Science.gov

Sample records for genes recombinant antibody

  1. Selection of recombinant antibodies from antibody gene libraries.

    PubMed

    Hust, Michael; Dübel, Stefan; Schirrmann, Thomas

    2007-01-01

    After the sequencing of the human genome is completed, the research focus shifts toward the analysis of gene products. The human genome encodes more than 30,000 genes. Owing to alternative mRNA splicing and posttranslational modifications, for example, glycosylation, phoshorylation, and so on, the number of different proteins of human proteome is supposed to easily exceed 90,000. Antibodies are key detection reagents for the "postgenomic" analysis of these proteins. Any systematic investigation of the human proteome requires high throughput methods for antibody generation. In vitro selection systems utilizing recombinant antibody repertoires offer this capability and capacity. The most commonly used contemporary in vitro selection system is antibody phage display, which has already yielded thousands of useful antibodies for therapy, research, and diagnostics. Herein, methods are described for the selection of recombinant antibody fragments from naive antibody gene libraries.

  2. Selection of recombinant antibodies from antibody gene libraries.

    PubMed

    Hust, Michael; Frenzel, André; Schirrmann, Thomas; Dübel, Stefan

    2014-01-01

    Antibodies are indispensable detection reagents for research and diagnostics and represent the biggest class of biological therapeutics on the market. In vitro antibody selection systems offer many advantages over animal-based technologies because the whole selection process is independent of the in vivo immune response. In the last two decades antibody phage display has evolved to the most robust and widely used method and has already yielded thousands of antibodies. The selection of binders by phage display is also referred to as "panning" and based on the specific molecular interaction of antibody phage with an immobilized antigen thus allowing the enrichment and isolation of antigen-specific monoclonal binders from very large antibody gene libraries. Here, we give detailed protocols for the selection of recombinant antibody fragments from antibody gene libraries in microtiter plates.

  3. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  4. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  5. Selection of Recombinant Human Antibodies.

    PubMed

    Tomszak, Florian; Weber, Susanne; Zantow, Jonas; Schirrmann, Thomas; Hust, Michael; Frenzel, André

    2016-01-01

    Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.

  6. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  7. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  8. Recombinant monoclonal antibody technology.

    PubMed

    Siegel, D L

    2002-01-01

    With the development of murine hybridoma technology over a quarter century ago, the ability to produce large quantities of well-characterized monoclonal antibody preparations revolutionized diagnostic and therapeutic medicine. For many applications in transfusion medicine, however, the production of serological reagents in mice has certain biological limitations relating to the difficulty in obtaining murine monoclonal antibodies specific for many human blood group antigens. Furthermore, for therapeutic purposes, the efficacy of murine-derived immunoglobulin preparations is limited by the induction of anti-mouse immune responses. Technical difficulties inherent in human hybridoma formation have led to novel molecular approaches that facilitate the isolation and production of human antibodies without the need for B-cell transformation, tissue culture, or even immunized individuals. These technologies, referred to as 'repertoire cloning' or 'Fab/phage display', involve the rapid cloning of immunoglobulin gene segments to create immune libraries from which antibodies with desired specificities can be selected. The use of such recombinant methods in transfusion medicine is anticipated to play an important role in the development and production of renewable supplies of low-cost reagents for diagnostic and therapeutic applications.

  9. Demystified...recombinant antibodies.

    PubMed

    Smith, K A; Nelson, P N; Warren, P; Astley, S J; Murray, P G; Greenman, J

    2004-09-01

    Recombinant antibodies are important tools for biomedical research and are increasingly being used as clinical diagnostic/therapeutic reagents. In this article, a background to humanized antibodies is given, together with details of the generation of antibody fragments--for example, single chain Fv fragments. Phage antibody fragments are fast becoming popular and can be generated by simple established methods of affinity enrichment from libraries derived from immune cells. Phage display methodology can also be used for the affinity enrichment of existing antibody fragments to provide a reagent with a higher affinity. Here, phage antibodies are demystified to provide a greater understanding of the potential of these reagents and to engage clinicians and biomedical scientists alike to think about potential applications in pathology and clinical settings.

  10. Expression of recombinant antibodies.

    PubMed

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  11. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  12. Immune deficiency enhances expression of recombinant human antibody in mice after nonviral in vivo gene transfer.

    PubMed

    Kitaguchi, Kohji; Toda, Mikako; Takekoshi, Masataka; Maeda, Fumiko; Muramatsu, Tatsuo; Murai, Atsushi

    2005-10-01

    A cDNA encoding human antibody against hepatitis B virus was expressed in normal and severe combined immune deficiency (SCID) mice to clarify whether or not host immune status affects circulating levels of the recombinant human antibody (RhAb) after nonviral in vivo gene transfer. For transferring genes, either electroporation (EP) or hydrodynamics-based transfection (HD) was employed. The former was applied to the leg muscle to express the gene, while the latter primarily targeted foreign gene expression in the liver. The expressed RhAb was secreted into the blood circulation, and its existence was assayed by ELISA. Prior to the investigation of host immune status, suitable forms of plasmid expression vectors and types of electrodes were determined in normal mice. Results showed that the vector encoding both the light and heavy chains driven by the CMV promoter had the highest plasma RhAb concentrations, and a pair of pincette-type electrodes conferred the best performance. In both EP and HD, the SCID state showed an increased and prolonged RhAb production in the blood circulation due probably to suppressed recognition of RhAb as a foreign protein to the host animal. The difference in gene transfer methods demonstrated a characteristic pattern: an early and sharp rise followed by a relatively rapid decrease in HD, in contrast to a gradual rise followed by a plateau level maintained in EP. As a result, with the same amount of gene transferred, the plasma RhAb concentrations for the first 7 or 8 weeks were higher in HD than EP, while the reverse was true for the latter period. Multiple gene transfer contributed to maintaining and prolonging high RhAb concentrations in plasma by both methods with similar characteristic patterns accompanying the respective gene transfer method. These results suggest the importance of host immunological potency for maintaining plasma RhAb concentrations if these gene transfer technologies are used for clinical and therapeutic purposes.

  13. Production systems for recombinant antibodies.

    PubMed

    Schirrmann, Thomas; Al-Halabi, Laila; Dübel, Stefan; Hust, Michael

    2008-05-01

    Recombinant antibodies are the fastest growing class of therapeutic proteins. Furthermore, antibodies are key detection reagents in research and diagnostics. The increasing demand for antibodies with regards to amount and quality resulted in the development of a variety of recombinant production systems employing gram-negative and gram-positive bacteria, yeast and filamentous fungi, insect cell lines as well as mammalian cell lines. More recently, antibodies were also successfully produced in transgenic plants and animals. Currently, the production of recombinant antibodies for therapy is performed in mammalian cell lines to reduce the risk of immunogenicity caused by non-human post-translational modifications, in particular glycosylation. However, novel strategies already allow human-like glycosylation patterns in yeast, insect cell lines and transgenic plants. Furthermore, therapeutic strategies not requiring glycosylation of the Fc portion have been conceived, most prominently using bispecific antibodies or scFv fusion proteins, which can be produced in bacteria. Here, we review all current antibody production systems considering their advantages and limitations with respect to intended applications.

  14. [Expression of prn gene of Bordetella bronchiseptica and development of a recombinant protein-based indirect ELISA for antibodies detection].

    PubMed

    Zhao, Zhanqin; Xue, Yun; Wu, Bin; Tang, Xibiao; Chen, Huanchun; Li, Zengqiang; Hu, Ruiming; Zhang, Jianmin; Duan, Longchuan

    2008-03-01

    We developed an indirect ELISA method for detecting Bordetella bronchiseptica (Bb) pertactin antibodies based on the recombinant pertactin protein expressed in Escherichia coli (DE3) strain. The prn gene encoding Bb pertactin was fused to the downstream of glutathione S-transferase (GST) of pGEX-KG expression vector, resulting in the fusion expression plasmid pGEX-prn. SDS-PAGE showed that the GST-PRN fusion protein was expressed in high level in BL21 carrying pGEX-prn. The strong reactivity of the GST-PRN fusion protein, specifically with antiserum against porcine Bordetellosis caused by Bb HH0809, was identified by Western blot. The recombinant protein fragment of rPRN was purified from the GST-PRN fusion protein digested by protease thrombin with the purity of 93.1%. The rPRN-based indirect ELISA was developed for detecting antibodies against PRN. The ELISA could detect positive samples in experimentally infected pigs fourteen days post inoculation and the degree of sensitivity was over 4 times higher than the latex agglutination test with the coating antigen of killed Bb. Thirty-two point seven percent of positive samples were detected in 1,229 clinical samples while no false positive results were found in detecting 7 antisera against porcine bacterial diseases. Sera samples from two bordetellosis-positive pig fields were tested by the indirect ELISA method and the results indicated that pigs were infected by Bb during the nursery periods. The assay showed excellent specificity, sensitivity and reduplication, and can be useful for epidemiological survey and clinical diagnosis of swine bordetellosis.

  15. Fast track antibody V-gene rescue, recombinant expression in plants and characterization of a PfMSP4-specific antibody.

    PubMed

    Kapelski, Stephanie; Boes, Alexander; Spiegel, Holger; de Almeida, Melanie; Klockenbring, Torsten; Reimann, Andreas; Fischer, Rainer; Barth, Stefan; Fendel, Rolf

    2015-02-05

    Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot

  16. Generation of recombinant antibodies and means for increasing their affinity.

    PubMed

    Altshuler, E P; Serebryanaya, D V; Katrukha, A G

    2010-12-01

    Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.

  17. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  18. Developing recombinant antibodies for biomarker detection

    SciTech Connect

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  19. Recombinant Antibodies for Academia: A Practical Approach.

    PubMed

    Cosson, Pierre; Hartley, Oliver

    2016-12-21

    After several decades of optimization, phage display technology enables the routine isolation and production of recombinant monoclonal antibodies in vitro. As such it has the potential to provide the academic community with a vast, inexpensive and renewable supply of well-characterized reagents, reducing bottlenecks in basic science, helping increase reproducibility of experiments, and phasing out the use of animals for production and discovery of antibodies. Yet the overwhelming majority of fundamental research laboratories still use incompletely characterized antibodies developed in animals. In order to promote increased use of recombinant antibodies in academia, we have recently initiated an open source recombinant antibody facility in Geneva (http://www.unige.ch/antibodies). Here we describe our experience at the Geneva Antibody Facility: the various techniques involved in isolation and production of antibodies, the strategic choices that we have made, and what we hope will be a bright future for this project as part of a growing movement in the scientific community to replace all animal-derived antibodies with recombinant antibodies.

  20. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Construction of human antibody gene libraries and selection of antibodies by phage display.

    PubMed

    Schirrmann, Thomas; Hust, Michael

    2010-01-01

    Recombinant antibodies as therapeutics offer new opportunities for the treatment of many tumor diseases. To date, 18 antibody-based drugs are approved for cancer treatment and hundreds of anti-tumor antibodies are under development. The first clinically approved antibodies were of murine origin or human-mouse chimeric. However, since murine antibody domains are immunogenic in human patients and could result in human anti-mouse antibody (HAMA) responses, currently mainly humanized and fully human antibodies are developed for therapeutic applications.Here, in vitro antibody selection technologies directly allow the selection of human antibodies and the corresponding genes from human antibody gene libraries. Antibody phage display is the most common way to generate human antibodies and has already yielded thousands of recombinant antibodies for research, diagnostics and therapy. Here, we describe methods for the construction of human scFv gene libraries and the antibody selection.

  2. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy.

    PubMed

    Unkauf, Tobias; Miethe, Sebastian; Fühner, Viola; Schirrmann, Thomas; Frenzel, André; Hust, Michael

    2016-01-01

    Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.

  3. Human genetic variants of homologous recombination repair genes first found to be associated with Epstein-Barr virus antibody titers in healthy Cantonese.

    PubMed

    Shen, Guo-Ping; Pan, Qing-Hua; Hong, Ming-Huang; Qin, Hai-De; Xu, Ya-Fei; Chen, Li-Zhen; Feng, Qi-Sheng; Jorgensen, Timothy J; Shugart, Yin Yao; Zeng, Yi-Xin; Jia, Wei-Hua

    2011-09-15

    Epstein-Barr virus (EBV) infection is a major risk factor for nasopharyngeal carcinoma (NPC). Despite high prevalence of infection among the general population worldwide, only a small proportion of infected individuals presents with seropositivity for EBV-specific IgA antibodies. This seropositive subgroup of EBV carriers has an elevated cumulative risk for NPC during their lifetime. Previous studies reported that the host homologous recombination repair (HRR) system participates in EBV lytic replication, suggesting a potential mechanism to influence EBV reactivation status and thus seropositivity. To investigate whether genetic variants of HRR genes are associated with the serostatus in a healthy population, we investigated the association between seropositivity for anti-VCA-IgA and 156 tagging SNPs in 35 genes connected with HRR in an observational study among 755 healthy Cantonese speakers in southern China. Six variant alleles of MDC1, RAD54L, TP53BP1, RPA1, LIG3 and RFC1 exhibited associations with seropositivity (p(trend) from 0.0085 to 0.00027). Our study provides evidence that genetic variation within the HRR might affect an individual's propensity for EBV seropositive status of anti-VCA IgA antibody.

  4. Characterization and expression of multiple alternatively spliced transcripts of the Goodpasture antigen gene region. Goodpasture antibodies recognize recombinant proteins representing the autoantigen and one of its alternative forms.

    PubMed

    Penadés, J R; Bernal, D; Revert, F; Johansson, C; Fresquet, V J; Cervera, J; Wieslander, J; Quinones, S; Saus, J

    1995-05-01

    Collagen IV, the major component of basement membranes, is composed of six distinct alpha chains (alpha 1-alpha 6). Atypically among the collagen IV genes, the exons encoding the carboxyl-terminal region of the human alpha 3(IV) chain undergo alternative splicing. This region has been designated as the Goodpasture antigen because of its reactivity in the kidney and lung with the pathogenic autoantibodies causing Goodpasture syndrome. The data presented in this report demonstrate that, in human kidney, the gene region encompassing the Goodpasture antigen generates at least six alternatively spliced transcripts predicting five distinct proteins that differ in their carboxyl-terminus and retain, except in one case, the exon that harbors the characteristic amino-terminus of the antigen. Goodpasture antibodies specifically recognize recombinant proteins representing the antigen and the alternative form that retains the amino-half of the antigen, suggesting that this moiety could be involved in the in vivo binding of the pathogenic antibodies. Furthermore, the sera of control individuals contain autoantibodies against the antigen that can be differentiated from those causing the syndrome based on their specific reactivities, suggesting that the binding of the pathogenic autoantibodies to a specific determinant likely trigger a distinct and unique cascade of events causing the disease.

  5. Production of recombinant antibody fragments in Bacillus megaterium

    PubMed Central

    Jordan, Eva; Hust, Michael; Roth, Andreas; Biedendieck, Rebekka; Schirrmann, Thomas; Jahn, Dieter; Dübel, Stefan

    2007-01-01

    Background Recombinant antibodies are essential reagents for research, diagnostics and therapy. The well established production host Escherichia coli relies on the secretion into the periplasmic space for antibody synthesis. Due to the outer membrane of Gram-negative bacteria, only a fraction of this material reaches the medium. Recently, the Gram-positive bacterium Bacillus megaterium was shown to efficiently secrete recombinant proteins into the growth medium. Here we evaluated B. megaterium for the recombinant production of antibody fragments. Results The lysozyme specific single chain Fv (scFv) fragment D1.3 was succesfully produced using B. megaterium. The impact of culture medium composition, gene expression time and culture temperatures on the production of functional scFv protein was systematically analyzed. A production and secretion at 41°C for 24 h using TB medium was optimal for this individual scFv. Interestingly, these parameters were very different to the optimal conditions for the expression of other proteins in B. megaterium. Per L culture supernatant, more than 400 μg of recombinant His6-tagged antibody fragment were purified by one step affinity chromatography. The material produced by B. megaterium showed an increased specific activity compared to material produced in E. coli. Conclusion High yields of functional scFv antibody fragments can be produced and secreted into the culture medium by B. megaterium, making this production system a reasonable alternative to E. coli. PMID:17224052

  6. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells.

    PubMed

    Jäger, Volker; Büssow, Konrad; Wagner, Andreas; Weber, Susanne; Hust, Michael; Frenzel, André; Schirrmann, Thomas

    2013-06-26

    The demand of monospecific high affinity binding reagents, particularly monoclonal antibodies, has been steadily increasing over the last years. Enhanced throughput of antibody generation has been addressed by optimizing in vitro selection using phage display which moved the major bottleneck to the production and purification of recombinant antibodies in an end-user friendly format. Single chain (sc)Fv antibody fragments require additional tags for detection and are not as suitable as immunoglobulins (Ig)G in many immunoassays. In contrast, the bivalent scFv-Fc antibody format shares many properties with IgG and has a very high application compatibility. In this study transient expression of scFv-Fc antibodies in human embryonic kidney (HEK) 293 cells was optimized. Production levels of 10-20 mg/L scFv-Fc antibody were achieved in adherent HEK293T cells. Employment of HEK293-6E suspension cells expressing a truncated variant of the Epstein Barr virus (EBV) nuclear antigen (EBNA) 1 in combination with production under serum free conditions increased the volumetric yield up to 10-fold to more than 140 mg/L scFv-Fc antibody. After vector optimization and process optimization the yield of an scFv-Fc antibody and a cytotoxic antibody-RNase fusion protein further increased 3-4-fold to more than 450 mg/L. Finally, an entirely new mammalian expression vector was constructed for single step in frame cloning of scFv genes from antibody phage display libraries. Transient expression of more than 20 different scFv-Fc antibodies resulted in volumetric yields of up to 600 mg/L and 400 mg/L in average. Transient production of recombinant scFv-Fc antibodies in HEK293-6E in combination with optimized vectors and fed batch shake flasks cultivation is efficient and robust, and integrates well into a high-throughput recombinant antibody generation pipeline.

  7. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation.

  8. Lactogenic immunity in transgenic mice producing recombinant antibodies neutralizing coronavirus.

    PubMed

    Castilla, J; Sola, I; Pintado, B; Sánchez-Morgado, J M; Enjuanes, L

    1998-01-01

    Protection against coronavirus infections can be provided by the oral administration of virus neutralizing antibodies. To provide lactogenic immunity, eighteen lines of transgenic mice secreting a recombinant IgG1 monoclonal antibody (rIgG1) and ten lines of transgenic mice secreting recombinant IgA monoclonal antibodies (rIgA) neutralizing transmissible gastroenteritis coronavirus (TGEV) into the milk were generated. Genes encoding the light and heavy chains of monoclonal antibody (MAb) 6A.C3 were expressed under the control of regulatory sequences derived from the mouse genomic DNA encoding the whey acidic protein (WAP) and beta-lactoglobulin (BLG), which are highly abundant milk proteins. The MAb 6A.C3 binds to a highly conserved epitope present in coronaviruses of several species. This MAb does not allow the selection of neutralization escaping virus mutants. The antibody was expressed in the milk of transgenic mice with titers of one million as determined by RIA, and neutralized TGEV infectivity by one million fold corresponding to immunoglobulin concentrations of 5 to 6 mg per ml. Matrix attachment regions (MAR) sequences were not essential for rIgG1 transgene expression, but co-microinjection of MAR and antibody genes led to a twenty to ten thousand-fold increase in the antibody titer in 50% of the rIgG1 transgenic animals generated. Co-microinjection of the genomic BLG gene with rIgA light and heavy chain genes led to the generation of transgenic mice carrying the three transgenes. The highest antibody titers were produced by transgenic mice that had integrated the antibody and BLG genes, although the number of transgenic animals generated does not allow a definitive conclusion on the enhancing effect of BLG co-integration. Antibody expression levels were transgene copy number independent and integration site dependent. The generation of transgenic animals producing virus neutralizing antibodies in the milk could be a general approach to provide protection

  9. Experimental and In Silico Modelling Analyses of the Gene Expression Pathway for Recombinant Antibody and By-Product Production in NS0 Cell Lines

    PubMed Central

    Mead, Emma J.; Chiverton, Lesley M.; Spurgeon, Sarah K.; Martin, Elaine B.; Montague, Gary A.; Smales, C. Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway. PMID:23071804

  10. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines.

    PubMed

    Mead, Emma J; Chiverton, Lesley M; Spurgeon, Sarah K; Martin, Elaine B; Montague, Gary A; Smales, C Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.

  11. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    PubMed

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  12. Expression of recombinant antibody (single chain antibody fragment) in transgenic plant Nicotiana tabacum cv. Xanthi.

    PubMed

    Dobhal, S; Chaudhary, V K; Singh, A; Pandey, D; Kumar, A; Agrawal, S

    2013-12-01

    Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.

  13. Novel human recombinant antibodies against Mycobacterium tuberculosis antigen 85B.

    PubMed

    Fuchs, Manon; Kämpfer, Susanne; Helmsing, Saskia; Spallek, Ralf; Oehlmann, Wulf; Prilop, Wiebke; Frank, Ronald; Dübel, Stefan; Singh, Mahavir; Hust, Michael

    2014-07-17

    Tuberculosis is the leading cause of death due to bacterial infections worldwide, mainly caused by Mycobacterium tuberculosis. The antigen 85 complex comprises a set of major secreted proteins of M. tuberculosis, which are potential biomarkers for diagnostic. In this work, the first human single chain fragment variable (scFv) antibodies specific for the tuberculosis biomarker 85 B were selected by phage display from naïve antibody gene libraries (HAL7/8). Produced as scFv-Fc in mammalian cells, these antibodies were further characterized and analysed for specificity and applicability in different tuberculosis antigen detection assays. Sandwich detection of recombinant 85 B was successful in enzyme linked immunosorbent assay (ELISA), lateral flow immunoassay and immunoblot. Whereas detection of M. tuberculosis cell extracts and culture filtrates was only possible in direct ELISA and immunoblot assays. It was found that the conformation of 85 B, depending on sample treatment, influenced antigen detection. Recombinant antibodies, selected by phage display, may be applicable for 85 B detection in various assays. These antibodies are candidates for the development of future point of care tuberculosis diagnostic kits. Using 85 B as a biomarker, the antigen conformation influenced by sample treatment is important.

  14. Novel human recombinant antibodies against Mycobacterium tuberculosis antigen 85B

    PubMed Central

    2014-01-01

    Background Tuberculosis is the leading cause of death due to bacterial infections worldwide, mainly caused by Mycobacterium tuberculosis. The antigen 85 complex comprises a set of major secreted proteins of M. tuberculosis, which are potential biomarkers for diagnostic. Results In this work, the first human single chain fragment variable (scFv) antibodies specific for the tuberculosis biomarker 85 B were selected by phage display from naïve antibody gene libraries (HAL7/8). Produced as scFv-Fc in mammalian cells, these antibodies were further characterized and analysed for specificity and applicability in different tuberculosis antigen detection assays. Sandwich detection of recombinant 85 B was successful in enzyme linked immunosorbent assay (ELISA), lateral flow immunoassay and immunoblot. Whereas detection of M. tuberculosis cell extracts and culture filtrates was only possible in direct ELISA and immunoblot assays. It was found that the conformation of 85 B, depending on sample treatment, influenced antigen detection. Conclusions Recombinant antibodies, selected by phage display, may be applicable for 85 B detection in various assays. These antibodies are candidates for the development of future point of care tuberculosis diagnostic kits. Using 85 B as a biomarker, the antigen conformation influenced by sample treatment is important. PMID:25033887

  15. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells

    PubMed Central

    2013-01-01

    Background The demand of monospecific high affinity binding reagents, particularly monoclonal antibodies, has been steadily increasing over the last years. Enhanced throughput of antibody generation has been addressed by optimizing in vitro selection using phage display which moved the major bottleneck to the production and purification of recombinant antibodies in an end-user friendly format. Single chain (sc)Fv antibody fragments require additional tags for detection and are not as suitable as immunoglobulins (Ig)G in many immunoassays. In contrast, the bivalent scFv-Fc antibody format shares many properties with IgG and has a very high application compatibility. Results In this study transient expression of scFv-Fc antibodies in human embryonic kidney (HEK) 293 cells was optimized. Production levels of 10-20 mg/L scFv-Fc antibody were achieved in adherent HEK293T cells. Employment of HEK293-6E suspension cells expressing a truncated variant of the Epstein Barr virus (EBV) nuclear antigen (EBNA) 1 in combination with production under serum free conditions increased the volumetric yield up to 10-fold to more than 140 mg/L scFv-Fc antibody. After vector optimization and process optimization the yield of an scFv-Fc antibody and a cytotoxic antibody-RNase fusion protein further increased 3-4-fold to more than 450 mg/L. Finally, an entirely new mammalian expression vector was constructed for single step in frame cloning of scFv genes from antibody phage display libraries. Transient expression of more than 20 different scFv-Fc antibodies resulted in volumetric yields of up to 600 mg/L and 400 mg/L in average. Conclusion Transient production of recombinant scFv-Fc antibodies in HEK293-6E in combination with optimized vectors and fed batch shake flasks cultivation is efficient and robust, and integrates well into a high-throughput recombinant antibody generation pipeline. PMID:23802841

  16. [Recombinant Antibodies and Their Employment in Cancer Therapy].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2015-01-01

    Development of recombinant therapeutic antibodies is recently one of the fastest growing disciplines of applied biomedical research. Recombinant monoclonal antibodies are increasingly applied in biological therapy of many serious human diseases and are currently an irreplaceable part of a comprehensive cancer therapy. First mouse therapeutic antibodies had only limited applicability due to the strong immune response; however, technological advances enabled engineering of antibodies with increased specificity and efficacy, and on the other hand with reduced adverse effects due to lower antigenicity. This review provides a summary of knowledge about recombinant therapeutic antibodies, their mechanism of action and approaches how to improve their efficacy.

  17. Monoclonal antibodies against methionyl recombinant human prolactin.

    PubMed

    Paris, N; Robert, R; Mercier, L

    1993-02-01

    Hybridoma cell lines producing monoclonal antibody (Mab) against recombinant human prolactin (rhPrl) were established from fusion between X63-Ag8 myeloma cells and Balb/c mice splenocytes. Four Mabs numbered I to IV were selected by ELISA, purified and characterized. All these Mabs were of the Ig1 kappa isotype and able to recognize oxidized as well as reduced rhPrl. As shown by a competitive inhibition assay, Mab IV did not compete with any of the three others. Moreover, both rhPrl and hPrl extracted from human pituitaries, were recognized equally by this Mab. Properties displayed by Mab IV make it very attractive for the evaluation of prolactin levels by sandwich immunoassays.

  18. Targeted In Vivo Inhibition of Specific Protein–Protein Interactions Using Recombinant Antibodies

    PubMed Central

    Zábrady, Matej; Hrdinová, Vendula; Müller, Bruno; Conrad, Udo; Hejátko, Jan; Janda, Lubomír

    2014-01-01

    With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated “silencing” represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein–protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell. PMID:25299686

  19. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    PubMed

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality.

  20. Schistosoma japonicum: screening of cercariae cDNA library by specific single-chain antibody against SIEA26-28 ku and immunization experiment of the recombinant plasmids containing the selected genes.

    PubMed

    Gao, Dong-mei; Wang, Shi-ping; He, Zhuo; Fung, Ming-chiu; Liu, Ming-she; Yu, Lu-xin; Chen, Xiu-chun

    2010-06-01

    To obtain the gene encoding SIEA26-28 ku, which has been proven to be a potential anti-schistosomiasis vaccine candidate, screening Schistosoma japonicum (Sj) cercariae cDNA library with soluble specific single-chain antibody (SIEA26-28 ku-scFv) was performed. A large amount of specific single-chain antibody was harvested through construction of recombinant expression vector pET32a/scFv. The protein was purified and characterized. By using this protein (PET32a-scFv) as a probe, S. japonicum cercariae cDNA library was screened. Two strong positive clones were selected, and their eukaryotic recombinant plasmids were constructed. These genes were named as S. japonicum ribosomal protein S4 (SjRPS4) and S. japonicum ribosomal protein L7 (SjRPL7), respectively. Experiments of mice showed that both SjRPS4 and SjRPL7 DNA vaccines could induce significant immunoprotection. Result of these experiments further proved that the specific single-chain antibody is a very valuable tool in screening of cDNA library to get the corresponding molecules.

  1. Recombinant Mouse-Human Chimeric Antibodies as Calibrators in Immunoassays That Measure Antibodies to Toxoplasma gondii

    PubMed Central

    Hackett, John; Hoff-Velk, Jane; Golden, Alan; Brashear, Jeff; Robinson, John; Rapp, Margaret; Klass, Michael; Ostrow, David H.; Mandecki, Wlodek

    1998-01-01

    In the present study, we examined the feasibility of using recombinant antibodies containing murine variable regions and human constant regions as calibrators or controls in immunoassays. As a model system, we chose the Abbott IMx Toxo immunoglobulin M (IgM) and Toxo IgG assays designed to detect antibodies to Toxoplasma gondii. Two mouse monoclonal antibodies were selected based on their reactivity to the T. gondii antigens P30 and P66. Heavy- and light-chain variable-region genes were cloned from both hybridomas and transferred into immunoglobulin expression vectors containing human kappa and IgG1 or IgM constant regions. The constructs were stably transfected into Sp2/0-Ag14 cells. In the IMx Toxo IgG assay, immunoreactivity of the anti-P30 chimeric IgG1 antibody paralleled that of the positive human plasma-derived assay calibrators. Signal generated with the anti-P66 chimeric IgG1 antibody was observed to plateau below the maximal reactivity observed for the assay calibrator. Examination of the IgM chimeric antibodies in the IMx Toxo IgM assay revealed that both the anti-P30 and anti-P66 antibodies matched the assay index calibrator manufactured with human Toxo IgM-positive plasma. When evaluated with patient samples, the correlation between results obtained with the chimeric antibody calibrators and the positive human plasma calibrators was ≥0.985. These data demonstrate that chimeric mouse-human antibodies are a viable alternative to high-titer positive human plasma for the manufacture of calibrators and controls for diagnostic assays. PMID:9574691

  2. Single-Batch Production of Recombinant Human Polyclonal Antibodies

    PubMed Central

    Nielsen, Lars S.; Baer, Alexandra; Müller, Christian; Gregersen, Kristian; Mønster, Nina T.; Rasmussen, Søren K.; Weilguny, Dietmar

    2010-01-01

    We have previously described the development and implementation of a strategy for production of recombinant polyclonal antibodies (rpAb) in single batches employing CHO cells generated by site-specific integration, the SympressTM I technology. The SympressTM I technology is implemented at industrial scale, supporting a phase II clinical development program. Production of recombinant proteins by site-specific integration, which is based on incorporation of a single copy of the gene of interest, makes the SympressTM I technology best suited to support niche indications. To improve titers while maintaining a cost-efficient, highly reproducible single-batch manufacturing mode, we have evaluated a number of different approaches. The most successful results were obtained using random integration in a new producer cell termed ECHO, a CHO DG44 cell derivative engineered for improved productivity at Symphogen. This new expression process is termed the SympressTM II technology. Here we describe proof-of-principle data demonstrating the feasibility of the SympressTM II technology for single-batch rpAb manufacturing using two model systems each composed of six target-specific antibodies. The compositional stability and the batch-to-batch reproducibility of rpAb produced by the ECHO cells were at least as good as observed previously using site-specific integration technology. Furthermore, the new process had a significant titer increase. PMID:20306237

  3. Single-batch production of recombinant human polyclonal antibodies.

    PubMed

    Nielsen, Lars S; Baer, Alexandra; Müller, Christian; Gregersen, Kristian; Mønster, Nina T; Rasmussen, Søren K; Weilguny, Dietmar; Tolstrup, Anne B

    2010-07-01

    We have previously described the development and implementation of a strategy for production of recombinant polyclonal antibodies (rpAb) in single batches employing CHO cells generated by site-specific integration, the Sympress I technology. The Sympress I technology is implemented at industrial scale, supporting a phase II clinical development program. Production of recombinant proteins by site-specific integration, which is based on incorporation of a single copy of the gene of interest, makes the Sympress I technology best suited to support niche indications. To improve titers while maintaining a cost-efficient, highly reproducible single-batch manufacturing mode, we have evaluated a number of different approaches. The most successful results were obtained using random integration in a new producer cell termed ECHO, a CHO DG44 cell derivative engineered for improved productivity at Symphogen. This new expression process is termed the Sympress II technology. Here we describe proof-of-principle data demonstrating the feasibility of the Sympress II technology for single-batch rpAb manufacturing using two model systems each composed of six target-specific antibodies. The compositional stability and the batch-to-batch reproducibility of rpAb produced by the ECHO cells were at least as good as observed previously using site-specific integration technology. Furthermore, the new process had a significant titer increase.

  4. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF.

  5. Back to the future: recombinant polyclonal antibody therapeutics

    PubMed Central

    Wang, Xian-zhe; Coljee, Vincent W.; Maynard, Jennifer A.

    2013-01-01

    Antibody therapeutics are one of the fastest growing classes of pharmaceuticals, with an annual US market over $20 billion, developed to treat a variety of diseases including cancer, auto-immune and infectious diseases. Most are currently administered as a single molecule to treat a single disease, however there is mounting evidence that cocktails of multiple antibodies, each with a unique binding specificity and protective mechanism, may improve clinical efficacy. Here, we review progress in the development of oligoclonal combinations of antibodies to treat disease, focusing on identification of synergistic antibodies. We then discuss the application of modern antibody engineering technologies to produce highly potent antibody preparations, including oligoclonal antibody cocktails and truly recombinant polyclonal antibodies. Specific examples illustrating the synergy conferred by multiple antibodies will be provided for diseases caused by botulinum toxin, cancer and immune thrombocytopenia. The bioprocessing and regulatory options for these preparations will be discussed. PMID:24443710

  6. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus.

  7. Construction of human naive antibody gene libraries.

    PubMed

    Hust, Michael; Frenzel, André; Meyer, Torsten; Schirrmann, Thomas; Dübel, Stefan

    2012-01-01

    Human antibodies are valuable tools for proteome research and diagnostics. Furthermore, antibodies are a rapidly growing class of therapeutic agents, mainly for inflammation and cancer therapy. The first therapeutic antibodies are of murine origin and were chimerized or humanized. The later-developed antibodies are fully human antibodies. Here, two technologies are competing the hybridoma technology using transgenic mice with human antibody gene loci and antibody phage display. The starting point for the selection of human antibodies against any target is the construction of an antibody phage display gene library.In this review we describe the construction of human naive and immune antibody gene libraries for antibody phage display.

  8. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display.

    PubMed

    Kuhn, Philipp; Fühner, Viola; Unkauf, Tobias; Moreira, Gustavo Marcal Schmidt Garcia; Frenzel, André; Miethe, Sebastian; Hust, Michael

    2016-10-01

    Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows-in theory-the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity-matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Progress towards recombinant anti-infective antibodies

    PubMed Central

    Pai, Jennifer C.; Sutherland, Jamie N.; Maynard, Jennifer A.

    2009-01-01

    The global market for monoclonal antibody therapeutics reached a total of $11.2 billion in 2004, with an impressive 42% growth rate over the previous five years and is expected to reach ~$34 billion by 2010. Coupled with this growth are stream-lined product development, production scale-up and regulatory approval processes for the highly conserved antibody structure. While only one of the 21 current FDA-approved antibodies, and one of the 38 products in advanced clinical trials target infectious diseases, there is increasing academic, government and commercial interest in this area. Synagis, an antibody neutralizing respiratory syncitial virus (RSV), garnered impressive sales of $1.1 billion in 2006 in spite of its high cost and undocumented effects on viral titres in human patients. The success of anti-RSV passive immunization has motivated the continued development of anti-infectives to treat a number of other infectious diseases, including those mediated by viruses, toxins and bacterial/fungal cells. Concurrently, advances in antibody technology suggest that cocktails of several monoclonal antibodies with unique epitope specificity or single monoclonal antibodies with broad serotype specificity may be the most successful format. Recent patents and patent applications in these areas will be discussed as predictors of future anti-infective therapeutics. PMID:19149692

  10. Construction of human antibody gene libraries and selection of antibodies by phage display.

    PubMed

    Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael

    2014-01-01

    Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

  11. Microbial platform technology for recombinant antibody fragment production: A review.

    PubMed

    Gupta, Sanjeev Kumar; Shukla, Pratyoosh

    2017-02-01

    Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.

  12. Impact of cell culture on recombinant monoclonal antibody product heterogeneity.

    PubMed

    Liu, Hongcheng; Nowak, Christine; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2016-09-01

    Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103-1112, 2016. © 2016 American Institute of Chemical Engineers.

  13. The Structure of Natural and Recombinant Antibodies.

    PubMed

    Ma, Hui; O'Kennedy, Richard

    2015-01-01

    Immunoglobulins (Ig) isotypes A, D, E, G, and M are glycoproteins which are mainly composed of a "Y"-shaped Ig monomer (~150 kDa), consisting of two light and two heavy chains. Both light and heavy chains contain variable (N-terminal) and constant regions (C-terminal). Each light chain consists of one variable domain and one constant domain, whereas each heavy chain has one variable domain and three constant domains. However, heavy-chain antibodies consisting of only heavy chains and lacking the light chains are found in camelids and cartilaginous fishes. Unlike other immunoglobulins, the heavy chain of avian antibody IgY (~180 kDa) consists of four constant domains. The single-chain variable fragment (scFv; ~25 kDa) of an antibody contains variable regions of antibody heavy and light chains. The fragment antigen-binding (Fab; ~50 kDa) region has the full antibody light chain but the heavy chain is composed of a variable region and one constant domain.

  14. Recombinant genetic libraries and human monoclonal antibodies.

    PubMed

    Adams, Jarrett J; Nelson, Bryce; Sidhu, Sachdev S

    2014-01-01

    In order to comprehensively manipulate the human proteome we require a vast repertoire of pharmacological reagents. To address these needs we have developed repertoires of synthetic antibodies by phage display, where diversified oligonucleotides are used to modify the complementarity-determining regions (CDRs) of a human antigen-binding fragment (Fab) scaffold. As diversity is produced outside the confines of the mammalian immune system, synthetic antibody libraries allow us to bypass several limitations of hybridoma technology while improving the experimental parameters under which pharmacological reagents are produced. Here we describe the methodologies used to produce synthetic antibody libraries from a single human framework with diversity restricted to four CDRs. These synthetic repertoires can be extremely functional as they produce highly selective, high affinity Fabs to the majority of soluble human antigens. Finally we describe selection methodologies that allow us to overcome immuno-dominance in our selections to target a variety of epitopes per antigen. Together these methodologies allow us to produce human monoclonal antibodies to manipulate the human proteome.

  15. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity

    PubMed Central

    Zhao, Hongyu; Shen, Ao; Xiang, Yang K.; Corey, David P.

    2016-01-01

    We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications. PMID:26943906

  16. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity.

    PubMed

    Zhao, Hongyu; Shen, Ao; Xiang, Yang K; Corey, David P

    2016-01-01

    We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications.

  17. Generating recombinant antibodies to the complete human proteome.

    PubMed

    Dübel, Stefan; Stoevesandt, Oda; Taussig, Michael J; Hust, Michael

    2010-07-01

    In vitro antibody generation technologies have now been available for two decades. Research reagents prepared via phage display are becoming available and several recent studies have demonstrated that these technologies are now sufficiently advanced to facilitate generation of a comprehensive renewable resource of antibodies for any protein encoded by the approximately 22,500 human protein-coding genes. Antibody selection in vitro offers properties not available in animal-based antibody generation methods. By adjusting the biochemical milieu during selection, it is possible to control the antigen conformation recognized, the antibody affinity or unwanted cross-reactivity. For larger-scale antibody generation projects, the handling, transport and storage logistics and bacterial production offer cost benefits. Because the DNA sequence encoding the antibody is available, modifications, such as site-specific in vivo biotinylation and multimerization, are only a cloning step away. This opinion article summarizes opportunities for the generation of antibodies for proteome research using in vitro technologies.

  18. Immunochemical method for detection of antibody against HTLV-III core protein based upon recombinant HTLV-III gag gene encoded protein

    SciTech Connect

    Chang, N.T.; Ghrayeb, J.

    1989-02-28

    A method is described of detecting antibody against HTLV-III core protein in a biological fluid, comprising the steps of: a. providing an antigen immunoadsorbent comprising a solid phase to which is attached a HTLV-III core antigen which is a chimeric antigen comprising an amino acid sequence beginning at amino acid number 1 through 99, and extending to amino acid number 228, the chimeric antigen being immunoreactive with antibody against HTLV-III core protein; b. incubating the immunoadsorbent with a sample of the biological fluid to be tested under conditions which allow antibody in the sample to complex with the antigen immunoadsorbent; c. separating the immmunoadsorbent from the sample; and d. determining antibody bound to the iuumoadsorbent as an indication of antibody against HTLV-III core protein in the sample.

  19. Human germline antibody gene segments encode polyspecific antibodies.

    PubMed

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens

    2013-04-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  20. Human Germline Antibody Gene Segments Encode Polyspecific Antibodies

    PubMed Central

    Willis, Jordan R.; Briney, Bryan S.; DeLuca, Samuel L.; Crowe, James E.; Meiler, Jens

    2013-01-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding. PMID:23637590

  1. [Polyclonal antibodies against recombinant dengue virus NS3 protein].

    PubMed

    Morales, Liliana; Velandia, Myriam L; Calderon, María Angélica; Castellanos, Jaime E; Chaparro-Olaya, Jacqueline

    2017-01-24

    Dengue is a disease caused by one of four serotypes of the dengue virus (DENV) and is endemic in approximately 130 countries. The incidence of dengue has increased dramatically in recent decades, as well as the frequency and magnitude of outbreaks. Despite all efforts, there are no prophylactic or therapeutic treatments for the disease. Accordingly, research on the processes governing the DENV infection cycle is essential to develop vaccines or antiviral therapies. One of themost attractive DENV molecules to investigate is nonstructural protein 3 (NS3), which is essential for viral replication and a major immune target for infection. To produce antibodies to support future studies on NS3 and its cellular interactions with other proteins. Two recombinant proteins of the helicase domain of DENV NS3 serotype 2 were expressed, and used to immunize mice and produce polyclonal antibodies. The antibodies produced were useful in Western blot and immunofluorescence tests. We report an NS3 antibody that immunoprecipitates the viral protein and detects it in Western blot with no need to over-express it or use cell extracts with metabolic radiolabeling. The recombinant proteins expressed and the antibodies produced constitute valuable tools for studying DENV infectious processes involving NS3 and for evaluating tests designed to interfere with its functions.

  2. Expression of recombinant vaccines and antibodies in plants.

    PubMed

    Ko, Kisung

    2014-06-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants.

  3. Recombinant anti-tenascin antibody constructs

    SciTech Connect

    ZALUTSKY, MICHAEL R

    2006-08-29

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  4. Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies.

    PubMed

    Lathuilière, Aurélien; Schneider, Bernard L

    2016-01-01

    The implantation of genetically modified cells is considered for the chronic delivery of therapeutic recombinant proteins in vivo. In the context of gene therapy, the genetic engineering of cells faces two main challenges. First, it is critical to generate expandable cell sources, which can maintain stable high productivity of the recombinant protein of interest over time, both in culture and after transplantation. In addition, gene transfer techniques need to be developed to engineer cells synthetizing complex polypeptides, such as recombinant monoclonal antibodies, to broaden the range of potential therapeutic applications. Here, we provide a workflow for the use of lentiviral vectors as a flexible tool to generate antibody-producing cells. In particular, lentiviral vectors can be used to genetically engineer the cell types compatible with encapsulation devices protecting the implanted cells from the host immune system. Detailed methods are provided for the design and production of lentiviral vectors, optimization of cell transduction, as well as for the quantification and quality control of the produced recombinant antibody.

  5. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection.

  6. Immunoproteomics using polyclonal antibodies and stable isotope-labeled affinity-purified recombinant proteins.

    PubMed

    Edfors, Fredrik; Boström, Tove; Forsström, Björn; Zeiler, Marlis; Johansson, Henrik; Lundberg, Emma; Hober, Sophia; Lehtiö, Janne; Mann, Matthias; Uhlen, Mathias

    2014-06-01

    The combination of immuno-based methods and mass spectrometry detection has great potential in the field of quantitative proteomics. Here, we describe a new method (immuno-SILAC) for the absolute quantification of proteins in complex samples based on polyclonal antibodies and stable isotope-labeled recombinant protein fragments to allow affinity enrichment prior to mass spectrometry analysis and accurate quantification. We took advantage of the antibody resources publicly available from the Human Protein Atlas project covering more than 80% of all human protein-coding genes. Epitope mapping revealed that a majority of the polyclonal antibodies recognized multiple linear epitopes, and based on these results, a semi-automated method was developed for peptide enrichment using polyclonal antibodies immobilized on protein A-coated magnetic beads. A protocol based on the simultaneous multiplex capture of more than 40 protein targets showed that approximately half of the antibodies enriched at least one functional peptide detected in the subsequent mass spectrometry analysis. The approach was further developed to also generate quantitative data via the addition of heavy isotope-labeled recombinant protein fragment standards prior to trypsin digestion. Here, we show that we were able to use small amounts of antibodies (50 ng per target) in this manner for efficient multiplex analysis of quantitative levels of proteins in a human HeLa cell lysate. The results suggest that polyclonal antibodies generated via immunization of recombinant protein fragments could be used for the enrichment of target peptides to allow for rapid mass spectrometry analysis taking advantage of a substantial reduction in sample complexity. The possibility of building up a proteome-wide resource for immuno-SILAC assays based on publicly available antibody resources is discussed. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis

    PubMed Central

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators. PMID:23272105

  8. Selection of Ceratitis capitata (Diptera: Tephritidae) specific recombinant monoclonal phage display antibodies for prey detection analysis.

    PubMed

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators.

  9. Vector-mediated antibody gene transfer for infectious diseases.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2015-01-01

    This chapter discusses the emerging field of vector-mediated antibody gene transfer as an alternative vaccine for infectious disease, with a specific focus on HIV. However, this methodology need not be confined to HIV-1; the general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets like hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. This approach is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. With vector-mediated gene transfer, the antibody gene is delivered to the host, via a recombinant adeno-associated virus (rAAV) vector; this in turn results in long-term endogenous antibody expression from the injected muscle that confers protective immunity. Vector-mediated antibody gene transfer can rapidly move existing, potent broadly cross-neutralizing HIV-1-specific antibodies into the clinic. The gene transfer products demonstrate a potency and breadth identical to the original product. This strategy eliminates the need for immunogen design and interaction with the adaptive immune system to generate protection, a strategy that so far has shown limited promise.

  10. Development of a Recombinant Antibody with Specificity for Chelated Uranyl Ions

    SciTech Connect

    X. Li; A.M. Kriegel; T.C. Bishop; R.C. Blake; E. Figueiredo; H. Yu; D.A. Blake

    2005-04-18

    The goal of our project is to continue the development of new techniques for rapid, automated identification of radionuclides, metals, and chelators that may contaminant sur face and groundwater at DOE sites. One of the four specific aims of the present project is to develop new technologies in antibody engineering that will enhance our immunosensor program. Recombinant antibodies have potential advantages over monoclonal antibodies produced by standard hybridoma technology. The cloned genes represent a stable, recoverable source for antibody production. In addition, the recombinant format offers opportunities for protein engineering that enhances antibody performance and for studies that relate antibody sequence to binding activity. In this study, a hybridoma that synthesized an antibody (12F6) that recognized a 1:1 complex between 2,9-dicarboxyl-1,10- phenanthroline (DCP) and UO{sub 2}{sup 2+} was used as a source of RNA for the development of a recombinant (Fab){sub 2} fragment. RNA was isolated from the 12F6 hybridoma and the cDNA encoding the entire {kappa} light chain and the linked VH and C1 portions of the heavy chain were amplified from total RNA. cDNA sequences were verified by comparison with the N-terminal amino acid sequences of the light and heavy chains of the native 12F6 monoclonal antibody. A leader sequence and appropriate restriction sites were added to each chain, and the fragments were ligated into a commercial dicistronic vector (pBudCE4.1, Invitrogen, Inc.). COS-1 cells were transfected with this vector and the culture supernatant was assayed for activity and the (Fab){sub 2} protein. Cells transfected with vector containing 12F6 cDNA synthesized and secreted recombinant (Fab){sub 2} fragments that bound to the UO{sub 2}{sup 2+}-DCP complex with an affinity indistinguishable from that of a (Fab){sub 2} fragment prepared from the native antibody. Molecular models of the heavy and light chain variable domains were constructed according to the

  11. Intracellular interference of tick-borne flavivirus infection by using a single-chain antibody fragment delivered by recombinant Sindbis virus.

    PubMed Central

    Jiang, W; Venugopal, K; Gould, E A

    1995-01-01

    A single-chain antibody fragment that identifies a neutralizing epitope on the envelope protein of louping ill and some other tick-borne flaviviruses was previously expressed in soluble form from bacteria and shown to be functionally active in vitro. To see whether or not the single-chain antibody could bind and inactivate infectious virus in vivo, we have used recombinant Sindbis virus as a delivery vehicle for intracellular expression of the antibody fragment. The variable genes and interchain linker encoding the single-chain antibody were cloned into a double subgenomic Sindbis virus expression vector to generate recombinant Sindbis virus. Infection with this recombinant Sindbis virus provided high-level cytoplasmic expression of the antibody fragment in mammalian cells. We demonstrate (i) that the antibody fragment was antigen binding and (ii) that louping ill virus infectivity was significantly reduced in the presence of intracellular antibody expressed by the superinfecting recombinant Sindbis virus. PMID:7815482

  12. Generating Recombinant Antibodies against Putative Biomarkers of Retinal Injury.

    PubMed

    Kierny, Michael R; Cunningham, Thomas D; Bouhenni, Rachida A; Edward, Deepak P; Kay, Brian K

    2015-01-01

    Candidate biomarkers, indicative of disease or injury, are beginning to overwhelm the process of validation through immunological means. Recombinant antibodies developed through phage-display offer an alternative means of generating monoclonal antibodies faster than traditional immunization of animals. Peptide segments of putative biomarkers of laser induced injury in the rabbit, discovered through mass spectrometry, were used as targets for a selection against a library of phage-displayed human single-chain variable fragment (scFv) antibodies. Highly specific antibodies were isolated to four of these unique peptide sequences. One antibody against the retinal protein, Guanine Nucleotide-Binding Protein Beta 5 (GBB5), had a dissociation constant ~300 nM and recognized the full-length endogenous protein in retinal homogenates of three different animal species by western blot. Alanine scanning of the peptide target identified three charged and one hydrophobic amino acid as the critical binding residues for two different scFvs. To enhance the utility of the reagent, one scFv was dimerized through a Fragment-crystallizable hinge region (i.e., Fc) and expressed in HEK-293 cells. This dimeric reagent yielded a 25-fold lower detection limit in western blots.

  13. Generating Recombinant Antibodies against Putative Biomarkers of Retinal Injury

    PubMed Central

    Kierny, Michael R.; Cunningham, Thomas D.; Bouhenni, Rachida A.; Edward, Deepak P.; Kay, Brian K.

    2015-01-01

    Candidate biomarkers, indicative of disease or injury, are beginning to overwhelm the process of validation through immunological means. Recombinant antibodies developed through phage-display offer an alternative means of generating monoclonal antibodies faster than traditional immunization of animals. Peptide segments of putative biomarkers of laser induced injury in the rabbit, discovered through mass spectrometry, were used as targets for a selection against a library of phage-displayed human single-chain variable fragment (scFv) antibodies. Highly specific antibodies were isolated to four of these unique peptide sequences. One antibody against the retinal protein, Guanine Nucleotide-Binding Protein Beta 5 (GBB5), had a dissociation constant ~300 nM and recognized the full-length endogenous protein in retinal homogenates of three different animal species by western blot. Alanine scanning of the peptide target identified three charged and one hydrophobic amino acid as the critical binding residues for two different scFvs. To enhance the utility of the reagent, one scFv was dimerized through a Fragment-crystallizable hinge region (i.e., Fc) and expressed in HEK-293 cells. This dimeric reagent yielded a 25-fold lower detection limit in western blots. PMID:25902199

  14. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms

    PubMed Central

    Kierny, Michael R.; Cunningham, Thomas D.; Kay, Brian K.

    2012-01-01

    The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of ‘Surface Enhanced Raman Scattering’ (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market. PMID:22833780

  15. Production and Characterization of Monoclonal Antibody against Recombinant Virus Coat Protein CP42.

    PubMed

    Shibaei, Naeimeh; Majidi, Jafar; Razavi, Khadijeh; Karkhane, Ali Asghar; Sokhandan-Bashir, Nemat; Aghebati-Maleki, Leili

    2017-02-01

    There are many studies related to the production of a ELISA kit for diagnosing virus infections. However, production of most kits depends on purification of whole virus particles, which involves the use of costly equipment and reagents. The purpose of this study was to check out if the anti-CP42 antibodies could be used as a diagnostic assay for detection of Grapevine fanleaf Virus (GFLV). In this study, recombinant GFLV coat protein gene related to selected antigenic determinants was inserted into pET-28a bacterial expression vector and the construct (pET-28a CP42) was cloned into E. coli strain (DE3). Expressed protein was verified with western blotting assay by the use of commercially available anti-GFLV antibody. The recombinant protein was purified using nickel-nitrilotriacetic acid (Ni-NTA) resin. Balb/c mice were immunized with purified protein and splenocytes of hyperimmunized mice were fused with murine myeloma Sp2/0 cells. Positive hybridomas were selected by ELISA using CP42 as coating antigen. The results showed that monoclonal antibody (MAb) specific to CP42 has been successfully generated. Efficiency of produced antibody was analyzed by ELISA and western blotting assay using some confirmed grapevine samples. The infection was confirmed previously based on morphological features and ELISA assay, performed using commercial anti-GFLV antibody. The monoclonal antibody reacted with antigen in ELISA and immunoblot method. Our results demonstrated that anti recombinant CP42 monoclonal antibodies are able to diagnose whole virus in infected grapevine sample using ELISA test.

  16. Characterization of oxidative carbonylation on recombinant monoclonal antibodies.

    PubMed

    Yang, Yi; Stella, Cinzia; Wang, Weiru; Schöneich, Christian; Gennaro, Lynn

    2014-05-20

    In the biotechnology industry, oxidative carbonylation as a post-translational modification of protein pharmaceuticals has not been studied in detail. Using Quality by Design (QbD) principles, understanding the impact of oxidative carbonylation on product quality of protein pharmaceuticals, particularly from a site-specific perspective, is critical. However, comprehensive identification of carbonylation sites has so far remained a very difficult analytical challenge for the industry. In this paper, we report for the first time the identification of specific carbonylation sites on recombinant monoclonal antibodies with a new analytical approach via derivatization with Girard's Reagent T (GRT) and subsequent peptide mapping with high-resolution mass spectrometry. Enhanced ionization efficiency and high quality MS(2) data resulted from GRT derivatization were observed as key benefits of this approach, which enabled direct identification of carbonylation sites without any fractionation or affinity enrichment steps. A simple data filtering process was also incorporated to significantly reduce false positive assignments. Sensitivity and efficiency of this approach were demonstrated by identification of carbonylation sites on both unstressed and oxidized antibody bulk drug substances. The applicability of this approach was further demonstrated by identification of 14 common carbonylation sites on three highly similar IgG1s. Our approach represents a significant improvement to the existing analytical methodologies and facilitates extended characterization of oxidative carbonylation on recombinant monoclonal antibodies and potentially other protein pharmaceuticals in the biotechnology industry.

  17. EASE vectors for rapid stable expression of recombinant antibodies.

    PubMed

    Aldrich, Teri L; Viaje, Aurora; Morris, Arvia E

    2003-01-01

    Over the past 10 years, monoclonal antibodies and antibody fragments have become an increasingly important source of therapeutic molecules in the biotechnology industry. Drug development strategies rely on screening large numbers of candidate molecules in search of an optimized drug candidate. This strategy requires efficient production of ten to a few hundred milligrams of candidate molecules for screening in bioassays and animal models. Typically, this amount of recombinant protein expression involves large numbers of transient transfections or cloning of a recombinant cell line. Both of these approaches are time-consuming and labor-intensive. In this report, we describe the application of an EASE vector system that is capable of generating stable pools of transfected Chinese hamster ovary cells. These pooled populations of cells produce high quantities of antibody candidates without labor-intensive cloning in a 3-5 week time frame. When an optimal drug candidate has been selected, pools generated with EASE-containing vectors can also be used in subsequent cloning steps to make cell lines with improved expression levels. We demonstrate that EASE increases expression in nonamplified pools in addition to increasing amplification and viability of clonal cell lines generated with the EASE-containing vectors compared with pools and cell lines generated without EASE.

  18. Enhancement of antibody class switch recombination by the cumulative activity of four separate elements1

    PubMed Central

    Dunnick, Wesley A.; Shi, Jian; Zerbato, Jennifer M.; Fontaine, Clinton A.; Collins, John T.

    2011-01-01

    Class switch recombination of antibody isotype is mediated by a recombinational DNA deletion event, and must be robustly upregulated during antigen-driven differentiation of B cells. The enhancer region 3′ of the Cα gene is important for the upregulation of switch recombination. Using a transgene of the entire heavy chain constant region locus, we now demonstrate that it is the four 3′ enhancer elements themselves (a total of 4.7 kb) that are responsible for the upregulation, rather than the 24 kb of DNA in between them. Neither allelic exclusion nor transgenic μ expression is reduced by deletion of the four 3′ enhancers. We also test deletions of two or three of the 3′ enhancers, and show that deletion of more 3′ enhancers results in a progressive reduction in both switch recombination and germline transcription of all heavy chain genes. Nevertheless, we find evidence for special roles for some 3′ enhancers--different heavy chain genes are affected by different 3′ enhancer deletions. Thus, we find that the dramatic induction of class switch recombination during antigen-driven differentiation is the result of an interaction among four separated regulatory elements. PMID:21949022

  19. Production of polyclonal antibodies directed to recombinant methionyl bovine somatotropin.

    PubMed

    Suárez-Pantaleón, C; Huet, A C; Kavanagh, O; Lei, H; Dervilly-Pinel, G; Le Bizec, B; Situ, C; Delahaut, Ph

    2013-01-25

    The administration of recombinant methionyl bovine somatotropin (rMbST) to dairy cows to increase milk yield remains a common practice in many countries including the USA, Brazil, Mexico, South Africa and Korea, whereas it has been forbidden within the European Union (EU) since 1999. A rapid screening immunoanalytical method capable of the unequivocal determination of rMbST in milk would be highly desirable in order to effectively monitor compliance with the EU-wide ban for home-made or imported dairy products. For decades, the production of specific antibodies for this recombinant isoform of bovine somatotropin (bST) has remained elusive, due to the high degree of sequence homology between both counterparts (e.g. methionine for rMbST in substitution of alanine in bST at the N-terminus). In this study, we compared several immunizing strategies for the production of specific polyclonal antibodies (pAbs), based on the use of the full-length recombinant protein, an rMbST N-terminus peptide fragment and a multiple antigen peptide (MAP) which consists of an oligomeric branching lysine core attached to the first two N-terminus amino acids of rMbST, methionine and phenylalanine (MF-MAP). The immunization with KLH-conjugated MF-MAP led to the production of the pAb with the highest rMbST/bST recognition ratio amongst the generated battery of antibodies. The pAb exhibited a specific binding ability to rMbST in a competitive antigen-coated ELISA format, which avidity was further improved after purification by rMbST N-terminus peptide-based affinity chromatography. These results suggest that immunodiscrimination between structurally related proteins can be achieved using immuno-enhanced immunogens such as MAPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Production of a single-chain fragment of the murine anti-idiotypic antibody ACA125 as phage-displayed and soluble antibody by recombinant phage antibody technique.

    PubMed

    Schlebusch, H; Reinartz, S; Kaiser, R; Grünn, U; Wagner, U

    1997-02-01

    The F(ab')2 fragment of the murine monoclonal anti-idiotypic antibody ACA125 mimicking the tumor-associated antigen CA125 is used as a vaccine for the induction of an anti-tumoral immunity in patients with ovarian carcinoma. We tried to generate a single-chain fragment (ScFv) composed of ACA125 heavy- and light-chain variable domains connected by a polypeptide linker as an alternative to the corresponding F(ab')2 fragment. Heavy- and light-chain genes of antibody-producing mouse hybridoma cell line were amplified separately and assembled into a ScFv gene with linker DNA by the polymerase chain reaction (PCR). The ScFv gene was ligated into the phagemid vector pCANTAB5E, which allows the production of both phage-displayed and soluble ScFv. Transformed Escherichia coli TG1 cells were infected with M13K07 helper phage to yield recombinant phage, which display ScFv fragments as a g3p fusion protein on the surface of the filamentous phage M13. Recombinant phages could be selected by binding to the idiotypic antibody OC125 after one round of panning and directly used to reinfect E. coli TG1 cells. The E. coli nonsuppressor strain HB2151 was infected with an antigen-positive phage clone, previously screened by enzyme-linked immunosorbent assay (ELISA), to express soluble ScFv fragments. Functional soluble ScFv binding to the idiotypic antibody OC125 F(ab')2 could be detected in the bacterial periplasm by Western blot and ELISA. The variable heavy- and light-chain genes of the ACA125 ScFv fragment were further sequenced and compared with known antibody sequences.

  1. Discovery and characterization of hydroxylysine in recombinant monoclonal antibodies

    PubMed Central

    Xie, Qing; Moore, Benjamin; Beardsley, Richard L.

    2016-01-01

    ABSTRACT Tryptic peptide mapping analysis of a Chinese hamster ovary (CHO)-expressed, recombinant IgG1 monoclonal antibody revealed a previously unreported +16 Da modification. Through a combination of MSn experiments, and preparation and analysis of known synthetic peptides, the possibility of a sequence variant (Ala to Ser) was ruled out and the presence of hydroxylysine was confirmed. Post-translational hydroxylation of lysine was found in a consensus sequence (XKG) known to be the site of modification in other proteins such as collagen, and was therefore presumed to result from the activity of the CHO homolog of the lysyl hydroxylase complex. Although this consensus sequence was present in several locations in the antibody sequence, only a single site on the heavy-chain Fab was found to be modified. PMID:26651858

  2. Lepidopteran cells, an alternative for the production of recombinant antibodies?

    PubMed Central

    Cérutti, Martine; Golay, Josée

    2012-01-01

    Monoclonal antibodies are used with great success in many different therapeutic domains. In order to satisfy the growing demand and to lower the production cost of these molecules, many alternative systems have been explored. Among them, the baculovirus/insect cells system is a good candidate. This system is very safe, given that the baculoviruses have a highly restricted host range and they are not pathogenic to vertebrates or plants. But the major asset is the speed with which it is possible to obtain very stable recombinant viruses capable of producing fully active proteins whose glycosylation pattern can be modulated to make it similar to the human one. These features could ultimately make the difference by enabling the production of antibodies with very low costs. However, efforts are still needed, in particular to increase production rates and thus make this system commercially viable for the production of these therapeutic agents. PMID:22531440

  3. The neutralizing human recombinant antibodies to pathogenic Orthopoxviruses derived from a phage display immune library.

    PubMed

    Tikunova, Nina; Dubrovskaya, Viktoriya; Morozova, Vera; Yun, Tatiana; Khlusevich, Yana; Bormotov, Nikolai; Laman, Aleksandr; Brovko, Fedor; Shvalov, Aleksandr; Belanov, Eugeni

    2012-01-01

    A panel of recombinant human antibodies to orthopoxviruses was isolated from a combinatorial phage display library of human scFv antibodies constructed from the Vh and Vl genes cloned from the peripheral blood lymphocytes of Vaccinia virus (VACV) immune donors. Plaque-reduction neutralization tests showed that seven selected phage-displaying scFv antibodies (pdAbs) neutralized both CPXV and VACV, and five of them neutralized Monkeypox virus (MPXV). Western blot analysis of VACV and CPXV proteins demonstrated that seven neutralizing antibodies recognized a 35 kDa protein. To identify this target protein, we produced a recombinant J3L protein of CPXV and showed that all the selected neutralizing antibodies recognized this protein. Neutralizing pdAb b9 was converted into fully human mAb b9 (fh b9), and scFv b9 displayed high binding affinities (K(d) of 0.7 and 3.2 nM). The fh b9 reduced VACV plaque formation in a dose-dependent manner.

  4. [Recombinant antibodies: towards a new generation of antivenoms?].

    PubMed

    Aubrey, Nicolas; Muzard, Julien; Juste, Matthieu; Billiald, Philippe

    2006-01-01

    Poisoning by scorpion venoms is a major health hazard in tropical and subtropical regions and serum therapy, which was discovered in 1894, remains the only specific treatment. No real progress has been made since this time and the therapeutic use of antivenoms which still consists in polyclonal antibody fragments from the sera of immunized animals may be associated with major drawbacks. Protein engineering now allows to design novel recombinant antibody fragments which are superior to polyclonal antivenoms in homogeneity, specific activity and possibly safety. Several single-chain antibody fragments (scFvs) which neutralize scorpion toxins have been produced and characterized over the last few years. These scFvs can also be used as building blocks to engineer more complex structures including multivalent monospecific antibody fragments (diabodies, triabodies) and bispecific molecules (tandem-scFv). Some of these molecules neutralize scorpion neurotoxins and protect mice from experimental envenoming. Thus, research projects currently underway suggest that new strategies might soon be available to treat poisonings in the absence of socio-economic considerations.

  5. Dengue-1 Virus Envelope Glycoprotein Gene Expressed in Recombinant Baculovirus Elicits Virus-Neutralizing Antibody in Mice and Protects them from Virus Challenge

    DTIC Science & Technology

    1991-01-01

    Japanese encephalitis (JE), in which cific antiserum (mouse hyperimmune ascitic flu- polygenicregions, C-prM-E, prM-E-NSI-NS2A- id. MHAF. 1:200) against...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...itrocellulose and reacted with [)EN-l specific mouse hyperimmune ascitic fluid (MHAF) (right panel). Bands fromn a duplicate gel were stained with

  6. Culture temperature modulates aggregation of recombinant antibody in cho cells.

    PubMed

    Gomez, Natalia; Subramanian, Jayashree; Ouyang, Jun; Nguyen, Mary D H; Hutchinson, Matthew; Sharma, Vikas K; Lin, Andy A; Yuk, Inn H

    2012-01-01

    During production of therapeutic monoclonal antibodies (mAb), it is highly desirable to remove and control antibody aggregates in the manufacturing process to minimize the potential risk of immunogenicity to patients. During process development for the production of a recombinant IgG in a CHO cell line, we observed atypical high variability from 1 to 20% mAb aggregates formed during cell culture that negatively impacted antibody purification. Analytical characterization revealed the IgG aggregates were mediated by hydrophobic interactions likely caused by misfolded antibody during intracellular processing. Strikingly, data analysis showed an inverse correlation of lower cell culture temperature producing higher aggregate levels. All cultures at 37°C exhibited ≤ 5% aggregates at harvest. Aggregate levels increased 4-12-fold in 33°C cultures when compared to 37°C, with a corresponding 2-4-fold increase in heavy chain (HC) and light chain (LC) mRNA. Additionally, 37°C cases showed a greater excess of LC to HC mRNA levels. Endoplasmic reticulum (ER) chaperone expression and ER size also increased 25-75% at 33°C versus 37°C but to a lesser extent than LC and HC mRNA, consistent with a potential limiting ER folding capacity at 33°C for this cell line. Finally, we identified a 2-5-fold increase in mAb aggregate formation at 33°C compared to 37°C cultures for three additional CHO cell lines. Taken together, our observations indicate that low culture temperature can increase antibody aggregate formation in CHO cells by increasing LC and HC transcripts coupled with limited ER machinery.

  7. [Targeted detecting HER2 expression with recombinant anti HER2 ScFv-GFP fusion antibody].

    PubMed

    Gao, Guohui; Chen, Chong; Yang, Yanmei; Yang, Han; Wang, Jindan; Zheng, Yi; Huang, Qidi; Hu, Xiaoqu

    2012-08-01

    To verify the reliability of targeted detecting HER2 positive cancer cells and clinical pathological tissue specimens with a recombinant anti HER2 single chain antibody in single chain Fv fragment (scFv) format, we have constructed the fusion variable regions of the ScFv specific for HER2/neu. labeled a green-fluorescent protein(GFP). The humanized recombinant Anti HER2 ScFv-GFP gene was inserted into pFast Bac HT A, and expressed in insect cells sf9. Then the recombinant fusion protein Anti HER2 ScFv-GFP was properly purified with Ni2+-NTA affinity chromatography from the infected sf9 cells used to test the specificity of the fusion antibody for HER2 positive cancer cells. Firstly, the purified antibody incubated with HER2 positive breast cancer cells SKBR3, BT474 and HER2 negative breast cancer cells MCF7 for 12 h/24 h/48 h at 37 degrees C, in order to confirm targeted detecting HER2 positive breast cancer cells by Laser Confocal Microscopy. Furthermore, the same clinical pathological tissue samples were assessed by immunohistochemistry (IHC) and the fusion antibody Anti HER2 ScFv-GFP in the meanwhile. The data obtained indicated that the recombinant eukaryotic expression plasmid pFast Bac HT A/Anti HER2 ScFv-GFP was constructed successfully In addition, obvious green fluorescent was observed in insect cells sf9. When the purified fusion antibody was incubated with different cancer cells, much more green fluorescent was observed on the surface of the HER2 positive cancer cells SKBR3 and BT474. In contrast, no green fluorescent on the surface of the HER2 negative cancer cells MCF7 was detected. The concentration of the purified fusion antibody was 115.5 microg/mL, of which protein relative molecular weight was 60 kDa. The analysis showed the purity was about 97% and the titer was about 1:64. The detection results of IHC and fusion antibody testing indicated the conformity. In summary, the study showed that the new fusion antibody Anti HER2 ScFv-GFP can test HER2

  8. Somatic generation of hybrid antibody H chain genes in transgenic mice via interchromosomal gene conversion

    PubMed Central

    1994-01-01

    We have constructed lines of mice with transgenes containing an antibody heavy (H) chain variable region (VHDJH) gene and various amounts of natural immunoglobulin (Ig) and plasmid flanking DNA. In these lines, recombination of the transgene and the endogenous Igh locus takes place in B cells, leading to the expression of functional H chains partially encoded by the transgenic VHDJH gene. Here, we demonstrate that the transgenic VHDJH gene, and various amounts of flanking sequence are recombined with Igh locus DNA via interchromosomal gene conversion. The structures of the resulting "hybrid" transgene-Igh H chain loci are consistent with the 3' end of the conversion occurring in regions of sequence identity, and the 5' end taking place between regions of little or no homology. This mode of antibody transgene recombination with the Igh locus is fundamentally different from the previously reported "trans H chain class switching" that results in reciprocal translocations. In contrast, this recombination resembles events previously observed in mammalian tissue culture cells between adjacent homologous chromosomal sequences, or transfected DNA and a homologous chromosomal target. Our data indicate that this recombination takes place at a low frequency, and that the frequency is influenced by both the length and extent of homology between the transgene and the Igh locus, but is not greatly affected by transgene copy number. This recombination pathway provides a novel approach for the subtle alteration of the clonal composition of the mouse B cell compartment in vivo using VH genes with defined structures and functions. PMID:8270869

  9. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  10. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer.

    PubMed

    LeBeau, Aaron M; Duriseti, Sai; Murphy, Stephanie T; Pepin, Francois; Hann, Byron; Gray, Joe W; VanBrocklin, Henry F; Craik, Charles S

    2013-04-01

    Components of the plasminogen activation system, which are overexpressed in aggressive breast cancer subtypes, offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared imaging and (111)In single-photon emission computed tomography. Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard (18)F-fluorodeoxyglucose at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. In addition, a radioimmunotherapy study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope (177)Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology.

  11. Antibody Gene Transfer for HIV Immunoprophylaxis

    PubMed Central

    Balazs, Alejandro B.; West, Anthony P.

    2015-01-01

    Antibody gene transfer, which involves the delivery of genes that encode potent, broadly neutralizing anti-HIV antibodies, is a promising new strategy to prevent HIV infection. A satellite symposium at the AIDS Vaccine 2012 conference brought together many of the groups working in this field. PMID:23238748

  12. Antibody gene transfer for HIV immunoprophylaxis.

    PubMed

    Balazs, Alejandro B; West, Anthony P

    2013-01-01

    Antibody gene transfer, which involves the delivery of genes that encode potent, broadly neutralizing antibodies to human immunodeficiency virus (HIV), is a promising new strategy for preventing HIV infection. A satellite symposium at the AIDS Vaccine 2012 conference brought together many of the groups working in this field.

  13. Generation, characterization, and docking studies of DNA-hydrolyzing recombinant F(ab) antibodies.

    PubMed

    Zein, Haggag S; El-Sehemy, Ahmed A; Fares, Mohamed O; ElHefnawi, Mahmoud; da Silva, Jaime A Teixeira; Miyatake, Kazutaka

    2011-01-01

    Previously we established a series of catalytic antibodies (catAbs) capable of hydrolyzing DNA prepared by hybridoma technology. A group of these catAbs exhibited high reactivity and substrate specificity. To determine the molecular basis for these catAbs, we cloned, sequenced, and expressed the variable regions of this group of antibodies as functional F(ab) fragments. The nucleotide and deduced amino acid sequences of the expressed light chain (Vκ) germline gene assignments confidently belonged to germline family Vκ1A, gene bb1.1 and GenBank accession number EF672207 while heavy chain variable region V(H) genes belonged to V(H) 1/V(H) J558, gene V130.3 and GenBank accession number EF672221. A well-established expression system based on the pARA7 vector was examined for its ability to produce catalytically active antibodies. Recombinant F(ab) (rF(ab) ) fragments were purified and their hydrolyzing activity was analyzed against supercoiled pUC19 plasmid DNA (scDNA). The study of rF(ab) provides important information about the potential catalytic activities of antibodies whose structure allows us to understand their basis of catalysis. Molecular surface analysis and docking studies were performed on the molecular interactions between the antibodies and poly(dA9), poly(dG9), poly(dT9), and poly(dC9) oligomers. Surface analysis identified the important sequence motifs at the binding sites, and different effects exerted by arginine and tyrosine residues at different positions in the light and heavy chains. This study demonstrates the potential usefulness of the protein DNA surrogate in the investigation of the origin of anti-DNA antibodies. These studies may define important features of DNA catAbs.

  14. Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (BRSV) with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins: N-nanorings, P and M2-1, in calves with maternal antibodies.

    PubMed

    Blodörn, Krister; Hägglund, Sara; Fix, Jenna; Dubuquoy, Catherine; Makabi-Panzu, Boby; Thom, Michelle; Karlsson, Per; Roque, Jean-Louis; Karlstam, Erika; Pringle, John; Eléouët, Jean-François; Riffault, Sabine; Taylor, Geraldine; Valarcher, Jean François

    2014-01-01

    The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71VG, SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination. Although mucosal vaccination with ΔSHrBRSV failed to induce a detectable immunological response, there was a rapid and strong anamnestic mucosal BRSV-specific IgA, virus neutralizing antibody and local T cell response following challenge with virulent BRSV. Calves immunized twice intramuscularly, three weeks apart with SUMont were also well protected two weeks after boost. The protection was not as pronounced as that in ΔSHrBRSV-immunized animals, but superior to those immunized twice subcutaneously three weeks apart with SUAbis. Antibody responses induced by the subunit vaccines were non-neutralizing and not directed against BRSV F or G proteins. When formulated as SUMont but not as SUAbis, the HRSV N, P and M2-1 proteins induced strong systemic cross-protective cell-mediated immune responses detectable already after priming. ΔSHrBRSV and SUMont are two promising DIVA-compatible vaccines, apparently inducing protection by

  15. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  16. Somatic recombination, gene amplification and cancer.

    PubMed

    Ramel, C; Cederberg, H; Magnusson, J; Vogel, E; Natarajan, A T; Mullender, L H; Nivard, J M; Parry, J M; Leyson, A; Comendador, M A; Sierra, L M; Ferreiro, J A; Consuegra, S

    1996-06-12

    The principle objective of this research programme, to analyse chemical induction of somatic recombination and related endpoints, i.e., mobilization of transposing elements and gene amplification, has been approached by means of several assay systems. These have included Drosophila, Saccharomyces and mammalian cell cultures. 6.1. Screening assays for mitotic recombination. A large number of chemicals have been investigated in the three Drosophila assay systems employed--the multiple wing hair/flare wing spot system developed by Graf et al., 1984, the white-ivory system developed by Green et al., 1986 and the white/white+ eye spot assay developed by Vogel (Vogel and Nivard, 1993). Particularly the screening of 181 chemicals, covering a wide array of chemical classes, by the last mentioned assay has shown that measurement of somatic recombination in Drosophila constitutes a sensitive and efficient short-term test which shows a remarkably good correlation with the agent score of 83 short-term tests analysed by ICPEMC (Mendelsohn et al., 1992; Table 2) as well as the assay performance in international collaborative programmes measuring carcinogen/non-carcinogens (de Serres and Ashby, 1981; Ashby et al., 1985, 1988). Also the wing spot assay has gained wide international recognition as a similarly sensitive test. These two assay systems in Drosophila measure both intrachromosomal events and interchromosomal recombination. The white-ivory system on the other hand is based on the loss of a tandem duplication in the white locus, the mechanism of which is less known, but probably involves intrachromosomal recombination. The difference in the mechanism between this assay and the former two was indicated by the lack of response to methotrexate in the white-ivory assay, while this compound was strongly recombinogenic in both the wing spot and white/white+ assays. The use of different strains of Drosophila with the white/white+ assay demonstrated the importance of the

  17. [Application of recombinant GPⅢa combined Luminex beads for the detection of HPA-1a antibody].

    PubMed

    Tao, Sudan; Liu, Ying; He, Yanming; Ying, Yanling; He, Ji; Zhu, Faming

    2017-02-10

    To generate recombinant GPⅢa as an alternative source for HPA-1a antigen and combine it with Luminex xMAP beads for the detection of HPA-1a-specific alloantibody. The full coding region of ITGB3 gene was amplified and ligated with pcDNA3.1. The recombinant plasmid was transfected into CHO cells, and those with stable expression were screened with G418. Expressed protein was identified and coupled with Luminex xMAP beads, which were then reacted with sera samples. Subsequently, phycoerythrin-labeled anti-species IgG antibody was added to the reaction wells and the median fluorescence was determined on a Luminex-100 analyzer. DNA sequencing confirmed that the cloned ITGB3 gene was HPA-1aa. The recombinant GPⅢa was coupled with Luminex xMAP beads. The sensitivity of Luminex beads assay to detect HPA-1a antibody was dilution 1/32 (3.125 U/mL). The Luminex beads assay could specifically identify the HPA-1a antibody from the test sera, and the results were consistent with that of monoclonal antibody-specific immobilization of platelet antigens (MAIPA) technology. Cross-reactivity was not observed with the samples containing HLA, ABO and other HPA antibodies (HPA-3a and HPA-5b). The results illustrated that to detect HPA antibody with Luminex xMAP beads technology is feasible. Recombinant GPⅢa was successfully obtained and used to establish a Luminex technology-based method for the detection of HPA antibodies.

  18. Preparation of Recombinant Human Monoclonal Antibody Fab Fragments Specific for Entamoeba histolytica

    PubMed Central

    Tachibana, Hiroshi; Cheng, Xun-Jia; Watanabe, Katsuomi; Takekoshi, Masataka; Maeda, Fumiko; Aotsuka, Satoshi; Kaneda, Yoshimasa; Takeuchi, Tsutomu; Ihara, Seiji

    1999-01-01

    Genes coding for human antibody Fab fragments specific for Entamoeba histolytica were cloned and expressed in Escherichia coli. Lymphocytes were separated from the peripheral blood of a patient with an amebic liver abscess. Poly(A)+ RNA was isolated from the lymphocytes, and then genes coding for the light chain and Fd region of the heavy chain were amplified by a reverse transcriptase PCR. The amplified DNA fragments were ligated with a plasmid vector and were introduced into Escherichia coli. Three thousand colonies were screened for the production of antibodies to E. histolytica HM-1:IMSS by an indirect fluorescence-antibody (IFA) test. Lysates from five Escherichia coli clones were positive. Analysis of the DNA sequences of the five clones showed that three of the five heavy-chain sequences and four of the five light-chain sequences differed from each other. When the reactivities of the Escherichia coli lysates to nine reference strains of E. histolytica were examined by the IFA test, three Fab fragments with different DNA sequences were found to react with all nine strains and another Fab fragment was found to react with seven strains. None of the four human monoclonal antibody Fab fragments reacted with Entamoeba dispar reference strains or with other enteric protozoan parasites. These results indicate that the bacterial expression system reported here is effective for the production of human monoclonal antibodies specific for E. histolytica. The recombinant human monoclonal antibody Fab fragments may be applicable for distinguishing E. histolytica from E. dispar and for use in the serodiagnosis of amebiasis. PMID:10225840

  19. Novel recombinant papillomavirus genomes expressing selectable genes

    PubMed Central

    Van Doorslaer, Koenraad; Porter, Samuel; McKinney, Caleb; Stepp, Wesley H.; McBride, Alison A.

    2016-01-01

    Papillomaviruses infect and replicate in keratinocytes, but viral proteins are initially expressed at low levels and there is no effective and quantitative method to determine the efficiency of infection on a cell-to-cell basis. Here we describe human papillomavirus (HPV) genomes that express marker proteins (antibiotic resistance genes and Green Fluorescent Protein), and can be used to elucidate early stages in HPV infection of primary keratinocytes. To generate these recombinant genomes, the late region of the oncogenic HPV18 genome was replaced by CpG free marker genes. Insertion of these exogenous genes did not affect early replication, and had only minimal effects on early viral transcription. When introduced into primary keratinocytes, the recombinant marker genomes gave rise to drug-resistant keratinocyte colonies and cell lines, which maintained the extrachromosomal recombinant genome long-term. Furthermore, the HPV18 “marker” genomes could be packaged into viral particles (quasivirions) and used to infect primary human keratinocytes in culture. This resulted in the outgrowth of drug-resistant keratinocyte colonies containing replicating HPV18 genomes. In summary, we describe HPV18 marker genomes that can be used to quantitatively investigate many aspects of the viral life cycle. PMID:27892937

  20. Adaptation despite gene flow? Low recombination helps.

    PubMed

    Marques, David A

    2017-09-01

    About 15,000 years earlier, the Northern half of Europe and North America was buried under a few kilometres of ice. Since then, many organisms have colonized and rapidly adapted to the new, vacant habitats. Some, like the threespine stickleback fish, have done so more successfully than others: from the sea, stickleback have adapted to a multitude of lake and stream habitats with a vast array of complex phenotypes and life histories. Previous studies showed that most of these "ecotypes" differ in multiple divergently selected genes throughout the genome. But how are well-adapted ecotypes of one habitat protected from maladaptive gene flow from ecotypes of another, adjacent habitat? According to a From the Cover meta-analysis in this issue of Molecular Ecology (Samuk et al., 2017), low recombination rate regions in the genome offer such protection. While inversions have often been highlighted as an efficient way to maintain linkage disequilibrium among sets of adaptive variants in the face of gene flow, Samuk et al. (2017) show that variation in recombination rate across the genome may perform a similar role in threespine stickleback. With this study, theoretical predictions for the importance of low recombination regions in adaptation are for the first time tested with a highly replicated population genomic data set. The findings from this study have implications for the adaptability of species, speciation and the evolution of genome architecture. © 2017 John Wiley & Sons Ltd.

  1. Vacuolar targeting of recombinant antibodies in Nicotiana benthamiana.

    PubMed

    Ocampo, Carolina Gabriela; Lareu, Jorge Fabricio; Marin Viegas, Vanesa Soledad; Mangano, Silvina; Loos, Andreas; Steinkellner, Herta; Petruccelli, Silvana

    2016-12-01

    Plant-based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C-terminal fused to the heavy chain of 14D9 (vac-Abs) and compared with secreted and ER-retained variants (sec-Ab, ER-Ab, respectively). Accumulation of ER- and vac-Abs was 10- to 15-fold higher than sec-Ab. N-glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec-Ab while vac-Abs carried mainly oligomannosidic (Man 7-9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec-Ab-RFP localized in the apoplast while vac-Abs-RFP were exclusively detected in the central vacuole. The data suggest that vac-Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N-glycans). Importantly, vac-Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post-translational modifications, but also point to a reconsideration of current concepts in plant glycan processing. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Recombinant immunotoxins and retargeted killer cells: employing engineered antibody fragments for tumor-specific targeting of cytotoxic effectors.

    PubMed

    Wels, Winfried; Biburger, Markus; Müller, Tina; Dälken, Benjamin; Giesübel, Ulrike; Tonn, Torsten; Uherek, Christoph

    2004-03-01

    Over the past years, monoclonal antibodies have attracted enormous interest as targeted therapeutics, and a number of such reagents are in clinical use. However, responses could not be achieved in all patients with tumors expressing high levels of the respective target antigens, suggesting that other factors such as limited recruitment of endogenous immune effector mechanisms can also influence treatment outcome. This justifies the search for alternative, potentially more effective reagents. Antibody-toxins and cytolytic effector cells genetically modified to carry antibody-based receptors on the surface, represent such tailor-made targeting vehicles with the potential of improved tumor localization and enhanced efficacy. In this way, advances in recombinant antibody technology have made it possible to circumvent problems inherent in chemical coupling of antibodies and toxins, and have allowed construction via gene fusion of recombinant molecules which combine antibody-mediated recognition of tumor cells with specific delivery of potent protein toxins of bacterial or plant origin. Likewise, recombinant antibody fragments provide the basis for the construction of chimeric antigen receptors that, upon expression in cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells, link antibody-mediated recognition of tumor antigens with these effector cells' potent cytolytic activities, thereby making them promising cellular therapeutics for adoptive cancer therapy. Here, general principles for the derivation of cytotoxic proteins and effector cells with antibody-dependent tumor specificity are summarized, and current strategies to employ these molecules and cells for directed cancer therapy are discussed, focusing mainly on the tumor-associated antigens epidermal growth factor receptor (EGFR) and the closely related ErbB2 (HER2) as targets.

  3. Recombinant fungal entomopathogen RNAi target insect gene.

    PubMed

    Hu, Qiongbo; Wu, Wei

    2016-11-01

    RNA interference (RNAi) technology is considered as an alternative for control of pests. However, RNAi has not been used in field conditions yet, since delivering exogenous ds/siRNA to target pests is very difficult. The laboratory methods of introducing the ds/siRNA into insects through feeding, micro feeding / dripping and injecting cannot be used in fields. Transgenic crop is perhaps the most effective application of RNAi for pest control, but it needs long-time basic researches in order to reduce the cost and evaluate the safety. Therefore, transgenic microbe is maybe a better choice. Entomopathogenic fungi generally invade the host insects through cuticle like chemical insecticides contact insect to control sucking sap pests. Isaria fumosorosea is a common fungal entomopathogen in whitefly, Bemisia tabaci. We constructed a recombinant strain of I. fumosorosea expressing specific dsRNA of whitefly's TLR7 gene. It could silence the TLR7 gene and improve the virulence against whitefly. Transgenic fungal entomopathogen has shown great potential to attain the application of RNAi technology for pests control in fields. In the future, the research interests should be focused on the selection of susceptible target pests and their vital genes, and optimizing the methods for screening genes and recombinants as well.

  4. Construction of Recombinant Single Chain Variable Fragment (ScFv) Antibody Against Superantigen for Immunodetection Using Antibody Phage Display Technology.

    PubMed

    Singh, Pawan Kumar; Agrawal, Ranu; Kamboj, D V; Singh, Lokendra

    2016-01-01

    Superantigens are a class of antigens that bind to the major histocompatibility complex class (MHC) II and T-cell receptor (TCR) and cause the nonspecific activation of T cells, resulting in a massive release of pro-inflammatory mediators. They are produced by the gram-positive organisms Staphylococcus aureus and Streptococcus pyogenes, and by a variety of other microbes such as viruses and mycoplasma, and cause toxic shock syndrome (TSS) and even death in some cases. The immunodetection of superantigens is difficult due to the polyclonal activation of T-cells leading to nonspecific antibody production. The production of recombinant monoclonal antibodies against superantigens can solve this problem and are far better than polyclonal antibodies in terms of detection. Here, we describe the construction of recombinant single chain variable fragments (ScFv) antibodies against superantigens with specific reference to SEB (staphylococcal enterotoxin B) using antibody phage display technology.

  5. Identification of a Putative Crf Splice Variant and Generation of Recombinant Antibodies for the Specific Detection of Aspergillus fumigatus

    PubMed Central

    Schütte, Mark; Thullier, Philippe; Pelat, Thibaut; Wezler, Xenia; Rosenstock, Philip; Hinz, Dominik; Kirsch, Martina Inga; Hasenberg, Mike; Frank, Ronald; Schirrmann, Thomas; Gunzer, Matthias

    2009-01-01

    Background Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA) in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. Results The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16) which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs) were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. Conclusion Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus. PMID:19675673

  6. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: vaccine potency, antibody persistence, and maternal antibody transfer.

    PubMed

    Mesonero, Alexander; Suarez, David L; van Santen, Edzard; Tang, De-Chu C; Toro, Haroldo

    2011-06-01

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibody persistence, transfer of maternal antibodies (MtAb), and interference between MtAb and active in ovo or mucosal immunization with RCA-free recombinant Ad expressing a codon-optimized AIV H5 HA gene from A/turkey/WI/68 (AdTW68.H5(ck)). Vaccine coverage and intrapotency test repeatability were based on anti-H5 hemagglutination inhibition (HI) antibody levels detected in in ovo vaccinated chickens. Even though egg inoculation of each replicate was performed by individuals with varying expertise and with different vaccine batches, the average vaccine coverage of three replicates was 85%. The intrapotency test repeatability, which considers both positive as well as negative values, varied between 0.69 and 0.71, indicating effective vaccination. Highly pathogenic (HP) AIV challenge of chicken groups vaccinated with increasing vaccine doses showed 90% protection in chickens receiving > or = 10(8) ifu (infectious units)/bird. The protective dose 50% (PD50) was determined to be 10(6.5) ifu. Even vaccinated chickens that did not develop detectable antibody levels were effectively protected against HP AIV challenge. This result is consistent with previous findings ofAd-vector eliciting T lymphocyte responses. Higher vaccine doses significantly reduced viral shedding as determined by AIV RNA concentration in oropharyngeal swabs. Assessment of antibody persistence showed that antibody levels of in ovo immunized chickens continued to increase until 12 wk and started to decline after 18 wk of age. Intramuscular (IM) booster vaccination with the same vaccine at 16 wk of age significantly increased the antibody responses in breeder hens, and these responses were maintained at high

  7. Recombinant Encephalomyocarditis Viruses Elicit Neutralizing Antibodies against PRRSV and CSFV in Mice

    PubMed Central

    Zhu, Shu; Guo, Xin; Keyes, Lisa R.; Yang, Hanchun; Ge, Xinna

    2015-01-01

    Encephalomyocarditis virus (EMCV) is capable of infecting a wide range of species and the infection can cause myocarditis and reproductive failure in pigs as well as febrile illness in human beings. In this study, we introduced the entire ORF5 of the porcine reproductive and respiratory syndrome virus (PRRSV) or the neutralization epitope regions in the E2 gene of the classical swine fever virus (CSFV), into the genome of a stably attenuated EMCV strain, T1100I. The resultant viable recombinant viruses, CvBJC3m/I-ΔGP5 and CvBJC3m/I-E2, respectively expressed partial PRRSV envelope protein GP5 or CSFV neutralization epitope A1A2 along with EMCV proteins. These heterologous proteins fused to the N-terminal of the nonstructural leader protein could be recognized by anti-GP5 or anti-E2 antibody. We also tested the immunogenicity of these fusion proteins by immunizing BALB/c mice with the recombinant viruses. The immunized animals elicited neutralizing antibodies against PRRSV and CSFV. Our results suggest that EMCV can be engineered as an expression vector and serve as a tool in the development of novel live vaccines in various animal species. PMID:26076449

  8. In vitro and in vivo modifications of recombinant and human IgG antibodies.

    PubMed

    Liu, Hongcheng; Ponniah, Gomathinayagam; Zhang, Hui-Min; Nowak, Christine; Neill, Alyssa; Gonzalez-Lopez, Nidia; Patel, Rekha; Cheng, Guilong; Kita, Adriana Z; Andrien, Bruce

    2014-01-01

    Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules.

  9. In vitro and in vivo modifications of recombinant and human IgG antibodies

    PubMed Central

    Liu, Hongcheng; Ponniah, Gomathinayagam; Zhang, Hui-Min; Nowak, Christine; Neill, Alyssa; Gonzalez-Lopez, Nidia; Patel, Rekha; Cheng, Guilong; Kita, Adriana Z; Andrien, Bruce

    2014-01-01

    Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules. PMID:25517300

  10. CHO expression of a novel human recombinant IgG1 anti-RhD antibody isolated by phage display.

    PubMed

    Miescher, S; Zahn-Zabal, M; De Jesus, M; Moudry, R; Fisch, I; Vogel, M; Kobr, M; Imboden, M A; Kragten, E; Bichler, J; Mermod, N; Stadler, B M; Amstutz, H; Wurm, F

    2000-10-01

    Replacement of the hyperimmune anti-Rhesus (Rh) D immunoglobulin, currently used to prevent haemolytic disease of the newborn, by fully recombinant human anti-RhD antibodies would solve the current logistic problems associated with supply and demand. The combination of phage display repertoire cloning with precise selection procedures enables isolation of specific genes that can then be inserted into mammalian expression systems allowing production of large quantities of recombinant human proteins. With the aim of selecting high-affinity anti-RhD antibodies, two human Fab libraries were constructed from a hyperimmune donor. Use of a new phage panning procedure involving bromelin-treated red blood cells enabled the isolation of two high-affinity Fab-expressing phage clones. LD-6-3 and LD-6-33, specific for RhD. These showed a novel reaction pattern by recognizing the D variants D(III), D(IVa), D(IVb), D(Va), D(VI) types I and II. D(VII), Rh33 and DFR. Full-length immunoglobulin molecules were constructed by cloning the variable regions into expression vectors containing genomic DNA encoding the immunoglobulin constant regions. We describe the first, stable, suspension growth-adapted Chinese hamster ovary (CHO) cell line producing a high affinity recombinant human IgG1 anti-RhD antibody adapted to pilot-scale production. Evaluation of the Fc region of this recombinant antibody by either chemiluminescence or antibody-dependent cell cytotoxicity (ADCC) assays demonstrated macrophage activation and lysis of red blood cells by human lymphocytes. A consistent source of recombinant human anti-RhD immunoglobulin produced by CHO cells is expected to meet the stringent safety and regulatory requirements for prophylactic application.

  11. [Prokaryotic expression and activity identification of gene recombinant protein of brain-derivedneurotrophic factor precursor].

    PubMed

    Chen, Jia; Liang, Xiaomin; Xu, Zhiqiang

    2014-08-19

    To generate the gene recombinant protein of brain-derived neurotrophic factor precursor (proBDNF) in prokaryotic cells and investigate its biological activity. Rat-derived cDNA of proBDNF with point mutation was amplified by polymerase chain reaction (PCR) and cloned into plasmid pET-28a for expression in E. coli BL21. Western blot was used to identify the product and DAPI performed to test its effect on apoptosis of PC12 cells. PCR product of recombinant gene was successfully expressed in E. coli. And the product agreed with the target protein in molecular weight and showed reactivity with its specific antibody. Apoptosis of PC12 cells was induced by a certain concentration of recombinant proBDNF. The prokaryotic expression vector has been successfully constructed for recombinant gene of proBDNF. And the product has biological toxicity and it may induce the apoptosis of PC12 cells.

  12. Recombinant multi-epitope vaccine induce predefined epitope-specific antibodies against HIV-1.

    PubMed

    Li, Hua; Liu, Zu-Qiang; Ding, Jian; Chen, Ying-Hua

    2002-11-01

    Monoclonal antibody 2F5 recognizing ELDKWA-epitope on HIV-1 gp41 has significant neutralization potency against 90% of the investigated viruses of African, Asia, American and European strains, but antibodies responses to ELDKWA-epitope in HIV-1 infected individuals were very low. Based on the epitope-vaccine strategy suggested by us, a recombinant glutathione S-transferase (GST) fusion protein (GST-MELDKWAGELDKWAGELDKWAVDIGPGRAFYGPGRAFYGPGRAFY) as vaccine antigen containing three repeats of neutralizing epitope ELDKWA on gp41 and GPGRAFY on gp120 was designed and expressed in Escherichia coli. After vaccination course, the recombinant multi-epitope vaccine could induce high levels of predefined multi-epitope-specific antibodies in mice. These antibodies in sera could bind to both neutralizing epitopes on gp41 peptide, V3 loop peptide and recombinant soluble gp41 (aa539-684) in ELISA assay (antisera dilution: 1:1,600-25,600), while normal sera did not. Moreover, these antibodies in sera could recognize the CHO-WT cells which expressed HIV-1 envelope glycoprotein on the cell surfaces, indicating that the predefined epitope-specific antibodies could recognize natural envelope protein of HIV-1 though these antibodies were induced by recombinant multi-epitope-vaccine. These experimental results suggested a possible way to develop recombinant multi-epitope vaccine inducing multi-antiviral activities against HIV-1.

  13. The relationship between mTOR signalling pathway and recombinant antibody productivity in CHO cell lines

    PubMed Central

    2014-01-01

    Background High recombinant protein productivity in mammalian cell lines is often associated with phenotypic changes in protein content, energy metabolism, and cell growth, but the key determinants that regulate productivity are still not clearly understood. The mammalian target of rapamycin (mTOR) signalling pathway has emerged as a central regulator for many cellular processes including cell growth, apoptosis, metabolism, and protein synthesis. This role of this pathway changes in response to diverse environmental cues and allows the upstream proteins that respond directly to extracellular signals (such as nutrient availability, energy status, and physical stresses) to communicate with downstream effectors which, in turn, regulate various essential cellular processes. Results In this study, we have performed a transcriptomic analysis using a pathway-focused polymerase chain reaction (PCR) array to compare the expression of 84 target genes related to the mTOR signalling in two recombinant CHO cell lines with a 17.4-fold difference in specific monoclonal antibody productivity (q p ). Eight differentially expressed genes that exhibited more than a 1.5-fold change were identified. Pik3cd (encoding the Class 1A catalytic subunit of phosphatidylinositol 3-kinase [PI3K]) was the most differentially expressed gene having a 71.3-fold higher level of expression in the high producer cell line than in the low producer. The difference in the gene’s transcription levels was confirmed at the protein level by examining expression of p110δ. Conclusion Expression of p110δ correlated with specific productivity (q p ) across six different CHO cell lines, with a range of expression levels from 3 to 51 pg/cell/day, suggesting that p110δ may be a key factor in regulating productivity in recombinant cell lines. PMID:24533650

  14. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  15. Evaluation of recombinant Lig antigen-based ELISA for detection of leptospiral antibodies in canine sera.

    PubMed

    La-Ard, Anchalee; Amavisit, Patamaporn; Sukpuaram, Thavajchai; Wajjwalku, Worawidh

    2011-01-01

    Abstract. The objectives of this study were to clone the conserved region of leptospiral immunoglobulin-like protein (lig) gene and evaluate the utility of the recombinant Lig as an ELISA antigen for detection of leptospiral antibodies in canine sera. Leptospira kirschneri serovar Grippotyposa strain Moskva V was chosen to be a target for cloning the conserved region of Lig gene. This assay was evaluated with canine sera (n = 91) that were MAT-negative (< 1:100 dilution) and sera (n = 103) that were MAT-positive (> or = 1:100 dilution) using 24 serovars. The ELISA showed a relative sensitivity as compared to MAT of 84.5% whereas the specificity was 76.9%. This assay is simple and can be routinely prepared in large amounts. It was concluded that the GST.Lig recombinant protein-based ELISA could be used as a screening test for serodiagnosis of canine leptospirosis with also for confirmation of MAT-positive test results.

  16. Recombinant Carcinoembryonic Antigen as a Reporter Gene for Molecular Imaging

    PubMed Central

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Braun, Jonathan; Wu, Anna M.

    2009-01-01

    Purpose Reporter genes can provide a way of non-invasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. Methods To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human FcγRIIb receptor. The NA3-FcγRIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Results Flow cytometry identified Jurkat clones stably expressing NA3-FcγRIIb at low, medium, and high levels. High and medium NA3-FcγRIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA 124I-labeled scFv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4h. MicroPET image quantitation showed tumor activity of 1.8(±0.2), 15.2(±1.3) and 4.6(±1.2) %ID/g at 4h, 20h and 48h, respectively. Biodistribution at 48h, demonstrated tumor uptake of 4.8(±0.8) %ID/g. Conclusion The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. PMID:18719907

  17. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  18. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  19. CHO-gmt5, a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies.

    PubMed

    Haryadi, Ryan; Zhang, Peiqing; Chan, Kah Fai; Song, Zhiwei

    2013-01-01

    Engineered zinc-finger nucleases (ZFNs) are powerful tools for creating double-stranded-breaks (DSBs) in genomic DNA in a site-specific manner. These DSBs generated by ZFNs can be repaired by homology-directed repair or nonhomologous end joining, in which the latter can be exploited to generate insertion or deletion mutants. Based on published literature, we designed a pair of zinc-finger nucleases and inactivated the GDP-fucose transporter gene (Slc35c1) in a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter gene (Slc35a1). The resulting mutant cell line, CHO-gmt5, lacks functional GDP-fucose transporter and CMP-sialic acid transporter. As a result, these cells can only produce asialylated and afucosylated glycoproteins. It is now widely recognized that removal of the core fucose from the N-glycans attached to Asn(297) of human IgG1 significantly enhances its binding to its receptor, FcγRIIIa, and thereby dramatically improves antibody-dependent cellular cytotoxicity (ADCC). Recent reports showed that removal of sialic acid from IgG1 also enhances ADCC. Therefore, CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC. These cells show comparable growth rate to wild type CHO-K1 cells and uncompromised transfection efficiency, which make them desirable for use as a production line.

  20. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile.

    PubMed

    Shirvan, Ali Nazari; Aitken, Robert

    2016-01-01

    Clostridium difficile has emerged as an increasingly important nosocomial pathogen and the prime causative agent of antibiotic-associated diarrhoea and pseudomembranous colitis in humans. In addition to toxins A and B, immunological studies using antisera from patients infected with C. difficile have shown that a number of other bacterial factors contribute to the pathogenesis, including surface proteins, which are responsible for adhesion, motility and other interactions with the human host. In this study, various clostridial targets, including FliC, FliD and cell wall protein 66, were expressed and purified. Phage antibody display yielded a large panel of specific recombinant antibodies, which were expressed, purified and characterised. Reactions of the recombinant antibodies with their targets were detected by enzyme-linked immunosorbent assay; and Western blotting suggested that linear rather than conformational epitopes were recognised. Binding of the recombinant antibodies to surface-layer proteins and their components showed strain specificity, with good recognition of proteins from C. difficile 630. However, no reaction was observed for strain R20291-a representative of the 027 ribotype. Binding of the recombinant antibodies to C. difficile M120 extracts indicated that a component of a surface-layer protein of this strain might possess immunoglobulin-binding activities. The recombinant antibodies against FliC and FliD proteins were able to inhibit bacterial motility. Copyright © 2016. Published by Elsevier Editora Ltda.

  1. Recombinant Brucella abortus gene expressing immunogenic protein

    SciTech Connect

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  2. Human recombinant antimannan immunoglobulin G1 antibody confers resistance to hematogenously disseminated candidiasis in mice.

    PubMed

    Zhang, Mason X; Bohlman, M Charlotte; Itatani, Carol; Burton, Dennis R; Parren, Paul W H I; St Jeor, Stephen C; Kozel, Thomas R

    2006-01-01

    Mannan is a major cell wall component found in Candida species. Natural antimannan antibody is present in sera from most normal adults, but its role in host resistance to hematogenously disseminated candidiasis is unknown. The purpose of this study was to develop recombinant human antimannan antibody and to study its protective function. A phage Fab display combinatorial library containing Fab genes from bone marrow lymphocytes was screened with Candida albicans yeast cells and chemically purified mannan. One antimannan Fab, termed M1, was converted to a full-length immunoglobulin G1 antibody, M1g1, and M1g1 was produced in CHO cells. The M1g1 epitope was found in C. albicans serotypes A and B, Candida tropicalis, Candida guilliermondii, Candida glabrata, and Candida parapsilosis. Its expression was active at both 23 degrees C and 37 degrees C and uniform over the cell surface. BALB/c mice passively immunized with M1g1 were more resistant than control mice to a lethal hematogenous infection by C. albicans, as evidenced by extension of survival in an M1g1 dose-dependent manner (P, 0.08 to <0.001) and by reduction in number of infection foci and their size in the kidney. In vitro studies found that M1g1 promoted phagocytosis and phagocytic killing of C. albicans yeast cells by mouse peritoneal macrophages and was required for activation of the mouse complement cascade. Thus, human antimannan antibody may have a protective role in host resistance to systemic candidiasis.

  3. Construction of Recombinant Mouse IgG1 Antibody Directed Against Varicella Zoster Virus Immediate Early Protein 63

    PubMed Central

    MUELLER, NIKLAUS H.; GRAF, LAURIE L.; SHEARER, ANDREW J.; OWENS, GREGORY P.; GILDEN, DONALD H.; COHRS, RANDALL J.

    2010-01-01

    Five varicella zoster virus (VZV) genes are known to be transcribed in latently infected human ganglia. Transcripts from VZV gene 63, which encodes an immediate early (IE) protein, are the most prevalent and abundant. To obtain a reagent that might facilitate studies of the role of the IE63 protein in latency and reactivation, we selected an IE63-specific Fab fragment from a phage library and used it to prepare a recombinant mouse IgG1 antibody that detects IE63 and functions in Western blot, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assays. PMID:18294070

  4. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants.

    PubMed

    Hehle, Verena K; Paul, Matthew J; Roberts, Victoria A; van Dolleweerd, Craig J; Ma, Julian K-C

    2016-04-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformedNicotiana tabacum Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy's 13 antibody heavy and light chain mutant combinations were expressed transiently inN. tabacumand demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.-Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. © The Author(s).

  5. Generation of Recombinant Human IgG Monoclonal Antibodies from Immortalized Sorted B Cells.

    PubMed

    Nogales-Gadea, Gisela; Saxena, Abhishek; Hoffmann, Carolin; Hounjet, Judith; Coenen, Daniëlle; Molenaar, Peter; Losen, Mario; Martinez-Martinez, Pilar

    2015-06-05

    Finding new methods for generating human monoclonal antibodies is an active research field that is important for both basic and applied sciences, including the development of immunotherapeutics. However, the techniques to identify and produce such antibodies tend to be arduous and sometimes the heavy and light chain pair of the antibodies are dissociated. Here, we describe a relatively simple, straightforward protocol to produce human recombinant monoclonal antibodies from human peripheral blood mononuclear cells using immortalization with Epstein-Barr Virus (EBV) and Toll-like receptor 9 activation. With an adequate staining, B cells producing antibodies can be isolated for subsequent immortalization and clonal expansion. The antibody transcripts produced by the immortalized B cell clones can be amplified by PCR, sequenced as corresponding heavy and light chain pairs and cloned into immunoglobulin expression vectors. The antibodies obtained with this technique can be powerful tools to study relevant human immune responses, including autoimmunity, and create the basis for new therapeutics.

  6. [Construction of combinatorial immune library of single chain human antibodies to orthopoxviruses and selection from this library antibodies to recombinant protein prA30L of variola virus].

    PubMed

    Dubrovskaia, V V; Ulitin, A B; Laman, A G; Gileva, I P; Bormotov, N I; Il'ichev, A A; Brovko, F A; Shchelkunov, S N; Belanov, E F; Tikunova, N V

    2007-01-01

    A combinatorial immune library of human single-chain antibody fragments (scFv) was constructed on the base of genes encoding variable domains of heavy and light chains of immunoglobulins cloned from the lymphocytes of four vaccinia virus (VACV) vaccinated donors. The size of the library was 3 x 10(7) independent clones. After the library was enriched with the clones producing scFv against recombinant analogue of variola virus surface protein prA30L, a panel of unique antibodies specific to both prA30L and VACV was selected from the library. A plaque reduction neutralization test was performed for all selected antibodies and two antibodies were shown to be able to neutralize plaque formation of VACV in Vero E6 cells monolayer. Binding specificities of these antibodies were confirmed using ELISA and Western blot analysis. To determine the amino acid sequences of neutralizing antibodies their genes were sequenced.

  7. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries

    PubMed Central

    Tullila, Antti; Nevanen, Tarja K.

    2017-01-01

    Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library. PMID:28561803

  8. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries.

    PubMed

    Tullila, Antti; Nevanen, Tarja K

    2017-05-31

    Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library.

  9. Biotechnological applications of recombinant single-domain antibody fragments

    PubMed Central

    2011-01-01

    Background Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. Results The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. Conclusions Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments. PMID:21658216

  10. PVX-tolerant potato development using a nucleic acid-hydrolyzing recombinant antibody.

    PubMed

    Yang, J-G; Hwang, K-H; Kil, E-J; Park, J; Cho, S; Lee, Y-G; Auh, C-K; Rhee, Y; Lee, S

    2017-01-01

    3D8 scFv, a catalytic recombinant antibody developed in the MRL mouse, exhibits nucleic acid-hydrolyzing activity. Previous studies have demonstrated that tobacco plants harboring 3D8 scFv antibodies showed broad-spectrum resistance to infection by both DNA and RNA viruses. In this study, potatoes were transformed with the 3D8 scFv gene and screened by potato virus X (PVX) challenge. Starting with the T0 and T1 potato lines, PVX-tolerant T1 potatoes were identified in the field and characterized by ELISA and RT-PCR analysis. T2 potatoes were propagated for T3 generation and additional virus challenges in the field, and 44% of the 3D8 scFv T3 transgenic potatoes grown in GMO fields were found to be tolerant to PVX infection. Tubers from PVX-tolerant T3 lines were 60% bigger and 24% heavier, compared with tubers from PVX-susceptible transgenic lines and wild-type potatoes. Three-step virus challenge experiments and molecular characterization techniques were used for plants grown in growth chambers or fields to identify 3D8 scFv-transgenic, PVX-tolerant potatoes. These studies also revealed that the viral tolerance enabled by 3D8 scFv persisted during asexual propagation.

  11. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality.

    PubMed

    Kibat, Janek; Schirrmann, Thomas; Knape, Matthias J; Helmsing, Saskia; Meier, Doris; Hust, Michael; Schröder, Christoph; Bertinetti, Daniela; Winter, Gerhard; Pardes, Khalid; Funk, Mia; Vala, Andrea; Giese, Nathalia; Herberg, Friedrich W; Dübel, Stefan; Hoheisel, Jörg D

    2016-09-25

    Many diagnostic and therapeutic concepts require antibodies of high specificity. Recombinant binder libraries and related selection approaches allow the efficient isolation of antibodies against almost every target of interest. Nevertheless, it cannot be guaranteed that selected antibodies perform well and interact specifically enough with analytes unless an elaborate characterisation is performed. Here, we present an approach to shorten this process by combining the selection of suitable antibodies with the identification of informative target molecules by means of antibody microarrays, thereby reducing the effort of antibody characterisation by concentrating on relevant molecules. In a pilot scheme, a library of 456 single-chain variable fragment (scFv) binders to 134 antigens was used. They were arranged in a microarray format and incubated with the protein content of clinical tissue samples isolated from pancreatic ductal adenocarcinoma and healthy pancreas, as well as recurrent and non-recurrent bladder tumours. We observed significant variation in the expression of the E3 ubiquitin-protein ligase (CHFR) as well as the glutamate receptor interacting protein 2 (GRIP2), for example, always with more than one of the scFvs binding to these targets. Only the relevant antibodies were then characterised further on antigen microarrays and by surface plasmon resonance experiments so as to select the most specific and highest affinity antibodies. These binders were in turn used to confirm a microarray result by immunohistochemistry analysis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Generation of Recombinant Porcine Parvovirus Virus-Like Particles in Saccharomyces cerevisiae and Development of Virus-Specific Monoclonal Antibodies

    PubMed Central

    Tamošiūnas, Paulius Lukas; Petraitytė-Burneikienė, Rasa; Lasickienė, Rita; Sereika, Vilimas; Lelešius, Raimundas; Žvirblienė, Aurelija; Sasnauskas, Kęstutis

    2014-01-01

    Porcine parvovirus (PPV) is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs). Nine monoclonal antibodies (MAbs) against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance. PMID:25045718

  13. Derivation and characterization of cholesterol-independent non-GS NS0 cell lines for production of recombinant antibodies.

    PubMed

    Hartman, Taymar E; Sar, Nalin; Genereux, Kimberly; Barritt, Diana S; He, Yimin; Burky, John E; Wesson, Mark C; Tso, J Yun; Tsurushita, Naoya; Zhou, Weichang; Sauer, Paul W

    2007-02-01

    Presented is an antibody production platform based on the fed-batch culture of recombinant NS0-derived cell lines. NS0 host cells, obtained from the European Collection of Cell Cultures (ECACC, Salisbury, UK, Part No. 85110503), were first adapted to grow in a protein-free, cholesterol-free medium. The resulting host cell line was designated NS0-PFCF (protein-free, cholesterol-free). The five production cell lines presented here were generated using a common protocol consisting of transfection by electroporation and subcloning. The NS0-PFCF host cell line was transfected using a single expression vector containing the Escherichia coli xanthine-guanine phosphoribosyl transferase gene (gpt), and the antibody heavy and light chain genes driven by the CMV promoter. The five cell lines were chosen after one to three rounds of iterative subcloning, which resulted in a 19-64% increase in antibody productivity when four mother-daughter cell pairs were cultured in a fed-batch bioreactor process. The production cell lines were genetically characterized to determine antibody gene integrity, nucleotide sequences, copy number, and the number of insertion sites in the NS0 cell genome. Genetic characterization data indicate that each of the five production cell lines has a single stably integrated copy of the antibody expression vector, and that the antibody genes are correctly expressed. Stability of antibody production was evaluated for three of the five cell lines by comparing the early stage seed bank with the Working Cell Bank (WCB). Antibody productivity was shown to be stable in two of three cell lines evaluated, while one of the cell lines exhibited a 20% drop in productivity after passaging for approximately 4 weeks. These five NS0-derived production cell lines were successfully cultured to produce antibodies with acceptable product quality attributes in a standardized fed-batch bioreactor process, consistently achieving an average specific productivity of 20-60 pg

  14. Generation of polyclonal antibodies against recombinant human glucocerebrosidase produced in Escherichia coli.

    PubMed

    Novo, Juliana Branco; Oliveira, Maria Leonor Sarno; Magalhães, Geraldo Santana; Morganti, Ligia; Raw, Isaías; Ho, Paulo Lee

    2010-11-01

    Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher's disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.

  15. [Construction of a recombinant baculovirus transfer vector with two promoters expressing the anti-human CD28 chimeric antibody by using TP-PCR method].

    PubMed

    Zhu, Yan; Chen, Yong-Jing; Qiu, Yu-Hua; Zheng, Feng-Feng; Zhu, Jiang

    2005-09-01

    CD28, a cell surface glycoprotein, predominantly expressed on T cells, belongs to the Ig superfamily and provides critical co-stimulatory signals. The data which have published indicate that the monoclonal antibody against CD28 can decrease curative effects when it was applied in vivo for a long time. In order to avoid the human-anti-mouse action, anti-CD28 mAb must be humanized before it can be used in clinical study. Chimeric antibody, consisting of variable regions of mouse antibody and the constant regions of human IgG1, is often chosen by designers in generating humanized antibody. In this study, to prepare the anti-human CD28 chimeric antibody, the genes coding variable regions of anti-CD28 mAb and the constant regions of human IgG1 were cloned by PCR method. Then, the target genes were assembled by TP-PCR, a novel method developed for fusing genes without designing endonuclease sites at the both end of the target genes, and inserted into the baculovirus transfer vector pAcUW3 respectively. Thus, the recombinant baculovirus transfer vector with two strong promoters, ph and p10 was successfully constructed, which can express two different foreign genes at the same time. The recombinant vector was identified by the methods of restriction digesting, electrophoresis, PCR amplification and further verified by DNA sequence analysis. This work will contribute to expressing the chimeric CD28 antibody in insect cells.

  16. Saccharomyces cerevisiae recombinant Pfs25 adsorbed to alum elicits antibodies that block transmission of Plasmodium falciparum.

    PubMed Central

    Kaslow, D C; Bathurst, I C; Lensen, T; Ponnudurai, T; Barr, P J; Keister, D B

    1994-01-01

    Antibodies to Pfs25, a cysteine-rich 25-kDa protein present on the surface of Plasmodium falciparum zygotes, can completely block the transmission of malaria parasites when mixed with infectious blood and fed to mosquitoes through a membrane feeding apparatus. Recently, a polypeptide analog, Pfs25-B, secreted from recombinant Saccharomyces cerevisiae was found to react with conformation-dependent, transmission-blocking monoclonal antibodies and to elicit transmission-blocking antibodies in experimental animals when emulsified in either Freund's or muramyl tripeptide adjuvant. In this study, Pfs25-B adsorbed to alum induced transmission-blocking antibodies in both rodents and primates. Bacterially produced Pfs25, however, did not elicit complete transmission-blocking antibodies in rodents. Furthermore, unlike monoclonal antibodies to Pfs25, which block transmission only after ookinete development, antisera to Pfs25-B adsorbed to alum appeared to block the in vivo development of zygotes to ookinetes as well. PMID:7960139

  17. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry.

    PubMed

    Liu, Hongcheng; Manuilov, Anton V; Chumsae, Chris; Babineau, Michelle L; Tarcsa, Edit

    2011-07-01

    A method including protein A purification, limited Lys-C digestion, and mass spectrometry analysis was used in the study to quantify a recombinant monoclonal antibody in cynomolgus monkey serum. The same antibody that was isotopically labeled was used as an internal standard. Interferences from serum proteins were first significantly reduced by protein A purification and then by limited Lys-C digestion of protein A bound IgG, including both monkey and the recombinant IgG. Fab fragment of the recombinant human IgG was analyzed directly by LC-MS, while monkey IgG and the Fc fragment of the recombinant human IgG remained bound to protein A resin. Quantitation was achieved by measuring the peak intensity of the Fab from the recombinant human IgG and comparing it to that of the Fab from the stable isotope-labeled internal standard. The results were in good agreement with the values from ELISA. LC-MS can therefore be used as a complementary approach to ELISA to quantify recombinant monoclonal antibodies in serum for pharmacokinetics studies and it can also be used where specific reagents such as antigens are not readily available for ELISA.

  18. Rapid characterization of binding specificity and cross-reactivity of antibodies using recombinant human protein arrays.

    PubMed

    Kijanka, Gregor; Ipcho, Simon; Baars, Sabine; Chen, Hong; Hadley, Katie; Beveridge, Allan; Gould, Edith; Murphy, Derek

    2009-01-30

    Antibodies are routinely used as research tools, in diagnostic assays and increasingly as therapeutics. Ideally, these applications require antibodies with high sensitivity and specificity; however, many commercially available antibodies are limited in their use as they cross-react with non-related proteins. Here we describe a novel method to characterize antibody specificity. Six commercially available monoclonal and polyclonal antibodies were screened on high-density protein arrays comprising of ~10,000 recombinant human proteins (Imagenes). Two of the six antibodies examined; anti-pICln and anti-GAPDH, bound exclusively to their target antigen and showed no cross-reactivity with non-related proteins. However, four of the antibodies, anti-HSP90, anti-HSA, anti-bFGF and anti-Ro52, showed strong cross-reactivity with other proteins on the array. Antibody-antigen interactions were readily confirmed using Western immunoblotting. In addition, the redundant nature of the protein array used, enabled us to define the epitopic region within HSP90 of the anti-HSP90 antibody, and identify possible shared epitopes in cross-reacting proteins. In conclusion, high-density protein array technology is a fast and effective means for determining the specificity of antibodies and can be used to further improve the accuracy of antibody applications.

  19. A tool kit for rapid cloning and expression of recombinant antibodies.

    PubMed

    Dodev, Tihomir S; Karagiannis, Panagiotis; Gilbert, Amy E; Josephs, Debra H; Bowen, Holly; James, Louisa K; Bax, Heather J; Beavil, Rebecca; Pang, Marie O; Gould, Hannah J; Karagiannis, Sophia N; Beavil, Andrew J

    2014-07-30

    Over the last four decades, molecular cloning has evolved tremendously. Efficient products allowing assembly of multiple DNA fragments have become available. However, cost-effective tools for engineering antibodies of different specificities, isotypes and species are still needed for many research and clinical applications in academia. Here, we report a method for one-step assembly of antibody heavy- and light-chain DNAs into a single mammalian expression vector, starting from DNAs encoding the desired variable and constant regions, which allows antibodies of different isotypes and specificity to be rapidly generated. As a proof of principle we have cloned, expressed and characterized functional recombinant tumor-associated antigen-specific chimeric IgE/κ and IgG1/κ, as well as recombinant grass pollen allergen Phl p 7 specific fully human IgE/λ and IgG4/λ antibodies. This method utilizing the antibody expression vectors, available at Addgene, has many applications, including the potential to support simultaneous processing of antibody panels, to facilitate mechanistic studies of antigen-antibody interactions and to conduct early evaluations of antibody functions.

  20. A tool kit for rapid cloning and expression of recombinant antibodies

    PubMed Central

    Dodev, Tihomir S.; Karagiannis, Panagiotis; Gilbert, Amy E.; Josephs, Debra H.; Bowen, Holly; James, Louisa K.; Bax, Heather J.; Beavil, Rebecca; Pang, Marie O.; Gould, Hannah J.; Karagiannis, Sophia N.; Beavil, Andrew J.

    2014-01-01

    Over the last four decades, molecular cloning has evolved tremendously. Efficient products allowing assembly of multiple DNA fragments have become available. However, cost-effective tools for engineering antibodies of different specificities, isotypes and species are still needed for many research and clinical applications in academia. Here, we report a method for one-step assembly of antibody heavy- and light-chain DNAs into a single mammalian expression vector, starting from DNAs encoding the desired variable and constant regions, which allows antibodies of different isotypes and specificity to be rapidly generated. As a proof of principle we have cloned, expressed and characterized functional recombinant tumor-associated antigen-specific chimeric IgE/κ and IgG1/κ, as well as recombinant grass pollen allergen Phl p 7 specific fully human IgE/λ and IgG4/λ antibodies. This method utilizing the antibody expression vectors, available at Addgene, has many applications, including the potential to support simultaneous processing of antibody panels, to facilitate mechanistic studies of antigen-antibody interactions and to conduct early evaluations of antibody functions. PMID:25073855

  1. A High Through-put Platform for Recombinant Antibodies to Folded Proteins*

    PubMed Central

    Hornsby, Michael; Paduch, Marcin; Miersch, Shane; Sääf, Annika; Matsuguchi, Tet; Lee, Brian; Wypisniak, Karolina; Doak, Allison; King, Daniel; Usatyuk, Svitlana; Perry, Kimberly; Lu, Vince; Thomas, William; Luke, Judy; Goodman, Jay; Hoey, Robert J.; Lai, Darson; Griffin, Carly; Li, Zhijian; Vizeacoumar, Franco J.; Dong, Debbie; Campbell, Elliot; Anderson, Stephen; Zhong, Nan; Gräslund, Susanne; Koide, Shohei; Moffat, Jason; Sidhu, Sachdev; Kossiakoff, Anthony; Wells, James

    2015-01-01

    Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E. coli (∼5 mg/L), and ability to bind antigen in complex cell lysates. We evaluated a subset of Fabs generated to homologous SCAN domains for binding specificities. These Fragment antigen-binding domains were monospecific to their target SCAN antigen except in rare cases where they cross-reacted with a few highly related antigens. Remarkably, immunofluorescence experiments in six cell lines for 270 of the TF antigens, each having multiple antibodies, show that ∼70% stain predominantly in the cytosol and ∼20% stain in the nucleus which reinforces the dominant role that translocation plays in TF biology. These cloned antibody reagents are being made available to the academic community through our web site recombinant-antibodies.org to allow a more system-wide analysis of TF and chromatin biology. We believe these platforms, infrastructure, and automated approaches will facilitate the next generation of renewable antibody reagents to the human proteome in the coming decade. PMID:26290498

  2. A High Through-put Platform for Recombinant Antibodies to Folded Proteins.

    PubMed

    Hornsby, Michael; Paduch, Marcin; Miersch, Shane; Sääf, Annika; Matsuguchi, Tet; Lee, Brian; Wypisniak, Karolina; Doak, Allison; King, Daniel; Usatyuk, Svitlana; Perry, Kimberly; Lu, Vince; Thomas, William; Luke, Judy; Goodman, Jay; Hoey, Robert J; Lai, Darson; Griffin, Carly; Li, Zhijian; Vizeacoumar, Franco J; Dong, Debbie; Campbell, Elliot; Anderson, Stephen; Zhong, Nan; Gräslund, Susanne; Koide, Shohei; Moffat, Jason; Sidhu, Sachdev; Kossiakoff, Anthony; Wells, James

    2015-10-01

    Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E. coli (∼5 mg/L), and ability to bind antigen in complex cell lysates. We evaluated a subset of Fabs generated to homologous SCAN domains for binding specificities. These Fragment antigen-binding domains were monospecific to their target SCAN antigen except in rare cases where they cross-reacted with a few highly related antigens. Remarkably, immunofluorescence experiments in six cell lines for 270 of the TF antigens, each having multiple antibodies, show that ∼70% stain predominantly in the cytosol and ∼20% stain in the nucleus which reinforces the dominant role that translocation plays in TF biology. These cloned antibody reagents are being made available to the academic community through our web site recombinant-antibodies.org to allow a more system-wide analysis of TF and chromatin biology. We believe these platforms, infrastructure, and automated approaches will facilitate the next generation of renewable antibody reagents to the human proteome in the coming decade.

  3. [Enzymatic regulatory processes in gene recombination].

    PubMed

    Kovarskiĭ, V A; Profir, A V

    1988-01-01

    Recombination bistability in the system of genetic regulation in pro- and eucaryots is analysed on the basis of sigmoid kinetics of regulatory enzymes. It is shown that under an increase of either exogenic factors (temperature) or endogenic factors (concentration of molecules, which activate the enzymes) of crucial values, bistability solutions for recombination frequencies are possible. Histeresic character of the dependence of this value on the external parameters is pointed out. The role of fluctuation processes in distortion of the memory effects is discussed. On the basis of monostable solutions molecular account for the empiric Plau law is given for U-shaped dependence of recombination frequency on temperature.

  4. Prevalence and Gene Characteristics of Antibodies with Cofactor-induced HIV-1 Specificity*

    PubMed Central

    Lecerf, Maxime; Scheel, Tobias; Pashov, Anastas D.; Jarossay, Annaelle; Ohayon, Delphine; Planchais, Cyril; Mesnage, Stephane; Berek, Claudia; Kaveri, Srinivas V.; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D.

    2015-01-01

    The healthy immune repertoire contains a fraction of antibodies that bind to various biologically relevant cofactors, including heme. Interaction of heme with some antibodies results in induction of new antigen binding specificities and acquisition of binding polyreactivity. In vivo, extracellular heme is released as a result of hemolysis or tissue damage; hence the post-translational acquisition of novel antigen specificities might play an important role in the diversification of the immunoglobulin repertoire and host defense. Here, we demonstrate that seronegative immune repertoires contain antibodies that gain reactivity to HIV-1 gp120 upon exposure to heme. Furthermore, a panel of human recombinant antibodies was cloned from different B cell subpopulations, and the prevalence of antibodies with cofactor-induced specificity for gp120 was determined. Our data reveal that upon exposure to heme, ∼24% of antibodies acquired binding specificity for divergent strains of HIV-1 gp120. Sequence analyses reveal that heme-sensitive antibodies do not differ in their repertoire of variable region genes and in most of the molecular features of their antigen-binding sites from antibodies that do not change their antigen binding specificity. However, antibodies with cofactor-induced gp120 specificity possess significantly lower numbers of somatic mutations in their variable region genes. This study contributes to the understanding of the significance of cofactor-binding antibodies in immunoglobulin repertoires and of the influence that the tissue microenvironment might have in shaping adaptive immune responses. PMID:25564611

  5. Utility of recombinant Fragment C for assessment of anti-tetanus antibodies in plasma

    PubMed Central

    Ramakrishnan, Girija; Pedersen, Karl; Guenette, Denis; Sink, Joyce; Haque, Rashidul; Petri, William A.; Herbein, Joel; Gilchrist, Carol A.

    2016-01-01

    Anti-tetanus antibodies in biological samples are typically detected using an ELISA based on toxoided tetanus neurotoxin as antigen. We demonstrate that recombinantly produced Fragment C of the toxin heavy chain (rFragC) is an effective alternative antigen for assessment of tetanus- immune status in plasma samples. PMID:25749462

  6. A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays

    PubMed Central

    Min, Junseon; Song, Eun Kyung; Kim, Hansol; Kim, Kyoung Taek; Park, Tae Joo; Kang, Sebyung

    2016-01-01

    We construct a novel recombinant secondary antibody mimic, GST-ABD, which can bind to the Fc regions of target-bound primary antibodies and acquire multiple HRPs simultaneously. We produce it in tenth of mg quantities with a bacterial overexpression system and simple purification procedures, significantly reducing the manufacturing cost and time without the use of animals. GST-ABD is effectively conjugated with 3 HRPs per molecule on an average and selectively bind to the Fc region of primary antibodies derived from three different species (mouse, rabbit, and rat). HRP-conjugated GST-ABD (HRP-GST-ABD) is successfully used as an alternative to secondary antibodies to amplify target-specific signals in both ELISA and immunohistochemistry regardless of the target molecules and origin of primary antibodies used. GST-ABD also successfully serves as an anchoring adaptor on the surface of GSH-coated plates for immobilizing antigen-capturing antibodies in an orientation-controlled manner for sandwich-type indirect ELISA through simple molecular recognition without any complicated chemical modification. PMID:27063487

  7. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  8. Recombinant production of the antibody fragment D1.3 scFv with different Bacillus strains.

    PubMed

    Lakowitz, Antonia; Krull, Rainer; Biedendieck, Rebekka

    2017-01-23

    Different strains of the genus Bacillus are versatile candidates for the industrial production and secretion of heterologous proteins. They can be cultivated quite easily, show high growth rates and are usually non-pathogenic and free of endo- and exotoxins. They have the ability to secrete proteins with high efficiency into the growth medium, which allows cost-effective downstream purification processing. Some of the most interesting and challenging heterologous proteins are recombinant antibodies and antibody fragments. They are important and suitable tools in medical research for analytics, diagnostics and therapy. The smallest conventional antibody fragment with high-affinity binding to an antigen is the single-chain fragment variable (scFv). Here, different strains of the genus Bacillus were investigated using diverse cultivation systems for their suitability to produce and secret a recombinant scFv. Extracellular production of lysozyme-specific scFv D1.3 was realized by constructing a plasmid with a xylose-inducible promoter optimized for Bacillus megaterium and the D1.3scFv gene fused to the coding sequence of the LipA signal peptide from B. megaterium. Functional scFv was successfully secreted with B. megaterium MS941, Bacillus licheniformis MW3 and the three Bacillus subtilis strains 168, DB431 and WB800N differing in the number of produced proteases. Starting with shake flasks (150 mL), the bioprocess was scaled down to microtiter plates (1250 µL) as well as scaled up to laboratory-scale bioreactors (2 L). The highest extracellular concentration of D1.3 scFv (130 mg L(-1)) and highest space-time-yield (8 mg L(-1) h(-1)) were accomplished with B. subtilis WB800N, a strain deficient in eight proteases. These results were reproduced by the production and secretion of a recombinant penicillin G acylase (Pac). The genus Bacillus provides high potential microbial host systems for the secretion of challenging heterologous proteins like antibody

  9. Recombination events that activate, diversify, and delete immunoglobulin genes.

    PubMed

    Leder, P; Max, E E; Seidman, J G; Kwan, S P; Scharff, M; Nau, M; Norman, B

    1981-01-01

    Immunoglobulin kappa light-chain diversity arises, in large part, from an array of germ-line V-region genes that undergo somatic recombination with one of four active J-region segments. The diversity provided by this combinational system is increased by a recombination mechanism that allows variation of crossover points so as to generate additional diversity at a critical region of the light chain. The elaborate mechanism for generating diversity is accompanied not only by considerable waste, in terms of unused V and J regions in a given cell, but also by a range of aberrant recombinants that fail to produce active immunoglobulin genes.

  10. Accessing of recombinant human monoclonal antibodies from patient libraries by eukaryotic ribosome display.

    PubMed

    Tang, Jie; Wang, Lin; Markiv, Anatoliy; Jeffs, Simon A; Dreja, Hanna; McKnight, Áine; He, Mingyue; Kang, Angray S

    2012-01-01

    What are effective antibodies and when do they arise to prevent or delay disease onset during a natural infection or in the course of vaccination? To address these questions at a molecular level requires longitudinal studies, capturing and analyzing the antibody repertoire at regular intervals following exposure or sero-conversion. Such studies require a method that allows the rapid generation and evaluation of monoclonal antibodies from relatively small volumes of blood. Here we describe an approach for rapidly generating human monoclonal antibodies in vitro by directly screening single-chain antibody repertories derived from donor peripheral blood mononuclear cells using ribosome display. Two single-chain antibody libraries were constructed using RNA extracted from peripheral blood mononuclear cells of two HIV-1 long-term non-progressor donors (K530 and M325). Both libraries were subjected to a single round of in vitro ribosome display for enrichment of human monoclonal antibodies against recombinant gp120(K530), derived from virus isolated from donor K530. This study has validated a novel, in vitro method for the rapid generation of human monoclonal antibodies. An antibody library could be constructed from as little as 3 μg of total RNA, the equivalent of 3-5 mL of human blood.

  11. Optimized selection of anti-tumor recombinant antibodies from phage libraries on intact cells.

    PubMed

    Pavoni, Emiliano; Vaccaro, Paola; Anastasi, Anna Maria; Minenkova, Olga

    2014-02-01

    Generation of human recombinant antibody libraries displayed on the surface of the filamentous phage and selection of specific antibodies against desirable targets allows production of fully human antibodies usable for repeated administration in humans. Various lymphoid tissues from immunized donors, such as lymph nodes or peripheral blood lymphocytes from individuals with tumor or lymphocytes infiltrating tumor masses may serve as a source of specific anti-tumor antibody repertoire for generation of tumor-focused phage display libraries. In the case of lack of tumor-associated antigens in the purified form, high affinity anti-tumor antibodies can be isolated through library panning on whole cells expressing these antigens. However, affinity selection against cell surface specific antigens within highly heterogeneous population of molecules is not a very efficient process that often results in the selection of unspecific antibodies or antibodies against intracellular antigens that are generally useless for targeted immunotherapy. In this work, we developed a new cell-based antibody selection protocol that, by eliminating the contamination of dead cells from the cell suspension, dramatically improves the selection frequency of anti-tumor antibodies recognizing cell surface antigens.

  12. A replicating adenovirus capsid display recombinant elicits antibodies against Plasmodium falciparum sporozoites in Aotus nancymaae monkeys.

    PubMed

    Karen, Kasey A; Deal, Cailin; Adams, Robert J; Nielsen, Carolyn; Ward, Cameron; Espinosa, Diego A; Xie, Jane; Zavala, Fidel; Ketner, Gary

    2015-01-01

    Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization.

  13. Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco.

    PubMed

    Almquist, Kurt C; McLean, Michael D; Niu, Yongqing; Byrne, Greg; Olea-Popelka, Fernando C; Murrant, Coral; Barclay, Jack; Hall, J Christopher

    2006-03-15

    Botulinum neurotoxins (BoNTs) are the most poisonous substances known and are thus classified as high-risk threats for use as bioterror agents. To examine the potential of transgenic plants as bioreactors for the production of BoNT antidotes, we transformed tobacco with an optimized, synthetic gene encoding a botulinum neurotoxin A (BoNT/A) neutralizing single-chain Fv (scFv) recombinant antibody fragment. In vitro mouse muscle twitch assays demonstrated the functional utility of this scFv extracted from tobacco for neutralizing the paralytic effects of BoNT/A at neuromuscular junctions. Based on the efficiency of the scFv capture process and the dose required to antidote a human being, 1-2 ha of this tobacco could yield up to 4 kg of scFv, which would be enough to contribute to the manufacture of 1,000,000 therapeutic doses of a monoclonal antibody (mAb) cocktail capable of neutralizing the effects of BoNT poisoning. Transgenic plants could provide an inexpensive production platform for expression of multiple mAbs toward the creation of polyclonal therapies (i.e. pooled mAbs) as the next improvement in recombinant antibody therapy.

  14. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody

    PubMed Central

    Nowakowski, A.; Wang, C.; Powers, D. B.; Amersdorfer, P.; Smith, T. J.; Montgomery, V. A.; Sheridan, R.; Blake, R.; Smith, L. A.; Marks, J. D.

    2002-01-01

    The botulinum neurotoxins (BoNTs) cause the paralytic human disease botulism and are one of the highest-risk threat agents for bioterrorism. To generate a pharmaceutical to prevent or treat botulism, monoclonal antibodies (mAbs) were generated by phage display and evaluated for neutralization of BoNT serotype A (BoNT/A) in vivo. Although no single mAb significantly neutralized toxin, a combination of three mAbs (oligoclonal Ab) neutralized 450,000 50% lethal doses of BoNT/A, a potency 90 times greater than human hyperimmune globulin. The potency of oligoclonal Ab was primarily due to a large increase in functional Ab binding affinity. The results indicate that the potency of the polyclonal humoral immune response can be deconvoluted to a few mAbs binding nonoverlapping epitopes, providing a route to drugs for preventing and treating botulism and diseases caused by other pathogens and biologic threat agents. PMID:12177434

  15. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays.

    PubMed

    Gerdtsson, Anna S; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A K; Wingren, Christer

    2016-06-08

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts.

  16. Characterization of four monoclonal antibodies to recombinant human tartrate-resistant acid phosphatase.

    PubMed

    Miyazaki, Takashi; Matsunaga, Toshiyuki; Miyazaki, Shuichi; Hokari, Shigeru; Komoda, Tsugikazu

    2002-06-01

    In this study we produced a recombinant human Tartrate-resistant acid phosphatase (TRAP) enzyme from baculovirus-infected insect cells, generated four monoclonal antibodies (MAbs) 15A4, 13B9, 1C6 and 3G7, to the enzyme, and characterized these antibodies. In the human serum and lung specimen, all four antibodies appeared to have a high specificity for native TRAP enzyme in western blot analysis, immunohistochemical analysis and enzyme immunoassay. These antibodies may react with respective conformational determinants, therefore, they may be useful for detection of active TRAP. Only one of the antibodies, 15A4 also reacted with a denatured epitope, therefore, it is suitable for western blot analysis, enzyme immunoassay and for immunohistochemistry in the rat. Taken together, having characterized properties of four monoclonal antibodies against recombinant human TRAP enzyme may be useful for development of TRAP specific immunoassays in pathology and hematology of the bone. They will certainly be of use for the study of biosynthesis, regulation and function of the TRAP enzyme.

  17. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays

    PubMed Central

    Gerdtsson, Anna S.; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. PMID:27600082

  18. Real time detection of anthrax spores using highly specific anti-EA1 recombinant antibodies produced by competitive panning.

    PubMed

    Love, Tracey E; Redmond, Caroline; Mayers, Carl N

    2008-05-20

    We describe a targeted approach for the production of biological recognition elements capable of fast, specific detection of anthrax spores on biosensor surfaces. The aim was to produce single chain antibodies (scFvs) to EA1, a Bacillus anthracis S-layer protein that is also present, although not identical, in related to Bacillus species. The aim of the work was to produce antibodies that would detect B. anthracis EA1 protein and intact spores with a high degree of specificity, but would not detect other Bacillus species. Existing monoclonal antibodies were evaluated and found to recognise B. anthracis EA1 and S-layer proteins from other closely related Bacillus species. Recombinant anti-EA1 scFvs were isolated from B. anthracis immune library that contained antibody genes raised against B. anthracis spores and purified exosporium. Two approaches for scFv selection were used; standard (non-competitive) panning, and competitive panning. The non-competitive biopanning strategy isolated scFvs that recognised EA1 from B. anthracis, but also cross-reacted with other Bacillus species. In contrast, the competitive panning approach used S-layer proteins from other Bacillus species to generate scFvs that were highly specific to B. anthracis EA1 and demonstrated apparent nanomolar binding affinities. Specific, real time detection of B. anthracis spores was demonstrated with these scFvs using an evanescent wave biosensor, the Resonant Mirror. The approach described can be used to generate specific antibodies to any desired target where homologous proteins also exist in closely related species, and demonstrates clear advantages to using recombinant technology to produce biological recognition elements for detection of biological threat agents.

  19. In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses

    PubMed Central

    Tani, Hideki; Limn, Chang Kwang; Yap, Chan Choo; Onishi, Masayoshi; Nozaki, Masami; Nishimune, Yoshitake; Okahashi, Nobuo; Kitagawa, Yoshinori; Watanabe, Rie; Mochizuki, Rika; Moriishi, Kohji; Matsuura, Yoshiharu

    2003-01-01

    Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy. PMID:12941888

  20. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis.

    PubMed

    Pan, Yuchen; Sackmann, Eric K; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S; Herr, Amy E

    2016-12-23

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality - the binding affinity - is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization.

  1. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis

    PubMed Central

    Pan, Yuchen; Sackmann, Eric K.; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S.; Herr, Amy E.

    2016-01-01

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization. PMID:28008969

  2. Neutralizing antibodies respond to a bivalent dengue DNA vaccine or/and a recombinant bivalent antigen.

    PubMed

    Zhang, Zhi-Shan; Weng, Yu-Wei; Huang, Hai-Long; Zhang, Jian-Ming; Yan, Yan-Sheng

    2015-02-01

    There is currently no effective vaccine to prevent dengue infection, despite the existence of multiple studies on potential methods of immunization. The aim of the present study was to explore the effect of DNA and/or recombinant protein on levels of neutralizing antibodies. For this purpose, envelope domain IIIs of dengue serotypes 1 and 2 (DEN-1/2)were spliced by a linker (Gly‑Gly‑Ser‑Gly‑Ser)3 and cloned into the prokaryotic expression plasmid pET30a (+) and eukaryotic vector pcDNA3.1 (+). The chimeric bivalent protein was expressed in Escherichia coli, and one‑step purification by high‑performance liquid chromatography was conducted. Protein expression levels of the DNA plasmid were tested in BHK‑21 cells by indirect immunofluorescent assay. In order to explore a more effective immunization strategy and to develop neutralizing antibodies against the two serotypes, mice were inoculated with recombinant bivalent protein, the DNA vaccine, or the two given simultaneously. Presence of the specific antibodies was tested by ELISA and the presence of the neutralizing antibodies was determined by plaque reduction neutralization test. Results of the analysis indicated that the use of a combination of DNA and protein induced significantly higher titers of neutralizing antibodies against either DEN‑1 or DEN‑2 (1:64.0 and 1:76.1, respectively) compared with the DNA (1:24.7 and 1:26.9, DEN‑1 and DEN‑2, respectively) or the recombinant protein (1:34.9 and 1:45.3 in DEN‑1 and DEN‑2, respectively). The present study demonstrated that the combination of recombinant protein and DNA as an immunization strategy may be an effective method for the development of a vaccine to prevent dengue virus infection.

  3. Recombinant Jembrana disease virus proteins as antigens for the detection of antibody to bovine lentiviruses.

    PubMed

    Burkala, E J; Narayani, I; Hartaningsih, N; Kertayadnya, G; Berryman, D I; Wilcox, G E

    1998-09-01

    Jembrana disease virus (JDV) is a recently identified bovine lentivirus causing an acute severe disease syndrome in banteng cattle (Bos javanicus) and a milder disease syndrome in Bos taurus cattle in Indonesia. The virus is closely related genetically to the previously identified bovine lentivirus, bovine immunodeficiency virus (BIV). Recombinant clones were produced which contained the capsid (CA) and transmembrane (TM) subunits of the respective gag and env open reading frames of JDV. The proteins were expressed as fusions to the glutathione-s-transferase (GST) enzyme in Escherichia coli and purification was achieved using affinity chromatography via immobilized reduced glutathione. The soluble recombinant CA and TM antigens of JDV were reacted in western immunoblots with both serum antibodies from JDV-infected Bos javanicus cattle and Bos taurus cattle immunized with BIV. The recombinant CA protein of JDV reacted equally well with both the JDV and BIV antisera. The recombinant TM protein of JDV also reacted with antibody from the JDV infected cattle and with the BIV antisera. The results indicated conservation of immunogenic epitopes of the CA and TM proteins of the two viruses. The production of the recombinant proteins should enable the development of rapid and sensitive serological tests for JDV and BIV, and tools for further study of the immune response to JDV and the differential epidemiology of JDV infections in cattle.

  4. Quasispecies theory for horizontal gene transfer and recombination

    NASA Astrophysics Data System (ADS)

    Muñoz, Enrique; Park, Jeong-Man; Deem, Michael W.

    2008-12-01

    We introduce a generalization of the parallel, or Crow-Kimura, and Eigen models of molecular evolution to represent the exchange of genetic information between individuals in a population. We study the effect of different schemes of genetic recombination on the steady-state mean fitness and distribution of individuals in the population, through an analytic field theoretic mapping. We investigate both horizontal gene transfer from a population and recombination between pairs of individuals. Somewhat surprisingly, these nonlinear generalizations of quasispecies theory to modern biology are analytically solvable. For two-parent recombination, we find two selected phases, one of which is spectrally rigid. We present exact analytical formulas for the equilibrium mean fitness of the population, in terms of a maximum principle, which are generally applicable to any permutation invariant replication rate function. For smooth fitness landscapes, we show that when positive epistatic interactions are present, recombination or horizontal gene transfer introduces a mild load against selection. Conversely, if the fitness landscape exhibits negative epistasis, horizontal gene transfer or recombination introduces an advantage by enhancing selection towards the fittest genotypes. These results prove that the mutational deterministic hypothesis holds for quasispecies models. For the discontinuous single sharp peak fitness landscape, we show that horizontal gene transfer has no effect on the fitness, while recombination decreases the fitness, for both the parallel and the Eigen models. We present numerical and analytical results as well as phase diagrams for the different cases.

  5. Baculovirus expression of the glycoprotein gene of Lassa virus and characterization of the recombinant protein.

    PubMed

    Hummel, K B; Martin, M L; Auperin, D D

    1992-09-01

    A recombinant baculovirus was constructed that expresses the glycoprotein gene of Lassa virus (Josiah strain) under the transcriptional control of the polyhedrin promoter. The expressed protein (B-LSGPC) comigrated with the authentic viral glycoprotein as observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), was reactive with monoclonal antibodies (MAbs) in Western blots, and was glycosylated. Although the recombinant protein was not processed into the mature glycoproteins, G1 and G2, it demonstrated reactivity with all known epitopes as measured by indirect immunofluorescence (IFA), and it was immunogenic, eliciting antisera in rabbits that recognized whole virus in IFAs. Regarding future applications to diagnostic assays, the recombinant glycoprotein proved to be an effective substitute for Lassa virus-infected mammalian cells in IFAs and it was able to distinguish sera from several human cases of Lassa fever, against a panel of known negative sera of African origin, in an enzyme immunoassay (EIA).

  6. Recombination in the hemagglutinin gene of the 1918 "Spanish flu".

    PubMed

    Gibbs, M J; Armstrong, J S; Gibbs, A J

    2001-09-07

    When gene sequences from the influenza virus that caused the 1918 pandemic were first compared with those of related viruses, they yielded few clues about its origins and virulence. Our reanalysis indicates that the hemagglutinin gene, a key virulence determinant, originated by recombination. The "globular domain" of the 1918 hemagglutinin protein was encoded by a part of a gene derived from a swine-lineage influenza, whereas the "stalk" was encoded by parts derived from a human-lineage influenza. Phylogenetic analyses showed that this recombination, which probably changed the virulence of the virus, occurred at the start of, or immediately before, the pandemic and thus may have triggered it.

  7. Probing the soybean Bowman-Birk inhibitor using recombinant antibody fragments.

    PubMed

    Muzard, Julien; Fields, Conor; O'Mahony, James John; Lee, Gil U

    2012-06-20

    The nutritional and health benefits of soy protein have been extensively studied over recent decades. The Bowman-Birk inhibitor (BBI), derived from soybeans, is a double-headed inhibitor of chymotrypsin and trypsin with anticarcinogenic and anti-inflammatory properties, which have been demonstrated in vitro and in vivo. However, the lack of analytical and purification methodologies complicates its potential for further functional and clinical investigations. This paper reports the construction of anti-BBI antibody fragments based on the principle of protein design. Recombinant antibody (scFv and diabody) molecules targeting soybean BBI were produced and characterized in vitro (K(D)~1.10(-9) M), and the antibody-binding site (epitope) was identified as part of the trypsin-specific reactive loop. Finally, an extremely fast purification strategy for BBI from soybean extracts, based on superparamagnetic particles coated with antibody fragments, was developed. To the best of the authors' knowledge, this is the first report on the design and characterization of recombinant anti-BBI antibodies and their potential application in soybean processing.

  8. Technical Advances of the Recombinant Antibody Microarray Technology Platform for Clinical Immunoproteomics.

    PubMed

    Delfani, Payam; Dexlin Mellby, Linda; Nordström, Malin; Holmér, Andreas; Ohlsson, Mattias; Borrebaeck, Carl A K; Wingren, Christer

    2016-01-01

    In the quest for deciphering disease-associated biomarkers, high-performing tools for multiplexed protein expression profiling of crude clinical samples will be crucial. Affinity proteomics, mainly represented by antibody-based microarrays, have during recent years been established as a proteomic tool providing unique opportunities for parallelized protein expression profiling. But despite the progress, several main technical features and assay procedures remains to be (fully) resolved. Among these issues, the handling of protein microarray data, i.e. the biostatistics parts, is one of the key features to solve. In this study, we have therefore further optimized, validated, and standardized our in-house designed recombinant antibody microarray technology platform. To this end, we addressed the main remaining technical issues (e.g. antibody quality, array production, sample labelling, and selected assay conditions) and most importantly key biostatistics subjects (e.g. array data pre-processing and biomarker panel condensation). This represents one of the first antibody array studies in which these key biostatistics subjects have been studied in detail. Here, we thus present the next generation of the recombinant antibody microarray technology platform designed for clinical immunoproteomics.

  9. Technical Advances of the Recombinant Antibody Microarray Technology Platform for Clinical Immunoproteomics

    PubMed Central

    Delfani, Payam; Dexlin Mellby, Linda; Nordström, Malin; Holmér, Andreas; Ohlsson, Mattias; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    In the quest for deciphering disease-associated biomarkers, high-performing tools for multiplexed protein expression profiling of crude clinical samples will be crucial. Affinity proteomics, mainly represented by antibody-based microarrays, have during recent years been established as a proteomic tool providing unique opportunities for parallelized protein expression profiling. But despite the progress, several main technical features and assay procedures remains to be (fully) resolved. Among these issues, the handling of protein microarray data, i.e. the biostatistics parts, is one of the key features to solve. In this study, we have therefore further optimized, validated, and standardized our in-house designed recombinant antibody microarray technology platform. To this end, we addressed the main remaining technical issues (e.g. antibody quality, array production, sample labelling, and selected assay conditions) and most importantly key biostatistics subjects (e.g. array data pre-processing and biomarker panel condensation). This represents one of the first antibody array studies in which these key biostatistics subjects have been studied in detail. Here, we thus present the next generation of the recombinant antibody microarray technology platform designed for clinical immunoproteomics. PMID:27414037

  10. Therapeutic antibody gene transfer: an active approach to passive immunity.

    PubMed

    Bakker, Joost M; Bleeker, Wim K; Parren, Paul W H I

    2004-09-01

    Advances in gene transfer approaches are enabling the possibility of applying therapeutic antibodies using DNA. In particular gene transfer in combination with electroporation is promising and can result in generating in vivo antibody concentrations in the low therapeutic range. However, several important problems need to be dealt with before antibody gene transfer can become a valuable supplement to the current therapies. As antibody production following gene transfer is difficult to control, the danger of inducing autoimmune conditions or uncontrollable side effects occurs in cases in which autologous antigens are targeted. It is suggested that the most promising area of application therefore appears to be infectious disease in which heterologous antigens are targeted and concerns for long-term antibody exposure are minimal. Finally, genes encoding fully human antibodies will enhance long-term expression and decrease problems linked to immunogenicity.

  11. Plant Cell-Based Recombinant Antibody Manufacturing with a 200 L Orbitally Shaken Disposable Bioreactor.

    PubMed

    Raven, Nicole; Schillberg, Stefan; Rasche, Stefan

    2016-01-01

    Tobacco BY-2 cells are an attractive platform for the manufacture of a variety of biopharmaceutical proteins, including antibodies. Here, we describe the scaled-up cultivation of human IgG-secreting BY-2 cells in a 200 L orbitally shaken disposable bioreactor, resulting in cell growth and recombinant protein yields that are proportionately comparable with those obtained from cultivations in 500 mL shake flasks. Furthermore, we present an efficient downstream process for antibody recovery from the viscous spent culture medium using expanded bed adsorption (EBA) chromatography.

  12. A sensitive enzyme immunoassay for amygdalin in food extracts using a recombinant antibody.

    PubMed

    Cho, A-Yeon; Shin, Kum-Joo; Chung, Junho; Oh, Sangsuk

    2008-10-01

    Amygdalin (laterile) is a cyanogenic glycoside commonly found in the pits of many fruits and raw nuts. When amygdalin-containing seeds are crushed and moistened, free cyanide is formed. Pits and nuts containing unusually high levels of amygdalin can therefore cause cyanide poisoning, and detection of amygdalin in food extracts can be a life-saving measure. In this study, we generated recombinant antibodies against amygdalin from a phage display of a combinatorial rabbit/human chimeric antibody library and used it in a sensitive competition enzyme immunoassay system to detect amygdalin in extracts of pits and nuts. The detection limit was determined to be 1 x 10(-9) M.

  13. Genetic recombination is targeted towards gene promoter regions in dogs.

    PubMed

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  14. Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs

    PubMed Central

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J. Kim; Hayward, Jessica J.; Cohen, Paula E.; Greally, John M.; Wang, Jun; Bustamante, Carlos D.; Boyko, Adam R.

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred. PMID:24348265

  15. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism.

    PubMed

    Karim-Silva, Sabrina; Moura, Juliana de; Noiray, Magali; Minozzo, Joao Carlos; Aubrey, Nicolas; Alvarenga, Larissa M; Billiald, Philippe

    2016-08-01

    Loxosceles spider bites often lead to serious envenomings and no definite therapy has yet been established. In such a context, it is of interest to consider an antibody-based targeted therapy. We have previously prepared a murine monoclonal IgG (LiMab7) that binds to 32-35kDa components of Loxosceles intermedia venom and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a recombinant diabody. The protein was produced in bacteria and then it was functionally characterized. It proved to be efficient at neutralizing sphingomyelinase and hemolytic activities of the crude venom despite the slightly altered binding kinetic constants and the limited stability of the dimeric configuration. This is the first report of a specific recombinant antibody for a next-generation of Loxosceles antivenoms. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    PubMed

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  17. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

    PubMed Central

    Serra, Heïdi; Ziolkowski, Piotr A.; Yelina, Nataliya E.; Jackson, Matthew; Mézard, Christine; McVean, Gil; Henderson, Ian R.

    2016-01-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity. PMID:27415776

  18. Expression of recombination-activating genes and T cell receptor gene recombination in the human T cell leukemia cell line.

    PubMed

    Zou, Hong-yun; Ma, Li; Meng, Min-jie; Yao, Xin-sheng; Lin, Ying; Wu, Zhen-qiang; He, Xiao-wei; Wang, Ju-fang; Wang, Xiao-ning

    2007-03-05

    Recent studies have suggested that mature T cells can change their specificity through reexpression of recombination-activating genes (RAG) and RAG-mediated V(D)J recombination. This process is named receptor revision and has been observed in mature peripheral T cells from transgenic mice and human donors. However, whether thebreceptor revision in mature T cells is a random or orientated process remains poorly understood. Here we used the Jurkathuman T cell line, which represents a mature stage of T cell development, as a model to investigate the regulation of Tcell receptor (TCR) gene recombination. TCR Dbeta-Jbeta signal joint T cell receptor excision DNA circles (sjTRECs) were determined by nested and seminested PCR. Double-strand DNA breaks at recombination signal sequences (RSSs) in the TCRVbeta chain locus were detected by ligation-mediated-PCR. Further analysis of the complementarity-determining region 3 (CDR3) size of the TCRVbeta chain was examined by the TCR GeneScan technique. RAG1, RAG2, and three crucial components of the nonhomologous DNA end-joining (NHEJ) pathway were readily detected in Jurkat. Characteristics of junctional diversity of Dbeta2-Jbeta2 signal joints and ds RSS breaks associated with the Dbeta2 5' and Dbeta 2 3' sites were detected in DNA from Jurkat cells. CDR3 size and the gene sequences of the TCRVbeta chain did not change during cell proliferation. RAG1 and RAG2 and ongoing TCR gene recombination are coexpressed in Jurkat cells, but the ongoing recombination process may not play a role in modification of the TCR repertoire.However, the results suggest that Jurkat could be used as a model for studying the regulation of RAGs and V(D)J recombination and as a "special" model of the coexistence of TCR gene rearrangements and "negative" receptor revision.

  19. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  20. Silicone Oil Microdroplets Can Induce Antibody Responses Against Recombinant Murine Growth Hormone In Mice

    PubMed Central

    Chisholm, Carly Fleagle; Baker, Abby E.; Soucie, Kaitlin R.; Torres, Raul M.; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    Therapeutic protein products can cause adverse immune responses in patients. The presence of sub-visible particles is a potential contributing factor to the immunogenicity of parenterally-administered therapeutic protein formulations. Silicone oil microdroplets, which derive from silicone oil used as a lubricating coating on barrels of prefilled glass syringes, are often found in formulations. In this study, we investigated the potential of silicone oil microdroplets to act as adjuvants to induce an immune response in mice against a recombinant murine protein. Antibody responses in mice to subcutaneous injections of formulations of recombinant murine growth hormone (rmGH) that contained silicone oil microdroplets were measured and compared to responses to oil-free rmGH formulations. When rmGH formulations containing silicone oil microdroplets were administered once every other week, anti-rmGH antibodies were not detected. In contrast, mice exhibited a small IgG1 response against rmGH when silicone oil-containing rmGH formulations were administered daily, and an anti-rmGH IgM response was observed at later time points. Our findings showed that silicone oil microdroplets can act as an adjuvant to promote a break in immunological tolerance and induce antibody responses against a recombinant self-protein. PMID:27020987

  1. Silicone Oil Microdroplets Can Induce Antibody Responses Against Recombinant Murine Growth Hormone in Mice.

    PubMed

    Chisholm, Carly Fleagle; Baker, Abby E; Soucie, Kaitlin R; Torres, Raul M; Carpenter, John F; Randolph, Theodore W

    2016-05-01

    Therapeutic protein products can cause adverse immune responses in patients. The presence of subvisible particles is a potential contributing factor to the immunogenicity of parenterally administered therapeutic protein formulations. Silicone oil microdroplets, which derive from silicone oil used as a lubricating coating on barrels of prefilled glass syringes, are often found in formulations. In this study, we investigated the potential of silicone oil microdroplets to act as adjuvants to induce an immune response in mice against a recombinant murine protein. Antibody responses in mice to subcutaneous injections of formulations of recombinant murine growth hormone (rmGH) that contained silicone oil microdroplets were measured and compared to responses to oil-free rmGH formulations. When rmGH formulations containing silicone oil microdroplets were administered once every other week, anti-rmGH antibodies were not detected. In contrast, mice exhibited a small IgG1 response against rmGH when silicone oil-containing rmGH formulations were administered daily, and an anti-rmGH IgM response was observed at later time points. Our findings showed that silicone oil microdroplets can act as an adjuvant to promote a break in immunological tolerance and induce antibody responses against a recombinant self-protein. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Recombinant antibodies specific for the Plasmodium falciparum histidine-rich protein 2

    PubMed Central

    Ravaoarisoa, Elisabeth; Zamanka, Halima; Fusai, Thierry; Bellalou, Jacques; Bedouelle, Hugues; Mercereau-Puijalon, Odile

    2010-01-01

    Early diagnosis and appropriate treatment are key elements of malaria control programs in endemic areas. A major step forward in recent years has been the production and use of rapid diagnostic tests (RDTs) in settings where microscopy is impracticable. Many current RDTs target the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) released in the plasma of infected individuals. These RDTs have had an indisputably positive effect on malaria management, but still present several limitations, including the poor characterization of the commercial monoclonal antibodies (mAbs) used for PfHRP2 detection, variable sensitivity and specificity and high costs. RDT use is further limited by impaired stability caused by temperature fluctuations during transport and uncontrolled storage in field-based facilities. To circumvent such drawbacks, an alternative could be the development of well-characterized, stabilized recombinant antibodies, with high binding affinity and specificity. Here, we report the characterization of the cDNA sequences encoding the Fab fragment of F1110 and F1546, two novel anti-PfHRP2 mAbs. FabF1546 was produced in the Escherichia coli periplasm. Its properties of binding to the parasite and to a recombinant PfHRP-2 antigen were similar to those of the parental mAb. As the affinity and stability of recombinant antibodies can be improved by protein engineering, our results open a novel approach for the development of an improved RDT for malaria diagnosis. PMID:20581462

  3. Isolation and characterization of recombinant antigens from Leishmania aethiopica that react with human antibodies.

    PubMed Central

    Osland, A; Beyene, D; Ashenafi, S; Beetsma, A

    1992-01-01

    A genomic expression library of Leishmania aethiopica was constructed in lambda gt11 and screened with patient sera and sera from healthy people living in an area of endemicity. Forty-five recombinant clones were isolated and partly characterized. Clone-specific antibodies were prepared and used with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analysis to estimate the molecular masses of the parasite-derived antigens containing the reactive epitope(s). Antigens with apparent molecular masses of 90, 85, 63, 50, 41, 25 and 24 kDa as well as several antigens with lower molecular masses were detected. The clone-specific antibodies from patients with diffuse cutaneous leishmaniasis reacted with high-molecular-weight antigens (30,000 less than Mr less than 90,000), whereas antibodies from patients with localized cutaneous leishmaniasis recognized low-molecular-weight antigens (Mr less than 25,000). Nine different purified recombinant antigens were obtained from lysogens in Escherichia coli Y1089 by immunoaffinity chromatography on anti-beta-galactosidase columns and were subsequently tested with patient sera. It is suggested that some of these recombinant antigens might be used for immunodiagnostic purposes. Images PMID:1372294

  4. Intensive Pharmacological Immunosuppression Allows for Repetitive Liver Gene Transfer With Recombinant Adenovirus in Nonhuman Primates

    PubMed Central

    Fontanellas, Antonio; Hervás-Stubbs, Sandra; Mauleón, Itsaso; Dubrot, Juan; Mancheño, Uxua; Collantes, María; Sampedro, Ana; Unzu, Carmen; Alfaro, Carlos; Palazón, Asis; Smerdou, Cristian; Benito, Alberto; Prieto, Jesús; Peñuelas, Iván; Melero, Ignacio

    2010-01-01

    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector–mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell–mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector. PMID:20087317

  5. Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates.

    PubMed

    Fontanellas, Antonio; Hervás-Stubbs, Sandra; Mauleón, Itsaso; Dubrot, Juan; Mancheño, Uxua; Collantes, María; Sampedro, Ana; Unzu, Carmen; Alfaro, Carlos; Palazón, Asis; Smerdou, Cristian; Benito, Alberto; Prieto, Jesús; Peñuelas, Iván; Melero, Ignacio

    2010-04-01

    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector-mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell-mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector.

  6. Intravenous immunoglobulin products contain specific antibodies to recombinant human tau protein.

    PubMed

    Smith, Lynnae M; Coffey, Mary P; Klaver, Andrea C; Loeffler, David A

    2013-08-01

    Intravenous immunoglobulin (IVIG) products are prepared from plasma immunoglobulins from healthy donors. Pilot studies suggest that IVIG may stabilize cognitive functioning in patients with mild-to-moderate Alzheimer's disease. This study measured antibodies to recombinant human tau protein in the IVIG products Gammagard (Baxter), Gamunex (Talecris), and Flebogamma (Grifols). Anti-tau antibodies were measured by ELISA, subtracting IVIG's polyvalent binding from its binding to tau-coated wells to calculate specific anti-tau antibody levels. Because polyvalent binding of IVIG products may interfere with ELISA measurement of their specific antibody levels, the percentage of binding of each IVIG product to tau-coated wells that was specific for tau was also determined. Specific anti-tau antibodies were detected in all three IVIG products, with significant differences between these products (p<0.001) even when Flebogamma's anti-tau antibodies were doubled to account for its preparation as a 5% solution vs. 10% solutions for Gammagard and Gamunex (means: Gammagard, 3.1 μg/ml; Gamunex, 2.5 μg/ml; Flebogamma, 1.2 μg/ml). The percentages of each IVIG product's specific binding to tau-coated wells also varied between the various products (p<0.001) and between all pairs of IVIG products (means: Gammagard, 73.1%; Flebogamma, 54.5%; Gamunex, 37.4%; p<0.01 for all pairwise comparisons). These findings indicate that IVIG products contain specific anti-tau antibodies. The concentrations of these antibodies and the percentages of specific binding of IVIG to tau-coated wells vary between IVIG products. Further studies are indicated to determine if IVIG also contains antibodies to pathologic forms of tau.

  7. Human recombinant antibodies against Trypanosoma cruzi ribosomal P2β protein.

    PubMed

    Grippo, Vanina; Niborski, Leticia L; Gomez, Karina A; Levin, Mariano J

    2011-05-01

    Patients with chronic Chagas' Heart Disease (cChHD) develop an antibody response that is suspected to be involved in the cardiac pathogenesis. The response against Trypanosoma cruzi ribosomal P proteins is of particular interest, as these antibodies can cross-react with host cardiac receptors causing electrophysiological alterations. To better understand the humoral anti-P response we constructed a single-chain variable fragment library derived from a cChHD patient. The variable heavy and light regions were amplified from bone-marrow RNA and subcloned into the vector pComb3X. The phage library was subsequently panned against T. cruzi ribosomal P2β protein (TcP2β). We obtained 3 different human recombinant antibodies that specifically reacted with TcP2β in ELISA and Western blots. Two of them reacted with the C-terminal region of TcP2β, peptide R13, as the recombinant autoanti-P antibodies from Systemic Lupus Erythematosus (SLE) patients. Interestingly, the third one was specific for TcP2β but did not recognize R13, confirming the specific nature of the anti-P response in Chagas disease. Neither sequence nor VH usage similarities between Chagas and SLE anti-P autoantibodies were observed. Herein, the first human mAbs against TcP2β have been obtained and characterized showing that the humoral anti-P response is directed against the parasite and does not include an autoimmune component.

  8. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses.

    PubMed

    Liniger, Matthias; Zuniga, Armando; Tamin, Azaibi; Azzouz-Morin, Teldja N; Knuchel, Marlyse; Marty, Rene R; Wiegand, Marian; Weibel, Sara; Kelvin, David; Rota, Paul A; Naim, Hussein Y

    2008-04-16

    Live attenuated recombinant measles viruses (rMV) expressing a codon-optimised spike glycoprotein (S) or nucleocapsid protein (N) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) were generated (rMV-S and rMV-N). Both recombinant viruses stably expressed the corresponding SARS-CoV proteins, grew to similar end titres as the parental strain and induced high antibody titres against MV and the vectored SARS-CoV antigens (S and N) in transgenic mice susceptible to measles infection. The antibodies induced by rMV-S had a high neutralising effect on SARS-CoV as well as on MV. Moreover, significant N-specific cellular immune responses were measured by IFN-gamma ELISPOT assays. The pre-existence of anti-MV antibodies induced by the initial immunisation dose did not inhibit boost of anti-S and anti-N antibodies. Immunisations comprising a mixture of rMV-S and rMV-N induced immune responses similar in magnitude to that of vaccine components administered separately. These data support the suitability of MV as a bivalent candidate vaccine vector against MV and emerging viruses such as SARS-CoV.

  9. Antiepoetin antibody-related pure red cell aplasia: successful remission with cessation of recombinant erythropoietin alone.

    PubMed

    Katagiri, Daisuke; Shibata, Maki; Katsuki, Takashi; Masumoto, Shoichi; Katsuma, Ai; Minami, Eri; Hoshino, Taro; Inoue, Tsuyoshi; Tada, Manami; Hinoshita, Fumihiko

    2010-10-01

    An elderly patient with pure red cell aplasia (PRCA) with antierythropoietin (anti-EPO) antibodies is described. PRCA due to alloimmunization is a rare and severe complication of recombinant human erythropoietin (rHu-EPO) therapy. Most reported patients with PRCA were cured primarily by immunosuppressive drug therapy. The patient in this case, however, did not want to receive any immunosuppressive drugs. Therefore, rHu-EPO injection was simply discontinued, the severe anemia gradually improved, and the hemoglobin approached normal range. This case is very rare and significant in that there have been few such elderly patients with rHu-EPO-induced PRCA in whom PRCA remission was achieved, with decreasing antibody titers, after cessation of rHu-EPO alone. Further cases are needed to assess how PRCA should be treated in patients with anti-EPO antibodies.

  10. Multi-isotype antibody responses against the multimeric Salmonella Typhi recombinant hemolysin E antigen.

    PubMed

    Ong, Eugene Boon Beng; Ignatius, Joshua; Anthony, Amy Amilda; Aziah, Ismail; Ismail, Asma; Lim, Theam Soon

    2015-01-01

    The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.

  11. Effect of recombinant canine distemper vaccine on antibody titers in previously vaccinated dogs.

    PubMed

    Larson, L J; Hageny, T L; Haase, C J; Schultz, R D

    2006-01-01

    Two canine distemper virus (CDV) vaccine types are currently commercially available: modified-live virus (MLV) vaccines and a canarypox recombinant CDV (rCDV) vaccine (Recombitek, Merial). This study compared the ability of the rCDV vaccine and MLV vaccines to significantly enhance (boost) the antibody response of previously immunized adult and juvenile dogs. A significant (fourfold or greater) increase in titer occurred in significantly more dogs revaccinated with Recombitek C-4 or Recombitek C-6 than with the MLV-CDV vaccines. This study demonstrates that Recombitek, the only vaccine for dogs containing rCDV, is more likely to significantly boost the CDV antibody response in previously vaccinated dogs than are the MLV-CDV vaccines. Because rCDV vaccine can boost the antibody titer of dogs previously vaccinated with an MLV vaccine, it can and should be used when core vaccines are readministered.

  12. Expression of recombinant HA1 protein for specific detection of influenza A/H1N1/2009 antibodies in human serum.

    PubMed

    Luo, Lizhong; Nishi, Krista; Macleod, Erin; Sabara, Marta I; Coleman, Brenda L; Gubbay, Jonathan B; Li, Yan

    2013-01-01

    The hemagglutinin genes (HA1 subunit) from human and animal 2009 pandemic H1N1 virus isolates were expressed with a baculovirus vector. Recombinant HA1 (rHA1) protein-based ELISA was evaluated for detection of specific influenza A(H1N1)pdm09 antibodies in serum samples from vaccinated humans. It was found that rHA1 ELISA consistently differentiated between antibodies recognizing the seasonal influenza H1N1 and pdm09 viruses, with a concordance of 94% as compared to the hemagglutination inhibition test. This study suggests the utility of rHA1 ELISA in serosurveillance.

  13. Cancer genes: rare recombinants instead of activated oncogenes (a review).

    PubMed Central

    Duesberg, P H

    1987-01-01

    The 20 known transforming (onc) genes of retroviruses are defined by sequences that are transduced from cellular genes termed protooncogenes or cellular oncogenes. Based on these sequences, viral onc genes have been postulated to be transduced cellular cancer genes, and proto-onc genes have been postulated to be latent cancer genes that can be activated from within the cell to cause virus-negative tumors. The hypothesis is popular because it promises direct access to cellular cancer genes. However, the existence of latent cancer genes presents a paradox, since such genes are clearly undesirable. The hypothesis predicts that viral onc genes and proto-onc genes are isogenic; that expression of proto-onc genes induces tumors; that activated proto-onc genes transform diploid cells upon transfection, like viral onc genes; and that diploid tumors exist. As yet, none of these predictions is confirmed. Instead: Structural comparisons between viral onc genes, essential retroviral genes, and proto-onc genes show that all viral onc genes are indeed new genes, rather than transduced cellular cancer genes. They are recombinants put together from truncated viral and truncated proto-onc genes. Proto-onc genes are frequently expressed in normal cells. To date, not one activated proto-onc gene has been isolated that transforms diploid cells. Above all, no diploid tumors with activated proto-onc genes have been found. Moreover, the probability of spontaneous transformation in vivo is at least 10(9) times lower than predicted from the mechanisms thought to activate proto-onc genes. Therefore, the hypothesis that proto-onc genes are latent cellular oncogenes appears to be an overinterpretation of sequence homology to structural and functional homology with viral onc genes. Here it is proposed that only rare truncations and illegitimate recombinations that alter the germ-line configuration of cellular genes generate viral and possibly cellular cancer genes. The clonal chromosome

  14. Antikinetochore and antitopoisomerase I antibodies in systemic scleroderma: comparative study using immunoblotted recombinant antigens, immunofluorescence, and double immunodiffusion.

    PubMed

    Jarzabek-Chorzelska, M; Blaszczyk, M; Kolacinska-Strasz, Z; Chorzelski, T; Jabłońska, S; Maul, G G

    1990-01-01

    In 135 patients with systemic scleroderma, we compared three different methods to determine antinuclear autoantibody (ANA) specificity: indirect immunofluorescence, double immunodiffusion, and, employing recombinant antigens, immunoblotting using both marker autoantigens of this disease. A characteristic Scl-70 antibody pattern was found on HEp-2 cells in 83.8% of the patients, double immunodiffusion was positive for the Scl-70 antibodies in 81.9%, and immunoblot with the recombinant topoisomerase I (Topo I) was positive in 71% of the patients. For the centromere autoantibodies we found a high concordance between the anticentromere antibody (ACA) pattern on HEp-2 cells (27 patients positive) and the detection of recombinant kinetochore in immunoblotting (26 patients positive). The three testing techniques gave comparable results, except that the Topo I recombinant antigen used in immunoblotting reacted strongly with fewer than expected of the known Scl-70-positive sera. However, a method using recombinant antigens expressing all epitopes (rather than one of the epitopes of Topo I) will undoubtedly become the method of choice for detecting antibodies in systemic scleroderma. Using the immunoblotting technique with the recombinant antigens we detected in four patients antibodies against both Topo I and kinetochore. More severe symptoms of systemic scleroderma were found in patients who had both antibodies. The combined presence of both marker autoantibodies is therefore not as rare as previously reported and may predict severe disease.

  15. Gonadotropin-releasing hormone/human chorionic gonadotropin beta based recombinant antibodies and vaccines.

    PubMed

    Talwar, G P; Vyas, Hemant K; Purswani, Shilpi; Gupta, Jagdish C

    2009-12-01

    Gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) are unique targets for the control of fertility. Immunological approaches to neutralizing these hormones have additional utility in cancer treatment. Vaccines have been developed against both GnRH and hCG and these have undergone Phase I/II clinical trials documenting their safety, reversibility and efficacy. The heterospecies dimer hCG vaccine prevented pregnancy in women of proven fertility without impairment of ovulation or derangement of menstrual regularity and bleeding profiles. The protective threshold of antibody titers to achieve efficacy was determined in these first-ever trials. Recently, a recombinant vaccine against the beta subunit of hCG linked to the B subunit of heat labile enterotoxin has been made and expressed as a glycosylated conjugate in Pichia pastoris. Experiments indicate its ability to generate antibodies above the protective threshold in all immunized Balb/c mice. Ectopic expression of hCG/hCGbeta is observed in many advanced stage cancers of various origins. A chimeric high affinity and specific recombinant antibody against hCGbeta linked to curcumin kills hCGbeta expressing T lymphoblastic leukemia cells without any deleterious effect. Several synthetic and recombinant vaccines have been developed against GnRH. These reduce serum testosterone to castration levels causing atrophy of the prostate. Three Phase I/II clinical trials conducted in India and Austria have shown that these vaccines elicit non-surgical reduction of testosterone, a fall in prostate specific antigen and clinical improvement of prostate carcinoma patients. A multimer recombinant vaccine against GnRH has high efficacy for sterilization of pigs and other animals.

  16. Expression of HIV-1 broadly neutralizing antibodies mediated by recombinant adeno-associated virus 8 in vitro and in vivo.

    PubMed

    Yu, Yongjiao; Fu, Lu; Jiang, Xiaoyu; Guan, Shanshan; Kuai, Ziyu; Kong, Wei; Shi, Yuhua; Shan, Yaming

    2016-12-01

    Despite unremitting efforts since the discovery of human immunodeficiency virus type 1 (HIV-1), an effective vaccine has not been generated. Viral vector-mediated transfer for expression of HIV-1 broadly neutralizing antibodies (BnAbs) is an attractive strategy. In this study, a recombinant adeno-associated virus 8 (rAAV8) vector was used to encode full-length antibodies against HIV-1 in 293T cells and Balb/c mice after gene transfer. The 10E8 or NIH45-46 BnAb was expressed from a single open reading frame by linking the heavy and light chains with a furin cleavage and a 2A self-processing peptide (F2A). The results showed that the BnAbs could be expressed in the 293T cell culture medium. A single intramuscular injection of rAAV8 led to long-term expression of BnAbs in Balb/c mice. The expressed antibodies in the supernatant of 293T cells and in Balb/c mice showed neutralization effects against HIV-1 pseudoviruses. Combined immunization of rAAV8 expressing 10E8 and rAAV8 expressing NIH45-46 in Balb/c mice could increase these neutralization effects on strains of HIV-1 sensitive to 10E8 or NIH45-46 antibody compared with a single injection of rAAV8 expressing either antibody alone. Therefore, the combined immunization may be a potential vaccine approach against HIV-1.

  17. Efficient neutralizing activity of cocktailed recombinant human antibodies against hepatitis A virus infection in vitro and in vivo.

    PubMed

    Cao, Jingyuan; Meng, Shufang; Li, Chuan; Ji, Yan; Meng, Qingling; Zhang, Quanfu; Liu, Feng; Li, Jiandong; Bi, Shengli; Li, Dexin; Liang, Mifang

    2008-07-01

    Hepatitis A virus (HAV) is the major pathogen responsible for acute infectious hepatitis A, a disease that is prevalent worldwide. Although HAV immunization effectively prevents infection, primary immunizations must be administered at least 2 weeks prior to HAV exposure. In contrast, passive immunization with pooled human immunoglobulin (Ig) can provide immediate and rapid protection from HAV infection. Because the use of human sera-derived Igs carries the risk of contamination, we sought to develop recombinant HAV-neutralizing human antibodies. We prepared a combinatorial phage display library of recombinant human anti-HAV antibodies from RNA extracted from the blood lymphocytes of a convalescent hepatitis A patient. Two recombinant human IgG antibodies, HAIgG16 and HAIgG78, were screened from the antibody library by their ability to bind with high affinity to purified, inactivated HAV virions. These antibodies recognized different epitopes of the HAV virion capsid, and competed with both patient sera and well-characterized neutralizing mouse monoclonal antibodies. A cocktailed mixture of HAIgG16 and HAIgG78 at a 3:1 ratio was prepared to compare its combined biological activity with that conferred by each antibody individually. The cocktailed antibodies displayed a stronger neutralizing activity in vitro than that observed with either HAIgG16 and HAIgG78 alone. To determine the in vivo neutralizing abilities of these antibodies, rhesus monkeys were inoculated with cocktailed antibodies and challenged with HAV. Whereas control animals developed hepatitis A and seroconverted to the HAV antibody, animals receiving cocktailed antibodies were protected either from viral infection or from developing clinical hepatitis. These results demonstrate that recombinant human antibody preparations could be used to prevent or treat early-stage HAV infection.

  18. Recombinant Adeno-Associated Virus-Mediated Expression of Methamphetamine Antibody Attenuates Methamphetamine-Induced Hyperactivity in Mice

    PubMed Central

    Chen, Yun-Hsiang; Wu, Kuo-Jen; Wu, Kuang-Lun; Wu, Kun-Lieh; Tsai, Ho-Min; Chen, Mao-Liang; Chen, Yi-Wei; Hsieh, Wei; Lin, Chun-Ming; Wang, Yun

    2017-01-01

    Methamphetamine (Meth) is one of the most frequently abused drugs worldwide. Recent studies have indicated that antibodies with high affinity for Meth reduce its pharmacological effects. The purpose of this study was to develop a technique for virus-based passive immunization against Meth effects. We generated a recombinant adeno-associated virus serotype-8 vector (AAV-MethAb) carrying the gene for a Meth-specific monoclonal antibody (MethAb). Infection of 293 cells with AAV-MethAb resulted in the expression and secretion of antibodies which bind to Meth. The viral vector was then examined in adult ICR mice. Systemic administration of AAV-MethAb resulted in long-term expression of MethAb in the serum for up to 29 weeks. Serum collected from the animals receiving AAV-MethAb retained a high specificity for (+)-Meth. Animals were challenged with Meth five weeks after viral injection. Meth levels in the brain and serum were reduced while Meth-induced locomotor activity was significantly attenuated. In conclusion, AAV-MethAb administration effectively depletes Meth from brain and serum while reducing the behavioral response to Meth, and thus is a potential therapeutic approach for Meth abuse. PMID:28387350

  19. Recombinant Adeno-Associated Virus-Mediated Expression of Methamphetamine Antibody Attenuates Methamphetamine-Induced Hyperactivity in Mice.

    PubMed

    Chen, Yun-Hsiang; Wu, Kuo-Jen; Wu, Kuang-Lun; Wu, Kun-Lieh; Tsai, Ho-Min; Chen, Mao-Liang; Chen, Yi-Wei; Hsieh, Wei; Lin, Chun-Ming; Wang, Yun

    2017-04-07

    Methamphetamine (Meth) is one of the most frequently abused drugs worldwide. Recent studies have indicated that antibodies with high affinity for Meth reduce its pharmacological effects. The purpose of this study was to develop a technique for virus-based passive immunization against Meth effects. We generated a recombinant adeno-associated virus serotype-8 vector (AAV-MethAb) carrying the gene for a Meth-specific monoclonal antibody (MethAb). Infection of 293 cells with AAV-MethAb resulted in the expression and secretion of antibodies which bind to Meth. The viral vector was then examined in adult ICR mice. Systemic administration of AAV-MethAb resulted in long-term expression of MethAb in the serum for up to 29 weeks. Serum collected from the animals receiving AAV-MethAb retained a high specificity for (+)-Meth. Animals were challenged with Meth five weeks after viral injection. Meth levels in the brain and serum were reduced while Meth-induced locomotor activity was significantly attenuated. In conclusion, AAV-MethAb administration effectively depletes Meth from brain and serum while reducing the behavioral response to Meth, and thus is a potential therapeutic approach for Meth abuse.

  20. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  1. A recombinant vaccinia virus containing the papilloma E2 protein promotes tumor regression by stimulating macrophage antibody-dependent cytotoxicity.

    PubMed

    Rosales, C; Graham, V V; Rosas, G A; Merchant, H; Rosales, R

    2000-09-01

    Human papillomavirus infection is associated with cervical cancer. The E6 and E7 papillomavirus proteins are normally required for the maintenance of the malignant phenotype. Expression of these proteins in infected cells is negatively regulated by the binding of the papilloma E2 protein to the long terminal control region of the papilloma virus genome. The E2 protein can also promote cell arrest and apoptosis in HeLa cells. Therefore, it is clear that this protein has the potential of inhibiting the malignant phenotype. Because, anticancer vaccines based in vaccinia viruses have recently been shown to be an effective way to treat and to eradicate tumors, a recombinant vaccinia virus expressing the E2 gene of bovine papilloma virus (Modified Vaccinia Ankara, MVA E2) was created, to explore further the antitumor potential of the E2 protein. A series of rabbits, containing the VX2 transplantable papilloma carcinoma, were treated with MVA E2. An impressive tumor regression, up to a complete disappearance of tumor, was observed in most animals (80%). In contrast, very little or no regression was detected if the normal vaccinia virus was used. Lymphocytes isolated from MVA E2-treated rabbits did not show cytotoxic activity against tumor cells. However, in these animals a humoral immune response against tumor cells was observed. These antitumor antibodies were capable of activating macrophages to destroy tumor cells efficiently. These data indicate that injecting the MVA E2 recombinant vaccinia virus directly into the tumor results in a robust and long-lasting tumor regression. Data also suggest that antitumor antibodies are responsible, at least in part, for eliminating tumors by activating macrophage antibody-dependent cytotoxicity.

  2. Seeing better through a MIST: evaluation of monoclonal recombinant antibody fragments on microarrays.

    PubMed

    Angenendt, Philipp; Wilde, Jeannine; Kijanka, Gregor; Baars, Sabine; Cahill, Dolores J; Kreutzberger, Jürgen; Lehrach, Hans; Konthur, Zoltán; Glökler, Jörn

    2004-05-15

    Automation is the key approach for genomewide and proteomewide screening of function and interaction. Especially for proteomics, antibody microarrays are a useful tool for massive parallel profiling of complex samples. To meet the requirements of antibody microarrays and to obtain a great variety of antibodies, new technologies such as phage display have partly replaced the classical hybridoma method. While the selection process for phage-displayed antibody fragments itself has been automated, the bottleneck was shifted further downstream to the identification of monoclonal binders obtained from the selections. Here, we present a new approach to reduce time, material, and waste to extend automation beyond the selection process by application of conventional microarray machinery. We were able to express recombinant antibody fragments in a single inoculation and expression step and subjected them without purification directly to an automated high-throughput screening procedure based on the multiple spotting technique (MIST). While obtaining comparable sensitivities to enzyme-linked immunosorbent assays, we minimized manual interaction steps and streamlined the technique to be accessible within the automated selection procedure.

  3. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation.

    PubMed

    Hammerschmidt, Nikolaus; Tscheliessnig, Anne; Sommer, Ralf; Helk, Bernhard; Jungbauer, Alois

    2014-06-01

    Standard industry processes for recombinant antibody production employ protein A affinity chromatography in combination with other chromatography steps and ultra-/diafiltration. This study compares a generic antibody production process with a recently developed purification process based on a series of selective precipitation steps. The new process makes two of the usual three chromatographic steps obsolete and can be performed in a continuous fashion. Cost of Goods (CoGs) analyses were done for: (i) a generic chromatography-based antibody standard purification; (ii) the continuous precipitation-based purification process coupled to a continuous perfusion production system; and (iii) a hybrid process, coupling the continuous purification process to an upstream batch process. The results of this economic analysis show that the precipitation-based process offers cost reductions at all stages of the life cycle of a therapeutic antibody, (i.e. clinical phase I, II and III, as well as full commercial production). The savings in clinical phase production are largely attributed to the fact that expensive chromatographic resins are omitted. These economic analyses will help to determine the strategies that are best suited for small-scale production in parallel fashion, which is of importance for antibody production in non-privileged countries and for personalized medicine.

  4. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins

    PubMed Central

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A.; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S.; Greenblatt, Jack F.; Marcon, Edyta; Arrowsmith, Cheryl H.; Edwards, Aled M.; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols. PMID:26437229

  5. Detection, characterization and quantitation of coxsackievirus A16 using polyclonal antibodies against recombinant capsid subunit proteins.

    PubMed

    Liu, Qingwei; Ku, Zhiqiang; Cai, Yicun; Sun, Bing; Leng, Qibin; Huang, Zhong

    2011-04-01

    Coxsackievirus A16 (CVA16), together with enterovirus type 71 (EV71), is responsible for most cases of hand, foot and mouth disease (HFMD) worldwide. Recent findings suggest that the recombination between CVA16 and EV71, and co-circulation of these two viruses may have contributed to the increase of HFMD cases in China over the past few years. Thus, for CVA16, further understanding of its virology, epidemiology and development of diagnostic tests and vaccines are of importance. The present study aimed to develop reagents and protocols for the detection, characterization and quantitation of CVA16. Recombinant CVA16 capsid subunit proteins VP0, VP3 and truncated VP1, were produced in Escherichia coli and used to immunize guinea pigs to generate polyclonal antibodies. The resultant three antisera detected specifically CVA16 propagated in Vero cells by immunostaining, ELISA and Western blotting. The antisera was used to show that CVA16 capsids were composed of correctly processed VP0, VP1 and VP3 subunits, and were present in the form of efficiently assembled particles. A method for the quantitation of the yield of CVA16 in Vero cells was established based on a Western blotting protocol using the recombinant VP0 as a reference standard and anti-VP0 as the detection antibody. This study shows the development and validation of reagents and methods, for qualitative and quantitative determination of CVA16, which are essential for the development of vaccines.

  6. Reflectometric interference spectroscopy-based immunosensing using immobilized antibody via His-tagged recombinant protein A.

    PubMed

    Choi, Hyung Woo; Sakata, Yasuhiko; Ooya, Tooru; Takeuchi, Toshifumi

    2015-02-01

    The proposed approach demonstrated in this study provides an immunosensing system based on reflectometric interference spectroscopy (RIfS) in combination with an antibody immobilization method using histidine-tagged recombinant protein A. Carboxymethyldextran (CMD) was immobilized on a 3-aminopropyltriethoxysilane-treated a silicon nitride-coated silicon wafer, followed by chelating histidine-tagged recombinant protein A with copper (II) ions. The CMD-layer was found to be advantageous in terms of not only immobilization of histidine-tagged recombinant protein A-mediated an antibody against myoglobin (anti-Myo) but also prevention of non-specific binding of myoglobin. Myoglobin was repeatedly detected, and the apparent detection limit was 0.1 μg mL(-1). The proposed RIfS-based protein sensing system, in conjunction with the easy preparation of silicon-based inexpensive immunosensing chips, is expected to be applicable for label-free optical detection for other proteins in various fields. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

    PubMed

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S; Greenblatt, Jack F; Marcon, Edyta; Arrowsmith, Cheryl H; Edwards, Aled M; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols.

  8. Development and characterization of new monoclonal antibodies against human recombinant CA XII.

    PubMed

    Dekaminaviciute, Dovile; Lasickiene, Rita; Parkkila, Seppo; Jogaite, Vaida; Matuliene, Jurgita; Matulis, Daumantas; Zvirbliene, Aurelija

    2014-01-01

    Carbonic anhydrases (CAs) are enzymes that catalyse the reversible hydration of CO2 to bicarbonate. CA XII is considered a potential biomarker of tumor cells and a promising target for specific therapies. The aim of the current study was to develop new monoclonal antibodies (MAbs) against human recombinant CA XII and evaluate their diagnostic potential. An extracellular catalytic domain of human CA XII was expressed in E. coli and used as an immunogen. Seven stable hybridoma cell lines producing high-affinity IgG antibodies against human CA XII were generated. The majority of MAbs were highly specific to CA XII and did not cross-react with human recombinant CA I, CA II, CA VII, and CA XIII. In order to demonstrate the diagnostic value of the MAbs, they were employed for the immunohistochemistry analysis of CA XII expression in tissues. Two MAbs (15A4 and 4A6) demonstrated a strong and specific immunostaining of CA XII in human tissue specimens. Flow cytometry analysis of 5 human tumor cell lines with the MAb 15A4 revealed its immunoreactivity with cellular CA XII. In conclusion, the MAbs raised against recombinant catalytic domain of CA XII recognize cellular CA XII and represent a promising diagnostic tool for the immunodetection of CA XII-expressing cells.

  9. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes.

    PubMed Central

    Zieg, J; Maples, V F; Kushner, S R

    1978-01-01

    Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products. PMID:350859

  10. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure.

  11. A Pilot Study Comparing the Development of EIAV Env-Specific Antibodies Induced by DNA/Recombinant Vaccinia-Vectored Vaccines and an Attenuated Chinese EIAV Vaccine

    PubMed Central

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian

    2012-01-01

    Abstract Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAVFDDV. Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  12. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method

    PubMed Central

    Clargo, Alison M; Hudson, Ashley R; Ndlovu, Welcome; Wootton, Rebecca J; Cremin, Louise A; O'Dowd, Victoria L; Nowosad, Carla R; Starkie, Dale O; Shaw, Sophie P; Compson, Joanne E; White, Dominic P; MacKenzie, Brendon; Snowden, James R; Newnham, Laura E; Wright, Michael; Stephens, Paul E; Griffiths, Meryn R; Lawson, Alastair DG; Lightwood, Daniel J

    2014-01-01

    Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe. PMID:24423622

  13. Production and characterization of monoclonal antibody specific to recombinant dengue multi-epitope protein.

    PubMed

    Abhyankar, Ajay Vinayak; Bhargava, Rakesh; Jana, Asha Mukul; Sahni, Ajay Kumar; Rao, P V Lakshmana

    2008-06-01

    Monoclonal antibodies against novel dengue recombinant protein were produced following immunization of Balb/c mice with recombinant dengue multi-epitope protein (r-DMEP) expressed in Escherichia coli vector and purified in a single-step chromatography system. Antigenicity of r-DMEP was evaluated by dot enzyme immunoassay. Mice were immunized intraperitoneally with five doses each of 100 microg of this novel antigen at 1-week intervals and a final intravenous booster dose prior to the fusion. Hybridomas resulted from fusion of myeloma cells and splenocytes using PEG-1500 as an additive. Selection of the hybrids was done using HAT medium, and the hybrids thus selected were finally screened qualitatively and quantitatively by dot and plate immunoassays, respectively. Five antibody secretory hybrid clones exhibited specific reactivity against r-DMEP by dot-ELISA, whereas a lone clone was found to be cross-reactive with Japanese encephalitis virus (JEV). Monoclonal antibodies (MAbs) specific to r-DME protein recognized the envelope and non-structural epitopes by Western blot analysis. These MAbs were further checked for their diagnostic efficacy using dengue suspected clinical samples and found overall sensitivity and specificity for DRDE dipstick ELISA. MAb-based dipstick ELISA results were 85%, 75% and 85%, 90%, respectively.

  14. Unveiling a glycation hot spot in a recombinant humanized monoclonal antibody.

    PubMed

    Zhang, Boyan; Yang, Yi; Yuk, Inn; Pai, Roger; McKay, Patrick; Eigenbrot, Charles; Dennis, Mark; Katta, Viswanatham; Francissen, Kathleen Champion

    2008-04-01

    Biotechnological companies and regulatory agencies are pursuing the complete characterization of protein therapeutics in every detail as a means to mitigate risks of product quality related safety issues. During the characterization of a recombinant humanized monoclonal antibody (referred to as rhuMAb), electrospray mass spectrometric analysis suggested that the light chain was highly glycated. The glycated and unglycated materials, separated using boronate affinity chromatography, were fully characterized using tryptic peptide mapping and tandem mass spectrometry. Using an automatic SEQUEST search of the single protein database for this antibody and extensive manual investigations of the mass spectra of the matched peptides, multiple tentative glycation sites in the light and heavy chains were observed in the highly glycated (>53%) samples. A predominant glycation site was identified and confirmed to be lysine 49 on the light chain, by performing extensive sequence analysis on an isolated glycated peptide utilizing Edman degradation analysis and MALDI-TOF/TOF mass spectrometry. Sequence alignments of rhuMAb with 12 other recombinant monoclonal antibodies and computer modeling of the Fab part of rhuMAb suggest that the unusually high level of glycation of lysine residue 49, which is located adjacent to the second complementarity-determining region (CDR2) in the light chain, is due to a spatial proximity effect in catalyzing the Amadori rearrangement by aspartic acid residue 31 in the CDR1 on the light chain.

  15. Recombination and Gene Flux Caused by Gene Conversion and Crossing over in Inversion Heterokaryotypes

    PubMed Central

    Navarro, A.; Betran, E.; Barbadilla, A.; Ruiz, A.

    1997-01-01

    A theoretical analysis of the effects of inversions on recombination and gene flux between arrangements caused by gene conversion and crossing over was carried out. Two different mathematical models of recombination were used: the Poisson model (without interference) and the Counting model (with interference). The main results are as follows. (1) Recombination and gene flux are highly site-dependent both inside and outside the inverted regions. (2) Crossing over overwhelms gene conversion as a cause of gene flux in large inversions, while conversion becomes relatively significant in short inversions and in regions around the breakpoints. (3) Under the Counting model the recombination rate between two markers depends strongly on the position of the markers along the inverted segment. Two equally spaced markers in the central part of the inverted segment have less recombination than if they are in a more extreme position. (4) Inversions affect recombination rates in the uninverted regions of the chromosome. Recombination increases in the distal segment and decreases in the proximal segment. These results provide an explanation for a number of observations reported in the literature. Because inversions are ubiquitous in the evolutionary history of many Drosophila species, the effects of inversions on recombination are expected to influence DNA variation patterns. PMID:9178017

  16. Recombinant production and characterization of human anti-influenza virus monoclonal antibodies identified from hybridomas fused with human lymphocytes.

    PubMed

    Misaki, Ryo; Fukura, Natsuko; Kajiura, Hiroyuki; Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Sasaki, Tadahiro; Momota, Masatoshi; Ono, Ken-Ichiro; Ohashi, Takao; Ikuta, Kazuyoshi; Fujiyama, Kazuhito

    2016-09-01

    In previous studies, hybridomas producing human immunoglobulin G, the antibodies 5E4 and 5A7 against influenza A and B virus were established using a novel human lymphocyte fusion partner, SPYMEG. In the present study, we succeeded in achieving the recombinant production and secretion of 5E4 and 5A7 in Chinese hamster ovary cells. Our N-glycan analysis by intact-mass detection and liquid chromatography mass spectrometry showed that recombinant 5E4 and 5A7 have one N-glycan and the typical mammalian-type N-glycan structures similar to those in hybridomas. However, the glycan distribution was slightly different among these antibodies. The amount of high-mannose-type structures was under 10% of the total N-glycans of recombinant 5E4 and 5A7, compared to 20% of the 5E4 and 5A7 produced in hybridomas. The amount of galactosylated N-glycans was increased in recombinants. Approximately 80% of the N-glycans of all antibodies was fucosylated, and no sialylated N-glycan was found. Recombinant 5E4 and 5A7 neutralized pandemic influenza A virus specifically, and influenza B virus broadly, quite similar to the 5E4 and 5A7 produced in hybridomas, respectively. Here we demonstrated that recombinants of antibodies identified from hybridomas fused with SPYMEG have normal N-glycans and that their neutralizing activities bear comparison with those of the original antibodies.

  17. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis

    PubMed Central

    McNeilly, Celia L.; McMillan, David J.

    2014-01-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a human pathogen that colonizes the skin or throat, and causes a range of diseases from relatively benign pharyngitis to potentially fatal invasive diseases. While not as virulent as the close relative Streptococcus pyogenes the two share a number of virulence factors and are known to coexist in a human host. Both pre- and post-genomic studies have revealed that horizontal gene transfer (HGT) and recombination occurs between these two organisms and plays a major role in shaping the population structure of SDSE. This review summarizes our current knowledge of HGT and recombination in the evolution of SDSE. PMID:25566202

  18. Recombinant capripoxvirus expressing the hemagglutinin protein gene of rinderpest virus: protection of cattle against rinderpest and lumpy skin disease viruses.

    PubMed

    Romero, C H; Barrett, T; Chamberlain, R W; Kitching, R P; Fleming, M; Black, D N

    1994-10-01

    A cDNA clone containing the complete coding sequence of the hemagglutinin (H) protein gene of the RBOK vaccine strain of rinderpest virus, under the control of the vaccinia late promoter p11, was inserted by homologous recombination into the thymidine kinase gene of the KS-1 strain of capripoxvirus. The recombinant virus produced authentic H protein as judged by its electrophoretic mobility, transport to the cell surface of infected lamb testis cells, and reactivity with monoclonal antibodies specific for the H protein of rinderpest virus. The recombinant virus induced significant levels of rinderpest virus neutralizing antibodies in vaccinated cattle and protected them from clinical rinderpest after challenge with a lethal dose of a highly virulent heterologous strain of the virus. Protection was achieved using vaccine doses lower than those used with a similar recombinant expressing the fusion protein gene of rinderpest. The parental KS-1 virus is widely used as a vaccine against capripox viruses and so the rinderpest recombinant acts as a dual vaccine to protect cattle against both rinderpest and lumpy skin disease.

  19. [Targeted Delivery of Quantum Dots to HER2-Expressing Tumor Using Recombinant Antibodies].

    PubMed

    Balalaeva, I V; Zdobnova, T A; Sokolova, E A; Deyev, S M

    2015-01-01

    Targeted delivery of semiconductor quantum dots (Q Ds) to tumors overexpressing HER2 cancer marker has been. demonstrated on immunocompromised mice bearing human breast cancer xenografts. To obtain targeted QDs complexes we applied the approach based on the use of protein adaptor system, RNAase barnase and its inhibitor barstar. Specific binding to target cancer marker was achieved through bivalent fusion protein containing two fragments of4D5scFv recombinant antibody and a fragment of barnase. QDs were conjugated to barstar, and final assembly of targeted complexes was obtained through non-covalent specific interaction of barstar, attached to QD, and barnase, that is part of the recombinant targeting protein. The efficient delivery of QDs to HER2-expressing tumor demonstrates the possibilities and prospects of the approach for targeted delivery of nanoparticles to cancer cells in vivo as the way to improve the efficiency of diagnosis and promote development of therapies based on the use of nanoparticles.

  20. Trypanosome Surface Antigen Genes: Analysis Using Recombinant DNA.

    DTIC Science & Technology

    1984-06-15

    glycoprotein ( VSG ) genes. umerous syringe passaged and cyclically transmitted, frequently expressed VATs have been isolated, monoclonal antibodies prepared...to their VSGs , and he expressed VSG genes have been cloned. We have shown that many diverse tocks express VSG epitopes related to the early IsTst...epitopes. The VSG ene organization in the genome and sequence organization has been haracterized. We have confirmed sequence homology at the 3’ terminus

  1. Specific activities of poetam preparation (superlow-doses of antibodies to erythropoietin) and recombinant erythropoietin.

    PubMed

    Dygai, A M; Zhdanov, V V; Udut, E V; Simanina, E V; Gur'yantseva, L A; Khrichkova, T Yu; Epshtein, O I; Sergeeva, S A

    2006-09-01

    We compared the capacity of superlow-dose of antibodies to erythropoietin (Poetam) and recombinant erythropoietin (Recormon) to stimulate the recovery of adriamycin-suppressed erythropoiesis in mice. Both preparations exhibited high erythron activation capacity and considerably increased the content of erythrocytes and reticulocytes in the peripheral blood and content of erythrokaryocytes and erythroid precursors in the hemopoietic tissue of experimental animals. The effect of Recormon manifested immediately after injection, while the effect of Poetam was somewhat delayed, but more lasting (due to activation of host erythropoietin system).

  2. Isolation of isoproteins from monoclonal antibodies and recombinant proteins by chromatofocusing.

    PubMed

    Jungbauer, A; Tauer, C; Wenisch, E; Uhl, K; Brunner, J; Purtscher, M; Steindl, F; Buchacher, A

    1990-07-20

    A fast protein liquid chromatographic method for the preparative separation of the various isoproteins is described. Highly purified human monoclonal antibodies, recombinant human superoxide dismutase and human superoxide dismutase from erythrocytes were used as starting material. The isoproteins were separated by chromatofocusing on Mono P columns. A very narrow pH gradient was applied to achieve complete separation of the isoproteins. The prepurification steps and the pretreatment of the samples to achieve optimum resolution are described in detail. The method is also applicable to extremely basic monoclonal antibodies (pI = 9). The successful separation was checked by isoelectric focusing in immobilized pH gradients (Immobilines). The future of these methods is discussed, because for many different biochemical and biophysical investigations pure and homogeneous isoproteins are necessary.

  3. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment.

    PubMed

    Ladenson, Ruth C; Crimmins, Dan L; Landt, Yvonne; Ladenson, Jack H

    2006-07-01

    We have isolated and characterized a caffeine-specific, heavy-chain-only antibody fragment (V(HH)) from llama that is capable of being utilized to analyze caffeine in hot and cold beverages. Camelid species (llama and camel) were selected for immunization because of their potential to make heat-stable, heavy-chain-only antibodies. Llamas and camels were immunized with caffeine covalently linked to keyhole limpet hemocyanin, and recombinant antibody techniques were used to create phage displayed libraries of variable region fragments of the heavy-chain antibodies. Caffeine-specific V(HH) fragments were selected by their ability to bind to caffeine/bovine serum albumin (BSA) and confirmed by a positive reaction in a caffeine enzyme-linked immunosorbent assay (caffeine ELISA). One of these V(HH) fragments (VSA2) was expressed as a soluble protein and shown to recover its reactivity after exposure to temperatures up to 90 degrees C. In addition, VSA2 was able to bind caffeine at 70 degrees C. A competition caffeine ELISA was developed for the measurement of caffeine in beverages, and concentrations of caffeine obtained for coffee, Coca-Cola Classic, and Diet Coke agreed well with high performance liquid chromatography (HPLC) determination and literature values. VSA2 showed minimal cross reactivity with structurally related methylxanthines.

  4. Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins

    PubMed Central

    Blanchfield, Kristy; Kamal, Ram P; Tzeng, Wen-Pin; Music, Nedzad; Wilson, Jason R; Stevens, James; Lipatov, Aleksander S; Katz, Jacqueline M; York, Ian A

    2014-01-01

    Background Vaccines against avian influenza viruses often require high hemagglutinin (HA) doses or adjuvants to achieve serological titers associated with protection against disease. In particular, viruses of the H7 subtype frequently do not induce strong antibody responses following immunization. Objectives To evaluate whether poor immunogenicity of H7 viruses is an intrinsic property of the H7 hemagglutinin. Methods We compared the immunogenicity, in naïve mice, of purified recombinant HA from two H7 viruses [A/Netherlands/219/2003(H7N7) and A/New York/107/2003(H7N2)] to that of HA from human pandemic [A/California/07/2009(H1N1pdm09)] and seasonal [A/Perth16/2009(H3N2)] viruses. Results After two intramuscular injections with purified hemagglutinin, mice produced antibodies to all HAs, but the response to the human virus HAs was greater than to H7 HAs. The difference was relatively minor when measured by ELISA, greater when measured by hemagglutination inhibition assays, and more marked still by microneutralization assays. H7 HAs induced little or no neutralizing antibody response in mice at either dose tested. Antibodies induced by H7 were of significantly lower avidity than for H3 or H1N1pdm09. Conclusions We conclude that H7 HAs may be intrinsically less immunogenic than HA from seasonal human influenza viruses. PMID:25213778

  5. Preparation of Recombinant Viral Glycoproteins for Novel and Therapeutic Antibody Discovery

    PubMed Central

    Chan, Yee-Peng; Yan, Lianying; Feng, Yan-Ru; Broder, Christopher C.

    2010-01-01

    Neutralizing antibodies are a critical component in the protection or recovery from viral infections. In the absence of available vaccines or antiviral drugs for many important human viral pathogens, the identification and characterization of new human monoclonal antibodies (hmAbs) able to neutralize viruses offers the possibility for effective pre- and/or post-exposure therapeutic modalities. Such hmAbs may also help in our understanding of the virus entry process, the mechanisms of virus neutralization and in the eventual development of specific entry inhibitors, vaccines and research tools. The majority of the more recently developed antiviral hmAbs have come from the use of antibody phage-display technologies using both naïve and immune libraries. Many of these agents are also enveloped viruses possessing important neutralizing determinants within their membrane-anchored envelope glycoproteins and the use of recombinant, soluble versions of these viral glycoproteins is often critical in the isolation and development of antiviral hmAbs. This chapter will detail several methods that have been successfully employed to produce, purify and characterize soluble and secreted versions of several viral envelope glycoproteins which have been successfully used as antigens to capture and isolate human phage-displayed monoclonal antibodies. PMID:19252850

  6. [Recombinant expression of hantaan virus protein N with application of Western-blot in detecting anti-hantavirus antibody].

    PubMed

    Yao, P P; Xu, F; Sun, Y S; Yang, Z R; Zhang, Y; Yue, M; Zhu, H P

    2017-04-10

    Objective: S gene of hantavirus(HV) was expressed in insect cells by genetic engineering technology. The expression product of S gene was used as antigen to detect anti-HV specific antibody IgG in serum. Methods: Gene encoding NP of the strain HV-Z10 was amplified by PCR and then its eukaryotic expression system rBAC-Z10S-TN was constructed by using the routine genetic engineering method. SDS-PAGE was applied to measure the expression of rNP.Ion-exchange plus Ni-NTA-affinity chromatography was performed to purify the recombinant product. Indirect immuno-fluorescence assay (IFA) was used to determine the specific immune-reactivity of rNP. WB assay was established to detect the serum samples from 95 confirmed HFRS patients. Parameters related to the outcomes of detection were compared with the routine HV-IgG IFA method. Results: rBAC-Z10S-TN was able to express rNP with high efficiency. The purified rNP only showed a single protein fragment in the gel after SDS-PAGE. HV IgG could efficiently recognize rNP and hybridize with the recombinant protein. 97.67% of the serum samples from the HFRS patients were positive confirmed by WB. Conclusions: We successfully constructed a high efficient prokaryotic expression system of NP encoding gene from hantavirus strain HV-Z10. WB assay which was established in this study could be used as a new serological test for HFRS diagnosis, thanks to the simplicity, safety, sensitivity and specificity of this method.

  7. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine

    PubMed Central

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A.; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R.

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  8. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine.

    PubMed

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  9. Characterization of the glycosylation state of a recombinant monoclonal antibody using weak cation exchange chromatography and mass spectrometry.

    PubMed

    Gaza-Bulseco, Georgeen; Bulseco, Ashley; Chumsae, Chris; Liu, Hongcheng

    2008-02-01

    Recombinant monoclonal antibody heterogeneity is inherent due to various enzymatic and non-enzymatic modifications. In this study, a recombinant humanized monoclonal IgG1 antibody with different states of glycosylation on the conserved asparagine residue in the CH(2) domain was analyzed by weak cation exchange chromatography. Two major peaks were observed and were further characterized by enzymatic digestion and mass spectrometry. It was found that this recombinant monoclonal antibody contained three glycosylation states of antibody with zero, one or two glycosylated heavy chains. The peak that eluted earlier on the cation exchange column contained antibodies with two glycosylated heavy chains containing fucosylated biantennary complex oligosaccharides with zero, one or two terminal galactose residues. The peak that eluted later from the column contained antibodies with either zero, one or two glycosylated heavy chains. The oligosaccharide on the antibodies eluted in the later peak was composed of only two GlcNAc residues. These results indicate that conformational changes in large proteins such as monoclonal antibodies, caused by different types of neutral oligosaccharides as well as the absence of oligosaccharides, can be differentiated by cation exchange column chromatography.

  10. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes

    PubMed Central

    Hu, Jiazhi; Zhang, Yu; Zhao, Lijuan; Frock, Richard L.; Du, Zhou; Meyers, Robin M.; Meng, Fei-long; Schatz, David G.; Alt, Frederick W.

    2015-01-01

    SUMMARY RAG initiates antibody V(D)J recombination in developing lymphocytes by generating “on-target” DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically-inserted RSS pairs to identify huge numbers of RAG “off-target” breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage-site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation-dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them. PMID:26593423

  11. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes.

    PubMed

    Hu, Jiazhi; Zhang, Yu; Zhao, Lijuan; Frock, Richard L; Du, Zhou; Meyers, Robin M; Meng, Fei-long; Schatz, David G; Alt, Frederick W

    2015-11-05

    RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  13. Three faces of recombination activating gene 1 (RAG1) mutations.

    PubMed

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation.

  14. Generation and characterization of neutralizing human recombinant antibodies against antigenic site II of rabies virus glycoprotein.

    PubMed

    Sun, Lina; Chen, Zhe; Yu, Li; Wei, Jingshuang; Li, Chuan; Jin, Jing; Shen, Xinxin; Lv, Xinjun; Tang, Qing; Li, Dexin; Liang, Mifang

    2012-10-01

    The currently recommended treatment for individuals exposed to rabies virus (RV) is post-exposure prophylaxis (PEP) through the combined administration of rabies vaccine and rabies immune globulin (RIG). Human monoclonal antibodies (mAbs) that neutralize RV offer an opportunity to replace RIG for rabies PEP. Here, a combinatorial human Fab library was constructed using antibody genes derived from the blood of RV-vaccinated donors. Selections of this library against purified RV virions resulted in the identification of 11 unique Fab antibodies specific for RV glycoprotein. Of the Fab antibodies, five were converted to full human IgG1 format. The human IgG antibodies revealed high binding affinity and neutralizing activities against RV fixed strains through a rapid fluorescent focus inhibition test in vitro as well as the early stage protective function after exposure to RV infection in vivo. Furthermore, epitope mapping and binding competition analysis showed that all of obtained human neutralizing and protective antibodies were directed to the antigenic site II of RV glycoprotein. Our results provide not only important insight into the protective immune response to RV in humans, but also more candidates eligible for use in a mAb cocktail aimed at replacing RIG for rabies post-exposure prophylaxis.

  15. Detection of Q Fever Specific Antibodies Using Recombinant Antigen in ELISA with Peroxidase Based Signal Amplification

    PubMed Central

    Chen, Hua-Wei; Zhang, Zhiwen; Glennon, Erin; Ching, Wei-Mei

    2014-01-01

    Currently, the accepted method for Q fever serodiagnosis is indirect immunofluorescent antibody assay (IFA) using the whole cell antigen. In this study, we prepared the recombinant antigen of the 27-kDa outer membrane protein (Com1) which has been shown to be recognized by Q fever patient sera. The performance of recombinant Com1 was evaluated in ELISA by IFA confirmed serum samples. Due to the low titers of IgG and IgM in Q fever patients, the standard ELISA signals were further amplified by using biotinylated anti-human IgG or IgM plus streptavidin-HRP polymer. The modified ELISA can detect 88% (29 out of 33) of Q fever patient sera collected from Marines deployed to Iraq. Less than 5% (5 out of 156) of the sera from patients with other febrile diseases reacted with the Com1. These results suggest that the modified ELISA using Com1 may have the potential to improve the detection of Q fever specific antibodies. PMID:26904739

  16. Gene targeting in maize by somatic ectopic recombination.

    PubMed

    Ayar, Ayhan; Wehrkamp-Richter, Sophie; Laffaire, Jean-Baptiste; Le Goff, Samuel; Levy, Julien; Chaignon, Sandrine; Salmi, Hajer; Lepicard, Alexandra; Sallaud, Christophe; Gallego, Maria E; White, Charles I; Paul, Wyatt

    2013-04-01

    Low transformation efficiency and high background of non-targeted events are major constraints to gene targeting in plants. We demonstrate here applicability in maize of a system that reduces the constraint from transformation efficiency. The system requires regenerable transformants in which all of the following elements are stably integrated in the genome: (i) donor DNA with the gene of interest adjacent to sequence for repair of a defective selectable marker, (ii) sequence encoding a rare-cutting endonuclease such as I-SceI, (iii) a target locus (TL) comprising the defective selectable marker and I-SceI cleavage site. Typically, this requires additional markers for the integration of the donor and target sequences, which may be assembled through cross-pollination of separate transformants. Inducible expression of I-SceI then cleaves the TL and facilitates homologous recombination, which is assayed by selection for the repaired marker. We used bar and gfp markers to identify assembled transformants, a dexamethasone-inducible I-SceI::GR protein, and selection for recombination events that restored an intact nptII. Applying this strategy to callus permitted the selection of recombination into the TL at a frequency of 0.085% per extracted immature embryo (29% of recombinants). Our results also indicate that excision of the donor locus (DL) through the use of flanking I-SceI cleavage sites may be unnecessary, and a source of unwanted repair events at the DL. The system allows production, from each assembled transformant, of many cells that subsequently can be treated to induce gene targeting. This may facilitate gene targeting in plant species for which transformation efficiencies are otherwise limiting.

  17. Insulin antibodies in patients with type 2 diabetic receiving recombinant human insulin injection: A report of 12 cases.

    PubMed

    Hu, Xiaolei; Ma, Xiaowen; Wang, Xin; Zhao, Xiuli; Xu, Xuling; Gong, Hui; Chen, Fengling; Sun, Junjie

    2015-12-01

    We report 12 cases of patients with type 2 diabetic receiving recombinant human insulin injection, who had uncontrolled hyperglycemia or frequent episodes of hypoglycemia, high levels of serum insulin and positive insulin antibodies. The clinical characteristics and insulin antibodies pharmacokinetics parameters were analyzed. After administration of glucocorticoids, changing insulin formulations or discontinuing the insulin and switching to oral antidiabetic agents, the level of insulin antibodies decreased and the plasma glucose restored. Thus, we recommend to identify the presence of high insulin antibodies in patients with type 2 diabetes who experience unexplained high plasma glucose or frequent reoccurrence of hypoglycemia.

  18. TRAIL-R2-specific antibodies and recombinant TRAIL can synergise to kill cancer cells.

    PubMed

    Tuthill, M H; Montinaro, A; Zinngrebe, J; Prieske, K; Draber, P; Prieske, S; Newsom-Davis, T; von Karstedt, S; Graves, J; Walczak, H

    2015-04-16

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells while sparing normal tissues. Despite promising preclinical results, few patients responded to treatment with recombinant TRAIL (Apo2L/Dulanermin) or TRAIL-R2-specific antibodies, such as conatumumab (AMG655). It is unknown whether this was due to intrinsic TRAIL resistance within primary human cancers or insufficient agonistic activity of the TRAIL-receptor (TRAIL-R)-targeting drugs. Fcγ receptors (FcγR)-mediated crosslinking increases the cancer-cell-killing activity of TRAIL-R2-specific antibodies in vivo. We tested this phenomenon using FcγR-expressing immune cells from patients with ovarian cancer. However, even in the presence of high numbers of FcγR-expressing immune cells, as found in ovarian cancer ascites, AMG655-induced apoptosis was not enabled to any significant degree, indicating that this concept may not translate into clinical use. On the basis of these results, we next set out to determine whether AMG655 possibly interferes with apoptosis induction by endogenous TRAIL, which could be expressed by immune cells. To do so, we tested how AMG655 affected apoptosis induction by recombinant TRAIL. This, however, resulted in the surprising discovery of a striking synergy between AMG655 and non-tagged TRAIL (Apo2L/TRAIL) in killing cancer cells. This combination was as effective in killing cancer cells as highly active recombinant isoleucine-zipper-tagged TRAIL (iz-TRAIL). The increased killing efficiency was due to enhanced formation of the TRAIL death-inducing signalling complex, enabled by concomitant binding of Apo2L/TRAIL and AMG655 to TRAIL-R2. The synergy of AMG655 with Apo2L/TRAIL extended to primary ovarian cancer cells and was further enhanced by combination with the proteasome inhibitor bortezomib or a second mitochondrial-derived activator of caspases (SMAC) mimetic. Importantly, primary human hepatocytes were not killed by the AMG655-Apo2L

  19. New Genes Originated via Multiple Recombinational Pathways in the β-Globin Gene Family of Rodents

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2008-01-01

    Species differences in the size or membership composition of multigene families can be attributed to lineage-specific additions of new genes via duplication, losses of genes via deletion or inactivation, and the creation of chimeric genes via domain shuffling or gene fusion. In principle, it should be possible to infer the recombinational pathways responsible for each of these different types of genomic change by conducting detailed comparative analyses of genomic sequence data. Here, we report an attempt to unravel the complex evolutionary history of the β-globin gene family in a taxonomically diverse set of rodent species. The main objectives were: 1) to characterize the genomic structure of the β-globin gene cluster of rodents; 2) to assign orthologous and paralogous relationships among duplicate copies of β-like globin genes; and 3) to infer the specific recombinational pathways responsible for gene duplications, gene deletions, and the creation of chimeric fusion genes. Results of our comparative genomic analyses revealed that variation in gene family size among rodent species is mainly attributable to the differential gain and loss of later expressed β-globin genes via unequal crossing-over. However, two distinct recombinational mechanisms were implicated in the creation of chimeric fusion genes. In muroid rodents, a chimeric γ/ε fusion gene was created by unequal crossing-over between the embryonic ε- and γ-globin genes. Interestingly, this γ/ε fusion gene was generated in the same fashion as the “anti-Lepore” 5′-δ-(β/δ)-β-3′ duplication mutant in humans (the reciprocal exchange product of the pathological hemoglobin Lepore deletion mutant). By contrast, in the house mouse, Mus musculus, a chimeric β/δ fusion pseudogene was created by a β-globin → δ-globin gene conversion event. Although the γ/ε and β/δ fusion genes share a similar chimeric gene structure, they originated via completely different recombinational pathways. PMID

  20. Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins.

    PubMed

    Kavanagh, Owen; Elliott, Christopher T; Campbell, Katrina

    2015-04-01

    Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.

  1. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment

    PubMed Central

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  2. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    PubMed

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  3. Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice

    PubMed Central

    Papin, James F.; Verardi, Paulo H.; Jones, Leslie A.; Monge-Navarro, Francisco; Brault, Aaron C.; Holbrook, Michael R.; Worthy, Melissa N.; Freiberg, Alexander N.; Yilma, Tilahun D.

    2011-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF. PMID:21873194

  4. Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice.

    PubMed

    Papin, James F; Verardi, Paulo H; Jones, Leslie A; Monge-Navarro, Francisco; Brault, Aaron C; Holbrook, Michael R; Worthy, Melissa N; Freiberg, Alexander N; Yilma, Tilahun D

    2011-09-06

    Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF.

  5. Cloning of a hamster anti-mouse CD79B antibody sequences and identification of a new hamster immunoglobulin lambda constant IGLC gene region

    PubMed Central

    Haggart, Ryan; Perera, Jason; Huang, Haochu

    2013-01-01

    Anti-CD79 antibodies have been effective at targeting B cell lymphoma cells and depleting B cells in animal models. In order to engineer recombinant antibodies with additional effector functions in mice, we cloned and sequenced the full-length cDNAs of the heavy and light chain of a hamster anti-mouse CD79B antibody. Although hamster antibodies represent a unique source of monoclonal antibodies against mouse, rat, and human antigens, sequence information of hamster immunoglobulins (IG) is sparse. Here we report a new hamster (Cricetulus migratorius) IG lambda constant (IGLC) gene region that is most homologous to mouse IGLC2 and IGLC3. PMID:23558558

  6. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  7. Selection and characterization of single-chain recombinant antibodies against phosphoprotein of Newcastle disease virus.

    PubMed

    Li, Benqiang; Ye, Jiaxin; Lin, Yuan; Wang, Man; Jia, Rui; Zhu, Jianguo

    2014-09-01

    Phosphoprotein (P), involved in virus RNA replication and transcription, had become a new target for the research on treating Newcastle disease virus (NDV). Here we described the cloning and expression of phosphoprotein from NDV, and then screened the anti-P antibodies from the chicken single chain fragment variable (scFv) library, which were generated from chickens immunized with the ND vaccines. As a first step, the recombinant expression vector pET28a-P was successfully constructed. In a following step, two anti-P positive scFv clones from the scFv library were selected by indirect enzyme-linked immunosorbent assay (ELISA) method. The sequence analysis of two positive clones showed that there were more variation in complementary determine region (CDR) of VH and VL, and the CDR3 in VH exhibited a significant change in amino acid number and type. In another experiment, the purified scFv antibodies used in the assay was shown to be specific for NDV-P by western blot. The results indicated that the strategy we used in this experiment proved to be convenient way for screening scFv antibody, which paved a new way for the immunization diagnosis and the exploration of integrated control of NDV.

  8. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors.

    PubMed

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2014-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.

  9. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    PubMed

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  10. "Active" cancer immunotherapy by anti-Met antibody gene transfer.

    PubMed

    Vigna, Elisa; Pacchiana, Giovanni; Mazzone, Massimiliano; Chiriaco, Cristina; Fontani, Lara; Basilico, Cristina; Pennacchietti, Selma; Comoglio, Paolo M

    2008-11-15

    Gene therapy provides a still poorly explored opportunity to treat cancer by "active" immunotherapy as it enables the transfer of genes encoding antibodies directed against specific oncogenic proteins. By a bidirectional lentiviral vector, we transferred the cDNA encoding the heavy and light chains of a monoclonal anti-Met antibody (DN-30) to epithelial cancer cells. In vitro, the transduced cells synthesized and secreted correctly assembled antibodies with the expected high affinity, inducing down-regulation of the Met receptor and strong inhibition of the invasive growth response. The inhibitory activity resulted (a) from the interference of the antibody with the Met receptor intracellular processing ("cell autonomous activity," in cis) and (b) from the antibody-induced cleavage of Met expressed at the cell surface ("bystander effect," in trans). The monoclonal antibody gene transferred into live animals by systemic administration or by local intratumor delivery resulted in substantial inhibition of tumor growth. These data provide proof of concept both for targeting the Met receptor and for a gene transfer-based immunotherapy strategy.

  11. Clusters of point mutations are found exclusively around rearranged antibody variable genes.

    PubMed

    Gearhart, P J; Bogenhagen, D F

    1983-06-01

    We have examined the nucleotide sequences of a series of murine antibody genes derived from one kappa light chain gene in order to gain insight into the mechanism that specifically mutates variable genes. Six rearranged VK167 genes from hybridoma and myeloma cells were cloned from bacteriophage lambda libraries. The sequences were compared to the germ-line sequence of the VK167 gene, the JK genes, and the CK gene to identify sites of mutation. Four of six rearranged genes had extensive mutation which occurred exclusively in a 1-kilobase region of DNA centered around the V-J gene. No mutations were found at more distant sites in the intervening sequence or in the constant gene. The frequency of mutation was approximately 0.5% (32 mutations per 6,749 base pairs). Mutations were mostly due to nucleotide substitutions with no preference for transitions or transversions. The location of mutations around each gene indicates that they occur in clusters at random sites. The observation of mutations in the intervening sequence downstream from the JK5 gene rules out models for the mechanism of mutagenesis that rely solely on gene conversion or recombination. The distribution and high frequency of mutations are most easily explained by a mechanism of error-prone repair that occurs during several cycles of cell division.

  12. A Recombinant Bispecific CD20×CD95 Antibody With Superior Activity Against Normal and Malignant B-cells

    PubMed Central

    Nalivaiko, Kristina; Hofmann, Martin; Kober, Karina; Teichweyde, Nadine; Krammer, Peter H; Rammensee, Hans-Georg; Grosse-Hovest, Ludger; Jung, Gundram

    2016-01-01

    Monoclonal antibodies directed to the B-cell-specific CD20-antigen are successfully used for the treatment of lymphomas and autoimmune diseases. Here, we compare the anti-B-cell activity of three different antibodies directed to CD20: (i) a chimeric, monospecific antibody, (ii) an Fc-optimized variant thereof, and (iii) a bispecific CD20×CD95-antibody in a newly developed recombinant format, termed Fabsc. The bispecific antibody specifically triggers the CD95 death receptor on malignant, as well as activated, normal B-cells. We found that the capability of this antibody to suppress the growth of malignant B-cells in vitro and in vivo and to specifically deplete normal, activated B-cells from peripheral blood mononuclear cell (PBMC) cultures was superior to that of the Fc-optimized monospecific antibody. This antibody in turn was more effective than its nonoptimized variant. Moreover, the bispecific antibody was the only reagent capable of significantly suppressing antibody production in vitro. Our findings imply that the bispecific CD20×CD95-antibody might become a new, prototypical reagent for the treatment of B-cell-mediated autoimmune disease. PMID:26581163

  13. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  14. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  15. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  16. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  17. Recombinant GST-I-A beta 28-induced efficient serum antibody against A beta 42.

    PubMed

    Huang, Xuemei; Wang, Jiapeng; Cui, Lili; Zou, Xiaohuan; Zhang, Yingjiu

    2010-01-30

    Six recombinant proteins GST-A beta 28/A beta 35/A beta 42 and GST-I-A beta 28/A beta 35/A beta 42 [I was the abbreviation for an immunostimulatory sequence that consisted of pan HLA DR binding epitope (PADRE) and Tetanus toxin epitope (TT)] were used as antigens after expressed and purified to immunize mice. The strongest antibody response against A beta 42 (titer 1:3200) was achieved by GST-I-A beta 28 or GST-A beta 42 immunization. However, IgG1 and IgG2b were the predominant serum antibody isotype responses by GST-I-A beta 28 immunization, whereas did IgG2a by GST-A beta 42 immunization. Thus, it indicated that GST-I-A beta 28 immunization in a mouse mainly evoked a stronger Th-2-type response; whereas, GST-A beta 42 immunization mainly elicited a Th-1-type response. Moreover, GST-I-A beta 28-induced serum antibodies had higher specificity to A beta 42 monomers and oligomers than to protofibrils and mature fibrils and exhibited the highest efficacy to block A beta 42 aggregation or fibrillogenesis and to disassemble A beta 42 aggregates in vitro. GST-I-A beta 28-induced serum antibodies also showed the most protective and restorative effects on target cells in vitro by inhibiting or neutralizing A beta 42-induced cytotoxicity. All of the above results indicated that A beta 28 could be speculated to substitute for A beta 42 and would become a better antigenic peptide for Alzheimer's disease immunotherapy in the presence of additional Th-cell epitopes such as the immunostimulatory sequence (I) applied in this study. (c) 2009 Elsevier B.V. All rights reserved.

  18. Characterisation of antibody responses in pigs induced by recombinant oncosphere antigens from Taenia solium.

    PubMed

    Jayashi, César M; Gonzalez, Armando E; Castillo Neyra, Ricardo; Kyngdon, Craig T; Gauci, Charles G; Lightowlers, Marshall W

    2012-12-14

    Recombinant antigens cloned from the oncosphere life cycle stage of the cestode parasite Taenia solium (T. solium) have been proven to be effective as vaccines for protecting pigs against infections with T. solium. Previous studies have defined three different host protective oncosphere antigens, TSOL18, TSOL16 and TSOL45. In this study, we evaluated the potential for combining the antigens TSOL16 and TSOL18 as a practical vaccine. Firstly, in a laboratory trial, we compared the immunogenicity of the combined antigens (TSOL16/18) versus the immunogenicity of the antigens separately. Secondly, in a field trial, we tested the ability of the TSOL16/18 vaccine to induce detectable antibody responses in animals living under environmental stress and traditionally reared in areas where T. solium cysticercosis is endemic; and finally, we characterised the immune response of the study population. Pigs of 8-16 weeks of age were vaccinated with 200 μg each of TSOL16 and TSOL18, plus 5mg of Quil-A. Specific total IgG, IgG(1) and IgG(2) antibody responses induced by TSOL16 and TSOL18 were determined with ELISA. The immunogenicity of both antigens was retained in the combined TSOL16/18 vaccine. The combined vaccine TSOL16/18 induced detectable specific anti-TSOL18 antibody responses in 100% (113/113) and specific anti-TSOL16 in 99% (112/113) of the vaccinated animals measured at 2 weeks following the booster vaccination. From the two IgG antibody subtypes analysed we found there was stronger response to IgG(2).

  19. Immunosafety of recombinant human C1-inhibitor in hereditary angioedema: evaluation of ige antibodies.

    PubMed

    Hack, C Erik; Relan, Anurag; Baboeram, Aartie; Oortwijn, Beatrijs; Versteeg, Serge; van Ree, Ronald; Pijpstra, Rienk

    2013-04-01

    Recombinant human C1-inhibitor (rhC1INH) purified from milk of transgenic rabbits is used for the treatment of acute attacks in patients with hereditary angioedema (HAE) due to C1-inhibitor (C1INH) deficiency. The objective was to investigate the risk of rhC1INH inducing IgE antibodies or eliciting anaphylactic reactions. In subjects treated with rhC1INH, we retrospectively analysed the frequency and clinical relevance of pre-exposure and potentially newly induced IgE antibodies against rabbit and other animal allergens including cow's milk by the ImmunoCAP(®) Specific IgE blood test system. 130 HAE patients and 14 healthy subjects received 300 administrations of rhC1INH, 65 subjects (47.4 %) on one occasion; 72 (52.6 %) on at least two occasions (range 2-12; median 2). Five subjects had pre-existing anti-rabbit epithelium IgE; the subject with the highest levels and a previously undisclosed rabbit allergy developed an anaphylactic reaction upon first exposure to rhC1INH, whereas the other four subjects with lower pre-existing IgE levels (Class 1-3), did not. No other anaphylactic reactions were identified in any of the subjects exposed to rhC1INH. Analysis of post-exposure samples revealed that the risk of inducing new or boosting existing IgE responses to rabbit or cow's milk allergens was negligible. The propensity of rhC1INH to induce IgE antibodies following repeated administration of rhC1INH is low. Subjects with substantially elevated anti-rabbit epithelium IgE antibodies and/or clinical allergy to rabbits may have an increased risk for an allergic reaction. No other risk factors for allergic reactions to rhC1INH have been identified.

  20. Detection and Quantitation of Afucosylated N-Linked Oligosaccharides in Recombinant Monoclonal Antibodies Using Enzymatic Digestion and LC-MS

    NASA Astrophysics Data System (ADS)

    Du, Yi; May, Kimberly; Xu, Wei; Liu, Hongcheng

    2012-07-01

    The presence of N-linked oligosaccharides in the CH2 domain has a significant impact on the structure, stability, and biological functions of recombinant monoclonal antibodies. The impact is also highly dependent on the specific oligosaccharide structures. The absence of core-fucose has been demonstrated to result in increased binding affinity to Fcγ receptors and, thus, enhanced antibody-dependent cellular cytotoxicity (ADCC). Therefore, a method that can specifically determine the level of oligosaccharides without the core-fucose (afucosylation) is highly desired. In the current study, recombinant monoclonal antibodies and tryptic peptides from the antibodies were digested using endoglycosidases F2 and H, which cleaves the glycosidic bond between the two primary GlcNAc residues. As a result, various oligosaccharides of either complex type or high mannose type that are commonly observed for recombinant monoclonal antibodies are converted to either GlcNAc residue only or GlcNAc with the core-fucose. The level of GlcNAc represents the sum of all afucosylated oligosaccharides, whereas the level of GlcNAc with the core-fucose represents the sum of all fucosylated oligosaccharides. LC-MS analysis of the enzymatically digested antibodies after reduction provided a quick estimate of the levels of afucosylation. An accurate determination of the level of afucosylation was obtained by LC-MS analysis of glycopeptides after trypsin digestion.

  1. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    PubMed Central

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-01-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample. PMID:22869296

  2. Detection of antibodies to Hypoderma lineatum in cattle by Western blotting with recombinant hypodermin C antigen.

    PubMed

    Boldbaatar, D; Xuan, X; Kimbita, E; Huang, X; Igarashi, I; Byambaa, B; Battsetseg, B; Battur, B; Battsetseg, G; Batsukh, Z; Nagasawa, H; Fujisaki, K; Mikami, T

    2001-08-01

    The cDNA encoding the entire mature hypodermin C (HC) of Hypoderma lineatum was cloned and expressed in Escherichia coli as a glutathione S-transferase fusion protein using pGEX vector. The recombinant HC protein (rHC) was tested by Western blotting to detect antibodies to H. lineatum in cattle. Western blotting with rHC as antigen clearly differentiated between H. lineatum-infested cattle sera and normal cattle sera. Forty-six out of forty-eight serum samples from cattle in Central Mongolia were positive, whereas all 30 serum samples from cows in Hokkaido, Japan, were negative by Western blotting. The result of Western blotting was identical to that of a previously developed enzyme-linked immunosorbent assay. These data demonstrated that Western blotting, with rHC expressed in E. coli, might be a useful method for the diagnosis of cattle hypodermosis.

  3. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    NASA Astrophysics Data System (ADS)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  4. Induction of type I interferon secretion through recombinant Newcastle disease virus expressing measles virus hemagglutinin stimulates antibody secretion in the presence of maternal antibodies.

    PubMed

    Kim, Dhohyung; Martinez-Sobrido, Luis; Choi, Changsun; Petroff, Natasha; García-Sastre, Adolfo; Niewiesk, Stefan; Carsillo, Thomas

    2011-01-01

    Measles virus (MV) vaccine effectively protects seronegative individuals against infection. However, inhibition of vaccine-induced seroconversion by maternal antibodies after vaccination remains a problem, as it leaves infants susceptible to MV infection. In cotton rats, passive transfer of MV-specific IgG mimics maternal antibodies and inhibits vaccine-induced seroconversion. Here, we report that immunization in the presence of passively transferred IgG inhibits the secretion of neutralizing antibodies but not the generation of MV-specific B cells. This finding suggested that MV-specific B cells require an additional stimulus to mature into antibody-secreting plasma cells. In order to provide such a stimulus, we generated a recombinant Newcastle disease virus (NDV) expressing the MV hemagglutinin (NDV-H). In contrast to MV, NDV-H induced high levels of type I interferon in plasmacytoid dendritic cells and in lung tissue. In cotton rats immunized with NDV-H, neutralizing antibodies were also generated in the presence of passively transferred antibodies. In the latter case, however, the level and kinetics of antibody generation were reduced. In vitro, alpha interferon stimulated the activation of MV-specific B cells from MV-immune spleen cells. NDV infection (which induces alpha interferon) had the same effect, and stimulation could be abrogated by antibodies neutralizing alpha interferon, but not interleukin 6 (IL-6). In vivo, coapplication of UV-inactivated MV with NDV led to increased MV-specific antibody production in the presence and absence of passively transferred antibodies. These data indicate that MV-specific B cells are being generated after immunization in the presence of maternal antibodies and that the provision of alpha interferon as an additional signal leads to antibody secretion.

  5. Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries

    DOE PAGES

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew; ...

    2016-08-29

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 106 ) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used first tomore » enrich the library between 20- and 100- fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. Furthermore, this selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.« less

  6. Combining Yeast Display and Competitive FACS to Select Rare Hapten-Specific Clones from Recombinant Antibody Libraries.

    PubMed

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew; Ansari, G A Shakeel; Blake, Diane A

    2016-09-20

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10(6)) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used first to enrich the library between 20- and 100-fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. This selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.

  7. Combining Yeast Display and Competitive FACS to Select Rare Hapten-Specific Clones from Recombinant Antibody Libraries

    PubMed Central

    2016-01-01

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 106) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used first to enrich the library between 20- and 100-fold for clones that bound to phenanthrene–protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. This selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies. PMID:27571429

  8. A Recombinant Rabies Virus Encoding Two Copies of the Glycoprotein Gene Confers Protection in Dogs against a Virulent Challenge

    PubMed Central

    Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F.; Niu, Xuefeng; Guo, Xiaofeng

    2014-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines PMID:24498294

  9. Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses.

    PubMed

    Karaca, K; Sharma, J M; Winslow, B J; Junker, D E; Reddy, S; Cochran, M; McMillen, J

    1998-10-01

    We have constructed recombinant (r) fowl pox viruses (FPVs) coexpressing chicken type I interferon (IFN) and/or hemagglutinin-neuraminidase (HN) and fusion (F) proteins of Newcastle disease virus (NDV). We administered rFPVs and FPV into embryonated chicken eggs at 17 days of embryonation or in chickens after hatch. Administration of FPV or rFPVs did not influence hatchability and survival of hatched chicks. In ovo or after hatch vaccination of chickens with the recombinant viruses resulted in protection against challenge with virulent FPV and NDV. Chickens vaccinated with FPV or FPV-NDV recombinant had significantly lower body weight 2 weeks following vaccination. This loss in body weight was not detected in chickens receiving FPV-IFN and FPV-NDV-IFN recombinants. Chickens vaccinated with FPV coexpressing IFN and NDV genes produced less antibodies against NDV in comparison with chickens vaccinated with FPV expressing NDV genes.

  10. Antibodies induced with recombinant VP1 from human rhinovirus exhibit cross-neutralisation.

    PubMed

    Edlmayr, J; Niespodziana, K; Popow-Kraupp, T; Krzyzanek, V; Focke-Tejkl, M; Blaas, D; Grote, M; Valenta, R

    2011-01-01

    Human rhinoviruses (HRVs) are the major cause of the common cold and account for 30-50% of all acute respiratory illnesses. Although HRV infections are usually harmless and invade only the upper respiratory tract, several studies demonstrate that HRV is involved in the exacerbation of asthma. VP1 is one of the surface-exposed proteins of the viral capsid that is important for the binding of rhinoviruses to the corresponding receptors on human cells. Here we investigated its potential usefulness for vaccination against the common cold. We expressed VP1 proteins from two distantly related HRV strains, HRV89 and HRV14, in Escherichia coli. Mice and rabbits were immunised with the purified recombinant proteins. The induced antibodies reacted with natural VP1 and with whole virus particles as shown by immunoblotting and immunogold electron microscopy. They exhibited strong cross-neutralising activity for different HRV strains. Therefore, recombinant VP1 may be considered a candidate HRV vaccine to prevent HRV-induced asthma exacerbations.

  11. Pichia pastoris: a recombinant microfactory for antibodies and human membrane proteins.

    PubMed

    Gonçalves, A M; Pedro, A Q; Maia, C; Sousa, F; Queiroz, J A; Passarinha, L A

    2013-05-01

    During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.

  12. Construction of a recombinant-BCG containing the LMP2A and BZLF1 genes and its significance in the Epstein-Barr virus positive gastric carcinoma.

    PubMed

    Xue, Qing-Jie; Dai, Jun; Li, Xiu-Zhen; Zhu, Wei; Si, Chuan-Ping; Chen, Ting

    2014-10-01

    The signal peptide Ag85B of Bacillus Chalmette-Guerin (BCG) was used to construct a recombinant plasmid of BCG. The BCG-Ag85B gene and fused EBV LMP2A and BZLF1 genes were amplified and successively inserted into the Escherichia coli-BCG shuttle-vector pMV261. The recombinant plasmids were then amplified in E. coli DH5α and transformed into competent BCG. The expression of BZLF1 and LMP2A fusion proteins in recombinant-BCG (rBCG) was shown by Western blot. After the injection of recombinant-BCG into mice, antibodies against the fusion protein BZLF1 and LMP2A were measured by ELISA, and the cellular immune effects were determined by the lactate dehydrogenate (LDH) release assays. The results confirmed that the cloned genes of BCG-Ag85B and Z2A were correctly inserted into the vector pMV261. The recombinant plasmid pMVZ2A expressed Z2A in BCG effectively after transformation. The rBCG proteins were recognized by the BZLF1 (LMP2A) antibody. An ELISA demonstrated that rBCG could stimulate the generation of antibody against the fusion protein. The fusion gene was constructed successfully, and the rBCG induced humoral and cellular immune response in mice. © 2014 Wiley Periodicals, Inc.

  13. Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells.

    PubMed

    Meissner, P; Pick, H; Kulangara, A; Chatellard, P; Friedrich, K; Wurm, F M

    2001-10-20

    Transient gene expression (TGE) in mammalian cells at the reactor scale is becoming increasingly important for the rapid production of recombinant proteins. We improved a process for transient calcium phosphate-based transfection of HEK293-EBNA cells in a 1-3 L bioreactor volume. Cells were adapted to suspension culture using a commercially available medium (BioWhittaker, Walkersville, MD). Process parameters were optimized using a plasmid reporter vector encoding the enhanced green fluorescent protein (EGFP/CLONTECH, Palo Alto, CA, USA). Using GFP as a marker-protein, we observed by microscopic examination transfection efficiencies between 70-100%. Three different recombinant proteins were synthesized within a timeframe of 7 days from time of transfection to harvest. The first, a human recombinant IgG(1)-type antibody, was secreted into the supernatant of the cell culture and achieved a final concentration of >20 mg/L. An E. coli-derived DNA-binding protein remained intracellular, as expected, but accumulated to such a concentration that the lysate of cells, taken up into the entire culture volume, gave a concentration of 18 mg/L. The third protein, a transmembrane receptor, was expressed at 3-6 x 10(6) molecules/cell.

  14. Production of cocktail of polyclonal antibodies using bacterial expressed recombinant protein for multiple virus detection.

    PubMed

    Kapoor, Reetika; Mandal, Bikash; Paul, Prabir Kumar; Chigurupati, Phaneendra; Jain, Rakesh Kumar

    2014-02-01

    Cocktail of polyclonal antibodies (PAb) were produced that will help in multiple virus detection and overcome the limitation of individual virus purification, protein expression and purification as well as immunization in multiple rabbits. A dual fusion construct was developed using conserved coat protein (CP) sequences of Cucumber mosaic virus (CMV) and Papaya ringspot virus (PRSV) in an expression vector, pET-28a(+). The fusion protein (∼40kDa) was expressed in Escherichia coli and purified. Likewise, a triple fusion construct was developed by fusing conserved CP sequences of CMV and PRSV with conserved nucleocapsid protein (N) sequence of Groundnut bud necrosis virus (GBNV) and expressed as a fusion protein (∼50kDa) in pET-28a(+). PAb made separately to each of these three viruses recognized the double and triple fusion proteins in Western blot indicating retention of desired epitopes for binding with target antibodies. The fusion proteins (∼40kDa and ∼50kDa) were used to produce cocktail of PAb by immunizing rabbits, which simultaneously detected natural infection of CMV and PRSV or CMV, PRSV and GBNV in Cucurbitaceous, Solanaceous and other hosts in DAC-ELISA. This is the first report on production of a cocktail of PAb to recombinant fusion protein of two or three distinct viruses.

  15. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs)

    PubMed Central

    Maass, David R.; Sepulveda, Jorge; Pernthaner, Anton; Shoemaker, Charles B.

    2007-01-01

    Recombinant single domain antibody fragments (VHHs) that derive from the unusual camelid heavy chain only IgG class (HCAbs) have many favourable properties compared with single-chain antibodies prepared from conventional IgG. As a result, VHHs have become widely used as binding reagents and are beginning to show potential as therapeutic agents. To date, the source of VHH genetic material has been camels and llamas despite their large size and limited availability. Here we demonstrate that the smaller, more tractable and widely available alpaca is an excellent source of VHH coding DNA. Alpaca sera IgG consists of about 50% HCAbs, mostly of the short-hinge variety. Sequencing of DNA encoding more than 50 random VHH and hinge domains permitted the design of PCR primers that will amplify virtually all alpaca VHH coding DNAs for phage display library construction. Alpacas were immunized with ovine tumour necrosis factor α (TNFα) and a VHH phage display library was prepared from a lymph node that drains the sites of immunizations and successfully employed in the isolation of VHHs that bind and neutralize ovine TNFα. PMID:17568607

  16. Anti-erythropoietin and anti-thrombopoietin antibodies induced after administration of recombinant human erythropoietin.

    PubMed

    Shin, Sug Kyun; Pack, Seung Pil; Oh, Jin-Gyo; Kang, Nam Kyu; Chang, Myung Hee; Chung, Yoon Hee; Kim, Sung-Jo; Lee, Jong Wook; Heo, Tae-Hwe

    2011-12-01

    Recombinant human erythropoietin (rhEPO) has been successfully used for correcting renal anemia. However, recent studies have raised some concerns about the safety of rhEPO treatment due to its immunogenic side effect - pure red cell aplasia (PRCA). We now report a case of development of anti-EPO neutralizing antibodies (Abs) implicated in thrombocytopenia as well as erythrocytopenia. A 35-year-old man had a history of administering rhEPO (epoetin alfa, epoetin beta and darbepoetin alfa) for 2years to treat renal anemia. The hematological parameters were collected. Anti-EPO, anti-platelet, and anti-thrombopoietin (TPO) Ab assays were performed to test the presence of autoreactive Abs. After performing antibody assays due to severe resistance to rhEPO treatment, a high titer of anti-EPO neutralizing Abs was detected. However, unexpectedly, this patient also showed thrombocytopenia rather than PRCA. We investigated the cause of the marked thrombocytopenia and found anti-TPO Abs in patient serum. To our best knowledge, this is the first report of the development of anti-TPO Abs during rhEPO treatment for anemia.

  17. Specific antibodies to recombinant allergens of Aspergillus fumigatus in cystic fibrosis patients with ABPA

    PubMed Central

    Kurup, Viswanath P; Knutsen, Alan P; Moss, Richard B; Bansal, Naveen K

    2006-01-01

    Background Aspergillus fumigatus, a widely distributed fungus, has been implicated in causing life threatening infections as well as severe asthma and allergic diseases in man. Allergic affliction like allergic bronchopulmonary aspergillosis (ABPA) is a disabling lung disease frequently seen in patients with asthma and cystic fibrosis. Immunodiagnosis of the former is comparatively easier due to the availability of purified antigens and sensitive methods. However, this is not true with cystic fibrosis patients where the prevalence of ABPA is fairly high and the morbidity and mortality are significant. Methods In the present study, we have evaluated purified recombinant allergens from A. fumigatus, namely Asp f 1, f 2, f 3, f 4, and f 6 using ELISA and a semi-automated method (ImmunoCAP). We studied 17 patients each from cystic fibrosis with ABPA, and cystic fibrosis with asthma, 22 cystic fibrosis with no ABPA or asthma, and 11 age matched controls. Results The results indicate that no antigen, antibody or method is capable of differentiating cystic fibrosis (CF) with ABPA from other CF patients, although some allergens showed strong reaction or showed more prevalence among the patients studied. Conclusion When results of several allergens such as Asp f 1, f 2, f 3, f 4, and f 6 in their binding to IgA, IgG, and IgE antibodies were analyzed, a more strong discrimination of CF patients with ABPA was possible from the other groups studied. PMID:16859543

  18. Characterization of mechanical properties of transgenic tobacco roots expressing a recombinant monoclonal antibody against tooth decay.

    PubMed

    Hassan, Sally; Liu, Wei; Ma, Julian K-C; Thomas, Colin R; Keshavarz-Moore, Eli

    2008-07-01

    In this article, we describe a new approach that allows the determination of the magnitude of force required to break single plant roots. Roots were taken from transgenic tobacco plants, expressing a secreted monoclonal antibody. They were divided into four key developmental stages. A novel micromanipulation technique was used to pull to breakage, single tobacco roots in buffer in order to determine their breaking force. A characteristic uniform step-wise increase in the force up to a peak force for breakage was observed. The mean breaking force and mean work done were 101mN and 97microJ per root respectively. However, there was a significant increase in breaking force from the youngest white roots to the oldest, dark red-brown roots. We speculate that this was due to increasing lignin deposition with root stage of development (shown by phloroglucinol staining). No significant differences between fresh root mass, original root length, or mean root diameter for any of the root categories were found, displaying their uniformity, which would be beneficial for bioprocessing. In addition, no significant difference in antibody yield from the different root categories was found. These data show that it is possible to characterise the force requirements for root breakage and should assist in the optimisation of recombinant protein extraction from these roots. (c) 2008 Wiley Periodicals, Inc.

  19. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography.

    PubMed

    Hilbrig, Frank; Freitag, Ruth

    2012-01-01

    Hydroxyapatite and related stationary phases increasingly play a role in the downstream processing of high-value biological materials, such as recombinant proteins, therapeutic antibodies and pharmaceutical-grade plasmid DNA. Chromatographic hydroxyapatite is an inorganic, ceramic material identical in composition, if not in structure, to calcium phosphate found in human bones and teeth. The interaction of hydroxyapatite with biomacromolecules is complex and highly dynamic, which can make predicting performance difficult, but also allows the design of very selective isolation processes. This review discusses the currently commercially available chromatographic materials, different retention mechanisms supported by these materials and differential exploitation for the design of highly specific isolation procedures. The state of the art of antibody purification by hydroxy- and fluoroapatite is reviewed together with tested routines for method development and implementation. Finally, the isolation of plasmid DNA is discussed, since the purification of DNA therapeutics at a sufficiently large scale is an emerging need in bioprocess development and perhaps the area in bioseparation where apatite chromatography can make its most important contribution to date.

  20. A Novel Recombinant Peste des Petits Ruminants-Canine Adenovirus Vaccine Elicits Long-Lasting Neutralizing Antibody Response against PPR in Goats

    PubMed Central

    Qin, Junling; Huang, Hainan; Ruan, Yang; Hou, Xiaoqiang; Yang, Songtao; Wang, Chengyu; Huang, Geng; Wang, Tiecheng; Feng, Na; Gao, Yuwei; Xia, Xianzhu

    2012-01-01

    Background Peste des petits ruminants (PPR) is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV) expresses a hemagglutinin (H) glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. Methodology/Principal Findings To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2) expressing the H gene of PPRV (China/Tibet strain) was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. Conclusions/Significance This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach). PMID:22623990

  1. A novel recombinant Peste des petits ruminants-canine adenovirus vaccine elicits long-lasting neutralizing antibody response against PPR in goats.

    PubMed

    Qin, Junling; Huang, Hainan; Ruan, Yang; Hou, Xiaoqiang; Yang, Songtao; Wang, Chengyu; Huang, Geng; Wang, Tiecheng; Feng, Na; Gao, Yuwei; Xia, Xianzhu

    2012-01-01

    Peste des petits ruminants (PPR) is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV) expresses a hemagglutinin (H) glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2) expressing the H gene of PPRV (China/Tibet strain) was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach).

  2. Detection of Leptospira-Specific Antibodies Using a Recombinant Antigen-Based Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Chen, Hua-Wei; Zhang, Zhiwen; Halsey, Eric S.; Guevara, Carolina; Canal, Enrique; Hall, Eric; Maves, Ryan; Tilley, Drake H.; Kochel, Tadeusz J.; Ching, Wei-Mei

    2013-01-01

    We produced three highly purified recombinant antigens rLipL32, rLipL41, and rLigA-Rep (leptospiral immunoglobulin-like A repeat region) for the detection of Leptospira-specific antibodies in an enzyme-linked immunosorbent assay (ELISA). The performance of these recombinant antigens was evaluated using 121 human sera. Among them, 63 sera were microscopic agglutination test (MAT)-confirmed positive sera from febrile patients in Peru, 22 sera were indigenous MAT-negative febrile patient sera, and 36 sera were from patients with other febrile diseases from Southeast Asia, where leptospirosis is also endemic. Combining the results of immunoglobulin M (IgM) and IgG detection from these three antigens, the overall sensitivity is close to 90% based on the MAT. These results suggest that an ELISA using multiple recombinant antigens may be used as an alternative method for the detection of Leptospira-specific antibodies. PMID:24166046

  3. Rapid monitoring of recombinant antibody production by mammalian cell cultures using fourier transform infrared spectroscopy and chemometrics.

    PubMed

    Sellick, Christopher A; Hansen, Rasmus; Jarvis, Roger M; Maqsood, Arfa R; Stephens, Gill M; Dickson, Alan J; Goodacre, Royston

    2010-06-15

    Fourier transform infrared (FT-IR) spectroscopy combined with multivariate statistical analyses was investigated as a physicochemical tool for monitoring secreted recombinant antibody production in cultures of Chinese hamster ovary (CHO) and murine myeloma non-secreting 0 (NS0) cell lines. Medium samples were taken during culture of CHO and NS0 cells lines, which included both antibody-producing and non-producing cell lines, and analyzed by FT-IR spectroscopy. Principal components analysis (PCA) alone, and combined with discriminant function analysis (PC-DFA), were applied to normalized FT-IR spectroscopy datasets and showed a linear trend with respect to recombinant protein production. Loadings plots of the most significant spectral components showed a decrease in the C-O stretch from polysaccharides and an increase in the amide I band during culture, respectively, indicating a decrease in sugar concentration and an increase in protein concentration in the medium. Partial least squares regression (PLSR) analysis was used to predict antibody titers, and these regression models were able to predict antibody titers accurately with low error when compared to ELISA data. PLSR was also able to predict glucose and lactate amounts in the medium samples accurately. This work demonstrates that FT-IR spectroscopy has great potential as a tool for monitoring cell cultures for recombinant protein production and offers a starting point for the application of spectroscopic techniques for the on-line measurement of antibody production in industrial scale bioreactors. 2010 Wiley Periodicals, Inc.

  4. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    PubMed

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus.

  5. R Loops in the Regulation of Antibody Gene Diversification.

    PubMed

    Pavri, Rushad

    2017-06-02

    For nearly three decades, R loops have been closely linked with class switch recombination (CSR), the process that generates antibody isotypes and that occurs via a complex cascade initiated by transcription-coupled mutagenesis in switch recombination sequences. R loops form during transcription of switch recombination sequences in vitro and in vivo, and there is solid evidence that R loops are required for efficient class switching. The classical model of R loops posits that they boost mutation rates by generating stable and long tracts of single-stranded DNA that serve as the substrate for activation induced deaminase (AID), the enzyme that initiates the CSR reaction cascade by co-transcriptionally mutating ssDNA in switch recombination sequences. Though logical and compelling, this model has not been supported by in vivo evidence. Indeed, several reports suggest that R loops may not be involved in recruiting AID activity to switch regions, meaning that R loops probably serve other unanticipated roles in CSR. Here, I review the key findings in this field to date and propose hypotheses that could help towards elucidating the precise function of R loops in CSR.

  6. Ipr gene control of the anti-DNA antibody response.

    PubMed

    Pisetsky, D S; Caster, S A; Roths, J B; Murphy, E D

    1982-05-01

    The influence of the Ipr gene on the anti-DNA antibody response was investigated in MRL and B6 Ipr/Ipr inbred mice, MRL +/+ mice less than a yr of age produced low levels of anti-DNA antibody, whereas older animals of this strain demonstrated levels in some instances comparable to those of the more severely affected MRL Ipr/Ipr mice. This result indicates a tendency to autoreactivity in MRL mice independent of the Ipr gene. To determine whether other mice bearing the Ipr gene would also express autoantibodies, the anti-DNA antibody responses of B6 Ipr/Ipr mice were studied. This strain was development by matings to transfer the Ipr gene into another inbred background and allow evaluation of the action independent of other disturbances of the MRL mice. Mice of this strain produced antibodies to DNA, with female animals displaying significantly higher levels than males. This result demonstrates that the Ipr gene can stimulate autoantibody production in mice other than the MRL strain and does not require abnormalities unique to this background to potentiate autoreactivity.

  7. Characterization of recombinant bacteriophages containing mosquito ribosomal RNA genes

    SciTech Connect

    Park, Y.J.

    1988-01-01

    A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been isolated by screening two different genomic DNA libraries - Charon 30 and EMBL 3 using {sup 32}P-labeled 18S and 28S rRNA as probes. These nine recombinant bacteriophages were characterized by restriction mapping, Southern blotting, and S1 nuclease analysis. The 18S rRNA coding region contains an evolutionarily conserved EcoRI site near the 3{prime}-end, and measures 1800 bp. The 28S rRNA genes were divided into {alpha} and {beta} coding regions measuring 1750 bp and 2000 bp, respectively. The gap between these two regions measures about 340 bp. No insertion sequences were found in the rRNA coding regions. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region. The non-transcribed spacer region of cloned A. albopictus rDNA contained a common series of seven PvuI sites within a 1250 bp region upstream of the 18S rRNA coding region, and a proportion of this region also showed heterogeneity both in the length and in the restriction sites.

  8. Passive immunization against HIV/AIDS by antibody gene transfer.

    PubMed

    Yang, Lili; Wang, Pin

    2014-01-27

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  9. Dynamics and predictive potential of antibodies against insect-derived recombinant Leishmania infantum proteins during chemotherapy of naturally infected dogs.

    PubMed

    Todolí, Felicitat; Galindo, Inmaculada; Gómez-Sebastián, Silvia; Pérez-Filgueira, Mariano; Escribano, José M; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-05-01

    A predictive marker for the success treatment of canine leishmaniasis is required for the application of a more rational therapy protocol, which must improve the probability of cure and reduce Leishmania resistance to drugs. We investigated the dynamics and predictive value of antibodies against insect-derived recombinant L. infantum proteins rKMPII and rTRYP by using an enzyme-linked immunosorbent assay with retrospective serum samples from 36 dogs during treatment of canine leishmaniasis. In the entire group of dogs, concentrations of antibodies against rKMPII and rTRYP significantly decreased earlier than concentrations of antibodies against crude total Leishmania antigen (one versus six months), which suggested that the dynamics of antibodies against recombinant proteins may be useful for assessing clinical improvement after treatment. Interestingly, decreases in antibody concentrations against rKMPII occurred earlier in disease-free dogs than in dogs that remain clinically ill one year after beginning of treatment, which suggested that these antibodies may be useful for predicting disease-free survival one year after the beginning of therapy against canine leishmaniasis.

  10. Dynamics and Predictive Potential of Antibodies against Insect-Derived Recombinant Leishmania infantum Proteins during Chemotherapy of Naturally Infected Dogs

    PubMed Central

    Todolí, Felicitat; Galindo, Inmaculada; Gómez-Sebastián, Silvia; Pérez-Filgueira, Mariano; Escribano, José M.; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-01-01

    A predictive marker for the success treatment of canine leishmaniasis is required for the application of a more rational therapy protocol, which must improve the probability of cure and reduce Leishmania resistance to drugs. We investigated the dynamics and predictive value of antibodies against insect-derived recombinant L. infantum proteins rKMPII and rTRYP by using an enzyme-linked immunosorbent assay with retrospective serum samples from 36 dogs during treatment of canine leishmaniasis. In the entire group of dogs, concentrations of antibodies against rKMPII and rTRYP significantly decreased earlier than concentrations of antibodies against crude total Leishmania antigen (one versus six months), which suggested that the dynamics of antibodies against recombinant proteins may be useful for assessing clinical improvement after treatment. Interestingly, decreases in antibody concentrations against rKMPII occurred earlier in disease-free dogs than in dogs that remain clinically ill one year after beginning of treatment, which suggested that these antibodies may be useful for predicting disease-free survival one year after the beginning of therapy against canine leishmaniasis. PMID:20439957

  11. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA.

    PubMed

    Giménez-Lirola, Luis G; Mur, Lina; Rivera, Belen; Mogler, Mark; Sun, Yaxuan; Lizano, Sergio; Goodell, Christa; Harris, D L Hank; Rowland, Raymond R R; Gallardo, Carmina; Sánchez-Vizcaíno, José Manuel; Zimmerman, Jeff

    2016-01-01

    In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence.

  12. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA

    PubMed Central

    Giménez-Lirola, Luis G.; Mur, Lina; Rivera, Belen; Mogler, Mark; Sun, Yaxuan; Lizano, Sergio; Goodell, Christa; Harris, D. L. Hank; Rowland, Raymond R. R.; Gallardo, Carmina; Sánchez-Vizcaíno, José Manuel; Zimmerman, Jeff

    2016-01-01

    In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence. PMID:27611939

  13. Construction of gene-targeting vectors by recombineering.

    PubMed

    Lee, Song-Choon; Wang, Wei; Liu, Pentao

    2009-01-01

    Recombineering is a technology that utilizes the efficient homologous recombination functions encoded by gamma phage to manipulate DNA in Escherichia coli. Construction of knockout vectors has been greatly facilitated by recombineering as it allows one to choose any genomic region to manipulate. We describe here an efficient recombineering-based protocol for making mouse conditional knockout targeting vectors.

  14. Prevalence and persistence of antibody titers to recombinant HIV-1 core and matrix proteins in HIV-1 infection.

    PubMed

    Janvier, B; Mallet, F; Cheynet, V; Dalbon, P; Vernet, G; Besnier, J M; Choutet, P; Goudeau, A; Mandrand, B; Barin, F

    1993-08-01

    Numerous studies have established the correlation between antibodies to the core protein p24 of HIV-1 and the progression of the acquired immunodeficiency syndrome. In this study, we analyzed the immune response to two recombinant gag proteins, p24 and p17, in order to evaluate their diagnostic or prognostic significance. Immune response to the immunodominant domain of the transmembrane glycoprotein gp41 was used as a reference. Sera collected from individuals from France and Burundi (Central Africa) at various CDC stages of HIV-1 infection were tested using three sandwich enzyme-linked immunoassays developed with a synthetic peptide corresponding to the immunodominant domain of gp41, SP gp41, or recombinant p24 and p17 cloned and expressed in Escherichia coli. These assays allowed detection of titer antibodies to the three cited antigens. Antibodies to SP gp41 were detected in every HIV-1-positive patient from France and Burundi, generally at a high and stable level. Results obtained with p24 confirmed the value of antibodies to p24 as a prognostic marker only in European and North American populations, since the African population had very high levels of these antibodies even at an advanced stage of the disease. They also confirmed that initial antibody response to p24 is more predictive of outcome than antibody titer change over time. Although antibodies to p17 decline during progression to AIDS, they are frequently absent in French patients at early, asymptomatic stages and therefore could not be used as a prognostic marker. In contrast, antibodies to p17 are significantly less common in African patients with AIDS when compared with symptomless HIV-1-infected African individuals.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Recombinant proteinase 3 produced in different expression systems: recognition by anti-PR3 antibodies.

    PubMed

    van der Geld, Y M; Oost-Kort, W; Limburg, P C; Specks, U; Kallenberg, C G

    2000-10-20

    Anti-neutrophil cytoplasm autoantibodies (ANCA) directed against proteinase 3 (PR3) are highly sensitive and specific markers for Wegener's granulomatosis (WG). Consequently, antigen-specific assays for detection of PR3-ANCA are helpful for the diagnosis and follow-up of patients with WG. Purification of PR3 is laborious and requires large amounts of granulocytes. Therefore, several attempts have been made to produce recombinant PR3 that is recognized by PR3-ANCA. The purpose of this study was to compare the recognition of different recombinant forms of PR3 (rPR3) by anti-PR3 antibodies. Recombinant PR3 produced in E. coli (rcPR3), P. pastoris (rpPR3), insect cells using the baculovirus system (rbPR3), the human mast cell line, HMC-1 (HMC-1/PR3-S176A), or the human epithelial cell line, 293 (Delta-rPR3-S176A) as well as purified neutrophil PR3 (nPR3) were used. Recognition of these rPR3s by anti-PR3 antibodies was determined by direct and capture ELISA with 19 PR3-ANCA sera, 13 anti-PR3 mAbs and a rabbit serum raised against human PR3. In the capture ELISA rabbit anti-PR3 strongly bound nPR3 and all rPR3 products. By capture ELISA rcPR3 and rpPR3 were recognized by 11 (57%) and 13 (68%) of the 19 PR3-ANCA sera, respectively, whereas rbPR3, HMC-1/PR3-S176A, Delta-rPR3-S176A and nPR3 were recognized by all PR3-ANCA sera. By direct ELISA rabbit anti-PR3 strongly bound nPR3 and all tested rPR3 products. Using the direct ELISA none of the PR3-ANCA sera recognized rcPR3, whereas rpPR3 and rbPR3 were recognized by two (11%) and 17 (89%) of the 19 PR3-ANCA sera, respectively. All 13 anti-PR3 mAbs recognized nPR3 in the direct as well as in the capture ELISA. The rcPR3 was recognized by two mAbs in the capture ELISA but by none of the mAbs in the direct ELISA. The rpPR3 was recognized by seven mAbs in the capture ELISA and only by two mAbs in the direct ELISA. All but one of the anti-PR3 mAbs recognized rbPR3, whereas HMC-1/PR3-S176A and Delta-rPR3-S176A were recognized by

  16. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays.

    PubMed

    Kumada, Yoichi

    2014-11-01

    The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

  17. Amino acid consumption in naïve and recombinant CHO cell cultures: producers of a monoclonal antibody.

    PubMed

    Carrillo-Cocom, L M; Genel-Rey, T; Araíz-Hernández, D; López-Pacheco, F; López-Meza, J; Rocha-Pizaña, M R; Ramírez-Medrano, A; Alvarez, M M

    2015-10-01

    Most commercial media for mammalian cell culture are designed to satisfy the amino acid requirements for cell growth, but not necessarily those for recombinant protein production. In this study, we analyze the amino acid consumption pattern in naïve and recombinant Chinese hamster ovary (CHO) cell cultures. The recombinant model we chose was a CHO-S cell line engineered to produce a monoclonal antibody. We report the cell concentration, product concentration, and amino acid concentration profiles in naïve and recombinant cell cultures growing in CD OptiCHO™ medium with or without amino acid supplementation with a commercial supplement (CHO CD EfficientFeed™ B). We quantify and discuss the amino acid demands due to cell growth and recombinant protein production during long term fed batch cultivation protocols. We confirmed that a group of five amino acids, constituting the highest mass fraction of the product, shows the highest depletion rates and could become limiting for product expression. In our experiments, alanine, a non-important mass constituent of the product, is in high demand during recombinant protein production. Evaluation of specific amino acid demands could be of great help in the design of feeding/supplementation strategies for recombinant mammalian cell cultures.

  18. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    NASA Astrophysics Data System (ADS)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing

  19. Tissue-specific expressed antibody variable gene repertoires.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Finn, Jessica A; McKinney, Brett A; Crowe, James E

    2014-01-01

    Recent developments in genetic technologies allow deep analysis of the sequence diversity of immune repertoires, but little work has been reported on the architecture of immune repertoires in mucosal tissues. Antibodies are the key to prevention of infections at the mucosal surface, but it is currently unclear whether the B cell repertoire at mucosal surfaces reflects the dominant antibodies found in the systemic compartment or whether mucosal tissues harbor unique repertoires. We examined the expressed antibody variable gene repertoires from 10 different human tissues using RNA samples derived from a large number of individuals. The results revealed that mucosal tissues such as stomach, intestine and lung possess unique antibody gene repertoires that differed substantially from those found in lymphoid tissues or peripheral blood. Mutation frequency analysis of mucosal tissue repertoires revealed that they were highly mutated, with little evidence for the presence of naïve B cells, in contrast to blood. Mucosal tissue repertoires possessed longer heavy chain complementarity determining region 3 loops than lymphoid tissue repertoires. We also noted a large increase in frequency of both insertions and deletions in the small intestine antibody repertoire. These data suggest that mucosal immune repertoires are distinct in many ways from the systemic compartment.

  20. Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies.

    PubMed

    Epel, Malka; Carmi, Irit; Soueid-Baumgarten, Sharon; Oh, Sang Kon; Bera, Tapan; Pastan, Ira; Berzofsky, Jay; Reiter, Yoram

    2008-06-01

    MHC class I molecules are important components of immune surveillance. There are no available methods to directly visualize and determine the quantity and distribution of MHC/peptide complexes on individual cells or to detect such complexes on antigen-presenting cells in tissues. MHC-restricted recombinant antibodies with the same specificity of T cell receptors (TCR) may become a valuable tool to address these questions. They may also serve as valuable targeting molecules that mimic the specificity of cytotoxic T cells. We isolated by phage display a panel of human recombinant Fab antibodies with peptide-specific, MHC-restricted TCR-like reactivity directed toward HLA-A2-restricted T cell epitopes derived from a novel antigen termed TCRgamma alternative reading frame protein (TARP) which is expressed on prostate and breast cancer cells. We have characterized one of these recombinant antibodies and demonstrated its capacity to directly detect specific HLA-A2/TARP T cell epitopes on antigen-presenting cells that have complexes formed by naturally occurring active intracellular processing of the antigen, as well as on the surface of tumor cells. Moreover, by genetic fusion we armed the TCR-like antibody with a potent toxin and demonstrated that it can serve as a targeting moiety killing tumor cells in a peptide-specific, MHC-restricted manner similar to cytotoxic T lymphocytes.

  1. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries.

    PubMed

    Goodchild, Sarah A; Dooley, Helen; Schoepp, Randal J; Flajnik, Martin; Lonsdale, Stephen G

    2011-09-01

    Members of the genus Ebolavirus cause fulminating outbreaks of disease in human and non-human primate populations with a mortality rate up to 90%. To facilitate rapid detection of these pathogens in clinical and environmental samples, robust reagents capable of providing sensitive and specific detection are required. In this work recombinant antibody libraries were generated from murine (single chain variable domain fragment; scFv) and nurse shark, Ginglymostoma cirratum (IgNAR V) hosts immunised with Zaire ebolavirus. This provides the first recorded IgNAR V response against a particulate antigen in the nurse shark. Both murine scFv and shark IgNAR V libraries were panned by phage display technology to identify useful antibodies for the generation of immunological detection reagents. Two murine scFv were shown to have specificity to the Zaire ebolavirus viral matrix protein VP40. Two isolated IgNAR V were shown to bind to the viral nucleoprotein (NP) and to capture viable Zaire ebolavirus with a high degree of sensitivity. Assays developed with IgNAR V cross-reacted to Reston ebolavirus, Sudan ebolavirus and Bundibugyo ebolavirus. Despite this broad reactivity, neither of IgNAR V showed reactivity to Côte d'Ivoire ebolavirus. IgNAR V was substantially more resistant to irreversible thermal denaturation than murine scFv and monoclonal IgG in a comparative test. The demonstrable robustness of the IgNAR V domains may offer enhanced utility as immunological detection reagents in fieldable biosensor applications for use in tropical or subtropical countries where outbreaks of Ebolavirus haemorrhagic fever occur.

  2. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways.

    PubMed

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2014-01-21

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a 'handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the 'handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.

  3. Development of a multi-product leached protein A assay for bioprocess samples containing recombinant human monoclonal antibodies.

    PubMed

    Ren, Diya; Darlucio, Maria R; Chou, Judy H

    2011-03-07

    The detection of low level of protein A leached from monoclonal antibody downstream purification process is often interfered by the presence of excess amount of product antibody. In order to prevent this interference, we developed a new multi-product leached protein A assay that used acidification to completely dissociate the IgG-ProteinA complex, followed by neutralization under selected condition to prevent re-formation of the IgG-ProteinA complex. The amount of protein A was then determined by a sandwich immunoassay using Meso Scale Discovery technology. The assay takes approximately 3h to complete for one 96-well plate of samples, and this has been successfully applied to samples containing different monoclonal antibody products examined so far. The data demonstrates that this assay is robust and efficient in determining leached protein A contamination during purification of recombinant monoclonal antibodies. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Immunomodulatory gene therapy prevents antibody formation and lethal hypersensitivity reactions in murine pompe disease.

    PubMed

    Sun, Baodong; Kulis, Michael D; Young, Sarah P; Hobeika, Amy C; Li, Songtao; Bird, Andrew; Zhang, Haoyue; Li, Yifan; Clay, Timothy M; Burks, Wesley; Kishnani, Priya S; Koeberl, Dwight D

    2010-02-01

    Infantile Pompe disease progresses to a lethal cardiomyopathy in absence of effective treatment. Enzyme-replacement therapy (ERT) with recombinant human acid alpha-glucosidase (rhGAA) has been effective in most patients with Pompe disease, but efficacy was reduced by high-titer antibody responses. Immunomodulatory gene therapy with a low dose adeno-associated virus (AAV) vector (2 x 10(10) particles) containing a liver-specific regulatory cassette significantly lowered immunoglobin G (IgG), IgG1, and IgE antibodies to GAA in Pompe disease mice, when compared with mock-treated mice (P < 0.05). AAV-LSPhGAApA had the same effect on GAA-antibody production whether it was given prior to, following, or simultaneously with the initial GAA injection. Mice given AAV-LSPhGAApA had significantly less decrease in body temperature (P < 0.001) and lower anaphylactic scores (P < 0.01) following the GAA challenge. Mouse mast cell protease-1 (MMCP-1) followed the pattern associated with hypersensitivity reactions (P < 0.05). Regulatory T cells (Treg) were demonstrated to play a role in the tolerance induced by gene therapy as depletion of Treg led to an increase in GAA-specific IgG (P < 0.001). Treg depleted mice were challenged with GAA and had significantly stronger allergic reactions than mice given gene therapy without subsequent Treg depletion (temperature: P < 0.01; symptoms: P < 0.05). Ubiquitous GAA expression failed to prevent antibody formation. Thus, immunomodulatory gene therapy could provide adjunctive therapy in lysosomal storage disorders treated by enzyme replacement.

  5. Immunomodulatory Gene Therapy Prevents Antibody Formation and Lethal Hypersensitivity Reactions in Murine Pompe Disease

    PubMed Central

    Sun, Baodong; Kulis, Michael D; Young, Sarah P; Hobeika, Amy C; Li, Songtao; Bird, Andrew; Zhang, Haoyue; Li, Yifan; Clay, Timothy M; Burks, Wesley; Kishnani, Priya S; Koeberl, Dwight D

    2009-01-01

    Infantile Pompe disease progresses to a lethal cardiomyopathy in absence of effective treatment. Enzyme-replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) has been effective in most patients with Pompe disease, but efficacy was reduced by high-titer antibody responses. Immunomodulatory gene therapy with a low dose adeno-associated virus (AAV) vector (2 × 1010 particles) containing a liver-specific regulatory cassette significantly lowered immunoglobin G (IgG), IgG1, and IgE antibodies to GAA in Pompe disease mice, when compared with mock-treated mice (P < 0.05). AAV-LSPhGAApA had the same effect on GAA-antibody production whether it was given prior to, following, or simultaneously with the initial GAA injection. Mice given AAV-LSPhGAApA had significantly less decrease in body temperature (P < 0.001) and lower anaphylactic scores (P < 0.01) following the GAA challenge. Mouse mast cell protease-1 (MMCP-1) followed the pattern associated with hypersensitivity reactions (P < 0.05). Regulatory T cells (Treg) were demonstrated to play a role in the tolerance induced by gene therapy as depletion of Treg led to an increase in GAA-specific IgG (P < 0.001). Treg depleted mice were challenged with GAA and had significantly stronger allergic reactions than mice given gene therapy without subsequent Treg depletion (temperature: P < 0.01; symptoms: P < 0.05). Ubiquitous GAA expression failed to prevent antibody formation. Thus, immunomodulatory gene therapy could provide adjunctive therapy in lysosomal storage disorders treated by enzyme replacement. PMID:19690517

  6. Five low energy phosphorene allotropes constructed through gene segments recombination

    PubMed Central

    He, Chaoyu; Zhang, ChunXiao; Tang, Chao; Ouyang, Tao; Li, Jin; Zhong, Jianxin

    2017-01-01

    Based on the crystal structures of the previously proposed low energy η-P and θ-P, five new phosphorene allotropes were predicted through gene segments recombination method. These five new phosphorene allotropes are confirmed dynamically stable and energetically more favorable than their parents (η-P and θ-P). Especially, the XX-XX type G1-P is confirmed energetically more favorable than most of all the previously proposed phosphorene allotropes, including black phosphorene and blue phosphorene, which is highly expected to be synthesized in future experiment through vapor deposition or epitaxial growth method like blue β-P. The calculated results also show that such a new promising phosphorene allotrope G1-P is a potential candidate for application in nano-electronics according to its middle band gap of about 1.491 eV from DFT-HSE06 calculation. PMID:28447623

  7. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines.

    PubMed

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    2000-07-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1

  8. Protection against Friend retrovirus-induced leukemia by recombinant vaccinia viruses expressing the gag gene.

    PubMed Central

    Miyazawa, M; Nishio, J; Chesebro, B

    1992-01-01

    High sequence variability in the envelope gene of human immunodeficiency virus has provoked interest in nonenvelope antigens as potential immunogens against retrovirus infection. However, the role of core protein antigens encoded by the gag gene in protective immunity against retroviruses is unclear. By using recombinant vaccinia viruses expressing the Friend murine leukemia helper virus (F-MuLV) gag gene, we could prime CD4+ T-helper cells and protectively immunize susceptible strains of mice against Friend retrovirus infection. Recovery from leukemic splenomegaly developed more slowly after immunization with vaccinia virus-F-MuLV gag than with vaccinia virus-F-MuLV env; however, genetic nonresponders to the envelope protein could be partially protected with Gag vaccines. Class switching of F-MuLV-neutralizing antibodies from immunoglobulin M to immunoglobulin G after challenge with Friend virus complex was facilitated in mice immunized with the Gag antigen. Sequential deletion of the gag gene revealed that the major protective epitope was located on the N-terminal hydrophobic protein p15. Images PMID:1534853

  9. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer.

    PubMed

    McLeod, Jane; O'Callaghan, Peter M; Pybus, Leon P; Wilkinson, Stephen J; Root, Tracy; Racher, Andrew J; James, David C

    2011-09-01

    In this study we have combined empirically derived mathematical models of intracellular Mab synthesis to quantitatively compare the degree to which individual cellular processes limit recombinant IgG(4) monoclonal antibody production by GS-CHO cells throughout a state-of-the-art industrial fed-batch culture process. Based on the calculation of a production process control coefficient for each stage of the intracellular Mab synthesis and secretion pathway, we identified the major cellular restrictions on Mab production throughout the entire culture process to be recombinant heavy chain gene transcription and heavy chain mRNA translation. Surprisingly, despite a substantial decline in the rate of cellular biomass synthesis during culture, with a concomitant decline in the calculated rate constants for energy-intensive Mab synthetic processes (Mab folding/assembly and secretion), these did not exert significant control of Mab synthesis at any stage of production. Instead, cell-specific Mab production was maintained by increased Mab gene transcription which offset the decline in cellular biosynthetic rates. Importantly, this study shows that application of this whole-process predictive modeling strategy should rationally precede and inform cell engineering approaches to increase production of a recombinant protein by a mammalian host cell--where control of productivity is inherently protein product and cell line specific.

  10. Clinical gene therapy using recombinant adeno-associated virus vectors.

    PubMed

    Mueller, C; Flotte, T R

    2008-06-01

    Recombinant adeno-associated virus (rAAV) vectors possess a number of properties that may make them suitable for clinical gene therapy, including being based upon a virus for which there is no known pathology and a natural propensity to persist in human cells. Wild-type adeno-associated viruses (AAVs) are now known to be very diverse and ubiquitous in humans and nonhuman primates, which adds to the degree of confidence one may place in the natural history of AAV, namely that it has never been associated with any human tumors or other acute pathology, other than sporadic reports of having been isolated from spontaneously aborted fetuses. On the basis of this understanding of AAV biology and a wide range of preclinical studies in mice, rabbits, dogs and nonhuman primates, a growing number of clinical trials have been undertaken with this class of vectors. Altogether, over 40 clinical trials have now been approved. Although all previous trials were undertaken using AAV serotype 2 vectors, at least two current trials utilize AAV2 vector genomes cross-packaged or pseudotyped into AAV1 capsids, which appear to mediate more efficient gene delivery to muscle. The explosion of capsid isolates available for use as vectors to over 120 has now provided the potential to broaden the application of AAV-based gene therapy to other cell types.

  11. RNA Structures Facilitate Recombination-Mediated Gene Swapping in HIV-1 ▿

    PubMed Central

    Simon-Loriere, Etienne; Martin, Darren P.; Weeks, Kevin M.; Negroni, Matteo

    2010-01-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny. PMID:20881047

  12. RNA structures facilitate recombination-mediated gene swapping in HIV-1.

    PubMed

    Simon-Loriere, Etienne; Martin, Darren P; Weeks, Kevin M; Negroni, Matteo

    2010-12-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny.

  13. Identification of antigenic differences of recombinant and pituitary bovine growth hormone using monoclonal antibodies.

    PubMed

    Erhard, M H; Kellner, J; Schmidhuber, S; Schams, D; Lösch, U

    1994-02-01

    For characterization and determination of recombinant bovine GH (rbGH) eight monoclonal antibodies (MAb) were produced against rbGH from Monsanto. The various MAb showed different affinities to rbGH, pituitary bovine GH (pbGH), and pituitary ovine GH (poGH). With epitope analysis several MAb were shown to recognize different epitopes of rbGH. The MAb MUC-rbGH-3A11 and MUC-rbGH-1E5 were used to develop a Sandwich ELISA. By checking the specificity of the assay no cross reactivity was found with pituitary porcine GH, pituitary human GH, bovine or ovine prolactin and little cross reactivity with poGH could be found. The Sandwich ELISA detected various rbGH (Monsanto, Elanco, Cyanamid) with different N-terminal amino acids and discriminated between rbGH and pituitary bovine GH by an affinity factor of 2.0. The detection level was 2 ng rbGH per ml PBS buffer. The recovery was about 86% in bovine serum. It might therefore be possible to detect rbGH-treated cows using a Sandwich ELISA, but this would need a field study.

  14. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery.

    PubMed

    Chicoine, L G; Montgomery, C L; Bremer, W G; Shontz, K M; Griffin, D A; Heller, K N; Lewis, S; Malik, V; Grose, W E; Shilling, C J; Campbell, K J; Preston, T J; Coley, B D; Martin, P T; Walker, C M; Clark, K R; Sahenk, Z; Mendell, J R; Rodino-Klapac, L R

    2014-02-01

    Duchenne muscular dystrophy is a monogenic disease potentially treatable by gene replacement. Use of recombinant adeno-associated virus (AAV) will ultimately require a vascular approach to broadly transduce muscle cells. We tested the impact of preexisting AAV antibodies on microdystrophin expression following vascular delivery to nonhuman primates. Rhesus macaques were treated by isolated limb perfusion using a fluoroscopically guided catheter. In addition to serostatus stratification, the animals were placed into one of the three immune suppression groups: no immune suppression, prednisone, and triple immune suppression (prednisone, tacrolimus, and mycophenolate mofetil). The animals were analyzed for transgene expression at 3 or 6 months. Microdystrophin expression was visualized in AAV, rhesus serotype 74 sero-negative animals (mean: 48.0 ± 20.8%) that was attenuated in sero-positive animals (19.6 ± 18.7%). Immunosuppression did not affect transgene expression. Importantly, removal of AAV binding antibodies by plasmapheresis in AAV sero-positive animals resulted in high-level transduction (60.8 ± 18.0%), which is comparable with that of AAV sero-negative animals (53.7 ± 7.6%), whereas non-pheresed sero-positive animals demonstrated significantly lower transduction levels (10.1 ± 6.0%). These data support the hypothesis that removal of AAV binding antibodies by plasmapheresis permits successful and sustained gene transfer in the presence of preexisting immunity (natural infection) to AAV.

  15. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments.

    PubMed

    Knappik, A; Plückthun, A

    1994-10-01

    The commercially available monoclonal antibodies M1 and M2 were raised against and bind the FLAG sequence DYKDDDDK with high specificity. Using the calcium-dependent M1 antibody and the FLAG tag attached to the N terminus of various fragments of the antibody McPC603 expressed in Escherichia coli, we found that the M1 antibody binds with almost the same affinity to a much shorter version of this sequence (DYKD). Since most antibody light chains start with an aspartate, the addition of only three additional amino acids to the N terminus is sufficient to detect and quantify the expressed antibody fragments using standard immunological methods. Similarly, the heavy chain can be detected specifically with the sequence DYKD, which requires four additional amino acids since most heavy chains do not start with Asp. The signal sequence of both chains that is necessary for the transport of the chains to the periplasm of E. coli is processed correctly. Furthermore, we investigated the influence of the amino acid at the fifth position of the FLAG sequence on the binding affinity of the M1 antibody and found that a glutamate at this position increased the sensitivity in Western blots sixfold over the original long FLAG sequence containing an aspartate residue at this position. Together, the improved FLAG is a versatile tool for both sensitive detection and one-step purification of recombinant proteins.

  16. Recombinant human monoclonal antibodies to human cytomegalovirus glycoprotein B neutralize virus in a complement-dependent manner.

    PubMed

    Ohta, Akane; Fujita, Ayano; Murayama, Tsugiya; Iba, Yoshitaka; Kurosawa, Yoshikazu; Yoshikawa, Tetsushi; Asano, Yoshizo

    2009-11-01

    Human antibodies specific for HCMV are currently considered as potential anti-HCMV therapeutic agents. In this study, we used a combinatorial human antibody library to isolate and characterize complete human monoclonal antibodies that effectively neutralize HCMV in a complement-dependent manner. One hundred and six clones were isolated in two independent screens using HCMV virions and recombinant glycoprotein B, gB654, as antigens. All of the clones recognized the same molecule gB and were classified into 14 groups based on the amino acid sequence of the V(H) region. Seven representative clones from these 14 groups had a strong gB654 binding affinity by surface plasmon resonance (SPR). A pairwise binding competition analysis suggested that there were three groups based on differences in the gB recognition sites. Although Fab fragments of the seven groups showed strong affinity for gB, none of the Fab fragments neutralized HCMV infectivity in vitro. In contrast, complete human IgG(1) antibodies of at least three groups neutralized HCMV in a complement-dependent manner. These data suggest that potent therapeutic antibodies can be obtained from a human antibody library, including most of the functional antibodies that mediate humoral immunity to the selected pathogen.

  17. Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus.

    PubMed

    Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P; Robertson, David L; Negroni, Matteo

    2009-05-01

    The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology.

  18. Molecular Mechanisms of Recombination Restriction in the Envelope Gene of the Human Immunodeficiency Virus

    PubMed Central

    Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P.; Robertson, David L.; Negroni, Matteo

    2009-01-01

    The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology. PMID:19424420

  19. Human anti-EGFL7 recombinant full-length antibodies selected from a mammalian cell-based antibody display library.

    PubMed

    Li, Feng; Liu, Yan-Hong; Li, Yan-Wen; Ju, Qian; Chen, Lin; Xie, Ping-Li; Li, Yue-Hui; Li, Guan-Cheng

    2012-06-01

    Epidermal growth factor-like domain 7 (EGFL7) has been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis. The advent of antibody display technology (phage, bacteria, and yeast) led to an enormous revival in the use of antibodies as diagnostic and therapeutic tools for fighting cancer. However, problems with protein folding, posttranslational modification, and codon usage still limit the number of improved antibodies that can be obtained. We describe here the isolation of an EGFL7-specific antibody from a mammalian cell-based full-length antibody display library generated from peripheral blood mononuclear cells of patients with hepatocellular carcinoma. Using a novel vector, contained glycosylphosphatidylinositol anchor and restriction enzyme sites NheI and ClaI, antibody libraries are displayed as whole IgG molecules on the cell surface and screened for specific antigen binding by a combination of magnetic beads and measured by cell ELISA. Anti-EGFL7 antibody was successfully isolated from the library. The mammalian cell-based full-length antibody display library is a great potential application for rapid identification and cloning of human mAbs of targeting hepatocellular carcinoma.

  20. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    PubMed

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  1. Creating new genes by plasmid recombination in Escherichia coli and Bacillus subtilis.

    PubMed

    Gomez, Ana; Galic, Tatjana; Mariet, Jean-François; Matic, Ivan; Radman, Miroslav; Petit, Marie-Agnès

    2005-11-01

    Gene shuffling is a way of creating proteins with interesting new characteristics, starting from diverged sequences. We tested an alternative to gene shuffling based on plasmid recombination and found that Bacillus subtilis efficiently recombines sequences with 4% divergence, and Escherichia coli mutS is more appropriate for sequences with 22% divergence.

  2. Creating New Genes by Plasmid Recombination in Escherichia coli and Bacillus subtilis

    PubMed Central

    Gomez, Ana; Galic, Tatjana; Mariet, Jean-François; Matic, Ivan; Radman, Miroslav; Petit, Marie-Agnès

    2005-01-01

    Gene shuffling is a way of creating proteins with interesting new characteristics, starting from diverged sequences. We tested an alternative to gene shuffling based on plasmid recombination and found that Bacillus subtilis efficiently recombines sequences with 4% divergence, and Escherichia coli mutS is more appropriate for sequences with 22% divergence. PMID:16269814

  3. Expression of deleted, atoxic atypical recombinant beta2 toxin in a baculovirus system and production of polyclonal and monoclonal antibodies.

    PubMed

    Serroni, Anna; Magistrali, Chiara Francesca; Pezzotti, Giovanni; Bano, Luca; Pellegrini, Martina; Severi, Giulio; Di Pancrazio, Chiara; Luciani, Mirella; Tittarelli, Manuela; Tofani, Silvia; De Giuseppe, Antonio

    2017-05-25

    Clostridium perfringens is an important animal and human pathogen that can produce more than 16 different major and minor toxins. The beta-2 minor toxin (CPB2), comprising atypical and consensus variants, appears to be involved in both human and animal enterotoxaemia syndrome. The exact role of CPB2 in pathogenesis is poorly investigated, and its mechanism of action at the molecular level is still unknown because of the lack of specific reagents such as monoclonal antibodies against the CPB2 protein and/or the availability of a highly purified antigen. Previous studies have reported that purified wild-type or recombinant CPB2 toxin, expressed in a heterologous system, presented cytotoxic effects on human intestinal cell lines. Undoubtedly, for this reason, to date, these purified proteins have not yet been used for the production of monoclonal antibodies (MAbs). Recently, monoclonal antibodies against CPB2 were generated using peptides designed on predicted antigenic epitopes of this toxin. In this paper we report, for the first time, the expression in a baculovirus system of a deleted recombinant C-terminal 6xHis-tagged atypical CPB2 toxin (rCPB2Δ1-25-His6) lacking the 25 amino acids (aa) of the N-terminal putative signal sequence. A high level of purified recombinant rCPB2Δ1-25-His6 was obtained after purification by Ni(2+) affinity chromatography. The purified product showed no in vitro and in vivo toxicity. Polyclonal antibodies and twenty hybridoma-secreting Mabs were generated using purified rCPB2Δ1-25-His6. Finally, the reactivity and specificity of the new antibodies were tested against both recombinant and wild-type CPB2 toxins. The high-throughput of purified atoxic recombinant CPB2 produced in insect cells, allowed to obtain monoclonal and polyclonal antibodies. The availability of these molecules could contribute to develop immunoenzymatic methods and/or to perform studies about the biological activity of CPB2 toxin.

  4. Overexpression of Recombinant Human Teriparatide, rhPTH (1–34) in Escherichia coli : An Innovative Gene Fusion Approach

    PubMed Central

    Bakhtiari, Nahid; Amini Bayat, Zahra; Sagharidouz, Sepideh; Vaez, Mohsen

    2017-01-01

    Background: Parathyroid hormone is an 84-amino acid peptide secreted by the parathyroid glands. Its physiological role is maintenance of normal serum calcium level and bone remodeling. Biological activity of this hormone is related to N-terminal 1–34 amino acids. The recombinant form of hormone (1–34) has been approved for treatment of osteoporosis from 2002. In this study, a novel fusion partner has been developed for preparation of high yield recombinant 1–34 amino acids of hPTH. Methods: Novel nucleotide cassette designed encoding a chimeric fusion protein comprising of a fusion partner consisting of a His-tag in N-terminal, 53 amino acids belong to Escherichia coli (E. coli) β-galactosidase (LacZ) gene, a linker sequence for increasing of expression and protection of target peptide structure from fusion tag effect, an Enteropeptidase cleavage site, rhPTH (1–34) gene fragment. Optimized fusion gene was synthesized and ligated into pET-28a vector under control of T7 promoter, and then transformed in E. coli (DH5α) cells. Positive clones containing this gene were double digested with NcoI and-BamHI and also approved by sequencing. Gene overexpression was observed in SDS-PAGE after induction with 0.2 mM IPTG. Confirmation of gene expression was performed by western blotting using anti-His-tag antibody conjugated with peroxidase. Results: By this fusion gene design approach, we achieved a high level expression of the rhPTH, where it represented at least 43.7% of the total protein as determined by SDS-PAGE and confirmed by western blotting. Conclusion: In addition to high level expression of the designed gene in this work, specific amino acid sequence of bacterial β-galactosidase was selected as major part of carrier tag for protection of this hormone as important step of recombinant rhPTH with relevant isoelectronic point (pI). This innovation resulted in recombinant production of hPTH very well and the gene construct could be applied as a pattern for

  5. Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals

    PubMed Central

    Sankhyan, Anurag; Sharma, Chandresh; Dutta, Durgashree; Sharma, Tarang; Chosdol, Kunzang; Wakita, Takaji; Watashi, Koichi; Awasthi, Amit; Acharya, Subrat K.; Khanna, Navin; Tiwari, Ashutosh; Sinha, Subrata

    2016-01-01

    Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21–47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21–47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants. PMID:26888694

  6. Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals.

    PubMed

    Sankhyan, Anurag; Sharma, Chandresh; Dutta, Durgashree; Sharma, Tarang; Chosdol, Kunzang; Wakita, Takaji; Watashi, Koichi; Awasthi, Amit; Acharya, Subrat K; Khanna, Navin; Tiwari, Ashutosh; Sinha, Subrata

    2016-02-18

    Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21-47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21-47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants.

  7. Cold shock induction of recombinant Arctic environmental genes.

    PubMed

    Bjerga, Gro Elin Kjæreng; Williamson, Adele Kim

    2015-08-19

    Heterologous expression of psychrophilic enzymes in E. coli is particularly challenging due to their intrinsic instability. The low stability is regarded as a consequence of adaptation that allow them to function at low temperatures. Recombinant production presents a significant barrier to their exploitation for commercial applications in industry. As part of an enzyme discovery project we have investigated the utility of a cold-shock inducible promoter for low-temperature expression of five diverse genes derived from the metagenomes of marine Arctic sediments. After evaluation of their production, we further optimized for soluble production by building a vector suite from which the environmental genes could be expressed as fusions with solubility tags. We found that the low-temperature optimized system produced high expression levels for all putatively cold-active proteins, as well as reducing host toxicity for several candidates. As a proof of concept, activity assays with one of the candidates, a putative chitinase, showed that functional protein was obtained using the low-temperature optimized vector suite. We conclude that a cold-shock inducible system is advantageous for the heterologous expression of psychrophilic proteins, and may also be useful for expression of toxic mesophilic and thermophilic proteins where properties of the proteins are deleterious to the host cell growth.

  8. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species

    PubMed Central

    2013-01-01

    Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems

  9. High-level secretion of recombinant monomeric murine and human single-chain Fv antibodies from Drosophila S2 cells.

    PubMed

    Gilmartin, Allissia A; Lamp, Benjamin; Rümenapf, Till; Persson, Mats A A; Rey, Félix A; Krey, Thomas

    2012-02-01

    Single-chain variable fragment (scFvs) antibodies are small polypeptides (∼26 kD) containing the heavy (V(H)) and light (V(L)) immunoglobulin domains of a parent antibody connected by a flexible linker. In addition to being frequently used in diagnostics and therapy for an increasing number of human diseases, scFvs are important tools for structural biology as crystallization chaperones. Although scFvs can be expressed in many different organisms, the expression level of an scFv strongly depends on its particular amino acid sequence. We report here a system allowing for easy and efficient cloning of (i) scFvs selected by phage display and (ii) individual heavy and light chain sequences from hybridoma cDNA into expression plasmids engineered for secretion of the recombinant fragment produced in Drosophila S2 cells. We validated the method by producing five scFvs derived from human and murine parent antibodies directed against various antigens. The production yields varied between 5 and 12 mg monomeric scFv per liter of supernatant, indicating a relative independence on the individual sequences. The recombinant scFvs bound their cognate antigen with high affinity, comparable with the parent antibodies. The suitability of the produced recombinant fragments for structural studies was demonstrated by crystallization and structure determination of one of the produced scFvs, derived from a broadly neutralizing antibody against the major glycoprotein E2 of the hepatitis C virus. Structural comparison with the Protein Data Bank revealed the typical spatial organization of V(H) and V(L) domains, further validating the here-reported expression system.

  10. Duplication of chicken defensin7 gene generated by gene conversion and homologous recombination.

    PubMed

    Lee, Mi Ok; Bornelöv, Susanne; Andersson, Leif; Lamont, Susan J; Chen, Junfeng; Womack, James E

    2016-11-29

    Defensins constitute an evolutionary conserved family of cationic antimicrobial peptides that play a key role in host innate immune responses to infection. Defensin genes generally reside in complex genomic regions that are prone to structural variation, and defensin genes exhibit extensive copy number variation in humans and in other species. Copy number variation of defensin genes was examined in inbred lines of Leghorn and Fayoumi chickens, and a duplication of defensin7 was discovered in the Fayoumi breed. Analysis of junction sequences confirmed the occurrence of a simple tandem duplication of defensin7 with sequence identity at the junction, suggesting nonallelic homologous recombination between defensin7 and defensin6 The duplication event generated two chimeric promoters that are best explained by gene conversion followed by homologous recombination. Expression of defensin7 was not elevated in animals with two genes despite both genes being transcribed in the tissues examined. Computational prediction of promoter regions revealed the presence of several putative transcription factor binding sites generated by the duplication event. These data provide insight into the evolution and possible function of large gene families and specifically, the defensins.

  11. Duplication of chicken defensin7 gene generated by gene conversion and homologous recombination

    PubMed Central

    Lee, Mi Ok; Bornelöv, Susanne; Andersson, Leif; Lamont, Susan J.; Chen, Junfeng; Womack, James E.

    2016-01-01

    Defensins constitute an evolutionary conserved family of cationic antimicrobial peptides that play a key role in host innate immune responses to infection. Defensin genes generally reside in complex genomic regions that are prone to structural variation, and defensin genes exhibit extensive copy number variation in humans and in other species. Copy number variation of defensin genes was examined in inbred lines of Leghorn and Fayoumi chickens, and a duplication of defensin7 was discovered in the Fayoumi breed. Analysis of junction sequences confirmed the occurrence of a simple tandem duplication of defensin7 with sequence identity at the junction, suggesting nonallelic homologous recombination between defensin7 and defensin6. The duplication event generated two chimeric promoters that are best explained by gene conversion followed by homologous recombination. Expression of defensin7 was not elevated in animals with two genes despite both genes being transcribed in the tissues examined. Computational prediction of promoter regions revealed the presence of several putative transcription factor binding sites generated by the duplication event. These data provide insight into the evolution and possible function of large gene families and specifically, the defensins. PMID:27849592

  12. The haemagglutinin gene, but not the neuraminidase gene, of 'Spanish flu' was a recombinant.

    PubMed Central

    Gibbs, M J; Armstrong, J S; Gibbs, A J

    2001-01-01

    Published analyses of the sequences of three genes from the 1918 Spanish influenza virus have cast doubt on the theory that it came from birds immediately before the pandemic. They showed that the virus was of the H1N1 subtype lineage but more closely related to mammal-infecting strains than any known bird-infecting strain. They provided no evidence that the virus originated by gene reassortment nor that the virus was the direct ancestor of the two lineages of H1N1 viruses currently found in mammals; one that mostly infects human beings, the other pigs. The unusual virulence of the virus and why it produced a pandemic have remained unsolved. We have reanalysed the sequences of the three 1918 genes and found conflicting patterns of relatedness in all three. Various tests showed that the patterns in its haemagglutinin (HA) gene were produced by true recombination between two different parental HA H1 subtype genes, but that the conflicting patterns in its neuraminidase and non-structural-nuclear export proteins genes resulted from selection. The recombination event that produced the 1918 HA gene probably coincided with the start of the pandemic, and may have triggered it. PMID:11779383

  13. Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library.

    PubMed

    Rahumatullah, Anizah; Ahmad, Azimah; Noordin, Rahmah; Lim, Theam Soon

    2015-10-01

    Phage display technology is an important tool for antibody generation or selection. This study describes the development of a scFv library and the subsequent analysis of identified monoclonal antibodies against BmSXP, a recombinant antigen for lymphatic filariasis. The immune library was generated from blood of lymphatic filariasis infected individuals. A TA based intermediary cloning approach was used to increase cloning efficiency for the library construction process. A diverse immune scFv library of 10(8) was generated. Six unique monoclonal antibodies were identified from the 50 isolated clones against BmSXP. Analysis of the clones showed a bias for the IgHV3 and Vκ1 (45.5%) and IgHV2 and Vκ3 (27.3%) gene family. The most favored J segment for light chain is IgKJ1 (45.5%). The most favored D and J segment for heavy chain are IgHD6-13 (75%) and IgHJ3 (47.7%). The information may suggest a predisposition of certain V genes in antibody responses against lymphatic filariasis.

  14. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  15. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  16. Production of polyclonal antibody to a recombinant non-structural protein Nsp1a of human astrovirus.

    PubMed

    Liu, Chang; Liu, Wen-Hui; Kan, Li-Li; Li, Xin; Li, Yong-gang; Zhao, Wei

    2014-12-01

    Human astrovirus (HAstV) are important pathogens that cause acute viral diarrhea in infants. Little is known about the mechanisms of astrovirus-induced diarrhea. Previous studies have suggested that an apoptosis inducer may be encoded in the non-structural protein (nsP1a) of astrovirus and contribute to virus-induced diarrhea. To study the biological function of nsP1a and to gain further insight into nsP1a protein-host cell interactions, good quality antibodies must be produced. The nsP1agene of HAstV-1 was cloned into a bacterial expression vector Pgex-6P-1. The recombinant plasmid Pgex-6P-nsP1a was transformed into Escherichia coli BL21 (DE3) and expressed as a fusion protein that contains N-terminal GST tags. The expressed recombinant protein was purified and used as an antigen to produce an nsP1a antiserum in rabbits. ELISA was used to detect the titer of specific antibodies. Specificity activity was detected by Western blot and immunofluorescence analysis. The titer of specific antibodies was up to 1:30,000. Western blotting and immunofluorescence analysis indicated that the polyclonal antibody could recognize specifically the HAstV-1 nsP1a protein.

  17. Recombinant Pvs48/45 antigen expressed in E. coli generates antibodies that block malaria transmission in Anopheles albimanus mosquitoes.

    PubMed

    Arévalo-Herrera, Myriam; Vallejo, Andrés F; Rubiano, Kelly; Solarte, Yezid; Marin, Catherin; Castellanos, Angélica; Céspedes, Nora; Herrera, Sócrates

    2015-01-01

    Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.

  18. Recombinant Pvs48/45 Antigen Expressed in E. coli Generates Antibodies that Block Malaria Transmission in Anopheles albimanus Mosquitoes

    PubMed Central

    Arévalo-Herrera, Myriam; Vallejo, Andrés F.; Rubiano, Kelly; Solarte, Yezid; Marin, Catherin; Castellanos, Angélica; Céspedes, Nora; Herrera, Sócrates

    2015-01-01

    Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential. PMID:25775466

  19. Regeneration of recombinant antigen microarrays for the automated monitoring of antibodies against zoonotic pathogens in swine sera.

    PubMed

    Meyer, Verena K; Kober, Catharina; Niessner, Reinhard; Seidel, Michael

    2015-01-23

    The ability to regenerate immobilized proteins like recombinant antigens (rAgs) on surfaces is an unsolved problem for flow-based immunoassays on microarray analysis systems. The regeneration on microarray chip surfaces is achieved by changing the protein structures and desorption of antibodies. Afterwards, reactivation of immobilized protein antigens is necessary for reconstitution processes. Any backfolding should be managed in a way that antibodies are able to detect the protein antigens in the next measurement cycle. The regeneration of rAg microarrays was examined for the first time on the MCR3 flow-based chemiluminescence (CL) microarray analysis platform. The aim was to reuse rAg microarray chips in order to reduce the screening effort and costs. An antibody capturing format was used to detect antibodies against zoonotic pathogens in sera of slaughtered pigs. Different denaturation and reactivation buffers were tested. Acidic glycine-SDS buffer (pH 2.5) and 8 M guanidinium hydrochloride showed the best results in respect of denaturation efficiencies. The highest CL signals after regeneration were achieved with a carbonate buffer containing 10 mM DTT and 0.1% BSA for reactivation. Antibodies against Yersinia spp. and hepatitis E virus (HEV) were detected in swine sera on one immunochip over 4 days and 25 measurement cycles. Each cycle took 10 min for detection and regeneration. By using the rAg microarray chip, a fast and automated screening of antibodies against pathogens in sera of slaughtered pigs would be possible for zoonosis monitoring.

  20. A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins.

    PubMed

    Riaño-Umbarila, Lidia; Olamendi-Portugal, Timoteo; Morelos-Juárez, Citlalli; Gurrola, Georgina B; Possani, Lourival D; Becerril, Baltazar

    2013-12-15

    Using phage display and directed evolution, our group has progressed in the construction of a second family of human single chain variable fragments (scFv) which bind to scorpion toxins dangerous to mammals. It was observed that scFv C1 only bound initially to toxin Cn2, which constitutes 6.8% of whole venom from the scorpion Centruroides noxius Hoffman. Only a few amino acid changes were necessary to extend its recognition to other similar toxins and without affecting the recognition for its primary antigen (Cn2 toxin). One variant of scFv C1 (scFv 202F) was selected after two cycles of directed evolution against Cll1 toxin, the second major toxic component from the venom of the Mexican scorpion Centruroides limpidus limpidus Karsh (0.5% of the whole venom). scFv 202F is also capable of recognizing Cn2 toxin. Despite not having the highest affinity for toxins Cll1 (KD = 25.1 × 10(-9) M) or Cn2 (KD = 8.1 × 10(-9) M), this antibody fragment neutralized one LD50 of each one of these toxins. Additionally, scFv 202F moderately recognized Cll2 toxin which constitutes 1.5% of the venom from C. limpidus. Based on our previous experience, we consider that these results are promising; consequently, we continue working on generating new optimized variants from scFv C1 that could be part of a recombinant scorpion anti-venom from human origin, that might reach the market in the near future.

  1. Novel monoclonal antibodies broadly reactive to human recombinant sapovirus-like particles.

    PubMed

    Kitamoto, Noritoshi; Oka, Tomoichiro; Katayama, Kazuhiko; Li, Tian-Cheng; Takeda, Naokazu; Kato, Yoji; Miyoshi, Tatsuya; Tanaka, Tomoyuki

    2012-11-01

    Sapovirus (SaV), a member of the family Caliciviridae, is an important cause of acute epidemic gastroenteritis in humans. Human SaV is genetically and antigenically diverse and can be classified into four genogroups (GI, GII, GIV, and GV) and 16 genotypes (7 GI [GI.1-7], 7 GII, [GII.1-7], 1 GIV and 1 GV), based on capsid sequence similarities. Monoclonal antibodies (MAbs) are powerful tools for examining viruses and proteins. PAI myeloma cells were fused with spleen cells from mice immunized with a single type of recombinant human SaV virus-like particles (VLPs) (GI.1, GI.5, GI.6, GII.3, GIV, or GV). Sixty-five hybrid clones producing MAbs were obtained. Twenty-four MAbs were characterized by ELISA, according to their cross-reactivity to each VLP (GI.1, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GIV, and GV). The MAbs were classified by this method into: (i) MAbs broadly cross-reactive to all GI, GII, GIV and GV strains; (ii) those reactive in a genogroup-specific; and (iii) those reactive in a genotype-specific manner. Further analysis of three broadly cross-reactive MAbs with a competitive ELISA demonstrated that at least two different common epitopes are located on the capsid protein of human SaVs in the four genogroups. The MAbs generated and characterized in this study will be useful tools for further study of the antigenic and structural topography of the human SaV virion and for developing new diagnostic assays for human SaV.

  2. Fasciola gigantica: production and characterization of a monoclonal antibody against recombinant cathepsin B3.

    PubMed

    Anuracpreeda, Panat; Songkoomkrong, Sineenart; Sethadavit, Manussabhorn; Chotwiwatthanakun, Charoonroj; Tinikul, Yotsawan; Sobhon, Prasert

    2011-02-01

    A number of monoclonal antibodies (MoAbs) against a recombinant cathepsin B3 (rCatB3) of Fasciola gigantica were produced in BALB/c mice. Reactivity and specificity of these MoAbs were assessed by indirect ELISA and immunoblotting techniques. Six stable clones, namely 1C4, 1E9, 2E5, 2F9, 5B4, 5D7 were obtained. All MoAbs reacted with rCatB3 at molecular weight (MW) 37 kDa as well as the glycosylated peptide at 55-75 kDa and with the native CatB3 at MW 37 kDa in WB extracts of metacercariae (Met) and newly excysted juveniles (NEJ). It was found to be IgG(1) and λ light chain isotypes. Immunolocalization of CatB3 in metacercariae, NEJ, 4-week-old juvenile and adult F. gigantica performed by immunoperoxidase technique by using these MoAbs as probes indicated that CatB3 was present in high concentration in the caecal epithelium and caecal lumen of the Met and NEJ, but not in the 4-week-old juvenile and adult fluke. The MoAbs show no cross-reactions with antigens of other parasites including Gigantocotyl explanatum, Eurytrema pancreaticum, Paramphistomum cervi, Schistosoma spindale, S. mansoni, Haemonchus placei and Setaria labiato-papillosa. Thus, it is possible that these MoAbs could be a good candidate for immunodiagnosis of fasciolosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  4. E. coli recA gene improves gene targeted homologous recombination in Mycoplasma hyorhinis.

    PubMed

    Ishag, Hassan Z A; Xiong, Qiyan; Liu, Maojun; Feng, Zhixin; Shao, Guoqing

    2017-05-01

    Mycoplasma hyorhinis is an opportunistic pathogen of pigs. Recently, it has been shown to transform cell cultures, increasing the attention of the researchers. Studies on the pathogenesis require specific genetic tool that is not yet available for the pathogen. To address this limitation, we constructed two suicide plasmids pGEMT-tetM/LR and pGEMT-recA-tetM/LR having a tetracycline resistance marker flanked by two hemolysin gene arms. The latter plasmid encodes an E. coli recA, a gene involved in DNA recombination, repair and maintenance of DNA. Using inactivation of the hemolysin gene, which results in a detectable and measurable phenotype, we found that each plasmid can disrupt the hemolysin gene of M. hyorhinis through a double cross-over homologous recombination. However, inclusion of the E. coli recA gene in the construct resulted in 9-fold increase in the frequency of hemolysin gene mutants among the screened tetracycline resistance colonies. The resultant hemolysin mutant strain lacks the ability to lyse mouse bed blood cells (RBC) when tested in vitro (p<0.001). The host-plasmid system described in this study, has applications for the genetic manipulation of this pathogen and potentially other mycoplasmas.

  5. Genetic control of the immune response to staphylococcal nuclease. IX. Recombination between genes determining BALB/c antinuclease idiotypes and the heavy chain allotype locus.

    PubMed

    Pisetsky, D S; Riordan, S E; Sachs, D H

    1979-03-01

    The genetic linkage relationship of two antinuclease idiotypes produced by the BALB/c strain was investigated in the backcross (BALB/c x CB.20) X CB.20. These two idiotypes were detected by Lewis rat anti-idiotypic antisera prepared against affinity-purified A/J and SJL antinuclease antibodies, termed the A/J and SJL idiotypes, respectively. Both idiotypes were found to be linked to the IgCHa immunoglobulin heavy chain allotype locus. There was, however, a high frequency of recombination observed between both markers and the IgCHa locus, with eight of 83 backcross animals recombinant for the A/J idiotype and five of 83 recombinant for the SJL idiotype. All such recombinant animals were IgCHb/b homozygotes that had gained one or both idiotypes. These results are consistent with a genetic map of VHr region genes in the BALB/c strain in which genes determining the SJL idiotype are closer to the IgCHa allotype locus than are genes determining the A/J idiotype. This high frequency of recombination may indicate that the chromosome segment containing VH region genes is very large or that it has structural features that promote recombination.

  6. Establishment of a mammalian expression system for recombinant [-2]proPSA and a specific antibody against the truncated leader peptide.

    PubMed

    Hwang, Dobeen; Yoon, Aerin; Kim, Soohyun; Kim, Hyori; Chung, Junho

    2017-05-01

    A truncated precursor form of prostate-specific antigen (PSA), [-2]proPSA, is a well-known biomarker for prostate cancer. To develop a biomarker assay, highly purified [-2]proPSA is required as a standard reference and for generation of a specific antibody. In this study, we generated an efficient mammalian expression system for producing a recombinant [-2]proPSA-human kappa constant domain (Cκ ) fusion protein. N-terminal amino acid sequencing using Edman degradation demonstrated that over 95% of the recombinant protein produced is [-2]proPSA, thereby showing for the first time that recombinant [-2]proPSA can be produced as a major fraction. We also generated a recombinant chicken antibody specific to [-2]proPSA but not cross-reactive to recombinant [-7]proPSA-Cκ , [-5]proPSA-Cκ , and PSA purified from human seminal fluid in enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Also, the recombinant chicken antibody reacted to recombinant [-2]proPSA protein bound to an anti-PSA antibody coated on the micrometer plate in a sandwich ELISA. All of these results suggest that the N-terminus of the [-2]proPSA-Cκ fusion protein resides on the exterior of the protein, thus allowing exposure to the antibody. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  7. Frequency and character of alternative somatic recombination fates of paralogous genes during T-DNA integration.

    PubMed

    Jelesko, John G; Carter, Kristy; Kinoshita, Yuki; Gruissem, Wilhelm

    2005-09-01

    A synthetic RBCSB gene cluster was transformed into Arabidopsis in order to simultaneously evaluate the frequency and character of somatic illegitimate recombination, homologous recombination, and targeted gene replacement events associated with T-DNA-mediated transformation. The most frequent type of recombination event observed was illegitimate integration of the T-DNA without activation of the silent DeltaRBCS1B: LUC transgene. Sixteen luc(+) (firefly luciferase positive) T1 plants were isolated. Six of these were due to illegitimate recombination events resulting in a gene trapping effect. Nine resulted from homologous recombination between paralogous RBCSB sequences associated with T-DNA integration. The frequency of somatic homologous recombination associated with T-DNA integration was almost 200 times higher than previously reported rates of meiotic homologous recombination with the same genes. The distribution of (somatic homologous) recombination resolution sites generally fits a fractional interval length model. However, a small region adjacent to an indel showed a significant over-representation of resolution sites, suggesting that DNA mismatch recognition may also play an important role in the positioning of somatic resolution sites. The frequency of somatic resolution within exon-2 was significantly different from that previously observed during meiotic recombination.

  8. The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease.

    PubMed

    Hust, Michael; Maiss, Edgar; Jacobsen, Hans-Jörg; Reinard, Thomas

    2002-12-01

    A single chain variable fragment antibody (scFv; anti-NIa scFv102) was selected from a synthetic human antibody library by using a NIa protease of Plum pox virus (PPV) as an antigen, which was expressed in bacteria. The NIa protease forms the nuclear inclusion body A and acts as the major protease in the cleavage of the viral polyprotein into functional proteins. The NIa protein was detected with anti-NIa scFv102 after expression in Escherichia coli cells as well as from PPV-infected Nicotiana benthamiana plants. Furthermore, the scFv102 has the ability to identify not only PPV from infected plants but also can detect other infections with members of the potyviruses. Nineteen different potyviruses were recognized by the scFv102 in various infected plants tested through dot blot assays. Therefore, the antibody scFv102 has the potential of becoming a general tool to detect potyvirus infections in different plant species. Copyright 2002 Elsevier Science B.V.

  9. Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions.

    PubMed

    Voulgaris, Ioannis; Finka, Gary; Uden, Mark; Hoare, Mike

    2015-10-01

    The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli.

  10. A Robust High Throughput Platform to Generate Functional Recombinant Monoclonal Antibodies Using Rabbit B Cells from Peripheral Blood

    PubMed Central

    Seeber, Stefan; Ros, Francesca; Thorey, Irmgard; Tiefenthaler, Georg; Kaluza, Klaus; Lifke, Valeria; Fischer, Jens André Alexander; Klostermann, Stefan; Endl, Josef; Kopetzki, Erhard; Pashine, Achal; Siewe, Basile; Kaluza, Brigitte; Platzer, Josef; Offner, Sonja

    2014-01-01

    We have developed a robust platform to generate and functionally characterize rabbit-derived antibodies using B cells from peripheral blood. The rapid high throughput procedure generates a diverse set of antibodies, yet requires only few animals to be immunized without the need to sacrifice them. The workflow includes (i) the identification and isolation of single B cells from rabbit blood expressing IgG antibodies, (ii) an elaborate short term B-cell cultivation to produce sufficient monoclonal antigen specific IgG for comprehensive phenotype screens, (iii) the isolation of VH and VL coding regions via PCR from B-cell clones producing antigen specific and functional antibodies followed by the sequence determination, and (iv) the recombinant expression and purification of IgG antibodies. The fully integrated and to a large degree automated platform (demonstrated in this paper using IL1RL1 immunized rabbits) yielded clonal and very diverse IL1RL1-specific and functional IL1RL1-inhibiting rabbit antibodies. These functional IgGs from individual animals were obtained at a short time range after immunization and could be identified already during primary screening, thus substantially lowering the workload for the subsequent B-cell PCR workflow. Early availability of sequence information permits one to select early-on function- and sequence-diverse antibodies for further characterization. In summary, this powerful technology platform has proven to be an efficient and robust method for the rapid generation of antigen specific and functional monoclonal rabbit antibodies without sacrificing the immunized animal. PMID:24503933

  11. Antibody response to recombinant human coagulation factor VIII in a new rat model of severe hemophilia A.

    PubMed

    Lövgren, K M; Søndergaard, H; Skov, S; Weldingh, K N; Tranholm, M; Wiinberg, B

    2016-04-01

    Neutralizing antibodies toward FVIII replacement therapy (inhibitors) are the most serious treatment-related complication in hemophilia A (HA). A rat model of severe HA (F8(-/-) ) has recently been developed, but an immunological characterization is needed to determine the value of using the model for research into inhibitor development. Characterize the antibody response towards recombinant human coagulation factor VIII (rhFVIII) in the HA rat, following a human prophylactic dosing regimen. Two identical studies were performed, which included a total of 17 homozygous HA rats (F8(-/-) , 0% FVIII activity), 12 heterozygous rats (F8(+/-) ), and 12 wild-type (F8(+/+) ) rats. All rats received intravenous injections of rhFVIII at 50 IU kg(-1) twice weekly for 4 weeks. Predosing blood samples were analyzed for binding and neutralizing anti-rhFVIII antibodies at weeks 1-7. In both studies, antibodies developed after 4-6 administrations of rhFVIII, and neutralizing antibodies reached levels similar to human patients (range 1-111 BU, median 6.0 BU) at the end of the study. There was no significant difference between the two studies or between genotypes in time to response or levels reached for binding and neutralizing antibodies. Interestingly, early spontaneous bleeds were associated with a faster antibody response. Following intravenous administration of human FVIII, according to a clinical prophylaxis regimen, a robust and reproducible antibody response is seen in this HA rat model, suggesting that the model is useful for intervention studies with the aim of suppressing, delaying, or preventing the inhibitor response. Also, bleeds seem to have an adjuvant effect on the immune response. © 2016 International Society on Thrombosis and Haemostasis.

  12. Enzyme-linked immunosorbent assay employing a recombinant antigen for detection of protective antibody against swine erysipelas.

    PubMed

    Imada, Yumiko; Mori, Yasuyuki; Daizoh, Masaji; Kudoh, Kazuma; Sakano, Tetsuya

    2003-11-01

    The specificities and sensitivities of five recombinant proteins of the surface protective antigen (SpaA) of Erysipelothrix rhusiopathiae were examined by indirect enzyme-linked immunosorbent assay (ELISA) with the aim of developing a reliable serological test for the detection of protective antibody against E. rhusiopathiae. Fully mature protein and the N-terminal 416 amino acids (SpaA416) showed sufficient antigenicities, and further examination was done with SpaA416 because of its higher yield. The antibody titers of pigs experimentally immunized with commercial live vaccine and two types of inactivated vaccines clearly increased after immunization, and all pigs were completely protected against challenge with virulent strains. On the other hand, the antibody titers of nonimmunized control pigs remained very low until they were challenged, and all showed severe symptoms or subsequently died. Interference with the production of antibody against live vaccine by maternal antibody or porcine respiratory and reproductive syndrome virus infection 1 week after vaccination was also clearly detected. Because the ELISA titer correlated well with the protection results, the specificity and sensitivity of the ELISA were further evaluated with sera collected from pigs reared on 1 farm on which animals had acute septicemia, 2 farms on which the animals were infected or free from infection, and 10 farms on which the animals were vaccinated with live vaccine, among others. The ELISA titers clearly revealed the conditions of the herds. These results indicate that the SpaA416 ELISA is an effective method not only for evaluating pigs for the presence of protective antibody levels resulting from vaccination or maternal antibody but also for detecting antibody produced by natural infection. This test has important potential for the effective control of swine erysipelas.

  13. Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer.

    PubMed

    Wang, G; Qiu, J; Wang, R; Krause, A; Boyer, J L; Hackett, N R; Crystal, R G

    2010-08-01

    Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody (mAb) directed against an extracellular region of the human epidermal growth-factor receptor type 2 (HER2) protein. We hypothesized that a single adeno-associated virus (AAV)-mediated genetic delivery of an anti-HER2 antibody should be effective in mediating long-term production of anti-HER2 and in suppressing the growth of human tumors in a xenograft model in nude mice. The adeno-associated virus gene transfer vector AAVrh.10alphaHER2 was constructed based on a non-human primate AAV serotype rh.10 to express the complementary DNAs for the heavy and light chains of mAb 4D5, the murine precursor to trastuzumab. The data show that genetically transferred anti-HER2 selectively bound human HER2 protein and suppressed the proliferation of HER2(+) tumor cell lines. A single administration of AAVrh.10alphaHER2 provided long-term therapeutic levels of anti-HER2 antibody expression without inducing an anti-idiotype response, suppressed the growth of HER2(+) tumors and increased the survival of tumor bearing mice. In the context that trastuzumab therapy requires frequent and repeated administration, this strategy might be developed as an alternate platform for delivery of anti-HER2 therapy.

  14. The development of antibody-based immunotherapy for methamphetamine abuse: immunization, and virus-mediated gene transfer approaches.

    PubMed

    Chen, Yun-Hsiang; Chen, Chia-Hsiang

    2013-02-01

    Methamphetamine is a highly addictive psychostimulant that has been seriously abused worldwide, and currently there are no approved medications for the treatment of its abuse. Conventional treatments for drug addiction mainly seek to use small molecule agonists or antagonists to target the drug receptors in the brain, but unfortunately it is difficult to find a similar small molecule for the treatment of methamphetamine dependence. Alternatively, anti-methamphetamine antibodies can sequester the drug in the bloodstream and reduce the amount of drug available to the central nervous system, acting as peripheral pharmacokinetic antagonists. This review describes the development of antibody-based immunotherapies, classified into active and passive immunizations, for the treatment of methamphetamine addiction. Furthermore, an alternative therapeutic approach, using a recombinant adeno-associated virus-mediated gene transfer technique to achieve in vivo expression of characterized anti-methamphetamine monoclonal antibodies, is proposed in this article.

  15. Passive Immunization against HIV/AIDS by Antibody Gene Transfer

    PubMed Central

    Yang, Lili; Wang, Pin

    2014-01-01

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics. PMID:24473340

  16. Light chain replacement: a new model for antibody gene rearrangement

    PubMed Central

    1995-01-01

    A functional B cell antigen receptor is thought to regulate antibody gene rearrangement either by stopping further rearrangement (exclusion) or by promoting additional rearrangement (editing). We have developed a new model to study the regulation of antibody gene rearrangement. In this model, we used gene targeting to replace the J kappa region with a functional V kappa-J kappa light chain gene. Two different strains of mice were created; one, V kappa 4R, has a V kappa 4-J kappa 4 rearrangement followed by a downstream J kappa 5 segment, while the other, V kappa 8R, has a V kappa 8-J kappa 5 light chain. Here, we analyze the influence of these functional light chains on light chain rearrangement. We show that some V kappa 4R and V kappa 8R B cells only have the V kappa R light chain rearrangement, whereas others undergo additional rearrangements. Additional rearrangement can occur not only at the other kappa allele or isotype (lambda), but also at the targeted locus in both V kappa 4R and V kappa 8R. Rearrangement to the downstream J kappa 5 segment is observed in V kappa 4R, as is deletion of the targeted locus in both V kappa 4R and V kappa 8R. The V kappa R models illustrate that a productively rearranged light chain can either terminate further rearrangement or allow further rearrangement. We attribute the latter to editing of autoantibodies and to corrections of dysfunctional receptors. PMID:7629511

  17. Homologous recombination drives both sequence diversity and gene content variation in Neisseria meningitidis.

    PubMed

    Kong, Ying; Ma, Jennifer H; Warren, Keisha; Tsang, Raymond S W; Low, Donald E; Jamieson, Frances B; Alexander, David C; Hao, Weilong

    2013-01-01

    The study of genetic and phenotypic variation is fundamental for understanding the dynamics of bacterial genome evolution and untangling the evolution and epidemiology of bacterial pathogens. Neisseria meningitidis (Nm) is among the most intriguing bacterial pathogens in genomic studies due to its dynamic population structure and complex forms of pathogenicity. Extensive genomic variation within identical clonal complexes (CCs) in Nm has been recently reported and suggested to be the result of homologous recombination, but the extent to which recombination contributes to genomic variation within identical CCs has remained unclear. In this study, we sequenced two Nm strains of identical serogroup (C) and multi-locus sequence type (ST60), and conducted a systematic analysis with an additional 34 Nm genomes. Our results revealed that all gene content variation between the two ST60 genomes was introduced by homologous recombination at the conserved flanking genes, and 94.25% or more of sequence divergence was caused by homologous recombination. Recombination was found in genes associated with virulence factors, antigenic outer membrane proteins, and vaccine targets, suggesting an important role of homologous recombination in rapidly altering the pathogenicity and antigenicity of Nm. Recombination was also evident in genes of the restriction and modification systems, which may undermine barriers to DNA exchange. In conclusion, homologous recombination can drive both gene content variation and sequence divergence in Nm. These findings shed new light on the understanding of the rapid pathoadaptive evolution of Nm and other recombinogenic bacterial pathogens.

  18. Priming Immunization with DNA Augments Immunogenicity of Recombinant Adenoviral Vectors for Both HIV-1 Specific Antibody and T-Cell Responses

    PubMed Central

    Koup, Richard A.; Roederer, Mario; Lamoreaux, Laurie; Fischer, Jennifer; Novik, Laura; Nason, Martha C.; Larkin, Brenda D.; Enama, Mary E.; Ledgerwood, Julie E.; Bailer, Robert T.; Mascola, John R.; Nabel, Gary J.; Graham, Barney S.

    2010-01-01

    Background Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies. Methods The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination. Results rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8+ T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4+ and CD8+ T-cells expressed multiple functions and were predominantly long-term (CD127+) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition. Conclusion Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses. Trial Registration ClinicalTrails.gov NCT00102089, NCT00108654 PMID:20126394

  19. In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery

    PubMed Central

    Chapel, Alain; Deas, Olivier; Bensidhoum, Morad; François, Sabine; Mouiseddine, Moubarak; Poncet, Pascal; Dürrbach, Antoine; Aigueperse, Jocelyne; Gourmelon, Patrick; Gorin, Norbert C; Hirsch, François; Thierry, Dominique

    2004-01-01

    Background Targeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors. Methods Balb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates. Results By ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals. Conclusions These data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures. PMID:15509303

  20. Use of antibody gene library for the isolation of specific single chain antibodies by ampicillin-antigen conjugates.

    PubMed

    Neumann-Schaal, Meina; Messerschmidt, Katrin; Grenz, Nicole; Heilmann, Katja

    2013-03-01

    Isolation of recombinant antibodies from antibody libraries is commonly performed by different molecular display formats including phage display and ribosome display or different cell-surface display formats. We describe a new method which allows the selection of Escherichia coli cells producing the required single chain antibody by cultivation in presence of ampicillin conjugated to the antigen of interest. The method utilizes the neutralization of the conjugate by the produced single chain antibody which is secreted to the periplasm. Therefore, a new expression system based on the pET26b vector was designed and a library was constructed. The method was successfully established first for the selection of E. coli BL21 Star (DE3) cells expressing a model single chain antibody (anti-fluorescein) by a simple selection assay on LB-agar plates. Using this selection assay, we could identify a new single chain antibody binding biotin by growing E. coli BL21 Star (DE3) containing the library in presence of a biotin-ampicillin conjugate. In contrast to methods as molecular or cell surface display our selection system applies the soluble single chain antibody molecule and thereby avoids undesired effects, e.g. by the phage particle or the yeast fusion protein. By selecting directly in an expression strain, production and characterization of the selected single chain antibody is possible without any further cloning or transformation steps.

  1. Recombinant HT.sub.m4 gene, protein and assays

    SciTech Connect

    Lim, Bing; Adra, Chaker N.; Lelias, Jean-Michel

    1996-01-01

    The invention relates to a recombinant DNA molecule which encodes a HT.sub.m4 protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT.sub.m4 protein and a recombinant HT.sub.m4 protein. The invention also relates to a method for detecting the presence of a hereditary atopy.

  2. Immunoprophylactic effect of chicken egg yolk antibody (IgY) against a recombinant S1 domain of the porcine epidemic diarrhea virus spike protein in piglets.

    PubMed

    Lee, Do Hyun; Jeon, Young-Soo; Park, Choi-Kyu; Kim, Seungjoon; Lee, Du Sik; Lee, Changhee

    2015-09-01

    Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine causing high mortality rates in piglets. PEDV outbreaks have occurred continuously in most swine-producing Asian countries and have recently emerged in the United States, leading to large economic losses for both the Asian and US pig industries. The spike (S) protein of PEDV consists of the S1 and S2 domains, responsible for virus binding and fusion, respectively. The involvement of the S1 domain in specific high-affinity interactions with the cellular receptor and induction of neutralizing antibodies in the natural host makes it a logical target for the development of effective vaccines and therapeutics against PEDV. Passive immunization by oral administration of egg yolk antibodies (IgY) obtained from immunized chickens provides an alternative source of specific antibodies for the prevention and treatment of PEDV in newborn piglets. In this study, we produced an IgY against the PEDV S1 protein and investigated its immunoprophylactic effect in neonatal piglets. A codon-optimized PEDV S1 gene consisting of amino acid residues 25-749 was synthesized and used to establish a stable porcine cell line constitutively expressing a recombinant PEDV S1 protein containing the chicken immunoglobulin Fc fragment at its C-terminus. The purified recombinant S1 protein was found to mediate potent immune responses in immunized hens. We next tested the ability of oral passive immunization with anti-PEDV S1 IgY to protect piglets against PEDV. Specific chicken IgY against the S1 protein was orally administered to neonatal piglets, and their responses subsequent to a virulent PEDV challenge were monitored. The results showed that oral administration of anti-PEDV S1 IgY efficiently protects neonatal piglets against PEDV, suggesting its potential as a prophylactic or therapeutic agent against acute PEDV infection.

  3. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs.

    PubMed

    de Marco, Ario

    2015-09-02

    Antibodies have been a pillar of basic research, while their relevance in clinical diagnostics and therapy is constantly growing. Consequently, the production of both conventional and fragment antibodies constantly faces more demanding challenges for the improvement of their quantity and quality. The answer to such an increasing need has been the development of a wide array of formats and alternative production platforms. This review offers a critical comparison and evaluation of the different options to help the researchers interested in expressing recombinant antibodies in their choice. Rather than the compilation of an exhaustive list of the recent publications in the field, this review intendeds to analyze the development of the most innovative or fast-growing strategies. These have been illustrated with some significant examples and, when possible, compared with the existing alternatives. Space has also been given to those solutions that might represent interesting opportunities or that investigate critical aspects of the production optimization but for which the available data as yet do not allow for a definitive judgment. The take-home message is that there is a clear process of progressive diversification concerning the antibody expression platforms and an effort to yield directly application-adapted immune-reagents rather than generic naked antibodies that need further in vitro modification steps before becoming usable.

  4. A comparative indirect ELISA for the detection of henipavirus antibodies based on a recombinant nucleocapsid protein expressed in Escherichia coli.

    PubMed

    Chen, Ji-Ming; Yu, Meng; Morrissy, Chris; Zhao, Yong-Gang; Meehan, Greer; Sun, Ying-Xue; Wang, Qing-Hua; Zhang, Wei; Wang, Lin-Fa; Wang, Zhi-Liang

    2006-09-01

    The indirect ELISA is a simple and useful method for detection of pathogen-specific antibodies in animal sera. However, non-specific or background binding is often a problem, especially when recombinant proteins from Escherichia coli are used. In this study, a comparative indirect ELISA in which the total reactivity and the background binding were determined simultaneously on the same ELISA plate was reported. The background was determined by incubation of the test sera with excess free antigen to block specific binding. The sample was considered positive only when its total reactivity reading was higher than a pre-determined cut-off value and the ratio of the total reactivity to the background reading was more than 2.0. Using this approach, an antibody assay for henipaviruses using a recombinant Nipah virus nucleocapsid protein expressed in E. coli was developed. A total of 919 negative serum samples were tested in this assay and the specificity was 95.8%. In addition, eight positive experimental serum samples all tested positive. The use of recombinant protein as the ELISA antigen, instead of inactivated virus antigens, will be of significant advantage for countries where there is no facility of Biosafety level 4 to handle this group of zoonotic viruses.

  5. Evaluating the conformation of recombinant domain I of β(2)-glycoprotein I and its interaction with human monoclonal antibodies.

    PubMed

    Pericleous, Charis; Miles, Jennifer; Esposito, Diego; Garza-Garcia, Acely; Driscoll, Paul C; Lambrianides, Anastasia; Latchman, David; Isenberg, David; Rahman, Anisur; Ioannou, Yiannis; Giles, Ian

    2011-10-01

    Pathogenic antiphospholipid antibodies (aPL) cause the antiphospholipid syndrome (APS) by interacting with domain I (DI) of beta-2-glycoprotein I (β(2)GPI). The aPL/β(2)GPI complex then exerts pathogenic effects on target cells. We previously described periplasmic bacterial expression of native and mutated variants of DI, and reported the presence of immunodominant epitopes at positions 8-9 (D8/D9) and position 39 (R39). Mutations at these positions strongly influenced the ability of recombinant DI to bind patient-derived IgG aPL and to inhibit pathogenic effects of these aPL in a mouse model of APS. We now describe an improved cytoplasmic bacterial expression system allowing higher yield of DI. We demonstrate that the nuclear magnetic resonance (NMR) spectra of a (15)N,(13)C-isotope-labelled sample of the recombinant DI protein exhibit properties consistent with the structure of DI in crystal structure of intact β(2)GPI. Mutations at D8/D9 and R39 had limited impact on the NMR spectrum of DI indicating maintenance of the overall fold of the DI domain. We investigated interactions between five variants of DI and ten monoclonal human IgG antibodies, all derived from the IgG aPL antibody IS4 by sequence manipulation and in vitro expression. Arginine residues at positions 100 and 100g in IS4V(H) CDR3 play a particularly important role in binding to DI, but this is unlikely to be due to electrostatic interactions with negatively charged amino acids on DI. Both the strength of binding to DI and the ability to discriminate different DI variants varies between the different IgG antibodies tested. There was no simple relationship between these binding properties and antibody pathogenicity.

  6. Gene Evolutionary Trajectories and GC Patterns Driven by Recombination in Zea mays

    PubMed Central

    Sundararajan, Anitha; Dukowic-Schulze, Stefanie; Kwicklis, Madeline; Engstrom, Kayla; Garcia, Nathan; Oviedo, Oliver J.; Ramaraj, Thiruvarangan; Gonzales, Michael D.; He, Yan; Wang, Minghui; Sun, Qi; Pillardy, Jaroslaw; Kianian, Shahryar F.; Pawlowski, Wojciech P.; Chen, Changbin; Mudge, Joann

    2016-01-01

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another intriguing GC pattern exists. Maize genes show a bimodal GC content distribution that has been attributed to nucleotide bias in the third, or wobble, position of the codon. Recombination may be an underlying driving force given that recombination sites are often associated with high GC content. Here we explore the relationship between recombination and genomic GC patterns by comparing GC gene content at each of the three codon positions (GC1, GC2, and GC3, collectively termed GCx) to instances of a variable GC-rich motif that underlies double strand break (DSB) hotspots and to meiocyte-specific gene expression. Surprisingly, GCx bimodality in maize cannot be fully explained by the codon wobble hypothesis. High GCx genes show a strong overlap with the DSB hotspot motif, possibly providing a mechanism for the high evolutionary rates seen in these genes. On the other hand, genes that are turned on in meiosis (early prophase I) are biased against both high GCx genes and genes with the DSB hotspot motif, possibly allowing important meiotic genes to avoid DSBs. Our data suggests a strong link between the GC-rich motif underlying DSB hotspots and high GCx genes. PMID:27713757

  7. Ectopic mitotic recombination in Drosophila probed with bacterial beta-galactosidase gene-based reporter transgenes.

    PubMed Central

    Bärtsch, S; Dücker, K; Würgler, F E; Sengstag, C

    1997-01-01

    Plasmids were constructed to investigate homologous mitotic recombination in Drosophila cells. Heteroalleles containing truncated but overlapping segments of the bacterial beta-galactosidase gene (lacZ) were positioned either on separate plasmids or as direct repeats on the same chromosome. Recombination reconstituted a functional lacZgene leading to expression of LacZ+activity detectable by histochemical staining. High extrachromosomal recombination (ECR) frequencies between unlinked heteroalleles were observed upon transient co-transfection into Drosophila melanogaster Schneider line 2 (S2) cells. Stably transfected cells containing the lacZ heteroalleles linked on a chromosome exhibited intrachromosomal recombination (ICR) frequencies two orders of magnitude lower than ECR frequencies. Recombination was inducible by exposing the cells to ethyl methanesulphonate or mitomycin C. Recombination products were characterized by multiplex PCR analysis and unequal sister chromatid recombination was found as the predominant mechanism reconstituting the lacZ gene. To investigate recombination in vivo imaginal disc cells from transgenic larvae carrying the reporter gene on the X chromosome were isolated and stained for LacZ+ activity. The presence of a few LacZ+ clones indicated that mitotic recombination events occurred at frequencies two orders of magnitude lower than the corresponding event in cultured cells and late during larval development. PMID:9380517

  8. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    PubMed

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  9. [Construction and expression of recombinant adeno-associated virus vector containing HSV1-TK gene].

    PubMed

    Ding, Zhi-xiang; Tan, Qian; Liu, Shuang-zhen; Liu, Dan; Li, Zhong-qing; Peng, Jian-qiang

    2008-03-01

    To construct the recombinant adeno-associated virus(rAAV) vector plasmid pSNAV2.0-TK containing HSV1-TK gene, to produce recombinant adeno-associated virus rAAV2/HSV1-TK, and to detect the integration and expression of HSV1-TK gene in lens epithelial cells transfected by rAAV2/HSV1-TK, and to provide foundation for gene therapy of posterior capsular opacification. The recombinant vector plasmid constructed by gene recombinant technology was analyzed by PCR and restriction enzyme digestion. The cell strain BHK-21/TK was screened by G418 after the plasmid was transfected into BHK-21 cells,with the helper virus HSV1-rc/UL2 to produce the recombinant virus rAAV2/HSV1-TK. The purity of rAAV2/HSV1-TK was detected by SDS-PAGE and HPLC, and the titre of rAAV2/HSV1-TK was observed by dot blot hybridization. The HSV1-TK gene in lens epithelial cells transfected by rAAV2/HSV-TK was investigated by PCR and RT-PCR. The recombinant plasmid proved successful by PCR and restriction enzyme digestion. The recombinant virus rAAV2/HSV1-TK was produced successfully and its titre was 1 x 10(12) v.g./mL by dot blot hybridization. The HSV1-TK gene was integrated and expressed in lens epithelial cells. The recombinant adeno-associated virus vector plasmid containing HSV1-TK gene is successfully constructed, and high titre recombinant adeno-associated virus (rAAV2/HSV1-TK) is obtained. The HSV1-TK gene in lens epithelial cells is expressed after being transfected by rAAV2/HSV1-TK.

  10. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: Susceptibility vs. functionality of critical quality attributes.

    PubMed

    Haberger, Markus; Bomans, Katrin; Diepold, Katharina; Hook, Michaela; Gassner, Jana; Schlothauer, Tilman; Zwick, Adrian; Spick, Christian; Kepert, Jochen Felix; Hienz, Brigitte; Wiedmann, Michael; Beck, Hermann; Metzger, Philipp; Mølhøj, Michael; Knoblich, Constanze; Grauschopf, Ulla; Reusch, Dietmar; Bulau, Patrick

    2014-01-01

    Modifications like asparagine deamidation, aspartate isomerization, methionine oxidation, and lysine glycation are typical degradations for recombinant antibodies. For the identification and functional evaluation of antibody critical quality attributes (CQAs) derived from chemical modifications in the complementary-determining regions (CDRs) and the conserved regions, an approach employing specific stress conditions, elevated temperatures, pH, oxidizing agents, and forced glycation with glucose incubation, was applied. The application of the specific stress conditions combined with ion exchange chromatography, proteolytic peptide mapping, quantitative liquid chromatography mass spectrometry, and functional evaluation by surface plasmon resonance analysis was adequate to identify and functionally assess chemical modification sites in the CDRs of a recombinant IgG1. LC-Met-4, LC-Asn-30/31, LC-Asn-92, HC-Met-100c, and HC Lys-33 were identified as potential CQAs. However, none of the assessed degradation products led to a complete loss of functionality if only one light or heavy chain of the native antibody was affected.

  11. Serum immunoglobulin G4 antibodies to the recombinant antigen, Ll-SXP-1, are highly specific for Loa loa infection.

    PubMed

    Klion, Amy D; Vijaykumar, Aarthi; Oei, Tamara; Martin, Brian; Nutman, Thomas B

    2003-01-01

    The clinical manifestations and geographic distribution of loiasis overlap with those of other human filarial parasites, presenting challenges in the specific diagnosis of loiasis that may lead to delays in appropriate therapy. A recombinant antigen (Ll-SXP-1), preferentially recognized by serum samples from experimentally infected rhesus monkeys, was identified from a Loa loa L3 cDNA library. IgG4 antibody reactivity to purified Ll-SXP-1 was assessed by means of ELISA, using serum samples from patients with loiasis, lymphatic filariasis, onchocerciasis, mansonellosis, or other helminthiases and healthy control subjects. The assay was 56% sensitive and 98% specific for loiasis. Antibody reactivity was detectable before microfilaremia in experimentally infected rhesus monkeys and declined (but did not disappear) after diethylcarbamazine therapy in infected patients. IgG4 antibodies to recombinant Ll-SXP-1 are a highly specific marker of L. loa infection and may be useful for the diagnostic evaluation of persons with filariasis of unclear etiology.

  12. Antibody response and protective immunity of chickens vaccinated with booster dose of recombinant oil-adjuvanted Leucocytozoon caulleryi subunit vaccine.

    PubMed

    Umali, Dennis V; Ito, Akira; Del Valle, Fletcher P; Shirota, Kazutoshi; Katoh, Hiromitsu

    2014-12-01

    Leucocytozoon caulleryi is an economically important poultry pathogen that causes subclinical to fatal disease in chickens. Because of limited preventive and treatment options against this disease, an oil-adjuvanted recombinant vaccine (O-rR7) targeting the R7 protein of L. caulleryi second-generation schizonts was developed. Different vaccination programs, namely, single vaccination at 45 days (0.1-ml dose), single vaccination at 130 days (0.25 ml), and initial vaccination at 45 days (0.1 ml) followed by a booster dose at 130 days (0.25 ml) were explored to compare the effects of single and booster vaccination on antibody response, duration of protective immunity, and degree of clinical signs after experimental L. caulleryi infection. Of the three treatments groups, initial vaccination at 45 days followed by a booster vaccination at 130 days of age resulted to rapid increase in antibody titers, which persisted for up to 182 days. Antibody titers reached peak values 35 days and 14 days after initial and booster vaccination, respectively. In comparison, single vaccination at 45 days of age resulted in production of antibodies above 1600 ELISA units for 56 days postvaccination, and single vaccination at 130 days of age produced peak antibody titers 35 days postvaccination, which remained above 1600 ELISA units for 126 days. Experimental infection of L. caulleryi at 256 days, when antibody titers had waned, did not result to severe clinical disease in chickens that received booster vaccination, whereas mild to severe disease was observed in chickens that received a single vaccination. Evaluation of immune response at 15 and 21 days postinfection showed that chickens that received booster vaccination had a twofold increase (P < 0.01) in antibody titers as compared to those receiving a single vaccination. Administering booster shots of O-rR7 is therefore recommended, especially in farms located in areas where Leucocytozoon is endemic.

  13. Generation of recombinant single-chain antibodies neutralizing the cytolytic activity of vaginolysin, the main virulence factor of Gardnerella vaginalis.

    PubMed

    Pleckaityte, Milda; Mistiniene, Edita; Lasickiene, Rita; Zvirblis, Gintautas; Zvirbliene, Aurelija

    2011-11-03

    Gardnerella vaginalis is identified as the predominant colonist of the vaginal tract in women with bacterial vaginosis. Vaginolysin (VLY) is a protein toxin released by G. vaginalis. VLY possesses cytolytic activity and is considered as a main virulence factor of G. vaginalis. Inhibition of VLY-mediated cell lysis by antibodies may have important physiological relevance. Single-chain variable fragments of immunoglobulins (scFvs) were cloned from two hybridoma cell lines producing neutralizing antibodies against VLY and expressed as active proteins in E. coli. For each hybridoma, two variants of anti-VLY scFv consisting of either VL-VH or VH-VL linked with a 20 aa-long linker sequence (G₄S)₄ were constructed. Recovery of scFvs from inclusion bodies with subsequent purification by metal-chelate chromatography resulted in VLY-binding proteins that were predominantly monomeric. The antigen-binding activity of purified scFvs was verified by an indirect ELISA. The neutralizing activity was investigated by in vitro hemolytic assay and cytolytic assay using HeLa cell line. Calculated apparent Kd values and neutralizing potency of scFvs were in agreement with those of parental full-length antibodies. VH-VL and VL-VH variants of scFvs showed similar affinity and neutralizing potency. The anti-VLY scFvs derived from hybridoma clone 9B4 exhibited high VLY-neutralizing activity both on human erythrocytes and cervical epithelial HeLa cells. Hybridoma-derived scFvs with VLY-binding activity were expressed in E. coli. Recombinant anti-VLY scFvs inhibited VLY-mediated cell lysis. The monovalent scFvs showed reduced affinity and neutralizing potency as compared to the respective full-length antibodies. The loss of avidity could be restored by generating scFv constructs with multivalent binding properties. Generated scFvs is the first example of recombinant single-chain antibodies with VLY-neutralizing activity produced in prokaryote expression system. G. vaginalis caused

  14. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination*

    PubMed Central

    Zhang, Qiang; Chen, Qi-he; Fu, Ming-liang; Wang, Jin-ling; Zhang, Hong-bo; He, Guo-qing

    2008-01-01

    The bglS gene encoding endo-l,3-1,4-β-glucanase from Bacillus subtilis was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone α-factor (MFα1S), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-l,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-l,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-l,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer. PMID:18600782

  15. Accurate assessment of intragenic recombination frequency within the Duchenne muscular dystrophy gene.

    PubMed

    Abbs, S; Roberts, R G; Mathew, C G; Bentley, D R; Bobrow, M

    1990-08-01

    Polymorphic loci that lie at the two extremities of the Duchenne/Becker muscular dystrophy (DMD/BMD) gene have been used to estimate intragenic recombination rates. Multipoint linkage analysis of the CEPH panel of families suggests a total intragenic recombination frequency of nearly 0.12 (confidence intervals 0.041-0.226) over the genomic length of approximately 2 Mb.

  16. Gene evolutionary trajectories and GC patterns driven by recombination in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another in...

  17. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.

    PubMed

    Li, Jin; Stoddard, Thomas J; Demorest, Zachary L; Lavoie, Pierre-Olivier; Luo, Song; Clasen, Benjamin M; Cedrone, Frederic; Ray, Erin E; Coffman, Andrew P; Daulhac, Aurelie; Yabandith, Ann; Retterath, Adam J; Mathis, Luc; Voytas, Daniel F; D'Aoust, Marc-André; Zhang, Feng

    2016-02-01

    Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked β(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and β(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.

  18. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses.

  19. Recombinative events of the T cell antigen receptor delta gene in peripheral T cell lymphomas.

    PubMed Central

    Kanavaros, P; Farcet, J P; Gaulard, P; Haioun, C; Divine, M; Le Couedic, J P; Lefranc, M P; Reyes, F

    1991-01-01

    Recombinative events of the T cell antigen receptor (TCR) delta-chain gene were studied in 37 cases of peripheral T cell lymphoma (PTCL) and related to their clinical presentation and the expression of the alpha beta or gamma delta heterodimers as determined by immunostaining of frozen tissue samples. There were 22 cases of alpha beta, 5 cases of gamma delta, and 10 cases of silent TCR expressing neither the alpha beta nor gamma delta TCR. 5 different probes were used to examine the delta locus. The 22 cases of alpha beta PTCL displayed biallelic and monoallelic deletions; a monoallelic V delta 1 J delta 1 rearrangement was observed in 1 case and a monoallelic germ line configuration in 7 cases. The 5 cases of gamma delta PTCL displayed biallelic rearrangements: the productive rearrangements could be ascribed to V delta 1J delta 1 joining in 3 cases and VJ delta 1 joining in 2 cases according to the combined pattern of DNA hybridization with the appropriate probes and of cell reactivity with the TCR delta-1, delta TCS-1, and anti-V delta 2 monoclonal antibodies. In the VJ delta 1 joining, the rearranged V segments were located between V delta 1 and V delta 2. Interestingly, in the third group of 10 cases of silent PTCL, 5 cases were found to have a TCR gene configuration identical to that in the TCR alpha beta PTCL, as demonstrated by biallelic delta gene deletion. These 5 cases were CD3 positive. The 5 remaining cases showed a monoallelic delta gene rearrangement with a monoallelic germ line configuration in 4 and a monoallelic deletion in 1. Four of these cases were CD3 negative, which was consistent with an immature genotype the TCR commitent of which could not be ascertained. Finally, TCR gamma delta PTCL consisted of a distinct clinical morphological and molecular entity whereas TCR alpha beta and silent PTCL had a similar presentation. Images PMID:1991851

  20. Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes IgAD and CVID.

    PubMed

    Offer, Steven M; Pan-Hammarström, Qiang; Hammarström, Lennart; Harris, Reuben S

    2010-08-18

    Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSalpha (MSH2/MSH6) and MutLalpha (PMS2/MLH1). Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype. Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X), confers increased sensitivity to ionizing radiation. Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.

  1. Increased expression in vivo and in vitro of foreign genes directed by A-type inclusion body hybrid promoters in recombinant vaccinia viruses.

    PubMed Central

    Funahashi, S; Itamura, S; Iinuma, H; Nerome, K; Sugimoto, M; Shida, H

    1991-01-01

    We constructed A-type inclusion body (ATI) hybrid promoters, that is, late ATI promoters followed by tandemly repeated early regions of the promoter for the 7.5-kDa protein (the 7.5-kDa promoter). The repetition of the whole early promoter sequence of the 7.5-kDa gene, including the upstream consensus sequence and initiation region, efficiently increased the early expression of the bacterial chloramphenicol acetyltransferase gene in recombinant vaccinia virus. Recombinant vaccinia virus could express influenza virus hemagglutinin via the hybrid promoter more efficiently, induced higher levels of neutralizing antibody and cytotoxic T lymphocytes, and consequently protected mice more efficiently against challenge with influenza virus than did recombinant vaccinia virus containing the widely used 7.5-kDa promoter. Images PMID:1654453

  2. Construction of a gene library from Azospirillum brasilense and characterization of a recombinant containing the nif structural genes.

    PubMed

    Schrank, I S; Zaha, A; de Araújo, E F; Santos, D S

    1987-01-01

    1. We have constructed a gene library, from Azospirillum brasilense using the vector EMBL4. 2. A recombinant containing the nif structural genes from A. brasilense was isolated and characterized. This recombinant contains a DNA insert of about 15 kilobases (kb) which gives rise to five fragments after cleavage with EcoRI. Only one of the DNA fragments (6.5 kb) hybridized to the nifHDK genes of Klebsiella pneumoniae. 3. The organization of the nif genes in this DNA fragment was determined using different DNA segments containing the nifH, nifK or nifD genes of K. pneumoniae as probes.

  3. Expression and Characterization of the Extracellular Domain of Human HER2 from Escherichia Coli, and Production of Polyclonal Antibodies Against the Recombinant Proteins.

    PubMed

    Sun, Yong; Feng, Xue; Qu, Jiao; Han, Wenqi; Liu, Zi; Li, Xu; Zou, Ming; Zhen, Yuhong; Zhu, Jie

    2015-06-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor (EGFR) family. In this study, the whole extracellular domain gene of HER2 was amplified by RT-PCR from human breast cancer cell line SK-BR-3. The genes of membrane-distal region (A) and membrane proximal region (B) of HER2 extracellular domain were amplified from the cloned template, and then inserted into the expression vector pET-28a and pET-30a, respectively. The recombinant expression vectors were transformed into Escherichia coli BL21 (DE3) cells and induced by isopropyl-b-D-thiogalactopyranoside (IPTG) for expression of proteins His-A and His-B. The expressed proteins were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. The optimization of culture conditions led us to accomplish the recombinant protein induction with 1.0 mM IPTG at 37 °C for 8 h, and both proteins were expressed in the insoluble form. Both proteins were purified under the denaturing condition using Ni-NTA sepharose column. Balb/c mice were immunized with the purified proteins and then effectively produced polyclonal antibodies, which reached to a relatively high titer by ELISA testing and had good specificity by western blot detection. The HER2 ECD proteins His-A and His-B could be expressed in E. coli and were suitable for production of high titer antibodies against HER2 ECD.

  4. Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes.

    PubMed Central

    Stern, D B; Palmer, J D

    1984-01-01

    Several plant mitochondrial genomes contain repeated sequences that are postulated to be sites of homologous intragenomic recombination (1-3). In this report, we have used filter hybridizations to investigate sequence relationships between the cloned mitochondrial DNA (mtDNA) recombination repeats from turnip, spinach and maize and total mtDNA isolated from thirteen species of angiosperms. We find that strong sequence homologies exist between the spinach and turnip recombination repeats and essentially all other mitochondrial genomes tested, whereas a major maize recombination repeat does not hybridize to any other mtDNA. The sequences homologous to the turnip repeat do not appear to function in recombination in any other genome, whereas the spinach repeat hybridizes to reiterated sequences within the mitochondrial genomes of wheat and two species of pokeweed that do appear to be sites of recombination. Thus, although intragenomic recombination is a widespread phenomenon in plant mitochondria, it appears that different sequences either serve as substrates for this function in different species, or else surround a relatively short common recombination site which does not cross-hybridize under our experimental conditions. Identified gene sequences from maize mtDNA were used in heterologous hybridizations to show that the repeated sequences implicated in recombination in turnip and spinach/pokeweed/wheat mitochondria include, or are closely linked to genes for subunit II of cytochrome c oxidase and 26S rRNA, respectively. Together with previous studies indicating that the 18S rRNA gene in wheat mtDNA is contained within a recombination repeat (3), these results imply an unexpectedly frequent association between recombination repeats and plant mitochondrial genes. Images PMID:6473104

  5. Highly specific confirmatory western blot test for African swine fever virus antibody detection using the recombinant virus protein p54.

    PubMed

    Alcaraz, C; Rodriguez, F; Oviedo, J M; Eiras, A; De Diego, M; Alonso, C; Escribano, J M

    1995-03-01

    A Western blot technique using a recombinant protein has been developed to confirm positive results obtained in African swine fever (ASF)-specific antibody detection by ELISA. The new confirmatory Western blot is based on the use of protein p54, one of the most antigenic ASF virus structural proteins, expressed in Escherichia coli fused to the N-terminus of MS2 polymerase. The recombinant Western blot assay was highly specific and equally sensitive for ASF virus-infected pigs detection as the conventional Western blot, which uses virus-induced proteins ranging in molecular weight between 23 and 35 kDa. The novel Western blot assay provides a simpler interpretation of the test, eliminates the possibility of false-positive reactions produced by cellular compounds that contaminate the antigen employed in the conventional technique, and avoids the use of live virus in antigen production.

  6. Gene flow and selection interact to promote adaptive divergence in regions of low recombination.

    PubMed

    Samuk, Kieran; Owens, Gregory L; Delmore, Kira E; Miller, Sara E; Rennison, Diana J; Schluter, Dolph

    2017-09-01

    Adaptation to new environments often occurs in the face of gene flow. Under these conditions, gene flow and recombination can impede adaptation by breaking down linkage disequilibrium between locally adapted alleles. Theory predicts that this decay can be halted or slowed if adaptive alleles are tightly linked in regions of low recombination, potentially favouring divergence and adaptive evolution in these regions over others. Here, we compiled a global genomic data set of over 1,300 individual threespine stickleback from 52 populations and compared the tendency for adaptive alleles to occur in regions of low recombination between populations that diverged with or without gene flow. In support of theory, we found that putatively adaptive alleles (FST and dXY outliers) tend to occur more often in regions of low recombination in populations where divergent selection and gene flow have jointly occurred. This result remained significant when we employed different genomic window sizes, controlled for the effects of mutation rate and gene density, controlled for overall genetic differentiation, varied the genetic map used to estimate recombination and used a continuous (rather than discrete) measure of geographic distance as proxy for gene flow/shared ancestry. We argue that our study provides the first statistical evidence that the interaction of gene flow and selection biases divergence toward regions of low recombination. © 2017 John Wiley & Sons Ltd.

  7. Eliciting an antibody response against a recombinant TSH containing fusion protein.

    PubMed

    Mard-Soltani, Maysam; Rasaee, Mohamad Javad; Sheikhi, AbdolKarim; Hedayati, Mehdi

    2016-10-27

    Designing novel antigens to rise specific antibodies for Thyroid Stimulating Hormone (TSH) detection is of great significance. A novel fusion protein consisting of the C termini sequence of TSH beta subunit and a fusion sequence was designed and produced for rabbit immunization. Thereafter, the produced antibodies were purified and characterized for TSH detection. Our results indicate that the produced antibody is capable of sensitive and specific detection of TSH with low cross reactivity. This study underscores the applicability of designed fusion protein for specific and sensitive polyclonal antibody production and the importance of selecting an amenable region of the TSH for immunization.

  8. Recombination rates of Streptococcus pneumoniae isolates with both erm(B) and mef(A) genes.

    PubMed

    Lee, Ji-Young; Song, Jae-Hoon; Ko, Kwan Soo

    2010-08-01

    Erythromycin-resistant Streptococcus pneumoniae isolates containing both erm(B) and mef(A) genes have a higher rate of multidrug resistance (MDR). We investigated the relationships between the presence of erythromycin resistance determinants and the recombination rate. We determined the mutation and recombination frequencies of 46 S. pneumoniae isolates, which included 19 with both erm(B) and mef(A), nine with only erm(B), six with only mef(A), and 11 erythromycin-susceptible isolates. Mutation frequency values were estimated as the number of rifampin-resistant colonies as a proportion of total viable count. Genotypes and serotypes of isolates with the hyper-recombination phenotype were determined. Twelve S. pneumoniae isolates were hypermutable and four isolates were determined to have hyper-recombination frequency. Streptococcus pneumoniae isolates with both erm(B) and mef(A) genes did not show a high mutation frequency. In contrast, all isolates with a hyper-recombination phenotype contained both erm(B) and mef(A) genes. In addition, the recombination rate of isolates with both erm(B) and mef(A) genes was statistically higher than the rate of other isolates. The dual presence of erm(B) and mef(A) genes in some pneumococcal isolates may be associated with high recombination frequency. This may be one of the reasons for the frequent emergence of MDR in certain pneumococcal isolates.

  9. Reciprocal and Nonreciprocal Recombination at the Glucocerebrosidase Gene Region: Implications for Complexity in Gaucher Disease

    PubMed Central

    Tayebi, Nahid; Stubblefield, Barbara K.; Park, Joseph K.; Orvisky, Eduard; Walker, Jamie M.; LaMarca, Mary E.; Sidransky, Ellen

    2003-01-01

    Gaucher disease results from an autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase. The glucocerebrosidase gene is located in a gene-rich region of 1q21 that contains six genes and two pseudogenes within 75 kb. The presence of contiguous, highly homologous pseudogenes for both glucocerebrosidase and metaxin at the locus increases the likelihood of DNA rearrangements in this region. These recombinations can complicate genotyping in patients with Gaucher disease and contribute to the difficulty in interpreting genotype-phenotype correlations in this disorder. In the present study, DNA samples from 240 patients with Gaucher disease were examined using several complementary approaches to identify and characterize recombinant alleles, including direct sequencing, long-template polymerase chain reaction, polymorphic microsatellite repeats, and Southern blots. Among the 480 alleles studied, 59 recombinant alleles were identified, including 34 gene conversions, 18 fusions, and 7 downstream duplications. Twenty-two percent of the patients evaluated had at least one recombinant allele. Twenty-six recombinant alleles were found among 310 alleles from patients with type 1 disease, 18 among 74 alleles from patients with type 2 disease, and 15 among 96 alleles from patients with type 3 disease. Several patients carried two recombinations or mutations on the same allele. Generally, alleles resulting from nonreciprocal recombination (gene conversion) could be distinguished from those arising by reciprocal recombination (crossover and exchange), and the length of the converted sequence was determined. Homozygosity for a recombinant allele was associated with early lethality. Ten different sites of crossover and a shared pentamer motif sequence (CACCA) that could be a hotspot for recombination were identified. These findings contribute to a better understanding of genotype-phenotype relationships in Gaucher disease and may provide insights into the mechanisms

  10. Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease.

    PubMed

    Tayebi, Nahid; Stubblefield, Barbara K; Park, Joseph K; Orvisky, Eduard; Walker, Jamie M; LaMarca, Mary E; Sidransky, Ellen

    2003-03-01

    Gaucher disease results from an autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase. The glucocerebrosidase gene is located in a gene-rich region of 1q21 that contains six genes and two pseudogenes within 75 kb. The presence of contiguous, highly homologous pseudogenes for both glucocerebrosidase and metaxin at the locus increases the likelihood of DNA rearrangements in this region. These recombinations can complicate genotyping in patients with Gaucher disease and contribute to the difficulty in interpreting genotype-phenotype correlations in this disorder. In the present study, DNA samples from 240 patients with Gaucher disease were examined using several complementary approaches to identify and characterize recombinant alleles, including direct sequencing, long-template polymerase chain reaction, polymorphic microsatellite repeats, and Southern blots. Among the 480 alleles studied, 59 recombinant alleles were identified, including 34 gene conversions, 18 fusions, and 7 downstream duplications. Twenty-two percent of the patients evaluated had at least one recombinant allele. Twenty-six recombinant alleles were found among 310 alleles from patients with type 1 disease, 18 among 74 alleles from patients with type 2 disease, and 15 among 96 alleles from patients with type 3 disease. Several patients carried two recombinations or mutations on the same allele. Generally, alleles resulting from nonreciprocal recombination (gene conversion) could be distinguished from those arising by reciprocal recombination (crossover and exchange), and the length of the converted sequence was determined. Homozygosity for a recombinant allele was associated with early lethality. Ten different sites of crossover and a shared pentamer motif sequence (CACCA) that could be a hotspot for recombination were identified. These findings contribute to a better understanding of genotype-phenotype relationships in Gaucher disease and may provide insights into the mechanisms

  11. [Construction of recombinant adenovirus vector of calcitonin gene-related peptide gene and transfection to neonatal rat cardiomyocytes].

    PubMed

    Sun, Zhi-hui; Han, Jie; Shao, Lei; Wang, Li-hong; Song, Jun-xian; Wei, Zhong-hai; Zheng, Liang-rong

    2010-05-01

    To construct a recombinant adenovirus vector of calcitonin gene-related peptide (CGRP) by AdEasy system and to validate its expression in myocardial cells. The full-length of CGRP gene cDNA was acquired by RT-PCR and cloned into pShuttle-CMV. After linearization with Pme I, the recombinant plasmid (pShuttle-CMV-CGRP) was transformed into E.coli BJ5183 by electroporation to construct the recombinant adenovirus plasmid AdEasy-pShuttle-CGRP. The recombinant adenovirus plasmids were transformed into E.coli XL10-Gold cells to be amplified. Then the recombinant plasmid was digested with Pac I and transfected to 293 cells to package recombinant adenovirus particles. PCR technique was used to detect target gene. The recombinant adenovirus particles were purified by CsC1 density gradient. The purified recombinant adenovirus was transfected to neonatal rat cardiomyocytes,and the recombinant adenovirus production was observed by fluorescent microscope. Expression of CGRP in hearts 7 days after intravenous delivery of adenoviral vectors AV-CGRP was determined by radioimmunoassay. The RT-PCR products confirmed a full-length cDNA of CGRP gene in PUC(57) by sequencing. The corresponding double endonuclease and PCR analysis certified the successful cloning of the gene into the pShuttle-CMV. The recombinant adenovirus plasmid AdEasy-pShuttle-CGRP was digested by Pac I endonuclease to form the typical DNA segments, whose length was about 3 kb and 30 kb. PCR analysis and fluorescent microscope observation confirmed that the CGRP gene was inserted into the adenovirus vector with very strong power of transfection. The recombinant adenovirus particles infected neonatal rat cardiomyocytes successfully. Radioimmunoassay showed that delivery of AV-CGRP significantly increased the expression of CGRP in mice hearts. The recombinant adenovirus vector of CGRP gene has been constructed,and it can infect neonatal rat cardiomyocytes successfully. Somatic delivery of CGRP gene can significantly

  12. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.

    PubMed

    Carmona, Lina Marcela; Schatz, David G

    2017-06-01

    The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented. © 2016 Federation of European Biochemical Societies.

  13. Recombinant HT{sub m4} gene, protein and assays

    DOEpatents

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  14. [The phenomenon of gene linkage and recombination in the paternity test].

    PubMed

    Cheng, D L; Yan, P H; Liu, Y; Chen, J

    1999-02-01

    The phenomenon of gene linkage and recombination may nearly be overlooked in paternity test of one single child, but it is likely encountered in paternity test of twin or more. In a case of paternity test, the results of 17 items including eight DNA loci were analyzed and the phenomenon of gene linkage and recombination was discussed in detail. This phenomenon should be brought into necessary attention in the paternity test.

  15. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro.

    PubMed

    Bartolini, Erika; Ianni, Elvira; Frigimelica, Elisabetta; Petracca, Roberto; Galli, Giuliano; Berlanda Scorza, Francesco; Norais, Nathalie; Laera, Donatello; Giusti, Fabiola; Pierleoni, Andrea; Donati, Manuela; Cevenini, Roberto; Finco, Oretta; Grandi, Guido; Grifantini, Renata

    2013-01-01

    Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform.

  16. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

    PubMed Central

    Bartolini, Erika; Ianni, Elvira; Frigimelica, Elisabetta; Petracca, Roberto; Galli, Giuliano; Berlanda Scorza, Francesco; Norais, Nathalie; Laera, Donatello; Giusti, Fabiola; Pierleoni, Andrea; Donati, Manuela; Cevenini, Roberto; Finco, Oretta; Grandi, Guido; Grifantini, Renata

    2013-01-01

    Background Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform. PMID:24009891

  17. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    PubMed Central

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  18. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite.

    PubMed

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-07-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Pharmacological concentrations of recombinant factor VIIa restore hemostasis independent of tissue factor in antibody-induced hemophilia mice.

    PubMed

    Keshava, S; Sundaram, J; Rajulapati, A; Pendurthi, U R; Rao, L V M

    2016-03-01

    ESSENTIALS: The role of tissue factor (TF) in recombinant factor VIIa (rFVIIa) therapy in hemophilia is unclear. An acquired mouse hemophilia model with very low or normal levels of human TF was used in the study. rFVIIa is equally effective in correcting the bleeding in mice expressing low or normal levels of TF. Pharmacological doses of rFVIIa restore hemostasis in hemophilia independent of TF. Recombinant factor VIIa (rFVIIa) has been used widely for treating hemophilia patients with inhibitory autoantibodies against factor VIII or IX. Its mechanism of action is not entirely known. A majority of in vitro studies suggested that pharmacological concentrations of rFVIIa restore hemostasis in hemophilia in a phospholipid-dependent manner, independent of tissue factor (TF). However, a few studies suggested that a TF-dependent mechanism has a primary role in correction of bleeding by rFVIIa in hemophilia patients. Here, we investigated the potential contribution of TF in rFVIIa-induced hemostasis in hemophilia employing a model system of FVIII antibody-induced hemophilia in TF transgenic mice. Mice expressing low levels of human TF (LTF mice), mice expressing relatively high levels of human TF (HTF mice) and wild-type mice (WT mice) had neutralizing anti-FVIII antibodies administered in order to induce hemophilia in these mice. The mice were then treated with varying concentrations of rFVIIa. rFVIIa-induced hemostasis was evaluated with the saphenous vein bleeding model. Administration of FVIII inhibitory antibodies induced the hemophilic bleeding phenotype in all three genotypes. rFVIIa administration rescued the bleeding phenotype in all three genotypes. No significant differences were observed in rFVIIa-induced correction of bleeding between LTF and HTF mice that had FVIII antibodies administered. Our results provide strong evidence supporting the suggestion that the hemostatic effect of pharmacological doses of rFVIIa stems from a TF-independent mechanism. © 2016

  20. Improved genetic stability of recombinant yellow fever 17D virus expressing a lentiviral Gag gene fragment.

    PubMed

    de Santana, Marlon G Veloso; Neves, Patrícia C C; dos Santos, Juliana Ribeiro; Lima, Noemia S; dos Santos, Alexandre A C; Watkins, David I; Galler, Ricardo; Bonaldo, Myrna C

    2014-03-01

    We have previously designed a method to construct viable recombinant Yellow Fever (YF) 17D viruses expressing heterologous polypeptides including part of the Simian Immunodeficiency Virus (SIV) Gag protein. However, the expressed region, encompassing amino acid residues from 45 to 269, was genetically unstable. In this study, we improved the genetic stability of this recombinant YF 17D virus by introducing mutations in the IRES element localized at the 5' end of the SIV gag gene. The new stable recombinant virus elicited adaptive immune responses similar to those induced by the original recombinant virus. It is, therefore, possible to increase recombinant stability by removing functional motifs from the insert that may have deleterious effects on recombinant YF viral fitness. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Development of a flow cytometric immunoassay for recombinant bovine somatotropin-induced antibodies in serum of dairy cows.

    PubMed

    Smits, Nathalie Gabriëlle Esther; Bremer, Maria Gabriëlle Eleonore Gerarda; Ludwig, Susann Katrina Julie; Nielen, Michel Wilhelmus Franciscus

    2012-05-01

    Administration of recombinant bovine somatotropin (rbST) to enhance milk production in dairy cows is banned within the European Union. Therefore, methods for pinpointing rbST abuse are required. Due to the problematic detection of rbST itself in serum, methods are also focused on detecting changes in rbST-related biomarkers. In this study, a fast and easy-to-perform microsphere-based flow cytometric immunoassay (FCIA) for detection of rbST-induced antibodies in serum was developed. Until now, detection of rbST-induced antibodies was also problematic due to non-specific binding of serum proteins resulting in a high rate of false positive results. Therefore, five different sample preparation methods, i.e. dilution, octanoic acid precipitation, filtration, protein G purification, and a previously described generic FCIA sample preparation were critically compared to overcome non-specific binding to the microspheres. Only the generic FCIA sample pretreatment was effective in reducing non-specific binding. As a result, an absolute decision level for detecting rbST antibodies in serum of dairy cows was determined and its applicability was demonstrated. In accordance with biological expectations from literature, rbST antibodies were induced in three out of four rbST-treated dairy cows. These rbST-induced antibodies were successfully detected for up to 4 weeks after the last rbST treatment, whereas no false positive results were obtained for 27 untreated dairy cows. This is the first method, able to overcome the interference of serum proteins and therefore, can be applied with high confidence for screening unknown herds of cattle for rbST antibodies, an important biomarker for pinpointing at rbST abuse in cattle. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Oriented Immobilization of Antibodies through Recombinant Protein-G on Assembled Gold Nanorods for Label-Free Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Aguero Villarreal, Victor Efrain

    Conjugation of biomolecules on gold nanorod(GNR) surfaces is the basis for successful biosensing applications. Current functionalization methods are problematic as they are inefficient, they modify the antibody native structure and they do not orient the antibody on the sensor surface. Instead of the intensive surface modification of GNRs and random immobilization approach, a facile oriented immobilization method using recombinant protein-G(RPG) to functionalize any type of antibody on the GNR surface was developed. GNRs synthesized using the bi-surfactant seed-mediated growth method were covalently immobilized to the glass substrate using 10% MPTMS solution. A 21 x 18 x 9.7 mm PLA disposable custom-made chamber was implemented to serve as incubation site for all biomolecular reactions. A layer-by-layer approach was utilized to deposit the protein layers on the GNR surface. Anti-human IgG and anti-rabbit IgG were successfully oriented and immobilized on the GNR surface using a combination of thiol-PEG-biotin, streptavidin and biotinylated RPG molecules. The spectral response of the RPG biochip to 600 nM anti-human IgG was 12 times larger than covalent-modified biosensors. Fluorescence microscopy and fluorescence intensity confirmed antibody binding on the GNR surface. The RPG biochip increased the surface mass density of antibody by 80% in comparison to random immobilized techniques. The RPG biochip decreased the development cost by 307% with a net sensor worth of $3.21 dollars. Concentrations from 20 to 320 nM of human IgG were detected and the sensor surface was successfully regenerated. Developed immobilization technique clearly surpassed the antibody efficiency deposition of random methods.

  3. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies

    PubMed Central

    Fuchs, Sebastian P; Desrosiers, Ronald C

    2016-01-01

    Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized. PMID:28197421

  4. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design.

  5. Regeneration of Recombinant Antigen Microarrays for the Automated Monitoring of Antibodies against Zoonotic Pathogens in Swine Sera

    PubMed Central

    Meyer, Verena K.; Kober, Catharina; Niessner, Reinhard; Seidel, Michael

    2015-01-01

    The ability to regenerate immobilized proteins like recombinant antigens (rAgs) on surfaces is an unsolved problem for flow-based immunoassays on microarray analysis systems. The regeneration on microarray chip surfaces is achieved by changing the protein structures and desorption of antibodies. Afterwards, reactivation of immobilized protein antigens is necessary for reconstitution processes. Any backfolding should be managed in a way that antibodies are able to detect the protein antigens in the next measurement cycle. The regeneration of rAg microarrays was examined for the first time on the MCR3 flow-based chemiluminescence (CL) microarray analysis platform. The aim was to reuse rAg microarray chips in order to reduce the screening effort and costs. An antibody capturing format was used to detect antibodies against zoonotic pathogens in sera of slaughtered pigs. Different denaturation and reactivation buffers were tested. Acidic glycine-SDS buffer (pH 2.5) and 8 M guanidinium hydrochloride showed the best results in respect of denaturation efficiencies. The highest CL signals after regeneration were achieved with a carbonate buffer containing 10 mM DTT and 0.1% BSA for reactivation. Antibodies against Yersinia spp. and hepatitis E virus (HEV) were detected in swine sera on one immunochip over 4 days and 25 measurement cycles. Each cycle took 10 min for detection and regeneration. By using the rAg microarray chip, a fast and automated screening of antibodies against pathogens in sera of slaughtered pigs would be possible for zoonosis monitoring. PMID:25625908

  6. Recombinant N-Domain of Pregnancy-Specific Glycoprotein from E. coli Cells: Analysis of the Spectrum of Polyclonal Antibodies.

    PubMed

    Prokopenko, P G; Shkoporov, A N; Petrenko, O Yu; Efimov, B A; Negrebetskii, V V; Terent'ev, A A

    2015-11-01

    We studied antibody spectrum in antisera to IgG-like recombinant N-domain of pregnancyspecific glycoprotein-1 (rPSG-N) from E. coli cells. In three experimental series, the fraction of IgG antibodies from anti-rPSG-N sera was immobilized on 3 immunoadsorbents: by polymerization with glutaraldehyde, on glutaraldehyde activated biogel P-300, and on commercial CNBr-activated 4B sepharose. Retroplacental serum was incubated with immobilized antibodies to rPSG1-N, protein was eluted and tested in the precipitation test in standard test systems with PSG1, IgG, and human serum albumin. Three proteins were eluted from all 3 immunoadsorbents: PSG1, IgG, and human serum albumin, which demonstrated the spectrum of antibodies to 3 proteins present also in natural serum PSG1 complex. The proportions of PSG1 and IgG obtained in these experiments were similar to those in natural serum PSG1 complex, while the level of human serum albumin was significantly higher in natural PSG1 complex. Thus, we failed to obtain PSG1 monoprotein free from IgG and human serum albumin. Antigenic mosaicism of the polypeptide chain of IgG-like rPSG1-N relative to the antigenic polyvalence of the complex of three proteins present in bioactive preparation of natural serum PSG1 was discussed.

  7. High levels of IgG class antibodies to recombinant HSP60 kDa of Yersinia enterocolitica in sera of patients with uveitis

    PubMed Central

    Cancino-Diaz, J C; Vargas-Rodríguez, L; Grinberg-Zylberbaum, N; Reyes-López, M A; Domínguez-López, M L; Pablo-Velazquez, A; Cancino-Diaz, M E

    2004-01-01

    Aims: To determine the levels of IgG class antibodies to recombinant heat shock protein 60 kDa of Yersinia enterocolitica (rHSP60Ye), Klebsiella pneumoniae (rHSP60Kp), Escherichia coli (rHSP60Ec), Shigella flexneri (rHSP60Sf), and Streptococcus pyogenes (rHSP60Sp) in the serum of patients with HLA-B27 associated acute anterior uveitis (HLA-B27 associated AAU), idiopathic acute anterior uveitis (idiopathic AAU), pars planitis, Vogt-Koyanagi-Harada (VKH), and healthy subjects. Methods: The genes that code for HSP60Ye, HSP60Kp, HSP60Ec, HSP60Sf, and HSP60Sp were cloned by PCR from genomic DNA. The rHSPs were purified by affinity using a Ni-NTA resin. The serum levels of IgG class antibodies to rHSP60s were determined by ELISA in patients with uveitis (n = 42) and in healthy subjects (n = 25). Results: The majority of patients with uveitis had higher levels of IgG class antibodies to rHSP60Ye compared with levels of healthy subjects (p = 0.01), although these differences were only observed in the HLA-B27 associated AAU (p = 0.005) and in pars planitis patients (p = 0.001). The levels of IgG antibodies to the rHSP60Kp, rHSP60Sf, rHSP60Ec, and rHSP60Sp were similar in patients with uveitis and in healthy subjects (p>0.05). Conclusion: The results suggest that HSP60Ye could be involved in the aetiology of HLA-B27 associated AAU and pars planitis. PMID:14736785

  8. Spatially addressed combinatorial protein libraries for recombinant antibody discovery and optimization.

    PubMed

    Mao, Hongyuan; Graziano, James J; Chase, Tyson M A; Bentley, Cornelia A; Bazirgan, Omar A; Reddy, Neil P; Song, Byeong Doo; Smider, Vaughn V

    2010-11-01

    Antibody discovery typically uses hybridoma- or display-based selection approaches, which lack the advantages of directly screening spatially addressed compound libraries as in small-molecule discovery. Here we apply the latter strategy to antibody discovery, using a library of ∼10,000 human germline antibody Fabs created by de novo DNA synthesis and automated protein expression and purification. In multiplexed screening assays, we obtained specific hits against seven of nine antigens. Using sequence-activity relationships and iterative mutagenesis, we optimized the binding affinities of two hits to the low nanomolar range. The matured Fabs showed full and partial antagonism activities in cell-based assays. Thus, protein drug leads can be discovered using surprisingly small libraries of proteins with known sequences, questioning the requirement for billions of members in an antibody discovery library. This methodology also provides sequence, expression and specificity information at the first step of the discovery process, and could enable novel antibody discovery in functional screens.

  9. Characterization of dog allergens Can f 1 and Can f 2. 1. Preparation of their recombinant proteins and antibodies.

    PubMed

    Kamata, Yoichi; Miyanomae, Aki; Nakayama, Emiko; Miyanomae, Takeshi; Tajima, Tomoko; Hoshi, Hidenobu

    2007-01-01

    Recombinant dog allergens, rCan f 1 and rCan f 2, and their antibodies are good tools for the characterization of dog allergens in order to develop modern therapeutic and preventive methods for dog allergy. In this study, cDNA was synthesized from the mRNA of dog salivary glands and cloned into the pGEX4T vector. rCan f 1 and rCan f 2 containing glutathione S-transferase were prepared by an Escherichia coli expression system. The antibodies against the recombinant allergens were prepared in rabbit. The serum of patients with dog allergy was evaluated by ELISA and immunoblot, using the recombinant allergens, goat anti-human immunoglobulin (Ig) E (epsilon) labeled with biotin, and enzyme-labeled streptavidin. The binding of IgE in the serum of patients with dog allergy to dog saliva as a natural antigen was determined in the presence or absence of dog saliva, rCan f 1 and rCan f 2 as competitors. The anaphylactic potential of rCan f 1 and rCan f 2 was evaluated. The body temperature of the mice sensitized with rCan f 1 and rCan f 2 was monitored after intravenous injection of the allergens. The passive cutaneous anaphylaxis reaction was examined for rCan f 1 and rCan f 2. Dog salivary glands, dog saliva and dog hair/dander extracts were analyzed with antibodies by means of an immunoblot assay. The expression of the mRNA of Can f 1 and Can f 2 was verified in various dog tissues by reverse transcription polymerase chain reaction. The E. coli expression system revealed the yield of rCan f 1 and rCan f 2 in 36 and 30 mg/l of culture. The molecular weights of rCan f 1 and rCan f 2 were 18 and 20 kDa in SDS-PAGE, respectively. rCan f 1 and rCan f 2 were found to bind to specific IgE in the serum of dog allergy patients. The binding of IgE in the patient serum for dog saliva was partially inhibited in the presence of rCan f 1 and rCan f 2. These recombinant allergens showed positive signals in passive cutaneous anaphylaxis reaction and induced anaphylactic shock in the

  10. Immunogenic response to a recombinant pseudorabies virus carrying bp26 gene of Brucella melitensis in mice.

    PubMed

    Yao, Lan; Wu, Chang-Xian; Zheng, Ke; Xu, Xian-Jin; Zhang, Hui; Chen, Chuang-Fu; Liu, Zheng-Fei

    2015-06-01

    Brucellae are facultative intracellular bacterial pathogens of a zoonotic disease called brucellosis. Live attenuated vaccines are utilized for prophylaxis of brucellosis; however, they retain residual virulence to human and/or animals, as well as interfere with diagnosis. In this study, recombinant virus PRV ΔTK/ΔgE/bp26 was screened and purified. One-step growth curve assay showed that the titer of recombinant virus was comparable to the parent strain. Mice experiments showed the recombinant virus elicited high titer of humoral antibodies against Brucella detected by enzyme-linked immunosorbent assay and against PRV by serum neutralization test. The recombinant virus induced high level of Brucella-specific lymphocyte proliferation response and production of interferon gamma. Collectively, these data suggest that the bivalent virus was capable of inducing both humoral and cellular immunity, and had the potential to be a vaccine candidate to prevent Brucella and/or pseudorabies virus infections.

  11. Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps

    PubMed Central

    Bao, Yun-Juan; Shapiro, B. Jesse; Lee, Shaun W.; Ploplis, Victoria A.; Castellino, Francis J.

    2016-01-01

    Genomic recombination plays an important role in driving adaptive evolution and population differentiation in bacteria. However, controversy exists as to the effects of recombination on population diversity and differentiation, i.e., recombination is frequent enough to sweep through the population at selected gene loci (gene-specific sweeps), or the recombination rate is low without interfering genome-wide selective sweeps. Observations supporting either view are sparse. Pathogenic bacteria causing infectious diseases are promising candidates to provide observations of recombination. However, phenotype-associated differentiations are usually vague among them due to diverse disease manifestations. Here we report a population genomic study of the group A Streptococcus pyogenes (GAS), a human pathogen with highly recombining genomes. By employing a genome-wide association study on single nucleotide polymorphisms (SNPs), we demonstrate a phenotypic differentiation of GAS, represented by separate clustering of two sublineages associated with niche-specific infections, i.e., skin infection and pharyngitis-induced acute rheumatic fever. By quantifying SNPs associated with the differentiation in a statistical and phylogenetic context, we propose that the phenotype-associated differentiation arose through recombination-driven gene-specific sweeps, rather than genome-wide sweeps. Our work provides a novel paradigm of phenotype-associated differentiation induced by gene-specific sweeps in a human pathogen and has implications for understanding of driving forces of bacterial evolution. PMID:27821851

  12. Chimpanzees Immunized with Recombinant Soluble CD4 Develop Anti-Self CD4 Antibody Responses with Anti-Human Immunodeficiency Virus Activity

    NASA Astrophysics Data System (ADS)

    Watanabe, Mamoru; Boyson, Jonathan E.; Lord, Carol I.; Letvin, Norman L.

    1992-06-01

    In view of the efficiency with which human immunodeficiency virus replication can be blocked in vitro with anti-CD4 antibodies, the elicitation of an anti-CD4 antibody response through active immunization might represent a useful therapeutic strategy for AIDS. Here we demonstrate that immunization of chimpanzees with recombinant soluble human CD4 elicited an anti-CD4 antibody response. The elicited antibody bound self CD4 on digitonin-treated but not freshly isolated lymphocytes. Nevertheless, this antibody blocked human immunodeficiency virus replication in chimpanzee and human lymphocytes. These observations suggest that immunization with recombinant soluble CD4 from human immunodeficiency virus-infected humans may be feasible and therapeutically beneficial.

  13. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production.

    PubMed

    Noguchi, Chiemi; Araki, Yoshio; Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.

  14. Fusion of the Dhfr/Mtx and IR/MAR Gene Amplification Methods Produces a Rapid and Efficient Method for Stable Recombinant Protein Production

    PubMed Central

    Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone. PMID:23300841

  15. Antibody study in canine distemper virus nucleocapsid protein gene-immunized mice.

    PubMed

    Yuan, B; Li, X Y; Zhu, T; Yuan, L; Hu, J P; Chen, J; Gao, W; Ren, W Z

    2015-04-10

    The gene for the nucleocapsid (N) protein of canine distemper virus was cloned into the pMD-18T vector, and positive recombinant plasmids were obtained by enzyme digestion and sequencing. After digestion by both EcoRI and KpnI, the plasmid was directionally cloned into the eukaryotic expression vector pcDNA; the positive clone pcDNA-N was screened by electrophoresis and then transfected into COS-7 cells. Immunofluorescence analysis results showed that the canine distemper virus N protein was expressed in the cytoplasm of transfected COS-7 cells. After emulsification in Freund's adjuvant, the recombinant plasmid pcDNA-N was injected into the abdominal cavity of 8-week-old BABL/c mice, with the pcDNA original vector used as a negative control. Mice were immunized 3 times every 2 weeks. The blood of immunized mice was drawn 2 weeks after completing the immunizations to measure titer levels. The antibody titer in the pcDNA-N test was 10(1.62 ± 0.164), while in the control group this value was 10(0.52 ± 0.56), indicating that specific humoral immunity was induced in canine distemper virus nucleocapsid protein-immunized mice.

  16. Recombinant human antibody fragment against tetanus toxoid produced by phage display

    PubMed Central

    Neelakantam, B.; Sridevi, N. V.; Shukra, A. M.; Sugumar, P.; Samuel, S.

    2014-01-01

    Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen. PMID:24678405

  17. Global gene expression in recombinant and non-recombinant yeast Saccharomyces cerevisiae in three different metabolic states.

    PubMed

    Díaz, H; Andrews, B A; Hayes, A; Castrillo, J; Oliver, S G; Asenjo, J A

    2009-01-01

    Global gene expression of two strains of Saccharomyces cerevisiae, one recombinant (P+), accumulating large amounts of an intracellular protein Superoxide Dismutase (SOD) and one non-recombinant (P-) which does not contain the recombinant plasmid, were compared in batch culture during diauxic growth when cells were growing exponentially on glucose, when they were growing exponentially on ethanol, and in the early stationary phase when glycerol was being utilized. When comparing the gene expression for P- (and P+) during growth on ethanol to that on glucose (Eth/Gluc), overexpression is related to an increase in consumption of glycerol, activation of the TCA cycle, degradation of glycogen and metabolism of ethanol. Furthermore, 97.6% of genes (80 genes) involved in the central metabolic pathway are overexpressed. This is similar to that observed by DeRisi et al. [DeRisi, J.L., Iyer, V.R. & Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686.] but very different from was observed for Metabolic Flux Analysis (MFA), where the specific growth rate is lowered to ca. 40%, the fluxes in the TCA cycle are reduced to ca. 40% (to 30% in P+), glycolysis is reduced to virtually 0 and protein synthesis to ca. 50% (to 40% in P+). Clearly it is not possible to correlate in a simple or direct way, quantitative mRNA expression levels with cell function which is shown by the Metabolic Flux Analysis (MFA). When comparing the two strains in the 3 growth stages, 4 genes were found to be under or overexpressed in all cases. The products of all of these genes are expressed at the plasma membrane or cell wall of the yeast. While comparing the strains (P+/P-) when growing on glucose, ethanol and in the early stationary phase, many of the genes of the central metabolic pathways are underexpressed in P+, which is similar to the behaviour of the metabolic fluxes of both strains (MFA). Comparing the gene expression for P- (and

  18. Ubiquitination Events That Regulate Recombination of Immunoglobulin Loci Gene Segments

    PubMed Central

    Chao, Jaime; Rothschild, Gerson; Basu, Uttiya

    2014-01-01

    Programed DNA mutagenesis events in the immunoglobulin (Ig) loci of developing B cells utilize the common and conserved mechanism of protein ubiquitination for subsequent proteasomal degradation to generate the required antigen-receptor diversity. Recombinase proteins RAG1 and RAG2, necessary for V(D)J recombination, and activation-induced cytidine deaminase, an essential mutator protein for catalyzing class switch recombination and somatic hypermutation, are regulated by various ubiquitination events that affect protein stability and activity. Programed DNA breaks in the Ig loci can be identified by various components of DNA repair pathways, also regulated by protein ubiquitination. Errors in the ubiquitination pathways for any of the DNA double-strand break repair proteins can lead to inefficient recombination and repair events, resulting in a compromised adaptive immune system or development of cancer. PMID:24653725

  19. Intranasal Delivery of Recombinant Parvovirus-Like Particles Elicits Cytotoxic T-Cell and Neutralizing Antibody Responses

    PubMed Central

    Sedlik, C.; Dridi, A.; Deriaud, E.; Saron, M. F.; Rueda, P.; Sarraseca, J.; Casal, J. I.; Leclerc, C.

    1999-01-01

    We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4+ and CD8+ T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8+ T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8+ T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8+ T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration. PMID:10074120

  20. Intranasal delivery of recombinant parvovirus-like particles elicits cytotoxic T-cell and neutralizing antibody responses.

    PubMed

    Sedlik, C; Dridi, A; Deriaud, E; Saron, M F; Rueda, P; Sarraseca, J; Casal, J I; Leclerc, C

    1999-04-01

    We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4(+) and CD8(+) T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8(+) T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8(+) T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration.

  1. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Rozrolimupab, a mixture of 25 recombinant human monoclonal RhD antibodies, in the treatment of primary immune thrombocytopenia.

    PubMed

    Robak, Tadeusz; Windyga, Jerzy; Trelinski, Jacek; von Depka Prondzinski, Mario; Giagounidis, Aristoteles; Doyen, Chantal; Janssens, Ann; Alvarez-Román, María Teresa; Jarque, Isidro; Loscertales, Javier; Rus, Gloria Pérez; Hellmann, Andrzej; Jêdrzejczak, Wieslaw Wiktor; Kuliczkowski, Kazimierz; Golubovic, Lana M; Celeketic, Dusica; Cucuianu, Andrei; Gheorghita, Emanuil; Lazaroiu, Mihaela; Shpilberg, Ofer; Attias, Dina; Karyagina, Elena; Svetlana, Kalinina; Vilchevska, Kateryna; Cooper, Nichola; Talks, Kate; Prabhu, Mukhyaprana; Sripada, Prasad; Bharadwaj, T P R; Næsted, Henrik; Skartved, Niels J Ø; Frandsen, Torben P; Flensburg, Mimi F; Andersen, Peter S; Petersen, Jørgen

    2012-11-01

    Rozrolimupab, a recombinant mixture of 25 fully human RhD-specific monoclonal antibodies, represents a new class of recombinant human antibody mixtures. In a phase 1 or 2 dose escalation study, RhD(+) patients (61 subjects) with primary immune thrombocytopenia received a single intravenous dose of rozrolimupab ranging from 75 to 300 μg/kg. The primary outcome was the occurrence of adverse events. The principal secondary outcome was the effect on platelet levels 7 days after the treatment. The most common adverse events were headache and pyrexia, mostly mild, and reported in 20% and 13% of the patients, respectively, without dose relationship. Rozrolimupab caused an expected transient reduction of hemoglobin concentration in the majority of the patients. At the dose of 300 μg/kg platelet responses, defined as platelet count ≥ 30 × 10(9)/L and an increase in platelet count by > 20 × 10(9)/L from baseline were observed after 72 hours and persisted for at least 7 days in 8 of 13 patients (62%). Platelet responses were observed within 24 hours in 23% of patients and lasted for a median of 14 days. Rozrolimupab was well tolerated and elicited rapid platelet responses in patients with immune thrombocytopenia and may be a useful alternative to plasma-derived products. This trial is registered at www.clinicaltrials.gov as #NCT00718692.

  3. Identification of codon-specific serine to asparagine mistranslation in recombinant monoclonal antibodies by high-resolution mass spectrometry.

    PubMed

    Yu, X Christopher; Borisov, Oleg V; Alvarez, Melissa; Michels, David A; Wang, Yajun Jennifer; Ling, Victor

    2009-11-15

    Translation errors in protein biosynthesis may result in low level amino acid misincorporation and contribute to product heterogeneity of recombinant protein therapeutics. We report the use of peptide map analysis by reversed-phase high-performance liquid chromatography and high-resolution mass spectrometry to detect and identify mistranslation events in recombinant monoclonal antibodies expressed in mammalian cell lines including Chinese hamster ovary (CHO) cells. Misincorporation of an asparagine residue at multiple serine positions was detected as earlier-eluting peptides with masses 27.01 Da higher than expected. The exact positions at which misincorporation occurred were identified by tandem mass spectrometry of the asparagine-containing variant peptides. The identified asparagine misincorporation sites correlated with the use of codon AGC but with none of the other five serine codons. The relative levels of misincorporation ranged from 0.01%-0.2% among multiple serine positions detected across three different antibodies by targeted analysis of expected and variant peptides. The low levels of misincorporation are consistent with published predictions for in vivo translation error rates. Our results demonstrate that state-of-the-art mass spectrometry with a combination of high sensitivity, accuracy, and dynamic range provides a new ability to discover and characterize low level protein variants that arise from mistranslation events.

  4. Identification of an unstable 4-hydroxynoneal modification on the 20S proteasome subunit α7 by recombinant antibody technology.

    PubMed

    Just, Jesper; Jung, Tobias; Friis, Niels Anton; Lykkemark, Simon; Drasbek, Kim; Siboska, Gunhild; Grune, Tilman; Kristensen, Peter

    2015-12-01

    Numerous cellular functions rely on an active proteasome allowing degradation of damaged or misfolded proteins. Therefore changes in the proteasomal activity have important physiological consequences. During oxidative stress the production of free radicals can result in the formation of 4-hydroxynonenal (HNE) following lipid peroxidiation. The HNE moiety is highly reactive and via a nucleophilic attack readily forms covalent links to cysteine, histidine and lysine side chains. However, as the chemical properties of these amino acids differ, so does the kinetics of the reactions. While covalent linkage through Michael addition is well established, reversible and unstable associations have only been indicated in a few cases. In the present study we have identified an unstable HNE adduct on the α7 subunit of the 20S proteasome using phage display of recombinant antibodies. This recombinant antibody fragment recognized HNE modified proteasomes in vitro and showed that this epitope was easily HNE modified, yet unstable, and influenced by experimental procedures. Hence unstable HNE-adducts could be overlooked as a regulatory mechanism of proteasomal activity and a participating factor in the decreased proteasomal activity associated with oxidative stress.

  5. Enhanced opsonisation of Rhesus D-positive human red blood cells by recombinant polymeric immunoglobulin G anti-G antibodies.

    PubMed

    Díaz-Solano, Dylana; Fuenmayor, Jaheli; Montaño, Ramon F

    2017-05-30

    Anti-RhD antibodies (anti-D) are important in the prophylaxis of haemolytic disease of the foetus and newborn (HDFN) due to RhD incompatibility. Current preparations of anti-D are sourced from hyperimmune human plasma, so its production carries a risk of disease and is dependent on donor availability. Despite the efforts to develop a monoclonal preparation with similar prophylactic properties to the plasma-derived anti-D, no such antibody is yet available. Here we studied the agglutinating, opsonic and haemolytic activities of two recombinant polymeric immunoglobulins (Ig) against the G antigen of the Rh complex. Recombinant polymeric anti-G IgG1 (IgG1μtp) and IgG3 (IgG3μtp) were produced in vitro, purified by protein G-affinity chromatography, and analysed by gel electrophoresis. Their agglutinating, opsonic and haemolytic activities were evaluated using haemagglutination, erythrophagocytosis, and complement activation assays. The recombinant IgG1μtp and IgG3μtp anti-G antibodies ranged from 150,000 to 1,000,000 Da in molecular weight, indicating the formation of polymeric IgG. No complement activation or haemolytic activity was detected upon incubation of RhD-positive red-blood cells with the polymeric anti-G IgG. Both polymers were better opsonins than a prophylactic preparation of plasma-derived anti-D. The enhanced opsonic properties of the polymeric anti-G IgG1μtp and IgG3μtp could allow them to mediate the clearance of RhD-positive red blood cells from circulation more efficiently than natural or other synthetic prophylactic anti-D options. Their inability to induce complement-mediated haemolysis would be prophylactically convenient and is comparable in vitro to that of the available plasma-derived polyclonal anti-D preparations. The described properties suggest that polymeric antibodies like these (but with anti-D specificity) may be testable candidates for prophylaxis of HDFN caused by anti-D.

  6. The effects of mismatch repair and RAD1 genes on interchromosomal crossover recombination in Saccharomyces cerevisiae.

    PubMed

    Nicholson, Ainsley; Fabbri, Rebecca M; Reeves, Jason W; Crouse, Gray F

    2006-06-01

    We have previously shown that recombination between 400-bp substrates containing only 4-bp differences, when present in an inverted repeat orientation, is suppressed by >20-fold in wild-type strains of S. cerevisiae. Among the genes involved in this suppression were three genes involved in mismatch repair--MSH2, MSH3, and MSH6--and one in nucleotide excision repair, RAD1. We now report the involvement of these genes in interchromosomal recombination occurring via crossovers using these same short substrates. In these experiments, recombination was stimulated by a double-strand break generated by the HO endonuclease and can occur between completely identical (homologous) substrates or between nonidentical (homeologous) substrates. In addition, a unique feature of this system is that recombining DNA strands can be given a choice of either type of substrate. We find that interchromosomal crossover recombination with these short substrates is severely inhibited in the absence of MSH2, MSH3, or RAD1 and is relatively insensitive to the presence of mismatches. We propose that crossover recombination with these short substrates requires the products of MSH2, MSH3, and RAD1 and that these proteins have functions in recombination in addition to the removal of terminal nonhomology. We further propose that the observed insensitivity to homeology is a result of the difference in recombinational mechanism and/or the timing of the observed recombination events. These results are in contrast with those obtained using longer substrates and may be particularly relevant to recombination events between the abundant short repeated sequences that characterize the genomes of higher eukaryotes.

  7. Development of an Assay to Detect Antibodies to HIV-2 Using Recombinant DNA Derived Antigens

    DTIC Science & Technology

    1990-09-11

    CBre3 EIA is sensitive enough to detect envelope antibodies in seropositive patients before the antibodies are detected in a viral lysate Western blot ...induced E. coli were electrophoresed in polyacrylamide gels and analyzed by Coomassie blue staining and Western blotting (10). Blots were blocked in 1 X... Western blot analysis was used to show that the induced protein is coded for by the HIV-2 DNA. A duplicate gel, as shown in Figure 3, was blotted and

  8. Specific recognition of a tetrahedral phosphonamidate transition state analogue group by a recombinant antibody Fab fragment.

    PubMed

    Hua, T D; Lamaty, F; Souriau, C; Rolland-Fulcrand, V; Lazaro, R; Viallefont, P; Lefranc, M P; Weill, M

    1996-06-01

    In order to obtain antibodies able to catalyse a peptide synthesis, a naive combinatorial library of human Fab antibody fragments was screened with the phosphonamidate transition state analogue of the reaction. Several Fab fragments were able to bind the analogue. Competitive binding studies performed with molecules containing representative parts of the hapten showed that two Fabs were able to recognize specifically the tetrahedral phosphorus present in the hapten.

  9. Specificity of antibodies produced against native or desialylated human immunodeficiency virus type 1 recombinant gp160.

    PubMed Central

    Benjouad, A; Gluckman, J C; Montagnier, L; Bahraoui, E

    1993-01-01

    In a previous report we have shown that, in contrast to antibodies produced against native or fully deglycosylated human immunodeficiency virus type 1 (HIV-1) gp160 in rabbits, antibodies raised against desialylated HIV-1 gp160 also recognize gp140 from HIV-2 at high titers. Here, we characterize the fine specificity of these cross-reactive antibodies. Inhibition assays with a panel of synthetic peptides as competitors showed that cross-reactivity to gp140 was due to antibodies that were specific for the region encompassing HIV-1 gp41 immunodominant epitope, mimicked by peptide P39 (residues 583 to 609), the latter being able to totally inhibit the formation of complexes between radiolabeled HIV-2 gp140 and antibodies elicited by desialylated HIV-1 gp160. In addition, anti-desialylated gp160 antibodies retained on a P39 affinity column still bound HIV-2 gp140. Fine mapping has enabled us to localize the cross-reactive epitope within the N-terminal extremity of the gp41 immunodominant region. Interestingly, this cross-reactive antibody population did not recognize glycosylated or totally deglycosylated simian immunodeficiency virus gp140 despite an amino acid homology with HIV-1 within this region that is comparable to that of HIV-2. This cross-reactivity between HIV-1 and HIV-2 did not correlate with cross-neutralization. These results illustrate the influence of carbohydrate moieties on the specificity of the antibodies produced and clearly indicate that such procedures may be an efficient way to raise specific immune responses that are not type specific. Moreover, this cross-reactivity might explain the double-positive reactivity observed, in some human sera, against both HIV-1 and HIV-2 envelope antigens. PMID:7679751

  10. Maternofetal transplacental transport of recombinant IgG antibodies lacking effector functions.

    PubMed

    Mathiesen, Line; Nielsen, Leif K; Andersen, Jan Terje; Grevys, Algirdas; Sandlie, Inger; Michaelsen, Terje E; Hedegaard, Morten; Knudsen, Lisbeth E; Dziegiel, Morten Hanefeld

    2013-08-15

    The neonatal Fc receptor (FcRn) directs the transfer of maternal immunoglobulin G (IgG) antibodies across the placenta and thus provides the fetus and newborn with passive protective humoral immunity. Pathogenic maternal IgG antibodies will also be delivered via the placenta and can cause alloimmunity, which may be lethal. A novel strategy to control pathogenic antibodies would be administration of a nondestructive IgG antibody blocking antigen binding while retaining binding to FcRn. We report on 2 human IgG3 antibodies with a hinge deletion and a C131S point mutation (IgG3ΔHinge) that eliminate complement activation and binding to all classical Fcγ receptors (FcγRs) and to C1q while binding to FcRn is retained. Additionally, 1 of the antibodies has a single point mutation in the Fc (R435H) at the binding site for FcRn (IgG3ΔHinge:R435H). We compared transplacental transport with wild-type IgG1 and IgG3, and found transport across trophoblast-derived BeWo cells and ex vivo placenta perfusions with hierarchies as follows: IgG3ΔHinge:R435H>wild-type IgG1≥IgG3ΔHinge and IgG3ΔHinge:R435H=wild-type IgG1=wild-type IgG3>IgG3ΔHinge, respectively. Collectively, IgG3ΔHinge:R435H was transported efficiently from the maternal to the fetal placental compartment. Thus, IgG3ΔHinge:R435H may be a good candidate for transplacental delivery of a nondestructive antibody to the fetus to combat pathogenic antibodies.

  11. Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application.

    PubMed

    Karagiannis, Sophia N; Josephs, Debra H; Karagiannis, Panagiotis; Gilbert, Amy E; Saul, Louise; Rudman, Sarah M; Dodev, Tihomir; Koers, Alexander; Blower, Philip J; Corrigan, Christopher; Beavil, Andrew J; Spicer, James F; Nestle, Frank O; Gould, Hannah J

    2012-09-01

    Therapeutic antibodies have revolutionised treatment of some cancers and improved prognosis for many patients. Over half of those available are approved for haematological malignancies, but efficacious antibodies for solid tumours are still urgently needed. Clinically available antibodies belong to the IgG class, the most prevalent antibody class in human blood, while other classes have not been extensively considered. We hypothesised that the unique properties of IgE, a class of tissue-resident antibodies commonly associated with allergies, which can trigger powerful immune responses through strong affinity for their particular receptors on effector cells, could be employed for passive immunotherapy of solid tumours such as ovarian and breast carcinomas. Our laboratory has examined this concept by evaluating two chimaeric antibodies of the same specificity (MOv18) but different isotype, an IgG1 and an IgE against the tumour antigen folate receptor α (FRα). The latter demonstrates the potency of IgE to mount superior immune responses against tumours in disease-relevant models. We identified Fcε receptor-expressing cells, monocytes/macrophages and eosinophils, activated by MOv18 IgE to kill tumour cells by mechanisms such as ADCC and ADCP. We also applied this notion to a marketed therapeutic, the humanised IgG1 antibody trastuzumab and engineered an IgE counterpart, which retained the functions of trastuzumab in restricting proliferation of HER2/neu-expressing tumour cells but also activated effector cells to kill tumour cells by different mechanisms. On-going efficacy, safety evaluations and future first-in-man clinical studies of IgE therapeutics constitute key metrics for this concept, providing new scope for antibody immunotherapies for solid tumours.

  12. Construction and Characterization of an Infectious Vaccinia Virus Recombinant That Expresses the Influenza Hemagglutinin Gene and Induces Resistance to Influenza Virus Infection in Hamsters

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Murphy, Brian R.; Moss, Bernard

    1983-12-01

    A DNA copy of the influenza virus hemagglutinin gene, derived from influenza virus A/Jap/305/57 (H2N2) was inserted into the genome of vaccinia virus under the control of an early vaccinia virus promoter. Tissue culture cells infected with the purified recombinant virus synthesized influenza hemagglutinin, which was glycosylated and transported to the cell surface where it could be cleaved with trypsin into HA1 and HA2 subunits. Rabbits and hamsters inoculated intradermally with recombinant virus produced circulating antibodies that inhibited hemagglutination by influenza virus. Furthermore, vaccinated hamsters achieved levels of antibody similar to those obtained upon primary infection with influenza virus and were protected against respiratory infection with the A/Jap/305/57 influenza virus.

  13. Human recombinant domain antibodies against multiple sclerosis antigenic peptide CSF114(Glc).

    PubMed

    Niccheri, Francesca; Real-Fernàndez, Feliciana; Ramazzotti, Matteo; Lolli, Francesco; Rossi, Giada; Rovero, Paolo; Degl'Innocenti, Donatella

    2014-10-01

    Multiple sclerosis (MS) is a chronic auto-immune disease characterized by a damage to the myelin component of the central nervous system. Self-antigens created by aberrant glycosylation have been described to be a key component in the formation of auto-antibodies. CSF114(Glc) is a synthetic glucopeptide detecting in vitro MS-specific auto-antibodies, and it is actively used in diagnostics and research to monitor and quantify MS-associated Ig levels. We reasoned that antibodies raised against this probe could have been relevant for MS. We therefore screened a human Domain Antibody library against CSF114(Glc) using magnetic separation as a panning method. We obtained and described several clones, and the one with the highest signals was produced as a 6×His-tagged protein to properly study the binding properties as a soluble antibody. By surface plasmon resonance measurements, we evidenced that our clone recognized CSF114(Glc) with high affinity and specific for the glucosylated peptide. Kinetic parameters of peptide-clone interaction were calculated obtaining a value of KD in the nanomolar range. Harboring a human framework, this antibody should be very well tolerated by human immune system and may represent a valuable tool for MS diagnosis and therapy, paving the way to new research strategies.

  14. Engineered Zinc Finger Nuclease–Mediated Homologous Recombination of the Human Rhodopsin Gene

    PubMed Central

    Greenwald, David L.; Cashman, Siobhan M.

    2010-01-01

    Purpose. Novel zinc finger nucleases (ZFNs) were designed to target the human rhodopsin gene and induce homologous recombination of a donor DNA fragment. Methods. Three-finger zinc finger nucleases were designed based on previously published guidelines. To assay for ZFN specificity, the authors generated human embryonic retinoblast cell lines stably expressing a Pro23His rhodopsin, the most common mutation associated with autosomal dominant retinitis pigmentosa in North America. They report quantification of these rhodopsin-specific ZFNs to induce a targeted double-strand break in the human genome, demonstrate their ability to induce homologous recombination of a donor DNA fragment, and report the quantification of the frequency of ZFN-mediated homologous recombination. Results. Compared with endogenous homologous recombination, the authors observed a 12-fold increase in homologous recombination and an absolute frequency of ZFN-directed homologous recombination as high as 17% in the human rhodopsin gene. Conclusions. ZFNs are chimeric proteins with significant potential for the treatment of inherited diseases. In this study, the authors report the design of novel ZFNs targeting the human rhodopsin gene. These ZFNs may be useful for the treatment of retinal diseases such as retinitis pigmentosa, one of the most common causes of inherited blindness in the developed world. Herein, they also report on several aspects of donor fragment design and in vitro conditions that facilitate ZFN-mediated homologous recombination. PMID:20671268

  15. The Arabidopsis DNA mismatch repair gene PMS1 restricts somatic recombination between homeologous sequences.

    PubMed

    Li, Liangliang; Dion, Eric; Richard, Gabriel; Domingue, Olivier; Jean, Martine; Belzile, François J

    2009-04-01

    The eukaryotic DNA mismatch repair (MMR) system contributes to maintaining the fidelity of genetic information by correcting replication errors and preventing illegitimate recombination events. This study aimed to examine the function(s) of the Arabidopsis thaliana PMS1 gene (AtPMS1), one of three homologs of the bacterial MutL gene in plants. Two independent mutant alleles (Atpms1-1 and Atpms1-2) were obtained and one of these (Atpms1-1) was studied in detail. The mutant exhibited a reduction in seed set and a bias against the transmission of the mutant allele. Somatic recombination, both homologous and homeologous, was examined using a set of reporter constructs. Homologous recombination remained unchanged in the mutant while homeologous recombination was between 1.7- and 4.8-fold higher than in the wild type. This increase in homeologous recombination frequency was not correlated with the degree of sequence divergence. In RNAi lines, a range of increases in homeologous recombination were observed with two lines showing a 3.3-fold and a 3.6-fold increase. These results indicate that the AtPMS1 gene contributes to an antirecombination activity aimed at restricting recombination between diverged sequences.

  16. Engineered zinc finger nuclease-mediated homologous recombination of the human rhodopsin gene.

    PubMed

    Greenwald, David L; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2010-12-01

    Novel zinc finger nucleases (ZFNs) were designed to target the human rhodopsin gene and induce homologous recombination of a donor DNA fragment. Three-finger zinc finger nucleases were designed based on previously published guidelines. To assay for ZFN specificity, the authors generated human embryonic retinoblast cell lines stably expressing a Pro23His rhodopsin, the most common mutation associated with autosomal dominant retinitis pigmentosa in North America. They report quantification of these rhodopsin-specific ZFNs to induce a targeted double-strand break in the human genome, demonstrate their ability to induce homologous recombination of a donor DNA fragment, and report the quantification of the frequency of ZFN-mediated homologous recombination. Compared with endogenous homologous recombination, the authors observed a 12-fold increase in homologous recombination and an absolute frequency of ZFN-directed homologous recombination as high as 17% in the human rhodopsin gene. ZFNs are chimeric proteins with significant potential for the treatment of inherited diseases. In this study, the authors report the design of novel ZFNs targeting the human rhodopsin gene. These ZFNs may be useful for the treatment of retinal diseases such as retinitis pigmentosa, one of the most common causes of inherited blindness in the developed world. Herein, they also report on several aspects of donor fragment design and in vitro conditions that facilitate ZFN-mediated homologous recombination.

  17. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306