Rapid Y degeneration and dosage compensation in plant sex chromosomes
Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.
2015-01-01
The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872
High rate of translocation-based gene birth on the Drosophila Y chromosome.
Tobler, Ray; Nolte, Viola; Schlötterer, Christian
2017-10-31
The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (<1 million years old), only three showed evidence for purifying selection ( ω ≤ 0.14). Thus, although the resulting Y-linked functional gene acquisition rate (0.25 new genes per million years) is double the longer-term estimate, the fate of most new Y-linked genes is defined by rapid degeneration and pseudogenization. Our results show that Y-linked gene traffic, and the molecular mechanisms governing these transfers, can diverge rapidly between species, revealing the Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species. Copyright © 2017 the Author(s). Published by PNAS.
Mining gene link information for survival pathway hunting.
Jing, Gao-Jian; Zhang, Zirui; Wang, Hong-Qiang; Zheng, Hong-Mei
2015-08-01
This study proposes a gene link-based method for survival time-related pathway hunting. In this method, the authors incorporate gene link information to estimate how a pathway is associated with cancer patient's survival time. Specifically, a gene link-based Cox proportional hazard model (Link-Cox) is established, in which two linked genes are considered together to represent a link variable and the association of the link with survival time is assessed using Cox proportional hazard model. On the basis of the Link-Cox model, the authors formulate a new statistic for measuring the association of a pathway with survival time of cancer patients, referred to as pathway survival score (PSS), by summarising survival significance over all the gene links in the pathway, and devise a permutation test to test the significance of an observed PSS. To evaluate the proposed method, the authors applied it to simulation data and two publicly available real-world gene expression data sets. Extensive comparisons with previous methods show the effectiveness and efficiency of the proposed method for survival pathway hunting.
A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.
Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P
2005-10-01
We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.
USDA-ARS?s Scientific Manuscript database
Previous research identified that the 5S ribosomal (rrn) gene and associated flanking sequences that are closely linked to the dkgB gene of Salmonella enterica were highly variable between serotypes, but not between subpopulations within the same serotype (PMID: 17005008). The degree of variability ...
Birth of a new gene on the Y chromosome of Drosophila melanogaster
Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A. M.; Swenor, Bonnielin; Clark, Andrew G.
2015-01-01
Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. PMID:26385968
NASA Astrophysics Data System (ADS)
Devanna, Paolo; Vernes, Sonja C.
2014-02-01
Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes.
Stancheva, I; Lucchini, R; Koller, T; Sogo, J M
1997-01-01
By using formaldehyde cross-linking of histones to DNA and gel retardation assays we show that formaldehyde fixation, similar to previously established psoralen photocross-linking, discriminates between nucleosome- packed (inactive) and nucleosome-free (active) fractions of ribosomal RNA genes. By both cross-linking techniques we were able to purify fragments from agarose gels, corresponding to coding, enhancer and promoter sequences of rRNA genes, which were further investigated with respect to DNA methylation. This approach allows us to analyse independently and in detail methylation patterns of active and inactive rRNA gene copies by the combination of Hpa II and Msp I restriction enzymes. We found CpG methylation mainly present in enhancer and promoter regions of inactive rRNA gene copies. The methylation of one single Hpa II site, located in the promoter region, showed particularly strong correlation with the transcriptional activity. PMID:9108154
ERIC Educational Resources Information Center
Stover, Carla Smith; Connell, Christian M.; Leve, Leslie D.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Scaramella, Laura V.; Conger, Rand; Reiss, David
2012-01-01
Background: Previous studies have linked marital conflict, parenting, and externalizing problems in early childhood. However, these studies have not examined whether genes account for these links nor have they examined whether contextual factors such as parental personality or financial distress might account for links between marital conflict and…
Hershkovitz, Eli; Loewenthal, Neta; Peretz, Asaf; Parvari, Ruti
2008-01-01
X-linked Kallmann syndrome (KS) is caused mainly by point mutations, in the KAL1 gene. Large deletions >1 Mb are rare events in the human population and commonly result in contiguous gene syndromes. A search for the mutation causing KS carried out on two pairs of first-degree cousins of 2 sisters. Two different apparently independent deletions were found. The deleted sequences encompass the KAL1 gene and four known additional genes exclusively expressed in testis. Two of these genes belong to the FAM9 gene family, which shares some homology with the SCYP3 gene, previously implicated in azoospermia. One of the events causing the deletion may have been mediated by an L1 transposition, the other by a non-homologous end joining. Such non-homologous recombinations have not yet been reported in the KAL genomic region and thus this area may be more prone to deletions than previously expected. This is the first report on genetic characterization of KS with a deletion of solely testis-expressed genes. The absence of these genes may have unfavorable implications for the patients regarding future fertility. (c) 2008 S. Karger AG, Basel
Variation in the X-Linked EFHC2 Gene Is Associated with Social Cognitive Abilities in Males
Startin, Carla M.; Fiorentini, Chiara; de Haan, Michelle; Skuse, David H.
2015-01-01
Females outperform males on many social cognitive tasks. X-linked genes may contribute to this sex difference. Males possess one X chromosome, while females possess two X chromosomes. Functional variations in X-linked genes are therefore likely to impact more on males than females. Previous studies of X-monosomic women with Turner syndrome suggest a genetic association with facial fear recognition abilities at Xp11.3, specifically at a single nucleotide polymorphism (SNP rs7055196) within the EFHC2 gene. Based on a strong hypothesis, we investigated an association between variation at SNP rs7055196 and facial fear recognition and theory of mind abilities in males. As predicted, males possessing the G allele had significantly poorer facial fear detection accuracy and theory of mind abilities than males possessing the A allele (with SNP variant accounting for up to 4.6% of variance). Variation in the X-linked EFHC2 gene at SNP rs7055196 is therefore associated with social cognitive abilities in males. PMID:26107779
Ohta, Yuko; McKinney, E Churchill; Criscitiello, Michael F; Flajnik, Martin F
2002-01-15
Cartilaginous fish (e.g., sharks) are derived from the oldest vertebrate ancestor having an adaptive immune system, and thus are key models for examining MHC evolution. Previously, family studies in two shark species showed that classical class I (UAA) and class II genes are genetically linked. In this study, we show that proteasome genes LMP2 and LMP7, shark-specific LMP7-like, and the TAP1/2 genes are linked to class I/II. Functional LMP7 and LMP7-like genes, as well as multiple LMP2 genes or gene fragments, are found only in some sharks, suggesting that different sets of peptides might be generated depending upon inherited MHC haplotypes. Cosmid clones bearing the MHC-linked classical class I genes were isolated and shown to contain proteasome gene fragments. A non-MHC-linked LMP7 gene also was identified on another cosmid, but only two exons of this gene were detected, closely linked to a class I pseudogene (UAA-NC2); this region probably resulted from a recent duplication and translocation from the functional MHC. Tight linkage of proteasome and class I genes, in comparison with gene organizations of other vertebrates, suggests a primordial MHC organization. Another nonclassical class I gene (UAA-NC1) was detected that is linked neither to MHC nor to UAA-NC2; its high level of sequence similarity to UAA suggests that UAA-NC1 also was recently derived from UAA and translocated from MHC. These data further support the principle of a primordial class I region with few class I genes. Finally, multiple paternities in one family were demonstrated, with potential segregation distortions.
Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders.
Novarino, Gaia; Fenstermaker, Ali G; Zaki, Maha S; Hofree, Matan; Silhavy, Jennifer L; Heiberg, Andrew D; Abdellateef, Mostafa; Rosti, Basak; Scott, Eric; Mansour, Lobna; Masri, Amira; Kayserili, Hulya; Al-Aama, Jumana Y; Abdel-Salam, Ghada M H; Karminejad, Ariana; Kara, Majdi; Kara, Bulent; Bozorgmehri, Bita; Ben-Omran, Tawfeg; Mojahedi, Faezeh; El Din Mahmoud, Iman Gamal; Bouslam, Naima; Bouhouche, Ahmed; Benomar, Ali; Hanein, Sylvain; Raymond, Laure; Forlani, Sylvie; Mascaro, Massimo; Selim, Laila; Shehata, Nabil; Al-Allawi, Nasir; Bindu, P S; Azam, Matloob; Gunel, Murat; Caglayan, Ahmet; Bilguvar, Kaya; Tolun, Aslihan; Issa, Mahmoud Y; Schroth, Jana; Spencer, Emily G; Rosti, Rasim O; Akizu, Naiara; Vaux, Keith K; Johansen, Anide; Koh, Alice A; Megahed, Hisham; Durr, Alexandra; Brice, Alexis; Stevanin, Giovanni; Gabriel, Stacy B; Ideker, Trey; Gleeson, Joseph G
2014-01-31
Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.
Molecular patterns of X chromosome-linked color vision genes among 134 menof European ancestry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond-Borg, M.; Deeb, S.S.; Motulsky, A.G.
1989-02-01
The authors used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of redmore » or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly, 2 (1.5%) had patterns characteristic of deuteranopia, and 6 (4.5%) had protan patterns. Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests.« less
Hybrid male sterility and genome-wide misexpression of male reproductive proteases.
Gomes, Suzanne; Civetta, Alberto
2015-07-06
Hybrid male sterility is a common barrier to gene flow between species. Previous studies have posited a link between misregulation of spermatogenesis genes in interspecies hybrids and sterility. However, in the absence of fully fertile control hybrids, it is impossible to differentiate between misregulation associated with sterility vs. fast male gene regulatory evolution. Here, we differentiate between these two possibilities using a D. pseudoobscura species pair that experiences unidirectional hybrid sterility. We identify genes uniquely misexpressed in sterile hybrid male reproductive tracts via RNA-seq. The sterile male hybrids had more misregulated and more over or under expressed genes relative to parental species than the fertile male hybrids. Proteases were the only gene ontology class overrepresented among uniquely misexpressed genes, with four located within a previously identified hybrid male sterility locus. This result highlights the potential role of a previously unexplored class of genes in interspecific hybrid male sterility and speciation.
Hybrid male sterility and genome-wide misexpression of male reproductive proteases
Gomes, Suzanne; Civetta, Alberto
2015-01-01
Hybrid male sterility is a common barrier to gene flow between species. Previous studies have posited a link between misregulation of spermatogenesis genes in interspecies hybrids and sterility. However, in the absence of fully fertile control hybrids, it is impossible to differentiate between misregulation associated with sterility vs. fast male gene regulatory evolution. Here, we differentiate between these two possibilities using a D. pseudoobscura species pair that experiences unidirectional hybrid sterility. We identify genes uniquely misexpressed in sterile hybrid male reproductive tracts via RNA-seq. The sterile male hybrids had more misregulated and more over or under expressed genes relative to parental species than the fertile male hybrids. Proteases were the only gene ontology class overrepresented among uniquely misexpressed genes, with four located within a previously identified hybrid male sterility locus. This result highlights the potential role of a previously unexplored class of genes in interspecific hybrid male sterility and speciation. PMID:26146165
USDA-ARS?s Scientific Manuscript database
The widely effective and linked rust resistance genes Yr47 and Lr52 were previously mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population t...
New genes linked to lung cancer susceptibility in Asian women
An international group of scientists has identified three genes that predispose Asian women who have never smoked to lung cancer. The discovery of specific genetic variations, which have not previously been associated with lung cancer risk in other popul
Phenotype-genotype correlations in X linked retinitis pigmentosa.
Kaplan, J; Pelet, A; Martin, C; Delrieu, O; Aymé, S; Bonneau, D; Briard, M L; Hanauer, A; Larget-Piet, L; Lefrançois, P
1992-01-01
Retinitis pigmentosa (RP) represents a group of clinically heterogeneous retinal degenerations in which all modes of inheritance have been described. We have previously found two different clinical profiles in X linked RP as a function of age and mode of onset. The first clinical form has very early onset with severe myopia. The second form starts later with night blindness with mild myopia or none. At least two genes have been identified in X linked forms, namely RP2 (linked to DXS7, DXS255, and DXS14) and RP3 (linked to DXS84 and OTC) on the short arm of the X chromosome. In order to contribute to phenotype-genotype correlations in X linked RP, we tested the hypothesis that the two clinical profiles could be accounted for by the two different gene loci. The present study provides evidence for linkage of the clinical form with early myopia as the onset symptom with the RP2 gene (pairwise linkage to DXS255: Z = 3.13 at theta = 0), while the clinical form with later night blindness as the onset symptom is linked to the RP3 gene (pairwise linkage to OTC: Z = 4.16 at theta = 0). Images PMID:1357178
Davis, Rebecca J; Belikoff, Esther J; Scholl, Elizabeth H; Li, Fang; Scott, Maxwell J
2018-06-18
It has been hypothesized that the Drosophila 4 th chromosome is derived from an ancient X chromosome [1]. In the Australian sheep blowfly, Lucilia cuprina, the heterochromatic X chromosome contains few active genes and orthologs of Drosophila X-linked genes are autosomal. Of 8 X-linked genes identified previously in L. cuprina, 6 were orthologs of Drosophila 4 th -chromosome genes [2]. The X-linked genes were expressed equally in males and females. Here we identify an additional 51 X-linked genes and show that most are dosage compensated. Orthologs of 49 of the 59 X-linked genes are on the 4 th chromosome in D. melanogaster. Because painting of fourth (Pof) is important for expression of Drosophila 4 th -chromosome genes [3], we used Cas9 to make a loss-of-function knockin mutation in an L. cuprina Pof ortholog we call no blokes (nbl). Homozygous nbl males derived from homozygous nbl mothers die at the late pupal stage. Homozygous nbl females are viable, fertile, and live longer than heterozygous nbl females. RNA expression of most X-linked genes was reduced in homozygous nbl male pupae and to a lesser extent in nbl females compared to heterozygous siblings. The results suggest that NBL could be important for X chromosome dosage compensation in L. cuprina. NBL may also facilitate gene expression in the heterochromatic environment of the X chromosome in both sexes. This study supports the hypothesis on the origin of the Drosophila 4 th chromosome and that a POF-like protein was required for normal gene expression on the ancient X chromosome. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Yuchao; Castillo-Morales, Atahualpa; Jiang, Min; Zhu, Yufei; Hu, Landian; Urrutia, Araxi O.; Kong, Xiangyin; Hurst, Laurence D.
2013-01-01
In female mammals most X-linked genes are subject to X-inactivation. However, in humans some X-linked genes escape silencing, these escapees being candidates for the phenotypic aberrations seen in polyX karyotypes. These escape genes have been reported to be under stronger purifying selection than other X-linked genes. Although it is known that escape from X-inactivation is much more common in humans than in mice, systematic assays of escape in humans have to date employed only interspecies somatic cell hybrids. Here we provide the first systematic next-generation sequencing analysis of escape in a human cell line. We analyzed RNA and genotype sequencing data obtained from B lymphocyte cell lines derived from Europeans (CEU) and Yorubans (YRI). By replicated detection of heterozygosis in the transcriptome, we identified 114 escaping genes, including 76 not previously known to be escapees. The newly described escape genes cluster on the X chromosome in the same chromosomal regions as the previously known escapees. There is an excess of escaping genes associated with mental retardation, consistent with this being a common phenotype of polyX phenotypes. We find both differences between populations and between individuals in the propensity to escape. Indeed, we provide the first evidence for there being both hyper- and hypo-escapee females in the human population, consistent with the highly variable phenotypic presentation of polyX karyotypes. Considering also prior data, we reclassify genes as being always, never, and sometimes escape genes. We fail to replicate the prior claim that genes that escape X-inactivation are under stronger purifying selection than others. PMID:24023392
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyuzhnaya, Marina G.; Nercessian, Olivier; Lapidus, Alla
2004-07-01
The recently generated database of microbial genes from anoligotrophic environment populated by a calculated 1,800 of major phylotypes (the Sargasso Sea metagenome) presents a great source for expanding local databases of genes indicative of a specific function. In this paper we analyze the Sargasso Sea metagenome in terms of the presence of methanopterin-linked C1 transfer genes that are signature for methylotrophy. We conclude that more than 10 phylotypes possessing genes of interest are present in this environment, and a few of these are relatively abundant species. The sequences representative of the major phylotypes do not appear to belong to anymore » known microbial group capable of methanopterin-linked C1 transfer. Instead, they separate from all known sequences on phylogenetic trees, pointing towards their affiliation with a novel microbial phylum. These data imply a broader distribution of methanopterin-linked functions in the microbial world than previously known.« less
Biomedical hypothesis generation by text mining and gene prioritization.
Petric, Ingrid; Ligeti, Balazs; Gyorffy, Balazs; Pongor, Sandor
2014-01-01
Text mining methods can facilitate the generation of biomedical hypotheses by suggesting novel associations between diseases and genes. Previously, we developed a rare-term model called RaJoLink (Petric et al, J. Biomed. Inform. 42(2): 219-227, 2009) in which hypotheses are formulated on the basis of terms rarely associated with a target domain. Since many current medical hypotheses are formulated in terms of molecular entities and molecular mechanisms, here we extend the methodology to proteins and genes, using a standardized vocabulary as well as a gene/protein network model. The proposed enhanced RaJoLink rare-term model combines text mining and gene prioritization approaches. Its utility is illustrated by finding known as well as potential gene-disease associations in ovarian cancer using MEDLINE abstracts and the STRING database.
DNA methylation changes at infertility genes in newborn twins conceived by in vitro fertilisation.
Castillo-Fernandez, Juan E; Loke, Yuk Jing; Bass-Stringer, Sebastian; Gao, Fei; Xia, Yudong; Wu, Honglong; Lu, Hanlin; Liu, Yuan; Wang, Jun; Spector, Tim D; Saffery, Richard; Craig, Jeffrey M; Bell, Jordana T
2017-03-24
The association of in vitro fertilisation (IVF) and DNA methylation has been studied predominantly at regulatory regions of imprinted genes and at just thousands of the ~28 million CpG sites in the human genome. We investigated the links between IVF and DNA methylation patterns in whole cord blood cells (n = 98) and cord blood mononuclear cells (n = 82) from newborn twins using genome-wide methylated DNA immunoprecipitation coupled with deep sequencing. At a false discovery rate (FDR) of 5%, we identified one significant whole blood DNA methylation change linked to conception via IVF, which was located ~3 kb upstream of TNP1, a gene previously linked to male infertility. The 46 most strongly associated signals (FDR of 25%) included a second region in a gene also previously linked to infertility, C9orf3, suggesting that our findings may in part capture the effect of parental subfertility. Using twin modelling, we observed that individual-specific environmental factors appear to be the main overall contributors of methylation variability at the FDR 25% IVF-associated differentially methylated regions, although evidence for methylation heritability was also obtained at several of these regions. We replicated previous findings of differential methylation associated with IVF at the H19/IGF2 region in cord blood mononuclear cells, and we validated the signal at C9orf3 in monozygotic twins. We also explored the impact of intracytoplasmic sperm injection on the FDR 25% signals for potential effects specific to male or female infertility factors. To our knowledge, this is the most comprehensive study of DNA methylation profiles at birth and IVF conception to date, and our results show evidence for epigenetic modifications that may in part reflect parental subfertility.
Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae.
Nakagome, Shigeki; Pecon-Slattery, Jill; Masuda, Ryuichi
2008-07-01
Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.
Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system.
Jervis, Adrian J; Wood, Alison G; Cain, Joel A; Butler, Jonathan A; Frost, Helen; Lord, Elizabeth; Langdon, Rebecca; Cordwell, Stuart J; Wren, Brendan W; Linton, Dennis
2018-04-01
N-linked protein glycosylation systems operate in species from all three domains of life. The model bacterial N-linked glycosylation system from Campylobacter jejuni is encoded by pgl genes present at a single chromosomal locus. This gene cluster includes the pglB oligosaccharyltransferase responsible for transfer of glycan from lipid carrier to protein. Although all genomes from species of the Campylobacter genus contain a pgl locus, among the related Helicobacter genus only three evolutionarily related species (H. pullorum, H. canadensis and H. winghamensis) potentially encode N-linked protein glycosylation systems. Helicobacter putative pgl genes are scattered in five chromosomal loci and include two putative oligosaccharyltransferase-encoding pglB genes per genome. We have previously demonstrated the in vitro N-linked glycosylation activity of H. pullorum resulting in transfer of a pentasaccharide to a peptide at asparagine within the sequon (D/E)XNXS/T. In this study, we identified the first H. pullorum N-linked glycoprotein, termed HgpA. Production of histidine-tagged HgpA in the background of insertional knockout mutants of H. pullorum pgl/wbp genes followed by analysis of HgpA glycan structures demonstrated the role of individual gene products in the PglB1-dependent N-linked protein glycosylation pathway. Glycopeptide purification by zwitterionic-hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry identified six glycosites from five H. pullorum proteins, which was consistent with proteins reactive with a polyclonal antiserum generated against glycosylated HgpA. This study demonstrates functioning of a H. pullorum N-linked general protein glycosylation system.
Dana, M N; Ascher, P D
1986-01-01
A previously identified S-linked stylar-inactivation PSC factor (Flaschenriem and Ascher 1979b) was studied for its location relative to S. Plants exhibiting complete stylar-inactivation PSC were those with higher multigenic PSC background level than plants with only S-linked partial stylar-inactivation PSC. A pollen-mediated pseudo-self compatibility (PMPSC) adjustment factor was offered as a device to focus on stylar-inactivation PSC by removing some male origin, multigenic PSC. The stylar inactivation factor was not tightly linked to S but affected expression of only the allele to which it was linked. A three part interacting association of genetic material governing self incompatibility (SI) is proposed. The parts of S are the SI identity gene, S-specific PSC genes and, finally, PSC genes which are not S-specific in action. The complete association is termed the SI-complex.
Detection of eQTL modules mediated by activity levels of transcription factors.
Sun, Wei; Yu, Tianwei; Li, Ker-Chau
2007-09-01
Studies of gene expression quantitative trait loci (eQTL) in different organisms have shown the existence of eQTL hot spots: each being a small segment of DNA sequence that harbors the eQTL of a large number of genes. Two questions of great interest about eQTL hot spots arise: (1) which gene within the hot spot is responsible for the linkages, i.e. which gene is the quantitative trait gene (QTG)? (2) How does a QTG affect the expression levels of many genes linked to it? Answers to the first question can be offered by available biological evidence or by statistical methods. The second question is harder to address. One simple situation is that the QTG encodes a transcription factor (TF), which regulates the expression of genes linked to it. However, previous results have shown that TFs are not overrepresented in the eQTL hot spots. In this article, we consider the scenario that the propagation of genetic perturbation from a QTG to other linked genes is mediated by the TF activity. We develop a procedure to detect the eQTL modules (eQTL hot spots together with linked genes) that are compatible with this scenario. We first detect 27 eQTL modules from a yeast eQTL data, and estimate TF activity profiles using the method of Yu and Li (2005). Then likelihood ratio tests (LRTs) are conducted to find 760 relationships supporting the scenario of TF activity mediation: (DNA polymorphism --> cis-linked gene --> TF activity --> downstream linked gene). They are organized into 4 eQTL modules: an amino acid synthesis module featuring a cis-linked gene LEU2 and the mediating TF Leu3; a pheromone response module featuring a cis-linked gene GPA1 and the mediating TF Ste12; an energy-source control module featuring two cis-linked genes, GSY2 and HAP1, and the mediating TF Hap1; a mitotic exit module featuring four cis-linked genes, AMN1, CSH1, DEM1 and TOS1, and the mediating TF complex Ace2/Swi5. Gene Ontology is utilized to reveal interesting functional groups of the downstream genes in each module. Our methods are implemented in an R package: eqtl.TF, which includes source codes and relevant data. It can be freely downloaded at http://www.stat.ucla.edu/~sunwei/software.htm. http://www.stat.ucla.edu/~sunwei/yeast_eQTL_TF/supplementary.pdf.
Thomson, Jack S; Watts, Phillip C; Pottinger, Tom G; Sneddon, Lynne U
2011-01-01
Bold, risk-taking animals have previously been putatively linked with a proactive stress coping style whereas it is suggested shyer, risk-averse animals exhibit a reactive coping style. The aim of this study was to investigate whether differences in the expression of bold-type behaviour were evident within and between two lines of rainbow trout, Oncorhynchus mykiss, selectively bred for a low (LR) or high (HR) endocrine response to stress, and to link boldness and stress responsiveness with the expression of related candidate genes. Boldness was determined in individual fish over two trials by measuring the latency to approach a novel object. Differences in plasma cortisol concentrations and the expression of eight novel candidate genes previously identified as being linked with divergent behaviours or stress were determined. Bold and shy individuals, approaching the object within 180 s or not approaching within 300 s respectively, were evident within each line, and this was linked with activity levels in the HR line. Post-stress plasma cortisol concentrations were significantly greater in the HR line compared with the LR line, and six of the eight tested genes were upregulated in the brains of LR fish compared with HR fish. However, no direct relationship between boldness and either stress responsiveness or gene expression was found, although clear differences in stress physiology and, for the first time, gene expression could be identified between the lines. This lack of correlation between physiological and molecular responses and behavioural variation within both lines highlights the complexity of the behavioural-physiological complex. Copyright © 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Haskel-Ittah, Michal; Yarden, Anat
2017-01-01
Previous studies have shown that students often ignore molecular mechanisms when describing genetic phenomena. Specifically, students tend to directly link genes to their encoded traits, ignoring the role of proteins as mediators in this process. We tested the ability of 10th grade students to connect genes to traits through proteins, using…
Meloni, Ilaria; Bruttini, Mirella; Longo, Ilaria; Mari, Francesca; Rizzolio, Flavio; D’Adamo, Patrizia; Denvriendt, Koenraad; Fryns, Jean-Pierre; Toniolo, Daniela; Renieri, Alessandra
2000-01-01
Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders. PMID:10986043
Smit, Dirk J A; Wright, Margaret J; Meyers, Jacquelyn L; Martin, Nicholas G; Ho, Yvonne Y W; Malone, Stephen M; Zhang, Jian; Burwell, Scott J; Chorlian, David B; de Geus, Eco J C; Denys, Damiaan; Hansell, Narelle K; Hottenga, Jouke-Jan; McGue, Matt; van Beijsterveldt, Catharina E M; Jahanshad, Neda; Thompson, Paul M; Whelan, Christopher D; Medland, Sarah E; Porjesz, Bernice; Lacono, William G; Boomsma, Dorret I
2018-06-26
Oscillatory activity is crucial for information processing in the brain, and has a long history as a biomarker for psychopathology. Variation in oscillatory activity is highly heritable, but current understanding of specific genetic influences remains limited. We performed the largest genome-wide association study to date of oscillatory power during eyes-closed resting electroencephalogram (EEG) across a range of frequencies (delta 1-3.75 Hz, theta 4-7.75 Hz, alpha 8-12.75 Hz, and beta 13-30 Hz) in 8,425 subjects. Additionally, we performed KGG positional gene-based analysis and brain-expression analyses. GABRA2-a known genetic marker for alcohol use disorder and epilepsy-significantly affected beta power, consistent with the known relation between GABA A interneuron activity and beta oscillations. Tissue-specific SNP-based imputation of gene-expression levels based on the GTEx database revealed that hippocampal GABRA2 expression may mediate this effect. Twenty-four genes at 3p21.1 were significant for alpha power (FDR q < .05). SNPs in this region were linked to expression of GLYCTK in hippocampal tissue, and GNL3 and ITIH4 in the frontal cortex-genes that were previously implicated in schizophrenia and bipolar disorder. In sum, we identified several novel genetic variants associated with oscillatory brain activity; furthermore, we replicated and advanced understanding of previously known genes associated with psychopathology (i.e., schizophrenia and alcohol use disorders). Importantly, these psychopathological liability genes affect brain functioning, linking the genes' expression to specific cortical/subcortical brain regions. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Shastry, B S; Hejtmancik, J F; Trese, M T
1997-01-01
X-linked Familial Exudative Vitreoretinopathy (XLFEVR) is a hereditary eye disorder that affects both the retina and the vitreous body. It is characterized by an abnormal vascularization of the peripheral retina. It has been previously shown by linkage and candidate gene analysis that XLFEVR and Norrie disease are allelic. In this report we describe four novel mutations (R41K, H42R, K58N, and Y120C) in the Norrie disease gene associated with one X-linked and four sporadic cases of FEVR. One mutation (H42R) was found to be segregating with the disease in three generations (X-linked family), and the others are sporadic. These sequence alterations changed the encoded amino acids in the Norrie disease protein and were not found in 17 unaffected family members or in 36 randomly selected normal individuals. This study provides additional evidence that mutations in the same gene can result in FEVR and Norrie disease. It also demonstrates that it may be beneficial for clinical diagnosis to screen for mutations in the Norrie disease gene in sporadic FEVR cases.
Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.
Ma, Xiang; Li, Xiaoxin; Wang, Lihua
2008-01-01
To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.
Fidani, L; Karagianni, P; Tsakalidis, C; Mitsiako, G; Hatziioannidis, I; Biancalana, V; Nikolaidis, N
2011-01-01
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy, usually characterized by severe hypotonia and respiratory insufficiency at birth, in affected, male infants. The disease is causally associated with mutations in the MTM1 gene, coding for phosphatase myotubularin. We report a severe case of XLMTM with a novel mutation, at a donor splicing site (c.1467+1G) previously associated with severe phenotype. The mutation was also identified in the patient's mother, providing an opportunity for sound genetic counseling. PMID:22435031
Fidani, L; Karagianni, P; Tsakalidis, C; Mitsiako, G; Hatziioannidis, I; Biancalana, V; Nikolaidis, N
2011-07-01
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy, usually characterized by severe hypotonia and respiratory insufficiency at birth, in affected, male infants. The disease is causally associated with mutations in the MTM1 gene, coding for phosphatase myotubularin. We report a severe case of XLMTM with a novel mutation, at a donor splicing site (c.1467+1G) previously associated with severe phenotype. The mutation was also identified in the patient's mother, providing an opportunity for sound genetic counseling.
Yasukochi, Yuji; Miura, Nami; Nakano, Ryo; Sahara, Ken; Ishikawa, Yukio
2011-01-01
Background Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs) play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths. Methodology/Principal Findings We screened an O. nubilalis bacterial artificial chromosome (BAC) library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH) analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7. Conclusions/Significance This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly, facilitate differentiation of sex pheromones. PMID:21526121
Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John
2007-06-01
We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.
Iyengar, Vikram K; Reeve, Hudson K
2010-05-01
Female preference genes for large males in the highly promiscuous moth Utetheisa ornatrix (Lepidoptera: Arctiidae) have previously been shown to be mostly Z-linked, in accordance with the hypothesis that ZZ-ZW sex chromosome systems should facilitate Fisherian sexual selection. We determined the heritability of both female and male promiscuity in the highly promiscuous moth U. ornatrix (Lepidoptera: Arctiidae) through parent-offspring and grandparent-offspring regression analyses. Our data show that male promiscuity is not sex-limited and either autosomal or sex-linked whereas female promiscuity is primarily determined by sex-limited, Z-linked genes. These data are consistent with the "sexy-sperm hypothesis," which posits that multiple-mating and sperm competitiveness coevolve through a Fisherian-like process in which female promiscuity is a kind of mate choice in which sperm-competitiveness is the trait favored in males. Such a Fisherian process should also be more potent when female preferences are Z-linked and sex-limited than when autosomal or not limited.
Genotype-phenotype variations in five Spanish families with Norrie disease or X-linked FEVR.
Riveiro-Alvarez, Rosa; Trujillo-Tiebas, Maria José; Gimenez-Pardo, Ascension; Garcia-Hoyos, Maria; Cantalapiedra, Diego; Lorda-Sanchez, Isabel; Rodriguez de Alba, Marta; Ramos, Carmen; Ayuso, Carmen
2005-09-02
Norrie disease (OMIM 310600) is a rare X-linked disorder characterized by congenital blindness in males. Approximately 40 to 50% of the cases develop deafness and mental retardation. X-linked familial exudative vitreoretinopathy (XL-FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. Both X-linked disorders are due to mutations in the NDP gene, which encodes a 133 amino acid protein called Norrin, but autosomal recessive (AR) and autosomal dominant (AD) forms of FEVR have also been described. In this study, we report the molecular findings and the related phenotype in five Spanish families affected with Norrie disease or XL-FEVR due to mutations of the NDP gene. The study was conducted in 45 subjects from five Spanish families. These families were clinically diagnosed with Norrie disease or similar conditions. The three exons of the NDP gene were analyzed by automatic DNA sequencing. Haplotype analyses were also performed. Two new nonsense mutations, apart from other mutations previously described in the NDP gene, were found in those patients affected with ND or X-linked FEVR. An important genotype-phenotype variation was found in relation to the different mutations of the NDP gene. In fact, the same mutation may be responsible for different phenotypes. We speculate that there might be other molecular factors that interact in the retina with Norrin, which contribute to the resultant phenotypes.
Okada, Kazuma; Moriya, Shigeki; Haji, Takashi; Abe, Kazuyuki
2013-06-01
Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.
X-linked cataract and Nance-Horan syndrome are allelic disorders.
Coccia, Margherita; Brooks, Simon P; Webb, Tom R; Christodoulou, Katja; Wozniak, Izabella O; Murday, Victoria; Balicki, Martha; Yee, Harris A; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J; Maher, Eamonn R; Moore, Anthony T; Russell-Eggitt, Isabelle M; Hardcastle, Alison J
2009-07-15
Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication-triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved.
X-linked cataract and Nance-Horan syndrome are allelic disorders
Coccia, Margherita; Brooks, Simon P.; Webb, Tom R.; Christodoulou, Katja; Wozniak, Izabella O.; Murday, Victoria; Balicki, Martha; Yee, Harris A.; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K.; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J.; Maher, Eamonn R.; Moore, Anthony T.; Russell-Eggitt, Isabelle M.; Hardcastle, Alison J.
2009-01-01
Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved. PMID:19414485
Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry.
Drummond-Borg, M; Deeb, S S; Motulsky, A G
1989-01-01
We used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes [Nathans, J., Piantanida, T.P., Eddy, R.L., Shows, T.B., Jr., & Hogness, D.S. (1986) Science 232, 203-210]. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly (mild defect in green color perception), 2 (1.5%) had patterns characteristic of deuteranopia (severe defect in green color perception), and 6 (4.5%) had protan patterns (the red perception defects protanomaly and protanopia cannot be differentiated by current molecular methods). Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Only 2 of these patterns were considered as deuteranomalous. Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests. Some color vision gene arrays associated with hybrid genes are likely to mediate normal color vision. Images PMID:2915991
2013-01-01
Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome. PMID:23531366
Eronen, Lauri; Toivonen, Hannu
2012-06-06
Biological databases contain large amounts of data concerning the functions and associations of genes and proteins. Integration of data from several such databases into a single repository can aid the discovery of previously unknown connections spanning multiple types of relationships and databases. Biomine is a system that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. We present Biomine and evaluate its performance in link prediction, where the goal is to predict pairs of nodes that will be connected in the future, based on current data. In particular, we formulate protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph. We consider and experiment with several such measures, and perform a parameter optimization procedure where different edge types are weighted to optimize link prediction accuracy. We also propose a novel method for disease-gene prioritization, defined as finding a subset of candidate genes that cluster together in the graph. We experimentally evaluate Biomine by predicting future annotations in the source databases and prioritizing lists of putative disease genes. The experimental results show that Biomine has strong potential for predicting links when a set of selected candidate links is available. The predictions obtained using the entire Biomine dataset are shown to clearly outperform ones obtained using any single source of data alone, when different types of links are suitably weighted. In the gene prioritization task, an established reference set of disease-associated genes is useful, but the results show that under favorable conditions, Biomine can also perform well when no such information is available.The Biomine system is a proof of concept. Its current version contains 1.1 million entities and 8.1 million relations between them, with focus on human genetics. Some of its functionalities are available in a public query interface at http://biomine.cs.helsinki.fi, allowing searching for and visualizing connections between given biological entities.
Chen, Z Y; Battinelli, E M; Fielder, A; Bundey, S; Sims, K; Breakefield, X O; Craig, I W
1993-10-01
Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder characterized by an abnormality of the peripheral retina. Both autosomal dominant (adFEVR) and X-linked (XLFEVR) forms have been described, but the biochemical defect(s) underlying the symptoms are unknown. Molecular analysis of the Norrie gene locus (NDP) in a four generation FEVR family (shown previously to exhibit linkage to the X-chromosome markers DXS228 and MAOA (Xp11.4-p11.3)) reveals a missense mutation in the highly conserved region of the NDP gene, which caused a neutral amino acid substitution (Leu124Phe), was detected in all of the affected males, but not in the unaffected family members, nor in normal controls. The observations suggest that phenotypes of both XLFEVR and Norrie disease can result from mutations in the same gene.
Zinzow-Kramer, W M; Horton, B M; McKee, C D; Michaud, J M; Tharp, G K; Thomas, J W; Tuttle, E M; Yi, S; Maney, D L
2015-11-01
The genome of the white-throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2(m) ), may therefore advance our understanding of the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified gene expression and terrirorial aggression, including song, in a population of free-living white-throated sparrows. We analyzed gene expression in two brain regions, the medial amygdala (MeA) and hypothalamus. Both regions are part of a 'social behavior network', which is rich in steroid hormone receptors and previously linked with territorial behavior. Using weighted gene co-expression network analyses, we identified modules of genes that were correlated with both morph and singing behavior. The majority of these genes were located within the inversion, showing the profound effect of the inversion on the expression of genes captured by the rearrangement. These modules were enriched with genes related to retinoic acid signaling and basic cellular functioning. In the MeA, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor 1), a gene previously shown to predict song rate in this species. The set of candidate genes we identified may mediate the effects of a chromosomal inversion on territorial behavior. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E.; Dagnino, Lina
2012-01-01
Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function. PMID:22574216
Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina
2012-01-01
Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.
The alpha-spectrin gene is on chromosome 1 in mouse and man.
Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J
1985-06-01
By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.
Manley, Kate; Gee, Gretchen V; Simkevich, Carl P; Sedivy, John M; Atwood, Walter J
2007-01-01
The human polyomavirus, JCV, has a highly restricted tropism and primarily infects glial cells. The mechanisms restricting infection of cells by JCV are poorly understood. Previously we developed and described a glial cell line that was resistant to JCV infection with the aim of using these cells to identify factors that determine JCV tropism. Gene expression profiling of susceptible and resistant glial cells revealed a direct correlation between the expression of inflammatory cytokines and susceptibility to JCV infection. This correlation manifested at the level of viral gene transcription. Previous studies have suggested a link between an increase in cytokine gene expression in HIV patients and the development of PML and these data support this hypothesis. PMID:17555786
The DREAM complex: Master coordinator of cell cycle dependent gene expression
Sadasivam, Subhashini; DeCaprio, James A.
2014-01-01
Preface The dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and FOXM1. DREAM mediates gene repression during G0 and coordinates periodic gene expression with peaks during G1/S and G2/M. Perturbations in DREAM regulation shift the balance from quiescence towards proliferation and contribute to increased mitotic gene expression levels frequently observed in cancers with poor prognosis. PMID:23842645
The Norrie disease gene maps to a 150 kb region on chromosome Xp11.3.
Sims, K B; Lebo, R V; Benson, G; Shalish, C; Schuback, D; Chen, Z Y; Bruns, G; Craig, I W; Golbus, M S; Breakefield, X O
1992-05-01
Norrie disease is a human X-linked recessive disorder of unknown etiology characterized by congenital blindness, sensory neural deafness and mental retardation. This disease gene was previously linked to the DXS7 (L1.28) locus and the MAO genes in band Xp11.3. We report here fine physical mapping of the obligate region containing the Norrie disease gene (NDP) defined by a recombination and by the smallest submicroscopic chromosomal deletion associated with Norrie disease identified to date. Analysis, using in addition two overlapping YAC clones from this region, allowed orientation of the MAOA and MAOB genes in a 5'-3'-3'-5' configuration. A recombination event between a (GT)n polymorphism in intron 2 of the MAOB gene and the NDP locus, in a family previously reported to have a recombination between DXS7 and NDP, delineates a flanking marker telomeric to this disease gene. An anonymous DNA probe, dc12, present in one of the YACs and in a patient with a submicroscopic deletion which includes MAOA and MAOB but not L1.28, serves as a flanking marker centromeric to the disease gene. An Alu-PCR fragment from the right arm of the MAO YAC (YMAO.AluR) is not deleted in this patient and also delineates the centromeric extent of the obligate disease region. The apparent order of these loci is telomere ... DXS7-MAOA-MAOB-NDP-dc12-YMAO.AluR ... centromere. Together these data define the obligate region containing the NDP gene to a chromosomal segment less than 150 kb.
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma | Office of Cancer Genomics
In a recent Nature article, Morin et al. uncovered a novel role for chromatin modification in driving the progression of two non-Hodgkin lymphomas (NHLs), follicular lymphoma and diffuse large B-cell lymphoma. Through DNA and RNA sequencing of 117 tumor samples and 10 assorted cell lines, the authors identified and validated 109 genes with multiple mutations in these B-cell NHLs. Of the 109 genes, several genes not previously linked to lymphoma demonstrated positive selection for mutation including two genes involved in histone modification, MLL2 and MEF2B.
Jørgensen, Louise H.; Mosbech, Mai-Britt; Færgeman, Nils J.; Graakjaer, Jesper; Jacobsen, Søren V.; Schrøder, Henrik D.
2014-01-01
Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene. PMID:24899269
Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J; Graakjaer, Jesper; Jacobsen, Søren V; Schrøder, Henrik D
2014-06-05
Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene.
Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A; Urrutia, Araxi O; Gutierrez, Humberto
2016-10-01
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell-cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. © 2016 The Authors.
Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A.
2016-01-01
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell–cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. PMID:27707894
A family with X-linked optic atrophy linked to the OPA2 locus Xp11.4-Xp11.2.
Katz, Bradley J; Zhao, Yu; Warner, Judith E A; Tong, Zongzhong; Yang, Zhenglin; Zhang, Kang
2006-10-15
Autosomal dominant optic atrophy (ADOA) is the most common inherited optic atrophy. Clinical features of ADOA include a slowly progressive bilateral loss of visual acuity, constriction of peripheral visual fields, central scotomas, and color vision abnormalities. Although ADOA is the most commonly inherited optic atrophy, autosomal recessive, X-linked, mitochondrial, and sporadic forms have also been reported. Four families with X-linked optic atrophy (XLOA) were previously described. One family was subsequently linked to Xp11.4-Xp11.2 (OPA2). This investigation studied one multi-generation family with an apparently X-linked form of optic atrophy and compared their clinical characteristics with those of the previously described families, and determined whether this family was linked to the same genetic locus. Fifteen individuals in a three-generation Idaho family underwent complete eye examination, color vision testing, automated perimetry, and fundus photography. Polymorphic markers were used to genotype each individual and to determine linkage. Visual acuities ranged from 20/30 to 20/100. All affected subjects had significant optic nerve pallor. Obligate female carriers were clinically unaffected. Preliminary linkage analysis (LOD score = 1.8) revealed that the disease gene localized to the OPA2 locus on Xp11.4-Xp11.2. Four forms of inherited optic neuropathy, ADOA, autosomal recessive optic atrophy (Costeff Syndrome), Leber hereditary optic neuropathy, and Charcot-Marie-Tooth disease with optic atrophy, are associated with mitochondrial dysfunction. Future identification of the XLOA gene will reveal whether this form of optic atrophy is also associated with a mitochondrial defect. Identification of the XLOA gene will advance our understanding of the inherited optic neuropathies and perhaps suggest treatments for these diseases. An improved understanding of inherited optic neuropathies may in turn advance our understanding of acquired optic nerve diseases, such as glaucoma and ischemic optic neuropathy. (c) 2006 Wiley-Liss, Inc.
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-01-01
Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-12-03
Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, approximately 4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).
Mutational Survey of the PHEX Gene in Patients with X-linked Hypophosphatemic Rickets
Ichikawa, Shoji; Traxler, Elizabeth A.; Estwick, Selina A.; Curry, Leah R.; Johnson, Michelle L.; Sorenson, Andrea H.; Imel, Erik A.; Econs, Michael J.
2008-01-01
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. XLH is caused by inactivating mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). In this study, we sequenced the PHEX gene in subjects from 26 kindreds who were clinically diagnosed with XLH. Sequencing revealed 18 different mutations, of which thirteen have not been reported previously. In addition to deletions, splice site mutations, and missense and nonsense mutations, a rare point mutation in the 3’-untranslated region (3’-UTR) was identified as a novel cause of XLH. In summary, we identified a wide spectrum of mutations in the PHEX gene. Our data, in accord with those of others, indicate that there is no single predominant PHEX mutation responsible for XLH. PMID:18625346
Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem
2014-06-01
Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.
Katsumata, Yuriko; Nelson, Peter T.; Ellingson, Sally R.; Fardo, David W.
2017-01-01
Hippocampal sclerosis of aging (HS-Aging) is a common neurodegenerative condition associated with dementia. To learn more about genetic risk of HS-Aging pathology, we tested gene-based associations of the GRN, TMEM106B, ABCC9, and KCNMB2 genes, which were reported to be associated with HS-Aging pathology in previous studies. Genetic data were obtained from the Alzheimer’s Disease Genetics Consortium (ADGC), linked to autopsy-derived neuropathological outcomes from the National Alzheimer’s Coordinating Center (NACC). Of the 3,251 subjects included in the study, 271 (8.3%) were identified as an HS-Aging case. The significant gene-based association between the ABCC9 gene and HS-Aging appeared to be driven by a region in which a significant haplotype-based association was found. We tested this haplotype as an expression Quantitative Trait Locus (eQTL) using two different public-access brain gene expression databases. The HS-Aging pathology protective ABCC9 haplotype was associated with decreased ABCC9 expression, indicating a possible toxic gain of function. PMID:28131462
Efficient identification of Y chromosome sequences in the human and Drosophila genomes.
Carvalho, Antonio Bernardo; Clark, Andrew G
2013-11-01
Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.
A Complex Genetic Basis to X-Linked Hybrid Male Sterility Between Two Species of House Mice
Good, Jeffrey M.; Dean, Matthew D.; Nachman, Michael W.
2008-01-01
The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome. PMID:18689897
A complex genetic basis to X-linked hybrid male sterility between two species of house mice.
Good, Jeffrey M; Dean, Matthew D; Nachman, Michael W
2008-08-01
The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome.
Conservation of transcription factor binding events predicts gene expression across species
Hemberg, Martin; Kreiman, Gabriel
2011-01-01
Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661
The alpha-spectrin gene is on chromosome 1 in mouse and man.
Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J
1985-01-01
By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies. Images PMID:2987946
Morgan, Angharad R.; Thompson, John M.D.; Waldie, Karen E.; Cornforth, Christine M.; Turic, Darko; Sonuga-Barke, Edmund J.S.; Lam, Wen-Jiun; Ferguson, Lynnette R.; Mitchell, Edwin A.
2012-01-01
Being born small for gestational age (SGA) is a putative risk factor for the development of later cognitive and psychiatric health problems. While the inter-uterine environment has been shown to play an important role in predicting birth weight, little is known about the genetic factors that might be important. Here we test the hypothesis that neurotransmitter-regulating genes implicated in psychiatric disorders previously shown to be associated with SGA (such as attention-deficit hyperactivity disorder) are themselves predictive of SGA. DNA was collected from 227 SGA and 319 appropriate for gestational age children taking part in the Auckland Birthweight Collaborative Study. Candidate single nucleotide polymorphisms in genes regulating activity within dopamine, serotonin, glutamate and gamma-aminobutyric acid pathways were genotyped. Multiple regression analysis, controlling for potentially confounding factors, supported nominally significant associations between SGA and single nucleotide polymorphisms in COMT, HTR2A, SLC1A1 and SLC6A1. This is the first evidence that genes implicated in psychiatric disorders previously linked to SGA status themselves predict SGA. This highlights the possibility that the link between SGA and psychiatric disorders such as attention-deficit hyperactivity disorder may in part be genetically determined – that SGA marks pre-existing genetic risk for later problems. PMID:27625810
de Sousa Dias, Miguel; Hernan, Imma; Delás, Barbara; Pascual, Beatriz; Borràs, Emma; Gamundi, Maria José; Mañé, Begoña; Fernández-San José, Patricia; Ayuso, Carmen
2015-01-01
Purpose This study aimed to test a newly devised cost-effective multiplex PCR assay for the molecular diagnosis of autosomal dominant retinitis pigmentosa (adRP), as well as the use of whole-exome sequencing (WES) to detect disease-causing mutations in adRP. Methods Genomic DNA was extracted from peripheral blood lymphocytes of index patients with adRP and their affected and unaffected family members. We used a newly devised multiplex PCR assay capable of amplifying the genetic loci of RHO, PRPH2, RP1, PRPF3, PRPF8, PRPF31, IMPDH1, NRL, CRX, KLHL7, and NR2E3 to molecularly diagnose 18 index patients with adRP. We also performed WES in affected and unaffected members of four families with adRP in whom a disease-causing mutation was previously not found. Results We identified five previously reported mutations (p.Arg677X in the RP1 gene, p.Asp133Val and p.Arg195Leu in the PRPH2 gene, and p.Pro171Leu and p.Pro215Leu in the RHO gene) and one novel mutation (p.Val345Gly in the RHO gene) representing 33% detection of causative mutations in our adRP cohort. Comparative WES analysis showed a new variant (p.Gly103Arg in the COL6A6 gene) that segregated with the disease in one family with adRP. As this variant was linked with the RHO locus, we sequenced the complete RHO gene, which revealed a deletion in intron 4 that encompassed all of exon 5 and 28 bp of the 3′-untranslated region (UTR). Conclusions The novel multiplex PCR assay with next-generation sequencing (NGS) proved effective for detecting most of the adRP-causing mutations. A WES approach led to identification of a deletion in RHO through detection of a new linked variant in COL6A6. No pathogenic variants were identified in the remaining three families. Moreover, NGS and WES were inefficient for detecting the complete deletion of exon 5 in the RHO gene in one family with adRP. Carriers of this deletion showed variable clinical status, and two of these carriers had not previously been diagnosed with RP. PMID:26321861
Connexin43 Gene Transfer Reduces Ventricular Tachycardia Susceptibility After Myocardial Infarction
Greener, Ian D.; Sasano, Tetsuo; Wan, Xiaoping; Igarashi, Tomonori; Strom, Maria; Rosenbaum, David S.; Donahue, J. Kevin
2012-01-01
Objectives The aim of this study was to evaluate the links between connexin43 (Cx43) expression, myocardial conduction velocity, and ventricular tachycardia in a model of healed myocardial infarction. Background Post-infarction ventricular arrhythmias frequently cause sudden death. Impaired myocardial conduction has previously been linked to ventricular arrhythmias. Altered connexin expression is a potential source of conduction slowing identified in healed scar border tissues. The functional effect of increasing border-zone Cx43 has not been previously evaluated. Methods Twenty-five Yorkshire pigs underwent anterior infarction by transient left anterior descending coronary artery occlusion, followed by weekly testing for arrhythmia inducibility. Twenty animals with reproducibly inducible sustained monomorphic ventricular tachycardia were randomized 2:1:1 to receive AdCx43, Adβgal, or no gene transfer. One week later, animals underwent follow-up electrophysiologic study and tissue assessment for several functional and molecular measures. Results Animals receiving AdCx43 had less electrogram fractionation and faster conduction velocity in the anterior-septal border zone. Only 40% of AdCx43 animals remained inducible for ventricular tachycardia, while 100% of controls were inducible after gene transfer. AdCx43 animals had 2-fold higher Cx43 protein levels in the anterior-septal infarct border, with similar percents of phosphorylated and intercalated disk-localized Cx43 compared with controls. Conclusions These data mechanistically link Cx43 expression to slow conduction and arrhythmia susceptibility in the healed scar border zone. Targeted manipulation of Cx43 levels improved conduction velocity and reduced ventricular tachycardia susceptibility. Cx43 gene transfer represents a novel treatment strategy for post-infarction arrhythmias. PMID:22883636
Lanza, Amanda M.; Blazeck, John J.; Crook, Nathan C.; Alper, Hal S.
2012-01-01
Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence. PMID:22558379
Yamamoto, K; Oda, Y; Haseda, A; Fujito, S; Mikami, T; Onodera, Y
2014-01-01
Spinach (Spinacia oleracea L.) is widely known to be dioecious. However, monoecious plants can also occur in this species. Sex expression in dioecious spinach plants is controlled by a single gene pair termed X and Y. Our previous study showed that a single, incompletely dominant gene, which controls the monoecious condition in spinach line 03–336, should be allelic or linked to X/Y. Here, we developed 19 AFLP markers closely linked to the monoecious gene. The AFLP markers were mapped to a 38.2-cM chromosomal region that included the monoecious gene, which is bracketed between flanking markers with a distance of 7.1 cM. The four AFLP markers developed in our studies were converted into sequence-characterized amplified region (SCAR) markers, which are linked to both the monoecious gene and Y and are common to both populations segregating for the genes. Linkage analysis using the SCAR markers suggested that the monoecious gene (M) and Y are located in different intervals, between different marker pairs. Analysis of populations segregating for both M and Y also directly demonstrates linkage of the genes at a distance of ∼12 cM. The data presented in this study may be useful for breeding dioecious and highly male monoecious lines utilized as the pollen parents for hybrid seed production, as well as for studies of the evolutionary history of sexual systems in this species, and can provide a molecular basis for positional cloning of the sex-determining genes. PMID:24169648
Mapping Flagellar Genes in Chlamydomonas Using Restriction Fragment Length Polymorphisms
Ranum, LPW.; Thompson, M. D.; Schloss, J. A.; Lefebvre, P. A.; Silflow, C. D.
1988-01-01
To correlate cloned nuclear DNA sequences with previously characterized mutations in Chlamydomonas and, to gain insight into the organization of its nuclear genome, we have begun to map molecular markers using restriction fragment length polymorphisms (RFLPs). A Chlamydomonas reinhardtii strain (CC-29) containing phenotypic markers on nine of the 19 linkage groups was crossed to the interfertile species Chlamydomonas smithii. DNA from each member of 22 randomly selected tetrads was analyzed for the segregation of RFLPs associated with cloned genes detected by hybridization with radioactive DNA probes. The current set of markers allows the detection of linkage to new molecular markers over approximately 54% of the existing genetic map. This study focused on mapping cloned flagellar genes and genes whose transcripts accumulate after deflagellation. Twelve different molecular clones have been assigned to seven linkage groups. The α-1 tubulin gene maps to linkage group III and is linked to the genomic sequence homologous to pcf6-100, a cDNA clone whose corresponding transcript accumulates after deflagellation. The α-2 tubulin gene maps to linkage group IV. The two β-tubulin genes are linked, with the β-1 gene being approximately 12 cM more distal from the centromere than the β-2 gene. A clone corresponding to a 73-kD dynein protein maps to the opposite arm of the same linkage group. The gene corresponding to the cDNA clone pcf6-187, whose mRNA accumulates after deflagellation, maps very close to the tightly linked pf-26 and pf-1 mutations on linkage group V. PMID:2906025
A substitution involving the NLGN4 gene associated with autistic behavior in the Greek population.
Pampanos, Andreas; Volaki, Konstantina; Kanavakis, Emmanuel; Papandreou, Ourania; Youroukos, Sotiris; Thomaidis, Loretta; Karkelis, Savvas; Tzetis, Maria; Kitsiou-Tzeli, Sophia
2009-10-01
Autism is a neurodevelopmental disorder characterized by clinical, etiologic, and genetic heterogeneity. During the last decade, predisposing genes and genetic loci were under investigation. Recently, mutations in two X-linked neuroligin genes, neuroligin 3 (NLGN3) and neuroligin 4 (NLGN4), have been implicated in the pathogenesis of autism. In our ongoing survey, we screened 169 patients with autism for mutations linked with autism. In the preliminary study of specific exons of NLGN3 and NLGN4 genes, we identified the p.K378R substitution (c.1597 A > G) in exon 5 of the NLGN4 gene in a patient who was found to have mild autism and normal IQ at 3 years of age. The same mutation has previously been found in a patient with autism. It is important that, for the first time, a specific mutation in neuroligins is confirmed in a molecular screen in another homogeneous ethnic population. This finding further contributes to consideration of neuroligins as probable candidate genes for future molecular genetic studies, suggesting that a defect of synaptogenesis may predispose to autism.
Ding, Mingquan; Ye, Wuwei; Lin, Lifeng; He, Shae; Du, Xiongming; Chen, Aiqun; Cao, Yuefen; Qin, Yuan; Yang, Fen; Jiang, Yurong; Zhang, Hua; Wang, Xiyin; Paterson, Andrew H.; Rong, Junkang
2015-01-01
Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion. PMID:26133897
Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.
Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M
2015-04-01
An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed. © 2015 Stichting International Foundation for Animal Genetics.
Unique Variants in OPN1LW Cause Both Syndromic and Nonsyndromic X-Linked High Myopia Mapped to MYP1.
Li, Jiali; Gao, Bei; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong
2015-06-01
MYP1 is a locus for X-linked syndromic and nonsyndromic high myopia. Recently, unique haplotypes in OPN1LW were found to be responsible for X-linked syndromic high myopia mapped to MYP1. The current study is to test if such variants in OPN1LW are also responsible for X-linked nonsyndromic high myopia mapped to MYP1. The proband of the family previously mapped to MYP1 was initially analyzed using whole-exome sequencing and whole-genome sequencing. Additional probands with early-onset high myopia were analyzed using whole-exome sequencing. Variants in OPN1LW were selected and confirmed by Sanger sequencing. Long-range and second PCR were used to determine the haplotype and the first gene of the red-green gene array. Candidate variants were further validated in family members and controls. The unique LVAVA haplotype in OPN1LW was detected in the family with X-linked nonsyndromic high myopia mapped to MYP1. In addition, this haplotype and a novel frameshift mutation (c.617_620dup, p.Phe208Argfs*51) in OPN1LW were detected in two other families with X-linked high myopia. The unique haplotype cosegregated with high myopia in the two families, with a maximum LOD score of 3.34 and 2.31 at θ = 0. OPN1LW with the variants in these families was the first gene in the red-green gene array and was not present in 247 male controls. Reevaluation of the clinical data in both families with the unique haplotype suggested nonsyndromic high myopia. Our study confirms the findings that unique variants in OPN1LW are responsible for both syndromic and nonsyndromic X-linked high myopia mapped to MYP1.
Circulating plant miRNAs can regulate human gene expression in vitro
Pastrello, Chiara; Tsay, Mike; McQuaid, Rosanne; Abovsky, Mark; Pasini, Elisa; Shirdel, Elize; Angeli, Marc; Tokar, Tomas; Jamnik, Joseph; Kotlyar, Max; Jurisicova, Andrea; Kotsopoulos, Joanne; El-Sohemy, Ahmed; Jurisica, Igor
2016-01-01
While Brassica oleracea vegetables have been linked to cancer prevention, the exact mechanism remains unknown. Regulation of gene expression by cross-species microRNAs has been previously reported; however, its link to cancer suppression remains unexplored. In this study we address both issues. We confirm plant microRNAs in human blood in a large nutrigenomics study cohort and in a randomized dose-controlled trial, finding a significant positive correlation between the daily amount of broccoli consumed and the amount of microRNA in the blood. We also demonstrate that Brassica microRNAs regulate expression of human genes and proteins in vitro, and that microRNAs cooperate with other Brassica-specific compounds in a possible cancer-preventive mechanism. Combined, we provide strong evidence and a possible multimodal mechanism for broccoli in cancer prevention. PMID:27604570
Thyssen, Gregory N; Fang, David D; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D; Condon, Tracy L; Li, Ping; Kim, Hee Jin
2016-06-01
Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. Copyright © 2016 Thyssen et al.
The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.
Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W
2013-01-01
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.
Inductive matrix completion for predicting gene-disease associations.
Natarajan, Nagarajan; Dhillon, Inderjit S
2014-06-15
Most existing methods for predicting causal disease genes rely on specific type of evidence, and are therefore limited in terms of applicability. More often than not, the type of evidence available for diseases varies-for example, we may know linked genes, keywords associated with the disease obtained by mining text, or co-occurrence of disease symptoms in patients. Similarly, the type of evidence available for genes varies-for example, specific microarray probes convey information only for certain sets of genes. In this article, we apply a novel matrix-completion method called Inductive Matrix Completion to the problem of predicting gene-disease associations; it combines multiple types of evidence (features) for diseases and genes to learn latent factors that explain the observed gene-disease associations. We construct features from different biological sources such as microarray expression data and disease-related textual data. A crucial advantage of the method is that it is inductive; it can be applied to diseases not seen at training time, unlike traditional matrix-completion approaches and network-based inference methods that are transductive. Comparison with state-of-the-art methods on diseases from the Online Mendelian Inheritance in Man (OMIM) database shows that the proposed approach is substantially better-it has close to one-in-four chance of recovering a true association in the top 100 predictions, compared to the recently proposed Catapult method (second best) that has <15% chance. We demonstrate that the inductive method is particularly effective for a query disease with no previously known gene associations, and for predicting novel genes, i.e. genes that are previously not linked to diseases. Thus the method is capable of predicting novel genes even for well-characterized diseases. We also validate the novelty of predictions by evaluating the method on recently reported OMIM associations and on associations recently reported in the literature. Source code and datasets can be downloaded from http://bigdata.ices.utexas.edu/project/gene-disease. © The Author 2014. Published by Oxford University Press.
Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.
Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T
1995-05-20
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.
Metlapally, Ravikanth; Michaelides, Michel; Bulusu, Anuradha; Li, Yi-Ju; Schwartz, Marianne; Rosenberg, Thomas; Hunt, David M.; Moore, Anthony T.; Züchner, Stephan; Rickman, Catherine Bowes; Young, Terri L.
2014-01-01
Purpose X-linked high myopia with mild cone dysfunction and color vision defects has been mapped to chromosome Xq28 (MYP1 locus). CXorf2/TEX28 is a nested, intercalated gene within the red-green opsin cone pigment gene tandem array on Xq28. The authors investigated whether TEX28 gene alterations were associated with the Xq28-linked myopia phenotype. Genomic DNA from five pedigrees (with high myopia and either protanopia or deuteranopia) that mapped to Xq28 were screened for TEX28 copy number variations (CNVs) and sequence variants. Methods To examine for CNVs, ultra-high resolution array-comparative genomic hybridization (array-CGH) assays were performed comparing the subject genomic DNA with control samples (two pairs from two pedigrees). Opsin or TEX28 gene-targeted quantitative real-time gene expression assays (comparative CT method) were performed to validate the array-CGH findings. All exons of TEX28, including intron/exon boundaries, were amplified and sequenced using standard techniques. Results Array-CGH findings revealed predicted duplications in affected patient samples. Although only three copies of TEX28 were previously reported within the opsin array, quantitative real-time analysis of the TEX28 targeted assay of affected male or carrier female individuals in these pedigrees revealed either fewer (one) or more (four or five) copies than did related and control unaffected individuals. Sequence analysis of TEX28 did not reveal any variants associated with the disease status. Conclusions CNVs have been proposed to play a role in disease inheritance and susceptibility as they affect gene dosage. TEX28 gene CNVs appear to be associated with the MYP1 X-linked myopia phenotypes. PMID:19098318
X Linkage of AP3A, a Homolog of the Y-Linked MADS-Box Gene AP3Y in Silene latifolia and S. dioica
Penny, Rebecca H.; Montgomery, Benjamin R.; Delph, Lynda F.
2011-01-01
Background The duplication of autosomal genes onto the Y chromosome may be an important element in the evolution of sexual dimorphism.A previous cytological study reported on a putative example of such a duplication event in a dioecious tribe of Silene (Caryophyllaceae): it was inferred that the Y-linked MADS-box gene AP3Y originated from a duplication of the reportedly autosomal orthologAP3A. However, a recent study, also using cytological methods, indicated that AP3A is X-linked in Silenelatifolia. Methodology/Principal Findings In this study, we hybridized S. latifolia and S. dioicato investigate whether the pattern of X linkage is consistent among distinct populations, occurs in both species, and is robust to genetic methods. We found inheritance patterns indicative of X linkage of AP3A in widely distributed populations of both species. Conclusions/Significance X linkage ofAP3A and Y linkage of AP3Yin both species indicates that the genes' ancestral progenitor resided on the autosomes that gave rise to the sex chromosomesand that neither gene has moved between chromosomes since species divergence.Consequently, our results do not support the contention that inter-chromosomal gene transfer occurred in the evolution of SlAP3Y from SlAP3A. PMID:21533056
Identification of novel genetic causes of Rett syndrome-like phenotypes.
Lopes, Fátima; Barbosa, Mafalda; Ameur, Adam; Soares, Gabriela; de Sá, Joaquim; Dias, Ana Isabel; Oliveira, Guiomar; Cabral, Pedro; Temudo, Teresa; Calado, Eulália; Cruz, Isabel Fineza; Vieira, José Pedro; Oliveira, Renata; Esteves, Sofia; Sauer, Sascha; Jonasson, Inger; Syvänen, Ann-Christine; Gyllensten, Ulf; Pinto, Dalila; Maciel, Patrícia
2016-03-01
The aim of this work was to identify new genetic causes of Rett-like phenotypes using array comparative genomic hybridisation and a whole exome sequencing approach. We studied a cohort of 19 Portuguese patients (16 girls, 3 boys) with a clinical presentation significantly overlapping Rett syndrome (RTT). Genetic analysis included filtering of the single nucleotide variants and indels with preference for de novo, homozygous/compound heterozygous, or maternally inherited X linked variants. Examination by MRI and muscle biopsies was also performed. Pathogenic genomic imbalances were found in two patients (10.5%): an 18q21.2 deletion encompassing four exons of the TCF4 gene and a mosaic UPD of chromosome 3. Variants in genes previously implicated in neurodevelopmental disorders (NDD) were identified in six patients (32%): de novo variants in EEF1A2, STXBP1 and ZNF238 were found in three patients, maternally inherited X linked variants in SLC35A2, ZFX and SHROOM4 were detected in two male patients and one homozygous variant in EIF2B2 was detected in one patient. Variants were also detected in five novel NDD candidate genes (26%): we identified de novo variants in the RHOBTB2, SMARCA1 and GABBR2 genes; a homozygous variant in EIF4G1; compound heterozygous variant in HTT. Network analysis reveals that these genes interact by means of protein interactions with each other and with the known RTT genes. These findings expand the phenotypical spectrum of previously known NDD genes to encompass RTT-like clinical presentations and identify new candidate genes for RTT-like phenotypes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Qi, L L; Ma, G J; Long, Y M; Hulke, B S; Gong, L; Markell, S G
2015-03-01
The rust resistance gene R 2 was reassigned to linkage group 14 of the sunflower genome. DNA markers linked to R 2 were identified and used for marker-assisted gene pyramiding in a confection type genetic background. Due to the frequent evolution of new pathogen races, sunflower rust is a recurring threat to sunflower production worldwide. The inbred line Morden Cross 29 (MC29) carries the rust resistance gene, R 2 , conferring resistance to numerous races of rust fungus in the US, Canada, and Australia, and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments and SSR marker analyses on the 117 F2 individuals derived from a cross of HA 89 with MC29 (USDA), R 2 was mapped to linkage group (LG) 14 of the sunflower, and not to the previously reported location on LG9. The closest SSR marker HT567 was located at 4.3 cM distal to R 2 . Furthermore, 36 selected SNP markers from LG14 were used to saturate the R 2 region. Two SNP markers, NSA_002316 and SFW01272, flanked R 2 at a genetic distance of 2.8 and 1.8 cM, respectively. Of the three closely linked markers, SFW00211 amplified an allele specific for the presence of R 2 in a marker validation set of 46 breeding lines, and SFW01272 was also shown to be diagnostic for R 2 . These newly developed markers, together with the previously identified markers linked to the gene R 13a , were used to screen 524 F2 individuals from a cross of a confection R 2 line and HA-R6 carrying R 13a . Eleven homozygous double-resistant F2 plants with the gene combination of R 2 and R 13a were obtained. This double-resistant line will be extremely useful in confection sunflower, where few rust R genes are available, risking evolution of new virulence phenotypes and further disease epidemics.
Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links
Nicholls, Andrew W.; Salek, Reza M.; Marques-Vidal, Pedro; Morya, Edgard; Sameshima, Koichi; Montoliu, Ivan; Da Silva, Laeticia; Collino, Sebastiano; Martin, François-Pierre; Rezzi, Serge; Steinbeck, Christoph; Waterworth, Dawn M.; Waeber, Gérard; Vollenweider, Peter; Beckmann, Jacques S.; Le Coutre, Johannes; Mooser, Vincent; Bergmann, Sven; Genick, Ulrich K.; Kutalik, Zoltán
2014-01-01
Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10−8) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10−44) and lysine (rs8101881, P = 1.2×10−33), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers. PMID:24586186
Wing patterning gene redefines the mimetic history of Heliconius butterflies.
Hines, Heather M; Counterman, Brian A; Papa, Riccardo; Albuquerque de Moura, Priscila; Cardoso, Marcio Z; Linares, Mauricio; Mallet, James; Reed, Robert D; Jiggins, Chris D; Kronforst, Marcus R; McMillan, W Owen
2011-12-06
The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80-250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.
An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.
Li, Hao; Wang, Xu; Rukina, Daria; Huang, Qingyao; Lin, Tao; Sorrentino, Vincenzo; Zhang, Hongbo; Bou Sleiman, Maroun; Arends, Danny; McDaid, Aaron; Luan, Peiling; Ziari, Naveed; Velázquez-Villegas, Laura A; Gariani, Karim; Kutalik, Zoltan; Schoonjans, Kristina; Radcliffe, Richard A; Prins, Pjotr; Morgenthaler, Stephan; Williams, Robert W; Auwerx, Johan
2018-01-24
Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Zhi, Defu; Zhang, Shubiao; Qureshi, Farooq; Zhao, Yinan; Cui, Shaohui; Wang, Bing; Chen, Huiying; Yang, Baoling; Zhao, Defeng
2013-12-01
A novel series of carbamate-linked cationic lipids containing hydroxyl headgroup were synthesized and included in formulations for transfection assays. The DNA-lipid complexes were characterized for their ability to bind DNA, their size, ζ-potential and cytotoxicity. Compared with our previously reported cationic transfection lipid DDCDMA lacking the hydroxyl group and the commercially available, these cationic liposomes exhibited relatively higher transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gedeon, A.K.; Mulley, J.C.; Kozman, H.
1994-08-01
X-linked reticulate pigmentary disorder (PDR), previously reported as X-linked cutaneous amyloidosis (MIM No. 301220), is characterized by brown pigmentation of the skin which follows the lines of Blaschko in females but appears as reticulate sheets in males. Males may suffer severe gastrointestinal disorders in infancy with failure to thrive and early death. Nowadays symptomatic treatment allows survival and other manifestations may appear such as corneal dystrophy with severe photophobia or chronic respiratory disease. Amyloid deposition in the skin may be no more than an age-dependent secondary manifestation. The PDR gene was localized by linkage analysis to Xp21-p22. The background geneticmore » map is Xpter-DXS996-22.5-DXS207-3.3-DXS999-3.3-DXS365-14.2-DXS989-4.1-3`DMD-3.5-DXS997-1.0-STR44-9.3-DYSI-2.3-DXS1068-11.0-DXS228 with distances between markers given in cM. Recombinants detected with DXS999 distally and DXS228 proximally, define the limits to the localization. Linkage was found with several markers within this interval. Peak lod scores of 3.21 at {theta} = 0.0 were obtained between PDR and DXS989 and between PDR and 5`DYSI within the dystrophin locus. 29 refs., 2 figs., 2 tabs.« less
Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil
2014-01-01
Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tassabehji, M.; Strachan, T.; Colley, A.
Type 1 neurofibromatosis (NF1), Watson syndrome (WS), and Noonan syndrome (NS) show some overlap in clinical manifestations. In addition, WS has been shown to be linked to markers flanking the NF1 locus and a deletion at the NF1 locus demonstrated in a WS patient. This suggests either that WS and NF1 are allelic or the phenotypes arise from mutations in very closely linked genes. Here the authors provide evidence for the former by demonstrating a mutation in the NF1 gene in a family with features of both WS and NS. The mutation is an almost perfect in-frame tandem duplication ofmore » 42 bases in exon 28 of the NF1 gene. Unlike the mutations previously described in classical NF1, which show a preponderance of null alleles, the mutation in this family would be expected to result in a mutant neurofibromin product. 31 refs., 2 figs.« less
Meggouh, F; Benomar, A; Rouger, H; Tardieu, S; Birouk, N; Tassin, J; Barhoumi, C; Yahyaoui, M; Chkili, T; Brice, A; LeGuern, E
1998-01-01
X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary motor and sensory neuropathy caused by mutations in the connexin 32 gene (Cx32). Using the SSCP technique and direct sequencing of PCR amplified genomic DNA fragments of the Cx32 gene from a Moroccan patient and her relatives, we identified the first de novo mutation of the Cx32 gene, consisting of a deletion of a G residue at position 499 in the Cx32 open reading frame. This previously unreported mutation produces a frameshift at position 147 in the protein and introduces a premature stop codon (TAG) at nucleotide 643, which results in the production of a truncated Cx32 molecule. This mutation illustrates the risk of an erroneous diagnosis of autosomal recessive CMT, especially in populations where consanguineous unions are frequent, and its consequences for genetic counselling, which can be avoided by molecular analysis. Images PMID:9541114
The GENCODE exome: sequencing the complete human exome
Coffey, Alison J; Kokocinski, Felix; Calafato, Maria S; Scott, Carol E; Palta, Priit; Drury, Eleanor; Joyce, Christopher J; LeProust, Emily M; Harrow, Jen; Hunt, Sarah; Lehesjoki, Anna-Elina; Turner, Daniel J; Hubbard, Tim J; Palotie, Aarno
2011-01-01
Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing. PMID:21364695
Structure and vascular tissue expression of duplicated TERMINAL EAR1-like paralogues in poplar.
Charon, Céline; Vivancos, Julien; Mazubert, Christelle; Paquet, Nicolas; Pilate, Gilles; Dron, Michel
2010-02-01
TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species).
Reimegård, Johan; Kundu, Snehangshu; Pendle, Ali; Irish, Vivian F.; Shaw, Peter
2017-01-01
Abstract Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation. PMID:28175342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U.
1995-03-01
Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in themore » amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.« less
Regulatory divergence of X-linked genes and hybrid male sterility in mice.
Oka, Ayako; Shiroishi, Toshihiko
2014-01-01
Postzygotic reproductive isolation is the reduction of fertility or viability in hybrids between genetically diverged populations. One example of reproductive isolation, hybrid male sterility, may be caused by genetic incompatibility between diverged genetic factors in two distinct populations. Genetic factors involved in hybrid male sterility are disproportionately located on the X chromosome. Recent studies showing the evolutionary divergence in gene regulatory networks or epigenetic effects suggest that the genetic incompatibilities occur at much broader levels than had previously been thought (e.g., incompatibility of protein-protein interactions). The latest studies suggest that evolutionary divergence of transcriptional regulation causes genetic incompatibilities in hybrid animals, and that such incompatibilities preferentially involve X-linked genes. In this review, we focus on recent progress in understanding hybrid sterility in mice, including our studies, and we discuss the evolutionary significance of regulatory divergence for speciation.
Giroux, Michael J.; Morris, Craig F.
1998-01-01
“Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953
Evolution: oskar reveals missing link in co-optive evolution.
Abouheif, Ehab
2013-01-07
The oskar gene is critical for germ plasm formation and reproduction in higher insects. A recent study reports that oskar has more ancient roots than previously thought, indicating it was co-opted for its reproductive role in higher insects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Burt, Alexandra
2009-04-01
Previous work has suggested that the serotonergic system plays a key role in "popularity" or likeability. A polymorphism within the 5HT-sub(2A) serotonin receptor gene (-G1438A) has also been associated with popularity, suggesting that genes may predispose individuals to particular social experiences. However, because genes cannot code directly for others' reactions, any legitimate association should be mediated via the individual's behavior (i.e., genes-->behaviors-->social consequences), a phenomenon referred to as an evocative gene-environment correlation (rGE). The current study aimed to identify one such mediating behavior. The author focused on rule breaking given its prior links to both the serotonergic system and to increased popularity during adolescence. Two samples of previously unacquainted late-adolescent boys completed a peer-based interaction paradigm designed to assess their popularity. Analyses revealed that rule breaking partially mediated the genetic effect on popularity, thereby furthering our understanding of the biological mechanisms that underlie popularity. Moreover, the present results represent the first meaningfully explicated evidence that genes predispose individuals not only to particular behaviors but also to the social consequences of those behaviors. (c) 2009 APA, all rights reserved.
Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.
Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C
1998-06-01
In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.
Zeller, Tanja; Wild, Philipp S.; Truong, Vinh; Trégouët, David-Alexandre; Munzel, Thomas; Ziegler, Andreas; Cambien, François; Blankenberg, Stefan; Tiret, Laurence
2011-01-01
Background The hypothesis of dosage compensation of genes of the X chromosome, supported by previous microarray studies, was recently challenged by RNA-sequencing data. It was suggested that microarray studies were biased toward an over-estimation of X-linked expression levels as a consequence of the filtering of genes below the detection threshold of microarrays. Methodology/Principal Findings To investigate this hypothesis, we used microarray expression data from circulating monocytes in 1,467 individuals. In total, 25,349 and 1,156 probes were unambiguously assigned to autosomes and the X chromosome, respectively. Globally, there was a clear shift of X-linked expressions toward lower levels than autosomes. We compared the ratio of expression levels of X-linked to autosomal transcripts (X∶AA) using two different filtering methods: 1. gene expressions were filtered out using a detection threshold irrespective of gene chromosomal location (the standard method in microarrays); 2. equal proportions of genes were filtered out separately on the X and on autosomes. For a wide range of filtering proportions, the X∶AA ratio estimated with the first method was not significantly different from 1, the value expected if dosage compensation was achieved, whereas it was significantly lower than 1 with the second method, leading to the rejection of the hypothesis of dosage compensation. We further showed in simulated data that the choice of the most appropriate method was dependent on biological assumptions regarding the proportion of actively expressed genes on the X chromosome comparative to the autosomes and the extent of dosage compensation. Conclusion/Significance This study shows that the method used for filtering out lowly expressed genes in microarrays may have a major impact according to the hypothesis investigated. The hypothesis of dosage compensation of X-linked genes cannot be firmly accepted or rejected using microarray-based data. PMID:21912656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraco, J.; Francke, U.; Toledo, S.
Familial idiopathic gonadotropin deficiency (FIGD) is an autosomal recessive disorder which results in failure to develop secondary sexual characteristics. The origin is a hypothalamic defect resulting in insufficient secretion of gonadotropin-releasing hormone GnRH (also called LHRH, luteinizing hormone releasing hormone) and follicle-stimuating hormone (FSH). FIGD has been determined to be a separate entity from Kallmann syndrome which presents with hypogonadism as well as anosmia. The FIGD phenotype appears to be analogous to the phenotype of the hpg (hypogonadal) mouse. Because the hpg phenotype is the result of a structurally abnormal GnRH gene, we have studied the GnRH gene in individualsmore » from a previously reported Brazilian FIGD family. An informative dimorphic marker in the signal peptide sequence of the GnRH gene allowed assessment of linkage between the disease gene and the GnRH locus in this pedigree. We have concluded that the GnRH locus is not linked to the disease-causing mutation in these hypogonadal individuals. Recent evidence suggests that neuropeptide Y (NPY) may play a role in the initiation of puberty. We hypothesize that mutations in NPY may result in failure to secrete GnRH. We have characterized three diallelic frequent-cutter restriction fragment length polymorphisms within the human NPY locus, and are currently using these markers to determine if the NPY gene is linked to, and possibly the site of the disease mutation in this kindred.« less
The antibiotic resistance "mobilome": searching for the link between environment and clinic.
Perry, Julie A; Wright, Gerard D
2013-01-01
Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental "resistome" is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance.
The antibiotic resistance “mobilome”: searching for the link between environment and clinic
Perry, Julie A.; Wright, Gerard D.
2013-01-01
Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental “resistome” is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance. PMID:23755047
Exclusion of RAI2 as the causative gene for Nance-Horan syndrome.
Walpole, S M; Ronce, N; Grayson, C; Dessay, B; Yates, J R; Trump, D; Toutain, A
1999-05-01
Nance-Horan syndrome (NHS) is an X-linked condition characterised by congenital cataracts, microphthalmia and/or microcornea, unusual dental morphology, dysmorphic facial features, and developmental delay in some cases. Recent linkage studies have mapped the NHS disease gene to a 3.5-cM interval on Xp22.2 between DXS1053 and DXS443. We previously identified a human homologue of a mouse retinoic-acid-induced gene (RAI2) within the NHS critical flanking interval and have tested the gene as a candidate for Nance-Horan syndrome in nine NHS-affected families. Direct sequencing of the RAI2 gene and predicted promoter region has revealed no mutations in the families screened; RAI2 is therefore unlikely to be associated with NHS.
Identification of a fourth locus (EVR4) for familial exudative vitreoretinopathy (FEVR).
Toomes, Carmel; Downey, Louise M; Bottomley, Helen M; Scott, Sheila; Woodruff, Geoffrey; Trembath, Richard C; Inglehearn, Chris F
2004-01-15
Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous inherited blinding disorder of the retinal vascular system. To date three loci have been mapped: EVR1 on chromosome 11q, EVR2 on chromosome Xp, and EVR3 on chromosome 11p. The gene underlying EVR3 remains unidentified whilst the EVR2 gene, which encodes the Norrie disease protein (NDP), was identified over a decade ago. More recently, FZD4, the gene that encodes the Wnt receptor Frizzled-4, was identified as the mutated gene at the EVR1 locus. The purpose of this study was to screen FZD4 in a large family previously proven to be linked to the EVR1 locus. PCR products were generated using genomic DNA from affected family members with primers designed to amplify the coding sequence of FZD4. The PCR products were screened for mutations by direct sequencing. Genotyping was performed in all available family members using fluorescently labeled microsatellite markers from chromosome 11q. Sequencing of the EVR1 gene, FZD4, in this family identified no mutation. To investigate this family further we performed high-resolution genotyping with markers spanning chromosome 11q. Haplotype analysis excluded FZD4 as the mutated gene in this family and identified a candidate region approximately 10 cM centromeric to EVR1. This new FEVR locus is flanked by markers D11S1368 (centromeric) and D11S937 (telomeric) and spans approximately 15 cM. High-resolution genotyping and haplotype analysis excluded FZD4 as the defective gene in a family previously linked to the EVR1 locus. The results indicate that the gene mutated in this family lies centromeric to the EVR1 gene, FZD4, and is also genetically distinct from the EVR3 locus. This new locus has been designated EVR4 and is the fourth FEVR locus to be described.
Identification of differentially expressed genes in the zebrafish hypothalamus - pituitary axis
Toro, Sabrina; Wegner, Jeremy; Muller, Marc; Westerfield, Monte; Varga, Zoltan M.
2009-01-01
The vertebrate hypothalamic-pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic and neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes and ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function. PMID:19166982
2013-01-01
Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134
Behdani, Elham; Bakhtiarizadeh, Mohammad Reza
2017-10-01
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
Caswell, Clayton C.; Elhassanny, Ahmed E. M.; Planchin, Emilie E.; Roux, Christelle M.; Weeks-Gorospe, Jenni N.; Ficht, Thomas A.; Dunman, Paul M.
2013-01-01
The Ros-type regulator MucR is one of the few transcriptional regulators that have been linked to virulence in Brucella. Here, we show that a Brucella abortus in-frame mucR deletion strain exhibits a pronounced growth defect during in vitro cultivation and, more importantly, that the mucR mutant is attenuated in cultured macrophages and in mice. The genetic basis for the attenuation of Brucella mucR mutants has not been defined previously, but in the present study the genes regulated by MucR in B. abortus have been elucidated using microarray analysis and real-time reverse transcription-PCR (RT-PCR). In B. abortus 2308, MucR regulates a wide variety of genes whose products may function in establishing and maintaining cell envelope integrity, polysaccharide biosynthesis, iron homeostasis, genome plasticity, and transcriptional regulation. Particularly notable among the MucR-regulated genes identified is arsR6 (nolR), which encodes a transcriptional regulator previously linked to virulence in Brucella melitensis 16 M. Importantly, electrophoretic mobility shift assays (EMSAs) determined that a recombinant MucR protein binds directly to the promoter regions of several genes repressed by MucR (including arsR6 [nolR]), and in Brucella, as in other alphaproteobacteria, MucR binds to its own promoter to repress expression of the gene that encodes it. Overall, these studies have uncovered the diverse genetic regulon of MucR in Brucella, and in doing so this work has begun to define the MucR-controlled genetic circuitry whose misregulation contributes to the virulence defect of Brucella mucR mutants. PMID:23319565
S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.
Kakeda, Katsuyuki
2009-09-01
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.
USDA-ARS?s Scientific Manuscript database
Genetic variation in fatty acid desaturases (FADS) has previously been linked to long-chain polyunsaturated fatty acids (PUFAs) in adipose tissue and cardiovascular risk. The goal of our study was to test associations between six common FADS polymorphisms (rs174556, rs3834458, rs174570, rs2524299, r...
Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J
1988-03-01
Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.
Rosado, Consolación; Bueno, Elena; Fraile, Pilar; García-Cosmes, Pedro; González-Sarmiento, Rogelio
2015-01-01
Bilateral sensorineural hearing loss is a characteristic feature of Alport syndrome, which is always linked to renal manifestations so they have a parallel evolution and prognosis, and deafness helps to identify the renal disease. We report a family that suffers an autosomal dominant Alport syndrome caused by a previously undescribed mutation in the COL4A3 gene, in which several members have hearing impairment as the only clinical manifestation, suggesting that in this family deafness can occur independent of renal disease. This mutation is also present in a patient with anterior lenticonus, an observation only found in families with recessive and sex-linked Alport disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J
2000-04-03
Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.
X-linked recessive panhypopituitarism associated with a regional duplication in Xq25-q26.
Lagerström-Fermér, M; Sundvall, M; Johnsen, E; Warne, G L; Forrest, S M; Zajac, J D; Rickards, A; Ravine, D; Landegren, U; Pettersson, U
1997-01-01
We present a linkage analysis and a clinical update on a previously reported family with X-linked recessive panhypopituitarism, now in its fourth generation. Affected members exhibit variable degrees of hypopituitarism and mental retardation. The markers DXS737 and DXS1187 in the q25-q26 region of the X chromosome showed evidence for linkage with a peak LOD score (Zmax) of 4.12 at zero recombination fraction (theta(max) = 0). An apparent extra copy of the marker DXS102, observed in the region of the disease gene in affected males and heterozygous carrier females, suggests that a segment including this marker is duplicated. The gene causing this disorder appears to code for a dosage-sensitive protein central to development of the pituitary. Images Figure 2 PMID:9106538
Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete?
Walters, James R.; Hardcastle, Thomas J.; Jiggins, Chris D.
2015-01-01
The evolution of heterogametic sex chromosomes is often—but not always—accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit “incomplete” sex chromosome dosage compensation. However, recent results suggest that at least some Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Studies in bombycoid moths indicate the presence of a chromosome-wide epigenetic mechanism that effectively balances Z chromosome gene expression between the sexes by reducing Z-linked expression in males. In contrast, strong sex chromosome dosage effects without any reduction in male Z-linked expression were previously reported in a pyralid moth, suggesting a lack of any such dosage compensating mechanism. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that some lepidopteran species possess an epigenetic dosage compensating mechanism that reduces Z chromosome expression in males to levels comparable with females. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5–20% increase in male expression relative to females on the Z chromosome, depending on the tissue. Thus our results in Heliconius reflect a mixture of previous patterns reported for Lepidoptera. In Heliconius, a moderate pattern of incomplete dosage compensation persists apparently despite the presence of an epigenetic dosage compensating mechanism. The chromosomal distributions of sex-biased genes show an excess of male-biased and a dearth of female-biased genes on the Z chromosome relative to autosomes, consistent with predictions of sexually antagonistic evolution. PMID:26338190
X-linked Alport syndrome: An SSCP-based mutation survey over all 51 exons of the COL4A5 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renieri, A.; Bruttini, M.; Galli, L.
1996-06-01
The COL4A5 gene encodes the {alpha}5 (type IV) collagen chain and is defective in X-linked Alport syndrome (AS). Here, we report the first systematic analysis of all 51 exons of COL4A5 gene in a series of 201 Italian AS patients. We have previously reported nine major rearrangements, as well as 18 small mutations identified in the same patient series by SSCP analysis of several exons. After systematic analysis of all 51 exons of COL4A5, we have now identified 30 different mutations: 10 glycine substitutions in the triple helical domain of the protein, 9 frameshift mutations, 4 in-frame deletions, 1 startmore » codon, 1 nonsense, and 5 splice-site mutations. These mutations were either unique or found in two unrelated families, thus excluding the presence of a common mutation in the coding part of the gene. Overall, mutations were detected in only 45% of individuals with a certain or likely diagnosis of X-linked AS. This finding suggests that mutations in noncoding segments of COL4A5 account for a high number of X-linked AS cases. An alternative hypothesis is the presence of locus heterogeneity, even within the X-linked form of the disease. A genotype/phenotype comparison enabled us to better substantiate a significant correlation between the degree of predicted disruption of the {alpha}5 chain and the severity of phenotype in affected male individuals. Our study has significant implications in the diagnosis and follow-up of AS patients. 44 refs., 3 figs., 4 tabs.« less
Radiation hybrid mapping of genes in the lithium-sensitive wnt signaling pathway.
Rhoads, A R; Karkera, J D; Detera-Wadleigh, S D
1999-09-01
Lithium, an effective drug in the treatment of bipolar disorder, has been proposed to disrupt the Wnt signaling pathway. To facilitate analysis of the possible involvement of elements of the Wnt pathway in human bipolar disorder, a high resolution radiation hybrid mapping (RHM) of these genes was performed. A fine physical location has been obtained for Wnt 7A, frizzled 3, 4 and 5, dishevelled 1, 2 and 3, GSK3beta, axin, alpha-catenin, the Armadillo repeat-containing genes (delta-catenin and ARVCF), and a frizzled-like protein (frpHE) using the Stanford Human Genome Center (SHGC) G3 panel. Most of these genes were previously mapped by fluorescence in situ hybridization (FISH). Frizzled 4, axin and frpHE did not have a previous chromosomal assignment and were linked by RHM to chromosome markers, SHGC-35131 at 11q22.1, NIB1488 at 16p13.3 and D7S2919 at 7p15.2, respectively. Interestingly, some of these genes were found to map within potential regions underlying susceptibility to bipolar disorder and schizophrenia as well as disorders of neurodevelopmental origin. This alternative approach of establishing the precise location of selected genetic components of a candidate pathway and determining if they map within previously defined susceptibility loci should help to identify plausible candidate genes that warrant further analysis through association and mutational scanning.
Evidence for Phex haploinsufficiency in murine X-linked hypophosphatemia.
Wang, L; Du, L; Ecarot, B
1999-04-01
Mutations in the PHEX gene (phosphate-regulating gene with homology to endopeptidases on the X-chromosome) are responsible for X-linked hypophosphatemia (HYP). We previously reported the full-length coding sequence of murine Phex cDNA and provided evidence of Phex expression in bone and tooth. Here, we report the cloning of the entire 3.5-kb 3'UTR of the Phex gene, yielding a total of 6248 bp for the Phex transcript. Southern blot and RT-PCR analyses revealed that the 3' end of the coding sequence and the 3'UTR of the Phex gene, spanning exons 16 to 22, are deleted in Hyp, the mouse model for HYP. Northern blot analysis of bone revealed lack of expression of stable Phex mRNA from the mutant allele and expression of Phex transcripts from the wild-type allele in Hyp heterozygous females. Expression of the Phex protein in heterozygotes was confirmed by Western analysis with antibodies raised against a COOH-terminal peptide of the mouse Phex protein. Taken together, these results indicate that the dominant pattern of Hyp inheritance in mice is due to Phex haploinsufficiency.
Zeng, Meizhen; Yi, Changxian; Guo, Xiangming; Jia, Xiaoyun; Deng, Yan; Wang, Juan; Shen, Huangxuan
2007-01-01
X-linked juvenile retinoschisis (XLRS) is a major cause of macular degeneration in young men. In this study we analyzed all six exons of the XLRS1 gene in four sporadic XLRS patients and in an affected family in China who were recently diagnosed. We found there are five different mutations with four containing missense point mutations and one having a frame-shift deletion. Among these mutations both c.644A>T and c.520delC are novel and have not been previously reported. Moreover all the second-generation offsprings and most of the third-generation ones in the affected family were found to carry the mutations bearing X chromosome. The discovery of novel mutations in the XLRS1 gene would increase the available information about the spectrum of genetic abnormalities causing XLRS. Although the limited data failed to reveal a correlation between mutations and disease phenotypes our identification of novel mutations in the XLRS1 gene will facilitate early and correct diagnosis and genetic counseling regarding the prognosis of XLRS disease.
Adams, Stuart P; Wilson, Melanie; Harb, Elissar; Fairbanks, Lynette; Xu-Bayford, Jinhua; Brown, Lucie; Kearney, Laura; Madkaikar, Manisha; Bobby Gaspar, H
2015-12-01
Severe combined immunodeficiency (SCID) arises from a number of different genetic defects, one of the most common being mutations in the gene encoding adenosine deaminase (ADA). In the UK, ADA deficient SCID compromises approximately 20% of all known cases of SCID. We carried out a retrospective analysis of the ADA gene in 46 known ADA deficient SCID patients on whom DNA had been stored. Here, we report a high frequency of two previously reported mutations and provide a link between the mutations and patient ethnicity within our patient cohort. We also report on 9 novel mutations that have been previously unreported. Copyright © 2015 Elsevier Inc. All rights reserved.
Expression pattern of X-linked genes in sex chromosome aneuploid bovine cells.
Basrur, Parvathi K; Farazmand, Ali; Stranzinger, Gerald; Graphodatskaya, Daria; Reyes, Ed R; King, W Allan
2004-01-01
Expression of the X-inactive specific transcript (XIST) gene is a prerequisite step for dosage compensation in mammals, accomplished by silencing one of the two X chromosomes in normal female diploid cells or all X chromosomes in excess of one in sex chromosome aneuploids. Our previous studies showing that XIST expression does not eventuate the inactivation of X-linked genes in fetal bovine testis had suggested that XIST expression may not be an indicator of X inactivation in this species. In this study, we used a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) approach on cultures of bovine cells with varying sex chromosome constitution (XY, XX, XXY and XXX) to test whether the levels of XIST expressed conform to the number of late replicating (inactive) X chromosomes displayed by proliferating cells in these cultures. Expression patterns of four X-linked genes, including hypoxanthine phosphorybosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), zinc finger protein locus on the X (ZFX). and 'selected mouse cDNA on the X' (SMCX), in all these cells were also tested. Results showed that XIST expression was significantly higher (p < 0.05) in XXX cells compared to XX and XXY cells and that G6PD. HPRT, and SMCX loci are subject to X inactivation. The significantly higher levels of ZFX expressed in XXX cells compared to XX and XXY cells (p < 0.05) confirmed that this bovine locus, as human ZFX, escapes X inactivation. However, the levels of XIST and ZFX expressed were not proportional to the X chromosome load in these cells suggesting that X-linked loci escaping inactivation may be regulated at transcription (or post-transcription) level by mechanisms that prevent gene-specific product accumulation beyond certain levels in sex chromosome aneuploids.
Sun, Jingjing; Tang, Xinjing
2015-01-01
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure PMID:26020694
Sun, Jingjing; Tang, Xinjing
2015-05-28
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure.
MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain
Somel, Mehmet; Guo, Song; Fu, Ning; Yan, Zheng; Hu, Hai Yang; Xu, Ying; Yuan, Yuan; Ning, Zhibin; Hu, Yuhui; Menzel, Corinna; Hu, Hao; Lachmann, Michael; Zeng, Rong; Chen, Wei; Khaitovich, Philipp
2010-01-01
Changes in gene expression levels determine differentiation of tissues involved in development and are associated with functional decline in aging. Although development is tightly regulated, the transition between development and aging, as well as regulation of post-developmental changes, are not well understood. Here, we measured messenger RNA (mRNA), microRNA (miRNA), and protein expression in the prefrontal cortex of humans and rhesus macaques over the species' life spans. We find that few gene expression changes are unique to aging. Instead, the vast majority of miRNA and gene expression changes that occur in aging represent reversals or extensions of developmental patterns. Surprisingly, many gene expression changes previously attributed to aging, such as down-regulation of neural genes, initiate in early childhood. Our results indicate that miRNA and transcription factors regulate not only developmental but also post-developmental expression changes, with a number of regulatory processes continuing throughout the entire life span. Differential evolutionary conservation of the corresponding genomic regions implies that these regulatory processes, although beneficial in development, might be detrimental in aging. These results suggest a direct link between developmental regulation and expression changes taking place in aging. PMID:20647238
Le Dréan, Y; Lazennec, G; Kern, L; Saligaut, D; Pakdel, F; Valotaire, Y
1995-08-01
We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5' flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0.2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.
Genetic analyses of resistance against Leptopilina victoriae in Drosophila bipectinata.
Takigahira, Tomohiro; Kohyama, Tetsuo I; Suwito, Awit; Kimura, Masahito T
2015-06-01
Drosophila bipectinata from Iriomote-jima (IR) is susceptible to the endoparasitoid Leptopilina victoriae from Kota Kinabalu (L. victoriae KK), but D. bipectinata from Kota Kinabalu (KK) and Bogor (BG) is resistant. The cross experiments between the resistant (KK) and susceptible (IR) populations of D. bipectinata suggested that the resistance to this parasitoid is a dominant trait and controlled by a single locus or few linked loci on an autosome. In the AFLP analysis using the IR, KK and BG populations of D. bipectinata and the resistant and susceptible populations derived from a mixed population of these three geographic populations, a DNA fragment almost specific to susceptible flies was detected. It also revealed that genes from the IR population were more frequently maintained in the mixed population compared with those from the KK and BG populations, suggesting that at least a number of genes from the IR population are more advantageous under the laboratory conditions. This explains our previous results that the resistance was lowered in the mixed population although the resistance itself is suggested to incur only low costs; i.e., the resistance gene(s) from the KK and BG populations would have been linked with some genes that are disadvantageous under the laboratory conditions.
Campa, Ana; Giraldez, Ramón; Ferreira, Juan José
2009-06-01
Resistance to nine races of the pathogenic fungus Colletotrichum lindemuthianum, causal agent of anthracnose, was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars TU (resistant to races, 3, 6, 7, 31, 38, 39, 102, and 449) and MDRK (resistant to races, 449, and 1545). Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in these two differential cultivars. The results of the combined segregation indicate that at least three independent loci conferring resistance to anthracnose are present in TU. One of them, corresponding to the previously described anthracnose resistance locus Co-5, is located in linkage group B7, and is formed by a cluster of different genes conferring specific resistance to races, 3, 6, 7, 31, 38, 39, 102, and 449. Evidence of intra-cluster recombination between these specific resistance genes was found. The second locus present in TU confers specific resistance to races 31 and 102, and the third locus confers specific resistance to race 102, the location of these two loci remains unknown. The resistance to race 1545 present in MDRK is due to two independent dominant genes. The results of the combined segregation of two F(4) families showing monogenic segregation for resistance to race 1545 indicates that one of these two genes is linked to marker OF10(530), located in linkage group B1, and corresponds to the previously described anthracnose resistance locus Co-1. The second gene conferring resistance to race 1545 in MDRK is linked to marker Pv-ctt001, located in linkage group B4, and corresponds to the Co-3/Co-9 cluster. The resistance to race 449 present in MDRK is conferred by a single gene, located in linkage group B4, probably included in the same Co-3/Co-9 cluster.
Zhang, Z W; Ma, G J; Zhao, J; Markell, S G; Qi, L L
2017-01-01
A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome. Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC 1 F 2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC 1 F 2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC 1 F 2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC 2 F 3 progeny provides a novel gene for use in confection sunflower breeding programs.
Characterization and mapping of leaf rust resistance in four durum wheat cultivars.
Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P R; N'Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim; Pozniak, Curtis J
2018-01-01
Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes.
Characterization and mapping of leaf rust resistance in four durum wheat cultivars
Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P. R.; N’Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim
2018-01-01
Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes. PMID:29746580
Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia.
Baum, Michel; Syal, Ashu; Quigley, Raymond; Seikaly, Mouin
2006-08-01
X-linked hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. PHEX stands for phosphate-regulating gene with endopeptidase activity, which is located on the X chromosome. Patients with X-linked hypophosphatemia have hypophosphatemia due to renal phosphate wasting and low or inappropriately normal levels of 1,25-dihydroxyvitamin D. The renal phosphate wasting is not intrinsic to the kidney but likely due to an increase in serum levels of fibroblast growth factor-23 (FGF-23), and perhaps other phosphate-wasting peptides previously known as phosphatonins. Patients with X-linked hypophosphatemia have short stature, rickets, bone pain and dental abscesses. Current therapy is oral phosphate and vitamin D which effectively treats the rickets and bone pain but does not adequately improve short stature. In this review, we describe recent observations using Hyp mice; mice with the same mutation as patients with X-linked hypophosphatemia. We have recently found that Hyp mice have abnormal renal prostaglandin production, which may be an important factor in the pathogenesis of this disorder. Administration of FGF-23 in vivo results in phosphaturia and an increase in prostaglandin excretion, and FGF-23 increases proximal tubule prostaglandin production in vitro. In Hyp mice, indomethacin improves the phosphate transport defect in vitro and in vivo. Whether indomethacin has the same effect in patients with X-linked hypophosphatemia is unknown.
Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing
Calvo, Sarah E.; Compton, Alison G.; Hershman, Steven G.; Lim, Sze Chern; Lieber, Daniel S.; Tucker, Elena J.; Laskowski, Adrienne; Garone, Caterina; Liu, Shangtao; Jaffe, David B.; Christodoulou, John; Fletcher, Janice M.; Bruno, Damien L; Goldblatt, Jack; DiMauro, Salvatore; Thorburn, David R.; Mootha, Vamsi K.
2012-01-01
Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. While in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic utility, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease, who were refractory to traditional molecular diagnosis. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with over 100 causal genes identified to date. We performed “MitoExome” sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Since patients and controls harbored a comparable number of such heterozygous alleles, we could not prioritize dominant acting genes. However, patients showed a five-fold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23/42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. 13 patients (31%) had mutations in nuclear genes never linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by cDNA complementation and evidence from multiple patients, respectively. The results underscore the immediate potential and challenges of deploying NGS in clinical settings. PMID:22277967
Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othmane, K.B.; Speer, M.C.; Stauffer, J.
1995-09-01
Duchenne-like muscular dystrophy (DLMD) is an autosomal recessive Limb Girdle muscular dystrophy (LGMD2C) characterized by late age of onset, proximal muscle weakness leading to disability, high creatine kinase values, normal intelligence and normal dystrophin in muscle biopsy. We have shown previously that three DLMD families from Tunisia are linked to chromosome 13q12. To further localize the LGMD2C gene, we have investigated seven additional families (119 individuals). Both genotyping and two-point linkage analysis were performed as described elsewhere. 7 refs., 1 fig., 1 tab.
Caro-Llopis, Alfonso; Rosello, Monica; Orellana, Carmen; Oltra, Silvestre; Monfort, Sandra; Mayo, Sonia; Martinez, Francisco
2016-12-01
Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Simonelli, F; Cennamo, G; Ziviello, C; Testa, F; de Crecchio, G; Nesti, A; Manitto, M P; Ciccodicola, A; Banfi, S; Brancato, R; Rinaldi, E
2003-09-01
To describe the clinical phenotype of X linked juvenile retinoschisis in eight Italian families with six different mutations in the XLRS1 gene. Complete ophthalmic examinations, electroretinography and A and B-scan standardised echography were performed in 18 affected males. The coding sequences of the XLRS1 gene were amplified by polymerase chain reaction and directly sequenced on an automated sequencer. Six different XLRS1 mutations were identified; two of these mutations Ile81Asn and the Trp122Cys, have not been previously described. The affected males showed an electronegative response to the standard white scotopic stimulus and a prolonged implicit time of the 30 Hz flicker. In the families with Trp112Cys and Trp122Cys mutations we observed a more severe retinoschisis (RS) clinical picture compared with the other genotypes. The severe RS phenotypes associated with Trp112Cys and to Trp122Cys mutations suggest that these mutations determine a notable alteration in the function of the retinoschisin protein.
The Juberg-Marsidi syndrome maps to the proximal long arm of the X chromosome (Xq12-q21)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saugier-Veber, P.; Abadie, V.; Turleau, C.
Juberg-Marsidi syndrome (McKusick 309590) is a rare X-linked recessive condition characterized by severe mental retardation, growth failure, sensorineural deafness, and microgenitalism. Here the authors report on the genetic mapping of the Juberg-Marsidi gene to the proximal long arm of the X chromosome (Xq12-q21) by linkage to probe pRX214H1 at the DXS441 locus (Z = 3.24 at [theta] = .00). Multipoint linkage analysis placed the Juberg-Marsidi gene within the interval defined by the DXS159 and the DXYS1X loci in the Xq12-q21 region. These data provide evidence for the genetic distinction between Juberg-Marsidi syndrome and several other X-linked mental retardation syndromes thatmore » have hypogonadism and hypogenitalism and that have been localized previously. Finally, the mapping of the Juberg-Marsidi gene is of potential interest for reliable genetic counseling of at-risk women. 25 refs., 2 figs., 3 tabs.« less
Wang, James K. T.; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J.
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases. PMID:28611571
Wang, James K T; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene ( HTT ), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.
Harrison, Peter W; Mank, Judith E; Wedell, Nina
2012-01-01
Males and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion.
Harrison, Peter W.; Mank, Judith E.; Wedell, Nina
2012-01-01
Males and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion. PMID:23034217
Kohrt, Brandon A; Worthman, Carol M; Adhikari, Ramesh P; Luitel, Nagendra P; Arevalo, Jesusa M G; Ma, Jeffrey; McCreath, Heather; Seeman, Teresa E; Crimmins, Eileen M; Cole, Steven W
2016-07-19
Adverse social conditions in early life have been linked to increased expression of proinflammatory genes and reduced expression of antiviral genes in circulating immune cells-the conserved transcriptional response to adversity (CTRA). However, it remains unclear whether such effects are specific to the Western, educated, industrialized, rich, and democratic (WEIRD) cultural environments in which previous research has been conducted. To assess the roles of early adversity and individual psychological resilience in immune system gene regulation within a non-WEIRD population, we evaluated CTRA gene-expression profiles in 254 former child soldiers and matched noncombatant civilians 5 y after the People's War in Nepal. CTRA gene expression was up-regulated in former child soldiers. These effects were linked to the degree of experienced trauma and associated distress-that is, posttraumatic stress disorder (PTSD) severity-more than to child soldier status per se. Self-perceived psychological resilience was associated with marked buffering of CTRA activation such that PTSD-affected former child soldiers with high levels of personal resilience showed molecular profiles comparable to those of PTSD-free civilians. These results suggest that CTRA responses to early life adversity are not restricted to WEIRD cultural contexts and they underscore the key role of resilience in determining the molecular impact of adverse environments.
A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.
Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A
2018-05-03
Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.
Altered gene expression in early postnatal monoamine oxidase A knockout mice.
Chen, Kevin; Kardys, Abbey; Chen, Yibu; Flink, Stephen; Tabakoff, Boris; Shih, Jean C
2017-08-15
We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.
Tourna, Maria; Maclean, Paul; Condron, Leo; O'Callaghan, Maureen; Wakelin, Steven A
2014-06-01
Sulphur-oxidising bacteria (SOB) play a key role in the biogeochemical cycling of sulphur in soil ecosystems. However, the ecology of SOB is poorly understood, and there is little knowledge about the taxa capable of sulphur oxidation, their distribution, habitat preferences and ecophysiology. Furthermore, as yet there are no conclusive links between SOB community size or structure and rates of sulphur oxidation. We have developed a molecular approach based on primer design targeting the soxB functional gene of nonfilamentous chemolithotrophic SOB that allows assessment of both abundance and diversity. Cloning and sequencing revealed considerable diversity of known soxB genotypes from agricultural soils and also evidence for previously undescribed taxa. In a microcosm experiment, abundance of soxB genes increased with sulphur oxidation rate in soils amended with elemental sulphur. Addition of elemental sulphur to soil had a significant effect in the soxB gene diversity, with the chemolithotrophic Thiobacillus-like Betaproteobacteria sequences dominating clone libraries 6 days after sulphur application. Using culture-independent methodology, the study provides evidence for links between abundance and diversity of SOB and sulphur oxidation. The methodology provides a new tool for investigation of the ecology and role of SOB in soil sulphur biogeochemistry. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...
USDA-ARS?s Scientific Manuscript database
Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a...
Identification of genetic elements in metabolism by high-throughput mouse phenotyping.
Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin
2018-01-18
Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.
Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry.
Urzúa, Blanca; Ortega-Pinto, Ana; Morales-Bozo, Irene; Rojas-Alcayaga, Gonzalo; Cifuentes, Víctor
2011-02-01
Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.
Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J
1988-01-01
Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses. Images PMID:2830625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, S.; Kamine, J.; Markovitz, D.
Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBVmore » gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.« less
Latent Gammaherpesvirus 68 Infection Induces Distinct Transcriptional Changes in Different Organs
Canny, Susan P.; Goel, Gautam; Reese, Tiffany A.; Zhang, Xin; Xavier, Ramnik
2014-01-01
Previous studies identified a role for latent herpesvirus infection in cross-protection against infection and exacerbation of chronic inflammatory diseases. Here, we identified more than 500 genes differentially expressed in spleens, livers, or brains of mice latently infected with gammaherpesvirus 68 and found that distinct sets of genes linked to different pathways were altered in the spleen compared to those in the liver. Several of the most differentially expressed latency-specific genes (e.g., the gamma interferon [IFN-γ], Cxcl9, and Ccl5 genes) are associated with known latency-specific phenotypes. Chronic herpesvirus infection, therefore, significantly alters the transcriptional status of host organs. We speculate that such changes may influence host physiology, the status of the immune system, and disease susceptibility. PMID:24155394
FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.
Liu, Ting; Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie; Huang, Jun
2010-08-06
Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.
2014-01-01
Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study. PMID:24721225
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M.; Schwartz, C.; Huston, S.
The Opitz GBBB syndrome (OS) is characterized in part by widely spaced inner ocular canthi and hypospadias. Recently, linkage analysis showed that the gene for the X-linked form to be located in an 18 cM region spanning Xp22. We have now conducted linkage analysis in a family previously published as having the BBB syndrome and found tight linkage to DXS7104 (Z = 3.3, {theta} = 0.0). Our data narrows the candidate region to 4 cM and should facilitate the identification and characterization of one of the genes involved in midline development. 21 refs., 1 fig., 1 tab.
A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes
Krasovec, Marc; Filatov, Dmitry A.
2018-01-01
Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (πx = 0.016; πaut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex. PMID:29751495
Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C
2010-05-01
To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.
Penfold, Christopher A.; Jenkins, Dafyd J.; Legaie, Roxane; Lawson, Tracy; Vialet-Chabrand, Silvere R.M.; Subramaniam, Sunitha; Hickman, Richard; Feil, Regina; Bowden, Laura; Hill, Claire; Lunn, John E.; Finkenstädt, Bärbel; Buchanan-Wollaston, Vicky; Beynon, Jim; Wild, David L.; Ott, Sascha
2016-01-01
In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464
Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A.; Sietman, Bernard E.; Stewart, Donald; Breton, Sophie
2018-01-01
Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species.
Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A; Sietman, Bernard E; Stewart, Donald T; Breton, Sophie
2018-02-01
Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Renaut, Sébastien; Milani, Liliana; Johnson, Nathan A; Sietman, Bernard E; Stewart, Donald T
2018-01-01
Abstract Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species. PMID:29360964
Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W.; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun
2015-01-01
Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245
vonHoldt, Bridgett M; Shuldiner, Emily; Koch, Ilana Janowitz; Kartzinel, Rebecca Y; Hogan, Andrew; Brubaker, Lauren; Wanser, Shelby; Stahler, Daniel; Wynne, Clive D L; Ostrander, Elaine A; Sinsheimer, Janet S; Udell, Monique A R
2017-07-01
Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1 , genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans.
Kalscheuer, Vera M.; James, Victoria M.; Himelright, Miranda L.; Long, Philip; Oegema, Renske; Jensen, Corinna; Bienek, Melanie; Hu, Hao; Haas, Stefan A.; Topf, Maya; Hoogeboom, A. Jeannette M.; Harvey, Kirsten; Walikonis, Randall; Harvey, Robert J.
2016-01-01
Disease gene discovery in neurodevelopmental disorders, including X-linked intellectual disability (XLID) has recently been accelerated by next-generation DNA sequencing approaches. To date, more than 100 human X chromosome genes involved in neuronal signaling pathways and networks implicated in cognitive function have been identified. Despite these advances, the mutations underlying disease in a large number of XLID families remained unresolved. We report the resolution of MRX78, a large family with six affected males and seven affected females, showing X-linked inheritance. Although a previous linkage study had mapped the locus to the short arm of chromosome X (Xp11.4-p11.23), this region contained too many candidate genes to be analyzed using conventional approaches. However, our X-chromosome exome resequencing, bioinformatics analysis and inheritance testing revealed a missense mutation (c.C2366T, p.A789V) in IQSEC2, encoding a neuronal GDP-GTP exchange factor for Arf family GTPases (ArfGEF) previously implicated in XLID. Molecular modeling of IQSEC2 revealed that the A789V substitution results in the insertion of a larger side-chain into a hydrophobic pocket in the catalytic Sec7 domain of IQSEC2. The A789V change is predicted to result in numerous clashes with adjacent amino acids and disruption of local folding of the Sec7 domain. Consistent with this finding, functional assays revealed that recombinant IQSEC2A789V was not able to catalyze GDP-GTP exchange on Arf6 as efficiently as wild-type IQSEC2. Taken together, these results strongly suggest that the A789V mutation in IQSEC2 is the underlying cause of XLID in the MRX78 family. PMID:26793055
Ross-Adams, H.; Lamb, A.D.; Dunning, M.J.; Halim, S.; Lindberg, J.; Massie, C.M.; Egevad, L.A.; Russell, R.; Ramos-Montoya, A.; Vowler, S.L.; Sharma, N.L.; Kay, J.; Whitaker, H.; Clark, J.; Hurst, R.; Gnanapragasam, V.J.; Shah, N.C.; Warren, A.Y.; Cooper, C.S.; Lynch, A.G.; Stark, R.; Mills, I.G.; Grönberg, H.; Neal, D.E.
2015-01-01
Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p = 0.0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time in prostate cancer this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to the generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. PMID:26501111
Zhang, Weihong; Xin, Linlin; Lu, Ying
2017-01-01
Background Emerging data have established links between systemic metabolic dysfunction, such as diabetes and metabolic syndrome (MetS), with neurocognitive impairment, including dementia. The common gene signature and the associated signaling pathways of MetS, diabetes, and dementia have not been widely studied. Material/Methods We exploited the translational bioinformatics approach to choose the common gene signatures for both dementia and MetS. For this we employed “DisGeNET discovery platform”. Results Gene mining analysis revealed that a total of 173 genes (86 genes common to all three diseases) which comprised a proportion of 43% of the total genes associated with dementia. The gene enrichment analysis showed that these genes were involved in dysregulation in the neurological system (23.2%) and the central nervous system (20.8%) phenotype processes. The network analysis revealed APOE, APP, PARK2, CEPBP, PARP1, MT-CO2, CXCR4, IGFIR, CCR5, and PIK3CD as important nodes with significant interacting partners. The meta-regression analysis showed modest association of APOE with dementia and metabolic complications. The directionality of effects of the variants on Alzheimer disease is generally consistent with previous observations and did not differ by race/ethnicity (p>0.05), although our study had low power for this test. Conclusions Our novel approach showed APOE as a common gene signature with a link to dementia, MetS, and diabetes. Future gene association studies should focus on the association of gene polymorphisms with multiple disease models to identify novel putative drug targets. PMID:29229897
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-01-01
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis. PMID:18305825
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-12-30
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis.
Genetics of intellectual disability in consanguineous families.
Hu, Hao; Kahrizi, Kimia; Musante, Luciana; Fattahi, Zohreh; Herwig, Ralf; Hosseini, Masoumeh; Oppitz, Cornelia; Abedini, Seyedeh Sedigheh; Suckow, Vanessa; Larti, Farzaneh; Beheshtian, Maryam; Lipkowitz, Bettina; Akhtarkhavari, Tara; Mehvari, Sepideh; Otto, Sabine; Mohseni, Marzieh; Arzhangi, Sanaz; Jamali, Payman; Mojahedi, Faezeh; Taghdiri, Maryam; Papari, Elaheh; Soltani Banavandi, Mohammad Javad; Akbari, Saeide; Tonekaboni, Seyed Hassan; Dehghani, Hossein; Ebrahimpour, Mohammad Reza; Bader, Ingrid; Davarnia, Behzad; Cohen, Monika; Khodaei, Hossein; Albrecht, Beate; Azimi, Sarah; Zirn, Birgit; Bastami, Milad; Wieczorek, Dagmar; Bahrami, Gholamreza; Keleman, Krystyna; Vahid, Leila Nouri; Tzschach, Andreas; Gärtner, Jutta; Gillessen-Kaesbach, Gabriele; Varaghchi, Jamileh Rezazadeh; Timmermann, Bernd; Pourfatemi, Fatemeh; Jankhah, Aria; Chen, Wei; Nikuei, Pooneh; Kalscheuer, Vera M; Oladnabi, Morteza; Wienker, Thomas F; Ropers, Hans-Hilger; Najmabadi, Hossein
2018-01-04
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Lo, Wen-Sui; Kuo, Chih-Horng
2017-12-01
Genetic differentiation among symbiotic bacteria is important in shaping biodiversity. The genus Spiroplasma contains species occupying diverse niches and is a model system for symbiont evolution. Previous studies have established that two mosquito-associated species have diverged extensively in their carbohydrate metabolism genes despite having a close phylogenetic relationship. Notably, although the commensal Spiroplasma diminutum lacks identifiable pathogenicity factors, the pathogenic Spiroplasma taiwanense was found to have acquired a virulence factor glpO and its associated genes through horizontal transfer. However, it is unclear if these acquired genes have been integrated into the regulatory network. In this study, we inferred the gene content evolution in these bacteria, as well as examined their transcriptomes in response to glucose availability. The results indicated that both species have many more gene acquisitions from the Mycoides-Entomoplasmataceae clade, which contains several important pathogens of ruminants, than previously thought. Moreover, several acquired genes have higher expression levels than the vertically inherited homologs, indicating possible functional replacement. Finally, the virulence factor and its functionally linked genes in S. taiwanense were up-regulated in response to glucose starvation, suggesting that these acquired genes are under expression regulation and the pathogenicity may be a stress response. In summary, although differential gene losses are a major process for symbiont divergence, gene gains are critical in counteracting genome degradation and driving diversification among facultative symbionts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Identification of a new retrotransposable element in loblolly pine
M.N. Islam-Faridi; A.M. Morse; K.E. Smith; J.M. Davis; S. Garcia; H.V. Amerson; M.A. Majid; T.L. Kubisiak; C.D. Nelson
2005-01-01
We initiated a project to locate the genomic position of fusiform rust resistance gene 1 (Fr1) in loblolly pine using fluorescent in situ hybridization (FISH). Four random amplified polymorphic DNA (RAPD) markers previously found to be tightly linked to Fr1 were cloned and sequenced, providing a total coverage of about 2 Kb. In order to obtain discernible signal of...
Kennedy, Douglas R; Hartnett, Brian J; Kennedy, Jeffrey S; Vernau, William; Moore, Peter F; O'Malley, Thomas; Burkly, Linda C; Henthorn, Paula S; Felsburg, Peter J
2011-07-15
We have previously shown that in vivo γ-retroviral gene therapy of dogs with X-linked severe combined immunodeficiency (XSCID) results in sustained T cell reconstitution and sustained marking in myeloid and B cells for up to 4 years with no evidence of any serious adverse effects. The purpose of this study was to determine whether ex vivo γ-retroviral gene therapy of XSCID dogs results in a similar outcome. Eight of 12 XSCID dogs treated with an average of dose of 5.8 × 10(6) transduced CD34(+) cells/kg successfully engrafted producing normal numbers of gene-corrected CD45RA(+) (naïve) T cells. However, this was followed by a steady decrease in CD45RA(+) T cells, T cell diversity, and thymic output as measured by T cell receptor excision circles (TRECs) resulting in a T cell lymphopenia. None of the dogs survived past 11 months post treatment. At necropsy, few gene-corrected thymocytes were observed correlating with the TREC levels and one of the dogs was diagnosed with a thymic T cell lymphoma that was attributed to the gene therapy. This study highlights the outcome differences between the ex vivo and in vivo approach to γ-retroviral gene therapy and is the first to document a serious adverse event following gene therapy in a canine model of a human genetic disease. Copyright © 2011 Elsevier B.V. All rights reserved.
Kennedy, Douglas R.; Hartnett, Brian J.; Kennedy, Jeffrey S.; Vernau, William; Moore, Peter F.; O’Malley, Thomas; Burkly, Linda C.; Henthorn, Paula S.; Felsburg, Peter J.
2011-01-01
We have previously shown that in vivo γ-retroviral gene therapy of dogs with X-linked severe combined immunodeficiency (XSCID) results in sustained T cell reconstitution and sustained marking in myeloid and B cells for up to 4 years with no evidence of any serious adverse effects. The purpose of this study was to determine whether ex vivo γ-retroviral gene therapy of XSCID dogs results in a similar outcome. Eight of 12 XSCID dogs treated with an average of dose of 5.8 × 106 transduced CD34+ cells/kg successfully engrafted producing normal numbers of gene-corrected CD45RA+ (naïve) T cells. However, this was followed by a steady decrease in CD45RA+ T cells, T cell diversity, and thymic output as measured by T cell receptor excision circles (TRECs) resulting in a T cell lymphopenia. None of the dogs survived past 11 months post treatment. At necropsy, few gene-corrected thymocytes were observed correlating with the TREC levels and one of the dogs was diagnosed with a thymic T cell lymphoma that was attributed to the gene therapy. This study highlights the outcome differences between the ex vivo and in vivo approach to γ-retroviral gene therapy and is the first to document a serious adverse event following gene therapy in a canine model of a human genetic disease. PMID:21536334
Inactivation of AMMECR1 is associated with growth, bone, and heart alterations.
Moysés-Oliveira, Mariana; Giannuzzi, Giuliana; Fish, Richard J; Rosenfeld, Jill A; Petit, Florence; Soares, Maria de Fatima; Kulikowski, Leslie Domenici; Di-Battista, Adriana; Zamariolli, Malú; Xia, Fan; Liehr, Thomas; Kosyakova, Nadezda; Carvalheira, Gianna; Parker, Michael; Seaby, Eleanor G; Ennis, Sarah; Gilbert, Rodney D; Hagelstrom, R Tanner; Cremona, Maria L; Li, Wenhui L; Malhotra, Alka; Chandrasekhar, Anjana; Perry, Denise L; Taft, Ryan J; McCarrier, Julie; Basel, Donald G; Andrieux, Joris; Stumpp, Taiza; Antunes, Fernanda; Pereira, Gustavo José; Neerman-Arbez, Marguerite; Meloni, Vera Ayres; Drummond-Borg, Margaret; Melaragno, Maria Isabel; Reymond, Alexandre
2018-02-01
We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis. © 2017 Wiley Periodicals, Inc.
RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation.
Jensen, Victor L; Simonsen, Karina T; Lee, Yu-Hui; Park, Donha; Riddle, Donald L
2010-12-31
The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366); sdf-9(m708)], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c). Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf) phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85), sdf-9(m708), and the wild-type N2 (at 27°C) were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130) background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production.
Bixler, D; Higgins, M; Hartsfield, J
1984-07-01
This report describes two families with the Nance-Horan syndrome, an X-linked trait featuring lenticular cataracts and anomalies of tooth shape and number. Previous reports have described blindness in affected males but posterior sutural cataracts with normal vision as the primary ocular expression in heterozygous females. In one of these two families, the affected female is not only blind in one eye but reportedly had supernumerary central incisors (mesiodens) removed. This constitutes the most severe ocular and dental expression of this gene in heterozygous females yet reported.
Jensen, Philip J; Fazio, Gennaro; Altman, Naomi; Praul, Craig; McNellis, Timothy W
2014-04-04
Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Gene expression profiling and trait-associated transcript analysis using an apple F1 population readily identified genes physically linked to powdery mildew disease resistance and woolly apple aphid resistance loci. This result was especially useful in apple, where extreme levels of heterozygosity make the development of reliable DNA markers quite difficult. The results suggest that this approach could prove effective in crops with complicated genetics, or for which few genomic information resources are available.
Mercado-Blanco, J; García, F; Fernández-López, M; Olivares, J
1993-01-01
Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b (140 MDa). Transfer of this plasmid to GR4-cured derivatives or to Agrobacterium tumefaciens enables these bacteria to produce melanin. Sequence analysis of a 3.5-kb PstI fragment of plasmid pRmeGR4b has revealed the presence of a open reading frame 1,481-bp that codes for a protein whose sequence shows strong homology to two conserved regions involved in copper binding in tyrosinases and hemocyanins. In vitro-coupled transcription-translation experiments showed that this open reading frame codes for a 55-kDa polypeptide. Melanin production in GR4 is not under the control of the RpoN-NifA regulatory system, unlike that in R. leguminosarum bv. phaseoli 8002. The GR4 tyrosinase gene could be expressed in Escherichia coli under the control of the lacZ promoter. For avoiding confusion with mel genes (for melibiose), a change of the name of the previously reported mel genes of R. leguminosarum bv. phaseoli and other organisms to mep genes (for melanin production) is proposed. Images PMID:8366027
Decreased Genetic Dosage of Hepatic Yin Yang 1 Causes Diabetic-Like Symptoms
Verdeguer, Francisco; Blättler, Sharon M.; Cunningham, John T.; Hall, Jessica A.; Chim, Helen
2014-01-01
Insulin sensitivity in liver is characterized by the ability of insulin to efficiently inhibit glucose production and fatty acid oxidation as well as promote de novo lipid biosynthesis. Specific dysregulation of glucose and lipid metabolism in liver is sufficient to cause insulin resistance and type 2 diabetes; this is seen by a selective inability of insulin to suppress glucose production while remaining insulin-sensitive to de novo lipid biosynthesis. We have previously shown that the transcription factor Yin Yang 1 (YY1) controls diabetic-linked glucose and lipid metabolism gene sets in skeletal muscle, but whether liver YY1-targeted metabolic genes impact a diabetic phenotype is unknown. Here we show that decreased genetic dosage of YY1 in liver causes insulin resistance, hepatic lipid accumulation, and dyslipidemia. Indeed, YY1 liver-specific heterozygous mice exhibit blunted activation of hepatic insulin signaling in response to insulin. Mechanistically, YY1, through direct recruitment to promoters, functions as a suppressor of genes encoding for metabolic enzymes of the gluconeogenic and lipogenic pathways and as an activator of genes linked to fatty acid oxidation. These counterregulatory transcriptional activities make targeting hepatic YY1 an attractive approach for treating insulin-resistant diabetes. PMID:24467246
Building a biomedical semantic network in Wikipedia with Semantic Wiki Links
Good, Benjamin M.; Clarke, Erik L.; Loguercio, Salvatore; Su, Andrew I.
2012-01-01
Wikipedia is increasingly used as a platform for collaborative data curation, but its current technical implementation has significant limitations that hinder its use in biocuration applications. Specifically, while editors can easily link between two articles in Wikipedia to indicate a relationship, there is no way to indicate the nature of that relationship in a way that is computationally accessible to the system or to external developers. For example, in addition to noting a relationship between a gene and a disease, it would be useful to differentiate the cases where genetic mutation or altered expression causes the disease. Here, we introduce a straightforward method that allows Wikipedia editors to embed computable semantic relations directly in the context of current Wikipedia articles. In addition, we demonstrate two novel applications enabled by the presence of these new relationships. The first is a dynamically generated information box that can be rendered on all semantically enhanced Wikipedia articles. The second is a prototype gene annotation system that draws its content from the gene-centric articles on Wikipedia and exposes the new semantic relationships to enable previously impossible, user-defined queries. Database URL: http://en.wikipedia.org/wiki/Portal:Gene_Wiki PMID:22434829
Building a biomedical semantic network in Wikipedia with Semantic Wiki Links.
Good, Benjamin M; Clarke, Erik L; Loguercio, Salvatore; Su, Andrew I
2012-01-01
Wikipedia is increasingly used as a platform for collaborative data curation, but its current technical implementation has significant limitations that hinder its use in biocuration applications. Specifically, while editors can easily link between two articles in Wikipedia to indicate a relationship, there is no way to indicate the nature of that relationship in a way that is computationally accessible to the system or to external developers. For example, in addition to noting a relationship between a gene and a disease, it would be useful to differentiate the cases where genetic mutation or altered expression causes the disease. Here, we introduce a straightforward method that allows Wikipedia editors to embed computable semantic relations directly in the context of current Wikipedia articles. In addition, we demonstrate two novel applications enabled by the presence of these new relationships. The first is a dynamically generated information box that can be rendered on all semantically enhanced Wikipedia articles. The second is a prototype gene annotation system that draws its content from the gene-centric articles on Wikipedia and exposes the new semantic relationships to enable previously impossible, user-defined queries. DATABASE URL: http://en.wikipedia.org/wiki/Portal:Gene_Wiki.
Yamasue, Hidenori
2013-02-01
Difficulties in appropriate social and communicative behaviors are the most prevalent and core symptoms of autism spectrum disorders (ASDs). Although recent intensive research has focused on the neurobiological background of these difficulties, many aspects of them were not yet elucidated. Recent studies have employed multimodal magnetic resonance imaging (MRI) indices as intermediate phenotypes of this behavioral phenotype to link candidate genes with the autistic social difficulty. As MRI indices, functional MRI (fMRI), structural MRI, and MR-spectroscopy have been examined in subjects with autism spectrum disorders. As candidate genes, this mini-review has much interest in oxytocin-receptor genes (OXTR), since recent studies have repeatedly reported their associations with normal variations in social cognition and behavior as well as with their extremes, autistic social dysfunction. Through previous increasing studies, medial prefrontal cortex, hypothalamus and amygdala have repeatedly been revealed as neural correlates of autistic social behavior by MRI multimodalities and their relationship to OXTR. For further development of this research area, this mini-review integrates recent accumulating evidence about human behavioral and neural correlates of OXTR. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders
Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Bárbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.
2014-01-01
Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. PMID:24768552
Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle
2018-06-25
Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
Busquets, Sílvia; Almendro, Vanessa; Barreiro, Esther; Figueras, Maite; Argilés, Josep M; López-Soriano, Francisco J
2005-01-31
Implantation of a fast growing tumour to mice (Lewis lung carcinoma) resulted in a clear cachectic state characterized by a profound muscle wasting. This was accompanied by a significant increase in both UCP2 and UCP3 gene expression in skeletal muscle and heart. Interestingly, this increase in gene expression was not linked to a rise in circulating fatty acids or in a decrease in food intake, as previously reported in other pathophysiological states. These results question the concept that hyperlipaemia is the only factor controlling UCP gene expression in different pathophysiological conditions. In addition, the present work suggests that UCPs might participate in a counter-regulatory mechanism to lower the production of ROS.
Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis.
Skorczyk, Anna; Krawczyński, Maciej R
2012-01-01
To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data.
Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine.
Antón-Martín, Pilar; Aparicio López, Cristina; Ramiro-León, Soraya; Santillán Garzón, Sonia; Santos-Simarro, Fernando; Gil-Fournier, Belén
2012-01-01
Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. A new mutation determining a nucleotide change c.3614G > T (p.Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.
Abbasi, Ansar A; Blaesius, Kathrin; Hu, Hao; Latif, Zahid; Picker-Minh, Sylvie; Khan, Muhammad N; Farooq, Sundas; Khan, Muzammil A; Kaindl, Angela M
2017-12-01
TRAPPC9 gene mutations have been linked recently to autosomal recessive mental retardation 13 (MRT13; MIM#613192) with only eight families reported world-wide. We assessed patients from two consanguineous pedigrees of Pakistani descent with non-syndromic intellectual disability and postnatal microcephaly through whole exome sequencing (WES) and cosegregation analysis. Here we report six further patients from two pedigrees with homozygous TRAPPC9 gene mutations, the novel nonsense mutation c.2065G>T (p.E689*) and the previously identified nonsense mutation c.1423C>T (p.R475*). We provide an overview of previously reported clinical features and highlight common symptoms and variability of MRT13. Common findings are intellectual disability and absent speech, and frequently microcephaly, motor delay and pathological findings on MRI including diminished cerebral white matter volume are present. Mutations in TRAPPC9 should be considered in non-syndromic autosomal recessive intellectual disability with severe speech disorder. © 2017 Wiley Periodicals, Inc.
Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin
2015-10-13
Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex and context dependent pathogenicity of bacteria.
Lovell, John T; Mullen, Jack L; Lowry, David B; Awole, Kedija; Richards, James H; Sen, Saunak; Verslues, Paul E; Juenger, Thomas E; McKay, John K
2015-04-01
Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. © 2015 American Society of Plant Biologists. All rights reserved.
Takasaki, Teruaki; Liu, Zheng; Habara, Yasuaki; Nishiwaki, Kiyoji; Nakayama, Jun-ichi; Inoue, Kunio; Sakamoto, Hiroshi; Strome, Susan
2008-01-01
MRG15, a mammalian protein related to the mortality factor MORF4, is required for cell proliferation and embryo survival. Our genetic analysis has revealed that the Caenorhabditis elegans ortholog MRG-1 serves similar roles. Maternal MRG-1 promotes embryo survival and is required for proliferation and immortality of the primordial germ cells (PGCs). As expected of a chromodomain protein, MRG-1 associates with chromatin. Unexpectedly, it is concentrated on the autosomes and not detectable on the X chromosomes. This association is not dependent on the autosome-enriched protein MES-4. Focusing on possible roles of MRG-1 in regulating gene expression, we determined that MRG-1 is required to maintain repression in the maternal germ line of transgenes on extrachromosomal arrays, and of several X-linked genes previously shown to depend on MES-4 for repression. MRG-1 is not required for PGCs to acquire transcriptional competence or for the turn-on of expression of several PGC-expressed genes (pgl-1, glh-1, glh-4 and nos-1). By contrast to this result in PGCs, MRG-1 is required for ectopic expression of those germline genes in somatic cells lacking the NuRD complex component MEP-1. We discuss how an autosome-enriched protein might repress genes on the X chromosome, promote PGC proliferation and survival, and influence the germ versus soma distinction. PMID:17215300
Mariette, Stéphanie; Wong Jun Tai, Fabienne; Roch, Guillaume; Barre, Aurélien; Chague, Aurélie; Decroocq, Stéphane; Groppi, Alexis; Laizet, Yec'han; Lambert, Patrick; Tricon, David; Nikolski, Macha; Audergon, Jean-Marc; Abbott, Albert G; Decroocq, Véronique
2016-01-01
In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm. © 2015 INRA, UMR 1332 BFP New Phytologist © 2015 New Phytologist Trust.
Kinsey, Conan; Balakrishnan, Vijaya; O’Dell, Michael R.; Huang, Jing Li; Newman, Laurel; Whitney-Miller, Christa L.; Hezel, Aram F.; Land, Hartmut
2014-01-01
Summary Mutations in p53 and RAS potently cooperate in oncogenic transformation and correspondingly these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA) and other human cancers. Previously we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression. PMID:24794439
Brocato, Jason; Hernandez, Michelle; Laulicht, Freda; Sun, Hong; Shamy, Magdy; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Kluz, Thomas; Chen, Lung-Chi; Costa, Max
2016-01-01
Particulate matter (PM) exposures have been linked to mortality, low birth weights, hospital admissions, and diseases associated with metabolic syndrome, including diabetes mellitus, cardiovascular disease, and obesity. In a previous in vitro and in vivo study, data demonstrated that PM10µm collected from Jeddah, Saudi Arabia (PMSA) altered expression of genes involved in lipid and cholesterol metabolism, as well as many other genes associated with metabolic disorders. PMSA contains a relatively high concentration of nickel (Ni), known to be linked to several metabolic disorders. In order to evaluate if Ni and PM exposures induce similar gene expression profiles, mice were exposed to 100µg/50µl PMSA (PM-100), 50µg/50µl nickel chloride (Ni-50), or 100µg/50µl nickel chloride (Ni-100) twice a week for 4 weeks and hepatic gene expression changes determined. Ultimately, 55 of the same genes were altered in all 3 exposures. However, where the two Ni groups differed markedly was in the regulation (up or down) of these genes. Ni-100 and PM-100 groups displayed similar regulations, whereby 104 of the 107 genes were similarly modulated. Many of the 107 genes involved in metabolic syndrome and include ALDH4A1, BCO2, CYP1A, CYP2U, TOP2A. In addition, the top affected pathways such as fatty acid α-oxidation, and lipid and carbohydrate metabolism, are involved in metabolic diseases. Most notably, the top diseased outcome affected by these changes in gene expression was cardiovascular disease. Given these data, it appears that Ni and PMSA exposures display similar gene expression profiles, modulating the expression of genes involved in metabolic disorders. PMID:26692068
Fiebig, Michael; Kelly, Steven; Gluenz, Eva
2015-01-01
Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions. PMID:26452044
Community of protein complexes impacts disease association
Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia
2012-01-01
One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411
X-linked recessive primary retinal dysplasia is linked to the Norrie disease locus.
Ravia, Y; Braier-Goldstein, O; Bat-Miriam, K M; Erlich, S; Barkai, G; Goldman, B
1993-08-01
X-linked primary retinal dysplasia (PRD) refers to an abnormal proliferation of retinal tissue causing either its neural elements or its glial tissue to form folds, giving rise to gliosis. A Jewish family of oriental origin was previously reported by Godel and Goodman, in which a total of five males suffer from different degrees of blindness. The authors postulated that the described findings are distinguished from Norrie disease, since in this case no clinical findings, other than those associated with the eyes, were noticed in the affected males. In addition, two of the carrier females exhibit minimal eye changes. We have performed linkage analysis of the family using the L1.28, p58-1 and m27 beta probes, and DXS426 and MAOB associated microsatellites. Our results map the gene responsible for the disorder between the MAOB and DXS426, m27 beta and p58-1 loci, on the short arm of the X chromosome at Xp11.3, which suggest the possibility that the same gene is responsible for both primary retinal dysplasia and Norrie disease.
The genetic landscape of familial congenital hydrocephalus.
Shaheen, Ranad; Sebai, Mohammed Adeeb; Patel, Nisha; Ewida, Nour; Kurdi, Wesam; Altweijri, Ikhlass; Sogaty, Sameera; Almardawi, Elham; Seidahmed, Mohammed Zain; Alnemri, Abdulrahman; Madirevula, Sateesh; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Al-Sheddi, Tarfa; Alomar, Rana; Alobeid, Eman; Sallout, Bahauddin; AlBaqawi, Badi; AlAali, Wajeih; Ajaji, Nouf; Lesmana, Harry; Hopkin, Robert J; Dupuis, Lucie; Mendoza-Londono, Roberto; Al Rukban, Hadeel; Yoon, Grace; Faqeih, Eissa; Alkuraya, Fowzan S
2017-06-01
Congenital hydrocephalus is an important birth defect, the genetics of which remains incompletely understood. To date, only 4 genes are known to cause Mendelian diseases in which congenital hydrocephalus is the main or sole clinical feature, 2 X-linked (L1CAM and AP1S2) and 2 autosomal recessive (CCDC88C and MPDZ). In this study, we aimed to determine the genetic etiology of familial congenital hydrocephalus with the assumption that these cases represent Mendelian forms of the disease. Exome sequencing combined, where applicable, with positional mapping. We identified a likely causal mutation in the majority of these families (21 of 27, 78%), spanning 16 genes, none of which is X-linked. Ciliopathies and dystroglycanopathies were the most common etiologies of congenital hydrocephalus in our cohort (19% and 26%, respectively). In 1 family with 4 affected members, we identified a homozygous truncating variant in EML1, which we propose as a novel cause of congenital hydrocephalus in addition to its suggested role in cortical malformation. Similarly, we show that recessive mutations in WDR81, previously linked to cerebellar ataxia, mental retardation, and disequilibrium syndrome 2, cause severe congenital hydrocephalus. Furthermore, we confirm the previously reported candidacy of MPDZ by presenting a phenotypic spectrum of congenital hydrocephalus associated with 5 recessive alleles. Our study highlights the importance of recessive mutations in familial congenital hydrocephalus and expands the locus heterogeneity of this condition. Ann Neurol 2017;81:890-897. © 2017 American Neurological Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, M.N.; Masri, K.A.; Dell, A.
1990-10-01
Congenital dyserythropoietic anemia type II, or hereditary erythroblastic multinuclearity with a positive acidified-serum-lysis test (HEMPAS), is a genetic anemia in humans inherited by an autosomally recessive mode. The enzyme defect in most HEMPAS patients has previously been proposed as a lowered activity of N-acetylglucosaminyltransferase II, resulting in a lack of polylactosamine on proteins and leading to the accumulation of polylactosaminyl lipids. A recent HEMPAS case, G.C., has now been analyzed by cell-surface labeling, fast-atom-bombardment mass spectrometry of glycopeptides, and activity assay of glycosylation enzymes. Significantly decreased glycosylation of polylactosaminoglycan proteins and incompletely processed asparagine-linked oligosaccharides were detected in the erythrocytemore » membranes of G.C. These results suggest that G.C. cells contain a mutation in {alpha}-ManII-encoding gene that results in inefficient expression of {alpha}-ManII mRNA, either through reduced transcription or message instability. This report demonstrates that HEMPAS is caused by a defective gene encoding an enzyme necessary for the synthesis of asparagine-linked oligosaccharides.« less
Lionakis, M.S.; Hajishengallis, G.
2015-01-01
In recent years, the study of genetic defects arising from inborn errors in immunity has resulted in the discovery of new genes involved in the function of the immune system and in the elucidation of the roles of known genes whose importance was previously unappreciated. With the recent explosion in the field of genomics and the increasing number of genetic defects identified, the study of naturally occurring mutations has become a powerful tool for gaining mechanistic insight into the functions of the human immune system. In this concise perspective, we discuss emerging evidence that inborn errors in immunity constitute real-life models that are indispensable both for the in-depth understanding of human biology and for obtaining critical insights into common diseases, such as those affecting oral health. In the field of oral mucosal immunity, through the study of patients with select gene disruptions, the interleukin-17 (IL-17) pathway has emerged as a critical element in oral immune surveillance and susceptibility to inflammatory disease, with disruptions in the IL-17 axis now strongly linked to mucosal fungal susceptibility, whereas overactivation of the same pathways is linked to inflammatory periodontitis. PMID:25900229
Simonelli, F; Cennamo, G; Ziviello, C; Testa, F; de Crecchio, G; Nesti, A; Manitto, M P; Ciccodicola, A; Banfi, S; Brancato, R; Rinaldi, E
2003-01-01
Aims: To describe the clinical phenotype of X linked juvenile retinoschisis in eight Italian families with six different mutations in the XLRS1 gene. Methods: Complete ophthalmic examinations, electroretinography and A and B-scan standardised echography were performed in 18 affected males. The coding sequences of the XLRS1 gene were amplified by polymerase chain reaction and directly sequenced on an automated sequencer. Results: Six different XLRS1 mutations were identified; two of these mutations Ile81Asn and the Trp122Cys, have not been previously described. The affected males showed an electronegative response to the standard white scotopic stimulus and a prolonged implicit time of the 30 Hz flicker. In the families with Trp112Cys and Trp122Cys mutations we observed a more severe retinoschisis (RS) clinical picture compared with the other genotypes. Conclusion: The severe RS phenotypes associated with Trp112Cys and to Trp122Cys mutations suggest that these mutations determine a notable alteration in the function of the retinoschisin protein. PMID:12928282
iSyTE 2.0: a database for expression-based gene discovery in the eye
Kakrana, Atul; Yang, Andrian; Anand, Deepti; Djordjevic, Djordje; Ramachandruni, Deepti; Singh, Abhyudai; Huang, Hongzhan
2018-01-01
Abstract Although successful in identifying new cataract-linked genes, the previous version of the database iSyTE (integrated Systems Tool for Eye gene discovery) was based on expression information on just three mouse lens stages and was functionally limited to visualization by only UCSC-Genome Browser tracks. To increase its efficacy, here we provide an enhanced iSyTE version 2.0 (URL: http://research.bioinformatics.udel.edu/iSyTE) based on well-curated, comprehensive genome-level lens expression data as a one-stop portal for the effective visualization and analysis of candidate genes in lens development and disease. iSyTE 2.0 includes all publicly available lens Affymetrix and Illumina microarray datasets representing a broad range of embryonic and postnatal stages from wild-type and specific gene-perturbation mouse mutants with eye defects. Further, we developed a new user-friendly web interface for direct access and cogent visualization of the curated expression data, which supports convenient searches and a range of downstream analyses. The utility of these new iSyTE 2.0 features is illustrated through examples of established genes associated with lens development and pathobiology, which serve as tutorials for its application by the end-user. iSyTE 2.0 will facilitate the prioritization of eye development and disease-linked candidate genes in studies involving transcriptomics or next-generation sequencing data, linkage analysis and GWAS approaches. PMID:29036527
Zinzow-Kramer, Wendy M.; Horton, Brent M.; McKee, Clifton D.; Michaud, Justin M.; Tharp, Gregory K.; Thomas, James W.; Tuttle, Elaina M.; Yi, Soojin; Maney, Donna L.
2016-01-01
The genome of the white-throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression, and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2m), are therefore of potential interest toward understanding the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified both behavior and brain gene expression in a population of free-living white-throated sparrows. We quantified behavioral responses to simulated territorial intrusions (STIs) early during the breeding season. In the same birds, we then performed a transcriptome-wide analysis of gene expression in two regions, the medial amygdala and hypothalamus. Both regions are part of a ‘social behavior network’, which is rich in steroid hormone receptors and previously linked with territorial behavior. Using network analyses, we identified modules of genes that were correlated with both morph and STI-induced singing behavior. The majority of these genes were located within the inversion, demonstrating the profound effect the inversion has on the expression of genes captured by the rearrangement. Gene pathway analyses revealed that in the medial amygdala, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor alpha). Our results thus suggest that ESR1 and related genes are important for behavioral differences between the morphs. PMID:26463687
Yamada, Kazuo; Gerber, David J.; Iwayama, Yoshimi; Ohnishi, Tetsuo; Ohba, Hisako; Toyota, Tomoko; Aruga, Jun; Minabe, Yoshio; Tonegawa, Susumu; Yoshikawa, Takeo
2007-01-01
The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic γ-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A→G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene. PMID:17360599
Dominant hemimelia and En-1 on mouse chromosome 1 are not allelic.
Higgins, M; Hill, R E; West, J D
1992-08-01
Previous studies have shown that En-1, a homeobox-containing gene, maps close to or at the Dh locus in the mouse. Since homeobox-containing genes are key genes in the control of development the close proximity of En-1 to the developmentally significant gene Dh raised the possibility that the Dh mutation represented a mutant allele of En-1. A genetic analysis involving En-1, Dh, and other chromosome 1 markers (Emv-17, ln and Pep-3) shows that although Dh and En-1 are closely linked they are separable by recombination (4/563). The likely gene order and recombination frequencies of these loci are: ln (5.2 +/- 0.9) Emv-17 (1.1 +/- 0.4) Dh (0.7 +/- 0.4) En-1 (3.0 +/- 0.7) Pep-3. This shows that Dh is not a mutant allele of En-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.
2011-02-18
Transcriptional regulatory networks are being determined using “reverse engineering” methods that infer connections based on correlations in gene state. Corroboration of such networks through independent means such as evidence from the biomedical literature is desirable. Here, we explore a novel approach, a bootstrapping version of our previous Cross-Ontological Analytic method (XOA) that can be used for semi-automated annotation and verification of inferred regulatory connections, as well as for discovery of additional functional relationships between the genes. First, we use our annotation and network expansion method on a biological network learned entirely from the literature. We show how new relevant linksmore » between genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. Second, we apply our method to annotation, verification, and expansion of a set of regulatory connections found by the Context Likelihood of Relatedness algorithm.« less
Reduced fecundity in male ALS gene-carriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, W.G.; Lustenberger, A.; Lucek, P.R.
1995-11-06
In order to study genetic aspects in multicase families, 89 amyotrophic lateral sclerosis (ALS) and 214 Parkinson disease (PD) kindreds were analyzed in parallel studies. Obligate gene-carriers were identified as described previously. There were fewer children per gene-carrier male (2.42) than per gene-carrier female (3.25, Student`s t-test, P<.0003) for ALS but not for other diseases. The data taken together suggest that fecundity in ALS gene-carriers was reduced in males, possibly as a result of reduced fertility. Since childbearing is usually accomplished well before the onset of neurological symptoms in ALS, and since reduced fecundity was found in male ALS gene-carriers,more » these findings raise the possibility that an ALS gene might have a pleiotrophic effect on fertility in males occurring decades before the onset of neurological symptoms. Evidence is presented linking reactive oxygen species to reduced fertility in males. Alternatively, decreased or nonfunctional androgen receptors could play a role. 22 refs., 1 fig., 2 tabs.« less
Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo
2014-01-01
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas. PMID:25382412
Roche; Cong; Chen; Hanna; Gustine; Sherwood; Ozias-Akins
1999-07-01
Twelve molecular markers linked to pseudogamous apospory, a form of gametophytic apomixis, were previously isolated from Pennisetum squamulatum Fresen. No recombination between these markers was found in a segregating population of 397 individuals (Ozias-Akins et al. 1998, Proc. Natl Acad. Sci. USA, 95, 5127-5132). The objective of the present study was to test if these markers were also linked to the aposporous mode of reproduction in two small segregating populations of Cenchrus ciliaris (= Pennisetum ciliare (L.)Link), another apomictic grass species. Among 12 markers (sequence characterized amplified regions, SCARs), six were scored as dominant markers between aposporous and sexual C. ciliaris genotypes (presence/absence, respectively). Five were always linked to apospory and one showed a low level of recombination in 84 progenies. Restriction fragment length polymorphisms (RFLPs) were observed between sexual and apomictic phenotypes for three of the six remaining SCARs from P. squamulatum when used as probes. No recombination was observed in the F1 progenies. Preliminary data from megabase DNA analysis and sequencing in both species indicate that an apospory-specific genomic region (ASGR) is highly conserved between the two species. Although C. ciliaris has a smaller genome size to P. squamulatum, a higher copy number for markers linked to apospory found in the former may impair the progress of positional cloning of gene(s) for apomixis in this species.
Sprovieri, T; Conforti, F L; Fiumara, A; Mazzei, R; Ungaro, C; Citrigno, L; Muglia, M; Arena, A; Quattrone, A
2009-02-15
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have recently been reported in patients with severe neurodevelopmental disorder characterized by early-onset seizures, infantile spasms, severe psychomotor impairment and very recently, in patients with Rett syndrome (RTT)-like phenotype. Although the involvement of CDKL5 in specific biological pathways and its neurodevelopmental role have not been completely elucidated, the CDKL5 appears to be physiologically related to the MECP2 gene. Here we report on the clinical and CDKL5 molecular investigation in a very unusual RTT case, with severe, early-neurological involvement in which we have shown in a previous report, a novel P388S MECP2 mutation [Conforti et al. (2003); Am J Med Genet A 117A: 184-187]. The patient has had severe psychomotor delay since the first month of life and infantile spasms since age 5 months. Moreover, at age 5 years the patient suddenly presented with renal failure. The severe pattern of symptoms in our patient, similar to a CDKL5 phenotype, prompted us to perform an analysis of the CDKL5, which revealed a novel missense mutation never previously described. The X-inactivation assay was non-informative. In conclusion, this report reinforces the observation that the CDKL5 phenotype overlaps with RTT and that CDKL5 analysis is recommended in patients with a seizure disorder commencing during the first months of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Hietaniemi, M; Jokela, M; Rantala, M; Ukkola, O; Vuoristo, J T; Ilves, M; Rysä, J; Kesäniemi, Y
2009-03-01
Most gene expression studies examining the effect of obesity and weight loss have been performed using adipose tissue. However, the liver also plays a central role in maintaining energy balance. We wanted to study the effects of a hypocaloric diet on overall hepatic gene expression and metabolic risk factors. The study subjects were middle-aged, obese women. The diet intervention subjects (n=12) were on a hypocaloric, low-fat diet for 8 weeks with a daily energy intake of 5.0 MJ (1200 kcal), while the control subjects (n=19) maintained their weight. Liver biopsies were taken at the end of the diet period during a gallbladder operation. Hepatic gene expression was analyzed using microarrays by comparing the gene expression profiles from four subjects per group. A global decrease in gene expression was observed with 142 down-regulated genes and only one up-regulated gene in the diet intervention group. The diet resulted in a mean weight loss of 5% of body weight. Triglyceride and fasting insulin concentrations decreased significantly after the diet. The global decrease in hepatic gene expression was unexpected but the results are interesting, since they included several genes not previously linked to weight reduction. However, since the comparison was made only after the weight reduction, other factors in addition to weight loss may also have been involved in the differences in gene expression between the groups. The decrease in triglyceride and fasting plasma insulin concentrations is in accordance with results from previous weight-loss studies.
Eklöf, Jens M.; Shojania, Shaheen; Okon, Mark; McIntosh, Lawrence P.; Brumer, Harry
2013-01-01
The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins. PMID:23572521
Orosz, Orsolya; Rajta, István; Vajas, Attila; Takács, Lili; Csutak, Adrienne; Fodor, Mariann; Kolozsvári, Bence; Resch, Miklós; Sényi, Katalin; Lesch, Balázs; Szabó, Viktória; Berta, András; Balogh, István; Losonczy, Gergely
2017-03-01
Rare interchange haplotypes in exon 3 of the OPN1LW and OPN1MW opsin genes cause X-linked myopia, color vision defect, and cone dysfunction. The severity of the disease varies on a broad scale from nonsyndromic high myopia to blue cone monochromatism. Here, we describe a new genotype-phenotype correlation attributed to rare exon 3 interchange haplotypes simultaneously present in the long- and middle-wavelength sensitive opsin genes (L- and M-opsin genes). A multigenerational family with X-linked high myopia and cone dystrophy was investigated. Affected male patients had infantile onset myopia with normal visual acuity and color vision until their forties. Visual acuity decreased thereafter, along with the development of severe protan and deutan color vision defects. A mild decrease in electroretinography response of cone photoreceptors was detected in childhood, which further deteriorated in middle-aged patients. Rods were also affected, however, to a lesser extent than cones. Clinical exome sequencing identified the LVAVA and MVAVA toxic haplotypes in the OPN1LW and OPN1MW opsin genes, respectively. Here, we show that LVAVA haplotype of the OPN1LW gene and MVAVA haplotype of the OPN1MW gene cause apparently nonsyndromic high myopia in young patients but lead to progressive cone-rod dystrophy with deuteranopia and protanopia in middle-aged patients corresponding to a previously unknown disease course. To the best of our knowledge, this is the first report on the joint effect of these toxic haplotypes in the two opsin genes on chromosome X.
Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro
2017-10-01
This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al.Clin Infect Dis 2012;55:S232-S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes.
Time course of gene expression during mouse skeletal muscle hypertrophy
Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.
2013-01-01
The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy. PMID:23869057
Time course of gene expression during mouse skeletal muscle hypertrophy.
Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J
2013-10-01
The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.
Evidence for an ergot alkaloid gene cluster in Claviceps purpurea.
Tudzynski, P; Hölter, K; Correia, T; Arntz, C; Grammel, N; Keller, U
1999-02-01
A gene (cpd1) coding for the dimethylallyltryptophan synthase (DMATS) that catalyzes the first specific step in the biosynthesis of ergot alkaloids, was cloned from a strain of Claviceps purpurea that produces alkaloids in axenic culture. The derived gene product (CPD1) shows only 70% similarity to the corresponding gene previously isolated from Claviceps strain ATCC 26245, which is likely to be an isolate of C. fusiformis. Therefore, the related cpd1 most probably represents the first C. purpurea gene coding for an enzymatic step of the alkaloid biosynthetic pathway to be cloned. Analysis of the 3'-flanking region of cpd1 revealed a second, closely linked ergot alkaloid biosynthetic gene named cpps1, which codes for a 356-kDa polypeptide showing significant similarity to fungal modular peptide synthetases. The protein contains three amino acid-activating modules, and in the second module a sequence is found which matches that of an internal peptide (17 amino acids in length) obtained from a tryptic digest of lysergyl peptide synthetase 1 (LPS1) of C. purpurea, thus confirming that cpps1 encodes LPS1. LPS1 activates the three amino acids of the peptide portion of ergot peptide alkaloids during D-lysergyl peptide assembly. Chromosome walking revealed the presence of additional genes upstream of cpd1 which are probably also involved in ergot alkaloid biosynthesis: cpox1 probably codes for an FAD-dependent oxidoreductase (which could represent the chanoclavine cyclase), and a second putative oxidoreductase gene, cpox2, is closely linked to it in inverse orientation. RT-PCR experiments confirm that all four genes are expressed under conditions of peptide alkaloid biosynthesis. These results strongly suggest that at least some genes of ergot alkaloid biosynthesis in C. purpurea are clustered, opening the way for a detailed molecular genetic analysis of the pathway.
Ibrahim, El Chérif; Guillemot, Vincent; Comte, Magali; Tenenhaus, Arthur; Zendjidjian, Xavier Yves; Cancel, Aida; Belzeaux, Raoul; Sauvanaud, Florence; Blin, Olivier; Frouin, Vincent; Fakra, Eric
2017-09-07
Hundreds of genetic loci participate to schizophrenia liability. It is also known that impaired cerebral connectivity is directly related to the cognitive and affective disturbances in schizophrenia. How genetic susceptibility and brain neural networks interact to specify a pathological phenotype in schizophrenia remains elusive. Imaging genetics, highlighting brain variations, has proven effective to establish links between vulnerability loci and associated clinical traits. As previous imaging genetics works in schizophrenia have essentially focused on structural DNA variants, these findings could be blurred by epigenetic mechanisms taking place during gene expression. We explored the meaningful links between genetic data from peripheral blood tissues on one hand, and regional brain reactivity to emotion task assayed by blood oxygen level-dependent functional magnetic resonance imaging on the other hand, in schizophrenia patients and matched healthy volunteers. We applied Sparse Generalized Canonical Correlation Analysis to identify joint signals between two blocks of variables: (i) the transcriptional expression of 33 candidate genes, and (ii) the blood oxygen level-dependent activity in 16 region of interest. Results suggested that peripheral transcriptional expression is related to brain imaging variations through a sequential pathway, ending with the schizophrenia phenotype. Generalization of such an approach to larger data sets should thus help in outlining the pathways involved in psychiatric illnesses such as schizophrenia. SEARCHING FOR LINKS TO AID DIAGNOSIS: Researchers explore links between the expression of genes associated with schizophrenia in blood cells and variations in brain activity during emotion processing. El Chérif Ibrahim and Eric Fakra at Aix-Marseille Université, France, and colleagues have developed a method to relate the expression levels of 33 schizophrenia susceptibility genes in blood cells and functional magnetic resonance imaging (fMRI) data obtained as individuals carry out a task that triggers emotional responses. Although they found no significant differences in the expression of genes between the 26 patients with schizophrenia and 26 healthy controls they examined, variations in activity in the superior temporal gyrus were strongly linked to schizophrenia-associated gene expression and presence of disease. Similar analyses of larger data sets will shed further light on the relationship between peripheral molecular changes and disease-related behaviors and ultimately, aid the diagnosis of neuropsychiatric disease.
Global Analysis of Photosynthesis Transcriptional Regulatory Networks
Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.
2014-01-01
Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406
Global analysis of photosynthesis transcriptional regulatory networks.
Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J
2014-12-01
Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.
Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y
2016-01-01
Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles. © 2015 International Society of Blood Transfusion.
Riddell, Nina; Faou, Pierre; Murphy, Melanie; Giummarra, Loretta; Downs, Rachael A.; Rajapaksha, Harinda
2017-01-01
Purpose Microarray and RNA sequencing studies in the chick model of early optically induced refractive error have implicated thousands of genes, many of which have also been linked to ocular pathologies in humans, including age-related macular degeneration (AMD), choroidal neovascularization, glaucoma, and cataract. These findings highlight the potential relevance of the chick model to understanding both refractive error development and the progression to secondary pathological complications. The present study aimed to determine whether proteomic responses to early optical defocus in the chick share similarities with these transcriptome-level changes, particularly in terms of dysregulation of pathology-related molecular processes. Methods Chicks were assigned to a lens condition (monocular +10 D [diopters] to induce hyperopia, −10 D to induce myopia, or no lens) on post-hatch day 5. Biometric measures were collected following a further 6 h and 48 h of rearing. The retina/RPE was then removed and prepared for liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) on an LTQ-Orbitrap Elite. Raw data were processed using MaxQuant, and differentially abundant proteins were identified using moderated t tests (fold change ≥1.5, Benjamini-Hochberg adjusted p<0.05). These differentially abundant proteins were compared with the genes and proteins implicated in previous exploratory transcriptome and proteomic studies of refractive error, as well as the genes and proteins linked to the ocular pathologies listed above for which myopia or hyperopia are risk factors. Finally, gene set enrichment analysis (GSEA) was used to assess whether gene sets from the Human Phenotype Ontology database were enriched in the lens groups relative to the no lens groups, and at the top or bottom of the protein data ranked by Spearman’s correlation with refraction at 6 and 48 h. Results Refractive errors of −2.63 D ± 0.31 D (mean ± standard error, SE) and 3.90 D ± 0.37 D were evident in the negative and positive lens groups, respectively, at 6 h. By 48 h, refractive compensation to both lens types was almost complete (negative lens −9.70 D ± 0.41 D, positive lens 7.70 D ± 0.44 D). More than 140 differentially abundant proteins were identified in each lens group relative to the no lens controls at both time points. No proteins were differentially abundant between the negative and positive lens groups at 6 h, and 13 were differentially abundant at 48 h. As there was substantial overlap in the proteins implicated across the six comparisons, a total of 390 differentially abundant proteins were identified. Sixty-five of these 390 proteins had previously been implicated in transcriptome studies of refractive error animal models, and 42 had previously been associated with AMD, choroidal neovascularization, glaucoma, and/or cataract in humans. The overlap of differentially abundant proteins with AMD-associated genes and proteins was statistically significant for all conditions (Benjamini-Hochberg adjusted p<0.05), with over-representation analysis implicating ontologies related to oxidative stress, cholesterol homeostasis, and melanin biosynthesis. GSEA identified significant enrichment of genes associated with abnormal electroretinogram, photophobia, and nyctalopia phenotypes in the proteins negatively correlated with ocular refraction across the lens groups at 6 h. The implicated proteins were primarily linked to photoreceptor dystrophies and mitochondrial disorders in humans. Conclusions Optical defocus in the chicks induces rapid changes in the abundance of many proteins in the retina/RPE that have previously been linked to inherited and age-related ocular pathologies in humans. Similar changes have been identified in a meta-analysis of chick refractive error transcriptome studies, highlighting the chick as a model for the study of optically induced stress with possible relevance to understanding the development of a range of pathological states in humans. PMID:29259393
Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses
Schnable, James C.; Freeling, Michael; Lyons, Eric
2012-01-01
The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community. PMID:22275519
Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens
Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya
2014-01-01
Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. PMID:24870048
Moody, Michael L; Rieseberg, Loren H
2012-07-01
The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.
Escape of X-linked miRNA genes from meiotic sex chromosome inactivation
Sosa, Enrique; Flores, Luis; Yan, Wei; McCarrey, John R.
2015-01-01
Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. PMID:26395485
SPG3A-linked hereditary spastic paraplegia associated with cerebral glucose hypometabolism.
Terada, Tatsuhiro; Kono, Satoshi; Ouchi, Yasuomi; Yoshida, Kenichi; Hamaya, Yasushi; Kanaoka, Shigeru; Miyajima, Hiroaki
2013-04-01
SPG3A-linked hereditary spastic paraplegia (HSP) is a rare autosomal dominant motor disorder caused by a mutation in the SPG3A gene, and is characterized by progressive motor weakness and spasticity in the lower limbs, without any other neurological abnormalities. SPG3A-linked HSP caused by a R239C mutation has been reported to present a pure phenotype confined to impairment of the corticospinal tract. However, there is still a debate about the etiology of this motor deficit with regard to whether it is peripheral or central. We herein report two patients who were heterozygous for a R239C mutation in the SPG3A gene. Two middle-aged Japanese sisters had been suffering from a pure phenotype of HSP since their childhood. Both patients had a significant decrease in glucose metabolism in the frontal cortex medially and dorsolaterally in a [(18)F]-fluorodeoxyglucose (FDG) positron emission photography (PET) study and low scores on the Frontal Assessment Battery. A real-time PCR analysis in normal subjects showed the frontal cortex to be the major location where SPG3A mRNA is expressed. The present finding that the frontal glucose hypometabolism was associated with frontal cognitive impairment indicates that widespread neuropathology associated with mutations in the SPG3A gene may be present more centrally than previously assumed.
Fisher, S E; van Bakel, I; Lloyd, S E; Pearce, S H; Thakker, R V; Craig, I W
1995-10-10
Dent disease, an X-linked familial renal tubular disorder, is a form of Fanconi syndrome associated with proteinuria, hypercalciuria, nephrocalcinosis, kidney stones, and eventual renal failure. We have previously used positional cloning to identify the 3' part of a novel kidney-specific gene (initially termed hClC-K2, but now referred to as CLCN5), which is deleted in patients from one pedigree segregating Dent disease. Mutations that disrupt this gene have been identified in other patients with this disorder. Here we describe the isolation and characterization of the complete open reading frame of the human CLCN5 gene, which is predicted to encode a protein of 746 amino acids, with significant homology to all known members of the ClC family of voltage-gated chloride channels. CLCN5 belongs to a distinct branch of this family, which also includes the recently identified genes CLCN3 and CLCN4. We have shown that the coding region of CLCN5 is organized into 12 exons, spanning 25-30 kb of genomic DNA, and have determined the sequence of each exon-intron boundary. The elucidation of the coding sequence and exon-intron organization of CLCN5 will both expedite the evaluation of structure/function relationships of these ion channels and facilitate the screening of other patients with renal tubular dysfunction for mutations at this locus.
2011-01-01
Background Several computational candidate gene selection and prioritization methods have recently been developed. These in silico selection and prioritization techniques are usually based on two central approaches - the examination of similarities to known disease genes and/or the evaluation of functional annotation of genes. Each of these approaches has its own caveats. Here we employ a previously described method of candidate gene prioritization based mainly on gene annotation, in accompaniment with a technique based on the evaluation of pertinent sequence motifs or signatures, in an attempt to refine the gene prioritization approach. We apply this approach to X-linked mental retardation (XLMR), a group of heterogeneous disorders for which some of the underlying genetics is known. Results The gene annotation-based binary filtering method yielded a ranked list of putative XLMR candidate genes with good plausibility of being associated with the development of mental retardation. In parallel, a motif finding approach based on linear discriminatory analysis (LDA) was employed to identify short sequence patterns that may discriminate XLMR from non-XLMR genes. High rates (>80%) of correct classification was achieved, suggesting that the identification of these motifs effectively captures genomic signals associated with XLMR vs. non-XLMR genes. The computational tools developed for the motif-based LDA is integrated into the freely available genomic analysis portal Galaxy (http://main.g2.bx.psu.edu/). Nine genes (APLN, ZC4H2, MAGED4, MAGED4B, RAP2C, FAM156A, FAM156B, TBL1X, and UXT) were highlighted as highly-ranked XLMR methods. Conclusions The combination of gene annotation information and sequence motif-orientated computational candidate gene prediction methods highlight an added benefit in generating a list of plausible candidate genes, as has been demonstrated for XLMR. Reviewers: This article was reviewed by Dr Barbara Bardoni (nominated by Prof Juergen Brosius); Prof Neil Smalheiser and Dr Dustin Holloway (nominated by Prof Charles DeLisi). PMID:21668950
Nelson-Coffey, S Katherine; Fritz, Megan M; Lyubomirsky, Sonja; Cole, Steve W
2017-07-01
Prosocial behavior is linked to longevity, but few studies have experimentally manipulated prosocial behavior to identify the causal mechanisms underlying this association. One possible mediating pathway involves changes in gene expression that may subsequently influence disease development or resistance. In the current study, we examined changes in a leukocyte gene expression profile known as the Conserved Transcriptional Response to Adversity (CTRA) in 159 adults who were randomly assigned for 4 weeks to engage in prosocial behavior directed towards specific others, prosocial behavior directed towards the world in general, self-focused kindness, or a neutral control task. Those randomized to prosocial behavior towards specific others demonstrated improvements (i.e., reductions) in leukocyte expression of CTRA indicator genes. No significant changes in CTRA gene expression were observed in the other 3 conditions. These findings suggest that prosocial behavior can causally impact leukocyte gene expression profiles in ways that might potentially help explain the previously observed health advantages associated with social ties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iarossi, Giancarlo; Bertelli, Matteo; Maltese, Paolo Enrico; Gusson, Elena; Marchini, Giorgio; Bruson, Alice; Benedetti, Sabrina; Volpetti, Sabrina; Catena, Gino; Buzzonetti, Luca; Ziccardi, Lucia
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7-19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4 , LRP5 , TSPAN12 , and NDP . Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands ( NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family.
Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.
Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo
2016-12-01
Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.
Marchini, Giorgio; Volpetti, Sabrina; Catena, Gino
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7–19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4, LRP5, TSPAN12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family. PMID:28758032
Arashiro, Patricia; Eisenberg, Iris; Kho, Alvin T.; Cerqueira, Antonia M. P.; Canovas, Marta; Silva, Helga C. A.; Pavanello, Rita C. M.; Verjovski-Almeida, Sergio; Kunkel, Louis M.; Zatz, Mayana
2009-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder that has been associated with a contraction of 3.3-kb repeats on chromosome 4q35. FSHD is characterized by a wide clinical inter- and intrafamilial variability, ranging from wheelchair-bound patients to asymptomatic carriers. Our study is unique in comparing the gene expression profiles from related affected, asymptomatic carrier, and control individuals. Our results suggest that the expression of genes on chromosome 4q is altered in affected and asymptomatic individuals. Remarkably, the changes seen in asymptomatic samples are largely in products of genes encoding several chemokines, whereas the changes seen in affected samples are largely in genes governing the synthesis of GPI-linked proteins and histone acetylation. Besides this, the affected patient and related asymptomatic carrier share the 4qA161 haplotype. Thus, these polymorphisms by themselves do not explain the pathogenicity of the contracted allele. Interestingly, our results also suggest that the miRNAs might mediate the regulatory network in FSHD. Together, our results support the previous evidence that FSHD may be caused by transcriptional dysregulation of multiple genes, in cis and in trans, and suggest some factors potentially important for FSHD pathogenesis. The study of the gene expression profiles from asymptomatic carriers and related affected patients is a unique approach to try to enhance our understanding of the missing link between the contraction in D4Z4 repeats and muscle disease, while minimizing the effects of differences resulting from genetic background. PMID:19339494
Target gene analyses of 39 amelogenesis imperfecta kindreds
Chan, Hui-Chen; Estrella, Ninna M. R. P.; Milkovich, Rachel N.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C-C.
2012-01-01
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred. PMID:22243262
Zhang, Yuejin; Guo, Lijun; Shu, Zhiming; Sun, Yiyue; Chen, Yuanyuan; Liang, Zongsuo; Guo, Hongbo
2013-01-01
Consistent grain yield in drought environment has attracted wide attention due to global climate change. However, the important drought-related traits/genes in crops have been rarely reported. Many near-isogenic lines (NILs) of male sterile and fertile Salvia miltiorrhiza have been obtained in our previous work through testcross and backcross in continuous field experiments conducted in 2006–2009. Both segregating sterile and fertile populations were subjected to bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) with 384 and 170 primer combinations, respectively. One out of 14 AFLP markers (E9/M3246) was identified in treated fertile population as tightly linked to the drought stress gene with a recombination frequency of 6.98% and at a distance of 7.02 cM. One of 15 other markers (E2/M5357) was identified in a treated sterile population that is closely associated with the drought stress gene. It had a recombination frequency of 4.65% and at a distance of 4.66 cM. Interestingly, the E9/M3246 fragment was found to be identical to another AFLP fragment E11/M4208 that was tightly linked to the male sterile gene of S. miltiorrhiza with 95% identity and e-value 4 × 10−93. Blastn analysis suggested that the drought stress gene sequence showed higher identity with nucleotides in Arabidopsis chromosome 1–5. PMID:23525049
Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria
Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.
2009-01-01
Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814
Computational dissection of human episodic memory reveals mental process-specific genetic profiles
Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G.; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.
2015-01-01
Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317
Fine localization of the locus for autosomal dominant retinitis pigmentosa on chromosome 17p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goliath, R.; Janssens, P.; Beighton, P.
1995-10-01
The term {open_quotes}retintis pigmentosa{close_quotes} (RP) refers to a group of inherited retinal degenerative disorders. Clinical manifestations include night-blindness, with variable age of onset, followed by constriction of the visual field that may progress to total loss of sight in later life. Previous studies have shown that RP is caused by mutations within different genes and may be inherited as an X-linked recessive (XLRRP), autosomal recessive (ARRP), or autosomal dominant (ADRP) trait. The AD form of this group of conditions has been found to be caused by mutations within the rhodopsin gene in some families and the peripherin/RDS gene in others.more » In addition, some ADRP families have been found to be linked to anonymous markers on 8cen, 7p, 7q,19q, and, more recently, 17p. The ADRP gene locus on the short arm of chromosome 17 was identified in a large South African family (ADRP-SA) of British origin. The phenotypic expression of the disorder, which has been described elsewhere is consistent in the pedigree with an early onset of disease symptoms. In all affected subjects in the family, onset of symptoms commenced before the age of 10 years. 16 refs., 3 figs., 1 tab.« less
Computational dissection of human episodic memory reveals mental process-specific genetic profiles.
Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J-F
2015-09-01
Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory.
Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.
Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A S; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T; Oliveira, Bárbara; Marshall, Christian R; Magalhaes, Tiago R; Lowe, Jennifer K; Howe, Jennifer L; Griswold, Anthony J; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A; De Jonge, Maretha V; Cuccaro, Michael; Crawford, Emily L; Correia, Catarina T; Conroy, Judith; Conceição, Inês C; Chiocchetti, Andreas G; Casey, Jillian P; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L Alison; McGrew, Susan G; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M; Vieland, Veronica J; Vicente, Astrid M; Schellenberg, Gerard D; Pericak-Vance, Margaret; Paterson, Andrew D; Parr, Jeremy R; Oliveira, Guiomar; Nurnberger, John I; Monaco, Anthony P; Maestrini, Elena; Klauck, Sabine M; Hakonarson, Hakon; Haines, Jonathan L; Geschwind, Daniel H; Freitag, Christine M; Folstein, Susan E; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W
2014-05-01
Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E
2017-06-01
Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.
NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.
Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran
2017-09-01
To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.
van Haaften, Gijs; Romeijn, Ron; Pothof, Joris; Koole, Wouter; Mullenders, Leon H F; Pastink, Albert; Plasterk, Ronald H A; Tijsterman, Marcel
2006-07-11
Ionizing radiation is extremely harmful for human cells, and DNA double-strand breaks (DSBs) are considered to be the main cytotoxic lesions induced. Improper processing of DSBs contributes to tumorigenesis, and mutations in DSB response genes underlie several inherited disorders characterized by cancer predisposition. Here, we performed a comprehensive screen for genes that protect animal cells against ionizing radiation. A total of 45 C. elegans genes were identified in a genome-wide RNA interference screen for increased sensitivity to ionizing radiation in germ cells. These genes include orthologs of well-known human cancer predisposition genes as well as novel genes, including human disease genes not previously linked to defective DNA-damage responses. Knockdown of eleven genes also impaired radiation-induced cell-cycle arrest, and seven genes were essential for apoptosis upon exposure to irradiation. The gene set was further clustered on the basis of increased sensitivity to DNA-damaging cancer drugs cisplatin and camptothecin. Almost all genes are conserved across animal phylogeny, and their relevance for humans was directly demonstrated by showing that their knockdown in human cells results in radiation sensitivity, indicating that this set of genes is important for future cancer profiling and drug development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penn, Kevin; Jenkins, Caroline; Nett, Markus
Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we reportmore » the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification« less
Degenhardt, Frauke; Niklowitz, Petra; Szymczak, Silke; Jacobs, Gunnar; Lieb, Wolfgang; Menke, Thomas; Laudes, Matthias; Esko, Tõnu; Weidinger, Stephan; Franke, Andre; Döring, Frank; Onur, Simone
2016-07-01
Coenzyme Q 10 (CoQ 10 ) is a lipophilic redox molecule that is present in membranes of almost all cells in human tissues. CoQ 10 is, amongst other functions, essential for the respiratory transport chain and is a modulator of inflammatory processes and gene expression. Rare monogenetic CoQ 10 deficiencies show noticeable symptoms in tissues (e.g. kidney) and cell types (e.g. neurons) with a high energy demand. To identify common genetic variants influencing serum CoQ 10 levels, we performed a fixed effects meta-analysis in two independent cross-sectional Northern German cohorts comprising 1300 individuals in total. We identified two genome-wide significant susceptibility loci. The best associated single nucleotide polymorphism (SNP) was rs9952641 (P value = 1.31 × 10 - 8 , β = 0.063, CI 0.95 [0.041, 0.085]) within the COLEC12 gene on chromosome 18. The SNP rs933585 within the NRXN-1 gene on chromosome 2 also showed genome wide significance (P value = 3.64 × 10 - 8 , β = -0.034, CI 0.95 [-0.046, -0.022]). Both genes have been previously linked to neuronal diseases like Alzheimer's disease, autism and schizophrenia. Among our 'top-10' associated variants, four additional loci with known neuronal connections showed suggestive associations with CoQ 10 levels. In summary, this study demonstrates that serum CoQ 10 levels are associated with common genetic loci that are linked to neuronal diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster.
Griffin, R M; Le Gall, D; Schielzeth, H; Friberg, U
2015-11-01
The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species' Y chromosome contains only 13 protein-coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility
Lu, Xuemei; Shapiro, Joshua A.; Ting, Chau-Ti; Li, Yan; Li, Chunyan; Xu, Jin; Huang, Huanwei; Cheng, Ya-Jen; Greenberg, Anthony J.; Li, Shou-Hsien; Wu, Mao-Lien; Shen, Yang; Wu, Chung-I
2010-01-01
Postmating reproductive isolation is often manifested as hybrid male sterility, for which X-linked genes are overrepresented (the so-called large X effect). In contrast, X-linked genes are significantly under-represented among testis-expressing genes. This seeming contradiction may be germane to the X:autosome imbalance hypothesis on hybrid sterility, in which the X-linked effect is mediated mainly through the misexpression of autosomal genes. In this study, we compared gene expression in fertile and sterile males in the hybrids between two Drosophila species. These hybrid males differ only in a small region of the X chromosome containing the Ods-site homeobox (OdsH) (also known as Odysseus) locus of hybrid sterility. Of genes expressed in the testis, autosomal genes were, indeed, more likely to be misexpressed than X-linked genes under the sterilizing action of OdsH. Since this mechanism of X:autosome interaction is only associated with spermatogenesis, a connection between X:autosome imbalance and the high rate of hybrid male sterility seems plausible. PMID:20511493
Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility.
Lu, Xuemei; Shapiro, Joshua A; Ting, Chau-Ti; Li, Yan; Li, Chunyan; Xu, Jin; Huang, Huanwei; Cheng, Ya-Jen; Greenberg, Anthony J; Li, Shou-Hsien; Wu, Mao-Lien; Shen, Yang; Wu, Chung-I
2010-08-01
Postmating reproductive isolation is often manifested as hybrid male sterility, for which X-linked genes are overrepresented (the so-called large X effect). In contrast, X-linked genes are significantly under-represented among testis-expressing genes. This seeming contradiction may be germane to the X:autosome imbalance hypothesis on hybrid sterility, in which the X-linked effect is mediated mainly through the misexpression of autosomal genes. In this study, we compared gene expression in fertile and sterile males in the hybrids between two Drosophila species. These hybrid males differ only in a small region of the X chromosome containing the Ods-site homeobox (OdsH) (also known as Odysseus) locus of hybrid sterility. Of genes expressed in the testis, autosomal genes were, indeed, more likely to be misexpressed than X-linked genes under the sterilizing action of OdsH. Since this mechanism of X:autosome interaction is only associated with spermatogenesis, a connection between X:autosome imbalance and the high rate of hybrid male sterility seems plausible.
Gabory, Anne; Ferry, Laure; Fajardy, Isabelle; Jouneau, Luc; Gothié, Jean-David; Vigé, Alexandre; Fleur, Cécile; Mayeur, Sylvain; Gallou-Kabani, Catherine; Gross, Marie-Sylvie; Attig, Linda; Vambergue, Anne; Lesage, Jean; Reusens, Brigitte; Vieau, Didier; Remacle, Claude; Jais, Jean-Philippe; Junien, Claudine
2012-01-01
Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols. PMID:23144842
2014-01-01
Background Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Results Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Conclusions Gene expression profiling and trait-associated transcript analysis using an apple F1 population readily identified genes physically linked to powdery mildew disease resistance and woolly apple aphid resistance loci. This result was especially useful in apple, where extreme levels of heterozygosity make the development of reliable DNA markers quite difficult. The results suggest that this approach could prove effective in crops with complicated genetics, or for which few genomic information resources are available. PMID:24708064
Genetic determinants of financial risk taking.
Kuhnen, Camelia M; Chiao, Joan Y
2009-01-01
Individuals vary in their willingness to take financial risks. Here we show that variants of two genes that regulate dopamine and serotonin neurotransmission and have been previously linked to emotional behavior, anxiety and addiction (5-HTTLPR and DRD4) are significant determinants of risk taking in investment decisions. We find that the 5-HTTLPR s/s allele carriers take 28% less risk than those carrying the s/l or l/l alleles of the gene. DRD4 7-repeat allele carriers take 25% more risk than individuals without the 7-repeat allele. These findings contribute to the emerging literature on the genetic determinants of economic behavior.
Hiebert, Colin W; Thomas, Julian B; McCallum, Brent D; Humphreys, D Gavin; DePauw, Ronald M; Hayden, Matthew J; Mago, Rohit; Schnippenkoetter, Wendelin; Spielmeyer, Wolfgang
2010-10-01
Adult plant resistance (APR) to leaf rust and stripe rust derived from the wheat (Triticum aestivum L.) line PI250413 was previously identified in RL6077 (=Thatcher*6/PI250413). The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D. It was previously hypothesized that the gene in RL6077 could be Lr34 translocated to another chromosome. Hybrids between RL6077 and Thatcher and between RL6077 and 7DS and 7DL ditelocentric stocks were examined for first meiotic metaphase pairing. RL6077 formed chain quadrivalents and trivalents relative to Thatcher and Chinese Spring; however both 7D telocentrics paired only as heteromorphic bivalents and never with the multivalents. Thus, chromosome 7D is not involved in any translocation carried by RL6077. A genome-wide scan of SSR markers detected an introgression from chromosome 4D of PI250413 transferred to RL6077 through five cycles of backcrossing to Thatcher. Haplotype analysis of lines from crosses of Thatcher × RL6077 and RL6058 (Thatcher*6/PI58548) × RL6077 showed highly significant associations between introgressed markers (including SSR marker cfd71) and leaf rust resistance. In a separate RL6077-derived population, APR to stripe rust was also tightly linked with cfd71 on chromosome 4DL. An allele survey of linked SSR markers cfd71 and cfd23 on a set of 247 wheat lines from diverse origins indicated that these markers can be used to select for the donor segment in most wheat backgrounds. Comparison of RL6077 with Thatcher in field trials showed no effect of the APR gene on important agronomic or quality traits. Since no other known Lr genes exist on chromosome 4DL, the APR gene in RL6077 has been assigned the name Lr67.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, H.B.
1962-02-01
Studies of the comparative mutagenic effects of ionizing radiations on males and females of Drosophila melanogaster are described. Sex-linked recessive lethal mutations were induced in nitrogen, air, and oxygen at doses of obtained in spermatozoa were uniformly about one-third higher than the frequencies obtained for the same dose and condition of atmosphere in mature oocytes. The relative frequencies of recessive autosomal lethals in mature male and female germ cells were identical with the relative fre quencies of sex-linked recessive lethals. In studies of point mutations and deficiencies involving specific loci, the rates in the male germ cells exceeded those inmore » the female germ cells by a proportion equal to that found to apply to autosomal and sex-linked recessive lethals. Spontaneous mutation rates were determined for a number of specific loci marked by recessive genes used in the tested stocks. Fertility was lost in both males and females when they were x-rayed as 80-hr-old larvae and bred upon emerging as adults. Females recovered their fertility rapidly but the males did so at a much slower rate. The brown; scarlet'' stock was found to carry two mutants each suppressed by a particular suppressor gene. It was concluded that the two suppressors act along different metabolic pathways departing from tryplophan, but both involving an x-ray-sensitive step. A study was made of the effects on the life span of two different mating regimens: immediate and deferred. It was found that the lines previously subjected to immediate mating significantly outlived the lines previously subjected to deferred mating when the mating regimen in the test was immediate mating. Exactly the opposite happened when the mating regimen in the test was deferred mating. (M.C.G.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vries, D.D.; Oost, B.A. van; Went, L.N.
1996-04-01
A rare form of Leber hereditary optic neuropathy (LHON) that is associated with hereditary spastic dystonia has been studied in a large Dutch family. Neuropathy and ophthalmological lesions were present together in some family members, whereas only one type of abnormality was found in others. mtDNA mutations previously reported in LHON were not present. Sequence analysis of the protein-coding mitochondrial genes revealed two previously unreported mtDNA mutations. A heteroplasmic A{yields}G transition at nucleotide position 11696 in the ND4 gene resulted in the substitution of an isoleucine for valine at amino acid position 312. A second mutation, a homoplasmic T{yields}A transitionmore » at nucleotide position 14596 in the ND6 gene, resulted in the substitution of a methionine for the isoleucine at amino acid residue 26. Biochemical analysis of a muscle biopsy revealed a severe complex I deficiency, providing a link between these unique mtDNA mutations and this rare, complex phenotype including Leber optic neuropathy. 80 refs., 2 figs., 3 tabs.« less
A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements
Elisaphenko, Eugeny A.; Kolesnikov, Nikolay N.; Shevchenko, Alexander I.; Rogozin, Igor B.; Nesterova, Tatyana B.; Brockdorff, Neil; Zakian, Suren M.
2008-01-01
X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA. PMID:18575625
Radhakrishnan, Srihari; Valenzuela, Nicole
2017-10-30
Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Shih, Wen-Ling; Liao, Ming-Huei; Yu, Feng-Ling; Lin, Ping-Yuan; Hsu, Hsue-Yin; Chiu, Shu-Jun
2008-11-08
We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.
Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti
2010-01-01
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. PMID:20137772
Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon
2013-01-01
This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine to be in short supply for yeast growth in some natural grape musts.
Matowo, Johnson; Jones, Christopher M; Kabula, Bilali; Ranson, Hilary; Steen, Keith; Mosha, Franklin; Rowland, Mark; Weetman, David
2014-06-19
Pyrethroid resistance has been slower to emerge in Anopheles arabiensis than in An. gambiae s.s and An. funestus and, consequently, studies are only just beginning to unravel the genes involved. Permethrin resistance in An. arabiensis in Lower Moshi, Tanzania has been linked to elevated levels of both P450 monooxygenases and β-esterases. We have conducted a gene expression study to identify specific genes linked with metabolic resistance in the Lower Moshi An. arabiensis population. Microarray experiments employing an An. gambiae whole genome expression chip were performed on An. arabiensis, using interwoven loop designs. Permethrin-exposed survivors were compared to three separate unexposed mosquitoes from the same or a nearby population. A subsection of detoxification genes were chosen for subsequent quantitative real-time PCR (qRT-PCR). Microarray analysis revealed significant over expression of 87 probes and under expression of 85 probes (in pairwise comparisons between permethrin survivors and unexposed sympatric and allopatric samples from Dar es Salaam (controls). For qRT-PCR we targeted over expressed ABC transporter genes (ABC '2060'), a glutathione-S-transferase, P450s and esterases. Design of efficient, specific primers was successful for ABC '2060'and two P450s (CYP6P3, CYP6M2). For the CYP4G16 gene, we used the primers that were previously used in a microarray study of An. arabiensis from Zanzibar islands. Over expression of CYP4G16 and ABC '2060' was detected though with contrasting patterns in pairwise comparisons between survivors and controls. CYP4G16 was only up regulated in survivors, whereas ABC '2060' was similar in survivors and controls but over expressed in Lower Moshi samples compared to the Dar es Salaam samples. Increased transcription of CYP4G16 and ABC '2060' are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Increased transcription of a P450 (CYP4G16) and an ABC transporter (ABC 2060) are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Our study provides replication of CYP4G16 as a candidate gene for pyrethroid resistance in An. arabiensis, although its role may not be in detoxification, and requires further investigation.
Naghibalhossaini, Fakhraddin; Hosseini, Hamideh Mahmoodzadeh; Mokarram, Pooneh; Zamani, Mozhdeh
2011-12-01
Gene silencing due to DNA hypermethylation is a major mechanism for loss of tumor suppressor genes function in colorectal cancer. Activating V600E mutation in BRAF gene has been linked with widespread methylation of CpG islands in sporadic colorectal cancers. The aim of the present study was to evaluate the methylation status of three cancer-related genes, APC2, p14ARF, and ECAD in colorectal carcinogenesis and their association with the mutational status of BRAF and KRAS among Iranian colorectal cancer patients. DNA from 110 unselected series of sporadic colorectal cancer patients was examined for BRAF V600E mutation by PCR-RFLP. Promoter methylation of genes in tumors was determined by methylation specific PCR. The frequency of APC2, E-CAD, and p14 methylation was 92.6%, 40.4% and 16.7%, respectively. But, no V600E mutation was identified in the BRAF gene in any sample. No association was found in cases showing epigenetic APC, ECAD, and p14 abnormality with the clinicopathological parameters under study. The association between KRAS mutations and the so called methylator phenotype was previously reported. Therefore, we also analyzed the association between the hot spot KRAS gene mutations in codons of 12 and 13 with genes' promoter hypermethylation in a subset of this group of patients. Out of 86 tumors, KRAS was mutated in 24 (28%) of tumors, the majority occurring in codon 12. KRAS mutations were not associated with genes' methylation in this tumor series. These findings suggest a distinct molecular pathway for methylation of APC2, p14, and ECAD genes from those previously described for colorectal cancers with BRAF or KRAS mutations.
Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...
2014-09-01
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Eight previously unidentified mutations found in the OA1 ocular albinism gene
Mayeur, Hélène; Roche, Olivier; Vêtu, Christelle; Jaliffa, Carolina; Marchant, Dominique; Dollfus, Hélène; Bonneau, Dominique; Munier, Francis L; Schorderet, Daniel F; Levin, Alex V; Héon, Elise; Sutherland, Joanne; Lacombe, Didier; Said, Edith; Mezer, Eedy; Kaplan, Josseline; Dufier, Jean-Louis; Marsac, Cécile; Menasche, Maurice; Abitbol, Marc
2006-01-01
Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand. PMID:16646960
Moradigaravand, Danesh; Jamrozy, Dorota; Mostowy, Rafal; Anderson, Annaliesa; Nickerson, Emma K; Thaipadungpanit, Janjira; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Tandhavanant, Sarunporn; Wikraiphat, Chanthiwa; Wongsuvan, Gumphol; Teerawattanasook, Nittaya; Jutrakul, Yaowaruk; Srisurat, Nuttiya; Chaimanee, Prajuab; Eoin West, T; Blane, Beth; Parkhill, Julian; Chantratita, Narisara; Peacock, Sharon J
2017-07-05
Staphylococcus argenteus is a newly named species previously described as a divergent lineage of Staphylococcus aureus that has recently been shown to have a global distribution. Despite growing evidence of the clinical importance of this species, knowledge about its population epidemiology and genomic architecture is limited. We used whole-genome sequencing to evaluate and compare S. aureus ( n = 251) and S. argenteus ( n = 68) isolates from adults with staphylococcal sepsis at several hospitals in northeastern Thailand between 2006 and 2013. The majority (82%) of the S. argenteus isolates were of multilocus sequence type 2250 (ST2250). S. aureus was more diverse, although 43% of the isolates belonged to ST121. Bayesian analysis suggested an S. argenteus ST2250 substitution rate of 4.66 (95% confidence interval [CI], 3.12 to 6.38) mutations per genome per year, which was comparable to the S. aureus ST121 substitution rate of 4.07 (95% CI, 2.61 to 5.55). S. argenteus ST2250 emerged in Thailand an estimated 15 years ago, which contrasts with the S. aureus ST1, ST88, and ST121 clades that emerged around 100 to 150 years ago. Comparison of S. argenteus ST2250 genomes from Thailand and a global collection indicated a single introduction into Thailand, followed by transmission to local and more distant countries in Southeast Asia and further afield. S. argenteus and S. aureus shared around half of their core gene repertoire, indicating a high level of divergence and providing strong support for their classification as separate species. Several gene clusters were present in ST2250 isolates but absent from the other S. argenteus and S. aureus study isolates. These included multiple exotoxins and antibiotic resistance genes that have been linked previously with livestock-associated S. aureus , consistent with a livestock reservoir for S. argenteus These genes appeared to be associated with plasmids and mobile genetic elements and may have contributed to the biological success of ST2250. IMPORTANCE In this study, we used whole-genome sequencing to understand the genome evolution and population structure of a systematic collection of ST2250 S. argenteus isolates. A newly identified ancestral species of S. aureus , S. argenteus has become increasingly known as a clinically important species that has been reported recently across various countries. Our results indicate that S. argenteus has spread at a relatively rapid pace over the past 2 decades across northeastern Thailand and acquired multiple exotoxin and antibiotic resistance genes that have been linked previously with livestock-associated S. aureus Our findings highlight the clinical importance and potential pathogenicity of S. argenteus as a recently emerging pathogen. Copyright © 2017 Moradigaravand et al.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
NASA Astrophysics Data System (ADS)
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M.; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.
2016-08-01
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.
SAR11 bacteria linked to ocean anoxia and nitrogen loss.
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R; Padilla, Cory C; Stone, Benjamin K; Bristow, Laura A; Larsen, Morten; Glass, Jennifer B; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T; Stewart, Frank J
2016-08-11
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less
SAR11 bacteria linked to ocean anoxia and nitrogen loss
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; ...
2016-08-03
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less
Stuart, Bridget D; Choi, Jungmin; Zaidi, Samir; Xing, Chao; Holohan, Brody; Chen, Rui; Choi, Mihwa; Dharwadkar, Pooja; Torres, Fernando; Girod, Carlos E; Weissler, Jonathan; Fitzgerald, John; Kershaw, Corey; Klesney-Tait, Julia; Mageto, Yolanda; Shay, Jerry W; Ji, Weizhen; Bilguvar, Kaya; Mane, Shrikant; Lifton, Richard P; Garcia, Christine Kim
2015-05-01
Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial kindreds with pulmonary fibrosis. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no previous connection to telomere biology or disease, with five new heterozygous damaging mutations in unrelated cases and none in controls (P = 1.3 × 10(-8)); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more new damaging and missense variants at conserved residues in cases than in controls (P = 1.6 × 10(-6)). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths, and we observed epigenetic inheritance of short telomeres in family members. Together, these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction.
Random X inactivation in the mule and horse placenta.
Wang, Xu; Miller, Donald C; Clark, Andrew G; Antczak, Douglas F
2012-10-01
In eutherian mammals, dosage compensation of X-linked genes is achieved by X chromosome inactivation. X inactivation is random in embryonic and adult tissues, but imprinted X inactivation (paternal X silencing) has been identified in the extra-embryonic membranes of the mouse, rat, and cow. Few other species have been studied for this trait, and the data from studies of the human placenta have been discordant or inconclusive. Here, we quantify X inactivation using RNA sequencing of placental tissue from reciprocal hybrids of horse and donkey (mule and hinny). In placental tissue from the equid hybrids and the horse parent, the allelic expression pattern was consistent with random X inactivation, and imprinted X inactivation can clearly be excluded. We characterized horse and donkey XIST gene and demonstrated that XIST allelic expression in female hybrid placental and fetal tissues is negatively correlated with the other X-linked genes chromosome-wide, which is consistent with the XIST-mediated mechanism of X inactivation discovered previously in mice. As the most structurally and morphologically diverse organ in mammals, the placenta also appears to show diverse mechanisms for dosage compensation that may result in differences in conceptus development across species.
X-linked infantile spinal muscular atrophy: clinical definition and molecular mapping.
Dressman, Devin; Ahearn, Mary Ellen; Yariz, Kemal O; Basterrecha, Hugo; Martínez, Francisco; Palau, Francesc; Barmada, M Michael; Clark, Robin Dawn; Meindl, Alfons; Wirth, Brunhilde; Hoffman, Eric P; Baumbach-Reardon, Lisa
2007-01-01
X-linked infantile spinal-muscular atrophy (XL-SMA) is a rare disorder, which presents with the clinical characteristics of hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and death in infancy. We have previously reported a single family with XL-SMA that mapped to Xp11.3-q11.2. Here we report further clinical description of XL-SMA plus an additional seven unrelated (XL-SMA) families from North America and Europe that show linkage data consistent with the same region. We first investigated linkage to the candidate disease gene region using microsatellite repeat markers. We further saturated the candidate disease gene region using polymorphic microsatellite repeat markers and single nucleotide polymorphisms in an effort to narrow the critical region. Two-point and multipoint linkage analysis was performed using the Allegro software package. Linkage analysis of all XL-SMA families displayed linkage consistent with the original XL-SMA region. The addition of new families and new markers has narrowed the disease gene interval for a XL-SMA locus between SNP FLJ22843 near marker DXS 8080 and SNP ARHGEF9 which is near DXS7132 (Xp11.3-Xq11.1).
Recurrent selection on the Winters sex-ratio genes in Drosophila simulans.
Kingan, Sarah B; Garrigan, Daniel; Hartl, Daniel L
2010-01-01
Selfish genes, such as meiotic drive elements, propagate themselves through a population without increasing the fitness of host organisms. X-linked (or Y-linked) meiotic drive elements reduce the transmission of the Y (X) chromosome and skew progeny and population sex ratios, leading to intense conflict among genomic compartments. Drosophila simulans is unusual in having a least three distinct systems of X chromosome meiotic drive. Here, we characterize naturally occurring genetic variation at the Winters sex-ratio driver (Distorter on the X or Dox), its progenitor gene (Mother of Dox or MDox), and its suppressor gene (Not Much Yang or Nmy), which have been previously mapped and characterized. We survey three North American populations as well as 13 globally distributed strains and present molecular polymorphism data at the three loci. We find that all three genes show signatures of selection in North America, judging from levels of polymorphism and skews in the site-frequency spectrum. These signatures likely result from the biased transmission of the driver and selection on the suppressor for the maintenance of equal sex ratios. Coalescent modeling indicates that the timing of selection is more recent than the age of the alleles, suggesting that the driver and suppressor are coevolving under an evolutionary "arms race." None of the Winters sex-ratio genes are fixed in D. simulans, and at all loci we find ancestral alleles, which lack the gene insertions and exhibit high levels of nucleotide polymorphism compared to the derived alleles. In addition, we find several "null" alleles that have mutations on the derived Dox background, which result in loss of drive function. We discuss the possible causes of the maintenance of presence-absence polymorphism in the Winters sex-ratio genes.
Armoskus, Chris; Mota, Thomas; Moreira, Debbie; Tsai, Houng-Wei
2014-01-01
Objective Using gene expression microarrays and reverse transcription with quantitative polymerase chain reaction (RT-qPCR), we have recently identified several novel genes that are differentially expressed in the neonatal male versus female mouse cortex/hippocampus (Armoskus et al.). Since perinatal testosterone (T) secreted by the developing testes masculinizes cortical and hippocampal structures and the behaviors regulated by these brain regions, we hypothesized that sexually dimorphic expression of specific selected genes in these areas might be regulated by T during early development. Methods To test our hypothesis, we treated timed pregnant female mice daily with vehicle or testosterone propionate (TP) starting on embryonic day 16 until the day of birth. The cortex/hippocampus was collected from vehicle- and TP-treated, male and female neonatal pups. Total RNA was extracted from these brain tissues, followed by RT-qPCR to measure relative mRNA levels of seven sex chromosome genes and three autosomal genes that have previously showed sex differences. Results The effect of prenatal TP was confirmed as it stimulated Dhcr24 expression in the neonatal mouse cortex/hippocampus and increased the anogenital distance in females. We found a significant effect of sex, but not TP, on expression of three Y-linked (Ddx3y, Eif2s3y, and Kdm5d), four X-linked (Eif2s3x, Kdm6a, Mid1, and Xist), and one autosomal (Klk8) genes in the neonatal mouse cortex/hippocampus. Conclusion Although most of the selected genes are not directly regulated by prenatal T, their sexually dimorphic expression might play an important role in the control of sexually differentiated cognitive and social behaviors as well as in the etiology of sex-biased neurological disorders and mental illnesses. PMID:25411648
Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro
2017-01-01
Purpose This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. Methodology The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007–2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al. Clin Infect Dis 2012;55:S232–S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Results Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. Conclusion In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes. PMID:28945190
Massart, R; Freyburger, M; Suderman, M; Paquet, J; El Helou, J; Belanger-Nelson, E; Rachalski, A; Koumar, O C; Carrier, J; Szyf, M; Mongrain, V
2014-01-21
Sleep is critical for normal brain function and mental health. However, the molecular mechanisms mediating the impact of sleep loss on both cognition and the sleep electroencephalogram remain mostly unknown. Acute sleep loss impacts brain gene expression broadly. These data contributed to current hypotheses regarding the role for sleep in metabolism, synaptic plasticity and neuroprotection. These changes in gene expression likely underlie increased sleep intensity following sleep deprivation (SD). Here we tested the hypothesis that epigenetic mechanisms coordinate the gene expression response driven by SD. We found that SD altered the cortical genome-wide distribution of two major epigenetic marks: DNA methylation and hydroxymethylation. DNA methylation differences were enriched in gene pathways involved in neuritogenesis and synaptic plasticity, whereas large changes (>4000 sites) in hydroxymethylation where observed in genes linked to cytoskeleton, signaling and neurotransmission, which closely matches SD-dependent changes in the transcriptome. Moreover, this epigenetic remodeling applied to elements previously linked to sleep need (for example, Arc and Egr1) and synaptic partners of Neuroligin-1 (Nlgn1; for example, Dlg4, Nrxn1 and Nlgn3), which we recently identified as a regulator of sleep intensity following SD. We show here that Nlgn1 mutant mice display an enhanced slow-wave slope during non-rapid eye movement sleep following SD but this mutation does not affect SD-dependent changes in gene expression, suggesting that the Nlgn pathway acts downstream to mechanisms triggering gene expression changes in SD. These data reveal that acute SD reprograms the epigenetic landscape, providing a unique molecular route by which sleep can impact brain function and health.
Huylmans, Ann Kathrin; Macon, Ariana; Vicoso, Beatriz
2017-01-01
Abstract While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera. PMID:28957502
Ma, G J; Song, Q J; Markell, S G; Qi, L L
2018-07-01
A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes. The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F 2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.
Genotypic analysis of X-linked retinoschisis in Western Australia.
Lamey, Tina; Laurin, Sarina; Chelva, Enid; De Roach, John
2010-01-01
X-linked Retinoschisis is a leading cause of juvenile macular degeneration. Four Western Australian families affected by X-Linked Retinoschisis were analysed using DNA and clinical information from the Australian Inherited Retinal Disease (IRD) Register and DNA Bank. By direct sequencing of the RS1 gene, three genetic variants were identified; 52+1G > T, 289T > G and 416delA. 289T > G has not been previously reported and is likely to cause a substitution of a membrane binding residue (W92G) in the functional discoidin domain. All clinically diagnosed individuals showed typical electronegative ERGs. The 52+1G > T obligate carrier also recorded a bilaterally abnormal rod ERG and mildly abnormal photopic responses. mfERG trace arrays showed reduced response densities in the paramacular region extending futher temporally for each eye.
Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis
Skorczyk, Anna
2012-01-01
Purpose To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Methods Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. Results All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). Conclusions This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data. PMID:23288992
A quantitative study of the benefits of co-regulation using the spoIIA operon as an example
Iber, Dagmar
2006-01-01
The distribution of most genes is not random, and functionally linked genes are often found in clusters. Several theories have been put forward to explain the emergence and persistence of operons in bacteria. Careful analysis of genomic data favours the co-regulation model, where gene organization into operons is driven by the benefits of coordinated gene expression and regulation. Direct evidence that coexpression increases the individual's fitness enough to ensure operon formation and maintenance is, however, still lacking. Here, a previously described quantitative model of the network that controls the transcription factor σF during sporulation in Bacillus subtilis is employed to quantify the benefits arising from both organization of the sporulation genes into the spoIIA operon and from translational coupling. The analysis shows that operon organization, together with translational coupling, is important because of the inherent stochastic nature of gene expression, which skews the ratios between protein concentrations in the absence of co-regulation. The predicted impact of different forms of gene regulation on fitness and survival agrees quantitatively with published sporulation efficiencies. PMID:16924264
A quantitative study of the benefits of co-regulation using the spoIIA operon as an example.
Iber, Dagmar
2006-01-01
The distribution of most genes is not random, and functionally linked genes are often found in clusters. Several theories have been put forward to explain the emergence and persistence of operons in bacteria. Careful analysis of genomic data favours the co-regulation model, where gene organization into operons is driven by the benefits of coordinated gene expression and regulation. Direct evidence that coexpression increases the individual's fitness enough to ensure operon formation and maintenance is, however, still lacking. Here, a previously described quantitative model of the network that controls the transcription factor sigma(F) during sporulation in Bacillus subtilis is employed to quantify the benefits arising from both organization of the sporulation genes into the spoIIA operon and from translational coupling. The analysis shows that operon organization, together with translational coupling, is important because of the inherent stochastic nature of gene expression, which skews the ratios between protein concentrations in the absence of co-regulation. The predicted impact of different forms of gene regulation on fitness and survival agrees quantitatively with published sporulation efficiencies.
Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review
Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos
2017-01-01
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165
Antonescu, Cristina R; Viale, Agnes; Sarran, Lisa; Tschernyavsky, Sylvia J; Gonen, Mithat; Segal, Neil H; Maki, Robert G; Socci, Nicholas D; DeMatteo, Ronald P; Besmer, Peter
2004-05-15
Gastrointestinal stromal tumors (GISTs) are specific KIT expressing and KIT-signaling driven mesenchymal tumors of the human digestive tract, many of which have KIT-activating mutations. Previous studies have found a relatively homogeneous gene expression profile in GIST, as compared with other histological types of sarcomas. Transcriptional heterogeneity within clinically or molecularly defined subsets of GISTs has not been previously reported. We tested the hypothesis that the gene expression profile in GISTs might be related to KIT genotype and possibly to other clinicopathological factors. An HG-U133A Affymetrix chip (22,000 genes) platform was used to determine the variability of gene expression in 28 KIT-expressing GIST samples from 24 patients. A control group of six intra-abdominal leiomyosarcomas was also included for comparison. Statistical analyses (t tests) were performed to identify discriminatory gene lists among various GIST subgroups. The levels of expression of various GIST subsets were also linked to a modified version of the growth factor/KIT signaling pathway to analyze differences at various steps in signal transduction. Genes involved in KIT signaling were differentially expressed among wild-type and mutant GISTs. High gene expression of potential drug targets, such as VEGF, MCSF, and BCL2 in the wild-type group, and Mesothelin in exon 9 GISTs were found. There was a striking difference in gene expression between stomach and small bowel GISTs. This finding was validated in four separate tumors, two gastric and two intestinal, from a patient with familial GIST with a germ-line KIT W557R substitution. GISTs have heterogeneous gene expression depending on KIT genotype and tumor location, which is seen at both the genomic level and the KIT signaling pathway in particular. These findings may explain their variable clinical behavior and response to therapy.
Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.
Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris
2015-09-23
In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetic information transfer promotes cooperation in bacteria
Dimitriu, Tatiana; Lotton, Chantal; Bénard-Capelle, Julien; Misevic, Dusan; Brown, Sam P.; Lindner, Ariel B.; Taddei, François
2014-01-01
Many bacterial species are social, producing costly secreted “public good” molecules that enhance the growth of neighboring cells. The genes coding for these cooperative traits are often propagated via mobile genetic elements and can be virulence factors from a biomedical perspective. Here, we present an experimental framework that links genetic information exchange and the selection of cooperative traits. Using simulations and experiments based on a synthetic bacterial system to control public good secretion and plasmid conjugation, we demonstrate that horizontal gene transfer can favor cooperation. In a well-mixed environment, horizontal transfer brings a direct infectious advantage to any gene, regardless of its cooperation properties. However, in a structured population transfer selects specifically for cooperation by increasing the assortment among cooperative alleles. Conjugation allows cooperative alleles to overcome rarity thresholds and invade bacterial populations structured purely by stochastic dilution effects. Our results provide an explanation for the prevalence of cooperative genes on mobile elements, and suggest a previously unidentified benefit of horizontal gene transfer for bacteria. PMID:25024219
Long-term effects of systemic gene therapy in a canine model of myotubular myopathy.
Elverman, Matthew; Goddard, Melissa A; Mack, David; Snyder, Jessica M; Lawlor, Michael W; Meng, Hui; Beggs, Alan H; Buj-Bello, Ana; Poulard, Karine; Marsh, Anthony P; Grange, Robert W; Kelly, Valerie E; Childers, Martin K
2017-11-01
X-linked myotubular myopathy (XLMTM), a devastating pediatric disease caused by the absence of the protein myotubularin, results from mutations in the MTM1 gene. While there is no cure for XLMTM, we previously reported effects of MTM1 gene therapy using adeno-associated virus (AAV) vector on muscle weakness and pathology in MTM1-mutant dogs. Here, we followed 2 AAV-infused dogs over 4 years. We evaluated gait, strength, respiration, neurological function, muscle pathology, AAV vector copy number (VCN), and transgene expression. Four years following AAV-mediated gene therapy, gait, respiratory performance, neurological function and pathology in AAV-infused XLMTM dogs remained comparable to their healthy littermate controls despite a decline in VCN and muscle strength. AAV-mediated gene transfer of MTM1 in young XLMTM dogs results in long-term expression of myotubularin transgene with normal muscular performance and neurological function in the absence of muscle pathology. These findings support a clinical trial in patients. Muscle Nerve 56: 943-953, 2017. © 2017 Wiley Periodicals, Inc.
tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes.
Lowe, Todd M; Chan, Patricia P
2016-07-08
High-throughput genome sequencing continues to grow the need for rapid, accurate genome annotation and tRNA genes constitute the largest family of essential, ever-present non-coding RNA genes. Newly developed tRNAscan-SE 2.0 has advanced the state-of-the-art methodology in tRNA gene detection and functional prediction, captured by rich new content of the companion Genomic tRNA Database. Previously, web-server tRNA detection was isolated from knowledge of existing tRNAs and their annotation. In this update of the tRNAscan-SE On-line resource, we tie together improvements in tRNA classification with greatly enhanced biological context via dynamically generated links between web server search results, the most relevant genes in the GtRNAdb and interactive, rich genome context provided by UCSC genome browsers. The tRNAscan-SE On-line web server can be accessed at http://trna.ucsc.edu/tRNAscan-SE/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Unique disease heritage of the Dutch-German Mennonite population.
Orton, Noelle C; Innes, A Micheil; Chudley, Albert E; Bech-Hansen, N Torben
2008-04-15
The Dutch-German Mennonites are a religious isolate with foundational roots in the 16th century. A tradition of endogamy, large families, detailed genealogical records, and a unique disease history all contribute to making this a valuable population for genetic studies. Such studies in the Dutch-German Mennonite population have already contributed to the identification of the causative genes in several conditions such as the incomplete form of X-linked congenital stationary night blindness (CSNB2; previously iCSNB) and hypophosphatasia (HOPS), as well as the discovery of founder mutations within established disease genes (MYBPC1, CYP17alpha). The Dutch-German Mennonite population provides a strong resource for gene discovery and could lead to the identification of additional disease genes with relevance to the general population. In addition, further research developments should enhance delivery of clinical genetic services to this unique community. In the current review we discuss 31 genetic conditions, including 17 with identified gene mutations, within the Dutch-German Mennonite population. Copyright 2008 Wiley-Liss, Inc.
Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L
2007-03-15
Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.
Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere.
Fullerton, Heather; Moyer, Craig L
2016-05-15
Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene (rdhA) has been directly linked to marine subsurface Chloroflexi, suggesting that reductive dehalogenation is not limited to the class Dehalococcoidia This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group. Copyright © 2016 Fullerton and Moyer.
Congenital glaucoma and CYP1B1: an old story revisited.
Alsaif, Hessa S; Khan, Arif O; Patel, Nisha; Alkuraya, Hisham; Hashem, Mais; Abdulwahab, Firdous; Ibrahim, Niema; Aldahmesh, Mohammed A; Alkuraya, Fowzan S
2018-03-19
Primary congenital glaucoma is a trabecular meshwork dysgenesis with resultant increased intraocular pressure and ocular damage. CYP1B1 mutations remain the most common identifiable genetic cause. However, important questions about the penetrance of CYP1B1-related congenital glaucoma remain unanswered. Furthermore, mutations in other genes have been described although their exact contribution and potential genetic interaction, if any, with CYP1B1 mutations are not fully explored. In this study, we employed modern genomic approaches to re-examine CYP1B1-related congenital glaucoma. A cohort of 193 patients (136 families) diagnosed with congenital glaucoma. We identified biallelic CYP1B1 mutations in 80.8% (87.5 and 66.1% in familial and sporadic cases, respectively, p < 0.0086). The large family size of the study population allowed us to systematically examine penetrance of all identified alleles. With the exception of c.1103G>A (p.R368H), previously reported pathogenic mutations were highly penetrant (91.2%). We conclude from the very low penetrance and genetic epidemiological analyses that c.1103G>A (p.R368H) is unlikely to be a disease-causing recessive mutation in congenital glaucoma as previously reported. All cases that lacked biallelic CYP1B1 mutations underwent whole exome sequencing. No mutations in LTBP2, MYOC or TEK were encountered. On the other hand, mutations were identified in genes linked to other ophthalmic phenotypes, some inclusive of glaucoma, highlighting conditions that might phenotypically overlap with primary congenital glaucoma (SLC4A4, SLC4A11, CPAMD8, and KERA). We also encountered candidate causal variants in genes not previously linked to human diseases: BCO2, TULP2, and DGKQ. Our results both expand and refine the genetic spectrum of congenital glaucoma with important clinical implications.
Cell type-selective disease-association of genes under high regulatory load
Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse
2015-01-01
We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3′ UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner. PMID:26338775
Hall, Molly A; Verma, Anurag; Brown-Gentry, Kristin D; Goodloe, Robert; Boston, Jonathan; Wilson, Sarah; McClellan, Bob; Sutcliffe, Cara; Dilks, Holly H; Gillani, Nila B; Jin, Hailing; Mayo, Ping; Allen, Melissa; Schnetz-Boutaud, Nathalie; Crawford, Dana C; Ritchie, Marylyn D; Pendergrass, Sarah A
2014-12-01
We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes (grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III, 1999-2000, and 2001-2002) and three race-ethnicities: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP, phenotype-class, direction of effect, and race-ethnicity at p<0.01, allele frequency >0.01, and sample size >200. Of these 69 PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks, contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple traits, through generating novel hypotheses for future research.
Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M
2013-12-01
Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.
Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens.
Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya
2014-07-22
Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Moreno-Ramos, Oscar A; Olivares, Ana María; Haider, Neena B; de Autismo, Liga Colombiana; Lattig, María Claudia
2015-01-01
Autism spectrum disorders (ASDs) are a range of complex neurodevelopmental conditions principally characterized by dysfunctions linked to mental development. Previous studies have shown that there are more than 1000 genes likely involved in ASD, expressed mainly in brain and highly interconnected among them. We applied whole exome sequencing in Colombian-South American trios. Two missense novel SNVs were found in the same child: ALDH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq NM_003593: c.146C>T (p.S49L)). Gene expression studies reveal that Aldh1a3 and Foxn1 are expressed in ~E13.5 mouse embryonic brain, as well as in adult piriform cortex (PC; ~P30). Conserved Retinoic Acid Response Elements (RAREs) upstream of human ALDH1A3 and FOXN1 and in mouse Aldh1a3 and Foxn1 genes were revealed using bioinformatic approximation. Chromatin immunoprecipitation (ChIP) assay using Retinoid Acid Receptor B (Rarb) as the immunoprecipitation target suggests RA regulation of Aldh1a3 and Foxn1 in mice. Our results frame a possible link of RA regulation in brain to ASD etiology, and a feasible non-additive effect of two apparently unrelated variants in ALDH1A3 and FOXN1 recognizing that every result given by next generation sequencing should be cautiously analyzed, as it might be an incidental finding.
Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J
2009-07-16
Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.
Urschitz, Johann; Sultan, Omar; Ward, Kenneth
2011-01-01
Objective Various Asian and Pacifific Islander groups have higher prevalence rates of type 2 diabetes and gestational diabetes. This increased incidence is likely to include genetic factors. Single nucleotide polymorphisms in the retinol binding protein 4 gene have been linked to the occurrence of type 2 diabetes. Hypothesizing a link between retinol binding protein 4 and gestational diabetes, we performed a candidate gene study to look for an association between an important retinol binding protein gene polymorphism (rs3758539) and gestational diabetes. Study Design Blood was collected from Caucasian, Asian, and Pacific Islander women diagnosed with gestational diabetes and from ethnically matched non-diabetic controls. DNA was extracted and real time PCR technology (TaqMan, Applied Biosystems) used to screen for the rs3758539 single nucleotide polymorphism located 5′ of exon 1 of the retinol binding protein 4 gene. Results Genotype and allele frequencies in the controls and gestational diabetes cases were tested using chi-square contingency tests. Genotype frequencies were in Hardy-Weinberg equilibrium. There was no association between the rs3758539 retinol binding protein 4 single nucleotide polymorphism and gestational diabetes in the Caucasian, Filipino, or Pacific Islander groups. Conclusion Interestingly, the rs3758539 retinol binding protein 4 single nucleotide polymorphism was not found to be associated with gestational diabetes. The absence of association suggests that gestational and type 2 diabetes may have more divergent molecular pathophysiology than previously suspected. PMID:21886308
Folster, Jason P.; Grass, Julian E.; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R.; Whichard, Jean M.
2017-01-01
Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded blaCMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing blaCMY-IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with blaCMY-IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). Additionally, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries. PMID:27828730
Folster, Jason P; Grass, Julian E; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R; Whichard, Jean M
2017-03-01
Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded bla CMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing bla CMY -IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with bla CMY -IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). In addition, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid-encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries.
Optimization of Retinal Gene Therapy for X-Linked Retinitis Pigmentosa Due to RPGR Mutations.
Beltran, William A; Cideciyan, Artur V; Boye, Shannon E; Ye, Guo-Jie; Iwabe, Simone; Dufour, Valerie L; Marinho, Luis Felipe; Swider, Malgorzata; Kosyk, Mychajlo S; Sha, Jin; Boye, Sanford L; Peterson, James J; Witherspoon, C Douglas; Alexander, John J; Ying, Gui-Shuang; Shearman, Mark S; Chulay, Jeffrey D; Hauswirth, William W; Gamlin, Paul D; Jacobson, Samuel G; Aguirre, Gustavo D
2017-08-02
X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is an early onset and severe cause of blindness. Successful proof-of-concept studies in a canine model have recently shown that development of a corrective gene therapy for RPGR-XLRP may now be an attainable goal. In preparation for a future clinical trial, we have here optimized the therapeutic AAV vector construct by showing that GRK1 (rather than IRBP) is a more efficient promoter for targeting gene expression to both rods and cones in non-human primates. Two transgenes were used in RPGR mutant (XLPRA2) dogs under the control of the GRK1 promoter. First was the previously developed stabilized human RPGR (hRPGRstb). Second was a new full-length stabilized and codon-optimized human RPGR (hRPGRco). Long-term (>2 years) studies with an AAV2/5 vector carrying hRPGRstb under control of the GRK1 promoter showed rescue of rods and cones from degeneration and retention of vision. Shorter term (3 months) studies demonstrated comparable preservation of photoreceptors in canine eyes treated with an AAV2/5 vector carrying either transgene under the control of the GRK1 promoter. These results provide the critical molecular components (GRK1 promoter, hRPGRco transgene) to now construct a therapeutic viral vector optimized for RPGR-XLRP patients. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Lin, Ying; Sibanda, Vusumuzi Leroy; Zhang, Hong-Mei; Hu, Hui; Liu, Hui; Guo, An-Yuan
2015-04-13
Myocardial infarction (MI) is a leading cause of death in the world and many genes are involved in it. Transcription factor (TFs) and microRNAs (miRNAs) are key regulators of gene expression. We hypothesized that miRNAs and TFs might play combinatory regulatory roles in MI. After collecting MI candidate genes and miRNAs from various resources, we constructed a comprehensive MI-specific miRNA-TF co-regulatory network by integrating predicted and experimentally validated TF and miRNA targets. We found some hub nodes (e.g. miR-16 and miR-26) in this network are important regulators, and the network can be severed as a bridge to interpret the associations of previous results, which is shown by the case of miR-29 in this study. We also constructed a regulatory network for MI recurrence and found several important genes (e.g. DAB2, BMP6, miR-320 and miR-103), the abnormal expressions of which may be potential regulatory mechanisms and markers of MI recurrence. At last we proposed a cellular model to discuss major TF and miRNA regulators with signaling pathways in MI. This study provides more details on gene expression regulation and regulators involved in MI progression and recurrence. It also linked up and interpreted many previous results.
Murata, Chie; Sawaya, Hirohito; Nakata, Katsushi; Yamada, Fumio; Imoto, Issei; Kuroiwa, Asato
2016-09-01
In initial studies of the eutherian small Indian mongoose (Herpestes auropunctatus), the Y chromosome could not be identified in somatic cells. The male chromosome number is uniquely odd, 2n = 35, whereas that of females is 2n = 36. Previous reports indicated that this unique karyotype resulted from a translocation of the ancestral Y chromosome to an autosome. However, it has been difficult to identify the chromosomes that harbor the translocated Y chromosomal segment because it is an extremely small euchromatic region. Using a Southern blot analysis, we detected four conserved Y-linked genes, SRY, EIF2S3Y, KDM5D, and ZFY, in the male genome. We cloned homologues of these genes and determined their sequences, which showed high homology to genes in two carnivore species, cat and dog. To unambiguously identify the Y-bearing autosome, we performed immunostaining of pachytene spermatocytes using antibodies against SYCP3, γH2AX, and the centromere. We observed trivalent chromosomes, and the associations between the distal ends of the chromosomes were consistent with those of Y and X1 chromosomes. The centromere of the Y chromosome was located on the ancestral Y chromosomal segment. We mapped the complementary DNA (cDNA) clones of these genes to the male chromosomes using fluorescence in situ hybridization (FISH), and the linear localization of all genes was confirmed by two-colored FISH. These Y-linked genes were localized to the proximal region of the long arm of a single telomeric chromosome, and we successfully identified the chromosome harboring the ancestral Y chromosomal segment.
Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M
1994-01-01
We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773
FARVATX: FAmily-based Rare Variant Association Test for X-linked genes
Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H.; Silverman, Edwin K; Park, Taesung; Won, Sungho
2016-01-01
Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease (COPD). Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. PMID:27325607
FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes.
Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H; Silverman, Edwin K; Park, Taesung; Won, Sungho
2016-09-01
Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. © 2016 WILEY PERIODICALS, INC.
Joehanes, Roby; Liu, Chunyu; Aslibekyan, Stella; Demerath, Ellen W.; Guan, Weihua; Zhi, Degui; Willinger, Christine; Courchesne, Paul; Multhaup, Michael; Irvin, Marguerite R.; Schadt, Eric E.; Bressler, Jan; North, Kari; Sundström, Johan; Gustafsson, Stefan; Shah, Sonia; McRae, Allan F.; Harris, Sarah E.; Gibson, Jude; Redmond, Paul; Corley, Janie; Starr, John M.; Visscher, Peter M.; Wray, Naomi R.; Krauss, Ronald M.; Feinberg, Andrew; Fornage, Myriam; Pankow, James S.; Lind, Lars; Fox, Caroline; Ingelsson, Erik; Arnett, Donna K.; Boerwinkle, Eric; Liang, Liming; Levy, Daniel; Deary, Ian J.
2017-01-01
Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases. PMID:28095459
Network analyses reveal novel aspects of ALS pathogenesis.
Sanhueza, Mario; Chai, Andrea; Smith, Colin; McCray, Brett A; Simpson, T Ian; Taylor, J Paul; Pennetta, Giuseppa
2015-03-01
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention.
Genetic mapping of the female mimic morph locus in the ruff
2013-01-01
Background Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial ‘Independents’, (ii) non-territorial ‘Satellites’, and (iii) female-mimicking ‘Faeders’. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds. Results Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multi-generation families (N = 381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination. Conclusion Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs. PMID:24256185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, B.H.F.; Vogt, G.; Stoehr, H.
1994-12-01
Best vitelliform macular dystrophy (VMD2) has previously been linked to several microsatellite markers from chromosome 11. Subsequently, additional genetic studies have refined the Best disease region to a 3.7-cM interval flanked by markers at D11S903 and PYGM. To further narrow the interval containing the Best disease gene and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best disease pedigrees.more » Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 on the short arm and at D11S480 in band q13.2-13.3 on the proximal long arm. This study demonstrates that the physical size of the Best disease region is exceedingly larger than previously estimated from the genetic data, because of the proximity of the defective gene to the centromere of chromosome 11.« less
Camacho, Luísa; Basavarajappa, Mallikarjuna S.; Chang, Ching-Wei; Han, Tao; Kobets, Tetyana; Koturbash, Igor; Surratt, Gordon; Lewis, Sherry M.; Vanlandingham, Michelle M.; Fuscoe, James C.; da Costa, Gonçalo Gamboa; Pogribny, Igor P.; Delclos, K. Barry
2015-01-01
Bisphenol A (BPA), an industrial chemical used in the manufacture of polycarbonate and epoxy resins, binds to the nuclear estrogen receptor with an affinity 4–5 orders of magnitude lower than that of estradiol. We reported previously that “high BPA” (100,000 and 300,000 μg/kg body weight (bw)/day), but not “low BPA” [2.5–2700 μg/kg bw/day], induced clear adverse effects in NCTR Sprague-Dawley rats gavaged daily from gestation day 6 through postnatal day 90. The “high BPA” effects partially overlapped those of ethinyl estradiol (EE2, 0.5 and 5.0 μg/kg bw/day). To evaluate further the potential of “low BPA” to induce biological effects, here we assessed the global genomic DNA methylation and gene expression in the prostate and female mammary glands, tissues identified previously as potential targets of BPA, and uterus, a sensitive estrogen-responsive tissue. Both doses of EE2 modulated gene expression, including of known estrogen-responsive genes, and PND 4 global gene expression data showed a partial overlap of the “high BPA” effects with those of EE2. The “low BPA” doses modulated the expression of several genes; however, the absence of a dose response reduces the likelihood that these changes were causally linked to the treatment. These results are consistent with the toxicity outcomes. PMID:25862956
Widespread promoter-mediated coordination of transcription and mRNA degradation
2012-01-01
Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation. PMID:23237624
Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve.
O'Connell, Kerry Joan; Motherway, Mary O'Connell; Hennessey, Alan A; Brodhun, Florian; Ross, R Paul; Feussner, Ivo; Stanton, Catherine; Fitzgerald, Gerald F; van Sinderen, Douwe
2013-01-01
Bifidobacteria are common commensals of the mammalian gastrointestinal tract. Previous studies have suggested that a bifidobacterial myosin cross reactive antigen (MCRA) protein plays a role in bacterial stress tolerance, while this protein has also been linked to the biosynthesis of conjugated linoleic acid (CLA) in bifidobacteria. In order to increase our understanding on the role of MCRA in bifidobacteria we created and analyzed an insertion mutant of the MCRA-encoding gene of B. breve NCFB 2258. Our results demonstrate that the MCRA protein of B. breve NCFB 2258 does not appear to play a role in CLA production, yet is an oleate hydratase, which contributes to bifidobacterial solvent stress protection.
Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve
O'Connell, Kerry Joan; Motherway, Mary O'Connell; Hennessey, Alan A; Brodhun, Florian; Ross, R Paul; Feussner, Ivo; Stanton, Catherine; Fitzgerald, Gerald F; van Sinderen, Douwe
2013-01-01
Bifidobacteria are common commensals of the mammalian gastrointestinal tract. Previous studies have suggested that a bifidobacterial myosin cross reactive antigen (MCRA) protein plays a role in bacterial stress tolerance, while this protein has also been linked to the biosynthesis of conjugated linoleic acid (CLA) in bifidobacteria. In order to increase our understanding on the role of MCRA in bifidobacteria we created and analyzed an insertion mutant of the MCRA-encoding gene of B. breve NCFB 2258. Our results demonstrate that the MCRA protein of B. breve NCFB 2258 does not appear to play a role in CLA production, yet is an oleate hydratase, which contributes to bifidobacterial solvent stress protection. PMID:23851389
Gauthier, Julie; Champagne, Nathalie; Lafrenière, Ronald G.; Xiong, Lan; Spiegelman, Dan; Brustein, Edna; Lapointe, Mathieu; Peng, Huashan; Côté, Mélanie; Noreau, Anne; Hamdan, Fadi F.; Addington, Anjené M.; Rapoport, Judith L.; DeLisi, Lynn E.; Krebs, Marie-Odile; Joober, Ridha; Fathalli, Ferid; Mouaffak, Fayçal; Haghighi, Ali P.; Néri, Christian; Dubé, Marie-Pierre; Samuels, Mark E.; Marineau, Claude; Stone, Eric A.; Awadalla, Philip; Barker, Philip A.; Carbonetto, Salvatore; Drapeau, Pierre; Rouleau, Guy A.
2010-01-01
Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders. PMID:20385823
Vuillaume, Marie-Laure; Naudion, Sophie; Banneau, Guillaume; Diene, Gwenaelle; Cartault, Audrey; Cailley, Dorothée; Bouron, Julie; Toutain, Jérôme; Bourrouillou, Georges; Vigouroux, Adeline; Bouneau, Laurence; Nacka, Fabienne; Kieffer, Isabelle; Arveiler, Benoit; Knoll-Gellida, Anja; Babin, Patrick J; Bieth, Eric; Jouret, Béatrice; Julia, Sophie; Sarda, Pierre; Geneviève, David; Faivre, Laurence; Lacombe, Didier; Barat, Pascal; Tauber, Maithé; Delrue, Marie-Ange; Rooryck, Caroline
2014-08-01
Syndromic obesity is defined by the association of obesity with one or more feature(s) including developmental delay, dysmorphic traits, and/or congenital malformations. Over 25 syndromic forms of obesity have been identified. However, most cases remain of unknown etiology. The aim of this study was to identify new candidate loci associated with syndromic obesity to find new candidate genes and to better understand molecular mechanisms involved in this pathology. We performed oligonucleotide microarray-based comparative genomic hybridization in a cohort of 100 children presenting with syndromic obesity of unknown etiology, after exhaustive clinical, biological, and molecular studies. Chromosomal copy number variations were detected in 42% of the children in our cohort, with 23% of patients with potentially pathogenic copy number variants. Our results support that chromosomal rearrangements are frequently associated with syndromic obesity with a variety of contributory genes having relevance to either obesity or developmental delay. A list of inherited or apparently de novo duplications and deletions including their enclosed genes and not previously linked to syndromic obesity was established. Proteins encoded by several of these genes are involved in lipid metabolism (ACOXL, MSMO1, MVD, and PDZK1) linked with nervous system function (BDH1 and LINGO2), neutral lipid storage (PLIN2), energy homeostasis and metabolic processes (CDH13, CNTNAP2, CPPED1, NDUFA4, PTGS2, and SOCS6). © 2014 Wiley Periodicals, Inc.
Meyer, T E; Baynes, R D; Bothwell, T H; Jenkins, T; Ballot, D; Jooste, P L; Green, A; Du Toit, E; Jacobs, P
1988-03-05
A previous study conducted on a group of Afrikaans-speaking subjects in the south-western Cape indicated a high frequency (0.115) of the HLA-linked iron-loading gene which causes idiopathic haemochromatosis. The results of phenotypic and genotypic studies on the first degree relatives of identified homozygotes and heterozygotes are now reported. There was considerable heterogeneity of phenotypic expression in the group of heterozygotes, with overlap between the homozygous and heterozygous subjects. The heterozygous relatives of heterozygous index cases, who had been identified on the basis of a serum ferritin concentration greater than 400 micrograms/l, appeared to have more frequent and more marked abnormalities of iron measurements than the heterozygote relatives of homozygous index cases (serum ferritin value greater than 400 micrograms/l, percentage transferrin saturation greater than 60). This suggests that the screening test was identifying a group of more significantly affected heterozygotes, with biochemical abnormalities that overlapped with the identified homozygotes. The index cases were followed up over a period of 5 years and during this time the 7 subjects diagnosed as heterozygotes showed a progressive increase in serum ferritin concentrations, which suggests some iron accumulation. Individual pedigrees included instances of gene recombination within the major histocompatibility complex, and of probable false-positive genotype assignment. The overall results confirm a high frequency of the gene in this particular community.
Ekblom, Robert; Farrell, Lindsay L; Lank, David B; Burke, Terry
2012-01-01
By next generation transcriptome sequencing, it is possible to obtain data on both nucleotide sequence variation and gene expression. We have used this approach (RNA-Seq) to investigate the genetic basis for differences in plumage coloration and mating strategies in a non-model bird species, the ruff (Philomachus pugnax). Ruff males show enormous variation in the coloration of ornamental feathers, used for individual recognition. This polymorphism is linked to reproductive strategies, with dark males (Independents) defending territories on leks against other Independents, whereas white morphs (Satellites) co-occupy Independent's courts without agonistic interactions. Previous work found a strong genetic component for mating strategy, but the genes involved were not identified. We present feather transcriptome data of more than 6,000 de-novo sequenced ruff genes (although with limited coverage for many of them). None of the identified genes showed significant expression divergence between males, but many genetic markers showed nucleotide differentiation between different color morphs and mating strategies. These include several feather keratin genes, splicing factors, and the Xg blood-group gene. Many of the genes with significant genetic structure between mating strategies have not yet been annotated and their functions remain to be elucidated. We also conducted in-depth investigations of 28 pre-identified coloration candidate genes. Two of these (EDNRB and TYR) were specifically expressed in black- and rust-colored males, respectively. We have demonstrated the utility of next generation transcriptome sequencing for identifying and genotyping large number of genetic markers in a non-model species without previous genomic resources, and highlight the potential of this approach for addressing the genetic basis of ecologically important variation. PMID:23145334
Pharmaco-miR: linking microRNAs and drug effects
Rukov, Jakob Lewin; Wilentzik, Roni; Jaffe, Ishai; Vinther, Jeppe; Shomron, Noam
2014-01-01
MicroRNAs (miRNAs) are short regulatory RNAs that down-regulate gene expression. They are essential for cell homeostasis and active in many disease states. A major discovery is the ability of miRNAs to determine the efficacy of drugs, which has given rise to the field of ‘miRNA pharmacogenomics’ through ‘Pharmaco-miRs’. miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. These interactions can be described as triplet sets consisting of a miRNA, a target gene and a drug associated with the gene. We have developed a web server which links miRNA expression and drug function by combining data on miRNA targeting and protein–drug interactions. miRNA targeting information derive from both experimental data and computational predictions, and protein–drug interactions are annotated by the Pharmacogenomics Knowledge base (PharmGKB). Pharmaco-miR’s input consists of miRNAs, genes and/or drug names and the output consists of miRNA pharmacogenomic sets or a list of unique associated miRNAs, genes and drugs. We have furthermore built a database, named Pharmaco-miR Verified Sets (VerSe), which contains miRNA pharmacogenomic data manually curated from the literature, can be searched and downloaded via Pharmaco-miR and informs on trends and generalities published in the field. Overall, we present examples of how Pharmaco-miR provides possible explanations for previously published observations, including how the cisplatin and 5-fluorouracil resistance induced by miR-148a may be caused by miR-148a targeting of the gene KIT. The information is available at www.Pharmaco-miR.org. PMID:23376192
Lei, Xuemei; Chen, Chuansheng; He, Qinghua; Chen, Chunhui; Moyzis, Robert K; Xue, Gui; Chen, Xiongying; Cao, Zhongyu; Li, Jin; Li, He; Zhu, Bi; Chun Hsu, Anna Shan; Li, Sufang; Li, Jun; Dong, Qi
2012-09-01
Previous case-control and family-based association studies have implicated the SLC6A4 gene in obsessive-compulsive disorder (OCD). Little research, however, has examined this gene's role in obsessive-compulsive symptoms (OCS) in community samples. The present study genotyped seven tag SNPs and two common functional tandem repeat polymorphisms (5-HTTLPR and STin2), which together cover the whole SLC6A4 gene, and investigated their associations with OCS in normal Chinese college students (N = 572). The results revealed a significant gender main effect and gender-specific genetic effects of the SLC6A4 gene on OCS. Males scored significantly higher on total OCS and its three dimensions than did females (ps < .01). The 5-HTTLPR in the promoter region showed a female-specific genetic effect, with the l/l and l/s genotypes linked to higher OCS scores than the s/s genotype (ps < .05). In contrast, a conserved haplotype polymorphism (rs1042173| rs4325622| rs3794808| rs140701| rs4583306| rs2020942) covering from intron 3 to the 3' UTR of the SLC6A4 gene showed male-specific genetic effects, with the CGAAGG/CGAAGG genotype associated with lower OCS scores than the other genotypes (ps < .05). These effects remained significant after controlling for OCS-related factors including participants' depressive and anxiety symptoms as well as stressful life events, and correction for multiple tests. These results are discussed in terms of their implications for our understanding of the sex-specific role of the different sections of the SLC6A4 gene in OCD. Published by Elsevier Ltd.
Monoamine oxidase deficiency in males with an X chromosome deletion.
Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G
1989-01-01
Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.
Zhu, Jiewei; Huang, Xiuli; Liu, Tong; Gao, Shigang; Chen, Jie
2012-08-01
ZmDIP was cloned and its function against Curvularia lunata was analyzed, according to a previous finding on a drought-inducible protein in resistant maize identified through MALDI-TOF-MS/MS. The ZmDIP expression varied in roots, leaf sheaths, and young, as well as old, leaves of different maize inbred lines. The ZmDIP transcript level changed in leaves over the course of time after inoculation with C. lunata. A prokaryotic expression analysis demonstrated that the gene can regulate the salt stress tolerance of Escherichia coli. The ZmDIP transient expression in the maize leaf showed that the gene was also linked to leaf resistance against the C. lunata infection. ZmDIP-mediated ROS and ABA signaling pathways were inferred to be closely associated with maize leaf resistance to the pathogen infection.
Refinement of the NHS locus on chromosome Xp22.13 and analysis of five candidate genes.
Toutain, Annick; Dessay, Benoît; Ronce, Nathalie; Ferrante, Maria-Immacolata; Tranchemontagne, Julie; Newbury-Ecob, Ruth; Wallgren-Pettersson, Carina; Burn, John; Kaplan, Josseline; Rossi, Annick; Russo, Silvia; Walpole, Ian; Hartsfield, James K; Oyen, Nina; Nemeth, Andrea; Bitoun, Pierre; Trump, Dorothy; Moraine, Claude; Franco, Brunella
2002-09-01
Nance-Horan syndrome (NHS) is an X-linked condition characterised by congenital cataracts, dental abnormalities, dysmorphic features, and mental retardation in some cases. Previous studies have mapped the disease gene to a 2 cM interval on Xp22.2 between DXS43 and DXS999. We report additional linkage data resulting from the analysis of eleven independent NHS families. A maximum lod score of 9.94 (theta=0.00) was obtained at the RS1 locus and a recombination with locus DXS1195 on the telomeric side was observed in two families, thus refining the location of the gene to an interval of around 1 Mb on Xp22.13. Direct sequencing or SSCP analysis of the coding exons of five genes (SCML1, SCML2, STK9, RS1 and PPEF1), considered as candidate genes on the basis of their location in the critical interval, failed to detect any mutation in 12 unrelated NHS patients, thus making it highly unlikely that these genes are implicated in NHS.
NDP gene mutations in 14 French families with Norrie disease.
Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul
2003-12-01
Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.
Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor.
DuBuc, Timothy Q; Ryan, Joseph F; Shinzato, Chuya; Satoh, Nori; Martindale, Mark Q
2012-12-01
The key developmental role of the Hox cluster of genes was established prior to the last common ancestor of protostomes and deuterostomes and the subsequent evolution of this cluster has played a major role in the morphological diversity exhibited in extant bilaterians. Despite 20 years of research into cnidarian Hox genes, the nature of the cnidarian-bilaterian ancestral Hox cluster remains unclear. In an attempt to further elucidate this critical phylogenetic node, we have characterized the Hox cluster of the recently sequenced Acropora digitifera genome. The A. digitifera genome contains two anterior Hox genes (PG1 and PG2) linked to an Eve homeobox gene and an Anthox1A gene, which is thought to be either a posterior or posterior/central Hox gene. These data show that the Hox cluster of the cnidarian-bilaterian ancestor was more extensive than previously thought. The results are congruent with the existence of an ancient set of constraints on the Hox cluster and reinforce the importance of incorporating a wide range of animal species to reconstruct critical ancestral nodes.
Extraordinary Sequence Divergence at Tsga8, an X-linked Gene Involved in Mouse Spermiogenesis
Good, Jeffrey M.; Vanderpool, Dan; Smith, Kimberly L.; Nachman, Michael W.
2011-01-01
The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion–deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5′ and 3′ ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice. PMID:21186189
Johnson, Monica; Alsaleh, Nasser; Mendoza, Ryan P; Persaud, Indushekhar; Bauer, Alison K; Saba, Laura; Brown, Jared M
2018-01-01
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.
2016-01-01
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490
Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping
2016-01-01
Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182
Wang, Jincheng; Tang, Lili; Zhou, Hongyuan; Zhou, Jun; Glenn, Travis C; Shen, Chwan-Li; Wang, Jia-Sheng
2018-06-01
Green tea polyphenols (GTP) have been shown to exert a spectrum of health benefits to animals and humans. It is plausible that the beneficial effects of GTP are a result of its interaction with the gut microbiota. This study evaluated the effect of long-term treatment with GTP on the gut microbiota of experimental rats and the potential linkage between changes of the gut microbiota with the beneficial effects of GTP. Six-month-old Sprague-Dawley rats were randomly allocated into three dosing regimens (0, 0.5%, and 1.5% of GTP) and followed for 6 months. At the end of month 3 or month 6, half of the animals from each group were sacrificed and their colon contents were collected for microbiome analysis using 16S ribosomal RNA and shotgun metagenomic community sequencing. GTP treatment significantly decreased the biodiversity and modified the microbial community in a dose-dependent manner; similar patterns were observed at both sampling times. Multiple operational taxonomic units and phylotypes were modified: the phylotypes Bacteroidetes and Oscillospira, previously linked to the lean phenotype in human and animal studies, were enriched; and Peptostreptococcaceae previously linked to colorectal cancer phenotype was depleted in GTP treated groups in a dose-dependent manner. Several microbial gene orthologs were modified, among which genes related to energy production and conversion were consistently enriched in samples from month 6 in a dose-dependent manner. This study showed that long-term treatment with GTP induced a dose-dependent modification of the gut microbiome in experimental rats, which might be linked to beneficial effects of GTP. Copyright © 2018 Elsevier Inc. All rights reserved.
Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping
2016-01-01
Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edvardsen, Hege, E-mail: hege.edvardsen@rr-research.no; K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo; Landmark-Høyvik, Hege
Purpose: The aim of the study was to identify noninvasive markers of treatment-induced side effects. Reactive oxygen species (ROS) are generated after irradiation, and genetic variation in genes related to ROS metabolism might influence the level of radiation-induced adverse effects (AEs). Methods and Materials: 92 breast cancer (BC) survivors previously treated with hypofractionated radiation therapy were assessed for the AEs subcutaneous atrophy and fibrosis, costal fractures, lung fibrosis, pleural thickening, and telangiectasias (median follow-up time 17.1 years). Single-nucleotide polymorphisms (SNPs) in 203 genes were analyzed for association to AE grade. SNPs associated with subcutaneous fibrosis were validated in an independentmore » BC survivor material (n=283). The influence of the studied genetic variation on messenger ribonucleic acid (mRNA) expression level of 18 genes previously associated with fibrosis was assessed in fibroblast cell lines from BC patients. Results: Subcutaneous fibrosis and atrophy had the highest correlation (r=0.76) of all assessed AEs. The nonsynonymous SNP rs1139793 in TXNRD2 was associated with grade of subcutaneous fibrosis, the reference T-allele being more prevalent in the group experiencing severe levels of fibrosis. This was confirmed in another sample cohort of 283 BC survivors, and rs1139793 was found significantly associated with mRNA expression level of TXNRD2 in blood. Genetic variation in 24 ROS-related genes, including EGFR, CENPE, APEX1, and GSTP1, was associated with mRNA expression of 14 genes previously linked to fibrosis (P≤.005). Conclusion: Development of subcutaneous fibrosis can be associated with genetic variation in the mitochondrial enzyme TXNRD2, critically involved in removal of ROS, and maintenance of the intracellular redox balance.« less
Bustamante, Jacinta; Arias, Andres A; Vogt, Guillaume; Picard, Capucine; Galicia, Lizbeth Blancas; Prando, Carolina; Grant, Audrey V; Marchal, Christophe C; Hubeau, Marjorie; Chapgier, Ariane; de Beaucoudrey, Ludovic; Puel, Anne; Feinberg, Jacqueline; Valinetz, Ethan; Jannière, Lucile; Besse, Céline; Boland, Anne; Brisseau, Jean-Marie; Blanche, Stéphane; Lortholary, Olivier; Fieschi, Claire; Emile, Jean-François; Boisson-Dupuis, Stéphanie; Al-Muhsen, Saleh; Woda, Bruce; Newburger, Peter E; Condino-Neto, Antonio; Dinauer, Mary C; Abel, Laurent; Casanova, Jean-Laurent
2011-01-01
Germline mutations in CYBB, the human gene encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This ‘experiment of nature’ indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria. PMID:21278736
Understanding the science-learning environment: A genetically sensitive approach.
Haworth, Claire M A; Davis, Oliver S P; Hanscombe, Ken B; Kovas, Yulia; Dale, Philip S; Plomin, Robert
2013-02-01
Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000 pairs of 14-year-old twins from the UK Twins Early Development Study reported on their experiences of the science-learning environment and were assessed for their performance in science using a web-based test of scientific enquiry. Multivariate twin analyses were used to investigate the genetic and environmental links between environment and outcome. The most surprising result was that the science-learning environment was almost as heritable (43%) as performance on the science test (50%), and showed negligible shared environmental influence (3%). Genetic links explained most (56%) of the association between learning environment and science outcome, indicating gene-environment correlation.
Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, C.; Ainsworth, P.
1994-09-01
Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions,more » while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.« less
Identification of Quantitative Trait Loci for Resistance to RSIVD in Red Sea Bream (Pagrus major).
Sawayama, Eitaro; Tanizawa, Shiho; Kitamura, Shin-Ichi; Nakayama, Kei; Ohta, Kohei; Ozaki, Akiyuki; Takagi, Motohiro
2017-12-01
Red sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS). Two test families were developed using the candidate male in 2014 (Fam-2014) and 2015 (Fam-2015). These test families were challenged with RSIV, and phenotypes were evaluated. Then, de novo genome sequences of red sea bream were obtained through next-generation sequencing, and microsatellite markers were searched and selected for linkage map construction. One immune-related gene, MHC class IIβ, was also used for linkage map construction. Of the microsatellite markers searched, 148 and 197 were mapped on 23 and 27 linkage groups in the female and male linkage maps, respectively, covering approximately 65% of genomes in both sexes. One QTL linked to an RSIVD-resistant trait was found in linkage group 2 of the candidate male in Fam-2014, and the phenotypic variance of the QTL was 31.1%. The QTL was closely linked to MHC class IIβ. Moreover, the QTL observed in Fam-2014 was also significantly linked to an RSIVD-resistant trait in the candidate male of Fam-2015. Our results suggest that the RSIVD-resistant trait in the candidate male was controlled by one major QTL closely linked to the MHC class IIβ gene and could be useful for MAS of red sea bream.
Co-occurrence of anaerobic bacteria in colorectal carcinomas.
Warren, René L; Freeman, Douglas J; Pleasance, Stephen; Watson, Peter; Moore, Richard A; Cochrane, Kyla; Allen-Vercoe, Emma; Holt, Robert A
2013-05-15
Numerous cancers have been linked to microorganisms. Given that colorectal cancer is a leading cause of cancer deaths and the colon is continuously exposed to a high diversity of microbes, the relationship between gut mucosal microbiome and colorectal cancer needs to be explored. Metagenomic studies have shown an association between Fusobacterium species and colorectal carcinoma. Here, we have extended these studies with deeper sequencing of a much larger number (n = 130) of colorectal carcinoma and matched normal control tissues. We analyzed these data using co-occurrence networks in order to identify microbe-microbe and host-microbe associations specific to tumors. We confirmed tumor over-representation of Fusobacterium species and observed significant co-occurrence within individual tumors of Fusobacterium, Leptotrichia and Campylobacter species. This polymicrobial signature was associated with over-expression of numerous host genes, including the gene encoding the pro-inflammatory chemokine Interleukin-8. The tumor-associated bacteria we have identified are all Gram-negative anaerobes, recognized previously as constituents of the oral microbiome, which are capable of causing infection. We isolated a novel strain of Campylobacter showae from a colorectal tumor specimen. This strain is substantially diverged from a previously sequenced oral Campylobacter showae isolate, carries potential virulence genes, and aggregates with a previously isolated tumor strain of Fusobacterium nucleatum. A polymicrobial signature of Gram-negative anaerobic bacteria is associated with colorectal carcinoma tissue.
Staes, Nicky; Stevens, Jeroen M. G.; Helsen, Philippe; Hillyer, Mia; Korody, Marisa; Eens, Marcel
2014-01-01
Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5′ promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼360 bp in this region (+/− DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees. PMID:25405348
Brancaleoni, V.; Balwani, M.; Granata, F.; Graziadei, G.; Missineo, P.; Fiorentino, V.; Fustinoni, S.; Cappellini, M.D.; Naik, H.; Desnick, R.J.; Di Pierro, E.
2015-01-01
X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromsomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817
Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C
2009-03-13
Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.
Maternal residential air pollution and placental imprinted gene expression.
Kingsley, Samantha L; Deyssenroth, Maya A; Kelsey, Karl T; Awad, Yara Abu; Kloog, Itai; Schwartz, Joel D; Lambertini, Luca; Chen, Jia; Marsit, Carmen J; Wellenius, Gregory A
2017-11-01
Maternal exposure to air pollution is associated with reduced fetal growth, but its relationship with expression of placental imprinted genes (important regulators of fetal growth) has not yet been studied. To examine relationships between maternal residential air pollution and expression of placental imprinted genes in the Rhode Island Child Health Study (RICHS). Women-infant pairs were enrolled following delivery between 2009 and 2013. We geocoded maternal residential addresses at delivery, estimated daily levels of fine particulate matter (PM 2.5 ; n=355) and black carbon (BC; n=336) using spatial-temporal models, and estimated residential distance to nearest major roadway (n=355). Using linear regression models we investigated the associations between each exposure metric and expression of nine candidate genes previously associated with infant birthweight in RICHS, with secondary analyses of a panel of 108 imprinted genes expressed in the placenta. We also explored effect measure modification by infant sex. PM 2.5 and BC were associated with altered expression for seven and one candidate genes, respectively, previously linked with birthweight in this cohort. Adjusting for multiple comparisons, we found that PM 2.5 and BC were associated with changes in expression of 41 and 12 of 108 placental imprinted genes, respectively. Infant sex modified the association between PM 2.5 and expression of CHD7 and between proximity to major roadways and expression of ZDBF2. We found that maternal exposure to residential PM 2.5 and BC was associated with changes in placental imprinted gene expression, which suggests a plausible line of investigation of how air pollution affects fetal growth and development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Jian; Stiller, Jiri; Zhao, Qiang; Feng, Qi; Cavanagh, Colin; Wang, Penghao; Gardiner, Donald; Choulet, Frédéric; Feuillet, Catherine; Zheng, You-Liang; Wei, Yuming; Yan, Guijun; Han, Bin; Manners, John M.; Liu, Chunji
2014-01-01
Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL. PMID:25405461
Diaz de Cerio, Oihane; Bilbao, Eider; Ruiz, Pamela; Pardo, Belén G; Martínez, Paulino; Cajaraville, Miren P; Cancio, Ibon
2017-02-01
Oil and chemical spills in the marine environment, although sporadic, are highly dangerous to biota inhabiting coastal and estuarine areas. Effects of spilled compounds in exposed organisms occur at different biological organization levels: from molecular, cellular or tissue levels to the physiological one. The present study aims to determine the specific hepatic gene transcription profiles observed in turbot juveniles under exposure to fuel oil n °6 and styrene vs controls using an immune enriched turbot (Scophthalmus maximus) oligo-microarray containing 2716 specific gene probes. After 3 days of exposure, fuel oil specifically induced aryl hydrocarbon receptor mediated transcriptional response through up-regulation of genes, such as ahrr and cyp1a1. More gene transcripts were regulated after 14 days of exposure involved in ribosomal biosynthesis, immune modulation, and oxidative response among the most significantly regulated functional pathways. On the contrary, gene transcription alterations caused by styrene did not highlight any significantly regulated molecular or metabolic pathway. This was also previously reported at cell and tissue level where no apparent responses were distinguishable. For the fuel oil experiment, obtained specific gene profiles could be related to changes in cell-tissue organization in the same individuals, such as increased hepatocyte vacuolization, decrease in melano-macrophage centers and the regulation of leukocyte numbers. In conclusion, the mode of action reflected by gene transcription profiles analyzed hereby in turbot livers could be linked with the responses previously reported at higher biological organization levels. Molecular alterations described hereby could be preceding observed alterations at cell and tissue levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salem, Saeed; Ozcaglar, Cagri
2014-01-01
Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways.
Chowdhary, Surabhi; Kainth, Amoldeep S.
2017-01-01
ABSTRACT Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein (HSP) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5′-3′ gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene “crumpling”). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci. PMID:28970326
Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S
2017-12-15
Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein ( HSP ) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5'-3' gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene "crumpling"). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci. Copyright © 2017 American Society for Microbiology.
Genomic copy number variations in three Southeast Asian populations.
Ku, Chee-Seng; Pawitan, Yudi; Sim, Xueling; Ong, Rick T H; Seielstad, Mark; Lee, Edmund J D; Teo, Yik-Ying; Chia, Kee-Seng; Salim, Agus
2010-07-01
Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer. (c) 2010 Wiley-Liss, Inc.
Ma, G J; Markell, S G; Song, Q J; Qi, L L
2017-07-01
Genotyping-by-sequencing revealed a new downy mildew resistance gene, Pl 20 , from wild Helianthus argophyllus located on linkage group 8 of the sunflower genome and closely linked to SNP markers that facilitate the marker-assisted selection of resistance genes. Downy mildew (DM), caused by Plasmopara halstedii, is one of the most devastating and yield-limiting diseases of sunflower. Downy mildew resistance identified in wild Helianthus argophyllus accession PI 494578 was determined to be effective against the predominant and virulent races of P. halstedii occurring in the United States. The evaluation of 114 BC 1 F 2:3 families derived from the cross between HA 89 and PI 494578 against P. halstedii race 734 revealed that single dominant gene controls downy mildew resistance in the population. Genotyping-by-sequencing analysis conducted in the BC 1 F 2 population indicated that the DM resistance gene derived from wild H. argophyllus PI 494578 is located on the upper end of the linkage group (LG) 8 of the sunflower genome, as was determined single nucleotide polymorphism (SNP) markers associated with DM resistance. Analysis of 11 additional SNP markers previously mapped to this region revealed that the resistance gene, named Pl 20 , co-segregated with four markers, SFW02745, SFW09076, S8_11272025, and S8_11272046, and is flanked by SFW04358 and S8_100385559 at an interval of 1.8 cM. The newly discovered P. halstedii resistance gene has been introgressed from wild species into cultivated sunflower to provide a novel gene with DM resistance. The homozygous resistant individuals were selected from BC 2 F 2 progenies with the use of markers linked to the Pl 20 gene, and these lines should benefit the sunflower community for Helianthus improvement.
Zhang, Xiaojun; Li, Xin; Guo, Huijuan; Gong, Wenping; Jia, Juqing; Qiao, Linyi; Ren, Yongkang; Yang, Zujun; Chang, Zhijian
2014-01-01
Powdery mildew (PM) is a very destructive disease of wheat (Triticum aestivum L.). Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th. ponticum. Genomic in situ hybridization and molecular characterization of the alien introgression failed to identify alien chromatin. To study the genetics of resistance, CH7086 was crossed with susceptible genotypes. Segregation in F2 populations and F2:3 lines tested with Chinese Bgt race E09 under controlled conditions indicated that CH7086 carries a single dominant gene for powdery mildew resistance. Fourteen SSR and EST-PCR markers linked with the locus were identified. The genetic distances between the locus and the two flanking markers were 1.5 and 3.2 cM, respectively. Based on the locations of the markers by nullisomic-tetrasomic and deletion lines of ‘Chinese Spring’, the resistance gene was located in deletion bin 2BL-0.89-1.00. Conserved orthologous marker analysis indicated that the genomic region flanking the resistance gene has a high level of collinearity to that of rice chromosome 4 and Brachypodium chromosome 5. Both resistance specificities and tests of allelism suggested the resistance gene in CH7086 was different from previously reported powdery mildew resistance genes on 2BL, and the gene was provisionally designated PmCH86. Molecular analysis of PmCH86 compared with other genes for resistance to Bgt in the 2BL-0.89-1.00 region suggested that PmCH86 may be a new PM resistance gene, and it was therefore designated as Pm51. The closely linked flanking markers could be useful in exploiting this putative wheat-Thinopyrum translocation line for rapid transfer of Pm51 to wheat breeding programs. PMID:25415194
Dallas, Anne; Ilves, Heini; Shorenstein, Joshua; Judge, Adam; Spitler, Ryan; Contag, Christopher; Wong, Suet Ping; Harbottle, Richard P; MacLachlan, Ian; Johnston, Brian H
2013-01-01
We previously identified short synthetic shRNAs (sshRNAs) that target a conserved hepatitis C virus (HCV) sequence within the internal ribosome entry site (IRES) of HCV and potently inhibit HCV IRES-linked gene expression. To assess in vivo liver delivery and activity, the HCV-directed sshRNA SG220 was formulated into lipid nanoparticles (LNP) and injected i.v. into mice whose livers supported stable HCV IRES-luciferase expression from a liver-specific promoter. After a single injection, RNase protection assays for the sshRNA and 3H labeling of a lipid component of the nanoparticles showed efficient liver uptake of both components and long-lasting survival of a significant fraction of the sshRNA in the liver. In vivo imaging showed a dose-dependent inhibition of luciferase expression (>90% 1 day after injection of 2.5 mg/kg sshRNA) with t1/2 for recovery of about 3 weeks. These results demonstrate the ability of moderate levels of i.v.-injected, LNP-formulated sshRNAs to be taken up by liver hepatocytes at a level sufficient to substantially suppress gene expression. Suppression is rapid and durable, suggesting that sshRNAs may have promise as therapeutic agents for liver indications. PMID:24045712
Wang, Yong-Sheng; Gao, Wei; Li, Hong-Fen; Wang, Ze-Mu; Zhu, Jun; Zhao, Huan; Yan, Jian-Jun; Jia, En-Zhi; Yang, Zhi-Jian; Wang, Lian-Sheng
2012-04-01
Visfatin, a pro-inflammatory cytokine predominantly released from leucocytes, is correlated with coronary artery disease (CAD). We have previously reported that the -1535C>T polymorphism (rs1330082), which located on the promoter region of visfatin, was associated with decreased risk of CAD. Here, we investigated the underlying mechanism by which this polymorphism affects the genetic susceptibility to CAD. The difference of the promoter activities between -1535T variant and -1535C allele was tested by luciferase reporter gene assay. The difference of transcription factor binding activities between T and C allele was evaluated by electrophoretic mobility shift assay. In reporter gene assay, we showed that the T variant had a significantly reduced transcriptional activity compared with the C allele. The T-variant significantly attenuated the promoter binding affinity to nuclear transcription factors and this effect became much obvious after treatment with TNF-α. Moreover, competition experiment revealed that the retarded complex formed by T-1535- or C-1535-probe binding to nuclear extracts was nearly completely inhibited by unlabeled activator protein-1 (AP-1) specific probe, indicating that AP-1 might be the target nuclear effector. Taken together, our data provided potential mechanistic link between the visfatin -1535C>T polymorphism and reduced CAD risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Tongming; Difazio, Stephen P.; Gunter, Lee E
In an attempt to elucidate the molecular mechanisms of Melampsora rust resistance in Populus trichocarpa, we have mapped two resistance loci, MXC3 and MER, and intensively characterized the flanking genomic sequence for the MXC3 locus and the level of linkage disequilibrium (LD) in natural populations. We used an interspecific backcross pedigree and a genetic map that was highly saturated with AFLP and SSR markers, and assembled shotgun-sequence data in the region containing markers linked to MXC3. The two loci were mapped to different linkage groups. Linkage disequilibrium for MXC3 was confined to two closely linked regions spanning 34 and 16more » kb, respectively. The MXC3 region also contained six disease-resistance candidate genes. The MER and MXC3 loci are clearly distinct, and may have different mechanisms of resistance, as different classes of putative resistance genes were present near each locus. The suppressed recombination previously observed in the MXC3 region was possibly caused by extensive hemizygous rearrangements confined to the original parent tree. The relatively low observed LD may facilitate association studies using candidate genes for rust resistance, but will probably inhibit marker-aided selection.« less
Pardos de la Gandara, Maria; Borges, Vitor; Chung, Marilyn; Milheiriço, Catarina; Gomes, João Paulo; de Lencastre, Herminia; Tomasz, Alexander
2018-06-01
Methicillin-resistant Staphylococcus aureus (MRSA) strains carry either a mecA - or a mecC -mediated mechanism of resistance to beta-lactam antibiotics, and the phenotypic expression of resistance shows extensive strain-to-strain variation. In recent communications, we identified the genetic determinants associated with the stringent stress response that play a major role in the antibiotic resistant phenotype of the historically earliest "archaic" clone of MRSA and in the mecC -carrying MRSA strain LGA251. Here, we sought to test whether or not the same genetic determinants also contribute to the resistant phenotype of highly and homogeneously resistant (H*R) derivatives of a major contemporary MRSA clone, USA300. We found that the resistance phenotype was linked to six genes ( fruB , gmk , hpt , purB , prsA , and relA ), which were most frequently targeted among the analyzed 20 H*R strains (one mutation per clone in 19 of the 20 H*R strains). Besides the strong parallels with our previous findings (five of the six genes matched), all but one of the repeatedly targeted genes were found to be linked to guanine metabolism, pointing to the key role that this pathway plays in defining the level of antibiotic resistance independent of the clonal type of MRSA. Copyright © 2018 American Society for Microbiology.
The red-green visual pigment gene region in adrenoleukodystrophy.
Aubourg, P; Feil, R; Guidoux, S; Kaplan, J C; Moser, H; Kahn, A; Mandel, J L
1990-01-01
Although recent data established that a specific very-long-chain fatty acyl-CoA synthetase is defective in X-linked adrenoleukodystrophy (ALD), the ALD gene is still unidentified. The ALD locus has been mapped to Xq28, like the red and green color pigment genes. Abnormal color vision has been observed in 12 of 27 patients with adrenomyeloneuropathy (AMN), a milder form of ALD. Furthermore, rearrangements of the color vision gene cluster were found in four of eight ALD kindreds. This led us to propose that a single DNA rearrangement could underlie both ALD and abnormal color vision in these patients. Study of 34 French ALD patients failed to reveal a higher than expected frequency of green/red visual pigment rearrangements 3' to the red/green color vision gene complex. The previous report of such rearrangements was based on small numbers and lack of knowledge that the frequency of "abnormal" color vision arrays on molecular analysis was twice as high as expected on the basis of the frequency of phenotypic color vision defects. The red/green color pigment (R/GCP) region was studied by pulsed-field gel electrophoresis in 14 of these patients, and we did not find any fragment size difference between the patients and normal individuals who have the same number of pigment genes. The R/GCP region was also analyzed in 29 French and seven North American ALD patients by using six genomic DNA probes, isolated from a cosmid walk, that flank the color vision genes. No deletions were found with probes that lie 3' of the green pigment genes. One of the eight previously reported ALD individuals has a long deletion 5' of the red pigment gene, a deletion causing blue cone monochromacy. This finding and the previous findings of a 45% frequency of phenotypic color vision defects in patients with AMN may suggest that the ALD/AMN gene lies 5' to the red pigment gene and that the frequent phenotypic color vision anomalies owe their origin to deleted DNA that includes regulatory genes for color vision. It is possible, however, that phenotypic color vision anomalies in AMN may be phenocopies secondary to retinal or neural involvement by the disease. The single case of blue cone monochromacy may therefore be a fortuitous coincidence of two diseases. Images p[466]-a Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:2309698
Characterizations of 9p21 candidate genes in familial melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, G.J.; Flores, J.F.; Glendening, J.M.
We have previously collected and characterized 16 melanoma families for the inheritance of a familial melanoma predisposition gene on 9p21. Clear evidence for genetic linkage has been detected in 8 of these families with the 9p21 markers D9S126 and 1FNA, while linkage of the remaining families to this region is less certain. A candidate for the 9p21 familial melanoma gene, the cyclin kinase inhibitor gene p16 (also known as the multiple tumor suppressor 1 (MTS1) gene), has been recently indentified. Notably, a nonsense mutation within the p16 gene has been detected in the lymphoblastoid cell line DNA from a dysplasticmore » nevus syndrome (DNS), or familial melanoma, patient. The p16 gene is also known to be frequently deleted or mutated in a variety of tumor cell lines (including melanoma) and resides within a region that has been defined as harboring the 9p21 melanoma predisposition locus. This region is delineated on the distal side by the marker D9S736 (which resides just distal to the p16 gene) and extends in a proximal direction to the marker D9S171. Overall, the entire distance between these two loci is estimated at 3-5Mb. Preliminary analysis of our two largest 9p21-linked melanoma kindreds (by direct sequencing of PCR products) has not yet revealed mutations within the coding region of the p16 gene. Others have reported that 8/11 unrelated 9p21-linked melanoma families do not appear to carry p16 mutations; thus the possibility exists that p16 is not a melanoma susceptibility gene per se, although it appears to play some role in melanoma tumor progression. Our melanoma kindred DNAs are currently being analyzed by SSCP using primers that amplify exons of other candidate genes from the 9p21 region implicated in familial melanoma. These novel genes reside within a distinct critical region of homozygous loss in melanoma which is located >2 Mb from the p16 gene on 9p21.« less
Faster-X Evolution of Gene Expression in Drosophila
Meisel, Richard P.; Malone, John H.; Clark, Andrew G.
2012-01-01
DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459
Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare).
Singh, Manjit; Burson, Byron L; Finlayson, Scott A
2007-08-01
Asexual reproduction through seeds, or apomixis, is a process that holds much promise for agricultural advances. However, the molecular mechanisms underlying apomixis are currently poorly understood. To identify genes related to female gametophyte development in apomictic ovaries of buffelgrass (Pennisetum ciliare (L.) Link), Suppression Subtractive Hybridization of ovary cDNA with leaf cDNA was performed. Through macroarray screening of subtracted cDNAs two genes were identified, Pca21 and Pca24, that showed differential expression between apomictic and sexual ovaries. Sequence analysis showed that both Pca21 and Pca24 are novel genes not previously characterized in plants. Pca21 shows homology to two wheat genes that are also expressed during reproductive development. Pca24 has similarity to coiled-coil-helix-coiled-coil-helix (CHCH) domain containing proteins from maize and sugarcane. Northern blot analysis revealed that both of these genes are expressed throughout female gametophyte development in apomictic ovaries. In situ hybridizations localized the transcript of these two genes to the developing embryo sacs in the apomictic ovaries. Based on the expression patterns it was concluded that Pca21 and Pca24 likely play a role during apomictic development in buffelgrass.
Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante
2015-11-01
Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.
Cell type-selective disease-association of genes under high regulatory load.
Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse
2015-10-15
We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3' UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bryson, Robert W; Jaeger, Jef R; Lemos-Espinal, Julio A; Lazcano, David
2012-09-01
Interpretations of phylogeographic patterns can change when analyses shift from single gene-tree to multilocus coalescent analyses. Using multilocus coalescent approaches, a species tree and divergence times can be estimated from a set of gene trees while accounting for gene-tree stochasticity. We utilized the conceptual strengths of a multilocus coalescent approach coupled with complete range-wide sampling to examine the speciation history of a broadly distributed, North American warm-desert toad, Anaxyrus punctatus. Phylogenetic analyses provided strong support for three major lineages within A. punctatus. Each lineage broadly corresponded to one of three desert regions. Early speciation in A. punctatus appeared linked to late Miocene-Pliocene development of the Baja California peninsula. This event was likely followed by a Pleistocene divergence associated with the separation of the Chihuahuan and Sonoran Deserts. Our multilocus coalescent-based reconstruction provides an informative contrast to previous single gene-tree estimates of the evolutionary history of A. punctatus. Copyright © 2012 Elsevier Inc. All rights reserved.
Assembly of YAC contigs on the long arm of human chromosome 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.; Fujiwara, T.M.; Wang, J.X.
1994-09-01
We have previously identified approximately 2,000 chromosome 2-specific YACs by screening the CEPH Mark I YAC library (`Midi- YACs`). Using STS content mapping, we have been able to order groups of these YACs along chromosome 2q. The four biggest YAC groups were associated with VIL (2q35), FN (2q34), PAX3 (2q36), ALPI (2q37) and contained 113, 107, 79, and 63 YACs, respectively. We have identified the minimal tiling paths for most YAC groups and determined the insert sizes of over 300 YACs. Furthermore, on human chromosome 2q31-q37, 15 microsatellite markers were linked to various expressed genes through overlapping YACs and themore » physical distance of microsatellites to expressed genes was determined. The precise mapping of a set of highly informative microsatellite markers with respect to known genes provides a useful tool for linkage studies and the identification of disease genes from the long arm of human chromosome 2.« less
Biological Insights From 108 Schizophrenia-Associated Genetic Loci
Ripke, Stephan; Neale, Benjamin M; Corvin, Aiden; Walters, James TR; Farh, Kai-How; Holmans, Peter A; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A; Huang, Hailiang; Pers, Tune H; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A; Begemann, Martin; Belliveau, Richard A; Bene, Judit; Bergen, Sarah E; Bevilacqua, Elizabeth; Bigdeli, Tim B; Black, Donald W; Bruggeman, Richard; Buccola, Nancy G; Buckner, Randy L; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M; Carr, Vaughan J; Carrera, Noa; Catts, Stanley V; Chambert, Kimberley D; Chan, Raymond CK; Chan, Ronald YL; Chen, Eric YH; Cheng, Wei; Cheung, Eric FC; Chong, Siow Ann; Cloninger, C Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J; Curtis, David; Davidson, Michael; Davis, Kenneth L; Degenhardt, Franziska; Del Favero, Jurgen; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H; Farrell, Martilias S; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B; Friedl, Marion; Friedman, Joseph I; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M; Henskens, Frans A; Herms, Stefan; Hirschhorn, Joel N; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V; Hougaard, David M; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C; Kennedy, James L; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K; Laurent, Claudine; Lee, Jimmy; Lee, S Hong; Legge, Sophie E; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M; Lubinski, Jan; Lönnqvist, Jouko; Macek, Milan; Magnusson, Patrik KE; Maher, Brion S; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W; McDonald, Colm; McIntosh, Andrew M; Meier, Sandra; Meijer, Carin J; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I; Metspalu, Andres; Michie, Patricia T; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W; Mors, Ole; Murphy, Kieran C; Murray, Robin M; Myin-Germeys, Inez; Müller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A; Nestadt, Gerald; Nicodemus, Kristin K; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J; Powell, John; Price, Alkes; Pulver, Ann E; Purcell, Shaun M; Quested, Digby; Rasmussen, Henrik B; Reichenberg, Abraham; Reimers, Mark A; Richards, Alexander L; Roffman, Joshua L; Roussos, Panos; Ruderfer, Douglas M; Salomaa, Veikko; Sanders, Alan R; Schall, Ulrich; Schubert, Christian R; Schulze, Thomas G; Schwab, Sibylle G; Scolnick, Edward M; Scott, Rodney J; Seidman, Larry J; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M; Sim, Kang; Slominsky, Petr; Smoller, Jordan W; So, Hon-Cheong; Spencer, Chris C A; Stahl, Eli A; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E; Strengman, Eric; Strohmaier, Jana; Stroup, T Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M; Szatkiewicz, Jin P; Söderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T; Weiser, Mark; Wildenauer, Dieter B; Williams, Nigel M; Williams, Stephanie; Witt, Stephanie H; Wolen, Aaron R; Wong, Emily HM; Wormley, Brandon K; Xi, Hualin Simon; Zai, Clement C; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R; Stefansson, Kari; Visscher, Peter M; Adolfsson, Rolf; Andreassen, Ole A; Blackwood, Douglas HR; Bramon, Elvira; Buxbaum, Joseph D; Børglum, Anders D; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V; Gill, Michael; Gurling, Hugh; Hultman, Christina M; Iwata, Nakao; Jablensky, Assen V; Jönsson, Erik G; Kendler, Kenneth S; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F; Li, Qingqin S; Liu, Jianjun; Malhotra, Anil K; McCarroll, Steven A; McQuillin, Andrew; Moran, Jennifer L; Mortensen, Preben B; Mowry, Bryan J; Nöthen, Markus M; Ophoff, Roel A; Owen, Michael J; Palotie, Aarno; Pato, Carlos N; Petryshen, Tracey L; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P; Rujescu, Dan; Sham, Pak C; Sklar, Pamela; St Clair, David; Weinberger, Daniel R; Wendland, Jens R; Werge, Thomas; Daly, Mark J; Sullivan, Patrick F; O’Donovan, Michael C
2014-01-01
Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain providing biological plausibility for the findings. Many findings have the potential to provide entirely novel insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that play important roles in immunity, providing support for the hypothesized link between the immune system and schizophrenia. PMID:25056061
Chen, Feng; Ro, Dae-Kyun; Petri, Jana; Gershenzon, Jonathan; Bohlmann, Jörg; Pichersky, Eran; Tholl, Dorothea
2004-01-01
Arabidopsis is emerging as a model system to study the biochemistry, biological functions, and evolution of plant terpene secondary metabolism. It was previously shown that the Arabidopsis genome contains over 30 genes potentially encoding terpene synthases (TPSs). Here we report the characterization of a monoterpene synthase encoded by two identical, closely linked genes, At3g25820 and At3g25830. Transcripts of these genes were detected almost exclusively in roots. An At3g25820/At3g25830 cDNA was expressed in Escherichia coli, and the protein thus produced was shown to catalyze the formation of 10 volatile monoterpenes from geranyl diphosphate, with 1,8-cineole predominating. This protein was therefore designated AtTPS-Cin. The purified recombinant AtTPS-Cin displayed similar biochemical properties to other known monoterpene synthases, except for a relatively low Km value for geranyl diphosphate of 0.2 μm. At3g25820/At3g25830 promoter activity, measured with a β-glucuronidase (GUS) reporter gene, was primarily found in the epidermis, cortex, and stele of mature primary and lateral roots, but not in the root meristem or the elongation zone. Although the products of AtTPS-Cin were not detected by direct extraction of plant tissue, the recent report of 1,8-cineole as an Arabidopsis root volatile (Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM [2004] Plant Physiol 135: 47–58) suggests that the enzyme products may be released into the rhizosphere rather than accumulated. Among Arabidopsis TPSs, AtTPS-Cin is most similar to the TPS encoded by At3g25810, a closely linked gene previously shown to be exclusively expressed in flowers. At3g25810 TPS catalyzes the formation of a set of monoterpenes that is very similar to those produced by AtTPS-Cin, but its major products are myrcene and (E)-β-ocimene, and it does not form 1,8-cineole. These data demonstrate that divergence of organ expression pattern and product specificity are ongoing processes within the Arabidopsis TPS family. PMID:15299125
Jamrozy, Dorota; Mostowy, Rafal; Anderson, Annaliesa; Nickerson, Emma K.; Thaipadungpanit, Janjira; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Tandhavanant, Sarunporn; Wikraiphat, Chanthiwa; Wongsuvan, Gumphol; Teerawattanasook, Nittaya; Jutrakul, Yaowaruk; Srisurat, Nuttiya; Chaimanee, Prajuab; Eoin West, T.; Blane, Beth; Peacock, Sharon J.
2017-01-01
ABSTRACT Staphylococcus argenteus is a newly named species previously described as a divergent lineage of Staphylococcus aureus that has recently been shown to have a global distribution. Despite growing evidence of the clinical importance of this species, knowledge about its population epidemiology and genomic architecture is limited. We used whole-genome sequencing to evaluate and compare S. aureus (n = 251) and S. argenteus (n = 68) isolates from adults with staphylococcal sepsis at several hospitals in northeastern Thailand between 2006 and 2013. The majority (82%) of the S. argenteus isolates were of multilocus sequence type 2250 (ST2250). S. aureus was more diverse, although 43% of the isolates belonged to ST121. Bayesian analysis suggested an S. argenteus ST2250 substitution rate of 4.66 (95% confidence interval [CI], 3.12 to 6.38) mutations per genome per year, which was comparable to the S. aureus ST121 substitution rate of 4.07 (95% CI, 2.61 to 5.55). S. argenteus ST2250 emerged in Thailand an estimated 15 years ago, which contrasts with the S. aureus ST1, ST88, and ST121 clades that emerged around 100 to 150 years ago. Comparison of S. argenteus ST2250 genomes from Thailand and a global collection indicated a single introduction into Thailand, followed by transmission to local and more distant countries in Southeast Asia and further afield. S. argenteus and S. aureus shared around half of their core gene repertoire, indicating a high level of divergence and providing strong support for their classification as separate species. Several gene clusters were present in ST2250 isolates but absent from the other S. argenteus and S. aureus study isolates. These included multiple exotoxins and antibiotic resistance genes that have been linked previously with livestock-associated S. aureus, consistent with a livestock reservoir for S. argenteus. These genes appeared to be associated with plasmids and mobile genetic elements and may have contributed to the biological success of ST2250. PMID:28679748
Vernet, Nadège; Mahadevaiah, Shantha K; Yamauchi, Yasuhiro; Decarpentrie, Fanny; Mitchell, Michael J; Ward, Monika A; Burgoyne, Paul S
2014-06-01
Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis.
Vernet, Nadège; Mahadevaiah, Shantha K.; Yamauchi, Yasuhiro; Decarpentrie, Fanny; Mitchell, Michael J.; Ward, Monika A.; Burgoyne, Paul S.
2014-01-01
Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis. PMID:24967676
Wang, Teresa W.; Vermeulen, Roel C.H.; Hu, Wei; Liu, Gang; Xiao, Xiaohui; Alekseyev, Yuriy; Xu, Jun; Reiss, Boris; Steiling, Katrina; Downward, George S.; Silverman, Debra T.; Wei, Fusheng; Wu, Guoping; Li, Jihua; Lenburg, Marc E.; Rothman, Nathaniel; Spira, Avrum; Lan, Qing
2015-01-01
In China’s rural counties of Xuanwei and Fuyuan, lung cancer rates are among the highest in the world. While the elevated disease risk in this population has been linked to the usage of smoky (bituminous) coal as compared to smokeless (anthracite) coal, the underlying molecular changes associated with this exposure remains unclear. To understand the physiologic effects of smoky coal exposure, we analyzed the genome-wide gene-expression profiles in buccal epithelial cells collected from healthy, non-smoking female residents of Xuanwei and Fuyuan who burn smoky (n = 26) and smokeless (n = 9) coal. Gene-expression was profiled via microarrays, and changes associated with coal type were correlated to household levels of fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs). Expression levels of 282 genes were altered with smoky versus smokeless coal exposure (P < 0.005), including the 2-fold increase of proinflammatory IL8 and decrease of proapoptotic CASP3. This signature was more correlated with carcinogenic PAHs (e.g. Benzo[a]pyrene; r = 0.41) than with non-carcinogenic PAHs (e.g. Fluorene; r = 0.08) or PM2.5 (r = 0.05). Genes altered with smoky coal exposure were concordantly enriched with tobacco exposure in previously profiled buccal biopsies of smokers and non-smokers (GSEA, q < 0.05). This is the first study to identify a signature of buccal epithelial gene-expression that is associated with smoky coal exposure, which in part is similar to the molecular response to tobacco smoke, thereby lending biologic plausibility to prior epidemiological studies that have linked this exposure to lung cancer risk. PMID:26468118
van Rooij, D; Hoekstra, P J; Bralten, J; Hakobjan, M; Oosterlaan, J; Franke, B; Rommelse, N; Buitelaar, J K; Hartman, C A
2015-11-01
Impairment of response inhibition has been implicated in attention-deficit/hyperactivity disorder (ADHD). Dopamine neurotransmission has been linked to the behavioural and neural correlates of response inhibition. The current study aimed to investigate the relationship of polymorphisms in two dopamine-related genes, the catechol-O-methyltransferase gene (COMT) and the dopamine transporter gene (SLC6A3 or DAT1), with the neural and behavioural correlates of response inhibition. Behavioural and neural measures of response inhibition were obtained in 185 adolescents with ADHD, 111 of their unaffected siblings and 124 healthy controls (mean age 16.9 years). We investigated the association of DAT1 and COMT variants on task performance and whole-brain neural activation during response inhibition in a hypothesis-free manner. Additionally, we attempted to explain variance in previously found ADHD effects on neural activation during response inhibition using these DAT1 and COMT polymorphisms. The whole-brain analyses demonstrated large-scale neural activation changes in the medial and lateral prefrontal, subcortical and parietal regions of the response inhibition network in relation to DAT1 and COMT polymorphisms. Although these neural activation changes were associated with different task performance measures, no relationship was found between DAT1 or COMT variants and ADHD, nor did variants in these genes explain variance in the effects of ADHD on neural activation. These results suggest that dopamine-related genes play a role in the neurobiology of response inhibition. The limited associations between gene polymorphisms and task performance further indicate the added value of neural measures in linking genetic factors and behavioural measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojis, T.L.; Heinzmann, C.; Ngo, J.T.
1996-02-01
In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yieldedmore » a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families. 39 refs., 4 figs., 3 tabs.« less
Wang, Teresa W; Vermeulen, Roel C H; Hu, Wei; Liu, Gang; Xiao, Xiaohui; Alekseyev, Yuriy; Xu, Jun; Reiss, Boris; Steiling, Katrina; Downward, George S; Silverman, Debra T; Wei, Fusheng; Wu, Guoping; Li, Jihua; Lenburg, Marc E; Rothman, Nathaniel; Spira, Avrum; Lan, Qing
2015-12-01
In China's rural counties of Xuanwei and Fuyuan, lung cancer rates are among the highest in the world. While the elevated disease risk in this population has been linked to the usage of smoky (bituminous) coal as compared to smokeless (anthracite) coal, the underlying molecular changes associated with this exposure remains unclear. To understand the physiologic effects of smoky coal exposure, we analyzed the genome-wide gene-expression profiles in buccal epithelial cells collected from healthy, non-smoking female residents of Xuanwei and Fuyuan who burn smoky (n = 26) and smokeless (n = 9) coal. Gene-expression was profiled via microarrays, and changes associated with coal type were correlated to household levels of fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs). Expression levels of 282 genes were altered with smoky versus smokeless coal exposure (P < 0.005), including the 2-fold increase of proinflammatory IL8 and decrease of proapoptotic CASP3. This signature was more correlated with carcinogenic PAHs (e.g. Benzo[a]pyrene; r = 0.41) than with non-carcinogenic PAHs (e.g. Fluorene; r = 0.08) or PM2.5 (r = 0.05). Genes altered with smoky coal exposure were concordantly enriched with tobacco exposure in previously profiled buccal biopsies of smokers and non-smokers (GSEA, q < 0.05). This is the first study to identify a signature of buccal epithelial gene-expression that is associated with smoky coal exposure, which in part is similar to the molecular response to tobacco smoke, thereby lending biologic plausibility to prior epidemiological studies that have linked this exposure to lung cancer risk. Published by Oxford University Press 2015.
Ichikawa, Shoji; Koller, Daniel L; Curry, Leah R; Lai, Dongbing; Xuei, Xiaoling; Pugh, Elizabeth W; Tsai, Ya-Yu; Doheny, Kimberly F; Edenberg, Howard J; Hui, Siu L; Foroud, Tatiana; Peacock, Munro; Econs, Michael J
2008-01-01
Osteoporosis is a complex disease with both genetic and environmental risk factors. A major determinant of osteoporotic fractures is peak BMD obtained during young adulthood. We previously reported linkage of chromosome 1q (LOD = 4.3) with variation in spinal areal BMD in healthy premenopausal white women. In this study, we used a two-stage genotyping approach to identify genes in the linked region that contributed to the variation of femoral neck and lumbar spine areal BMD. In the first stage, 654 SNPs across the linked region were genotyped in a sample of 1309 premenopausal white women. The most significant evidence of association for lumbar spine (p = 1.3 × 10−6) was found with rs1127091 in the GATAD2B gene. In the second stage, 52 SNPs around this candidate gene were genotyped in an expanded sample of 1692 white women. Significant evidence of association with spinal BMD (p < 10−5), and to a lesser extent with femoral neck BMD, was observed with eight SNPs within a single 230-kb linkage disequilibrium (LD) block. The most significant SNP (p = 3.4 × 10−7) accounted for >2.5% of the variation in spinal BMD in these women. The 230-kb LD block contains 11 genes, but because of the extensive LD, the specific gene(s) contributing to the variation in BMD could not be determined. In conclusion, the significant association between spinal BMD and SNPs in the 230-kb LD block in chromosome 1q indicates that genetic factor(s) in this block plays an important role in peak spinal BMD in healthy premenopausal white women. PMID:18505370
Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs.
Kubinyi, Enikő; Bence, Melinda; Koller, Dora; Wan, Michele; Pergel, Eniko; Ronai, Zsolt; Sasvari-Szekely, Maria; Miklósi, Ádám
2017-01-01
Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR) 19208A/G single nucleotide polymorphism (SNP) was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins) receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1) OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2) their effects differ between breeds.
Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs
Kubinyi, Enikő; Bence, Melinda; Koller, Dora; Wan, Michele; Pergel, Eniko; Ronai, Zsolt; Sasvari-Szekely, Maria; Miklósi, Ádám
2017-01-01
Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR) 19208A/G single nucleotide polymorphism (SNP) was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins) receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1) OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2) their effects differ between breeds. PMID:28936190
Piton, Amélie; Redin, Claire; Mandel, Jean-Louis
2013-01-01
Because of the unbalanced sex ratio (1.3–1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases. PMID:23871722
Giorgio, Elisa; Brussino, Alessandro; Biamino, Elisa; Belligni, Elga Fabia; Bruselles, Alessandro; Ciolfi, Andrea; Caputo, Viviana; Pizzi, Simone; Calcia, Alessandro; Di Gregorio, Eleonora; Cavalieri, Simona; Mancini, Cecilia; Pozzi, Elisa; Ferrero, Marta; Riberi, Evelise; Borelli, Iolanda; Amoroso, Antonio; Ferrero, Giovanni Battista; Tartaglia, Marco; Brusco, Alfredo
2017-05-01
More than 100 X-linked intellectual disability (X-LID) genes have been identified to be involved in 10-15% of intellectual disability (ID). To identify novel possible candidates, we selected 18 families with a male proband affected by isolated or syndromic ID. Pedigree and/or clinical presentation suggested an X-LID disorder. After exclusion of known genetic diseases, we identified seven cases whose mother showed a skewed X-inactivation (>80%) that underwent whole exome sequencing (WES, 50X average depth). WES allowed to solve the genetic basis in four cases, two of which (Coffin-Lowry syndrome, RPS6K3 gene; ATRX syndrome, ATRX gene) had been missed by previous clinical/genetics tests. One further ATRX case showed a complex phenotype including pontocerebellar atrophy (PCA), possibly associated to an unidentified PCA gene mutation. In a case with suspected Lujan-Fryns syndrome, a c.649C>T (p.Pro217Ser) MECP2 missense change was identified, likely explaining the neurological impairment, but not the marfanoid features, which were possibly associated to the p.Thr1020Ala variant in fibrillin 1. Finally, a c.707T>G variant (p.Phe236Cys) in the DMD gene was identified in a patient retrospectively recognized to be affected by Becker muscular dystrophy (BMD, OMIM 300376). Overall, our data show that WES may give hints to solve complex ID phenotypes with a likely X-linked transmission, and that a significant proportion of these orphan conditions might result from concomitant mutations affecting different clinically associated genes. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Genome-wide signatures of convergent evolution in echolocating mammals
Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.
2013-01-01
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325
The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí
SUMMARYThe genusTrichodermacontains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism inT. reesei,T. atroviride, andT. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 tomore » 11,000 genes of eachTrichodermaspecies discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved inN-linked glycosylation was detected, as were indications for the ability ofTrichodermaspp. to generate hybrid galactose-containingN-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique toTrichoderma, and these warrant further investigation. We found interesting expansions in theTrichodermagenus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique toT. atrovirideis the duplication of the alternative sulfur amino acid synthesis pathway.« less
Nance-Horan syndrome: linkage analysis in 4 families refines localization in Xp22.31-p22.13 region.
Toutain, A; Ronce, N; Dessay, B; Robb, L; Francannet, C; Le Merrer, M; Briard, M L; Kaplan, J; Moraine, C
1997-02-01
Nance-Horan syndrome (NHS) is an X-linked disease characterized by severe congenital cataract with microcornea, distinctive dental findings, evocative facial features and mental impairment in some cases. Previous linkage studies have placed the NHS gene in a large region from DXS143 (Xp22.31) to DXS451 (Xp22.13). To refine this localization further, we have performed linkage analysis in four families. As the maximum expected Lod score is reached in each family for several markers in the Xp22.31-p22.13 region and linkage to the rest of the X chromosome can be excluded, our study shows that NHS is a genetically homogeneous condition. An overall maximum two-point Lod score of 9.36 (theta = 0.00) is obtained with two closely linked markers taken together. DXS207 and DXS1053 in Xp22.2. Recombinant haplotypes indicate that the NHS gene lies between DXS85 and DXS1226. Multipoint analysis yield a maximum Lod score of 9.45 with the support interval spanning a 15-cM region that includes DXS16 and DXS1229/365. The deletion map of the Xp22.3-Xp21.3 region suggests that the phenotypic variability of NHS is not related to gross rearrangement of sequences of varying size but rather to allelic mutations in a single gene, presumably located proximal to DXS16 and distal to DXS1226. Comparison with the map position of the mouse Xcat mutation supports the location of the NHS gene between the GRPR and PDHA1 genes in Xp22.2.
The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species
Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio
2016-01-01
SUMMARY The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. PMID:26864432
The ankyrin-3 gene is associated with posttraumatic stress disorder and externalizing comorbidity
Logue, Mark W.; Solovieff, Nadia; Leussis, Melanie P.; Wolf, Erika J.; Melista, Efi; Baldwin, Clinton; Koenen, Karestan C.; Petryshen, Tracey; Miller, Mark W.
2013-01-01
Background The ankyrin 3 gene (ANK3) produces the ankyrin G protein that plays an integral role in regulating neuronal activity. Previous studies have linked ANK3 to bipolar disorder and schizophrenia. A recent mouse study suggests that ANK3 may regulate behavioral disinhibition and stress reactivity. This led us to hypothesize that ANK3 might also be associated with stress-related psychopathology such as posttraumatic stress disorder (PTSD), as well as disorders of the externalizing spectrum such as antisocial personality disorder and substance-related disorders that are etiologically linked to impulsivity and temperamental disinhibition. Methods We examined the possibility of association between ANK3 SNPs and both PTSD and externalizing (defined by a factor score representing a composite of adult antisociality and substance abuse) in a cohort of white non-Hispanic combat veterans and their intimate partners (N=554). Initially, we focused on rs9804190— a SNP previously reported to be associated with bipolar disorder, schizophrenia, and ankyrin G expression in brain. Then we examined 358 additional ANK3 SNPs utilizing a multiple-testing correction. Results rs9804190 was associated with both externalizing and PTSD (p=0.028 and p=0.042 respectively). Analysis of other ANK3 SNPs identified several that were more strongly associated with either trait. The most significant association with externalizing was observed at rs1049862 (p=0.00040, pcorrected=0.60). The most significant association with PTSD (p=0.00060, pcorrected=0.045) was found with three SNPs in complete linkage disequilibrium (LD)—rs28932171, rs11599164, and rs17208576. Conclusions These findings support a role of ANK3 in risk of stress-related and externalizing disorders, beyond its previous associations with bipolar disorder and schizophrenia. PMID:23796624
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro Gonzalez, Hector F; Classen, Aimee T; Austin, Emily E
2012-01-01
Molecular innovations in microbial ecology are allowing scientists to correlate microbial community characteristics to a variety of ecosystem functions. However, to date the majority of soil microbial ecology studies target phylogenetic rRNA markers, while a smaller number target functional markers linked to soil processes. We validated a new primer set targeting citrate synthase (gtlA), a central enzyme in the citric acid cycle linked to aerobic respiration. Primers for a 225 bp fragment suitable for qPCR were tested for specificity and assay performance verified on multiple soils. Clone libraries of the PCR-amplified gtlA gene exhibited high diversity and recovered most majormore » groups identified in a previous 16S rRNA gene study. Comparisons among bacterial communities based on gtlA sequencing using UniFrac revealed differences among the experimental soils studied. Conditions for gtlA qPCR were optimized and calibration curves were highly linear (R2 > 0.99) over six orders of magnitude (4.56 10^5 to 4.56 10^11 copies), with high amplification efficiencies (>1.7). We examined the performance of the gtlA qPCR across a variety of soils and ecosystems, spanning forests, old fields and agricultural areas. We were able to amplify gtlA genes in all tested soils, and detected differences in gtlA abundance within and among environments. These results indicate that a fully developed gtlA-targeted qPCR approach may have potential to link microbial community characteristics with changes in soil respiration.« less
Jiang, Yong-hui; Yuen, Ryan K.C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T.; Chrysler, Christina; Drmic, Irene E.; Howe, Jennifer L.; Lau, Lynette; Marshall, Christian R.; Merico, Daniele; Nalpathamkalam, Thomas; Thiruvahindrapuram, Bhooma; Thompson, Ann; Uddin, Mohammed; Walker, Susan; Luo, Jun; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Ring, Robert H.; Wang, Jian; Lajonchere, Clara; Wang, Jun; Shih, Andy; Szatmari, Peter; Yang, Huanming; Dawson, Geraldine; Li, Yingrui; Scherer, Stephen W.
2013-01-01
Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms. PMID:23849776
Moreno-Ramos, Oscar A.; Olivares, Ana María; Haider, Neena B.; de Autismo, Liga Colombiana; Lattig, María Claudia
2015-01-01
Autism spectrum disorders (ASDs) are a range of complex neurodevelopmental conditions principally characterized by dysfunctions linked to mental development. Previous studies have shown that there are more than 1000 genes likely involved in ASD, expressed mainly in brain and highly interconnected among them. We applied whole exome sequencing in Colombian—South American trios. Two missense novel SNVs were found in the same child: ALDH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq NM_003593: c.146C>T (p.S49L)). Gene expression studies reveal that Aldh1a3 and Foxn1 are expressed in ~E13.5 mouse embryonic brain, as well as in adult piriform cortex (PC; ~P30). Conserved Retinoic Acid Response Elements (RAREs) upstream of human ALDH1A3 and FOXN1 and in mouse Aldh1a3 and Foxn1 genes were revealed using bioinformatic approximation. Chromatin immunoprecipitation (ChIP) assay using Retinoid Acid Receptor B (Rarb) as the immunoprecipitation target suggests RA regulation of Aldh1a3 and Foxn1 in mice. Our results frame a possible link of RA regulation in brain to ASD etiology, and a feasible non-additive effect of two apparently unrelated variants in ALDH1A3 and FOXN1 recognizing that every result given by next generation sequencing should be cautiously analyzed, as it might be an incidental finding. PMID:26352270
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas.
Campbell, Joshua D; Yau, Christina; Bowlby, Reanne; Liu, Yuexin; Brennan, Kevin; Fan, Huihui; Taylor, Alison M; Wang, Chen; Walter, Vonn; Akbani, Rehan; Byers, Lauren Averett; Creighton, Chad J; Coarfa, Cristian; Shih, Juliann; Cherniack, Andrew D; Gevaert, Olivier; Prunello, Marcos; Shen, Hui; Anur, Pavana; Chen, Jianhong; Cheng, Hui; Hayes, D Neil; Bullman, Susan; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Sadeghi, Sara; Mungall, Karen L; Robertson, A Gordon; Benz, Christopher; Schultz, Andre; Kanchi, Rupa S; Gay, Carl M; Hegde, Apurva; Diao, Lixia; Wang, Jing; Ma, Wencai; Sumazin, Pavel; Chiu, Hua-Sheng; Chen, Ting-Wen; Gunaratne, Preethi; Donehower, Larry; Rader, Janet S; Zuna, Rosemary; Al-Ahmadie, Hikmat; Lazar, Alexander J; Flores, Elsa R; Tsai, Kenneth Y; Zhou, Jane H; Rustgi, Anil K; Drill, Esther; Shen, Ronglei; Wong, Christopher K; Stuart, Joshua M; Laird, Peter W; Hoadley, Katherine A; Weinstein, John N; Peto, Myron; Pickering, Curtis R; Chen, Zhong; Van Waes, Carter
2018-04-03
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches. Published by Elsevier Inc.
[Autism and language: some molecular aspects].
Benítez-Burraco, A
Autism is a cognitive disorder that includes among its distinguishing symptoms a deficit in the pragmatic component of language. Yet, it seems that there are certain subtypes where other deficiencies have been seen to affect the phonological, lexical, syntactical and morphological components of language. Linkage and association analyses aimed at identifying the genes that constitute causal or risk factors for the disorder have allowed researchers to identify certain loci that appear to be linked or associated to a statistically significant degree with autism endophenotypes of a linguistic nature. The target genes in this type of analysis play a number of different biological roles related with the development and functioning of the nervous system. On certain occasions, the loci thus identified coincide with others that had previously been linked to diverse language disorders (one paradigmatic case would be that of the chromosomal region 7q31 in relation to specific language disorder). This suggests that such disorders and autism might share a partially common genetic foundation that would account for the similarities observed between them at the phenotypic level.
Fancb deficiency impairs hematopoietic stem cell function
Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R.; Namekawa, Satoshi H.; Pang, Qishen
2015-01-01
Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb−/y) mice and found that Fancb−/y mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb−/y mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb−/y mice. Furthermore, Fancb−/y BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb−/y HSC and progenitor cells. Thus, this Fancb−/y mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157
Dreyer, Christine; Hoffmann, Margarete; Lanz, Christa; Willing, Eva-Maria; Riester, Markus; Warthmann, Norman; Sprecher, Andrea; Tripathi, Namita; Henz, Stefan R; Weigel, Detlef
2007-01-01
Background The guppy, Poecilia reticulata, is a well-known model organism for studying inheritance and variation of male ornamental traits as well as adaptation to different river habitats. However, genomic resources for studying this important model were not previously widely available. Results With the aim of generating molecular markers for genetic mapping of the guppy, cDNA libraries were constructed from embryos and different adult organs to generate expressed sequence tags (ESTs). About 18,000 ESTs were annotated according to BLASTN and BLASTX results and the sequence information from the 3' UTRs was exploited to generate PCR primers for re-sequencing of genomic DNA from different wild type strains. By comparison of EST-linked genomic sequences from at least four different ecotypes, about 1,700 polymorphisms were identified, representing about 400 distinct genes. Two interconnected MySQL databases were built to organize the ESTs and markers, respectively. A robust phylogeny of the guppy was reconstructed, based on 10 different nuclear genes. Conclusion Our EST and marker databases provide useful tools for genetic mapping and phylogenetic studies of the guppy. PMID:17686157
Jacobsen, Magnus W; Pujolar, José Martin; Hansen, Michael M
2015-03-01
Mitochondrial genes are part of the oxidative phosphorylation pathway and important for energy production. Although evidence for positive selection at the mitochondrial level exists, few studies have investigated the link between amino acid changes and phenotype. Here we test the hypothesis that differences in two life-history related traits, migratory distance between spawning and foraging areas and larval phase duration, are associated with divergent selection within the mitochondrial ATP6 gene in anguillid eels. We compare amino acid changes among 18 species with the sequence of the putative ancestral species, believed to have shown short migratory distance and larval phase duration. We find positive correlations between both life-history related traits and (i) the number of amino acid changes and (ii) the strength of the combined physico-chemical and structural changes at positions previously identified as candidates for positive selection. This supports a link between genotype and phenotype driven by positive selection at ATP6. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K
2012-05-01
Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.
Cholera toxin structure, gene regulation and pathophysiological and immunological aspects.
Sánchez, J; Holmgren, J
2008-05-01
Many notions regarding the function, structure and regulation of cholera toxin expression have remained essentially unaltered in the last 15 years. At the same time, recent findings have generated additional perspectives. For example, the cholera toxin genes are now known to be carried by a non-lytic bacteriophage, a previously unsuspected condition. Understanding of how the expression of cholera toxin genes is controlled by the bacterium at the molecular level has advanced significantly and relationships with cell-density-associated (quorum-sensing) responses have recently been discovered. Regarding the cell intoxication process, the mode of entry and intracellular transport of cholera toxin are becoming clearer. In the immunological field, the strong oral immunogenicity of the non-toxic B subunit of cholera toxin (CTB) has been exploited in the development of a now widely licensed oral cholera vaccine. Additionally, CTB has been shown to induce tolerance against co-administered (linked) foreign antigens in some autoimmune and allergic diseases.
Recurrent PTPRB and PLCG1 mutations in angiosarcoma.
Behjati, Sam; Tarpey, Patrick S; Sheldon, Helen; Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J
2014-04-01
Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.
Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti
2010-02-12
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Cloning and characterization of a novel zinc finger gene in Xp11.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derry, J.M.J.; Jess, U.; Francke, U.
1995-11-20
During a systematic search for open reading frames in chromosome band Xp11.2, a novel gene (ZNF157) that encodes a putative 506-amino-acid protein with the sequence characteristics of a zinc-finger-containing transcription factor was isolated. ZNF157 is encoded by four exons distributed over >20 kb of genomic DNA. The second and third exons contain sequences similar to those of the previously described KRAB-A and KRAB-B domains, motifs that have been shown to mediate transcriptional repression in other members of the protein family. A fourth exon contains 12 zinc finger DNA binding motifs and finger linking regions characteristic of ZNF proteins of themore » Krueppel family. ZNF157 maps to the telomeric end of a cluster of ZNF genes that includes ZNF21, ZNF41, and ZNF81. 19 refs., 2 figs.« less
DE NOVO MUTATIONS IN AUTISM IMPLICATE THE SYNAPTIC ELIMINATION NETWORK.
Ram Venkataraman, Guhan; O'Connell, Chloe; Egawa, Fumiko; Kashef-Haghighi, Dorna; Wall, Dennis P
2017-01-01
Autism has been shown to have a major genetic risk component; the architecture of documented autism in families has been over and again shown to be passed down for generations. While inherited risk plays an important role in the autistic nature of children, de novo (germline) mutations have also been implicated in autism risk. Here we find that autism de novo variants verified and published in the literature are Bonferroni-significantly enriched in a gene set implicated in synaptic elimination. Additionally, several of the genes in this synaptic elimination set that were enriched in protein-protein interactions (CACNA1C, SHANK2, SYNGAP1, NLGN3, NRXN1, and PTEN) have been previously confirmed as genes that confer risk for the disorder. The results demonstrate that autism-associated de novos are linked to proper synaptic pruning and density, hinting at the etiology of autism and suggesting pathophysiology for downstream correction and treatment.
2012-01-01
Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC) isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'). Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich) protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non-homologous genes located in a restricted genome region. Also, we hypothesize that the Asp-rich protein genes may act as Ca2+ "entrapping" proteins, potentially regulating Ca2+ homeostasis during self-pollen recognition. PMID:22333138
Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Dal Santo, Silvia; Cañón, Paola; Rodríguez-Hoces de la Guardia, Amparo; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio
2014-01-01
The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.
van der Vaart, Andrew D.; Wolstenholme, Jennifer T.; Smith, Maren L.; Harris, Guy M.; Lopez, Marcelo F.; Wolen, Aaron R.; Becker, Howard C.; Williams, Robert W.; Miles, Michael F.
2016-01-01
The transition from acute to chronic ethanol exposure leads to lasting behavioral and physiological changes such as increased consumption, dependence, and withdrawal. Changes in brain gene expression are hypothesized to underlie these adaptive responses to ethanol. Previous studies on acute ethanol identified genetic variation in brain gene expression networks and behavioral responses to ethanol across the BXD panel of recombinant inbred mice. In this work, we have performed the first joint genetic and genomic analysis of transcriptome shifts in response to chronic intermittent ethanol (CIE) by vapor chamber exposure in a BXD cohort. CIE treatment is known to produce significant and sustained changes in ethanol consumption with repeated cycles of ethanol vapor. Using Affymetrix microarray analysis of prefrontal cortex (PFC) and nucleus accumbens (NAC) RNA, we compared CIE expression responses to those seen following acute ethanol treatment, and to voluntary ethanol consumption. Gene expression changes in PFC and NAC after CIE overlapped significantly across brain regions and with previously published expression following acute ethanol. Genes highly modulated by CIE were enriched for specific biological processes including synaptic transmission, neuron ensheathment, intracellular signaling, and neuronal projection development. Expression quantitative trait locus (eQTL) analyses identified genomic loci associated with ethanol-induced transcriptional changes with largely distinct loci identified between brain regions. Correlating CIE-regulated genes to ethanol consumption data identified specific genes highly associated with variation in the increase in drinking seen with repeated cycles of CIE. In particular, multiple myelin-related genes were identified. Furthermore, genetic variance in or near dynamin3 (Dnm3) on Chr1 at ~164 Mb may have a major regulatory role in CIE-responsive gene expression. Dnm3 expression correlates significantly with ethanol consumption, is contained in a highly ranked functional group of CIE-regulated genes in the NAC, and has a cis-eQTL within a genomic region linked with multiple CIE-responsive genes. PMID:27838001
Wu, Mian; Wu, Wen-Ping; Liu, Cheng-Chen; Liu, Ying-Na; Wu, Xiao-Yi; Ma, Fang-Fang; Zhu, An-Qi; Yang, Jia-Yin; Wang, Bin; Chen, Jian-Qun
2018-06-16
In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens. Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F 2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F 2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F 2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12.
Vander Horn, P B; Backstrom, A D; Stewart, V; Begley, T P
1993-01-01
Escherichia coli K-12 synthesizes thiamine pyrophosphate (vitamin B1) de novo. Two precursors [4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate] are coupled to form thiamine monophosphate, which is then phosphorylated to make thiamine pyrophosphate. Previous studies have identified two classes of thi mutations, clustered at 90 min on the genetic map, which result in requirements for the thiazole or the hydroxymethylpryimidine. We report here our initial molecular genetic analysis of the thi cluster. We cloned the thi cluster genes and examined their organization, structure, and function by a combination of phenotypic testing, complementation analysis, polypeptide expression, and DNA sequencing. We found five tightly linked genes, designated thiCEFGH. The thiC gene product is required for the synthesis of the hydroxymethylpyrimidine. The thiE, thiF, thiG, and thiH gene products are required for synthesis of the thiazole. These mutants did not respond to 1-deoxy-D-threo-2-pentulose, indicating that they are blocked in the conversion of this precursor compound to the thiazole itself. Images PMID:8432721
Large-Scale Discovery of Disease-Disease and Disease-Gene Associations
Gligorijevic, Djordje; Stojanovic, Jelena; Djuric, Nemanja; Radosavljevic, Vladan; Grbovic, Mihajlo; Kulathinal, Rob J.; Obradovic, Zoran
2016-01-01
Data-driven phenotype analyses on Electronic Health Record (EHR) data have recently drawn benefits across many areas of clinical practice, uncovering new links in the medical sciences that can potentially affect the well-being of millions of patients. In this paper, EHR data is used to discover novel relationships between diseases by studying their comorbidities (co-occurrences in patients). A novel embedding model is designed to extract knowledge from disease comorbidities by learning from a large-scale EHR database comprising more than 35 million inpatient cases spanning nearly a decade, revealing significant improvements on disease phenotyping over current computational approaches. In addition, the use of the proposed methodology is extended to discover novel disease-gene associations by including valuable domain knowledge from genome-wide association studies. To evaluate our approach, its effectiveness is compared against a held-out set where, again, it revealed very compelling results. For selected diseases, we further identify candidate gene lists for which disease-gene associations were not studied previously. Thus, our approach provides biomedical researchers with new tools to filter genes of interest, thus, reducing costly lab studies. PMID:27578529
Guo, Bing; Greenwood, Paul L; Cafe, Linda M; Zhou, Guanghong; Zhang, Wangang; Dalrymple, Brian P
2015-03-13
This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types. The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for "cell cycle" and "ECM (extracellular matrix) organization" Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the "cell cycle" and "ECM" signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified. Gene sets and gene markers for the analysis of many of the major processes/cell populations contributing to muscle composition and growth have been proposed, enabling a consistent interpretation of gene expression datasets from cattle LM. The same gene sets are likely to be applicable in other cattle muscles and in other species.
Coronafacoyl Phytotoxin Biosynthesis and Evolution in the Common Scab Pathogen Streptomyces scabiei
Bown, Luke; Li, Yuting; Berrué, Fabrice; Verhoeven, Joost T. P.; Dufour, Suzanne C.
2017-01-01
ABSTRACT Coronafacoyl phytotoxins are an important family of plant toxins that are produced by several different phytopathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabiei (formerly Streptomyces scabies). The phytotoxins consist of coronafacic acid (CFA) linked via an amide bond to different amino acids or amino acid derivatives. Previous work suggested that S. scabiei and P. syringae use distinct biosynthetic pathways for producing CFA, which is subsequently linked to its amino acid partner to form the complete phytotoxin. Here, we provide further evidence that the S. scabiei CFA biosynthetic pathway is novel by characterizing the role of CYP107AK1, a predicted cytochrome P450 that has no homologue in P. syringae. Deletion of the CYP107AK1 gene abolished production of coronafacoyl-isoleucine (CFA-Ile), the primary coronafacoyl phytotoxin produced by S. scabiei. Structural elucidation of accumulated biosynthetic intermediates in the ΔCYP107AK1 mutant indicated that CYP107AK1 is required for introducing the oxygen atom that ultimately forms the carbonyl group in the CFA backbone. The CYP107AK1 gene along with two additional genes involved in CFA-Ile biosynthesis in S. scabiei were found to be associated with putative CFA biosynthetic genes in other actinobacteria but not in other organisms. Analysis of the overall genetic content and organization of known and putative CFA biosynthetic gene clusters, together with phylogenetic analysis of the core biosynthetic genes, indicates that horizontal gene transfer has played an important role in the dissemination of the gene cluster and that rearrangement, insertion, and/or deletion events have likely contributed to the divergent biosynthetic evolution of coronafacoyl phytotoxins in bacteria. IMPORTANCE The ability of plants to defend themselves against invading pathogens relies on complex signaling pathways that are controlled by key phytohormones such as jasmonic acid (JA). Some phytopathogenic bacteria have evolved the ability to manipulate JA signaling in order to overcome host defenses by producing coronatine (COR), which functions as a potent JA mimic. COR and COR-like molecules, collectively referred to as coronafacoyl phytotoxins, are produced by several different plant-pathogenic bacteria, and this study provides supporting evidence that different biosynthetic pathways are utilized by different bacteria for production of these phytotoxins. In addition, our study provides a greater understanding of how coronafacoyl phytotoxin biosynthesis may have evolved in phylogenetically distinct bacteria, and we demonstrate that production of these compounds may be more widespread than previously recognized and that their role for the producing organism may not be limited to host-pathogen interactions. PMID:28754703
Sex-specific silencing of X-linked genes by Xist RNA
Gayen, Srimonta; Maclary, Emily; Hinten, Michael; Kalantry, Sundeep
2016-01-01
X-inactive specific transcript (Xist) long noncoding RNA (lncRNA) is thought to catalyze silencing of X-linked genes in cis during X-chromosome inactivation, which equalizes X-linked gene dosage between male and female mammals. To test the impact of Xist RNA on X-linked gene silencing, we ectopically induced endogenous Xist by ablating the antisense repressor Tsix in mice. We find that ectopic Xist RNA induction and subsequent X-linked gene silencing is sex specific in embryos and in differentiating embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). A higher frequency of XΔTsixY male cells displayed ectopic Xist RNA coating compared with XΔTsixX female cells. This increase reflected the inability of XΔTsixY cells to efficiently silence X-linked genes compared with XΔTsixX cells, despite equivalent Xist RNA induction and coating. Silencing of genes on both Xs resulted in significantly reduced proliferation and increased cell death in XΔTsixX female cells relative to XΔTsixY male cells. Thus, whereas Xist RNA can inactivate the X chromosome in females it may not do so in males. We further found comparable silencing in differentiating XΔTsixY and 39,XΔTsix (XΔTsixO) ESCs, excluding the Y chromosome and instead implicating the X-chromosome dose as the source of the sex-specific differences. Because XΔTsixX female embryonic epiblast cells and EpiSCs harbor an inactivated X chromosome prior to ectopic inactivation of the active XΔTsix X chromosome, we propose that the increased expression of one or more X-inactivation escapees activates Xist and, separately, helps trigger X-linked gene silencing. PMID:26739568
Petersen, Stine; Lyerly, Jeanette H; Worthington, Margaret L; Parks, Wesley R; Cowger, Christina; Marshall, David S; Brown-Guedira, Gina; Murphy, J Paul
2015-02-01
A powdery mildew resistance gene was introgressed from Aegilops speltoides into winter wheat and mapped to chromosome 5BL. Closely linked markers will permit marker-assisted selection for the resistance gene. Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f. sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally sound. Identification of new resistance sources and closely linked markers enable breeders to utilize these new sources in marker-assisted selection as well as in gene pyramiding. Aegilops speltoides (2n = 2x = 14, genome SS), has been a valuable disease resistance donor. The powdery mildew resistant wheat germplasm line NC09BGTS16 (NC-S16) was developed by backcrossing an Ae. speltoides accession, TAU829, to the susceptible soft red winter wheat cultivar 'Saluda'. NC-S16 was crossed to the susceptible cultivar 'Coker 68-15' to develop F2:3 families for gene mapping. Greenhouse and field evaluations of these F2:3 families indicated that a single gene, designated Pm53, conferred resistance to powdery mildew. Bulked segregant analysis showed that multiple simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers specific to chromosome 5BL segregated with the resistance gene. The gene was flanked by markers Xgwm499, Xwmc759, IWA6024 (0.7 cM proximal) and IWA2454 (1.8 cM distal). Pm36, derived from a different wild wheat relative (T. turgidum var. dicoccoides), had previously been mapped to chromosome 5BL in a durum wheat line. Detached leaf tests revealed that NC-S16 and a genotype carrying Pm36 differed in their responses to each of three Bgt isolates. Pm53 therefore appears to be a new source of powdery mildew resistance.
Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck.
Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L; Liu, Yunlong; Edenberg, Howard J; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2008-10-08
Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure and density by correlating gene expression in the proximal femur with the femoral neck phenotypes linked to the QTLs on Chr 4. RNA was extracted from proximal femora of 4-wk-old rats from F344 and LEW strains, and two other strains, Copenhagen 2331 and Dark Agouti, were used as a negative control. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 arrays. A total of 99 genes in the 4q21-q41 region were differentially expressed (P < 0.05) among all strains of rats with a false discovery rate <10%. These 99 genes were then ranked based on the strength of correlation between femoral neck phenotypes measured in F2 animals, homozygous for a particular strain's allele at the Chr 4 QTL and the expression level of the gene in that strain. A total of 18 candidate genes were strongly correlated (r(2) > 0.50) with femoral neck width and prioritized for further analysis. Quantitative PCR analysis confirmed 14 of 18 of the candidate genes. Ingenuity pathway analysis revealed several direct or indirect relationships among the candidate genes related to angiogenesis (VEGF), bone growth (FGF2), bone formation (IGF2 and IGF2BP3), and resorption (TNF). This study provides a shortened list of genetic determinants of skeletal traits at the hip and may lead to novel approaches for prevention and treatment of hip fracture.
Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck
Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L.; Liu, Yunlong; Edenberg, Howard J.; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.
2008-01-01
Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure and density by correlating gene expression in the proximal femur with the femoral neck phenotypes linked to the QTLs on Chr 4. RNA was extracted from proximal femora of 4-wk-old rats from F344 and LEW strains, and two other strains, Copenhagen 2331 and Dark Agouti, were used as a negative control. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 arrays. A total of 99 genes in the 4q21-q41 region were differentially expressed (P < 0.05) among all strains of rats with a false discovery rate <10%. These 99 genes were then ranked based on the strength of correlation between femoral neck phenotypes measured in F2 animals, homozygous for a particular strain's allele at the Chr 4 QTL and the expression level of the gene in that strain. A total of 18 candidate genes were strongly correlated (r2 > 0.50) with femoral neck width and prioritized for further analysis. Quantitative PCR analysis confirmed 14 of 18 of the candidate genes. Ingenuity pathway analysis revealed several direct or indirect relationships among the candidate genes related to angiogenesis (VEGF), bone growth (FGF2), bone formation (IGF2 and IGF2BP3), and resorption (TNF). This study provides a shortened list of genetic determinants of skeletal traits at the hip and may lead to novel approaches for prevention and treatment of hip fracture. PMID:18728226
Hudson, David M; Weis, MaryAnn; Rai, Jyoti; Joeng, Kyu Sang; Dimori, Milena; Lee, Brendan H; Morello, Roy; Eyre, David R
2017-03-03
Tandem mass spectrometry was applied to tissues from targeted mutant mouse models to explore the collagen substrate specificities of individual members of the prolyl 3-hydroxylase (P3H) gene family. Previous studies revealed that P3h1 preferentially 3-hydroxylates proline at a single site in collagen type I chains, whereas P3h2 is responsible for 3-hydroxylating multiple proline sites in collagen types I, II, IV, and V. In screening for collagen substrate sites for the remaining members of the vertebrate P3H family, P3h3 and Sc65 knock-out mice revealed a common lysine under-hydroxylation effect at helical domain cross-linking sites in skin, bone, tendon, aorta, and cornea. No effect on prolyl 3-hydroxylation was evident on screening the spectrum of known 3-hydroxyproline sites from all major tissue collagen types. However, collagen type I extracted from both Sc65 -/- and P3h3 -/- skin revealed the same abnormal chain pattern on SDS-PAGE with an overabundance of a γ 112 cross-linked trimer. The latter proved to be from native molecules that had intramolecular aldol cross-links at each end. The lysine under-hydroxylation was shown to alter the divalent aldimine cross-link chemistry of mutant skin collagen. Furthermore, the ratio of mature HP/LP cross-links in bone of both P3h3 -/- and Sc65 -/- mice was reversed compared with wild type, consistent with the level of lysine under-hydroxylation seen in individual chains at cross-linking sites. The effect on cross-linking lysines was quantitatively very similar to that previously observed in EDS VIA human and Plod1 -/- mouse tissues, suggesting that P3H3 and/or SC65 mutations may cause as yet undefined EDS variants. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
2014-01-01
Background Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. Results We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways. PMID:25221624
NASA Astrophysics Data System (ADS)
Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.
2017-03-01
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Hossain, Mohammad B; Li, Huiqi; Hedmer, Maria; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin
2015-01-01
Background Welders are at risk for cardiovascular disease. Recent studies linked tobacco smoke exposure to hypomethylation of the F2RL3 (coagulation factor II (thrombin) receptor-like 3) gene, a marker for cardiovascular disease prognosis and mortality. However, whether welding fumes cause hypomethylation of F2RL3 remains unknown. Methods We investigated 101 welders (median span of working as a welder: 7 years) and 127 unexposed controls (non-welders with no obvious exposure to respirable dust at work), age range 23–60 years, all currently non-smoking, in Sweden. The participants were interviewed about their work history, lifestyle factors and diseases. Personal sampling of respirable dust was performed for the welders. DNA methylation of F2RL3 in blood was assessed by pyrosequencing of four CpG sites, CpG_2 (corresponds to cg03636183) to CpG_5, in F2RL3. Multivariable linear regression analysis was used to assess the association between exposure to welding fumes and F2RL3 methylation. Results Welders had 2.6% lower methylation of CpG_5 than controls (p<0.001). Higher concentrations of measured respirable dust among the welders were associated with hypomethylation of CpG_2, CpG_4 and CpG_5 (β=−0.49 to −1.4, p<0.012); p<0.029 adjusted for age, previous smoking, passive smoking, education, current residence and respirator use. Increasing the number of years working as a welder was associated with hypomethylation of CpG_4 (linear regression analysis, β=−0.11, p=0.039, adjusted for previous smoking). Previous tobacco smokers had 1.5–4.7% (p<0.014) lower methylation of 3 of the 4 CpG sites in F2RL3 (CpG_2, CpG_4 and CpG_5) compared to never-smokers. A non-significant lower risk of cardiovascular disease with more methylation was observed for all CpG sites. Conclusions Welding fumes exposure and previous smoking were associated with F2RL3 hypomethylation. This finding links low-to-moderate exposure to welding fumes to adverse effects on the cardiovascular system, and suggests a potential mechanistic pathway for this link, via epigenetic effects on F2RL3 expression. PMID:26395445
Wang, Ping; Lin, Mingyan; Pedrosa, Erika; Hrabovsky, Anastasia; Zhang, Zheng; Guo, Wenjun; Lachman, Herbert M; Zheng, Deyou
2015-01-01
Disruptive mutation in the CHD8 gene is one of the top genetic risk factors in autism spectrum disorders (ASDs). Previous analyses of genome-wide CHD8 occupancy and reduced expression of CHD8 by shRNA knockdown in committed neural cells showed that CHD8 regulates multiple cell processes critical for neural functions, and its targets are enriched with ASD-associated genes. To further understand the molecular links between CHD8 functions and ASD, we have applied the CRISPR/Cas9 technology to knockout one copy of CHD8 in induced pluripotent stem cells (iPSCs) to better mimic the loss-of-function status that would exist in the developing human embryo prior to neuronal differentiation. We then carried out transcriptomic and bioinformatic analyses of neural progenitors and neurons derived from the CHD8 mutant iPSCs. Transcriptome profiling revealed that CHD8 hemizygosity (CHD8 (+/-)) affected the expression of several thousands of genes in neural progenitors and early differentiating neurons. The differentially expressed genes were enriched for functions of neural development, β-catenin/Wnt signaling, extracellular matrix, and skeletal system development. They also exhibited significant overlap with genes previously associated with autism and schizophrenia, as well as the downstream transcriptional targets of multiple genes implicated in autism. Providing important insight into how CHD8 mutations might give rise to macrocephaly, we found that seven of the twelve genes associated with human brain volume or head size by genome-wide association studies (e.g., HGMA2) were dysregulated in CHD8 (+/-) neural progenitors or neurons. We have established a renewable source of CHD8 (+/-) iPSC lines that would be valuable for investigating the molecular and cellular functions of CHD8. Transcriptomic profiling showed that CHD8 regulates multiple genes implicated in ASD pathogenesis and genes associated with brain volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Maghtheh, M.; Vithana, E.; Tarttelin, E.
Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (adRP), accounting for {approximately}25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysismore » in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This {open_quotes}bimodal expressivity{close_quotes} contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus. 27 refs., 3 figs., 1 tab.« less
Whole-genome sequencing of Atacama skeleton shows novel mutations linked with dysplasia
Bhattacharya, Sanchita; Li, Jian; Sockell, Alexandra; Kan, Matthew J.; Bava, Felice A.; Chen, Shann-Ching; Ávila-Arcos, María C.; Ji, Xuhuai; Smith, Emery; Asadi, Narges B.; Lachman, Ralph S.; Lam, Hugo Y.K.; Bustamante, Carlos D.; Butte, Atul J.; Nolan, Garry P.
2018-01-01
Over a decade ago, the Atacama humanoid skeleton (Ata) was discovered in the Atacama region of Chile. The Ata specimen carried a strange phenotype—6-in stature, fewer than expected ribs, elongated cranium, and accelerated bone age—leading to speculation that this was a preserved nonhuman primate, human fetus harboring genetic mutations, or even an extraterrestrial. We previously reported that it was human by DNA analysis with an estimated bone age of about 6–8 yr at the time of demise. To determine the possible genetic drivers of the observed morphology, DNA from the specimen was subjected to whole-genome sequencing using the Illumina HiSeq platform with an average 11.5× coverage of 101-bp, paired-end reads. In total, 3,356,569 single nucleotide variations (SNVs) were found as compared to the human reference genome, 518,365 insertions and deletions (indels), and 1047 structural variations (SVs) were detected. Here, we present the detailed whole-genome analysis showing that Ata is a female of human origin, likely of Chilean descent, and its genome harbors mutations in genes (COL1A1, COL2A1, KMT2D, FLNB, ATR, TRIP11, PCNT) previously linked with diseases of small stature, rib anomalies, cranial malformations, premature joint fusion, and osteochondrodysplasia (also known as skeletal dysplasia). Together, these findings provide a molecular characterization of Ata's peculiar phenotype, which likely results from multiple known and novel putative gene mutations affecting bone development and ossification. PMID:29567674
Jonsson, J J; Renieri, A; Gallagher, P G; Kashtan, C E; Cherniske, E M; Bruttini, M; Piccini, M; Vitelli, F; Ballabio, A; Pober, B R
1998-01-01
We describe a family with four members, a mother, two sons, and a daughter, who show clinical features consistent with X linked Alport syndrome. The two males presented with additional features including mental retardation, dysmorphic facies with marked midface hypoplasia, and elliptocytosis. The elliptocytosis was not associated with any detectable abnormalities in red cell membrane proteins; red cell membrane stability and rigidity was normal on ektacytometry. Molecular characterisation suggests a submicroscopic X chromosome deletion encompassing the entire COL4A5 gene. We propose that the additional abnormalities found in the affected males of this family are attributable to deletion or disruption of X linked recessive genes adjacent to the COL4A5 gene and that this constellation of findings may represent a new X linked contiguous gene deletion syndrome. Images PMID:9598718
Common variants in Mendelian kidney disease genes and their association with renal function.
Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A
2013-12-01
Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.
Waters, Brian M.; McInturf, Samuel A.; Amundsen, Keenan
2014-01-01
Summary Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu deficient plants was independent of the normal Fe uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe regulated, and one was Cu regulated. Simultaneous Fe and Cu deficiency synergistically upregulated Fe uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe– Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants. PMID:24975482
A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis
Melvin, Vida Senkus; Feng, Weiguo; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Williams, Trevor
2014-01-01
BACKGROUND The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human. PMID:23559552
Stover, Carla Smith; Connell, Christian; Leve, Leslie D.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Scaramella, Laura V.; Conger, Rand; Reiss, David
2011-01-01
Background Previous studies have linked marital conflict, parenting, and externalizing problems in early childhood. However, these studies have not examined whether genes account for these links nor have they examined whether contextual factors such as parental personality or financial distress might account for links between marital conflict and parenting. We used an adoption design to allow for a clear examination of environmental impact rather than shared genes of parents and children, and assessments of parental personality and financial strain to assess the effects of context on relationships between marriage and parenting of both mothers and fathers. Method Participants were 308 adoption-linked families comprised of an adopted child, her/his biological mother (BM), adoptive mother (AM) and father (AF). BMs were assessed 3 to 6 and 18 months postpartum and adoptive families were assessed when the child was 18 and 27 months old. Structural equations models were used to examine associations between marital hostility, fathers’ and mothers’ parenting hostility, and child aggressive behavior at 27 months of age. Additionally the contribution of financial strain and adoptive parent personality traits was examined to determine the associations with the spillover of marital hostility to hostile parenting. Results A hostile marital relationship was significantly associated with hostile parenting in fathers and mothers, which were associated with aggressive behavior in toddlers. Subjective financial strain was uniquely associated with marital hostility and child aggression. Antisocial personality traits were related to a more hostile/conflicted marital relationship and to hostile parenting. Conclusions Results clarify mechanisms that may account for the success of early parent-child prevention programs that include a focus on parental economic strain and personality in addition to parent training. PMID:22191546
Veltsos, Paris; Cossard, Guillaume; Beaudoing, Emmanuel; Beydon, Genséric; Savova Bianchi, Dessislava; Roux, Camille; C González-Martínez, Santiago; R Pannell, John
2018-05-29
Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.
Stover, Carla Smith; Connell, Christian M; Leve, Leslie D; Neiderhiser, Jenae M; Shaw, Daniel S; Scaramella, Laura V; Conger, Rand; Reiss, David
2012-04-01
Previous studies have linked marital conflict, parenting, and externalizing problems in early childhood. However, these studies have not examined whether genes account for these links nor have they examined whether contextual factors such as parental personality or financial distress might account for links between marital conflict and parenting. We used an adoption design to allow for a clear examination of environmental impact rather than shared genes of parents and children, and assessments of parental personality and financial strain to assess the effects of context on relationships between marriage and parenting of both mothers and fathers. Participants were 308 adoption-linked families comprised of an adopted child, her/his biological mother (BM), adoptive mother (AM) and adoptive father (AF). BMs were assessed 3-6 and 18 months postpartum and adoptive families were assessed when the child was 18 and 27 months old. Structural equations models were used to examine associations between marital hostility, fathers' and mothers' parenting hostility, and child aggressive behavior at 27 months of age. In addition, the contribution of financial strain and adoptive parent personality traits was examined to determine the associations with the spillover of marital hostility to hostile parenting. A hostile marital relationship was significantly associated with hostile parenting in fathers and mothers, which were associated with aggressive behavior in toddlers. Subjective financial strain was uniquely associated with marital hostility and child aggression. Antisocial personality traits were related to a more hostile/conflicted marital relationship and to hostile parenting. Results clarify mechanisms that may account for the success of early parent-child prevention programs that include a focus on parental economic strain and personality in addition to parent training. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.
Differential expression of the Nrf2-linked genes in pediatric septic shock.
Grunwell, Jocelyn R; Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R
2015-09-17
Experimental data from animal models of sepsis support a role for a transcription factor, nuclear erythroid-related factor 2 p45-related factor 2 (Nrf2), as a master regulator of antioxidant and detoxifying genes and intermediary metabolism during stress. Prior analysis of a pediatric septic shock transcriptomic database showed that the Nrf2 response is a top 5 upregulated signaling pathway in early pediatric septic shock. We conducted a focused analysis of 267 Nrf2-linked genes using a multicenter, genome-wide expression database of 180 children with septic shock 10 years of age or younger and 53 healthy controls. The analysis involved RNA isolated from whole blood within 24 h of pediatric intensive care unit admission for septic shock and a false discovery rate of 5 %. We compared differentially expressed genes from (1) patients with septic shock and healthy controls and (2) across validated gene expression-based subclasses of pediatric septic shock (endotypes A and B) using several bioinformatic methods. We found upregulation of 123 Nrf2-linked genes in children with septic shock. The top gene network represented by these genes contained primarily enzymes with oxidoreductase activity involved in cellular lipid metabolism that were highly connected to the peroxisome proliferator activated receptor and the retinoic acid receptor families. Endotype A, which had higher organ failure burden and mortality, exhibited a greater downregulation of Nrf2-linked genes than endotype B, with 92 genes differentially regulated between endotypes. Our findings indicate that Nrf2-linked genes may contribute to alterations in oxidative signaling and intermediary metabolism in pediatric septic shock.
Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl
2014-01-01
The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925
HLA-linked rheumatoid arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasstedt, S.J.; Clegg, D.O.; Ingles, L.
Twenty-eight pedigrees were ascertained through pairs of first-degree relatives diagnosed with rheumatoid arthritis (RA). RA was confirmed in 77 pedigree members including probands; the absence of disease was verified in an additional 261 pedigree members. Pedigree members were serologically typed for HLA. We used likelihood analysis to statistically characterize the HLA-linked RA susceptibility locus. The genetic model assumed tight linkage to HLA. The analysis supported the existence of an HLA-linked RA susceptibility locus, estimated the lifetime penetrance as 41% in male homozygotes and as 48% in female homozygotes. Inheritance was recessive in males and was nearly recessive in females. Inmore » addition, the analysis attributed 78% of the variance within genotypes to genetic or environmental effects shared by siblings. The genetic model inferred in this analysis is consistent with previous association, linkage, and familial aggregation studies of RA. The inferred HLA-linked RA susceptibility locus accounts for approximately one-fifth of the RA in the population. Although other genes may account for the remaining familial RA, a large portion of RA cases may occur sporadically. 79 refs., 9 tabs.« less
Navascués, Miguel; Hardy, Olivier J; Burgarella, Concetta
2009-03-01
This work extends the methods of demographic inference based on the distribution of pairwise genetic differences between individuals (mismatch distribution) to the case of linked microsatellite data. Population genetics theory describes the distribution of mutations among a sample of genes under different demographic scenarios. However, the actual number of mutations can rarely be deduced from DNA polymorphisms. The inclusion of mutation models in theoretical predictions can improve the performance of statistical methods. We have developed a maximum-pseudolikelihood estimator for the parameters that characterize a demographic expansion for a series of linked loci evolving under a stepwise mutation model. Those loci would correspond to DNA polymorphisms of linked microsatellites (such as those found on the Y chromosome or the chloroplast genome). The proposed method was evaluated with simulated data sets and with a data set of chloroplast microsatellites that showed signal for demographic expansion in a previous study. The results show that inclusion of a mutational model in the analysis improves the estimates of the age of expansion in the case of older expansions.
Rappaport, Noa; Fishilevich, Simon; Nudel, Ron; Twik, Michal; Belinky, Frida; Plaschkes, Inbar; Stein, Tsippi Iny; Cohen, Dana; Oz-Levi, Danit; Safran, Marilyn; Lancet, Doron
2017-08-18
A key challenge in the realm of human disease research is next generation sequencing (NGS) interpretation, whereby identified filtered variant-harboring genes are associated with a patient's disease phenotypes. This necessitates bioinformatics tools linked to comprehensive knowledgebases. The GeneCards suite databases, which include GeneCards (human genes), MalaCards (human diseases) and PathCards (human pathways) together with additional tools, are presented with the focus on MalaCards utility for NGS interpretation as well as for large scale bioinformatic analyses. VarElect, our NGS interpretation tool, leverages the broad information in the GeneCards suite databases. MalaCards algorithms unify disease-related terms and annotations from 69 sources. Further, MalaCards defines hierarchical relatedness-aliases, disease families, a related diseases network, categories and ontological classifications. GeneCards and MalaCards delineate and share a multi-tiered, scored gene-disease network, with stringency levels, including the definition of elite status-high quality gene-disease pairs, coming from manually curated trustworthy sources, that includes 4500 genes for 8000 diseases. This unique resource is key to NGS interpretation by VarElect. VarElect, a comprehensive search tool that helps infer both direct and indirect links between genes and user-supplied disease/phenotype terms, is robustly strengthened by the information found in MalaCards. The indirect mode benefits from GeneCards' diverse gene-to-gene relationships, including SuperPaths-integrated biological pathways from 12 information sources. We are currently adding an important information layer in the form of "disease SuperPaths", generated from the gene-disease matrix by an algorithm similar to that previously employed for biological pathway unification. This allows the discovery of novel gene-disease and disease-disease relationships. The advent of whole genome sequencing necessitates capacities to go beyond protein coding genes. GeneCards is highly useful in this respect, as it also addresses 101,976 non-protein-coding RNA genes. In a more recent development, we are currently adding an inclusive map of regulatory elements and their inferred target genes, generated by integration from 4 resources. MalaCards provides a rich big-data scaffold for in silico biomedical discovery within the gene-disease universe. VarElect, which depends significantly on both GeneCards and MalaCards power, is a potent tool for supporting the interpretation of wet-lab experiments, notably NGS analyses of disease. The GeneCards suite has thus transcended its 2-decade role in biomedical research, maturing into a key player in clinical investigation.
Bioinformatic prediction of leader genes in human periodontitis.
Covani, Ugo; Marconcini, Simone; Giacomelli, Luca; Sivozhelevov, Victor; Barone, Antonio; Nicolini, Claudio
2008-10-01
Genes involved in different biologic processes form complex interaction networks. However, only a few have a high number of interactions with the other genes in the network. In previous bioinformatics and experimental studies concerning the T lymphocyte cell cycle, these genes were identified and termed "leader genes." In this work, genes involved in human periodontitis were tentatively identified and ranked according to their number of interactions to obtain a preliminary, broader view of molecular mechanisms of periodontitis and plan targeted experimentation. Genes were identified with interrelated queries of several databases. The interactions among these genes were mapped and given a significance score. The weighted number of links (weighted sum of scores for every interaction in which the given gene is involved) was calculated for each gene. Genes were clustered according to this parameter. The genes in the highest cluster were termed leader genes. Sixty-one genes involved or potentially involved in periodontitis were identified. Only five were identified as leader genes, whereas 12 others were ranked in an immediately lower cluster. For 10 of 17 genes there is evidence of involvement in periodontitis; seven new genes that are potentially involved in this disease were identified. The involvement in periodontitis has been completely established for only two leader genes. We applied a validated bioinformatics algorithm to increase our knowledge of molecular mechanisms of periodontitis. Even with the limitations of this ab initio analysis, this theoretical study can suggest ad hoc experimentation targeted on significant genes and, therefore, simpler than mass-scale molecular genomics. Moreover, the identification of leader genes might suggest new potential risk factors and therapeutic targets.
Guirao-Rico, Sara; Sánchez-Gracia, Alejandro; Charlesworth, Deborah
2017-03-01
DNA sequence diversity in genes in the partially sex-linked pseudoautosomal region (PAR) of the sex chromosomes of the plant Silene latifolia is higher than expected from within-species diversity of other genes. This could be the footprint of sexually antagonistic (SA) alleles that are maintained by balancing selection in a PAR gene (or genes) and affect polymorphism in linked genome regions. SA selection is predicted to occur during sex chromosome evolution, but it is important to test whether the unexpectedly high sequence polymorphism could be explained without it, purely by the combined effects of partial linkage with the sex-determining region and the population's demographic history, including possible introgression from Silene dioica. To test this, we applied approximate Bayesian computation-based model choice to autosomal sequence diversity data, to find the most plausible scenario for the recent history of S. latifolia and then to estimate the posterior density of the most relevant parameters. We then used these densities to simulate variation to be expected at PAR genes. We conclude that an excess of variants at high frequencies at PAR genes should arise in S. latifolia populations only for genes with strong associations with fully sex-linked genes, which requires closer linkage with the fully sex-linked region than that estimated for the PAR genes where apparent deviations from neutrality were observed. These results support the need to invoke selection to explain the S. latifolia PAR gene diversity, and encourage further work to test the possibility of balancing selection due to sexual antagonism. © 2016 John Wiley & Sons Ltd.
Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert
2005-01-01
We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263
Miller, Frederick W.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy; Isenberg, David A.; Chinoy, Hector; Ollier, William E. R.; O’Hanlon, Terrance P.; Peng, Bo; Lee, Annette; Lamb, Janine A.; Chen, Wei; Amos, Christopher I.; Gregersen, Peter K.
2014-01-01
Objective To identify new genetic associations with juvenile and adult dermatomyositis (DM). Methods We performed a genome-wide association study (GWAS) of adult and juvenile DM patients of European ancestry (n = 1178) and controls (n = 4724). To assess genetic overlap with other autoimmune disorders, we examined whether 141 single nucleotide polymorphisms (SNPs) outside the major histocompatibility complex (MHC) locus, and previously associated with autoimmune diseases, predispose to DM. Results Compared to controls, patients with DM had a strong signal in the MHC region consisting of GWAS-level significance (P < 5x10−8) at 80 genotyped SNPs. An analysis of 141 non-MHC SNPs previously associated with autoimmune diseases showed that three SNPs linked with three genes were associated with DM, with a false discovery rate (FDR) < 0.05. These genes were phospholipase C like 1 (PLCL1, rs6738825, FDR=0.00089), B lymphoid tyrosine kinase (BLK, rs2736340, FDR=0.00031), and chemokine (C-C motif) ligand 21 (CCL21, rs951005, FDR=0.0076). None of these genes was previously reported to be associated with DM. Conclusion Our findings confirm the MHC as the major genetic region associated with DM and indicate that DM shares non-MHC genetic features with other autoimmune diseases, suggesting the presence of additional novel risk loci. This first identification of autoimmune disease genetic predispositions shared with DM may lead to enhanced understanding of pathogenesis and novel diagnostic and therapeutic approaches. PMID:23983088
Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.
2015-01-01
Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679
Pan, W J; Blackburn, E H
1995-01-01
The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number. Images PMID:7784211
Hawkins, Leigh K; Mylroie, J Erik; Oliveira, Dafne A; Smith, J Spencer; Ozkan, Seval; Windham, Gary L; Williams, W Paul; Warburton, Marilyn L
2015-01-01
Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stainer, P.; Forbes, S.A.; Moore, G.
1993-09-01
The locus responsible for X-linked, nonsyndromic cleft palate and/or ankyloglossia (CPX) has previously been mapped to the proximal long arm of the human X chromosome between Xq21.31 and q21.33 in an Icelandic kindred. The authors have extended these studies by analyzing an additional 14 informative markers in the family as well as including several newly investigated family members. Recombination analysis indicates that the CPX locus is more proximal than previously thought, within the interval Xq21.1-q21.31. Two recombinants place DXYS1X as the distal flanking marker, while one recombinant defines DXS326 as the proximal flanking marker, an interval of less than 5more » cM. Each of the flanking markers recombines with the CPX locus, giving 2-point lod scores of Z[sub max] = 4.16 at [theta] = 0.08 (DXS326) and Z[sub max] = 5.80 at [theta] = 0.06 (DXYS1X). 35 refs., 3 figs., 2 tabs.« less
Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis.
Espinoza, Catherine; Liang, Yan; Stacey, Gary
2017-03-01
In nature, plants need to respond to multiple environmental stresses that require the involvement and fine-tuning of different stress signaling pathways. Cross-tolerance, in which plants pre-treated with chitin (a fungal microbe-associated molecular pattern) have improved salt tolerance, was observed in Arabidopsis, but is not well understood. Here, we show a unique link between chitin and salt signaling mediated by the chitin receptor CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1). Transcriptome analysis revealed that salt stress-induced genes are highly correlated with chitin-induced genes, although this was not observed with other microbe-associated molecular patterns (MAMPs) or with other abiotic stresses. The cerk1 mutant was more susceptible to NaCl than was the wild type. cerk1 plants had an irregular increase of cytosolic calcium ([Ca 2+ ] cyt ) after NaCl treatment. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation experiments indicated that CERK1 physically interacts with ANNEXIN 1 (ANN1), which was reported to form a calcium-permeable channel that contributes to the NaCl-induced [Ca 2+ ] cyt signal. In turn, ann1 mutants showed elevated chitin-induced rapid responses. In short, molecular components previously shown to function in chitin or salt signaling physically interact and intimately link the downstream responses to fungal attack and salt stress. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Schaeffer, EM; Marchionni, L; Huang, Z; Simons, B; Blackman, A; Yu, W; Parmigiani, G; Berman, DM
2008-01-01
Cancer cells differentiate along specific lineages that largely determine their clinical and biologic behavior. Distinct cancer phenotypes from different cells and organs likely result from unique gene expression repertoires established in the embryo and maintained after malignant transformation. We used comprehensive gene expression analysis to examine this concept in the prostate, an organ with a tractable developmental program and a high propensity for cancer. We focused on gene expression in the murine prostate rudiment at three time points during the first 48 h of exposure to androgen, which initiates proliferation and invasion of prostate epithelial buds into surrounding urogenital sinus mesenchyme. Here, we show that androgen exposure regulates genes previously implicated in prostate carcinogenesis comprising pathways for the phosphatase and tensin homolog (PTEN), fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), and Wnt signaling along with cellular programs regulating such ‘hallmarks’ of cancer as angiogenesis, apoptosis, migration and proliferation. We found statistically significant evidence for novel androgeninduced gene regulation events that establish and/or maintain prostate cell fate. These include modulation of gene expression through microRNAs, expression of specific transcription factors, and regulation of their predicted targets. By querying public gene expression databases from other tissues, we found that rather than generally characterizing androgen exposure or epithelial budding, the early prostate development program more closely resembles the program for human prostate cancer. Most importantly, early androgen-regulated genes and functional themes associated with prostate development were highly enriched in contrasts between increasingly lethal forms of prostate cancer, confirming a ‘reactivation’ of embryonic pathways for proliferation and invasion in prostate cancer progression. Among the genes with the most significant links to the development and cancer, we highlight coordinate induction of the transcription factor Sox9 and suppression of the proapoptotic phospholipid-binding protein Annexin A1 that link early prostate development to early prostate carcinogenesis. These results credential early prostate development as a reliable and valid model system for the investigation of genes and pathways that drive prostate cancer. PMID:18794802
2011-01-01
Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by using our reconstructed network. Conclusions The GTRNetwork algorithm introduces the hidden layer TFA into classic relevance score-based gene regulatory network reconstruction processes. Integrating the TFA biological information with regulatory network reconstruction algorithms significantly improves both detection of new links and reduces that rate of false positives. The application of GTRNetwork on E. coli gene transcriptome data gives a set of potential regulatory links with promising biological significance for isobutanol stress and other conditions. PMID:21668997
DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.
Yang, Jing; Yu, Hui; Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan
2013-01-01
Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named "Differential Regulation Analysis" (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.
Gericke, G S
2010-05-01
Previous reports of specific patterns of increased fragility at common chromosomal fragile sites (CFS) found in association with certain neurobehavioural disorders did not attract attention at the time due to a shift towards molecular approaches to delineate neuropsychiatric disorder candidate genes. Links with miRNA, altered methylation and the origin of copy number variation indicate that CFS region characteristics may be part of chromatinomic mechanisms that are increasingly linked with neuroplasticity and memory. Current reports of large-scale double-stranded DNA breaks in differentiating neurons and evidence of ongoing DNA demethylation of specific gene promoters in adult hippocampus may shed new light on the dynamic epigenetic changes that are increasingly appreciated as contributing to long-term memory consolidation. The expression of immune recombination activating genes in key stress-induced memory regions suggests the adoption by the brain of this ancient pattern recognition and memory system to establish a structural basis for long-term memory through controlled chromosomal breakage at highly specific genomic regions. It is furthermore considered that these mechanisms for management of epigenetic information related to stress memory could be linked, in some instances, with the transfer of the somatically acquired information to the germline. Here, rearranged sequences can be subjected to further selection and possible eventual retrotranscription to become part of the more stable coding machinery if proven to be crucial for survival and reproduction. While linkage of cognitive memory with stress and fear circuitry and memory establishment through structural DNA modification is proposed as a normal process, inappropriate activation of immune-like genomic rearrangement processes through traumatic stress memory may have the potential to lead to undesirable activation of neuro-inflammatory processes. These theories could have a significant impact on the interpretation of risks posed by heredity and the environment and the search for neuropsychiatric candidate genes.
An unusual case of hereditary nephrogenic diabetes insipidus (HNDI) affecting mother and daughter.
Giri, Dinesh; Hart, Rachel; Jones, Caroline; Ellis, Ian; Ramakrishnan, Renuka
2016-01-01
Hereditary nephrogenic diabetes iInsipidus (HNDI) is an uncommon disorder due to a resistance to anti-diuretic hormone leading to a reduced urinary concentrating ability. The X-linked form is fully expressed in hemizygous male patients, but diabetes insipidus may also present in heterozygous females where it must be distinguished from autosomal and other secondary causes. We report a mother and daughter in the same family with HNDI due to a heterozygous deletion in exon 1 of the AVPR2 gene, not previously described in the literature. A 5-year-old girl was referred for investigation of polyuria and polydipsia. The patient had a water deprivation test elsewhere at the age of 3 that was inconclusive. A degree of water restriction was imposed leading to headaches. The thyroid, cortisol, renal, and calcium profiles were normal. Her mother showed similar symptoms that had not been previously investigated. AQP2 (Aquaporin) and initial AVPR2 gene sequencing had not identified a mutation, but subsequent quantitative polymerase chain reaction analysis revealed a heterozygous large exon 1 deletion of the AVPR2 gene. The same deletion was also found in the child's mother. The patient's symptoms have significantly improved on appropriate treatment. Further analysis revealed skewed X inactivation in mother and daughter.
Lotta, Luca A; Gulati, Pawan; Day, Felix R; Payne, Felicity; Ongen, Halit; van de Bunt, Martijn; Gaulton, Kyle J; Eicher, John D; Sharp, Stephen J; Luan, Jian'an; De Lucia Rolfe, Emanuella; Stewart, Isobel D; Wheeler, Eleanor; Willems, Sara M; Adams, Claire; Yaghootkar, Hanieh; Forouhi, Nita G; Khaw, Kay-Tee; Johnson, Andrew D; Semple, Robert K; Frayling, Timothy; Perry, John R B; Dermitzakis, Emmanouil; McCarthy, Mark I; Barroso, Inês; Wareham, Nicholas J; Savage, David B; Langenberg, Claudia; O'Rahilly, Stephen; Scott, Robert A
2017-01-01
Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.
Imprinted and X-linked non-coding RNAs as potential regulators of human placental function
Buckberry, Sam; Bianco-Miotto, Tina; Roberts, Claire T
2014-01-01
Pregnancy outcome is inextricably linked to placental development, which is strictly controlled temporally and spatially through mechanisms that are only partially understood. However, increasing evidence suggests non-coding RNAs (ncRNAs) direct and regulate a considerable number of biological processes and therefore may constitute a previously hidden layer of regulatory information in the placenta. Many ncRNAs, including both microRNAs and long non-coding transcripts, show almost exclusive or predominant expression in the placenta compared with other somatic tissues and display altered expression patterns in placentas from complicated pregnancies. In this review, we explore the results of recent genome-scale and single gene expression studies using human placental tissue, but include studies in the mouse where human data are lacking. Our review focuses on the ncRNAs epigenetically regulated through genomic imprinting or X-chromosome inactivation and includes recent evidence surrounding the H19 lincRNA, the imprinted C19MC cluster microRNAs, and X-linked miRNAs associated with pregnancy complications. PMID:24081302
Horikoshi, Momoko; Yaghootkar, Hanieh; Mook-Kanamori, Dennis O; Sovio, Ulla; Taal, H Rob; Hennig, Branwen J; Bradfield, Jonathan P; St Pourcain, Beate; Evans, David M; Charoen, Pimphen; Kaakinen, Marika; Cousminer, Diana L; Lehtimäki, Terho; Kreiner-Møller, Eskil; Warrington, Nicole M; Bustamante, Mariona; Feenstra, Bjarke; Berry, Diane J; Thiering, Elisabeth; Pfab, Thiemo; Barton, Sheila J; Shields, Beverley M; Kerkhof, Marjan; van Leeuwen, Elisabeth M; Fulford, Anthony J; Kutalik, Zoltán; Zhao, Jing Hua; den Hoed, Marcel; Mahajan, Anubha; Lindi, Virpi; Goh, Liang-Kee; Hottenga, Jouke-Jan; Wu, Ying; Raitakari, Olli T; Harder, Marie N; Meirhaeghe, Aline; Ntalla, Ioanna; Salem, Rany M; Jameson, Karen A; Zhou, Kaixin; Monies, Dorota M; Lagou, Vasiliki; Kirin, Mirna; Heikkinen, Jani; Adair, Linda S; Alkuraya, Fowzan S; Al-Odaib, Ali; Amouyel, Philippe; Andersson, Ehm Astrid; Bennett, Amanda J; Blakemore, Alexandra I F; Buxton, Jessica L; Dallongeville, Jean; Das, Shikta; de Geus, Eco J C; Estivill, Xavier; Flexeder, Claudia; Froguel, Philippe; Geller, Frank; Godfrey, Keith M; Gottrand, Frédéric; Groves, Christopher J; Hansen, Torben; Hirschhorn, Joel N; Hofman, Albert; Hollegaard, Mads V; Hougaard, David M; Hyppönen, Elina; Inskip, Hazel M; Isaacs, Aaron; Jørgensen, Torben; Kanaka-Gantenbein, Christina; Kemp, John P; Kiess, Wieland; Kilpeläinen, Tuomas O; Klopp, Norman; Knight, Bridget A; Kuzawa, Christopher W; McMahon, George; Newnham, John P; Niinikoski, Harri; Oostra, Ben A; Pedersen, Louise; Postma, Dirkje S; Ring, Susan M; Rivadeneira, Fernando; Robertson, Neil R; Sebert, Sylvain; Simell, Olli; Slowinski, Torsten; Tiesler, Carla M T; Tönjes, Anke; Vaag, Allan; Viikari, Jorma S; Vink, Jacqueline M; Vissing, Nadja Hawwa; Wareham, Nicholas J; Willemsen, Gonneke; Witte, Daniel R; Zhang, Haitao; Zhao, Jianhua; Wilson, James F; Stumvoll, Michael; Prentice, Andrew M; Meyer, Brian F; Pearson, Ewan R; Boreham, Colin A G; Cooper, Cyrus; Gillman, Matthew W; Dedoussis, George V; Moreno, Luis A; Pedersen, Oluf; Saarinen, Maiju; Mohlke, Karen L; Boomsma, Dorret I; Saw, Seang-Mei; Lakka, Timo A; Körner, Antje; Loos, Ruth J F; Ong, Ken K; Vollenweider, Peter; van Duijn, Cornelia M; Koppelman, Gerard H; Hattersley, Andrew T; Holloway, John W; Hocher, Berthold; Heinrich, Joachim; Power, Chris; Melbye, Mads; Guxens, Mònica; Pennell, Craig E; Bønnelykke, Klaus; Bisgaard, Hans; Eriksson, Johan G; Widén, Elisabeth; Hakonarson, Hakon; Uitterlinden, André G; Pouta, Anneli; Lawlor, Debbie A; Smith, George Davey; Frayling, Timothy M; McCarthy, Mark I; Grant, Struan F A; Jaddoe, Vincent W V; Jarvelin, Marjo-Riitta; Timpson, Nicholas J; Prokopenko, Inga; Freathy, Rachel M
2013-01-01
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
Horikoshi, Momoko; Yaghootkar, Hanieh; Mook-Kanamori, Dennis O.; Sovio, Ulla; Taal, H. Rob; Hennig, Branwen J.; Bradfield, Jonathan P.; St. Pourcain, Beate; Evans, David M.; Charoen, Pimphen; Kaakinen, Marika; Cousminer, Diana L.; Lehtimäki, Terho; Kreiner-Møller, Eskil; Warrington, Nicole M.; Bustamante, Mariona; Feenstra, Bjarke; Berry, Diane J.; Thiering, Elisabeth; Pfab, Thiemo; Barton, Sheila J.; Shields, Beverley M.; Kerkhof, Marjan; van Leeuwen, Elisabeth M.; Fulford, Anthony J.; Kutalik, Zoltán; Zhao, Jing Hua; den Hoed, Marcel; Mahajan, Anubha; Lindi, Virpi; Goh, Liang-Kee; Hottenga, Jouke-Jan; Wu, Ying; Raitakari, Olli T.; Harder, Marie N.; Meirhaeghe, Aline; Ntalla, Ioanna; Salem, Rany M.; Jameson, Karen A.; Zhou, Kaixin; Monies, Dorota M.; Lagou, Vasiliki; Kirin, Mirna; Heikkinen, Jani; Adair, Linda S.; Alkuraya, Fowzan S.; Al-Odaib, Ali; Amouyel, Philippe; Andersson, Ehm Astrid; Bennett, Amanda J.; Blakemore, Alexandra I.F.; Buxton, Jessica L.; Dallongeville, Jean; Das, Shikta; de Geus, Eco J. C.; Estivill, Xavier; Flexeder, Claudia; Froguel, Philippe; Geller, Frank; Godfrey, Keith M.; Gottrand, Frédéric; Groves, Christopher J.; Hansen, Torben; Hirschhorn, Joel N.; Hofman, Albert; Hollegaard, Mads V.; Hougaard, David M.; Hyppönen, Elina; Inskip, Hazel M.; Isaacs, Aaron; Jørgensen, Torben; Kanaka-Gantenbein, Christina; Kemp, John P.; Kiess, Wieland; Kilpeläinen, Tuomas O.; Klopp, Norman; Knight, Bridget A.; Kuzawa, Christopher W.; McMahon, George; Newnham, John P.; Niinikoski, Harri; Oostra, Ben A.; Pedersen, Louise; Postma, Dirkje S.; Ring, Susan M.; Rivadeneira, Fernando; Robertson, Neil R.; Sebert, Sylvain; Simell, Olli; Slowinski, Torsten; Tiesler, Carla M.T.; Tönjes, Anke; Vaag, Allan; Viikari, Jorma S.; Vink, Jacqueline M.; Vissing, Nadja Hawwa; Wareham, Nicholas J.; Willemsen, Gonneke; Witte, Daniel R.; Zhang, Haitao; Zhao, Jianhua; Wilson, James F.; Stumvoll, Michael; Prentice, Andrew M.; Meyer, Brian F.; Pearson, Ewan R.; Boreham, Colin A.G.; Cooper, Cyrus; Gillman, Matthew W.; Dedoussis, George V.; Moreno, Luis A; Pedersen, Oluf; Saarinen, Maiju; Mohlke, Karen L.; Boomsma, Dorret I.; Saw, Seang-Mei; Lakka, Timo A.; Körner, Antje; Loos, Ruth J.F.; Ong, Ken K.; Vollenweider, Peter; van Duijn, Cornelia M.; Koppelman, Gerard H.; Hattersley, Andrew T.; Holloway, John W.; Hocher, Berthold; Heinrich, Joachim; Power, Chris; Melbye, Mads; Guxens, Mònica; Pennell, Craig E.; Bønnelykke, Klaus; Bisgaard, Hans; Eriksson, Johan G.; Widén, Elisabeth; Hakonarson, Hakon; Uitterlinden, André G.; Pouta, Anneli; Lawlor, Debbie A.; Smith, George Davey; Frayling, Timothy M.; McCarthy, Mark I.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Jarvelin, Marjo-Riitta; Timpson, Nicholas J.; Prokopenko, Inga; Freathy, Rachel M.
2012-01-01
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism. PMID:23202124
USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin
Durcan, Thomas M; Tang, Matthew Y; Pérusse, Joëlle R; Dashti, Eman A; Aguileta, Miguel A; McLelland, Gian-Luca; Gros, Priti; Shaler, Thomas A; Faubert, Denis; Coulombe, Benoit; Fon, Edward A
2014-01-01
Mutations in the Park2 gene, encoding the E3 ubiquitin-ligase parkin, are responsible for a familial form of Parkinson's disease (PD). Parkin-mediated ubiquitination is critical for the efficient elimination of depolarized dysfunctional mitochondria by autophagy (mitophagy). As damaged mitochondria are a major source of toxic reactive oxygen species within the cell, this pathway is believed to be highly relevant to the pathogenesis of PD. Little is known about how parkin-mediated ubiquitination is regulated during mitophagy or about the nature of the ubiquitin conjugates involved. We report here that USP8/UBPY, a deubiquitinating enzyme not previously implicated in mitochondrial quality control, is critical for parkin-mediated mitophagy. USP8 preferentially removes non-canonical K6-linked ubiquitin chains from parkin, a process required for the efficient recruitment of parkin to depolarized mitochondria and for their subsequent elimination by mitophagy. This work uncovers a novel role for USP8-mediated deubiquitination of K6-linked ubiquitin conjugates from parkin in mitochondrial quality control. PMID:25216678
The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions
Merchant, Sabeeha S.; Prochnik, Simon E.; Vallon, Olivier; Harris, Elizabeth H.; Karpowicz, Steven J.; Witman, George B.; Terry, Astrid; Salamov, Asaf; Fritz-Laylin, Lillian K.; Maréchal-Drouard, Laurence; Marshall, Wallace F.; Qu, Liang-Hu; Nelson, David R.; Sanderfoot, Anton A.; Spalding, Martin H.; Kapitonov, Vladimir V.; Ren, Qinghu; Ferris, Patrick; Lindquist, Erika; Shapiro, Harris; Lucas, Susan M.; Grimwood, Jane; Schmutz, Jeremy; Cardol, Pierre; Cerutti, Heriberto; Chanfreau, Guillaume; Chen, Chun-Long; Cognat, Valérie; Croft, Martin T.; Dent, Rachel; Dutcher, Susan; Fernández, Emilio; Ferris, Patrick; Fukuzawa, Hideya; González-Ballester, David; González-Halphen, Diego; Hallmann, Armin; Hanikenne, Marc; Hippler, Michael; Inwood, William; Jabbari, Kamel; Kalanon, Ming; Kuras, Richard; Lefebvre, Paul A.; Lemaire, Stéphane D.; Lobanov, Alexey V.; Lohr, Martin; Manuell, Andrea; Meier, Iris; Mets, Laurens; Mittag, Maria; Mittelmeier, Telsa; Moroney, James V.; Moseley, Jeffrey; Napoli, Carolyn; Nedelcu, Aurora M.; Niyogi, Krishna; Novoselov, Sergey V.; Paulsen, Ian T.; Pazour, Greg; Purton, Saul; Ral, Jean-Philippe; Riaño-Pachón, Diego Mauricio; Riekhof, Wayne; Rymarquis, Linda; Schroda, Michael; Stern, David; Umen, James; Willows, Robert; Wilson, Nedra; Zimmer, Sara Lana; Allmer, Jens; Balk, Janneke; Bisova, Katerina; Chen, Chong-Jian; Elias, Marek; Gendler, Karla; Hauser, Charles; Lamb, Mary Rose; Ledford, Heidi; Long, Joanne C.; Minagawa, Jun; Page, M. Dudley; Pan, Junmin; Pootakham, Wirulda; Roje, Sanja; Rose, Annkatrin; Stahlberg, Eric; Terauchi, Aimee M.; Yang, Pinfen; Ball, Steven; Bowler, Chris; Dieckmann, Carol L.; Gladyshev, Vadim N.; Green, Pamela; Jorgensen, Richard; Mayfield, Stephen; Mueller-Roeber, Bernd; Rajamani, Sathish; Sayre, Richard T.; Brokstein, Peter; Dubchak, Inna; Goodstein, David; Hornick, Leila; Huang, Y. Wayne; Jhaveri, Jinal; Luo, Yigong; Martínez, Diego; Ngau, Wing Chi Abby; Otillar, Bobby; Poliakov, Alexander; Porter, Aaron; Szajkowski, Lukasz; Werner, Gregory; Zhou, Kemin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Grossman, Arthur R.
2010-01-01
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella. PMID:17932292
Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia
2007-01-01
Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544
Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses
Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel
2015-01-01
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus.
Lubin, Jean-Bernard; Kingston, Joseph J; Chowdhury, Nityananda; Boyd, E Fidelma
2012-05-01
Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.
Fernandez-San Jose, Patricia; Liu, Yichuan; March, Michael; Pellegrino, Renata; Golhar, Ryan; Corton, Marta; Blanco-Kelly, Fiona; López-Molina, Maria Isabel; García-Sandoval, Blanca; Guo, Yiran; Tian, Lifeng; Liu, Xuanzhu; Guan, Liping; Zhang, Jianguo; Keating, Brendan; Xu, Xun
2015-01-01
This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies. PMID:26197217
Lorenz-Depiereux, Bettina; Guido, Victoria E.; Johnson, Kenneth R.; Zheng, Qing Yin; Gagnon, Leona H.; Bauschatz, Joiel D.; Davisson, Muriel T.; Washburn, Linda L.; Donahue, Leah Rae; Strom, Tim M.; Eicher, Eva M.
2010-01-01
X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: PhexHyp, Gy, and PhexSka1. Here we report analysis of two new spontaneous mutations in the mouse Phex gene, PhexHyp-2J and PhexHyp-Duk. PhexHyp-2J and PhexHyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the PhexHyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from PhexHyp-2J/Y and PhexHyp-Duk/Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired PhexHyp-Duk/Y mice, but not in the normal-hearing PhexHyp-2J/Y mice. Analysis of the phenotypes noted in PhexHyp-Duk/Y an PhexHyp-2J/Y males, together with those noted in PhexSka1/Y and PhexHyp/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in PhexHyp-Duk/Y mice could provide insight into the phenotypic variation of XLH in humans. PMID:15029877
Lorenz-Depiereux, Bettina; Guido, Victoria E; Johnson, Kenneth R; Zheng, Qing Yin; Gagnon, Leona H; Bauschatz, Joiel D; Davisson, Muriel T; Washburn, Linda L; Donahue, Leah Rae; Strom, Tim M; Eicher, Eva M
2004-03-01
X-linked hypophosphatemic rickets (XLH) in humans is caused by mutation in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: Phex(Hyp), Gy, and Phex(Ska1). Here we report analysis of two new spontaneous mutation in the mouse Phex gene, Phex(Hyp-2J) and Phex(Hyp-Duk). Phex(Hyp-2J) and Phex(Hyp-Duk) involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the Phex(Hyp-Duk) mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from Phex(Hyp-2J)/Y and Phex(Hyp-Duk)/Y males reveal a thickening of the temporal bones surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired Phex(Hyp-Duk)/Y mice, but not in the normal-hearing Phex(Hyp-2J)/Y mice. Analysis of the phenotypes noted in Phex(Hyp-Duk)/Y and Phex(Hyp-2J)/Y males, together with those noted in Phex(Ska1)/Y and Phex(Hyp)/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in Phex(Hyp-Duk)/Y mice could provide insight into the phenotypic variation of XLH in humans.
The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.
Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R; Hernández-Oñate, Miguel; Kruszewska, Joanna S; Lawry, Robert; Mora-Montes, Hector M; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo
2016-03-01
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
De Novo Transcriptomes of a Mixotrophic and a Heterotrophic Ciliate from Marine Plankton
Santoferrara, Luciana F.; Guida, Stephanie; Zhang, Huan; McManus, George B.
2014-01-01
Studying non-model organisms is crucial in the context of the current development of genomics and transcriptomics for both physiological experimentation and environmental characterization. We investigated the transcriptomes of two marine planktonic ciliates, the mixotrophic oligotrich Strombidium rassoulzadegani and the heterotrophic choreotrich Strombidinopsis sp., and their respective algal food using Illumina RNAseq. Our aim was to characterize the transcriptomes of these contrasting ciliates and to identify genes potentially involved in mixotrophy. We detected approximately 10,000 and 7,600 amino acid sequences for S. rassoulzadegani and Strombidinopsis sp., respectively. About half of these transcripts had significant BLASTP hits (E-value <10−6) against previously-characterized sequences, mostly from the model ciliate Oxytricha trifallax. Transcriptomes from both the mixotroph and the heterotroph species provided similar annotations for GO terms and KEGG pathways. Most of the identified genes were related to housekeeping activity and pathways such as the metabolism of carbohydrates, lipids, amino acids, nucleotides, and vitamins. Although S. rassoulzadegani can keep and use chloroplasts from its prey, we did not find genes clearly linked to chloroplast maintenance and functioning in the transcriptome of this ciliate. While chloroplasts are known sources of reactive oxygen species (ROS), we found the same complement of antioxidant pathways in both ciliates, except for one enzyme possibly linked to ascorbic acid recycling found exclusively in the mixotroph. Contrary to our expectations, we did not find qualitative differences in genes potentially related to mixotrophy. However, these transcriptomes will help to establish a basis for the evaluation of differential gene expression in oligotrichs and choreotrichs and experimental investigation of the costs and benefits of mixotrophy. PMID:24983246
Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun
2015-01-01
Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283
Contrasting Levels of Molecular Evolution on the Mouse X Chromosome
Larson, Erica L.; Vanderpool, Dan; Keeble, Sara; Zhou, Meng; Sarver, Brice A. J.; Smith, Andrew D.; Dean, Matthew D.; Good, Jeffrey M.
2016-01-01
The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution—divergence in protein sequence, gene expression, and DNA methylation—across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation. PMID:27317678
Xue, Yuan; Schoser, Benedikt; Rao, Aliz R; Quadrelli, Roberto; Vaglio, Alicia; Rupp, Verena; Beichler, Christine; Nelson, Stanley F; Schapacher-Tilp, Gudrun; Windpassinger, Christian; Wilcox, William R
2016-04-01
Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies. © 2016 American Heart Association, Inc.
Santiago, Jose A; Potashkin, Judith A
2013-01-01
Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that increased expression of APP in blood may modulate the neurodegenerative phenotype in type 2 diabetes patients.
Li, Xiaoxin; Ma, Xiang; Tao, Yong
2007-06-07
To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.
Ma, Xiang; Tao, Yong
2007-01-01
Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541
Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.
Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho
2016-09-11
A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Ezrin Inhibition Up-regulates Stress Response Gene Expression*
Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut
2016-01-01
Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931
A novel highly differentially expressed gene in wheat endosperm associated with bread quality
Furtado, A.; Bundock, P. C.; Banks, P. M.; Fox, G.; Yin, X.; Henry, R. J.
2015-01-01
Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5’-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437
A novel highly differentially expressed gene in wheat endosperm associated with bread quality.
Furtado, A; Bundock, P C; Banks, P M; Fox, G; Yin, X; Henry, R J
2015-05-26
Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5'-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production.
Bailey, Richard I; Innocenti, Paolo; Morrow, Edward H; Friberg, Urban; Qvarnström, Anna
2011-02-28
The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean) versus less (Cosmopolitan strain) preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.
Hullar, Meredith A J; Lampe, Johanna W; Torok-Storb, Beverly J; Harkey, Michael A
2018-01-01
Large and giant dog breeds have a high risk for gastric dilatation-volvulus (GDV) which is an acute, life-threatening condition. Previous work by our group identified a strong risk of GDV linked to specific alleles in innate and adaptive immune genes. We hypothesize that variation in the genes of the immune system act through modulation of the gut microbiome, or through autoimmune mechanisms, or both, to predispose dogs to this condition. Here, we investigate whether differences in the canine fecal microbiome are associated with GDV and are linked to previously identified risk alleles. Fecal samples from healthy Great Danes (n = 38), and dogs with at least one occurrence of GDV (n = 37) were collected and analyzed by paired-end sequencing of the 16S rRNA gene. Dietary intake and temperament were estimated from a study-specific dietary and temperament questionnaire. Dogs with GDV had significantly more diverse fecal microbiomes than healthy control dogs. Alpha diversity was significantly increased in dogs with GDV, as well as dogs with at least one risk allele for DRB1 and TRL5. We found no significant association of dietary intake and GDV. Dogs with GDV showed a significant expansion of the rare lineage Actinobacteria (p = 0.004), as well as a significantly greater abundance of Firmicutes (p = 0.004) and a significantly lower abundance of Bacteroidetes (p<0.004). There was a significant difference in the abundance of 10 genera but after correction for multiple comparisons, none were significant. Bacterial phyla were significantly different between controls and dogs with GDV and at least one risk allele for DRB1 and TRL5. Actinobacteria were significantly higher in dogs with GDV and with one risk allele for DRB1 and TLR5 but not DLA88 genes. Furthermore, Collinsella was significantly increased in dogs with at least one risk allele for DRB1 and TLR5. Logistic regression showed that a model which included Actinobacteria, at least one risk allele,and temperament, explained 29% of the variation in risk of GDV in Great Danes. The microbiome in GDV was altered by an expansion of a minor lineage and was associated with specific alleles of both innate and adaptive immunity genes. These associations are consistent with our hypothesis that immune genes may play a role in predisposition to GDV by altering the gut microbiome. Further research will be required to directly test the causal relationships of immune genes, the gut microbiome and GDV.
Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach.
Chaparro, J X; Werner, D J; O'Malley, D; Sederoff, R R
1994-02-01
Nine different F2 families of peach [Prunus persica (L.) Batsch] were analyzed for linkage relationships between 14 morphological and two isozyme loci. Linkage was detected between weeping (We) and white flower (W), 33 cM; double flower (Dl) and pillar (Br), 10 cM; and flesh color (Y) and malate dehydrogenase (Mdh1), 26 cM. A leaf variant phenotypically distinct from the previously reported wavy-leaf (Wa) mutant in peach was found in progeny of 'Davie II'. The new willow-leaf character (designated Wa2) was closely linked (0.4 cM) to a new dwarf phenotype (designated Dw3). Two families derived from the pollen-fertile cultivar 'White Glory' segregated for pollen sterility, but segregation did not follow a 3∶1 ratio. Evidence is presented suggesting that 'White Glory' possesses a pollen-sterility gene (designated Ps2) that is non-allelic to the previously reported pollen-sterility gene (Ps) in peach. Ps2 was linked to both weeping (We-Ps2, 15.5 cM) and white flower (Ps2-W, 25.3 cM). A genomic map of peach containing 83 RAPD, one isozyme, and four morphological markers was generated using an F2 family obtained by selfing an NC174RL x 'Pillar' F1. A total of 83 RAPD markers were assigned to 15 linkage groups. Various RAPD markers were linked to morphological traits. Bulked segregant analysis was used to identify RAPD markers flanking the red-leaf (Gr) and Mdh1 loci in the NC174RL x 'Pillar' and 'Marsun' x 'White Glory' F2 families, respectively. Three markers flanking Mdh1 and ten markers flanking Gr were identified. The combination of RAPD markers and bulked segregant analysis provides an efficient method of identifying markers flanking traits of interest. Markers linked to traits that can only be scored late in development are potentially useful for marker-aided selection in trees. Alternatives for obtaining additional map order information for repulsion-phase markers in large F2 populations are proposed.
Li, Xinzhong; Long, Jintao; He, Taigang; Belshaw, Robert; Scott, James
2015-01-01
Previous studies have evaluated gene expression in Alzheimer’s disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD. PMID:26202100
Human SLC26A1 gene variants: a pilot study.
Dawson, Paul A; Sim, Pearl; Mudge, David W; Cowley, David
2013-01-01
Kidney stones are a global health problem, incurring massive health costs annually. Why stones recur in many patients remains unknown but likely involves environmental, physiological, and genetic factors. The solute linked carrier (SLC) 26A1 gene has previously been linked to kidney stones in mice. SLC26A1 encodes the sulfate anion transporter 1 (SAT1) protein, and its loss in mice leads to hyperoxaluria and calcium oxalate renal stones. To investigate the possible involvement of SAT1 in human urolithiasis, we screened the SLC26A1 gene in a cohort of 13 individuals with recurrent calcium oxalate urolithiasis, which is the commonest type. DNA sequence analyses showed missense mutations in seven patients: one individual was heterozygous R372H; 4 individuals were heterozygous Q556R; one patient was homozygous Q556R; and one patient with severe nephrocalcinosis (requiring nephrectomy) was homozygous Q556R and heterozygous M132T. The M132 amino acid in human SAT1 is conserved with 15 other species and is located within the third transmembrane domain of the predicted SAT1 protein structure, suggesting that this amino acid may be important for SAT1 function. These initial findings demonstrate genetic variants in SLC26A1 of recurrent stone formers and warrant wider independent studies of SLC26A1 in humans with recurrent calcium oxalate stones.
Lah, Melissa; Niranjan, Tejasvi; Srikanth, Sujata; Holloway, Lynda; Schwartz, Charles E; Wang, Tao; Weaver, David D
2016-04-01
We further evaluated a previously reported family with an apparently undescribed X-linked syndrome involving joint contractures, keloids, an increased optic cup-to-disc ratio, and renal stones to elucidate the genetic cause. To do this, we obtained medical histories and performed physical examination on 14 individuals in the family, five of whom are affected males and three are obligate carrier females. Linkage analysis was performed on all but one individual and chromosome X-exome sequencing was done on two affected males. The analysis localized the putative gene to Xq27-qter and chromosome X-exome sequencing revealed a mutation in exon 28 (c.4726G>A) of the filamin A (FLNA) gene, predicting that a conserved glycine had been replaced by arginine at amino acid 1576 (p.G1576R). Segregation analysis demonstrated that all known carrier females tested were heterozygous (G/A), all affected males were hemizygous for the mutation (A allele) and all normal males were hemizygous for the normal G allele. The data and the bioinformatic analysis indicate that the G1576R mutation in the FLNA gene is very likely pathogenic in this family. The syndrome affecting the family shares phenotypic overlap with other syndromes caused by FLNA mutations, but appears to be a distinct phenotype, likely representing a unique genetic syndrome. © 2016 Wiley Periodicals, Inc.
Wilson, Sam J; Tsao, Edward H; Webb, Benjamin L J; Ye, Hongtao; Dalton-Griffin, Lucy; Tsantoulas, Christoforos; Gale, Catherine V; Du, Ming-Qing; Whitehouse, Adrian; Kellam, Paul
2007-12-01
Reactivation of lytic replication from viral latency is a defining property of all herpesviruses. Despite this, the authentic physiological cues for the latent-lytic switch are unclear. Such cues should ensure that viral lytic replication occurs under physiological conditions, predominantly in sites which facilitate transmission to permissive uninfected cells and new susceptible hosts. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with the B-cell neoplasm primary effusion lymphoma (PEL), in which the virus remains latent. We have previously shown that PEL cells have the gene expression profile and immunophenotype of cycling preplasma cells (plasmablasts). Here, we show that the highly active spliced isoform of plasma cell transcription factor X box binding protein 1 (XBP-1s) is a lytic switch for KSHV. XBP-1s is normally absent in PEL, but the induction of endoplasmic reticulum stress leads to XBP-1s generation, plasma cell-like differentiation, and lytic reactivation of KSHV. XBP-1s binds to and activates the KSHV immediate-early gene ORF50 and synergizes with the ORF50 gene product RTA to induce a full lytic cycle. These data suggest that KSHV remains latent until B-cell terminal differentiation into plasma cells, the transcriptional environment of which provides the physiological "lytic switch" through XBP-1s. This links B-cell terminal differentiation to KSHV lytic reactivation.
Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.
2010-01-01
Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448
Redmond, Molly C; Valentine, David L; Sessions, Alex L
2010-10-01
Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lappalainen, J.; Dean, M.; Virkkunen, M.
1995-04-24
Abnormal brain serotonin function may be characteristic of several neuropsychiatric disorders. Thus, it is important to identify polymorphic genes and screen for functional variants at loci coding for genes that control normal serotonin functions. 5-HT{sub 1D{beta}} is a terminal serotonin autoreceptor which may play a role in regulating serotonin synthesis and release. Using an SSCP technique we screened for 5-HT{sub 1D{beta}} coding sequence variants in psychiatrically interviewed populations, which included controls, alcoholics, and alcoholic arsonists and alcoholic violent offenders with low CSF concentrations of the main serotonin metabolite 5-HIAA. A common polymorphism was identified in the 5-HT{sub 1D{beta}} gene withmore » allele frequencies of 0.72 and 0.28. The SSCP variant was caused by a silent G to C substitution at nucleotide 861 of the coding region. This polymorphism could also be detected as a HincII RFLP of amplified DNA. DNAs from informative CEPH families were typed for the HincII RFLP and analyzed with respect to 20 linked markers on chromosome 6. Multipoint analysis placed the 5-HT{sub 1D{beta}} receptor gene between markers D6S286 and D6S275. A maximum two-point lod score of 10.90 was obtained to D6S26, which had been previously localized on 6q14-15. Chromosomal aberrations involving this region have been previously shown to cause retinal anomalies, developmental delay, and abnormal brain development. This region also contains the gene for North Carolina-type macular dystrophy. 34 refs., 3 figs., 1 tab.« less
Sjögren's syndrome X-chromosome dose effect: An epigenetic perspective.
Mougeot, J-Lc; Noll, B D; Bahrani Mougeot, F K
2018-01-09
Sjögren's syndrome (SS) is a chronic autoimmune disease affecting exocrine glands leading to mouth and eyes dryness. The extent to which epigenetic DNA methylation changes are responsible for an X-chromosome dose effect has yet to be determined. Our objectives were to (i) describe how epigenetic DNA methylation changes could explain an X-chromosome dose effect in SS for women with normal 46,XX genotype and (ii) determine the relevant relationships to this dose effect, between X-linked genes, genes controlling X-chromosome inactivation (XCI) and genes encoding associated transcription factors, all of which are differentially expressed and/or differentially methylated in the salivary glands of patients with SS. We identified 58 upregulated X-chromosome genes, including 22 genes previously shown to escape XCI, based on the analysis of SS patient salivary gland GEO2R gene expression datasets. Moreover, we found XIST and its cis regulators RLIM, FTX, and CHIC1, and polycomb repressor genes of the PRC1/2 complexes to be upregulated. Many of the X-chromosome genes implicated in SS pathogenesis can be regulated by transcription factors which we found to be overexpressed and/or differentially methylated in patients with SS. Determination of the mechanisms underlying methylation-dependent gene expression and impaired XCI is needed to further elucidate the etiopathogenesis of SS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?
Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W
2015-02-01
The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila
Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette
2013-01-01
Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314
Human intellectual disability genes form conserved functional modules in Drosophila.
Oortveld, Merel A W; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A; Schenck, Annette
2013-10-01
Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules.
Connallon, Tim; Clark, Andrew G
2010-12-01
Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?
Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steven W.
2014-01-01
Background The temporal and situational stability of personality has led generations of researchers to hypothesise that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by ‘behavioural immune response’ theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. Methods An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5 ml sample of peripheral blood for gene expression analysis. Results Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. Conclusions The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. PMID:25459894
Quilter, C.R.; Karcanias, A.C.; Bagga, M.R.; Duncan, S.; Murray, A.; Conway, G.S.; Sargent, C.A.; Affara, N.A.
2013-01-01
BACKGROUND Premature ovarian failure (POF) is a heterogeneous disease defined as amenorrhoea for >6 months before age 40, with an FSH serum level >40 mIU/ml (menopausal levels). While there is a strong genetic association with POF, familial studies have also indicated that idiopathic POF may also be genetically linked. Conventional cytogenetic analyses have identified regions of the X chromosome that are strongly associated with ovarian function, as well as several POF candidate genes. Cryptic chromosome abnormalities that have been missed might be detected by array comparative genomic hybridization. METHODS In this study, samples from 42 idiopathic POF patients were subjected to a complete end-to-end X/Y chromosome tiling path array to achieve a detailed copy number variation (CNV) analysis of X chromosome involvement in POF. The arrays also contained a 1 Mb autosomal tiling path as a reference control. Quantitative PCR for selected genes contained within the CNVs was used to confirm the majority of the changes detected. The expression pattern of some of these genes in human tissue RNA was examined by reverse transcription (RT)–PCR. RESULTS A number of CNVs were identified on both Xp and Xq, with several being shared among the POF cases. Some CNVs fall within known polymorphic CNV regions, and others span previously identified POF candidate regions and genes. CONCLUSIONS The new data reported in this study reveal further discrete X chromosome intervals not previously associated with the disease and therefore implicate new clusters of candidate genes. Further studies will be required to elucidate their involvement in POF. PMID:20570974
Landsverk, Megan L.; Ruzzo, Elizabeth K.; Mefford, Heather C.; Buysse, Karen; Buchan, Jillian G.; Eichler, Evan E.; Petty, Elizabeth M.; Peterson, Esther A.; Knutzen, Dana M.; Barnett, Karen; Farlow, Martin R.; Caress, Judy; Parry, Gareth J.; Quan, Dianna; Gardner, Kathy L.; Hong, Ming; Simmons, Zachary; Bird, Thomas D.; Chance, Phillip F.; Hannibal, Mark C.
2009-01-01
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA. PMID:19139049
Landsverk, Megan L; Ruzzo, Elizabeth K; Mefford, Heather C; Buysse, Karen; Buchan, Jillian G; Eichler, Evan E; Petty, Elizabeth M; Peterson, Esther A; Knutzen, Dana M; Barnett, Karen; Farlow, Martin R; Caress, Judy; Parry, Gareth J; Quan, Dianna; Gardner, Kathy L; Hong, Ming; Simmons, Zachary; Bird, Thomas D; Chance, Phillip F; Hannibal, Mark C
2009-04-01
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA.
Polymorphism of the Tryptophan Hydroxylase 2 (TPH2) Gene Is Associated with Chimpanzee Neuroticism
Morimura, Naruki; Udono, Toshifumi; Hayasaka, Ikuo; Humle, Tatyana; Murayama, Yuichi; Ito, Shin'ichi; Inoue-Murayama, Miho
2011-01-01
In the brain, serotonin production is controlled by tryptophan hydroxylase 2 (TPH2), a genotype. Previous studies found that mutations on the TPH2 locus in humans were associated with depression and studies of mice and studies of rhesus macaques have shown that the TPH2 locus was involved with aggressive behavior. We previously reported a functional single nucleotide polymorphism (SNP) in the form of an amino acid substitution, Q468R, in the chimpanzee TPH2 gene coding region. In the present study we tested whether this SNP was associated with neuroticism in captive and wild-born chimpanzees living in Japan and Guinea, respectively. Even after correcting for multiple tests (Bonferroni p = 0.05/6 = 0.008), Q468R was significantly related to higher neuroticism (β = 0.372, p = 0.005). This study is the first to identify a genotype linked to a personality trait in chimpanzees. In light of the prior studies on humans, mice, and rhesus macaques, these findings suggest that the relationship between neuroticism and TPH2 has deep phylogenetic roots. PMID:21765945
A Refined Model for the TSG-6 Link Module in Complex with Hyaluronan
Higman, Victoria A.; Briggs, David C.; Mahoney, David J.; Blundell, Charles D.; Sattelle, Benedict M.; Dyer, Douglas P.; Green, Dixy E.; DeAngelis, Paul L.; Almond, Andrew; Milner, Caroline M.; Day, Anthony J.
2014-01-01
Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of d-glucuronic acid and N-acetyl-d-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was 13C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a d-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation. PMID:24403066
Eyre, David W; Fawley, Warren N; Rajgopal, Anu; Settle, Christopher; Mortimer, Kalani; Goldenberg, Simon D; Dawson, Susan; Crook, Derrick W; Peto, Tim E A; Walker, A Sarah; Wilcox, Mark H
2017-08-01
Variation in Clostridium difficile infection (CDI) rates between healthcare institutions suggests overall incidence could be reduced if the lowest rates could be achieved more widely. We used whole-genome sequencing (WGS) of consecutive C. difficile isolates from 6 English hospitals over 1 year (2013-14) to compare infection control performance. Fecal samples with a positive initial screen for C. difficile were sequenced. Within each hospital, we estimated the proportion of cases plausibly acquired from previous cases. Overall, 851/971 (87.6%) sequenced samples contained toxin genes, and 451 (46.4%) were fecal-toxin-positive. Of 652 potentially toxigenic isolates >90-days after the study started, 128 (20%, 95% confidence interval [CI] 17-23%) were genetically linked (within ≤2 single nucleotide polymorphisms) to a prior patient's isolate from the previous 90 days. Hospital 2 had the fewest linked isolates, 7/105 (7%, 3-13%), hospital 1, 9/70 (13%, 6-23%), and hospitals 3-6 had similar proportions of linked isolates (22-26%) (P ≤ .002 comparing hospital-2 vs 3-6). Results were similar adjusting for locally circulating ribotypes. Adjusting for hospital, ribotype-027 had the highest proportion of linked isolates (57%, 95% CI 29-81%). Fecal-toxin-positive and toxin-negative patients were similarly likely to be a potential transmission donor, OR = 1.01 (0.68-1.49). There was no association between the estimated proportion of linked cases and testing rates. WGS can be used as a novel surveillance tool to identify varying rates of C. difficile transmission between institutions and therefore to allow targeted efforts to reduce CDI incidence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Analysis of X chromosome inactivation in autism spectrum disorders
Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas
2008-01-01
Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in the susceptibility to ASD by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. PMID:18361425
Analysis of X chromosome inactivation in autism spectrum disorders.
Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle M; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas
2008-09-05
Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. 2008 Wiley-Liss, Inc.
Lengeler, J
1975-01-01
Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity for any of the three hexitols. PMID:1100602
A Novel Mutation in the XLRS1 Gene in a Korean Family with X-linked Retinoschisis
Jwa, Nam Soo; Kim, Sung Soo; Lee, Sung Chul; Kwon, Oh Woong
2006-01-01
Purpose To report a novel missense mutation in the XLRS1 gene in a Korean family with X-linked retinoschisis. Methods Observation case report of a family with a proband with X-linked retinoschisis underwent complete ophthalmologic examination. Genomic DNA was excluded from the family's blood and all exons of the XLRS1 gene were amplified by polymerase chain reaction and analyzed using a direct sequencing method. Results A novel Leu103Phe missense mutation was identified. Conclusions A novel Leu103Phe mutation is an additional missense mutation which is responsible for the pathogenesis of X-linked retinoschisis. PMID:16768192
Iglesias, Adriana I; Mishra, Aniket; Vitart, Veronique; Bykhovskaya, Yelena; Höhn, René; Springelkamp, Henriët; Cuellar-Partida, Gabriel; Gharahkhani, Puya; Bailey, Jessica N Cooke; Willoughby, Colin E; Li, Xiaohui; Yazar, Seyhan; Nag, Abhishek; Khawaja, Anthony P; Polašek, Ozren; Siscovick, David; Mitchell, Paul; Tham, Yih Chung; Haines, Jonathan L; Kearns, Lisa S; Hayward, Caroline; Shi, Yuan; van Leeuwen, Elisabeth M; Taylor, Kent D; Bonnemaijer, Pieter; Rotter, Jerome I; Martin, Nicholas G; Zeller, Tanja; Mills, Richard A; Staffieri, Sandra E; Jonas, Jost B; Schmidtmann, Irene; Boutin, Thibaud; Kang, Jae H; Lucas, Sionne E M; Wong, Tien Yin; Beutel, Manfred E; Wilson, James F; Uitterlinden, André G; Vithana, Eranga N; Foster, Paul J; Hysi, Pirro G; Hewitt, Alex W; Khor, Chiea Chuen; Pasquale, Louis R; Montgomery, Grant W; Klaver, Caroline C W; Aung, Tin; Pfeiffer, Norbert; Mackey, David A; Hammond, Christopher J; Cheng, Ching-Yu; Craig, Jamie E; Rabinowitz, Yaron S; Wiggs, Janey L; Burdon, Kathryn P; van Duijn, Cornelia M; MacGregor, Stuart
2018-05-14
Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r = -0.62, P = 5.30 × 10 -5 ) but not between CCT and primary open-angle glaucoma (r = -0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation.
Yung, Pui Yi; Burke, Catherine; Lewis, Matt; Egan, Suhelen; Kjelleberg, Staffan; Thomas, Torsten
2009-01-01
Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information. PMID:19767618