyoto Encyclopedia of Genes and Genomes. By analyzing expression patterns, we proposed some candidate genes involved in the biosynthesis of isoflavonoids and quinolizidine alkaloids. Adopting RNA-Seq analysis, we obtained substantially credible contigs for downstream work. The preferential expression of the gene for putative lysine/ornithine decarboxylase committed in the initial step of matrine biosynthesis in leaves and stems was confirmed in semi-quantitative polymerase chain reaction (PCR) analysis. The findings in this report may serve as a stepping-stone for further research into this promising medicinal plant.
Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle.
Khatib, H; Huang, W; Wang, X; Tran, A H; Bindrim, A B; Schutzkus, V; Monson, R L; Yandell, B S
2009-05-01
Decrease in fertility and conception rates is a major cause of economic loss and cow culling in dairy herds. Conception rate is the product of fertilization rate and embryonic survival rate. Identification of genetic factors that cause the death of embryos is the first step in eliminating this problem from the population and thereby increasing reproductive efficiency. A candidate pathway approach was used to identify candidate genes affecting fertilization and embryo survival rates using an in vitro fertilization experimental system. A total of 7,413 in vitro fertilizations were performed using oocytes from 504 ovaries and semen samples from 10 different bulls. Fertilization rate was calculated as the number of cleaved embryos 48 h postfertilization out of the total number of oocytes exposed to sperm. Survival rate of embryos was calculated as the number of blastocysts on d 7 of development out of the number of total embryos cultured. All ovaries were genotyped for 8 genes in the POU1F1 signaling pathway. Single-gene analysis revealed significant associations of GHR, PRLR, STAT5A, and UTMP with survival rate and of POU1F1, GHR, STAT5A, and OPN with fertilization rate. To further characterize the contribution of the entire integrated POU1F1 pathway to fertilization and early embryonic survival, a model selection procedure was applied. Comparisons among the different models showed that interactions between adjacent genes in the pathway revealed a significant contribution to the variation in fertility traits compared with other models that analyzed only bull information or only genes without interactions. Moreover, some genes that were not significant in the single-gene analysis showed significant effects in the interaction analysis. Thus, we propose that single genes as well as an entire pathway can be used in selection programs to improve reproduction performance in dairy cattle.
Cui, Huan-Xian; Liu, Ran-Ran; Zhao, Gui-Ping; Zheng, Mai-Qing; Chen, Ji-Lan; Wen, Jie
2012-05-30
Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34-70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here.
Tang, Hongwei; Wei, Peng; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Holly, Elizabeth A; Petersen, Gloria M; Bracci, Paige M; McWilliams, Robert R; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolf; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui
2014-01-01
Obesity and diabetes are potentially alterable risk factors for pancreatic cancer. Genetic factors that modify the associations of obesity and diabetes with pancreatic cancer have previously not been examined at the genome-wide level. Using genome-wide association studies (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study of 2,028 cases and 2,109 controls to examine gene-obesity and gene-diabetes interactions in relation to pancreatic cancer risk by using the likelihood-ratio test nested in logistic regression models and Ingenuity Pathway Analysis (IPA). After adjusting for multiple comparisons, a significant interaction of the chemokine signaling pathway with obesity (P = 3.29 × 10(-6)) and a near significant interaction of calcium signaling pathway with diabetes (P = 1.57 × 10(-4)) in modifying the risk of pancreatic cancer were observed. These findings were supported by results from IPA analysis of the top genes with nominal interactions. The major contributing genes to the two top pathways include GNGT2, RELA, TIAM1, and GNAS. None of the individual genes or single-nucleotide polymorphism (SNP) except one SNP remained significant after adjusting for multiple testing. Notably, SNP rs10818684 of the PTGS1 gene showed an interaction with diabetes (P = 7.91 × 10(-7)) at a false discovery rate of 6%. Genetic variations in inflammatory response and insulin resistance may affect the risk of obesity- and diabetes-related pancreatic cancer. These observations should be replicated in additional large datasets. A gene-environment interaction analysis may provide new insights into the genetic susceptibility and molecular mechanisms of obesity- and diabetes-related pancreatic cancer.
Ropka-Molik, Katarzyna; Pawlina-Tyszko, Klaudia; Żukowski, Kacper; Piórkowska, Katarzyna; Żak, Grzegorz; Gurgul, Artur; Derebecka, Natalia; Wesoły, Joanna
2018-04-16
Recently, selection in pigs has been focused on improving the lean meat content in carcasses; this focus has been most evident in breeds constituting a paternal component in breeding. Such sire-breeds are used to improve the meat quantity of cross-breed pig lines. However, even in one breed, a significant variation in the meatiness level can be observed. In the present study, the comprehensive analysis of genes and microRNA expression profiles in porcine muscle tissue was applied to identify the genetic background of meat content. The comparison was performed between whole gene expression and miRNA profiles of muscle tissue collected from two sire-line pig breeds (Pietrain, Hampshire). The RNA-seq approach allowed the identification of 627 and 416 differentially expressed genes (DEGs) between pig groups differing in terms of loin weight between Pietrain and Hampshire breeds, respectively. The comparison of miRNA profiles showed differential expression of 57 microRNAs for Hampshire and 34 miRNAs for Pietrain pigs. Next, 43 genes and 18 miRNAs were selected as differentially expressed in both breeds and potentially related to muscle development. According to Gene Ontology analysis, identified DEGs and microRNAs were involved in the regulation of the cell cycle, fatty acid biosynthesis and regulation of the actin cytoskeleton. The most deregulated pathways dependent on muscle mass were the Hippo signalling pathway connected with the TGF-β signalling pathway and controlling organ size via the regulation of ubiquitin-mediated proteolysis, cell proliferation and apoptosis. The identified target genes were also involved in pathways such as the FoxO signalling pathway, signalling pathways regulating pluripotency of stem cells and the PI3K-Akt signalling pathway. The obtained results indicate molecular mechanisms controlling porcine muscle growth and development. Identified genes ( SOX2 , SIRT1 , KLF4 , PAX6 and genes belonging to the transforming growth factor beta superfamily) could be considered candidate genes for determining muscle mass in pigs.
Du, Y F; Ding, Q L; Li, Y M; Fang, W R
2017-04-03
In the modern chicken industry, fast-growing broilers have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with slow-growing chickens. However, the molecular mechanism underlying these phenotypes differences remains unknown. In this study, a systematic identification of candidate genes and new pathways related to myofiber development and composition in chicken Soleus muscle (SOL) has been made using gene expression profiles of two distinct breeds: Qingyuan partridge (QY), a slow-growing Chinese breed possessing high meat quality and Cobb 500 (CB), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of soleus muscle sampled at sexual maturity age of QY (112 d) and CB (42 d). The 1318 genes with at least 2-fold differences were identified (P < 0.05, FDR <0.05, FC ≥ 2) in SOL muscles of QY and CB chickens. Differentially expressed genes (DEGs) related to muscle development, energy metabolism or lipid metabolism processes were examined further in each breed based on Gene Ontology (GO) analysis, and 11 genes involved in these processes were selected for further validation studies by qRT-PCR. In addition, based on KEGG pathway analysis of DEGs in both QY and CB chickens, it was found that in addition to pathways affecting myogenic fibre-type development and differentiation (pathways for Hedgehog & Calcium signaling), energy metabolism (Phosphatidylinositol signaling system, VEGF signaling pathway, Purine metabolism, Pyrimidine metabolism) were also enriched and might form a network with pathways related to muscle metabolism to influence the development of myofibers. This study is the first stage in the understanding of molecular mechanisms underlying variations in poultry meat quality. Large scale analyses are now required to validate the role of the genes identified and ultimately to find molecular markers that can be used for selection or to optimize rearing practices.
Yang, Yujia; Wang, Xiaozhu; Liu, Yang; Fu, Qiang; Tian, Changxu; Wu, Chenglong; Shi, Huitong; Yuan, Zihao; Tan, Suxu; Liu, Shikai; Gao, Dongya; Dunham, Rex; Liu, Zhanjiang
2018-04-30
In aquatic organisms, hearing is an important sense for acoustic communications and detection of sound-emitting predators and prey. Channel catfish is a dominant aquaculture species in the United States. As channel catfish can hear sounds of relatively high frequency, it serves as a good model for study auditory mechanisms. In catfishes, Weberian ossicles connect the swimbladder to the inner ear to transfer the forced vibrations and improve hearing ability. In this study, we examined the transcriptional profiles of channel catfish swimbladder and other four tissues (gill, liver, skin, and intestine). We identified a total of 1777 genes that exhibited preferential expression pattern in swimbladder of channel catfish. Based on Gene Ontology enrichment analysis, many of swimbladder-enriched genes were categorized into sensory perception of sound, auditory behavior, response to auditory stimulus, or detection of mechanical stimulus involved in sensory perception of sound, such as coch, kcnq4, sptbn1, sptbn4, dnm1, ush2a, and col11a1. Six signaling pathways associated with hearing (Glutamatergic synapse, GABAergic synapse pathways, Axon guidance, cAMP signaling pathway, Ionotropic glutamate receptor pathway, and Metabotropic glutamate receptor group III pathway) were over-represented in KEGG and PANTHER databases. Protein interaction prediction revealed an interactive relationship among the swimbladder-enriched genes and genes involved in sensory perception of sound. This study identified a set of genes and signaling pathways associated with auditory system in the swimbladder of channel catfish and provide resources for further study on the biological and physiological roles in catfish swimbladder. Copyright © 2018 Elsevier Inc. All rights reserved.
Genes and (Common) Pathways Underlying Drug Addiction
Li, Chuan-Yun; Mao, Xizeng; Wei, Liping
2008-01-01
Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280
SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics
2013-01-01
Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. Therefore, based on the peptidomic database of human protein isoforms for proteomics experiments, our objective is to design a new alternative splicing database to 1) provide more coverage of genes, transcripts and alternative splicing, 2) exclusively focus on the alternative splicing, and 3) perform context-specific alternative splicing analysis. Results We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. The SASD is a comprehensive database containing 56,630 genes (Ensembl gene IDs), 95,260 transcripts (Ensembl transcript IDs), and 11,919,779 Alternative Splicing peptides, and also covering about 1,956 pathways, 6,704 diseases, 5,615 drugs, and 52 organs. The database has a web-based user interface that allows users to search, display and download a single gene/transcript/protein, custom gene set, pathway, disease, drug, organ related alternative splicing. Moreover, the quality of the database was validated with comparison to other known databases and two case studies: 1) in liver cancer and 2) in breast cancer. Conclusions The SASD provides the scientific community with an efficient means to identify, analyze, and characterize novel Exon Skipping and Intron Retention protein isoforms from mass spectrometry and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. PMID:24267658
Zhao, Qiang; Yue, Shengjie; Bilal, Muhammad; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-12-31
Bacteria belonging to the genera Sphingomonas and Sphingobium are known for their ability to catabolize aromatic compounds. In this study, we analyzed the whole genome sequences of 26 strains in the genera Sphingomonas and Sphingobium to gain insight into dissemination of bioremediation capabilities, biodegradation potential, central pathways and genome plasticity. Phylogenetic analysis revealed that both Sphingomonas sp. strain BHC-A and Sphingomonas paucimobilis EPA505 should be placed in the genus Sphingobium. The bph and xyl gene cluster was found in 6 polycyclic aromatic hydrocarbons-degrading strains. Transposase and IS coding genes were found in the 6 gene clusters, suggesting the mobility of bph and xyl gene clusters. β-ketoadipate and homogentisate pathways were the main central pathways in Sphingomonas and Sphingobium strains. A large number of oxygenase coding genes were predicted in the 26 genomes, indicating a huge biodegradation potential of the Sphingomonas and Sphingobium strains. Horizontal gene transfer related genes and prophages were predicted in the analyzed strains, suggesting the ongoing evolution and shaping of the genomes. Analysis of the 26 genomes in this work contributes to the understanding of dispersion of bioremediation capabilities, bioremediation potential and genome plasticity in strains belonging to the genera Sphingomonas and Sphingobium. Copyright © 2017 Elsevier B.V. All rights reserved.
Linking disease-associated genes to regulatory networks via promoter organization
Döhr, S.; Klingenhoff, A.; Maier, H.; de Angelis, M. Hrabé; Werner, T.; Schneider, R.
2005-01-01
Pathway- or disease-associated genes may participate in more than one transcriptional co-regulation network. Such gene groups can be readily obtained by literature analysis or by high-throughput techniques such as microarrays or protein-interaction mapping. We developed a strategy that defines regulatory networks by in silico promoter analysis, finding potentially co-regulated subgroups without a priori knowledge. Pairs of transcription factor binding sites conserved in orthologous genes (vertically) as well as in promoter sequences of co-regulated genes (horizontally) were used as seeds for the development of promoter models representing potential co-regulation. This approach was applied to a Maturity Onset Diabetes of the Young (MODY)-associated gene list, which yielded two models connecting functionally interacting genes within MODY-related insulin/glucose signaling pathways. Additional genes functionally connected to our initial gene list were identified by database searches with these promoter models. Thus, data-driven in silico promoter analysis allowed integrating molecular mechanisms with biological functions of the cell. PMID:15701758
USDA-ARS?s Scientific Manuscript database
The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate and evaluate the expression of candidate JAK-STAT pathway genes and their regulators and interactor...
Chang, Kai-Wei; Huang, Nancy A; Liu, I-Hsuan; Wang, Yi-Hui; Wu, Ping; Tseng, Yen-Tzu; Hughes, Michael W; Jiang, Ting Xin; Tsai, Mong-Hsun; Chen, Chien-Yu; Oyang, Yen-Jen; Lin, En-Chung; Chuong, Cheng-Ming; Lin, Shau-Ping
2015-01-23
Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study concerning the effects of signaling pathways and histone signatures on enhancers suggests that voltage-gated calcium signaling may be involved in early skin development. This work lays the foundation for studying the roles of these gene pathways and their genomic regulation during the establishment of skin regional specificity.
Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang
2017-04-17
Dianthus spiculifolius , a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation.
Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang
2017-01-01
Dianthus spiculifolius, a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation. PMID:28420173
Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks
Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui
2017-01-01
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295
Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Ingvarsson, Pär K.; Zhang, Deqiang
2015-01-01
Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P< 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R2). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q ≤ 0.10), representing 38 SNPs from nine genes, and its average effect (R2 = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene–gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding. PMID:25428896
Defining the gene expression signature of rhabdomyosarcoma by meta-analysis
Romualdi, Chiara; De Pittà, Cristiano; Tombolan, Lucia; Bortoluzzi, Stefania; Sartori, Francesca; Rosolen, Angelo; Lanfranchi, Gerolamo
2006-01-01
Background Rhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore a better characterization of RMS gene expression profile would represent a considerable advance. The availability of publicly available gene expression datasets have opened up new challenges especially for the integration of data generated by different research groups and different array platforms with the purpose of obtaining new insights on the biological process investigated. Results In this work we performed a meta-analysis on four microarray and two SAGE datasets of gene expression data on RMS in order to evaluate the degree of agreement of the biological results obtained by these different studies and to identify common regulatory pathways that could be responsible of tumor growth. Regulatory pathways and biological processes significantly enriched has been investigated and a list of differentially meta-profiles have been identified as possible candidate of aggressiveness of RMS. Conclusion Our results point to a general down regulation of the energy production pathways, suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS and with its resistance to most of the therapeutic treatments. In this context, different isoforms of the ANT gene have been consistently identified for the first time as differentially expressed in RMS. This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These new insights in the biological processes responsible of RMS growth and development demonstrate the effective advantage of the use of integrated analysis of gene expression studies. PMID:17090319
Reconstruction of metabolic pathways for the cattle genome
Seo, Seongwon; Lewin, Harris A
2009-01-01
Background Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. Results An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. Conclusion CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology. PMID:19284618
MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus
Hyun, Jeongeun; Park, Jungwook; Wang, Sihyung; Kim, Jieun; Lee, Hyun-Hee; Seo, Young-Su; Jung, Youngmi
2016-01-01
Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis. PMID:27322257
Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.
Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying
2017-06-01
Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.
GARNET--gene set analysis with exploration of annotation relations.
Rho, Kyoohyoung; Kim, Bumjin; Jang, Youngjun; Lee, Sanghyun; Bae, Taejeong; Seo, Jihae; Seo, Chaehwa; Lee, Jihyun; Kang, Hyunjung; Yu, Ungsik; Kim, Sunghoon; Lee, Sanghyuk; Kim, Wan Kyu
2011-02-15
Gene set analysis is a powerful method of deducing biological meaning for an a priori defined set of genes. Numerous tools have been developed to test statistical enrichment or depletion in specific pathways or gene ontology (GO) terms. Major difficulties towards biological interpretation are integrating diverse types of annotation categories and exploring the relationships between annotation terms of similar information. GARNET (Gene Annotation Relationship NEtwork Tools) is an integrative platform for gene set analysis with many novel features. It includes tools for retrieval of genes from annotation database, statistical analysis & visualization of annotation relationships, and managing gene sets. In an effort to allow access to a full spectrum of amassed biological knowledge, we have integrated a variety of annotation data that include the GO, domain, disease, drug, chromosomal location, and custom-defined annotations. Diverse types of molecular networks (pathways, transcription and microRNA regulations, protein-protein interaction) are also included. The pair-wise relationship between annotation gene sets was calculated using kappa statistics. GARNET consists of three modules--gene set manager, gene set analysis and gene set retrieval, which are tightly integrated to provide virtually automatic analysis for gene sets. A dedicated viewer for annotation network has been developed to facilitate exploration of the related annotations. GARNET (gene annotation relationship network tools) is an integrative platform for diverse types of gene set analysis, where complex relationships among gene annotations can be easily explored with an intuitive network visualization tool (http://garnet.isysbio.org/ or http://ercsb.ewha.ac.kr/garnet/).
Keel, Brittney N; Zarek, Christina M; Keele, John W; Kuehn, Larry A; Snelling, Warren M; Oliver, William T; Freetly, Harvey C; Lindholm-Perry, Amanda K
2018-06-04
Feed intake and body weight gain are economically important inputs and outputs of beef production systems. The purpose of this study was to discover differentially expressed genes that will be robust for feed intake and gain across a large segment of the cattle industry. Transcriptomic studies often suffer from issues with reproducibility and cross-validation. One way to improve reproducibility is by integrating multiple datasets via meta-analysis. RNA sequencing (RNA-Seq) was performed on longissimus dorsi muscle from 80 steers (5 cohorts, each with 16 animals) selected from the outside fringe of a bivariate gain and feed intake distribution to understand the genes and pathways involved in feed efficiency. In each cohort, 16 steers were selected from one of four gain and feed intake phenotypes (n = 4 per phenotype) in a 2 × 2 factorial arrangement with gain and feed intake as main effect variables. Each cohort was analyzed as a single experiment using a generalized linear model and results from the 5 cohort analyses were combined in a meta-analysis to identify differentially expressed genes (DEG) across the cohorts. A total of 51 genes were differentially expressed for the main effect of gain, 109 genes for the intake main effect, and 11 genes for the gain x intake interaction (P corrected < 0.05). A jackknife sensitivity analysis showed that, in general, the meta-analysis produced robust DEGs for the two main effects and their interaction. Pathways identified from over-represented genes included mitochondrial energy production and oxidative stress pathways for the main effect of gain due to DEG including GPD1, NDUFA6, UQCRQ, ACTC1, and MGST3. For intake, metabolic pathways including amino acid biosynthesis and degradation were identified, and for the interaction analysis the pathways identified included GADD45, pyridoxal 5'phosphate salvage, and caveolar mediated endocytosis signaling. Variation among DEG identified by cohort suggests that environment and breed may play large roles in the expression of genes associated with feed efficiency in the muscle of beef cattle. Meta-analyses of transcriptome data from groups of animals over multiple cohorts may be necessary to elucidate the genetics contributing these types of biological phenotypes.
Saili, Katerine S.; Tilton, Susan C.; Waters, Katrina M.; Tanguay, Robert L.
2013-01-01
Transient developmental exposure to 0.1 μM bisphenol A (BPA) results in larval zebrafish hyperactivity and learning impairments in the adult, while exposure to 80 μM BPA results in teratogenic responses, including craniofacial abnormalities and edema. The mode of action underlying these effects is unclear. We used global gene expression analysis to identify candidate genes and signaling pathways that mediate BPA’s developmental toxicity in zebrafish. Exposure concentrations were selected and anchored to the positive control, 17β-estradiol (E2), based on previously determined behavioral or teratogenic phenotypes. Functional analysis of differentially expressed genes revealed distinct expression profiles at 24 hours post fertilization for 0.1 versus 80 μM BPA and 0.1 versus 15 μM E2 exposure, identification of prothrombin activation as a top canonical pathway impacted by both 0.1 μM BPA and 0.1 μM E2 exposure, and suppressed expression of several genes involved in nervous system development and function following 0.1 μM BPAexposure. PMID:23557687
Genes and gene networks implicated in aggression related behaviour.
Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans
2014-10-01
Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.
Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy
Murcia, Oscar; Juárez, Miriam; Hernández-Illán, Eva; Egoavil, Cecilia; Giner-Calabuig, Mar; Rodríguez-Soler, María; Jover, Rodrigo
2016-01-01
Molecular advances support the existence of an alternative pathway of colorectal carcinogenesis that is based on the hypermethylation of specific DNA regions that silences tumor suppressor genes. This alternative pathway has been called the serrated pathway due to the serrated appearance of tumors in histological analysis. New classifications for colorectal cancer (CRC) were proposed recently based on genetic profiles that show four types of molecular alterations: BRAF gene mutations, KRAS gene mutations, microsatellite instability, and hypermethylation of CpG islands. This review summarizes what is known about the serrated pathway of CRC, including CRC molecular and clinical features, prognosis, and response to chemotherapy. PMID:27053844
Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L.; Roberts, Brian S.; Arthur, William T.; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing
2014-01-01
Background Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. Results We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Conclusion Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells. PMID:24651522
Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing
2014-01-01
Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.
Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M
2014-04-16
The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.
Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor
Chaemsaithong, Piya; Madan, Ichchha; Romero, Roberto; Than, Nandor G; Tarca, Adi L; Draghici, Sorin; Bhatti, Gaurav; Mazor, Moshe; Kim, Chong Jai; Hassan, Sonia S; Chaiworapongsa, Tinnakorn
2014-01-01
Objective The molecular basis of failure to progress in labor is poorly understood. This study was undertaken to characterize the myometrial transcriptome of patients with an arrest of dilatation (AODIL). Study design Human myometrium was prospectively collected from women in the following groups: 1) spontaneous term labor (TL; n=29); and 2) arrest of dilatation (AODIL; n=14). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated student t-test and false discovery rate adjustment were used for analysis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of selected genes was performed in an independent sample set. Pathway analysis was performed on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database using Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). The Metacore knowledge base was also mined for pathway analysis. Results 1) 42 genes differentially expressed were identified in women with an AODIL; 2) gene ontology analysis indicated enrichment of biological processes, which included: regulation of angiogenesis, response to hypoxia, inflammatory response, and chemokine-mediated signaling pathway. Enriched molecular functions included: transcription repressor activity, Heat shock protein (Hsp) 90 binding, and nitric oxide synthase (NOS) activity; 3) Metacore analysis identified immune response chemokine (C-C motif) ligand 2 (CCL2) signaling, muscle contraction regulation of eNOS activity in endothelial cells, and Triiodothyronine and Thyroxine signaling as significantly over-represented (FDR<0.05); 4) qRT-PCR confirmed overexpression of Nitric oxide synthase 3 NOS3; hypoxic ischemic factor (HIF1A), Chemokine (C-C motif) ligand 2 (CCL2); angiopoietin-like 4 (ANGPTL4), ADAM metallopeptidase with thrombospondin type 1, motif 9 (ADAMTS9), G protein-coupled receptor 4 (GPR4), metallothionein 1A (MT1A), MT2A, selectin E (SELE) in an AODIL. Conclusion The myometrium of women with arrest of dilatation have a stereotypic transcriptome profile. This disorder was associated with a pattern of gene expression involved in muscle contraction, an inflammatory response, and hypoxia. This is the first comprehensive and unbiased examination of the molecular basis of an AODIL. PMID:23893668
Early immune response and regulation of IL-2 receptor subunits
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto
2005-01-01
Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.
Early immune response and regulation of IL-2 receptor subunits.
Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J B; Cogoli, Augusto
2005-09-01
Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.
Pathway analyses and understanding disease associations
Liu, Yu; Chance, Mark R
2013-01-01
High throughput technologies have been applied to investigate the underlying mechanisms of complex diseases, identify disease-associations and help to improve treatment. However it is challenging to derive biological insight from conventional single gene based analysis of “omics” data from high throughput experiments due to sample and patient heterogeneity. To address these challenges, many novel pathway and network based approaches were developed to integrate various “omics” data, such as gene expression, copy number alteration, Genome Wide Association Studies, and interaction data. This review will cover recent methodological developments in pathway analysis for the detection of dysregulated interactions and disease-associated subnetworks, prioritization of candidate disease genes, and disease classifications. For each application, we will also discuss the associated challenges and potential future directions. PMID:24319650
Differential Gene Expression Profiling of Mouse Uterine Luminal Epithelium During Periimplantation
Xiao, Shuo; Diao, Honglu; Zhao, Fei; Li, Rong; He, Naya
2014-01-01
Uterine luminal epithelium (LE) is critical for establishing uterine receptivity. Microarray analysis of gestation day 3.5 (D3.5, preimplantation) and D4.5 (postimplantation) LE from natural pregnant mice identified 382 upregulated and 245 downregulated genes in the D4.5 LE. Gene Ontology annotation grouped 186 upregulated and 103 downregulated genes into 22 and 15 enriched subcategories, respectively, in regulating DNA-dependent transcription, metabolism, cell morphology, ion transport, immune response, apoptosis, signal transduction, and so on. Signaling pathway analysis revealed 99 genes in 21 significantly changed signaling pathways, with 14 of these pathways involved in metabolism. In situ hybridization confirmed the temporal expression of 12 previously uncharacterized genes, including Atp6v0a4, Atp6v0d2, F3, Ggh, Tmprss11d, Tmprss13, Anpep, Fxyd4, Naip5, Npl, Nudt19, and Tpm1 in the periimplantation uterus. This study provides a comprehensive picture of the differentially expressed genes in the periimplantation LE to help understand the molecular mechanism of LE transformation upon establishment of uterine receptivity. PMID:23885106
Toll like receptors gene expression of human keratinocytes cultured of severe burn injury.
Cornick, Sarita Mac; Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Cezillo, Marcus V B; Ferreira, Lydia Masako; Gragnani, Alfredo
2014-01-01
To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0). This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.
Differential gene expression related to Nora virus infection of Drosophila melanogaster
Cordes, Ethan J.; Licking-Murray, Kellie D; Carlson, Kimberly A.
2013-01-01
Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. PMID:23603562
Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Caan, Bette J.; Potter, John D.; Wolff, Roger K.
2012-01-01
There is considerable biologic plausibility to the hypothesis that genetic variability in pathways involved in insulin signaling and energy homeostasis may modulate dietary risk associated with colorectal cancer. We utilized data from 2 population-based case-control studies of colon (n = 1,574 cases, 1,970 controls) and rectal (n = 791 cases, 999 controls) cancer to evaluate genetic variation in candidate SNPs identified from 9 genes in a candidate pathway: PDK1, RP6KA1, RPS6KA2, RPS6KB1, RPS6KB2, PTEN, FRAP1 (mTOR), TSC1, TSC2, Akt1, PIK3CA, and PRKAG2 with dietary intake of total energy, carbohydrates, fat, and fiber. We employed SNP, haplotype, and multiple-gene analysis to evaluate associations. PDK1 interacted with dietary fat for both colon and rectal cancer and with dietary carbohydrates for colon cancer. Statistically significant interaction with dietary carbohydrates and rectal cancer was detected by haplotype analysis of PDK1. Evaluation of dietary interactions with multiple genes in this candidate pathway showed several interactions with pairs of genes: Akt1 and PDK1, PDK1 and PTEN, PDK1 and TSC1, and PRKAG2 and PTEN. Analyses show that genetic variation influences risk of colorectal cancer associated with diet and illustrate the importance of evaluating dietary interactions beyond the level of single SNPs or haplotypes when a biologically relevant candidate pathway is examined. PMID:21999454
Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L
2014-02-15
Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.
Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M
2016-01-01
DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P < 5.09 × 10(-6)), MSH5 (P < 5.09 × 10(-6)), and BRCA2 (P = 5.70 × 10(-6)). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.
Cappi, C; Brentani, H; Lima, L; Sanders, S J; Zai, G; Diniz, B J; Reis, V N S; Hounie, A G; Conceição do Rosário, M; Mariani, D; Requena, G L; Puga, R; Souza-Duran, F L; Shavitt, R G; Pauls, D L; Miguel, E C; Fernandez, T V
2016-01-01
Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein–protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10−8 per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular biological pathways and functions. PMID:27023170
Malki, Karim; Mineur, Yann S; Tosto, Maria Grazia; Campbell, James; Karia, Priya; Jumabhoy, Irfan; Sluyter, Frans; Crusio, Wim E; Schalkwyk, Leonard C
2015-04-03
BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder.
Disentangling the multigenic and pleiotropic nature of molecular function
2015-01-01
Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917
Study of formation of green eggshell color in ducks through global gene expression.
Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu
2018-01-01
The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.
Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA.
Yin, Li; Cai, Zhihui; Zhu, Baoan; Xu, Cunshuan
2018-02-14
Hepatocellular carcinoma (HCC) is a devastating disease worldwide. Though many efforts have been made to elucidate the process of HCC, its molecular mechanisms of development remain elusive due to its complexity. To explore the stepwise carcinogenic process from pre-neoplastic lesions to the end stage of HCC, we employed weighted gene co-expression network analysis (WGCNA) which has been proved to be an effective method in many diseases to detect co-expressed modules and hub genes using eight pathological stages including normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, very early and early, advanced HCC and very advanced HCC. Among the eight consecutive pathological stages, five representative modules are selected to perform canonical pathway enrichment and upstream regulator analysis by using ingenuity pathway analysis (IPA) software. We found that cell cycle related biological processes were activated at four neoplastic stages, and the degree of activation of the cell cycle corresponded to the deterioration degree of HCC. The orange and yellow modules enriched in energy metabolism, especially oxidative metabolism, and the expression value of the genes decreased only at four neoplastic stages. The brown module, enriched in protein ubiquitination and ephrin receptor signaling pathways, correlated mainly with the very early stage of HCC. The darkred module, enriched in hepatic fibrosis/hepatic stellate cell activation, correlated with the cirrhotic stage only. The high degree hub genes were identified based on the protein-protein interaction (PPI) network and were verified by Kaplan-Meier survival analysis. The novel five high degree hub genes signature that was identified in our study may shed light on future prognostic and therapeutic approaches. Our study brings a new perspective to the understanding of the key pathways and genes in the dynamic changes of HCC progression. These findings shed light on further investigations.
Qiao, Yan; Zhang, Jinjin; Zhang, Jinwen; Wang, Zhiwei; Ran, An; Guo, Haixia; Wang, Di; Zhang, Junlian
2017-02-01
Light is a major environmental factor that affects metabolic pathways and stimulates the production of secondary metabolites in potato. However, adaptive changes in potato metabolic pathways and physiological functions triggered by light are partly explained by gene expression changes. Regulation of secondary metabolic pathways in potato has been extensively studied at transcriptional level, but little is known about the mechanisms of post-transcriptional regulation by miRNAs. To identify light-responsive miRNAs/mRNAs and construct putative metabolism pathways regulated by the miRNA-mRNA pairs, an integrated omics (sRNAome and transcriptome) analysis was performed to potato under light stimulus. A total of 31 and 48 miRNAs were identified to be differentially expressed in the leaves and tubers, respectively. Among the DEGs, 1353 genes in the leaves and 1841 genes in the tubers were upregulated, while 1595 genes in the leaves and 897 genes in the tubers were downregulated by light. Mapman enrichment analyses showed that genes related to MVA pathway, alkaloids-like, phenylpropanoids, flavonoids, and carotenoids metabolism were significantly upregulated, while genes associated with major CHO metabolism were repressed in the leaves and tubers. Integrated miRNA and mRNA profiles revealed that light-responsive miRNAs are important regulators in alkaloids metabolism, UMP salvage, lipid biosynthesis, and cellulose catabolism. Moreover, several miRNAs may participate in glycoalkaloids metabolism via JA signaling pathway, UDP-glucose biosynthesis and hydroxylation reaction. This study provides a global view of miRNA and mRNA expression profiles in potato response to light, our results suggest that miRNAs might play important roles in secondary metabolic pathways, especially in glycoalkaloid biosynthesis. The findings will enlighten us on the genetic regulation of secondary metabolite pathways and pave the way for future application of genetically engineered potato.
Ding, Xiang; Zhu, Hongqing; Hou, Yiling; Hou, Wanru; Zhang, Nan; Fu, Lei
2017-01-01
The mechanism of the immunoregulatory activities of polysaccharide is still not clear. Here, we performed the B-cell, T-cell, and macrophage cell proliferation, the cell cycle analysis of macrophage cells, sequenced the transcriptomes of control group macrophages, and Boletus speciosus Frost polysaccharide (BSF-1) group macrophages using Illumina sequencing technology to identify differentially expressed genes (DEGs) to determine the molecular mechanisms of immunomodulatory activity of BSF-1 in macrophages. These results suggested that BSF-1 could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell division. A total of 12,498,414 and 11,840,624 bp paired-end reads were obtained for the control group and BSF-1 group, respectively, and they corresponded to a total size of 12.5 G bp and 11.8 G bp, respectively, after the low-quality reads and adapter sequences were removed. Approximately 81.83% of the total number of genes (8,257) were expressed reads per kilobase per million mapped reads (RPKM ≥1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 group. A gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functions. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase (MAPK) signaling pathways are significantly enriched for DEGs between the two cell groups. An analysis of transcriptome resources enabled us to examine gene expression profiles, verify differential gene expression, and select candidate signaling pathways as the mechanisms of the immunomodulatory activity of BSF-1. Based on the experimental data, we believe that the significant antitumor activities of BSF-1 in vivo mainly involve the MAPK signaling pathways. Boletus speciosus Frost-1 (BSF-1) could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell divisionApproximately 81.83% of the total number of genes (8257) were expressed (reads per kilobase per million mapped reads [RPKM] =1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 groupA gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functionsA Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase signaling pathways are significantly enriched for DEGs between the two cell groups. Abbreviations used: BSF-1: Boletus speciosus Frost polysaccharide.
Su, Mei-Tsz; Lin, Sheng-Hsiang; Chen, Yi-Chi; Kuo, Pao-Lin
2014-06-01
Both vascular endothelial growth factor A (VEGFA) and endocrine gland-derived vascular endothelial growth factor (EG-VEGF) systems play major roles in angiogenesis. A body of evidence suggests VEGFs regulate critical processes during pregnancy and have been associated with recurrent pregnancy loss (RPL). However, little information is available regarding the interaction of these two major major angiogenesis-related systems in early human pregnancy. This study was conducted to investigate the association of gene polymorphisms and gene-gene interaction among genes in VEGFA and EG-VEGF systems and idiopathic RPL. A total of 98 women with history of idiopathic RPL and 142 controls were included, and 5 functional SNPs selected from VEGFA, KDR, EG-VEGF (PROK1), PROKR1 and PROKR2 were genotyped. We used multifactor dimensionality reduction (MDR) analysis to choose a best model and evaluate gene-gene interactions. Ingenuity pathways analysis (IPA) was introduced to explore possible complex interactions. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL (P<0.01). The MDR test revealed that the KDR (Q472H) polymorphism was the best loci to be associated with RPL (P=0.02). IPA revealed EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3 signaling pathways. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL. EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3.
Modeling biochemical pathways in the gene ontology
Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...
2016-09-01
The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less
This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...
Friedenberg, Steven G; Chdid, Lhoucine; Keene, Bruce; Sherry, Barbara; Motsinger-Reif, Alison; Meurs, Kathryn M
2016-07-01
OBJECTIVE To identify cardiac tissue genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy (DCM). ANIMALS 8 dogs with and 5 dogs without DCM. PROCEDURES Following euthanasia, samples of left ventricular myocardium were collected from each dog. Total RNA was extracted from tissue samples, and RNA sequencing was performed on each sample. Samples from dogs with and without DCM were grouped to identify genes that were differentially regulated between the 2 populations. Overrepresentation analysis was performed on upregulated and downregulated gene sets to identify altered molecular pathways in dogs with DCM. RESULTS Genes involved in cellular energy metabolism, especially metabolism of carbohydrates and fats, were significantly downregulated in dogs with DCM. Expression of cardiac structural proteins was also altered in affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that RNA sequencing may provide important insights into the pathogenesis of DCM in dogs and highlight pathways that should be explored to identify causative mutations and develop novel therapeutic interventions.
T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly
2017-12-20
Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.
Mason, Clifford W; Swaan, Peter W; Weiner, Carl P
2006-06-01
The transition from myometrial quiescence to activation is poorly understood, and the analysis of array data is limited by the available data mining tools. We applied functional analysis and logical operations along regulatory gene networks to identify molecular processes and pathways underlying quiescence and activation. We analyzed some 18,400 transcripts and variants in guinea pig myometrium at stages corresponding to quiescence and activation, and compared them to the nonpregnant (control) counterpart using a functional mapping tool, MetaCore (GeneGo, St Joseph, MI) to identify novel gene networks composed of biological pathways during mid (MP) and late (LP) pregnancy. Genes altered during quiescence and or activation were identified following gene specific comparisons with myometrium from nonpregnant animals, and then linked to curated pathways and formulated networks. The MP and LP networks were subtracted from each other to identify unique genomic events during those periods. For example, changes 2-fold or greater in genes mediating protein biosynthesis, programmed cell death, microtubule polymerization, and microtubule based movement were noted during the transition to LP. We describe a novel approach combining microarrays and genetic data to identify networks associated with normal myometrial events. The resulting insights help identify potential biomarkers and permit future targeted investigations of these pathways or networks to confirm or refute their importance.
Jin, Shuan; Zhu, Wenhua; Li, Jun
2018-01-01
The purpose of this study was to identify predictive biomarkers used for clinical therapy and prognostic evaluation of high-risk gastrointestinal stromal tumors (GISTs). In this study, microarray data GSE31802 were used to identify differentially expressed genes (DEGs) between high-risk GISTs and low-risk GISTs. Then, enrichment analysis of DEGs was conducted based on the gene ontology and kyoto encyclopedia of genes and genomes pathway database. In addition, the transcription factors and cancer-related genes in DEGs were screened according to the TRANSFAC, TSGene, and TAG database. Finally, protein-protein interaction (PPI) network was constructed and analyzed to look for critical genes involved in high-risk GISTs. A total of forty DEGs were obtained and these genes were mainly involved in four pathways, including melanogenesis, neuroactive ligand-receptor interaction, malaria, and hematopoietic cell lineage. The enriched biological processes were related to the regulation of insulin secretion, integrin activation, and neuropeptide signaling pathway. Transcription factor analysis of DEGs indicated that POU domain, class 2, associating factor 1 (POU2AF1) was significantly downregulated in high-risk GISTs. By constructing the PPI network of DEGs, ten genes with high degrees formed local networks, such as PNOC, P2RY14, and SELP. Four genes as POU2AF1, PNOC, P2RY14, and SELP might be used as biomarkers for prognosis of high-risk GISTs.
Rai-Bhogal, Ravneet; Ahmad, Eizaaz; Li, Hongyan; Crawford, Dorota A
2018-03-01
The cellular and molecular events that take place during brain development play an important role in governing function of the mature brain. Lipid-signalling molecules such as prostaglandin E 2 (PGE 2 ) play an important role in healthy brain development. Abnormalities along the COX-PGE 2 signalling pathway due to genetic or environmental causes have been linked to autism spectrum disorder (ASD). This study aims to evaluate the effect of altered COX-PGE 2 signalling on development and function of the prenatal brain using male mice lacking cyclooxygenase-1 and cyclooxygenase-2 (COX-1 -/- and COX-2 -/- ) as potential model systems of ASD. Microarray analysis was used to determine global changes in gene expression during embryonic days 16 (E16) and 19 (E19). Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were implemented to identify affected developmental genes and cellular processes. We found that in both knockouts the brain at E16 had nearly twice as many differentially expressed genes, and affected biological pathways containing various ASD-associated genes important in neuronal function. Interestingly, using GeneMANIA and Cytoscape we also show that the ASD-risk genes identified in both COX-1 -/- and COX-2 -/- models belong to protein-interaction networks important for brain development despite of different cellular localization of these enzymes. Lastly, we identified eight genes that belong to the Wnt signalling pathways exclusively in the COX-2 -/- mice at E16. The level of PKA-phosphorylated β-catenin (S552), a major activator of the Wnt pathway, was increased in this model, suggesting crosstalk between the COX-2-PGE 2 and Wnt pathways during early brain development. Overall, these results provide further molecular insight into the contribution of the COX-PGE 2 pathways to ASD and demonstrate that COX-1 -/- and COX-2 -/- animals might be suitable new model systems for studying the disorders. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2012-01-01
Background Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. Results In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath. Conclusions We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that often hamper effective use of pathway databases. We have included four organisms in the current release of IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath. PMID:23282057
Dong, Zheng; Zhou, Jingru; Xu, Xia; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Zhang, Juan; Yuan, Ziyu; Yang, Yajun; Wang, Xiaofeng; Pang, Yafei; Jin, Li; Zou, Hejian; Wang, Jiucun
2018-03-01
The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with P FDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (P FDR = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (P FDR = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, P FDR = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.
Do, Duy N.; Strathe, Anders B.; Ostersen, Tage; Pant, Sameer D.; Kadarmideen, Haja N.
2014-01-01
Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was used. GWA analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as xin actin-binding repeat-containing protein 2 (XIRP2),tetratricopeptide repeat domain 29 (TTC29),suppressor of glucose, autophagy associated 1 (SOGA1),MAS1,G-protein-coupled receptor (GPCR) kinase 5 (GRK5),prospero-homeobox protein 1 (PROX1),GPCR 155 (GPR155), and FYVE domain containing the 26 (ZFYVE26) were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kbp of SNPs significantly associated with RFI and RFI2 (q-value ≤ 0.2) were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher’s exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05). These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs. PMID:25250046
Borowsky, Alexander T.
2017-01-01
Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products. PMID:28408660
Martyniuk, Christopher J.; Prucha, Melinda S.; Doperalski, Nicholas J.; Antczak, Philipp; Kroll, Kevin J.; Falciani, Francesco; Barber, David S.; Denslow, Nancy D.
2013-01-01
Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. Conclusions This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation. PMID:23527095
Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants
Walworth, Aaron E.; Chai, Benli; Song, Guo-qing
2016-01-01
In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these VcFT downstream genes. These results suggest that VcFT’s down-stream genes appear conserved in blueberry. PMID:27271296
Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.
Walworth, Aaron E; Chai, Benli; Song, Guo-Qing
2016-01-01
In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these VcFT downstream genes. These results suggest that VcFT's down-stream genes appear conserved in blueberry.
Huang, You-Jun; Liu, Li-Li; Huang, Jian-Qin; Wang, Zheng-Jia; Chen, Fang-Fang; Zhang, Qi-Xiang; Zheng, Bing-Song; Chen, Ming
2013-10-10
Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis. Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress, and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which are meaningful to understand the hickory specific seasonal flowering mechanism better. Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the analysis provides a potential FLC-like gene based vernalization pathway and an 'AC' model for pistillate flower development in hickory. This work provides an available framework for pistillate flower development in hickory, which is significant for insight into regulation of flowering and floral development of woody plants.
2013-01-01
Background Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis. Results Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress, and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which are meaningful to understand the hickory specific seasonal flowering mechanism better. Conclusions Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the analysis provides a potential FLC-like gene based vernalization pathway and an 'AC’ model for pistillate flower development in hickory. This work provides an available framework for pistillate flower development in hickory, which is significant for insight into regulation of flowering and floral development of woody plants. PMID:24106755
Ganapathi, T. R.
2017-01-01
Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana. PMID:28234982
Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review.
Tan, Benjamin H L; Ross, James A; Kaasa, Stein; Skorpen, Frank; Fearon, Kenneth C H
2011-04-01
Cancer cachexia is a polygenic and complex syndrome. Genetic variations in regulation of the inflammatory response, muscle and fat metabolic pathways, and pathways in appetite regulation are likely to contribute to the susceptibility or resistance to developing cancer cachexia. A systematic search of Medline and EmBase databases, covering 1986-2008 was performed for potential candidate genes/genetic polymorphisms relating to cancer cachexia. Related genes were then identified using pathway functional analysis software. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Genes with variants which had functional or clinical associations with cachexia and replicated in at least one study were entered into pathway analysis software to reveal possible network associations between genes. A total of 184 polymorphisms with functional or clinical relevance to cancer cachexia were identified in 92 candidate genes. Of these, 42 polymorphisms (in 33 genes) were replicated in more than one study with 13 polymorphisms found to influence two or more hallmarks of cachexia (i.e. inflammation, loss of fat mass and/or lean mass and reduced survival). Thirty-three genes were found to be significantly interconnected in two major networks with four genes (ADIPOQ, IL6, NFKB1 and TLR4) interlinking both networks. Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides an initial framework to select genes/polymorphisms for further study in cancer cachexia, and to develop their potential as susceptibility biomarkers of developing cachexia.
2014-01-01
Background Our current knowledge of tooth development derives mainly from studies in mice, which have only one set of non-replaced teeth, compared with the diphyodont dentition in humans. The miniature pig is also diphyodont, making it a valuable alternative model for understanding human tooth development and replacement. However, little is known about gene expression and function during swine odontogenesis. The goal of this study is to undertake the survey of differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs. The identification of genes related to diphyodont development should lead to a better understanding of morphogenetic patterns and the mechanisms of diphyodont replacement in large animal models and humans. Results The temporal gene expression profiles during early diphyodont development in miniature pigs were detected with the Affymetrix Porcine GeneChip. The gene expression data were further evaluated by ANOVA as well as pathway and STC analyses. A total of 2,053 genes were detected with differential expression. Several signal pathways and 151 genes were then identified through the construction of pathway and signal networks. Conclusions The gene expression profiles indicated that spatio-temporal down-regulation patterns of gene expression were predominant; while, both dynamic activation and inhibition of pathways occurred during the morphogenesis of diphyodont dentition. Our study offers a mechanistic framework for understanding dynamic gene regulation of early diphyodont development and provides a molecular basis for studying teeth development, replacement, and regeneration in miniature pigs. PMID:24498892
A pathway-based view of human diseases and disease relationships.
Li, Yong; Agarwal, Pankaj
2009-01-01
It is increasingly evident that human diseases are not isolated from each other. Understanding how different diseases are related to each other based on the underlying biology could provide new insights into disease etiology, classification, and shared biological mechanisms. We have taken a computational approach to studying disease relationships through 1) systematic identification of disease associated genes by literature mining, 2) associating diseases to biological pathways where disease genes are enriched, and 3) linking diseases together based on shared pathways. We identified 4,195 candidate disease associated genes for 1028 diseases. On average, about 50% of disease associated genes of a disease are statistically mapped to pathways. We generated a disease network which consists of 591 diseases and 6,931 disease relationships. We examined properties of this network and provided examples of novel disease relationships which cannot be readily captured through simple literature search or gene overlap analysis. Our results could potentially provide insights into the design of novel, pathway-guided therapeutic interventions for diseases.
Gene set analysis of purine and pyrimidine antimetabolites cancer therapies.
Fridley, Brooke L; Batzler, Anthony; Li, Liang; Li, Fang; Matimba, Alice; Jenkins, Gregory D; Ji, Yuan; Wang, Liewei; Weinshilboum, Richard M
2011-11-01
Responses to therapies, either with regard to toxicities or efficacy, are expected to involve complex relationships of gene products within the same molecular pathway or functional gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the true underlying biology and may be more appropriate units for analysis of pharmacogenomic studies. Application of such methods to pharmacogenomic studies may enable the detection of more subtle effects of multiple genes in the same pathway that may be missed by assessing each gene individually. A gene set analysis of 3821 gene sets is presented assessing the association between basal messenger RNA expression and drug cytotoxicity using ethnically defined human lymphoblastoid cell lines for two classes of drugs: pyrimidines [gemcitabine (dFdC) and arabinoside] and purines [6-thioguanine and 6-mercaptopurine]. The gene set nucleoside-diphosphatase activity was found to be significantly associated with both dFdC and arabinoside, whereas gene set γ-aminobutyric acid catabolic process was associated with dFdC and 6-thioguanine. These gene sets were significantly associated with the phenotype even after adjusting for multiple testing. In addition, five associated gene sets were found in common between the pyrimidines and two gene sets for the purines (3',5'-cyclic-AMP phosphodiesterase activity and γ-aminobutyric acid catabolic process) with a P value of less than 0.0001. Functional validation was attempted with four genes each in gene sets for thiopurine and pyrimidine antimetabolites. All four genes selected from the pyrimidine gene sets (PSME3, CANT1, ENTPD6, ADRM1) were validated, but only one (PDE4D) was validated for the thiopurine gene sets. In summary, results from the gene set analysis of pyrimidine and purine therapies, used often in the treatment of various cancers, provide novel insight into the relationship between genomic variation and drug response.
Klein, Ronald; Myers, Chelsea E; Buitendijk, Gabriëlle H S; Rochtchina, Elena; Gao, Xiaoyi; de Jong, Paulus T V M; Sivakumaran, Theru A; Burlutsky, George; McKean-Cowdin, Roberta; Hofman, Albert; Iyengar, Sudha K; Lee, Kristine E; Stricker, Bruno H; Vingerling, Johannes R; Mitchell, Paul; Klein, Barbara E K; Klaver, Caroline C W; Wang, Jie Jin
2014-09-01
To describe associations of serum lipid levels and lipid pathway genes to the incidence of age-related macular degeneration (AMD). Meta-analysis. setting: Three population-based cohorts. population: A total of 6950 participants from the Beaver Dam Eye Study (BDES), Blue Mountains Eye Study (BMES), and Rotterdam Study (RS). observation procedures: Participants were followed over 20 years and examined at 5-year intervals. Hazard ratios associated with lipid levels per standard deviation above the mean or associated with each additional risk allele for each lipid pathway gene were calculated using random-effects inverse-weighted meta-analysis models, adjusting for known AMD risk factors. main outcome measures: Incidence of AMD. The average 5-year incidences of early AMD were 8.1%, 15.1%, and 13.0% in the BDES, BMES, and RS, respectively. Substantial heterogeneity in the effect of cholesterol and lipid pathway genes on the incidence and progression of AMD was evident when the data from the 3 studies were combined in meta-analysis. After correction for multiple comparisons, we did not find a statistically significant association between any of the cholesterol measures, statin use, or serum lipid genes and any of the AMD outcomes in the meta-analysis. In a meta-analysis, there were no associations of cholesterol measures, history of statin use, or lipid pathway genes to the incidence and progression of AMD. These findings add to inconsistencies in earlier reports from our studies and others showing weak associations, no associations, or inverse associations of high-density lipoprotein cholesterol and total cholesterol with AMD. Copyright © 2014 Elsevier Inc. All rights reserved.
Ji, S C; Pan, Y T; Lu, Q Y; Sun, Z Y; Liu, Y Z
2014-03-17
The purpose of this study was to identify critical genes associated with septic multiple trauma by comparing peripheral whole blood samples from multiple trauma patients with and without sepsis. A microarray data set was downloaded from the Gene Expression Omnibus (GEO) database. This data set included 70 samples, 36 from multiple trauma patients with sepsis and 34 from multiple trauma patients without sepsis (as a control set). The data were preprocessed, and differentially expressed genes (DEGs) were then screened for using packages of the R language. Functional analysis of DEGs was performed with DAVID. Interaction networks were then established for the most up- and down-regulated genes using HitPredict. Pathway-enrichment analysis was conducted for genes in the networks using WebGestalt. Fifty-eight DEGs were identified. The expression levels of PLAU (down-regulated) and MMP8 (up-regulated) presented the largest fold-changes, and interaction networks were established for these genes. Further analysis revealed that PLAT (plasminogen activator, tissue) and SERPINF2 (serpin peptidase inhibitor, clade F, member 2), which interact with PLAU, play important roles in the pathway of the component and coagulation cascade. We hypothesize that PLAU is a major regulator of the component and coagulation cascade, and down-regulation of PLAU results in dysfunction of the pathway, causing sepsis.
Gao, Qiong; Liao, Meijie; Wang, Yingeng; Li, Bin; Zhang, Zheng; Rong, Xiaojun; Chen, Guiping; Wang, Lan
2015-07-17
Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus), which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform) were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs) in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway.
Gao, Qiong; Liao, Meijie; Wang, Yingeng; Li, Bin; Zhang, Zheng; Rong, Xiaojun; Chen, Guiping; Wang, Lan
2015-01-01
Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus), which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform) were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs) in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway. PMID:26193268
Zinati, Zahra; Shamloo-Dashtpagerdi, Roohollah; Behpouri, Ali
2016-01-01
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characterization of miRNAs along with the corresponding target genes in C. sativus might expand our perspectives on the roles of miRNAs in carotenoid/apocarotenoid biosynthetic pathway. A computational analysis was used to identify miRNAs and their targets using EST (Expressed Sequence Tag) library from mature saffron stigmas. Then, a gene co- expression network was constructed to identify genes which are potentially involved in carotenoid/apocarotenoid biosynthetic pathways. EST analysis led to the identification of two putative miRNAs (miR414 and miR837-5p) along with the corresponding stem- looped precursors. To our knowledge, this is the first report on miR414 and miR837-5p in C. sativus. Co-expression network analysis indicated that miR414 and miR837-5p may play roles in C. sativus metabolic pathways and led to identification of candidate genes including six transcription factors and one protein kinase probably involved in carotenoid/apocarotenoid biosynthetic pathway. Presence of transcription factors, miRNAs and protein kinase in the network indicated multiple layers of regulation in saffron stigma. The candidate genes from this study may help unraveling regulatory networks underlying the carotenoid/apocarotenoid biosynthesis in saffron and designing metabolic engineering for enhanced secondary metabolites. PMID:28261627
Feng, Quanzhou; Liu, Z Lewis; Weber, Scott A; Li, Shizhong
2018-01-01
Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production.
Feng, Quanzhou; Weber, Scott A.; Li, Shizhong
2018-01-01
Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production. PMID:29621349
LENS: web-based lens for enrichment and network studies of human proteins
2015-01-01
Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011
Schachtschneider, Kyle Michael; Liu, Xiaolin; Huang, Wei; Xie, Ming; Hou, Shuisheng
2014-01-01
Lean-type Pekin duck is a commercial breed that has been obtained through long-term selection. Investigation of the differentially expressed genes in breast muscle and skin fat at different developmental stages will contribute to a comprehensive understanding of the potential mechanisms underlying the lean-type Pekin duck phenotype. In the present study, RNA-seq was performed on breast muscle and skin fat at 2-, 4- and 6-weeks of age. More than 89% of the annotated duck genes were covered by our RNA-seq dataset. Thousands of differentially expressed genes, including many important genes involved in the regulation of muscle development and fat deposition, were detected through comparison of the expression levels in the muscle and skin fat of the same time point, or the same tissue at different time points. KEGG pathway analysis showed that the differentially expressed genes clustered significantly in many muscle development and fat deposition related pathways such as MAPK signaling pathway, PPAR signaling pathway, Calcium signaling pathway, Fat digestion and absorption, and TGF-beta signaling pathway. The results presented here could provide a basis for further investigation of the mechanisms involved in muscle development and fat deposition in Pekin duck. PMID:25264787
Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang
2015-08-01
Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng
2013-06-19
The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. Wemore » found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.« less
Huang, Cai; Mipam, Tserang Donko; Li, Jian
2016-01-01
Background Yaks (Bos grunniens) are endemic species that can adapt well to thin air, cold temperatures, and high altitude. These species can survive in harsh plateau environments and are major source of animal production for local residents, being an important breed in the Qinghai–Tibet Plateau. However, compared with ordinary cattle that live in the plains, yaks generally have lower fertility. Investigating the basic physiological molecular features of yak ovary and identifying the biological events underlying the differences between the ovaries of yak and plain cattle is necessary to understand the specificity of yak reproduction. Therefore, RNA-seq technology was applied to analyze transcriptome data comparatively between the yak and plain cattle estrous ovaries. Results After deep sequencing, 3,653,032 clean reads with a total of 4,828,772,880 base pairs were obtained from yak ovary library. Alignment analysis showed that 16992 yak genes mapped to the yak genome, among which, 12,731 and 14,631 genes were assigned to Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, comparison of yak and cattle ovary transcriptome data revealed that 1307 genes were significantly and differentially expressed between the two libraries, wherein 661 genes were upregulated and 646 genes were downregulated in yak ovary. Functional analysis showed that the differentially expressed genes were involved in various Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. GO annotations indicated that the genes related to “cell adhesion,” “hormonal” biological processes, and “calcium ion binding,” “cation transmembrane transport” molecular events were significantly active. KEGG pathway analysis showed that the “complement and coagulation cascade” pathway was the most enriched in yak ovary transcriptome data, followed by the “cytochrome P450” related and “ECM–receptor interaction” pathways. Moreover, several novel pathways, such as “circadian rhythm,” were significantly enriched despite having no evident associations with the reproductive function. Conclusion Our findings provide a molecular resource for further investigation of the general molecular mechanism of yak ovary and offer new insights to understand comprehensively the specificity of yak reproduction. PMID:27044040
Biswas, Nidhan K; Chandra, Vikas; Sarkar-Roy, Neeta; Das, Tapojyoti; Bhattacharya, Rabindra N; Tripathy, Laxmi N; Basu, Sunandan K; Kumar, Shantanu; Das, Subrata; Chatterjee, Ankita; Mukherjee, Ankur; Basu, Pryiadarshi; Maitra, Arindam; Chattopadhyay, Ansuman; Basu, Analabha; Dhara, Surajit
2015-01-21
Neoplastic cells of Glioblastoma multiforme (GBM) may or may not show sustained response to temozolomide (TMZ) chemotherapy. We hypothesize that TMZ chemotherapy response in GBM is predetermined in its neoplastic clones via a specific set of mutations that alter relevant pathways. We describe exome-wide enrichment of variant allele frequencies (VAFs) in neurospheres displaying contrasting phenotypes of sustained versus reversible TMZ-responses in vitro. Enrichment of VAFs was found on genes ST5, RP6KA1 and PRKDC in cells showing sustained TMZ-effect whereas on genes FREM2, AASDH and STK36, in cells showing reversible TMZ-effect. Ingenuity pathway analysis (IPA) revealed that these genes alter cell-cycle, G2/M-checkpoint-regulation and NHEJ pathways in sustained TMZ-effect cells whereas the lysine-II&V/phenylalanine degradation and sonic hedgehog (Hh) pathways in reversible TMZ-effect cells. Next, we validated the likely involvement of the Hh-pathway in TMZ-response on additional GBM neurospheres as well as on GBM patients, by extracting RNA-sequencing-based gene expression data from the TCGA-GBM database. Finally, we demonstrated TMZ-sensitization of a TMZ non-responder neurosphere in vitro by treating them with the FDA-approved pharmacological Hh-pathway inhibitor vismodegib. Altogether, our results indicate that the Hh-pathway impedes sustained TMZ-response in GBM and could be a potential therapeutic target to enhance TMZ-response in this malignancy.
Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing
2018-04-23
Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis and benefit the therapy improvement.
Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula
2014-01-20
Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response.
2014-01-01
Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. Conclusions This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response. PMID:24443808
Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis
Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng
2016-01-01
Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509
Rouigari, Maedeh; Dehbashi, Moein; Ghaedi, Kamran; Pourhossein, Meraj
2018-07-01
For the first time, we used molecular signaling pathway enrichment analysis to determine possible involvement of miR-126 and IRS-1 in neurotrophin pathway. In this prospective study, Validated and predicted targets (targetome) of miR-126 were collected following searching miRtarbase (http://mirtarbase.mbc.nctu.edu.tw/) and miRWalk 2.0 databases, respectively. Then, approximate expression of miR-126 targeting in Glioma tissue was examined using UniGene database (http://www.ncbi. nlm.nih.gov/unigene). In silico molecular pathway enrichment analysis was carried out by DAVID 6.7 database (http://david. abcc.ncifcrf.gov/) to explore which signaling pathway is related to miR-126 targeting and how miR-126 attributes to glioma development. MiR-126 exerts a variety of functions in cancer pathogenesis via suppression of expression of target gene including PI3K, KRAS, EGFL7, IRS-1 and VEGF. Our bioinformatic studies implementing DAVID database, showed the involvement of miR-126 target genes in several signaling pathways including cancer pathogenesis, neurotrophin functions, Glioma formation, insulin function, focal adhesion production, chemokine synthesis and secretion and regulation of the actin cytoskeleton. Taken together, we concluded that miR-126 enhances the formation of glioma cancer stem cell probably via down regulation of IRS-1 in neurotrophin signaling pathway. Copyright© by Royan Institute. All rights reserved.
Yang, Jhung-Ahn; Yang, Sung-Hyun; Kim, Junghee; Kwon, Kae Kyoung; Oh, Hyun-Myung
2017-07-01
Here we report the comparative genomic analysis of strain UJ101 with 15 strains from the family Flavobacteriaceae, using the CGExplorer program. Flavobacteriales bacterium strain UJ101 was isolated from a xanthid crab, Atergatis reticulatus, from the East Sea near Korea. The complete genome of strain UJ101 is a 3,074,209 bp, single, circular chromosome with 30.74% GC content. While the UJ101 genome contains a number of annotated genes for many metabolic pathways, such as the Embden-Meyerhof pathway, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle, genes for the Entner-Douddoroff pathway are not found in the UJ101 genome. Overall, carbon fixation processes were absent but nitrate reduction and denitrification pathways were conserved. The UJ101 genome was compared to genomes from other marine animals (three invertebrate strains and 5 fish strains) and other marine animal- derived genera. Notable results by genome comparisons showed that UJ101 is capable of denitrification and nitrate reduction, and that biotin-thiamine pathway participation varies among marine bacteria; fish-dwelling bacteria, freeliving bacteria, invertebrate-dwelling bacteria, and strain UJ101. Pan-genome analysis of the 16 strains in this study included 7,220 non-redundant genes that covered 62% of the pan-genome. A core-genome of 994 genes was present and consisted of 8% of the genes from the pan-genome. Strain UJ101 is a symbiotic hetero-organotroph isolated from xanthid crab, and is a metabolic generalist with nitrate-reducing abilities but without the ability to synthesize biotin. There is a general tendency of UJ101 and some fish pathogens to prefer thiamine-dependent glycolysis to gluconeogenesis. Biotin and thiamine auxotrophy or prototrophy may be used as important markers in microbial community studies.
Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants
Menon, Ramkumar; Pearce, Brad; Velez, Digna R; Merialdi, Mario; Williams, Scott M; Fortunato, Stephen J; Thorsen, Poul
2009-01-01
Objective To study pathophysiologic pathways in spontaneous preterm birth and possibly the racial disparity associating with maternal and fetal genetic variations, using bioinformatics tools. Methods A large scale candidate gene association study was performed on 1442 SNPs in 130 genes in a case (preterm birth < 36 weeks) control study (term birth > 37 weeks). Both maternal and fetal DNA from Caucasians (172 cases and 198 controls) and 279 African-Americans (82 cases and 197 controls) were used. A single locus association (genotypic) analysis followed by hierarchical clustering was performed, where clustering was based on p values for significant associations within each race. Using Ingenuity Pathway Analysis (IPA) software, known pathophysiologic pathways in both races were determined. Results From all SNPs entered into the analysis, the IPA mapped genes to specific disease functions. Gene variants in Caucasians were implicated in disease functions shared with other known disorders; specifically, dermatopathy, inflammation, and hematological disorders. This may reflect abnormal cervical ripening and decidual hemorrhage. In African-Americans inflammatory pathways were the most prevalent. In Caucasians, maternal gene variants showed the most prominent role in disease functions, whereas in African Americans it was fetal variants. The IPA software was used to generate molecular interaction maps that differed between races and also between maternal and fetal genetic variants. Conclusion Differences at the genetic level revealed distinct disease functions and operational pathways in African Americans and Caucasians in spontaneous preterm birth. Differences in maternal and fetal contributions in pregnancy outcome are also different between African Americans and Caucasians. These results present a set of explicit testable hypotheses regarding genetic associations with preterm birth in African Americans and Caucasians PMID:19527514
Zhang, Ji-Liang; Liu, Min; Zhang, Chun-Nuan; Li, Er-Chao; Fan, Ming-Zhen; Huang, Mao-Xian
2018-07-30
The brain of fish displays sexual dimorphisms and exhibits remarkable sexual plasticity throughout their life span. Although reproductive toxicity of tributyltin (TBT) in fish is well documented in fish, it remains unknown whether TBT interrupts sexual dimorphisms of fish brains. In this work, brain transcriptomic profiles of rare minnow (Gobiocypris rarus) was characterized and sex-biased genes were identified using RNA sequencing. Functional annotation and enrichment analysis were performed to reveal differences of gene products and pathways between the brains of male and female fish. Furthermore, transcriptomic responses of male and female brains to TBT at 10 ng/L were also investigated to understand effects of TBT on brain sexual dimorphisms. Only 345 male-biased and 273 female-biased genes were found in the brains. However, significant female-biased pathways of circadian rhythm and phototransduction were identified in the brains by enrichment analysis. Interestingly, following TBT exposure in the female fish, the circadian rhythm pathway was significantly disrupted based on enrichment analysis, while in the male fish, the phototransduction pathway was significantly disrupted. In the female fish, expression of genes (Per, Cry, Rev-Erb α, Ror, Dec and CK1δ/ε) in the circadian rhythm pathway was down-regulated after TBT exposure; while in the male fish, expression of genes (Rec, GNAT1_2, GNGT1, Rh/opsin, PDE and Arr) in the phototransduction pathway was up-regulated after TBT exposure. Overall, our results not only provide key data on the molecular basis of brain sexual dimorphisms in fish, but also offer valuable resources for investigating molecular mechanisms by which environmental chemicals might influence brain sexual plasticity. Copyright © 2018 Elsevier Inc. All rights reserved.
Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis
Yang, Fang; Wang, Yumei
2018-01-01
Sepsis is a type of systemic inflammatory response syndrome with high morbidity and mortality. Skeletal muscle dysfunction is one of the major complications of sepsis that may also influence the outcome of sepsis. The aim of the present study was to explore and identify potential mechanisms and therapeutic targets of sepsis. Systemic bioinformatics analysis of skeletal muscle gene expression profiles from the Gene Expression Omnibus was performed. Differentially expressed genes (DEGs) in samples from patients with sepsis and control samples were screened out using the limma package. Differential co-expression and coregulation (DCE and DCR, respectively) analysis was performed based on the Differential Co-expression Analysis package to identify differences in gene co-expression and coregulation patterns between the control and sepsis groups. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of DEGs were identified using the Database for Annotation, Visualization and Integrated Discovery, and inflammatory, cancer and skeletal muscle development-associated biological processes and pathways were identified. DCE and DCR analysis revealed several potential therapeutic targets for sepsis, including genes and transcription factors. The results of the present study may provide a basis for the development of novel therapeutic targets and treatment methods for sepsis. PMID:29805480
Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro
2015-01-01
Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715
Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro
2015-05-01
Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. © 2015 American Society of Plant Biologists. All Rights Reserved.
Cao, Chuanwang; Wang, Zhiying; Niu, Changying; Desneux, Nicolas; Gao, Xiwu
2013-01-01
Phenol is a major pollutant in aquatic ecosystems due to its chemical stability, water solubility and environmental mobility. To date, little is known about the molecular modifications of invertebrates under phenol stress. In the present study, we used Solexa sequencing technology to investigate the transcriptome and differentially expressed genes (DEGs) of midges (Chironomus kiinensis) in response to phenol stress. A total of 51,518,972 and 51,150,832 clean reads in the phenol-treated and control libraries, respectively, were obtained and assembled into 51,014 non-redundant (Nr) consensus sequences. A total of 6,032 unigenes were classified by Gene Ontology (GO), and 18,366 unigenes were categorized into 238 Kyoto Encyclopedia of Genes and Genomes (KEGG) categories. These genes included representatives from almost all functional categories. A total of 10,724 differentially expressed genes (P value <0.05) were detected in a comparative analysis of the expression profiles between phenol-treated and control C. kiinensis including 8,390 upregulated and 2,334 downregulated genes. The expression levels of 20 differentially expressed genes were confirmed by real-time RT-PCR, and the trends in gene expression that were observed matched the Solexa expression profiles, although the magnitude of the variations was different. Through pathway enrichment analysis, significantly enriched pathways were identified for the DEGs, including metabolic pathways, aryl hydrocarbon receptor (AhR), pancreatic secretion and neuroactive ligand-receptor interaction pathways, which may be associated with the phenol responses of C. kiinensis. Using Solexa sequencing technology, we identified several groups of key candidate genes as well as important biological pathways involved in the molecular modifications of chironomids under phenol stress. PMID:23527048
Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1†
Gonçalves, Edmilson R.; Hara, Hirofumi; Miyazawa, Daisuke; Davies, Julian E.; Eltis, Lindsay D.; Mohn, William W.
2006-01-01
Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes. PMID:16957245
2012-01-01
Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182
Xu, Song; Liu, Renwang; Da, Yurong
2018-06-05
This study compared tumor-related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma (LUAD) treatment. Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses were performed based on LUAD differentially expressed genes from The Cancer Genome Atlas (TCGA) project and genotype-tissue expression controls. These results were compared to various known compounds using the Connectivity Mapping dataset. The clinical significance of the hub genes identified by overlapping pathway enrichment analysis was further investigated using data mining from multiple sources. A drug-pathway network for LUAD was constructed, and molecular docking was carried out. After the integration of 57 LUAD-related pathways and 35 pathways affected by small molecules, five overlapping pathways were revealed. Among these five pathways, the p53 signaling pathway was the most significant, with CCNB1, CCNB2, CDK1, CDKN2A, and CHEK1 being identified as hub genes. The p53 signaling pathway is implicated as a risk factor for LUAD tumorigenesis and survival. A total of 88 molecules significantly inhibiting the five LUAD-related oncogenic pathways were involved in the LUAD drug-pathway network. Daunorubicin, mycophenolic acid, and pyrvinium could potentially target the hub gene CHEK1 directly. Our study highlights the critical pathways that should be targeted in the search for potential LUAD treatments, most importantly, the p53 signaling pathway. Some compounds, such as ciclopirox and AG-028671, may have potential roles for LUAD treatment but require further experimental verification. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis
Gong, Fei-Ran; Zhou, Binhua P.; Lian, Lian; Shen, Bairong; Chen, Kai; Duan, Weiming; Wu, Meng-Yao; Tao, Min; Li, Wei
2016-01-01
The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation. PMID:27323403
Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application
Cantor, Rita M.; Lange, Kenneth; Sinsheimer, Janet S.
2010-01-01
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach. PMID:20074509
Dal Cin, Valeriano; Tieman, Denise M.; Tohge, Takayuki; McQuinn, Ryan; de Vos, Ric C.H.; Osorio, Sonia; Schmelz, Eric A.; Taylor, Mark G.; Smits-Kroon, Miriam T.; Schuurink, Robert C.; Haring, Michel A.; Giovannoni, James; Fernie, Alisdair R.; Klee, Harry J.
2011-01-01
Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and 13C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles. PMID:21750236
Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun
2016-01-01
Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139
Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data
Vital, Marius; Howe, Adina Chuang
2014-01-01
ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analysis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many previously unknown candidates. The majority of candidates belong to distinct families within the Firmicutes, but members of nine other phyla, especially from Actinobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Thermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Microbiome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same few firmicute groups associated with several Lachnospiraceae and Ruminococcaceae were dominating in most individuals, whereas the other pathways were associated primarily with Bacteroidetes. PMID:24757212
Li, Changyan; Luo, Chao; Zhou, Zaihui; Wang, Rui; Ling, Fei; Xiao, Langtao; Lin, Yongjun; Chen, Hao
2017-02-28
The brown planthopper (BPH; Nilaparvata lugens Stål) is a destructive piercing-sucking insect pest of rice. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play important roles in plant-pest interactions. Many isolated rice genes that modulate BPH resistance are involved in the metabolism or signaling pathways of SA, JA and ethylene. 'Rathu Heenati' (RH) is a rice cultivar with a high-level, broad-spectrum resistance to all BPH biotypes. Here, RH was used as the research material, while a BPH-susceptible rice cultivar 'Taichung Native 1' (TN1) was the control. A cDNA microarray analysis illuminated the resistance response at the genome level of RH under BPH infestation. The levels of SA and JA in RH and TN1 seedlings after BPH infestation were also determined. The expression pattern clustering indicated that 1467 differential probe sets may be associated with constitutive resistance and 67 with the BPH infestation-responsive resistance of RH. A Venn diagram analysis revealed 192 RH-specific and BPH-inducible probe sets. Finally, 23 BPH resistance-related gene candidates were selected based on the expression pattern clustering and Venn diagram analysis. In RH, the SA content significantly increased and the JA content significantly decreased after BPH infestation, with the former occurring prior to the latter. In RH, the differential genes in the SA pathway were synthesis-related and were up-regulated after BPH infestation. The differential genes in the JA pathway were also up-regulated. They were jasmonate ZIM-domain transcription factors, which are important negative regulators of the JA pathway. Comparatively, genes involved in the ET pathway were less affected by a BPH infestation in RH. DNA sequence analysis revealed that most BPH infestation-inducible genes may be regulated by the genetic background in a trans-acting manner, instead of by their promoters. We profiled the analysis of the global gene expression in RH and TN1 under BPH infestation, together with changes in the SA and JA levels. SA plays a leading role in the resistance response of rice to BPH. Our results will aid in understanding the molecular basis of RH's BPH resistance and facilitate the identification of new resistance-related genes for breeding BPH-resistant rice varieties.
Zuo, Mingxin; Rashid, Asif; Wang, Ying; Jain, Apurva; Li, Donghui; Behari, Anu; Kapoor, Vinay Kumar; Koay, Eugene J.; Chang, Ping; Vauthey, Jean Nicholas; Li, Yanan; Espinoza, Jaime A.; Roa, Juan Carlos; Javle, Milind
2016-01-01
Gallbladder cancer (GBC) is an aggressive malignancy. Although surgical resection may be curable, most patients are diagnosed at an advanced unresectable disease stage. Cholelithiasis is the major risk factor; however the pathogenesis of the disease, from gallstone cholecystitis to cancer, is still not understood. To understand the molecular genetic underpinnings of this cancer and explore novel therapeutic targets for GBC, we examined the key genes and pathways involved in GBC using RNA sequencing. We performed gene expression analysis of 32 cases of surgically-resected GBC along with normal gallbladder tissue controls. We observed that 519 genes were differentially expressed between GBC and normal GB mucosal controls. The liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR) /RXR pathways were the top canonical pathways involved in GBC. Key genes in these pathways, including SERPINB3 and KLK1, were overexpressed in GBC, especially in female GBC patients. Additionally, ApoA1 gene expression suppressed in GBC as compared with normal control tissues. LXR and FXR genes, known to be important in lipid metabolism also function as tumor suppressors and their down regulation appears to be critical for GBC pathogenesis. LXR agonists may have therapeutic value and as potential therapeutic targets. PMID:27167107
Ranking metrics in gene set enrichment analysis: do they matter?
Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna
2017-05-12
There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor results. In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the highest performance in terms of overall sensitivity, overall false positive rate and computational load was established i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size. Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in MATLAB, and is available at https://github.com/ZAEDPolSl/MrGSEA . Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally distributed genes is high, using Baumgartner-Weiss-Schindler test statistic gives better outcomes. Also, it finds more enriched pathways than other tested metrics, which may induce new biological discoveries.
Identification of differentially expressed genes in childhood asthma.
Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen
2018-05-01
Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.
Deregulation of Rab and Rab Effector Genes in Bladder Cancer
Ho, Joel R.; Chapeaublanc, Elodie; Kirkwood, Lisa; Nicolle, Remy; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Southgate, Jennifer; Radvanyi, François; Goud, Bruno
2012-01-01
Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer. PMID:22724020
Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D
2016-02-01
Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Explore the Features of Brain-Derived Neurotrophic Factor in Mood Disorders
Yeh, Fan-Chi; Kao, Chung-Feng; Kuo, Po-Hsiu
2015-01-01
Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis. Methods We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders. Results BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders. Conclusions Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders. PMID:26091093
Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.
He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai
2014-03-01
Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.
Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).
Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie
2017-11-01
Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
EviNet: a web platform for network enrichment analysis with flexible definition of gene sets.
Jeggari, Ashwini; Alekseenko, Zhanna; Petrov, Iurii; Dias, José M; Ericson, Johan; Alexeyenko, Andrey
2018-06-09
The new web resource EviNet provides an easily run interface to network enrichment analysis for exploration of novel, experimentally defined gene sets. The major advantages of this analysis are (i) applicability to any genes found in the global network rather than only to those with pathway/ontology term annotations, (ii) ability to connect genes via different molecular mechanisms rather than within one high-throughput platform, and (iii) statistical power sufficient to detect enrichment of very small sets, down to individual genes. The users' gene sets are either defined prior to upload or derived interactively from an uploaded file by differential expression criteria. The pathways and networks used in the analysis can be chosen from the collection menu. The calculation is typically done within seconds or minutes and the stable URL is provided immediately. The results are presented in both visual (network graphs) and tabular formats using jQuery libraries. Uploaded data and analysis results are kept in separated project directories not accessible by other users. EviNet is available at https://www.evinet.org/.
PathNet: A Tool for Pathway Analysis Using Topological Information
2012-09-24
pathways through gene expression data facilitated the identification of a biological association between the AD pathway and ubiquitin- meditated proteolysis...expression data, as the genes connected by thick edges are modestly differentially expressed (thick connections to small circles). (C) Non-overlapping...HW, LaFerla FM: Alzheimer’s disease. N Engl J Med 2010, 362(4):329–344. 32. Malenka RC, Malinow R: Alzheimer’s disease: recollection of lost memories
Aghdam, Rosa; Baghfalaki, Taban; Khosravi, Pegah; Saberi Ansari, Elnaz
2017-12-01
Deciphering important genes and pathways from incomplete gene expression data could facilitate a better understanding of cancer. Different imputation methods can be applied to estimate the missing values. In our study, we evaluated various imputation methods for their performance in preserving significant genes and pathways. In the first step, 5% genes are considered in random for two types of ignorable and non-ignorable missingness mechanisms with various missing rates. Next, 10 well-known imputation methods were applied to the complete datasets. The significance analysis of microarrays (SAM) method was applied to detect the significant genes in rectal and lung cancers to showcase the utility of imputation approaches in preserving significant genes. To determine the impact of different imputation methods on the identification of important genes, the chi-squared test was used to compare the proportions of overlaps between significant genes detected from original data and those detected from the imputed datasets. Additionally, the significant genes are tested for their enrichment in important pathways, using the ConsensusPathDB. Our results showed that almost all the significant genes and pathways of the original dataset can be detected in all imputed datasets, indicating that there is no significant difference in the performance of various imputation methods tested. The source code and selected datasets are available on http://profiles.bs.ipm.ir/softwares/imputation_methods/. Copyright © 2017. Production and hosting by Elsevier B.V.
Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C
2015-08-27
The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Regional and temporal differences in gene expression of LH(BETA)T(AG) retinoblastoma tumors.
Houston, Samuel K; Pina, Yolanda; Clarke, Jennifer; Koru-Sengul, Tulay; Scott, William K; Nathanson, Lubov; Schefler, Amy C; Murray, Timothy G
2011-07-23
The purpose of this study was to evaluate by microarray the hypothesis that LH(BETA)T(AG) retinoblastoma tumors exhibit regional and temporal variations in gene expression. LH(BETA)T(AG) mice aged 12, 16, and 20 weeks were euthanatized (n = 9). Specimens were taken from five tumor areas (apex, anterior lateral, center, base, and posterior lateral). Samples were hybridized to gene microarrays. The data were preprocessed and analyzed, and genes with a P < 0.01, according to the ANOVA models, and a log(2)-fold change >2.5 were considered to be differentially expressed. Differentially expressed genes were analyzed for overlap with known networks by using pathway analysis tools. There were significant temporal (P < 10(-8)) and regional differences in gene expression for LH(BETA)T(AG) retinoblastoma tumors. At P < 0.01 and log(2)-fold change >2.5, there were significant changes in gene expression of 190 genes apically, 84 genes anterolaterally, 126 genes posteriorly, 56 genes centrally, and 134 genes at the base. Differentially expressed genes overlapped with known networks, with significant involvement in regulation of cellular proliferation and growth, response to oxygen levels and hypoxia, regulation of cellular processes, cellular signaling cascades, and angiogenesis. There are significant temporal and regional variations in the LH(BETA)T(AG) retinoblastoma model. Differentially expressed genes overlap with key pathways that may play pivotal roles in murine retinoblastoma development. These findings suggest the mechanisms involved in tumor growth and progression in murine retinoblastoma tumors and identify pathways for analysis at a functional level, to determine significance in human retinoblastoma. Microarray analysis of LH(BETA)T(AG) retinal tumors showed significant regional and temporal variations in gene expression, including dysregulation of genes involved in hypoxic responses and angiogenesis.
Gene Transfers Shaped the Evolution of De Novo NAD+ Biosynthesis in Eukaryotes
Ternes, Chad M.; Schönknecht, Gerald
2014-01-01
NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983
Stevens, David Cole; Conway, Kyle R.; Pearce, Nelson; Villegas-Peñaranda, Luis Roberto; Garza, Anthony G.; Boddy, Christopher N.
2013-01-01
Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products. PMID:23724102
Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H
2017-11-01
Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.
Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.
Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh
2017-03-03
In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.
Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma
Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh
2017-01-01
In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603
Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster
Vonesch, Sibylle Chantal; Lamparter, David; Mackay, Trudy F. C.; Bergmann, Sven; Hafen, Ernst
2016-01-01
Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity. PMID:26751788
Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Zhang, Yunxia; Pang, Wenyi; Zhai, Zhenguo
2017-01-01
The aim of this study was to understand the importance of chronic thromboembolic pulmonary hypertension- (CTEPH-) associated microRNAs (miRNAs). miRNAs differentially expressed in CTEPH samples compared with control samples were identified, and the target genes were predicted. The target genes of the key differentially expressed miRNAs were analyzed, and functional enrichment analyses were carried out. Finally, the miRNAs were detected using RT-PCR. Among the downregulated miRNAs, MiR-3148 regulated the most target genes and was significantly enriched in pathways in cancer, glioma, and ErbB signaling pathway. Furthermore, the number of target genes coregulated by miR-3148 and other miRNAs was the most. AR (androgen receptor), a target gene of hsa-miR-3148, was enriched in pathways in cancer. PRKCA (Protein Kinase C Alpha), also a target gene of hsa-miR-3148, was enriched in 15 of 16 KEGG pathways, such as pathways in cancer, glioma, and ErbB signaling pathway. In addition, the RT-PCR results showed that the expression of hsa-miR-3148 in CTEPH samples was significantly lower than that in control samples (P < 0.01). MiR-3148 may play an important role in the development of CTEPH. The key mechanisms for this miRNA may be hsa-miR-3148-AR-pathways in cancer or hsa-miR-3148-PRKCA-pathways in cancer/glioma/ErbB signaling pathway. PMID:28904974
2012-01-01
Background Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Results Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. Conclusion The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here. PMID:22646994
Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko
2012-07-15
Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.
RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney
Park, Daeui; Kim, Byoung-Chul; Kim, Chul-Hong; Choi, Yeon Ja; Jeong, Hyoung Oh; Kim, Mi Eun; Lee, Jun Sik; Park, Min Hi; Chung, Ki Wung; Kim, Dae Hyun; Lee, Jaewon; Im, Dong-Soon; Yoon, Seokjoo; Lee, Sunghoon; Yu, Byung Pal; Bhak, Jong; Chung, Hae Young
2016-01-01
Age-related dysregulated inflammation plays an essential role as a major risk factor underlying the pathophysiological aging process. To better understand how inflammatory processes are related to aging at the molecular level, we sequenced the transcriptome of young and aged rat kidney using RNA-Seq to detect known genes, novel genes, and alternative splicing events that are differentially expressed. By comparing young (6 months of age) and old (25 months of age) rats, we detected 722 up-regulated genes and 111 down-regulated genes. In the aged rats, we found 32 novel genes and 107 alternatively spliced genes. Notably, 6.6% of the up-regulated genes were related to inflammation (P < 2.2 × 10−16, Fisher exact t-test); 15.6% were novel genes with functional protein domains (P = 1.4 × 10−5); and 6.5% were genes showing alternative splicing events (P = 3.3 × 10−4). Based on the results of pathway analysis, we detected the involvement of inflammation-related pathways such as cytokines (P = 4.4 × 10−16), which were found up-regulated in the aged rats. Furthermore, an up-regulated inflammatory gene analysis identified the involvement of transcription factors, such as STAT4, EGR1, and FOSL1, which regulate cancer as well as inflammation in aging processes. Thus, RNA changes in these pathways support their involvement in the pro-inflammatory status during aging. We propose that whole RNA-Seq is a useful tool to identify novel genes and alternative splicing events by documenting broadly implicated inflammation-related genes involved in aging processes. PMID:27153548
Yang, Jing; Zhang, Wei; Sun, Jian; Xi, Zhiqin; Qiao, Zusha; Zhang, Jinyu; Wang, Yan; Ji, Ying; Feng, Wenli
2017-01-01
The aim of the present study was to investigate the potential genes involved in drug resistance of Candida albicans (C. albicans) by performing microarray analysis. The gene expression profile of GSE65396 was downloaded from the Gene Expression Omnibus, including a control, 15-min and 45-min macrocyclic compound RF59-treated group with three repeats for each. Following preprocessing using RAM, the differentially expressed genes (DEGs) were screened using the Limma package. Subsequently, the Kyoto Encyclopedia of Genes and Genomes pathways of these genes were analyzed using the Database for Annotation, Visualization and Integrated Discovery. Based on interactions estimated by the Search Tool for Retrieval of Interacting Gene, the protein-protein interaction (PPI) network was visualized using Cytoscape. Subnetwork analysis was performed using ReactomeFI. A total of 154 upregulated and 27 downregulated DEGs were identified in the 15-min treated group, compared with the control, and 235 upregulated and 233 downregulated DEGs were identified in the 45-min treated group, compared with the control. The upregulated DEGs were significantly enriched in the ribosome pathway. Based on the PPI network, PRP5, RCL1, NOP13, NOP4 and MRT4 were the top five nodes in the 15-min treated comparison. GIS2, URA3, NOP58, ELP3 and PLP7 were the top five nodes in the 45-min treated comparison, and its subnetwork was significantly enriched in the ribosome pathway. The macrocyclic compound RF59 had a notable effect on the ribosome and its associated pathways of C. albicans. RCL1, NOP4, MRT4, GIS2 and NOP58 may be important in RF59-resistance. PMID:28944888
Crowhurst, Ross N; Gleave, Andrew P; MacRae, Elspeth A; Ampomah-Dwamena, Charles; Atkinson, Ross G; Beuning, Lesley L; Bulley, Sean M; Chagne, David; Marsh, Ken B; Matich, Adam J; Montefiori, Mirco; Newcomb, Richard D; Schaffer, Robert J; Usadel, Björn; Allan, Andrew C; Boldingh, Helen L; Bowen, Judith H; Davy, Marcus W; Eckloff, Rheinhart; Ferguson, A Ross; Fraser, Lena G; Gera, Emma; Hellens, Roger P; Janssen, Bart J; Klages, Karin; Lo, Kim R; MacDiarmid, Robin M; Nain, Bhawana; McNeilage, Mark A; Rassam, Maysoon; Richardson, Annette C; Rikkerink, Erik HA; Ross, Gavin S; Schröder, Roswitha; Snowden, Kimberley C; Souleyre, Edwige JF; Templeton, Matt D; Walton, Eric F; Wang, Daisy; Wang, Mindy Y; Wang, Yanming Y; Wood, Marion; Wu, Rongmei; Yauk, Yar-Khing; Laing, William A
2008-01-01
Background Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia. PMID:18655731
Chen, Chao-Jin; Liu, De-Zhao; Yao, Wei-Feng; Gu, Yu; Huang, Fei; Hei, Zi-Qing; Li, Xiang
2017-01-01
Neuropathic pain is a complex chronic condition occurring post-nervous system damage. The transcriptional reprogramming of injured dorsal root ganglia (DRGs) drives neuropathic pain. However, few comparative analyses using high-throughput platforms have investigated uninjured DRG in neuropathic pain, and potential interactions among differentially expressed genes (DEGs) and pathways were not taken into consideration. The aim of this study was to identify changes in genes and pathways associated with neuropathic pain in uninjured L4 DRG after L5 spinal nerve ligation (SNL) by using bioinformatic analysis. The microarray profile GSE24982 was downloaded from the Gene Expression Omnibus database to identify DEGs between DRGs in SNL and sham rats. The prioritization for these DEGs was performed using the Toppgene database followed by gene ontology and pathway enrichment analyses. The relationships among DEGs from the protein interactive perspective were analyzed using protein-protein interaction (PPI) network and module analysis. Real-time polymerase chain reaction (PCR) and Western blotting were used to confirm the expression of DEGs in the rodent neuropathic pain model. A total of 206 DEGs that might play a role in neuropathic pain were identified in L4 DRG, of which 75 were upregulated and 131 were downregulated. The upregulated DEGs were enriched in biological processes related to transcription regulation and molecular functions such as DNA binding, cell cycle, and the FoxO signaling pathway. Ctnnb1 protein had the highest connectivity degrees in the PPI network. The in vivo studies also validated that mRNA and protein levels of Ctnnb1 were upregulated in both L4 and L5 DRGs. This study provides insight into the functional gene sets and pathways associated with neuropathic pain in L4 uninjured DRG after L5 SNL, which might promote our understanding of the molecular mechanisms underlying the development of neuropathic pain.
Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).
Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang
2014-01-01
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.
Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)
Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang
2014-01-01
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants. PMID:24489818
Teaniniuraitemoana, Vaihiti; Huvet, Arnaud; Levy, Peva; Gaertner-Mazouni, Nabila; Gueguen, Yannick; Le Moullac, Gilles
2015-01-01
The genomics of economically important marine bivalves is studied to provide better understanding of the molecular mechanisms underlying their different reproductive strategies. The recently available gonad transcriptome of the black-lip pearl oyster Pinctada margaritifera is a novel and powerful resource to study these mechanisms in marine mollusks displaying hermaphroditic features. In this study, RNAseq quantification data of the P. margaritifera gonad transcriptome were analyzed to identify candidate genes in histologically-characterized gonad samples to provide molecular signatures of the female and male sexual pathway in this pearl oyster. Based on the RNAseq data set, stringent expression analysis identified 1,937 contigs that were differentially expressed between the gonad histological categories. From the hierarchical clustering analysis, a new reproduction model is proposed, based on a dual histo-molecular analytical approach. Nine candidate genes were identified as markers of the sexual pathway: 7 for the female pathway and 2 for the male one. Their mRNA levels were assayed by real-time PCR on a new set of gonadic samples. A clustering method revealed four principal expression patterns based on the relative gene expression ratio. A multivariate regression tree realized on these new samples and validated on the previously analyzed RNAseq samples showed that the sexual pathway of P. margaritifera can be predicted by a 3-gene-pair expression ratio model of 4 different genes: pmarg-43476, pmarg-foxl2, pmarg-54338 and pmarg-fem1-like. This 3-gene-pair expression ratio model strongly suggests only the implication of pmarg-foxl2 and pmarg-fem1-like in the sex inversion of P. margaritifera. This work provides the first histo-molecular model of P. margaritifera reproduction and a gene expression signature of its sexual pathway discriminating the male and female pathways. These represent useful tools for understanding and studying sex inversion, sex differentiation and sex determinism in this species and other related species for aquaculture purposes such as genetic selection programs. PMID:25815473
Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu
2016-03-01
Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the 'peroxisome proliferator-activated receptor (PPAR) signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.
Gao, Peng; Chen, An-Li; Zhao, Qiao-Ling; Shen, Xing-Jia; Qiu, Zhi-Yong; Xia, Ding-Guo; Tang, Shun-Ming; Zhang, Guo-Zheng
2013-09-15
The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Shiqiang; Wang, Bin; Hua, Wenping; Niu, Junfeng; Dang, Kaikai; Qiang, Yi; Wang, Zhezhi
2017-09-12
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase ( sacA ), fructokinase ( scrK ), UDP-glucose 4-epimerase ( GALE ), Mannose-1-phosphate guanylyltransferase ( GMPP ), and UDP-glucose 6-dehydrogenase ( UGDH ), but negatively correlated with the expression of Hexokinase ( HK ). Through qRT-PCR validation and comprehensive analysis, we determined that sacA , HK , and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions.
Wang, Shiqiang; Wang, Bin; Hua, Wenping; Niu, Junfeng; Dang, Kaikai; Qiang, Yi; Wang, Zhezhi
2017-01-01
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions. PMID:28895881
Wang, Wen; Li, Hao; Zhao, Zheng; Wang, Haoyuan; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Cao, Yong; Zhao, Jizong
2018-04-01
Abdominal aortic aneurysms (AAAs) and intracranial saccular aneurysms (IAs) are the most common types of aneurysms. This study was to investigate the common pathogenesis shared between these two kinds of aneurysms. We collected 12 IAs samples and 12 control arteries from the Beijing Tiantan Hospital and performed microarray analysis. In addition, we utilized the microarray datasets of IAs and AAAs from the Gene Expression Omnibus (GEO), in combination with our microarray results, to generate messenger RNA expression profiles for both AAAs and IAs in our study. Functional exploration and protein-protein interaction (PPI) analysis were performed. A total of 727 common genes were differentially expressed (404 was upregulated; 323 was downregulated) for both AAAs and IAs. The GO and pathway analyses showed that the common dysregulated genes were mainly enriched in vascular smooth muscle contraction, muscle contraction, immune response, defense response, cell activation, IL-6 signaling and chemokine signaling pathways, etc. The further protein-protein analysis identified 35 hub nodes, including TNF, IL6, MAPK13, and CCL5. These hub node genes were enriched in inflammatory response, positive regulation of IL-6 production, chemokine signaling pathway, and T/B cell receptor signaling pathway. Our study will gain new insight into the molecular mechanisms for the pathogenesis of both types of aneurysms and provide new therapeutic targets for the patients harboring AAAs and IAs.
Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang
2018-06-01
Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.
2014-01-01
Background A thorough investigation of the neurobiology of HIV-induced neuronal dysfunction and its evolving phenotype in the setting of viral suppression has been limited by the lack of validated small animal models to probe the effects of concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the CNS. Results We report the results of gene expression profiling of the hippocampus of HIV-1 Tg rats, a rodent model of HIV infection in which multiple HIV-1 proteins are expressed under the control of the viral LTR promoter in disease-relevant cells including microglia and astrocytes. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analysis. Gene expression changes observed are consistent with astrogliosis and microgliosis and include evidence of inflammation and cell proliferation. Among the genes with increased expression in HIV-1 Tg rats was the interferon stimulated gene 15 (ISG-15), which was previously shown to be increased in the cerebrospinal fluid (CSF) of HIV patients and to correlate with neuropsychological impairment and neuropathology, and prostaglandin D2 (PGD2) synthase (Ptgds), which has been associated with immune activation and the induction of astrogliosis and microgliosis. GSEA-based pathway analysis highlighted a broad dysregulation of genes involved in neuronal trophism and neurodegenerative disorders. Among the latter are genesets associated with Huntington’s disease, Parkinson’s disease, mitochondrial, peroxisome function, and synaptic trophism and plasticity, such as IGF, ErbB and netrin signaling and the PI3K signal transduction pathway, a mediator of neural plasticity and of a vast array of trophic signals. Additionally, gene expression analyses also show altered lipid metabolism and peroxisomes dysfunction. Supporting the functional significance of these gene expression alterations, HIV-1 Tg rats showed working memory impairments in spontaneous alternation behavior in the T-Maze, a paradigm sensitive to prefrontal cortex and hippocampal function. Conclusions Altogether, differentially regulated genes and pathway analysis identify specific pathways that can be targeted therapeutically to increase trophic support, e.g. IGF, ErbB and netrin signaling, and reduce neuroinflammation, e.g. PGD2 synthesis, which may be beneficial in the treatment of chronic forms of HIV-associated neurocognitive disorders in the setting of viral suppression. PMID:24980976
He, Hailong; Mao, Lingzhou; Xu, Peng; Xi, Yanhai; Xu, Ning; Xue, Mingtao; Yu, Jiangming; Ye, Xiaojian
2014-01-10
Ossification of the posterior longitudinal ligament (OPLL) is a kind of disease with physical barriers and neurological disorders. The objective of this study was to explore the differentially expressed genes (DEGs) in OPLL patient ligament cells and identify the target sites for the prevention and treatment of OPLL in clinic. Gene expression data GSE5464 was downloaded from Gene Expression Omnibus; then DEGs were screened by limma package in R language, and changed functions and pathways of OPLL cells compared to normal cells were identified by DAVID (The Database for Annotation, Visualization and Integrated Discovery); finally, an interaction network of DEGs was constructed by string. A total of 1536 DEGs were screened, with 31 down-regulated and 1505 up-regulated genes. Response to wounding function and Toll-like receptor signaling pathway may involve in the development of OPLL. Genes, such as PDGFB, PRDX2 may involve in OPLL through response to wounding function. Toll-like receptor signaling pathway enriched genes such as TLR1, TLR5, and TLR7 may involve in spine cord injury in OPLL. PIK3R1 was the hub gene in the network of DEGs with the highest degree; INSR was one of the most closely related genes of it. OPLL related genes screened by microarray gene expression profiling and bioinformatics analysis may be helpful for elucidating the mechanism of OPLL. © 2013.
Inter-species pathway perturbation prediction via data-driven detection of functional homology.
Hafemeister, Christoph; Romero, Roberto; Bilal, Erhan; Meyer, Pablo; Norel, Raquel; Rhrissorrakrai, Kahn; Bonneau, Richard; Tarca, Adi L
2015-02-15
Experiments in animal models are often conducted to infer how humans will respond to stimuli by assuming that the same biological pathways will be affected in both organisms. The limitations of this assumption were tested in the IMPROVER Species Translation Challenge, where 52 stimuli were applied to both human and rat cells and perturbed pathways were identified. In the Inter-species Pathway Perturbation Prediction sub-challenge, multiple teams proposed methods to use rat transcription data from 26 stimuli to predict human gene set and pathway activity under the same perturbations. Submissions were evaluated using three performance metrics on data from the remaining 26 stimuli. We present two approaches, ranked second in this challenge, that do not rely on sequence-based orthology between rat and human genes to translate pathway perturbation state but instead identify transcriptional response orthologs across a set of training conditions. The translation from rat to human accomplished by these so-called direct methods is not dependent on the particular analysis method used to identify perturbed gene sets. In contrast, machine learning-based methods require performing a pathway analysis initially and then mapping the pathway activity between organisms. Unlike most machine learning approaches, direct methods can be used to predict the activation of a human pathway for a new (test) stimuli, even when that pathway was never activated by a training stimuli. Gene expression data are available from ArrayExpress (accession E-MTAB-2091), while software implementations are available from http://bioinformaticsprb.med.wayne.edu?p=50 and http://goo.gl/hJny3h. christoph.hafemeister@nyu.edu or atarca@med.wayne.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Bian, Zhong-Rui; Yin, Juan; Sun, Wen; Lin, Dian-Jie
2017-04-01
Diagnose of active tuberculosis (TB) is challenging and treatment response is also difficult to efficiently monitor. The aim of this study was to use an integrated analysis of microarray and network-based method to the samples from publically available datasets to obtain a diagnostic module set and pathways in active TB. Towards this goal, background protein-protein interactions (PPI) network was generated based on global PPI information and gene expression data, following by identification of differential expression network (DEN) from the background PPI network. Then, ego genes were extracted according to the degree features in DEN. Next, module collection was conducted by ego gene expansion based on EgoNet algorithm. After that, differential expression of modules between active TB and controls was evaluated using random permutation test. Finally, biological significance of differential modules was detected by pathways enrichment analysis based on Reactome database, and Fisher's exact test was implemented to extract differential pathways for active TB. Totally, 47 ego genes and 47 candidate modules were identified from the DEN. By setting the cutoff-criteria of gene size >5 and classification accuracy ≥0.9, 7 ego modules (Module 4, Module 7, Module 9, Module 19, Module 25, Module 38 and Module 43) were extracted, and all of them had the statistical significance between active TB and controls. Then, Fisher's exact test was conducted to capture differential pathways for active TB. Interestingly, genes in Module 4, Module 25, Module 38, and Module 43 were enriched in the same pathway, formation of a pool of free 40S subunits. Significant pathway for Module 7 and Module 9 was eukaryotic translation termination, and for Module 19 was nonsense mediated decay enhanced by the exon junction complex (EJC). Accordingly, differential modules and pathways might be potential biomarkers for treating active TB, and provide valuable clues for better understanding of molecular mechanism of active TB. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults.
Nho, Kwangsik; Ramanan, Vijay K; Horgusluoglu, Emrin; Kim, Sungeun; Inlow, Mark H; Risacher, Shannon L; McDonald, Brenna C; Farlow, Martin R; Foroud, Tatiana M; Gao, Sujuan; Callahan, Christopher M; Hendrie, Hugh C; Niculescu, Alexander B; Saykin, Andrew J
2015-01-01
Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.
Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar
2018-02-01
Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.
Wisecaver, Jennifer H; Borowsky, Alexander T; Tzin, Vered; Jander, Georg; Kliebenstein, Daniel J; Rokas, Antonis
2017-05-01
Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products. © 2017 American Society of Plant Biologists. All rights reserved.
Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Lu, Guohui; Huang, Tao; Cai, Yu-Dong
2017-02-01
Cancer is a disease that involves abnormal cell growth and can invade or metastasize to other tissues. It is known that several factors are related to its initiation, proliferation, and invasiveness. Recently, it has been reported that long non-coding RNAs (lncRNAs) can participate in specific functional pathways and further regulate the biological function of cancer cells. Studies on lncRNAs are therefore helpful for uncovering the underlying mechanisms of cancer biological processes. We investigated cancer-related lncRNAs using gene ontology (GO) terms and KEGG pathway enrichment scores of neighboring genes that are co-expressed with the lncRNAs by extracting important GO terms and KEGG pathways that can help us identify cancer-related lncRNAs. The enrichment theory of GO terms and KEGG pathways was adopted to encode each lncRNA. Then, feature selection methods were employed to analyze these features and obtain the key GO terms and KEGG pathways. The analysis indicated that the extracted GO terms and KEGG pathways are closely related to several cancer associated processes, such as hormone associated pathways, energy associated pathways, and ribosome associated pathways. And they can accurately predict cancer-related lncRNAs. This study provided novel insight of how lncRNAs may affect tumorigenesis and which pathways may play important roles during it. These results could help understanding the biological mechanisms of lncRNAs and treating cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Transcriptomic Response of Porcine PBMCs to Vaccination with Tetanus Toxoid as a Model Antigen
Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus
2013-01-01
The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes. PMID:23536793
Transcriptomic response of porcine PBMCs to vaccination with tetanus toxoid as a model antigen.
Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus
2013-01-01
The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes.
Long, Jin; Liu, Zhe; Wu, Xingda; Xu, Yuanhong; Ge, Chunlin
2016-05-01
The present study aimed to screen for potential genes and subnetworks associated with pancreatic cancer (PC) using the gene expression profile. The expression profile GSE 16515 was downloaded from the Gene Expression Omnibus database, which included 36 PC tissue samples and 16 normal samples. Limma package in R language was used to screen differentially expressed genes (DEGs), which were grouped as up‑ and downregulated genes. Then, PFSNet was applied to perform subnetwork analysis for all the DEGs. Moreover, Gene Ontology (GO) and REACTOME pathway enrichment analysis of up‑ and downregulated genes was performed, followed by protein‑protein interaction (PPI) network construction using Search Tool for the Retrieval of Interacting Genes Search Tool for the Retrieval of Interacting Genes. In total, 1,989 DEGs including 1,461 up‑ and 528 downregulated genes were screened out. Subnetworks including pancreatic cancer in PC tissue samples and intercellular adhesion in normal samples were identified, respectively. A total of 8 significant REACTOME pathways for upregulated DEGs, such as hemostasis and cell cycle, mitotic were identified. Moreover, 4 significant REACTOME pathways for downregulated DEGs, including regulation of β‑cell development and transmembrane transport of small molecules were screened out. Additionally, DEGs with high connectivity degrees, such as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of the module in the protein‑protein interaction network were mainly enriched with cell‑division cycle. CCNA2 and PBK of the module and their relative pathway cell‑division cycle, and two subnetworks (pancreatic cancer and intercellular adhesion subnetworks) may be pivotal for further understanding of the molecular mechanism of PC.
Identification of hub subnetwork based on topological features of genes in breast cancer
ZHUANG, DA-YONG; JIANG, LI; HE, QING-QING; ZHOU, PENG; YUE, TAO
2015-01-01
The aim of this study was to provide functional insight into the identification of hub subnetworks by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We applied a protein network-based approach to identify subnetworks which may provide new insight into the functions of pathways involved in breast cancer rather than individual genes. Five groups of breast cancer data were downloaded and analyzed from the Gene Expression Omnibus (GEO) database of high-throughput gene expression data to identify gene signatures using the genome-wide global significance (GWGS) method. A PPI network was constructed using Cytoscape and clusters that focused on highly connected nodes were obtained using the molecular complex detection (MCODE) clustering algorithm. Pathway analysis was performed to assess the functional relevance of selected gene signatures based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Topological centrality was used to characterize the biological importance of gene signatures, pathways and clusters. The results revealed that, cluster1, as well as the cell cycle and oocyte meiosis pathways were significant subnetworks in the analysis of degree and other centralities, in which hub nodes mostly distributed. The most important hub nodes, with top ranked centrality, were also similar with the common genes from the above three subnetwork intersections, which was viewed as a hub subnetwork with more reproducible than individual critical genes selected without network information. This hub subnetwork attributed to the same biological process which was essential in the function of cell growth and death. This increased the accuracy of identifying gene interactions that took place within the same functional process and was potentially useful for the development of biomarkers and networks for breast cancer. PMID:25573623
Zhan, Siyuan; Zhao, Wei; Song, Tianzeng; Dong, Yao; Guo, Jiazhong; Cao, Jiaxue; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping
2018-01-01
Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.
Differential gene expression related to Nora virus infection of Drosophila melanogaster.
Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A
2013-08-01
Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.
Zhu, Honglin; Mi, Wentao; Luo, Hui; Chen, Tao; Liu, Shengxi; Raman, Indu; Zuo, Xiaoxia; Li, Quan-Zhen
2016-07-13
Recent achievement in genetics and epigenetics has led to the exploration of the pathogenesis of systemic lupus erythematosus (SLE). Identification of differentially expressed genes and their regulatory mechanism(s) at whole-genome level will provide a comprehensive understanding of the development of SLE and its devastating complications, lupus nephritis (LN). We performed whole-genome transcription and DNA methylation analysis in PBMC of 30 SLE patients, including 15 with LN (SLE LN(+)) and 15 without LN (SLE LN(-)), and 25 normal controls (NC) using HumanHT-12 Beadchips and Illumina Human Methy450 chips. The serum proinflammatory cytokines were quantified using Bio-plex Human Cytokine 27-plex assay. Differentially expressed genes and differentially methylated CpG were analyzed with GenomeStudio, R, and SAM software. The association between DNA methylation and gene expression were tested. Gene interaction pathways of the differentially expressed genes were analyzed by IPA software. We identified 552 upregulated genes and 550 downregulated genes in PBMC of SLE. Integration of DNA methylation and gene expression profiling showed that 334 upregulated genes were hypomethylated, and 479 downregulated genes were hypermethylated. Pathway analysis on the differential genes in SLE revealed significant enrichment in interferon (IFN) signaling and toll-like receptor (TLR) signaling pathways. Nine IFN- and seven TLR-related genes were identified and displayed step-wise increase in SLE LN(-) and SLE LN(+). Hypomethylated CpG sites were detected on these genes. The gene expressions for MX1, GPR84, and E2F2 were increased in SLE LN(+) as compared to SLE LN(-) patients. The serum levels of inflammatory cytokines, including IL17A, IP-10, bFGF, TNF-α, IL-6, IL-15, GM-CSF, IL-1RA, IL-5, and IL-12p70, were significantly elevated in SLE compared with NC. The levels of IL-15 and IL1RA correlated with their mRNA expression. The upregulation of IL-15 may be regulated by hypomethylated CpG sites in the promotor region of the gene. Our study has demonstrated that significant number of differential genes in SLE were involved in IFN, TLR signaling pathways, and inflammatory cytokines. The enrichment of differential genes has been associated with aberrant DNA methylation, which may be relevant to the pathogenesis of SLE. Our observations have laid the groundwork for further diagnostic and mechanistic studies of SLE and LN.
Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.
2002-01-01
We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388
Reliable pre-eclampsia pathways based on multiple independent microarray data sets.
Kawasaki, Kaoru; Kondoh, Eiji; Chigusa, Yoshitsugu; Ujita, Mari; Murakami, Ryusuke; Mogami, Haruta; Brown, J B; Okuno, Yasushi; Konishi, Ikuo
2015-02-01
Pre-eclampsia is a multifactorial disorder characterized by heterogeneous clinical manifestations. Gene expression profiling of preeclamptic placenta have provided different and even opposite results, partly due to data compromised by various experimental artefacts. Here we aimed to identify reliable pre-eclampsia-specific pathways using multiple independent microarray data sets. Gene expression data of control and preeclamptic placentas were obtained from Gene Expression Omnibus. Single-sample gene-set enrichment analysis was performed to generate gene-set activation scores of 9707 pathways obtained from the Molecular Signatures Database. Candidate pathways were identified by t-test-based screening using data sets, GSE10588, GSE14722 and GSE25906. Additionally, recursive feature elimination was applied to arrive at a further reduced set of pathways. To assess the validity of the pre-eclampsia pathways, a statistically-validated protocol was executed using five data sets including two independent other validation data sets, GSE30186, GSE44711. Quantitative real-time PCR was performed for genes in a panel of potential pre-eclampsia pathways using placentas of 20 women with normal or severe preeclamptic singleton pregnancies (n = 10, respectively). A panel of ten pathways were found to discriminate women with pre-eclampsia from controls with high accuracy. Among these were pathways not previously associated with pre-eclampsia, such as the GABA receptor pathway, as well as pathways that have already been linked to pre-eclampsia, such as the glutathione and CDKN1C pathways. mRNA expression of GABRA3 (GABA receptor pathway), GCLC and GCLM (glutathione metabolic pathway), and CDKN1C was significantly reduced in the preeclamptic placentas. In conclusion, ten accurate and reliable pre-eclampsia pathways were identified based on multiple independent microarray data sets. A pathway-based classification may be a worthwhile approach to elucidate the pathogenesis of pre-eclampsia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Haralambieva, Iana H.; Oberg, Ann L.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Grill, Diane E.; Middha, Sumit; Bot, Brian M.; Wang, Vivian W.; Smith, David I.; Jacobson, Robert M.; Poland, Gregory A.
2013-01-01
Immune responses to current rubella vaccines demonstrate significant inter-individual variability. We performed mRNA-Seq profiling on PBMCs from high and low antibody responders to rubella vaccination to delineate transcriptional differences upon viral stimulation. Generalized linear models were used to assess the per gene fold change (FC) for stimulated versus unstimulated samples or the interaction between outcome and stimulation. Model results were evaluated by both FC and p-value. Pathway analysis and self-contained gene set tests were performed for assessment of gene group effects. Of 17,566 detected genes, we identified 1,080 highly significant differentially expressed genes upon viral stimulation (p<1.00E−15, FDR<1.00E−14), including various immune function and inflammation-related genes, genes involved in cell signaling, cell regulation and transcription, and genes with unknown function. Analysis by immune outcome and stimulation status identified 27 genes (p≤0.0006 and FDR≤0.30) that responded differently to viral stimulation in high vs. low antibody responders, including major histocompatibility complex (MHC) class I genes (HLA-A, HLA-B and B2M with p = 0.0001, p = 0.0005 and p = 0.0002, respectively), and two genes related to innate immunity and inflammation (EMR3 and MEFV with p = 1.46E−08 and p = 0.0004, respectively). Pathway and gene set analysis also revealed transcriptional differences in antigen presentation and innate/inflammatory gene sets and pathways between high and low responders. Using mRNA-Seq genome-wide transcriptional profiling, we identified antigen presentation and innate/inflammatory genes that may assist in explaining rubella vaccine-induced immune response variations. Such information may provide new scientific insights into vaccine-induced immunity useful in rational vaccine development and immune response monitoring. PMID:23658707
Bohler, Anwesha; Eijssen, Lars M T; van Iersel, Martijn P; Leemans, Christ; Willighagen, Egon L; Kutmon, Martina; Jaillard, Magali; Evelo, Chris T
2015-08-23
Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.
Khare, Sangeeta; Lawhon, Sara D.; Drake, Kenneth L.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris A.; Galindo, Cristi L.; Garner, Harold R.; Adams, Leslie Garry
2012-01-01
Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways and specifically modified mechanistic genes contributing to the colonization of Peyer's patch. PMID:22912686
Ding, Xiang; Zhu, Hongqing; Hou, Yiling; Hou, Wanru; Zhang, Nan; Fu, Lei
2017-01-01
Background: The mechanism of the immunoregulatory activities of polysaccharide is still not clear. Materials and Methods: Here, we performed the B-cell, T-cell, and macrophage cell proliferation, the cell cycle analysis of macrophage cells, sequenced the transcriptomes of control group macrophages, and Boletus speciosus Frost polysaccharide (BSF-1) group macrophages using Illumina sequencing technology to identify differentially expressed genes (DEGs) to determine the molecular mechanisms of immunomodulatory activity of BSF-1 in macrophages. Results: These results suggested that BSF-1 could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell division. A total of 12,498,414 and 11,840,624 bp paired-end reads were obtained for the control group and BSF-1 group, respectively, and they corresponded to a total size of 12.5 G bp and 11.8 G bp, respectively, after the low-quality reads and adapter sequences were removed. Approximately 81.83% of the total number of genes (8,257) were expressed reads per kilobase per million mapped reads (RPKM ≥1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 group. A gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functions. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase (MAPK) signaling pathways are significantly enriched for DEGs between the two cell groups. Conclusion: An analysis of transcriptome resources enabled us to examine gene expression profiles, verify differential gene expression, and select candidate signaling pathways as the mechanisms of the immunomodulatory activity of BSF-1. Based on the experimental data, we believe that the significant antitumor activities of BSF-1 in vivo mainly involve the MAPK signaling pathways. SUMMARY Boletus speciosus Frost-1 (BSF-1) could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell divisionApproximately 81.83% of the total number of genes (8257) were expressed (reads per kilobase per million mapped reads [RPKM] =1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 groupA gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functionsA Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase signaling pathways are significantly enriched for DEGs between the two cell groups. Abbreviations used: BSF-1: Boletus speciosus Frost polysaccharide. PMID:28839373