Science.gov

Sample records for genes recombinant antibody

  1. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  2. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  3. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  4. Increased antibody responses to human papillomavirus type 16 L1 protein expressed by recombinant vaccinia virus lacking serine protease inhibitor genes.

    PubMed

    Zhou, J; Crawford, L; McLean, L; Sun, X Y; Stanley, M; Almond, N; Smith, G L

    1990-09-01

    The L1 gene of human papillomavirus type 16 (HPV-16) driven by the vaccinia virus major late 4b gene promoter has been inserted into three different sites of the vaccinia virus genome. Insertion into the thymidine kinase (TK) gene was achieved by selection of TK- mutants in BUdR on TK- cells. Insertion into two vaccinia virus serine protease inhibitor (serpin) genes was achieved by co-insertion of the Escherichia coli xanthine guanine phosphoribosyltransferase gene linked to the vaccinia virus 7.5K promoter and selection of mycophenolic acid-resistant recombinant viruses. Each recombinant virus expressed a 57K L1 protein at similar levels and with similar kinetics. However, immunization of mice with these recombinant viruses induced different levels of antibody to the L1 protein. Viruses lacking serpin genes B13R and B24R induced significantly higher antibody levels than did viruses lacking the TK gene. The presence of functional B13R and B24R gene products is therefore somehow immunosuppressive at least for antibody responses to the L1 protein of HPV-16.

  5. Developing recombinant antibodies for biomarker detection

    SciTech Connect

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  6. Advances in recombinant antibody manufacturing.

    PubMed

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.

  7. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research.

  8. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    PubMed

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  9. A multi-Fc-species system for recombinant antibody production

    PubMed Central

    Moutel, Sandrine; El Marjou, Ahmed; Vielemeyer, Ole; Nizak, Clément; Benaroch, Philippe; Dübel, Stefan; Perez, Franck

    2009-01-01

    Background Genomic, transcriptomic and proteomic projects often suffer from a lack of functional validation creating a strong demand for specific and versatile antibodies. Antibody phage display represents an attractive approach to select rapidly in vitro the equivalent of monoclonal antibodies, like single chain Fv antibodies, in an inexpensive and animal free way. However, so far, recombinant antibodies have not managed to impose themselves as efficient alternatives to natural antibodies. Results We developed a series of vectors that allow one to easily fuse single chain Fv antibodies to Fc domains of immunoglobulins, improving their sensitivity and facilitating their use. This series enables the fusion of single chain Fv antibodies with human, mouse or rabbit Fc so that a given antibody is no longer restricted to a particular species. This opens up unlimited multiplexing possibilities and gives additional value to recombinant antibodies. We also show that this multi-Fc species production system can be applied to natural monoclonal antibodies cloned as single chain Fv antibodies and we converted the widely used 9E10 mouse anti-Myc-tag antibody into a human and a rabbit antibody. Conclusion Altogether, this new expression system, that brings constant quality, sensitivity and unique versatility, will be important to broaden the use of recombinant and natural monoclonal antibodies both for laboratory and diagnosis use. PMID:19245715

  10. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF. PMID:22808513

  11. Back to the future: recombinant polyclonal antibody therapeutics

    PubMed Central

    Wang, Xian-zhe; Coljee, Vincent W.; Maynard, Jennifer A.

    2013-01-01

    Antibody therapeutics are one of the fastest growing classes of pharmaceuticals, with an annual US market over $20 billion, developed to treat a variety of diseases including cancer, auto-immune and infectious diseases. Most are currently administered as a single molecule to treat a single disease, however there is mounting evidence that cocktails of multiple antibodies, each with a unique binding specificity and protective mechanism, may improve clinical efficacy. Here, we review progress in the development of oligoclonal combinations of antibodies to treat disease, focusing on identification of synergistic antibodies. We then discuss the application of modern antibody engineering technologies to produce highly potent antibody preparations, including oligoclonal antibody cocktails and truly recombinant polyclonal antibodies. Specific examples illustrating the synergy conferred by multiple antibodies will be provided for diseases caused by botulinum toxin, cancer and immune thrombocytopenia. The bioprocessing and regulatory options for these preparations will be discussed. PMID:24443710

  12. Back to the future: recombinant polyclonal antibody therapeutics.

    PubMed

    Wang, Xian-Zhe; Coljee, Vincent W; Maynard, Jennifer A

    2013-11-01

    Antibody therapeutics are one of the fastest growing classes of pharmaceuticals, with an annual US market over $20 billion, developed to treat a variety of diseases including cancer, auto-immune and infectious diseases. Most are currently administered as a single molecule to treat a single disease, however there is mounting evidence that cocktails of multiple antibodies, each with a unique binding specificity and protective mechanism, may improve clinical efficacy. Here, we review progress in the development of oligoclonal combinations of antibodies to treat disease, focusing on identification of synergistic antibodies. We then discuss the application of modern antibody engineering technologies to produce highly potent antibody preparations, including oligoclonal antibody cocktails and truly recombinant polyclonal antibodies. Specific examples illustrating the synergy conferred by multiple antibodies will be provided for diseases caused by botulinum toxin, cancer and immune thrombocytopenia. The bioprocessing and regulatory options for these preparations will be discussed. PMID:24443710

  13. The Structure of Natural and Recombinant Antibodies.

    PubMed

    Ma, Hui; O'Kennedy, Richard

    2015-01-01

    Immunoglobulins (Ig) isotypes A, D, E, G, and M are glycoproteins which are mainly composed of a "Y"-shaped Ig monomer (~150 kDa), consisting of two light and two heavy chains. Both light and heavy chains contain variable (N-terminal) and constant regions (C-terminal). Each light chain consists of one variable domain and one constant domain, whereas each heavy chain has one variable domain and three constant domains. However, heavy-chain antibodies consisting of only heavy chains and lacking the light chains are found in camelids and cartilaginous fishes. Unlike other immunoglobulins, the heavy chain of avian antibody IgY (~180 kDa) consists of four constant domains. The single-chain variable fragment (scFv; ~25 kDa) of an antibody contains variable regions of antibody heavy and light chains. The fragment antigen-binding (Fab; ~50 kDa) region has the full antibody light chain but the heavy chain is composed of a variable region and one constant domain.

  14. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity.

    PubMed

    Zhao, Hongyu; Shen, Ao; Xiang, Yang K; Corey, David P

    2016-01-01

    We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications.

  15. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity

    PubMed Central

    Zhao, Hongyu; Shen, Ao; Xiang, Yang K.; Corey, David P.

    2016-01-01

    We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications. PMID:26943906

  16. Construction of chimeric antibodies: cloning of immunoglobulin genes including their promoter regions by PCR.

    PubMed

    Mocikat, R; Kütemeier, G; Harloff, C

    1992-03-01

    In the production of recombinant antibodies, it is necessary to have an immunoglobulin gene promoter for driving the expression of the antibody genes. Here we describe a simple PCR method that allows cloning of the immunoglobulin genes together with their own promoters despite the fact that the sequence of the upstream part of the gene is unknown.

  17. Development of recombinant human IgA for anticardiolipin antibodies assay standardization.

    PubMed

    Knappik, Achim; Capuano, Francesco; Frisch, Christian; Ylera, Francisco; Bonelli, Fabrizio

    2009-09-01

    Controls and calibrators in autoimmune assays are typically developed from patient sera. However, the use of sera is accompanied by a number of disadvantages, such as lack of monospecificity, lack of assay comparability, and supply limitations. Ideally, the control reagent would be an antigen-specific human monoclonal antibody preparation that is defined and pure, easy to produce without any supply limitations, and of defined isotype (IgG, IgM, or IgA). The generation of antigen-specific human monoclonal antibodies has been complicated, but recent advances in development of fully human antibodies by means of in vitro antibody gene library selection has opened a way for the isolation of human antibodies to virtually any antigen, including self-antigens. Such antibodies can be converted to any isotype by gene cloning. Here we developed a set of human monoclonal IgA antibodies specific for the cardiolipin-beta2-glycoprotein 1 complex, using the HuCAL technology. We evaluated the IgA variants of those antibodies for their use as standards in IgA anticardiolipin antibody assays and compared these reagents with serum controls. Such recombinant antibodies may ultimately replace patient sera as assay control and calibration reagents. PMID:19758150

  18. Generation of recombinant antibody fragments for membrane protein crystallization.

    PubMed

    Mir, Syed H; Escher, Claudia; Kao, Wei-Chun; Birth, Dominic; Wirth, Christophe; Hunte, Carola

    2015-01-01

    Membrane proteins are challenging targets for crystallization and structure determination by X-ray crystallography. Hurdles can be overcome by antibody-mediated crystallization. More than 25 unique structures of membrane protein:antibody complexes have already been determined. In the majority of cases, hybridoma-derived antibody fragments either in Fab or Fv fragment format were employed for these complexes. We will briefly introduce the background and current status of the strategy and describe in detail the current protocols of well-established methods for the immunization, the selection, and the characterization of antibodies, as well as the cloning, the production, and the purification of recombinant antibodies useful for structural analysis of membrane proteins.

  19. Human germline antibody gene segments encode polyspecific antibodies.

    PubMed

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens

    2013-04-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  20. A Polyclonal Antibody Against Recombinant Bovine Haptoglobin Expressed in Escherichia coli

    PubMed Central

    Guo, Donghua; Zhang, Hong; Li, Chunqiu

    2013-01-01

    The nucleotide sequence of the predicted immunodominant region of bovine haptoglobin (pirBoHp), without the signal peptide sequence, was synthesized based on the codon usage bias of Escherichia coli. The synthesized pirBoHp gene was cloned into the prokaryotic expression vector pET-32a (+), which contains a His-tag. The recombinant pirBoHp protein was successfully expressed in E. coli BL21 (DE3) cells. Western blot analysis showed that the purified recombinant pirBoHp protein could be recognized by an anti-His-tag monoclonal antibody. Further investigations indicated that a polyclonal antibody against the recombinant pirBoHp protein could recognize the α and β chains of native bovine haptoglobin in a pooled plasma sample from dairy cattle suffering from foot rot. PMID:24328747

  1. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein. PMID:24293828

  2. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein.

  3. Recombinant anti-carcinoembryonic antigen antibodies for targeting cancer.

    PubMed

    Chester, K A; Mayer, A; Bhatia, J; Robson, L; Spencer, D I; Cooke, S P; Flynn, A A; Sharma, S K; Boxer, G; Pedley, R B; Begent, R H

    2000-01-01

    Antibodies can be used to target cancer therapies to malignant tissue; the approach is attractive because conventional treatments such as chemo- and radiotherapy are dose limited due to toxicity in normal tissues. Effective targeting relies on appropriate pharmacokinetics of antibody-based therapeutics, ideally showing maximum uptake and retention in tumor and rapid clearance from normal tissue. We have studied the factors influencing these dynamics for antibodies against carcinoembryonic antigen (CEA). Protein engineering of anti-CEA antibodies, in vivo biodistribution models, and mathematical models have been employed to improve understanding of targeting parameters, define optimal characteristics for the antibody-based molecules employed, and develop new therapies for the clinic. Engineering antibodies to obtain the desired therapeutic characteristics is most readily achieved using recombinant antibody technology, and we have taken the approach of immunizing mice to provide high-affinity anti-CEA single-chain Fv antibodies (sFvs) from filamentous bacteriophage libraries. MFE-23, the most characterized of these sFvs, has been expressed in bacteria and purified in our laboratory for two clinical trials: a gamma camera imaging trial using 123I-MFE-23 and a radioimmunoguided surgery trial using 125I-MFE-23, where tumor deposits are detected by a hand-held probe during surgery. Both these trials showed that MFE-23 is safe and effective in localizing tumor deposits in patients with cancer. We are now developing fusion proteins that use the MFE-23 antibody to deliver a therapeutic moiety; MFE-23:: carboxypeptidase G2 (CPG2) targets the enzyme CPG2 for use in the antibody-directed enzyme prodrug therapy system and MFE::tumor necrosis factor alpha (TNFalpha) aims to reduce sequestration and increase tumor concentrations of systemically administered TNFalpha.

  4. Expression of Recombinant Vaccines and Antibodies in Plants

    PubMed Central

    2014-01-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants. PMID:24937251

  5. Expression of recombinant vaccines and antibodies in plants.

    PubMed

    Ko, Kisung

    2014-06-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants.

  6. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  7. Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies.

    PubMed

    Lathuilière, Aurélien; Schneider, Bernard L

    2016-01-01

    The implantation of genetically modified cells is considered for the chronic delivery of therapeutic recombinant proteins in vivo. In the context of gene therapy, the genetic engineering of cells faces two main challenges. First, it is critical to generate expandable cell sources, which can maintain stable high productivity of the recombinant protein of interest over time, both in culture and after transplantation. In addition, gene transfer techniques need to be developed to engineer cells synthetizing complex polypeptides, such as recombinant monoclonal antibodies, to broaden the range of potential therapeutic applications. Here, we provide a workflow for the use of lentiviral vectors as a flexible tool to generate antibody-producing cells. In particular, lentiviral vectors can be used to genetically engineer the cell types compatible with encapsulation devices protecting the implanted cells from the host immune system. Detailed methods are provided for the design and production of lentiviral vectors, optimization of cell transduction, as well as for the quantification and quality control of the produced recombinant antibody. PMID:27317179

  8. Recombinant anti-tenascin antibody constructs

    SciTech Connect

    ZALUTSKY, MICHAEL R

    2006-08-29

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  9. Vector-mediated antibody gene transfer for infectious diseases.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2015-01-01

    This chapter discusses the emerging field of vector-mediated antibody gene transfer as an alternative vaccine for infectious disease, with a specific focus on HIV. However, this methodology need not be confined to HIV-1; the general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets like hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. This approach is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. With vector-mediated gene transfer, the antibody gene is delivered to the host, via a recombinant adeno-associated virus (rAAV) vector; this in turn results in long-term endogenous antibody expression from the injected muscle that confers protective immunity. Vector-mediated antibody gene transfer can rapidly move existing, potent broadly cross-neutralizing HIV-1-specific antibodies into the clinic. The gene transfer products demonstrate a potency and breadth identical to the original product. This strategy eliminates the need for immunogen design and interaction with the adaptive immune system to generate protection, a strategy that so far has shown limited promise.

  10. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  11. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

    PubMed Central

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F.; Nam, Ho-Woo

    2016-01-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  12. Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis

    PubMed Central

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators. PMID:23272105

  13. Development of a Recombinant Antibody with Specificity for Chelated Uranyl Ions

    SciTech Connect

    X. Li; A.M. Kriegel; T.C. Bishop; R.C. Blake; E. Figueiredo; H. Yu; D.A. Blake

    2005-04-18

    The goal of our project is to continue the development of new techniques for rapid, automated identification of radionuclides, metals, and chelators that may contaminant sur face and groundwater at DOE sites. One of the four specific aims of the present project is to develop new technologies in antibody engineering that will enhance our immunosensor program. Recombinant antibodies have potential advantages over monoclonal antibodies produced by standard hybridoma technology. The cloned genes represent a stable, recoverable source for antibody production. In addition, the recombinant format offers opportunities for protein engineering that enhances antibody performance and for studies that relate antibody sequence to binding activity. In this study, a hybridoma that synthesized an antibody (12F6) that recognized a 1:1 complex between 2,9-dicarboxyl-1,10- phenanthroline (DCP) and UO{sub 2}{sup 2+} was used as a source of RNA for the development of a recombinant (Fab){sub 2} fragment. RNA was isolated from the 12F6 hybridoma and the cDNA encoding the entire {kappa} light chain and the linked VH and C1 portions of the heavy chain were amplified from total RNA. cDNA sequences were verified by comparison with the N-terminal amino acid sequences of the light and heavy chains of the native 12F6 monoclonal antibody. A leader sequence and appropriate restriction sites were added to each chain, and the fragments were ligated into a commercial dicistronic vector (pBudCE4.1, Invitrogen, Inc.). COS-1 cells were transfected with this vector and the culture supernatant was assayed for activity and the (Fab){sub 2} protein. Cells transfected with vector containing 12F6 cDNA synthesized and secreted recombinant (Fab){sub 2} fragments that bound to the UO{sub 2}{sup 2+}-DCP complex with an affinity indistinguishable from that of a (Fab){sub 2} fragment prepared from the native antibody. Molecular models of the heavy and light chain variable domains were constructed according to the

  14. Genetic control of antibody responses induced by recombinant Mycobacterium bovis BCG expressing a foreign antigen.

    PubMed Central

    Lagranderie, M; Lo-Man, R; Dériaud, E; Gicquel, B; Gheorghiu, M; Leclerc, C

    1997-01-01

    Recombinant Mycobacterium bovis BCG expressing foreign antigens represents a promising candidate for the development of future vaccines and was shown in several experimental models to induce protective immunity against bacterial or parasitic infections. Innate resistance to BCG infection is under genetic control and could modify the immune responses induced against an antigen delivered by such engineered microorganisms. To investigate this question, we analyzed the immune responses of various inbred strains of mice to recombinant BCG expressing beta-galactosidase. These experiments demonstrated that BALB/c mice developed strong antibody responses against BCG expressing beta-galactosidase under the control of two different promoters. In contrast, C57BL/6, C3H, and CBA mice produced high anti-beta-galactosidase antibody titers only when immunized with recombinant BCG expressing beta-galactosidase under the control of the pblaF* promoter, which induced the production of high levels of this antigen. This difference in mouse responsiveness to recombinant BCG was not due to innate resistance to BCG infection, since similar immune responses were induced in Ity(r) and Ity(s) congenic strains of mice. In contrast, the analysis of anti-beta-galactosidase antibody responses of H-2 congenic mice in two different genetic backgrounds demonstrated that H-2 genes are involved in the immune responsiveness to beta-galactosidase delivered by recombinant BCG. Together, these results demonstrate that immune responses to an antigen delivered by recombinant BCG are under complex genetic influences which could play a crucial role in the efficiency of future recombinant BCG vaccines. PMID:9234754

  15. Intracellular interference of tick-borne flavivirus infection by using a single-chain antibody fragment delivered by recombinant Sindbis virus.

    PubMed Central

    Jiang, W; Venugopal, K; Gould, E A

    1995-01-01

    A single-chain antibody fragment that identifies a neutralizing epitope on the envelope protein of louping ill and some other tick-borne flaviviruses was previously expressed in soluble form from bacteria and shown to be functionally active in vitro. To see whether or not the single-chain antibody could bind and inactivate infectious virus in vivo, we have used recombinant Sindbis virus as a delivery vehicle for intracellular expression of the antibody fragment. The variable genes and interchain linker encoding the single-chain antibody were cloned into a double subgenomic Sindbis virus expression vector to generate recombinant Sindbis virus. Infection with this recombinant Sindbis virus provided high-level cytoplasmic expression of the antibody fragment in mammalian cells. We demonstrate (i) that the antibody fragment was antigen binding and (ii) that louping ill virus infectivity was significantly reduced in the presence of intracellular antibody expressed by the superinfecting recombinant Sindbis virus. PMID:7815482

  16. Generating Recombinant Antibodies against Putative Biomarkers of Retinal Injury

    PubMed Central

    Kierny, Michael R.; Cunningham, Thomas D.; Bouhenni, Rachida A.; Edward, Deepak P.; Kay, Brian K.

    2015-01-01

    Candidate biomarkers, indicative of disease or injury, are beginning to overwhelm the process of validation through immunological means. Recombinant antibodies developed through phage-display offer an alternative means of generating monoclonal antibodies faster than traditional immunization of animals. Peptide segments of putative biomarkers of laser induced injury in the rabbit, discovered through mass spectrometry, were used as targets for a selection against a library of phage-displayed human single-chain variable fragment (scFv) antibodies. Highly specific antibodies were isolated to four of these unique peptide sequences. One antibody against the retinal protein, Guanine Nucleotide-Binding Protein Beta 5 (GBB5), had a dissociation constant ~300 nM and recognized the full-length endogenous protein in retinal homogenates of three different animal species by western blot. Alanine scanning of the peptide target identified three charged and one hydrophobic amino acid as the critical binding residues for two different scFvs. To enhance the utility of the reagent, one scFv was dimerized through a Fragment-crystallizable hinge region (i.e., Fc) and expressed in HEK-293 cells. This dimeric reagent yielded a 25-fold lower detection limit in western blots. PMID:25902199

  17. Expression of the synthetic gene for human angiogenin in recombinant vaccinia virus

    SciTech Connect

    Netesova, N.A.; Petrov, V.S.; Cheshenko, N.V.

    1995-08-01

    The gene for angiogenin was cloned into vaccinia virus genome. The recombinant virus expressing angiogenin was obtained. The level of protein synthesis directed by the recombinant virus was analyzed by immunoblotting using monoclonal antibodies against human angiogenin. 15 refs., 2 figs.

  18. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms.

    PubMed

    Kierny, Michael R; Cunningham, Thomas D; Kay, Brian K

    2012-01-01

    The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of 'Surface Enhanced Raman Scattering' (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market.

  19. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms

    PubMed Central

    Kierny, Michael R.; Cunningham, Thomas D.; Kay, Brian K.

    2012-01-01

    The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of ‘Surface Enhanced Raman Scattering’ (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market. PMID:22833780

  20. Mlh1 Can Function in Antibody Class Switch Recombination Independently of Msh2

    PubMed Central

    Schrader, Carol E.; Vardo, Joycelyn; Stavnezer, Janet

    2003-01-01

    Mismatch repair proteins participate in antibody class switch recombination, although their roles are unknown. Previous nucleotide sequence analyses of switch recombination junctions indicated that the roles of Msh2 and the MutL homologues, Mlh1 and Pms2, differ. We now asked if Msh2 and Mlh1 function in the same pathway during switch recombination. Splenic B cells from mice deficient in both these proteins were induced to undergo switching in culture. The frequency of switching is reduced, similarly to that of B cells singly deficient in Msh2 or Mlh1. However, the nucleotide sequences of the Sμ-Sγ3 junctions resemble junctions from Mlh1- but not from Msh2-deficient cells, suggesting Mlh1 functions either independently of or before Msh2. The substitution mutations within S regions that are known to accompany switch recombination are increased in Msh2- and Mlh1 single-deficient cells and further increased in the double-deficient cells, again suggesting these proteins function independently in class switch recombination. The finding that MMR functions to reduce mutations in switch regions is unexpected since MMR proteins have been shown to contribute to somatic hypermutation of antibody variable region genes. PMID:12743174

  1. Lepidopteran cells, an alternative for the production of recombinant antibodies?

    PubMed Central

    Cérutti, Martine; Golay, Josée

    2012-01-01

    Monoclonal antibodies are used with great success in many different therapeutic domains. In order to satisfy the growing demand and to lower the production cost of these molecules, many alternative systems have been explored. Among them, the baculovirus/insect cells system is a good candidate. This system is very safe, given that the baculoviruses have a highly restricted host range and they are not pathogenic to vertebrates or plants. But the major asset is the speed with which it is possible to obtain very stable recombinant viruses capable of producing fully active proteins whose glycosylation pattern can be modulated to make it similar to the human one. These features could ultimately make the difference by enabling the production of antibodies with very low costs. However, efforts are still needed, in particular to increase production rates and thus make this system commercially viable for the production of these therapeutic agents. PMID:22531440

  2. Thermodynamic basis for antibody binding to Z-DNA: comparison of a monoclonal antibody and its recombinant derivatives.

    PubMed

    Vaz de Andrade, Edmar; Freitas, Sonia Maria; Ventura, Manuel Mateus; Maranhão, Andréa Queiroz; Brigido, Marcelo Macedo

    2005-11-30

    Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.

  3. Characterization of recombinant antibodies for cancer therapy by infrared spectroscopy.

    PubMed

    Valdivia, Alejandro Arbesú; Barth, Andreas; Batista, Yamilet Romero; Kumar, Saroj

    2013-03-01

    Fourier transform infrared (FTIR) spectroscopy was used to study the structure of the recombinant antibodies 1E10, anti-CD20 and hR3, which are used as anti-cancer therapeutic drugs. We tested their sensitivity against different conditions and treatments such as pH, temperature, freeze-thaw cycles and drying, which are relevant for the practical usefulness of the drugs. All antibodies were stable against moderate temperature increases (up to 50 °C) and pH changes (range 5-9). 1E10 was sensitive to extreme pH values (pH 3 and 12), whereas hR3 was most sensitive to temperature (at and above 60 °C). We did not observe any significant changes upon freeze-thaw and drying treatments. The secondary structure content of all three antibodies was estimated to be similar to that of IgG with ∼64% β-sheet, 0% α-helix and ∼36% other structure. PMID:23290364

  4. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  5. Targeting uPAR with Antagonistic Recombinant Human Antibodies in Aggressive Breast Cancer

    PubMed Central

    LeBeau, Aaron M.; Duriseti, Sai; Murphy, Stephanie T.; Pepin, Francois; Hann, Byron; Gray, Joe W.; VanBrocklin, Henry F.; Craik, Charles S.

    2013-01-01

    Components of the plasminogen activation system (PAS) which are overexpressed in aggressive breast cancer subtypes offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared (NIR) imaging and 111In single-photon emission computed tomography (SPECT). Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard 18F-fluorodeoxyglucose (FDG) at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. Additionally, a radioimmunotherapy (RIT) study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope 177Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology. PMID:23400595

  6. Purification process of recombinant monoclonal antibodies with mixed mode chromatography.

    PubMed

    Maria, Sophie; Joucla, Gilles; Garbay, Bertrand; Dieryck, Wilfrid; Lomenech, Anne-Marie; Santarelli, Xavier; Cabanne, Charlotte

    2015-05-01

    An innovative process to purify mAb from CHO cell culture supernatant was developed. This three-step process involved two mixed mode resins and an anion exchange membrane. We used a human IgG mixture to determine the optimal conditions for each purification step. Thereafter, the whole process was evaluated and improved for the purification of a recombinant mAb produced in the supernatant of CHO cells. Once optimized, yield and purity of 88% and 99.9%, respectively were comparable to those obtained in a conventional process based on a capture step using protein A. In addition, aggregates, HCPs and DNA levels in the purified fraction were below regulatory specifications. Then we used mass spectrometry to identify contaminating proteins in the antibody fraction in order to highlight the behavior of HCPs.

  7. Immunolabeling of CD3-positive lymphocytes with a recombinant single-chain antibody/alkaline phosphatase conjugate.

    PubMed

    Bourin, P; Servat, A; Lataillade, J J; Goyffon, M; Vaux, D; Billiald, P

    2000-02-01

    G3(3) is a novel murine monoclonal antibody directed against the CD3 antigen of human T lymphocytes which could be used to analyze lymphoid malignancies. We have produced and characterized a recombinant colorimetric immunoconjugate with the antigen-binding specificity of antibody G3(3). A gene encoding a single-chain antibody variable fragment (scFv) was assembled using the original hybridoma cells as a source of antibody variable heavy (VH) and variable light (VL) chain genes. The chimeric gene was introduced into a prokaryotic expression vector in order to produce a soluble scFv fused to bacterial alkaline phosphatase. DNA sequencing and Western blotting analyses demonstrated the integrity of the soluble immunoconjugate recovered from induced recombinant bacteria. The scFv/AP protein was bifunctional and similar in immunoreactivity to the parent G3(3) antibody. Flow cytometry and immunostaining experiments confirmed that the activity of the scFv/AP protein compares favourably with that of the parent antibody. The scFv/AP conjugate was bound to CD3 antigen at the surface of T cells and was directly detected by its enzymatic activity. Thus this novel fusion protein has potential applications as an immunodiagnostic reagent.

  8. Preparation of Recombinant Human Monoclonal Antibody Fab Fragments Specific for Entamoeba histolytica

    PubMed Central

    Tachibana, Hiroshi; Cheng, Xun-Jia; Watanabe, Katsuomi; Takekoshi, Masataka; Maeda, Fumiko; Aotsuka, Satoshi; Kaneda, Yoshimasa; Takeuchi, Tsutomu; Ihara, Seiji

    1999-01-01

    Genes coding for human antibody Fab fragments specific for Entamoeba histolytica were cloned and expressed in Escherichia coli. Lymphocytes were separated from the peripheral blood of a patient with an amebic liver abscess. Poly(A)+ RNA was isolated from the lymphocytes, and then genes coding for the light chain and Fd region of the heavy chain were amplified by a reverse transcriptase PCR. The amplified DNA fragments were ligated with a plasmid vector and were introduced into Escherichia coli. Three thousand colonies were screened for the production of antibodies to E. histolytica HM-1:IMSS by an indirect fluorescence-antibody (IFA) test. Lysates from five Escherichia coli clones were positive. Analysis of the DNA sequences of the five clones showed that three of the five heavy-chain sequences and four of the five light-chain sequences differed from each other. When the reactivities of the Escherichia coli lysates to nine reference strains of E. histolytica were examined by the IFA test, three Fab fragments with different DNA sequences were found to react with all nine strains and another Fab fragment was found to react with seven strains. None of the four human monoclonal antibody Fab fragments reacted with Entamoeba dispar reference strains or with other enteric protozoan parasites. These results indicate that the bacterial expression system reported here is effective for the production of human monoclonal antibodies specific for E. histolytica. The recombinant human monoclonal antibody Fab fragments may be applicable for distinguishing E. histolytica from E. dispar and for use in the serodiagnosis of amebiasis. PMID:10225840

  9. Pertinence of kappa and lambda recombinant antibodies directed against thyroid peroxidase in thyroid autoimmune disease.

    PubMed

    Bresson, D; Chardès, T; Chapal, N; Bès, C; Cerutti, M; Devauchelle, G; Bouanani, M; Mani, J C; Péraldi-Roux, S

    2001-01-01

    Forty-one single-chain variable region fragments (scFvs) directed against thyroid peroxidase (TPO) were obtained by phage display libraries constructed from thyroid-infiltrating B cells of Graves' disease patients. Among these scFvs, 24.4% used a Vkappa light chain whereas 75.6% shows a light chain of Vlamda origin. Study of light chain gene usage in the TPO antibody repertoire demonstrated a dominance of the Vkappa 1-39 and Vlambda 1-51 genes. Thyroid peroxidase probing of overlapping peptides covering the amino acid sequences of anti-TPO T2/kappa and T13/lambda variable regions demonstrated a more restricted antigen recognition on T13/lambda than on T2/kappa. These two recombinant antibodies, expressed as whole IgG1 in the baculovirus/insect cell system, inhibited the binding to TPO of serum TPO autoantibodies whatever the light chain. Our study indicates that lambda as well as kappa light chain usage are found in the TPO antibody repertoire of thyroid-infiltrating B cells and are pertinent in the pathogenesis of autoimmune thyroid disease.

  10. Design of a stable cell line producing a recombinant monoclonal anti-TNFα antibody based on a CHO cell line.

    PubMed

    Voronina, E V; Seregin, Y A; Litvinova, N A; Shvets, V I; Shukurov, R R

    2016-01-01

    Recombinant monoclonal antibodies (mAbs) against tumor necrosis factor alpha are widely used in the biopharmaceutical therapy of autoimmune diseases. Currently, a large number of drugs based on these antibodies are available. Accordingly, the development of these products for the Russian market is an important goal. The aim of the current study is to describe the development of one such technology. CHO-DG44-derived cell lines producing mAb were developed using two strategies, one based on individual clones and the other based on cell pools. To obtain recombinant cell lines with highly amplified genes of interest, the clones underwent dihydrofolate reductase-mediated gene amplification. Using the best strategy for the selection and amplification of mAb-producing clones, we achieved the production of more than 1 g/L in small scale, non-optimized conditions. PMID:27652157

  11. Recombinant Encephalomyocarditis Viruses Elicit Neutralizing Antibodies against PRRSV and CSFV in Mice

    PubMed Central

    Zhu, Shu; Guo, Xin; Keyes, Lisa R.; Yang, Hanchun; Ge, Xinna

    2015-01-01

    Encephalomyocarditis virus (EMCV) is capable of infecting a wide range of species and the infection can cause myocarditis and reproductive failure in pigs as well as febrile illness in human beings. In this study, we introduced the entire ORF5 of the porcine reproductive and respiratory syndrome virus (PRRSV) or the neutralization epitope regions in the E2 gene of the classical swine fever virus (CSFV), into the genome of a stably attenuated EMCV strain, T1100I. The resultant viable recombinant viruses, CvBJC3m/I-ΔGP5 and CvBJC3m/I-E2, respectively expressed partial PRRSV envelope protein GP5 or CSFV neutralization epitope A1A2 along with EMCV proteins. These heterologous proteins fused to the N-terminal of the nonstructural leader protein could be recognized by anti-GP5 or anti-E2 antibody. We also tested the immunogenicity of these fusion proteins by immunizing BALB/c mice with the recombinant viruses. The immunized animals elicited neutralizing antibodies against PRRSV and CSFV. Our results suggest that EMCV can be engineered as an expression vector and serve as a tool in the development of novel live vaccines in various animal species. PMID:26076449

  12. Selection and characterisation of recombinant single-chain antibodies to the hapten Aflatoxin-B1 from naive recombinant antibody libraries.

    PubMed

    Moghaddam, A; Løbersli, I; Gebhardt, K; Braunagel, M; Marvik, O J

    2001-08-01

    Selection of antibodies from large repertoire phage display libraries has become a common technique for isolation of specific antibodies to antigens. Many of these libraries are shown to contain antibodies specific to haptens, but only when these haptens are derivatised or conjugated to an immobilising molecule, such as bovine serum albumin (BSA). There has been little demonstration of the suitability of naive recombinant antibody libraries for isolating antibodies that bind low molecular weight haptens in the absence of a carrier molecule and few have addressed the problems associated with selecting antibodies that only recognize the combination of hapten and the carrier molecule. We have panned two-phage antibody libraries against AflatoxinB1-BSA and screened single-chain antibody fragments for binding to AflatoxinB1-BSA and Aflatoxin-B1. Many of the antibodies isolated specifically bound AflatoxinB1-BSA, but not soluble Aflatoxin-B1 or BSA. Modification of the protocol led to isolation of single-chain fragment variable antibody domain (scFv) antibodies that specifically bound soluble Aflatoxin-B1 with an affinity of 6x10(-9) M. PMID:11406162

  13. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  14. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  15. [Construction of combinatorial immune library of single chain human antibodies to orthopoxviruses and selection from this library antibodies to recombinant protein prA30L of variola virus].

    PubMed

    Dubrovskaia, V V; Ulitin, A B; Laman, A G; Gileva, I P; Bormotov, N I; Il'ichev, A A; Brovko, F A; Shchelkunov, S N; Belanov, E F; Tikunova, N V

    2007-01-01

    A combinatorial immune library of human single-chain antibody fragments (scFv) was constructed on the base of genes encoding variable domains of heavy and light chains of immunoglobulins cloned from the lymphocytes of four vaccinia virus (VACV) vaccinated donors. The size of the library was 3 x 10(7) independent clones. After the library was enriched with the clones producing scFv against recombinant analogue of variola virus surface protein prA30L, a panel of unique antibodies specific to both prA30L and VACV was selected from the library. A plaque reduction neutralization test was performed for all selected antibodies and two antibodies were shown to be able to neutralize plaque formation of VACV in Vero E6 cells monolayer. Binding specificities of these antibodies were confirmed using ELISA and Western blot analysis. To determine the amino acid sequences of neutralizing antibodies their genes were sequenced.

  16. Recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibody to turkey coronavirus.

    PubMed

    Abdelwahab, Mohamed; Loa, Chien Chang; Wu, Ching Ching; Lin, Tsang Long

    2015-06-01

    Nucleocapsid (N) protein gene of turkey coronavirus (TCoV) was expressed in a prokaryotic system and used to develop an enzyme-linked immunosorbent assay (ELISA) for detection of antibody to TCoV. Anti-TCoV hyperimmune turkey serum and normal turkey serum were used as positive or negative controls for optimization of the ELISA. Goat anti-turkey IgG (H+L) conjugated with horseradish peroxidase was used as detector antibody. Three hundred and twenty two turkey sera from the field were used to evaluate the performance of ELISA and determine the cut-off point of ELISA. The established ELISA was also examined with serum samples obtained from turkeys experimentally infected with TCoV. Those serum samples were collected at various time intervals from 1 to 63 days post-infection. The optimum conditions for differentiation between anti-TCoV hyperimmune serum and normal turkey serum were recombinant TCoV N protein concentration at 20 μg/ml, serum dilution at 1:800, and conjugate dilution at 1:10,000. Of the 322 sera from the field, 101 were positive for TCoV by immunofluorescent antibody assay (IFA). The sensitivity and specificity of the ELISA relative to IFA test were 86.0% and 96.8%, respectively, using the optimum cut-off point of 0.2 as determined by logistic regression method. Reactivity of anti-rotavirus, anti-reovirus, anti-adenovirus, or anti-enterovirus antibodies with the recombinant N protein coated on the ELISA plates was not detected. These results indicated that the established antibody-capture ELISA in conjunction with recombinant TCoV N protein as the coating protein can be utilized for detection of antibodies to TCoV in turkey flocks.

  17. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants

    PubMed Central

    Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.

    2016-01-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  18. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants.

    PubMed

    Hehle, Verena K; Paul, Matthew J; Roberts, Victoria A; van Dolleweerd, Craig J; Ma, Julian K-C

    2016-04-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformedNicotiana tabacum Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy's 13 antibody heavy and light chain mutant combinations were expressed transiently inN. tabacumand demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.-Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  19. Biotechnological applications of recombinant single-domain antibody fragments

    PubMed Central

    2011-01-01

    Background Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. Results The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. Conclusions Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments. PMID:21658216

  20. Restricted VH gene usage and generation of antibody diversity in rabbit.

    PubMed

    Knight, K L

    1992-01-01

    The presence of VHa allotypic specificities on nearly all rabbit Ig molecules has perplexed immunologists for many years. How could these allotypic specificities be inherited as if controlled by alleles if the germline has hundreds of VHa allotype-encoding genes and if most of these genes are used in VDJ gene rearrangements. I review recent data indicating that the allelic inheritance of the VHa allotypes can be explained by preferential utilization of the D-proximal VH gene VH1 in VDJ gene rearrangements. The preferential usage of one VH gene, however, limits the contribution of combinatorial joining of multiple VH, D and JH gene segments to the generation of antibody diversity. The roles of somatic gene conversion and somatic mutation in generating antibody diversity are discussed. Further, the limited usage of germline VH genes in normal, allotype-suppressed and the mutant Alicia rabbit as well as the molecular basis of latent allotypes and VH/CH recombinants is reviewed.

  1. Generation of Recombinant Porcine Parvovirus Virus-Like Particles in Saccharomyces cerevisiae and Development of Virus-Specific Monoclonal Antibodies

    PubMed Central

    Tamošiūnas, Paulius Lukas; Petraitytė-Burneikienė, Rasa; Lasickienė, Rita; Sereika, Vilimas; Lelešius, Raimundas; Žvirblienė, Aurelija; Sasnauskas, Kęstutis

    2014-01-01

    Porcine parvovirus (PPV) is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs). Nine monoclonal antibodies (MAbs) against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance. PMID:25045718

  2. Generation of recombinant porcine parvovirus virus-like particles in Saccharomyces cerevisiae and development of virus-specific monoclonal antibodies.

    PubMed

    Tamošiūnas, Paulius Lukas; Petraitytė-Burneikienė, Rasa; Lasickienė, Rita; Akatov, Artiomas; Kundrotas, Gabrielis; Sereika, Vilimas; Lelešius, Raimundas; Žvirblienė, Aurelija; Sasnauskas, Kęstutis

    2014-01-01

    Porcine parvovirus (PPV) is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs). Nine monoclonal antibodies (MAbs) against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance.

  3. Recombinant single-chain Fv antibody fragment-alkaline phosphatase conjugate for one-step immunodetection in molecular hybridization.

    PubMed

    Muller, B H; Chevrier, D; Boulain, J C; Guesdon, J L

    1999-07-30

    Using phage-display technology, a recombinant single-chain Fv antibody fragment (scFv) was rapidly generated from the K16-16 hybridoma secreting mouse monoclonal antibody (MAb) that binds to acetylaminofluorene-labeled DNA (AAF-DNA). The selected A4 phage-scFv specifically bound to AAF-DNA. The anti-AAF scFv gene was then recloned into a fusion vector for the production of a hybrid protein comprising the antibody fragment fused to a potent bacterial alkaline phosphatase variant (PhoAv). The anti-AAF scFv-PhoAv hybrid protein was bifunctional and possessed both antigen binding capacity and PhoA activity. The recombinant conjugate was directly used, without further purification, for one-step immunodetection in dot-blot hybridization. The detection limit was identical and the test was quicker than the conventional two-step procedure with the purified anti-AAF MAb revealed with a secondary enzyme-labeled antibody. To assess the value of this new reagent for the immunodetection of genomic nucleic acids, genomic DNAs of Campylobacter jejuni and Campylobacter coli were then one-step immunodetected with non-purified recombinant scFv-PhoAv conjugate in a Southern-blot hybridization experiment. The present study shows that the genetic fusion with PhoAv provides a new tool for immunodetection which presents easier and quicker production and use with the same sensitivity and specificity as classical reagents. The recombinant anti-AAF scFv-PhoAv conjugate is a promising alternative reagent for applications involving the immunodetection of specific DNA or RNA sequences, such as the detection and characterization of microorganisms.

  4. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry.

    PubMed

    Liu, Hongcheng; Manuilov, Anton V; Chumsae, Chris; Babineau, Michelle L; Tarcsa, Edit

    2011-07-01

    A method including protein A purification, limited Lys-C digestion, and mass spectrometry analysis was used in the study to quantify a recombinant monoclonal antibody in cynomolgus monkey serum. The same antibody that was isotopically labeled was used as an internal standard. Interferences from serum proteins were first significantly reduced by protein A purification and then by limited Lys-C digestion of protein A bound IgG, including both monkey and the recombinant IgG. Fab fragment of the recombinant human IgG was analyzed directly by LC-MS, while monkey IgG and the Fc fragment of the recombinant human IgG remained bound to protein A resin. Quantitation was achieved by measuring the peak intensity of the Fab from the recombinant human IgG and comparing it to that of the Fab from the stable isotope-labeled internal standard. The results were in good agreement with the values from ELISA. LC-MS can therefore be used as a complementary approach to ELISA to quantify recombinant monoclonal antibodies in serum for pharmacokinetics studies and it can also be used where specific reagents such as antigens are not readily available for ELISA.

  5. Simultaneous expression of the Lassa virus N and GPC genes from a single recombinant vaccinia virus.

    PubMed

    Morrison, H G; Goldsmith, C S; Regnery, H L; Auperin, D D

    1991-03-01

    A new transfer vector was constructed that directs the insertion of two heterologous genes into the vaccinia virus thymidine kinase (TK) gene during a single recombination event. This vector, pDAVAC2, contains bidirectional vaccinia P7.5 early/late promoter elements and two unique cloning sites. cDNA clones containing the complete coding sequences for the Lassa virus (Josiah strain) nucleoprotein (N) and glycoprotein (GPC) genes were inserted into the vaccinia TK gene using this transfer vector. The recombinant virus, V-LSGN-II, expressed proteins in cell culture that appeared to be authentic with respect to electrophoretic mobility, glycosylation, and post-translational cleavage. Indirect immunofluorescence (IFA) of recombinant virus-infected cells demonstrated both the bright granular and diffuse patterns of staining characteristic of the Lassa nucleoprotein and glycoprotein, respectively. Electron-dense inclusion bodies typical of arenavirus-infected cells were observed by electron microscopy in V-LSN and V-LSGN-II-infected cells, but not in V-LSGPC-infected cells. Mice inoculated with V-LSGN-II by intraperitoneal injection developed serum antibodies that reacted with authentic Lassa proteins in immunofluorescence and radioimmune precipitation assays. This recombinant virus represents an additional candidate for a Lassa fever vaccine and demonstrates the feasibility of expressing any two genes of interest in a single recombinant vaccinia virus through the use of the transfer vector pDAVAC2.

  6. A High Through-put Platform for Recombinant Antibodies to Folded Proteins.

    PubMed

    Hornsby, Michael; Paduch, Marcin; Miersch, Shane; Sääf, Annika; Matsuguchi, Tet; Lee, Brian; Wypisniak, Karolina; Doak, Allison; King, Daniel; Usatyuk, Svitlana; Perry, Kimberly; Lu, Vince; Thomas, William; Luke, Judy; Goodman, Jay; Hoey, Robert J; Lai, Darson; Griffin, Carly; Li, Zhijian; Vizeacoumar, Franco J; Dong, Debbie; Campbell, Elliot; Anderson, Stephen; Zhong, Nan; Gräslund, Susanne; Koide, Shohei; Moffat, Jason; Sidhu, Sachdev; Kossiakoff, Anthony; Wells, James

    2015-10-01

    Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E. coli (∼5 mg/L), and ability to bind antigen in complex cell lysates. We evaluated a subset of Fabs generated to homologous SCAN domains for binding specificities. These Fragment antigen-binding domains were monospecific to their target SCAN antigen except in rare cases where they cross-reacted with a few highly related antigens. Remarkably, immunofluorescence experiments in six cell lines for 270 of the TF antigens, each having multiple antibodies, show that ∼70% stain predominantly in the cytosol and ∼20% stain in the nucleus which reinforces the dominant role that translocation plays in TF biology. These cloned antibody reagents are being made available to the academic community through our web site recombinant-antibodies.org to allow a more system-wide analysis of TF and chromatin biology. We believe these platforms, infrastructure, and automated approaches will facilitate the next generation of renewable antibody reagents to the human proteome in the coming decade.

  7. A High Through-put Platform for Recombinant Antibodies to Folded Proteins*

    PubMed Central

    Hornsby, Michael; Paduch, Marcin; Miersch, Shane; Sääf, Annika; Matsuguchi, Tet; Lee, Brian; Wypisniak, Karolina; Doak, Allison; King, Daniel; Usatyuk, Svitlana; Perry, Kimberly; Lu, Vince; Thomas, William; Luke, Judy; Goodman, Jay; Hoey, Robert J.; Lai, Darson; Griffin, Carly; Li, Zhijian; Vizeacoumar, Franco J.; Dong, Debbie; Campbell, Elliot; Anderson, Stephen; Zhong, Nan; Gräslund, Susanne; Koide, Shohei; Moffat, Jason; Sidhu, Sachdev; Kossiakoff, Anthony; Wells, James

    2015-01-01

    Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E. coli (∼5 mg/L), and ability to bind antigen in complex cell lysates. We evaluated a subset of Fabs generated to homologous SCAN domains for binding specificities. These Fragment antigen-binding domains were monospecific to their target SCAN antigen except in rare cases where they cross-reacted with a few highly related antigens. Remarkably, immunofluorescence experiments in six cell lines for 270 of the TF antigens, each having multiple antibodies, show that ∼70% stain predominantly in the cytosol and ∼20% stain in the nucleus which reinforces the dominant role that translocation plays in TF biology. These cloned antibody reagents are being made available to the academic community through our web site recombinant-antibodies.org to allow a more system-wide analysis of TF and chromatin biology. We believe these platforms, infrastructure, and automated approaches will facilitate the next generation of renewable antibody reagents to the human proteome in the coming decade. PMID:26290498

  8. Serum antibody response to recombinant major inner capsid protein following human infection with group B rotavirus.

    PubMed Central

    Eiden, J J; Mouzinho, A; Lindsay, D A; Glass, R I; Fang, Z Y; Taylor, J L

    1994-01-01

    Recombinant major inner capsid protein (VP6) of the IDIR strain of group B rotavirus (GBR) was incorporated in a solid-phase immunoassay to access antibody response to infection in humans. Expression of VP6 in insect cells permitted design of a highly sensitive assay that avoided the contaminants present in GBR antigens obtained from fecal specimens. Among patients infected with the ADRV strain of GBR in China, increased reactivity with recombinant VP6 was observed in convalescent-phase sera in comparison with sera obtained shortly after infection (P = 0.0084). Anti-VP6 antibodies were detectable as soon as 7 days after onset of gastrointestinal symptoms, and serum reactivity persisted in specimens drawn more than 1 year after infection. Solid-phase immunoassay with recombinant VP6 was next employed in order to assess anti-GBR antibody in 513 serum specimens obtained from 423 Maryland residents (ages, 7 months to 96 years; median age, 42 years). Four individuals (< 1%) exhibited serum antibodies directed against the recombinant VP6 (ages, 54 to 95 years; mean age, 77 years). Examination of 129 additional serum specimens including some from other geographic regions of the United States failed to reveal the presence of anti-GBR antibody. Anti-GBR antibody was also not detected in any of 131 serum specimens from 60 staff and residents of a nursing home in Switzerland. While infection of humans with GBR has been uncommon in these locations outside of China, the detection of serum antibodies in older individuals in the United States either indicated an unknown, age-related risk factor or may have indicated infection in the more distant past. The availability of these reagents should allow surveys for GBR infection among additional populations that have not previously been investigated. PMID:8077413

  9. A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays.

    PubMed

    Min, Junseon; Song, Eun Kyung; Kim, Hansol; Kim, Kyoung Taek; Park, Tae Joo; Kang, Sebyung

    2016-01-01

    We construct a novel recombinant secondary antibody mimic, GST-ABD, which can bind to the Fc regions of target-bound primary antibodies and acquire multiple HRPs simultaneously. We produce it in tenth of mg quantities with a bacterial overexpression system and simple purification procedures, significantly reducing the manufacturing cost and time without the use of animals. GST-ABD is effectively conjugated with 3 HRPs per molecule on an average and selectively bind to the Fc region of primary antibodies derived from three different species (mouse, rabbit, and rat). HRP-conjugated GST-ABD (HRP-GST-ABD) is successfully used as an alternative to secondary antibodies to amplify target-specific signals in both ELISA and immunohistochemistry regardless of the target molecules and origin of primary antibodies used. GST-ABD also successfully serves as an anchoring adaptor on the surface of GSH-coated plates for immobilizing antigen-capturing antibodies in an orientation-controlled manner for sandwich-type indirect ELISA through simple molecular recognition without any complicated chemical modification. PMID:27063487

  10. A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays

    PubMed Central

    Min, Junseon; Song, Eun Kyung; Kim, Hansol; Kim, Kyoung Taek; Park, Tae Joo; Kang, Sebyung

    2016-01-01

    We construct a novel recombinant secondary antibody mimic, GST-ABD, which can bind to the Fc regions of target-bound primary antibodies and acquire multiple HRPs simultaneously. We produce it in tenth of mg quantities with a bacterial overexpression system and simple purification procedures, significantly reducing the manufacturing cost and time without the use of animals. GST-ABD is effectively conjugated with 3 HRPs per molecule on an average and selectively bind to the Fc region of primary antibodies derived from three different species (mouse, rabbit, and rat). HRP-conjugated GST-ABD (HRP-GST-ABD) is successfully used as an alternative to secondary antibodies to amplify target-specific signals in both ELISA and immunohistochemistry regardless of the target molecules and origin of primary antibodies used. GST-ABD also successfully serves as an anchoring adaptor on the surface of GSH-coated plates for immobilizing antigen-capturing antibodies in an orientation-controlled manner for sandwich-type indirect ELISA through simple molecular recognition without any complicated chemical modification. PMID:27063487

  11. Quantitative measurement of bitagged recombinant proteins using an immunometric assay: application to an anti-substance P recombinant antibody.

    PubMed

    Boquet, D; Créminon, C; Clément, G; Frobert, Y; Nevers, M C; Essono, S; Grassi, J

    2000-09-10

    We have developed two different immunometric assays to directly quantify both the total and the active fractions of a recombinant antibody (single chain fragment variable, or ScFv) as obtained in a crude extract from an Escherichia coli expression system. For total determination, the assay is based on the simultaneous recognition of two different peptide Tag sequences (Ha-Tag and Myc-Tag) at each of the N- and C-terminal extremities of the recombinant protein. A monoclonal antibody (mAb 12CA5, directed against Ha-Tag), coated on microtiter plates, is used for capture, and the mAb 9E10 (directed against Myc-Tag), labeled with acetylcholinesterase (AChE, EC 3.1.1.7), acts as tracer. In parallel, for the determination of the active fraction, the capture is performed using microtiter plates coated with the antigen, while solid-phase-immobilized ScFv is measured using the same 9E10 tracer mAb. A synthetic peptide in which the two Tag sequences were joined was used as a standard, thus avoiding the laborious purification of a recombinant protein as reference. The method was applied to the direct measurement, in periplasmic extracts, of the total and active fractions of an ScFv produced at different induction temperatures.

  12. Production and characterisation of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus.

    PubMed

    McLean, C S; Churcher, M J; Meinke, J; Smith, G L; Higgins, G; Stanley, M; Minson, A C

    1990-06-01

    A monoclonal antibody was raised against the major capsid protein L1 of human papillomavirus type 16, using a recombinant vaccinia virus that expresses the L1 protein, as a target for screening. This antibody, designated CAMVIR-1, reacted with a 56 kilodalton protein in cells infected with L1-vaccinia virus, and the protein was present in a predominantly nuclear location. The antibody also detects the HPV-16 L1 antigen in formalin fixed, paraffin wax embedded biopsy specimens and on routine cervical smears. The antibody reacts strongly and consistently with biopsy specimens containing HPV-16 or HPV-33, but very weak reactions were occasionally observed with biopsy specimens or smears containing HPV-6 or HPV-11. The potential advantages of using a vaccinia recombinant are (i) the target protein is synthesised in a eukoryotic cell so that its "processing" and location are normal; (ii) cells infected with vaccinia recombinants can be subjected to various fixing procedures similar to those used for routine clinical material. This greatly increases the probability that an identified antibody will be useful in a clinical setting.

  13. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  14. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays

    PubMed Central

    Gerdtsson, Anna S.; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. PMID:27600082

  15. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays

    PubMed Central

    Gerdtsson, Anna S.; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts.

  16. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays.

    PubMed

    Gerdtsson, Anna S; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A K; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. PMID:27600082

  17. Production of monoclonal antibodies specific to Macrobrachium rosenbergii nodavirus using recombinant capsid protein.

    PubMed

    Wangman, Pradit; Senapin, Saengchan; Chaivisuthangkura, Parin; Longyant, Siwaporn; Rukpratanporn, Sombat; Sithigorngul, Paisarn

    2012-03-20

    The gene encoding the capsid protein of Macrobrachium rosenbergii nodavirus (MrNV) was cloned into pGEX-6P-1 expression vector and then transformed into the Escherichia coli strain BL21. After induction, capsid protein-glutathione-S-transferase (GST-MrNV; 64 kDa) was produced. The recombinant protein was separated using SDS-PAGE, excised from the gel, electro-eluted and then used for immunization for monoclonal antibody (MAb) production. Four MAbs specific to the capsid protein were selected and could be used to detect natural MrNV infections in M. rosenbergii by dot blotting, Western blotting and immunohistochemistry without cross-reaction with uninfected shrimp tissues or other common shrimp viruses. The detection sensitivity of the MAbs was 10 fmol µl-1 of the GST-MrNV, as determined using dot blotting. However, the sensitivity of the MAb on dot blotting with homogenate from naturally infected M. rosenbergii was approximately 200-fold lower than that of 1-step RT-PCR. Immunohistochemical analysis using these MAbs with infected shrimp tissues demonstrated staining in the muscles, nerve cord, gill, heart, loose connective tissue and inter-tubular tissue of the hepatopancreas. Although the positive reactions occurred in small focal areas, the immunoreactivity was clearly demonstrated. The MAbs targeted different epitopes of the capsid protein and will be used to develop a simple immunoassay strip test for rapid detection of MrNV. PMID:22436460

  18. Arginine modifications by methylglyoxal: discovery in a recombinant monoclonal antibody and contribution to acidic species.

    PubMed

    Chumsae, Chris; Gifford, Kathreen; Lian, Wei; Liu, Hongcheng; Radziejewski, Czeslaw H; Zhou, Zhaohui Sunny

    2013-12-01

    Heterogeneity is common among protein therapeutics. For example, the so-called acidic species (charge variants) are typically observed when recombinant monoclonal antibodies (mAbs) are analyzed by weak-cation exchange chromatography (WCX). Several protein post-translational modifications have been established as contributors but still cannot completely account for all heterogeneity. As reported herein, an unexpected modification by methylglyoxal (MGO) was identified, for the first time, in a recombinant monoclonal antibody expressed in Chinese hamster ovary (CHO) cells. Modifications of arginine residues by methylglyoxal lead to two adducts (dihydroxyimidazolidine and hydroimidazolone) with increases of molecular weights of 72 and 54 Da, respectively. In addition, the modification by methylglyoxal causes the antibody to elute earlier in the weak cation exchange chromatogram. Consequently, the extent to which an antibody was modified at multiple sites corresponds to the degree of shift in elution time. Furthermore, cell culture parameters also affected the extent of modifications by methylglyoxal, a highly reactive metabolite that can be generated from glucose or lipids or other metabolic pathways. Our findings again highlight the impact that cell culture conditions can have on the product quality of recombinant protein pharmaceuticals.

  19. Arginine Modifications by Methylglyoxal: Discovery in a Recombinant Monoclonal Antibody and Contribution to Acidic Species

    PubMed Central

    Chumsae, Chris; Gifford, Kathreen; Lian, Wei; Liu, Hongcheng; Radziejewski, Czeslaw H.; Zhou, Zhaohui Sunny

    2013-01-01

    Heterogeneity is common among protein therapeutics. For example, the so-called acidic species (charge variants) are typically observed when recombinant monoclonal antibodies (mAbs) are analyzed by weak-cation exchange chromatography (WCX). Several protein post-translational modifications have been established as contributors, but still cannot completely account for all heterogeneity. As reported herein, an unexpected modification by methylglyoxal (MGO) was identified, for the first time, in a recombinant monoclonal antibody expressed in Chinese hamster ovary (CHO) cells. Modifications of arginine residues by methylglyoxal lead to two adducts (dihydroxyimidazolidine and hydroimidazolone) with increase of molecular weights of 72 and 54 Daltons, respectively. In addition, the modification by methylglyoxal causes the antibody to elute earlier in the weak cation exchange chromatogram. Consequently, the extent to which an antibody was modified at multiple sites corresponds to the degree of shift in elution time. Furthermore, cell culture parameters also affected the extent of modifications by methylglyoxal, a highly reactive metabolite that can be generated from glucose or lipids or other metabolic pathways. Our findings again highlight the impact that cell culture conditions can have on the product quality of recombinant protein pharmaceuticals. PMID:24168114

  20. In vivo recombination as a tool to generate molecular diversity in phage antibody libraries.

    PubMed

    Sblattero, D; Lou, J; Marzari, R; Bradbury, A

    2001-06-01

    The creation of diversity in populations of polypeptides has become an important tool in the derivation of polypeptides with useful characteristics. This requires efficient methods to create diversity coupled with methods to select polypeptides with desired properties. In this review we describe the use of in vivo recombination as a powerful way to generate diversity. The novel principles for the recombination process and several applications of this process for the creation of phage antibody libraries are described. The advantage and disadvantages are discussed and possible future exploitation presented.

  1. Technical Advances of the Recombinant Antibody Microarray Technology Platform for Clinical Immunoproteomics

    PubMed Central

    Delfani, Payam; Dexlin Mellby, Linda; Nordström, Malin; Holmér, Andreas; Ohlsson, Mattias; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    In the quest for deciphering disease-associated biomarkers, high-performing tools for multiplexed protein expression profiling of crude clinical samples will be crucial. Affinity proteomics, mainly represented by antibody-based microarrays, have during recent years been established as a proteomic tool providing unique opportunities for parallelized protein expression profiling. But despite the progress, several main technical features and assay procedures remains to be (fully) resolved. Among these issues, the handling of protein microarray data, i.e. the biostatistics parts, is one of the key features to solve. In this study, we have therefore further optimized, validated, and standardized our in-house designed recombinant antibody microarray technology platform. To this end, we addressed the main remaining technical issues (e.g. antibody quality, array production, sample labelling, and selected assay conditions) and most importantly key biostatistics subjects (e.g. array data pre-processing and biomarker panel condensation). This represents one of the first antibody array studies in which these key biostatistics subjects have been studied in detail. Here, we thus present the next generation of the recombinant antibody microarray technology platform designed for clinical immunoproteomics. PMID:27414037

  2. Technical Advances of the Recombinant Antibody Microarray Technology Platform for Clinical Immunoproteomics.

    PubMed

    Delfani, Payam; Dexlin Mellby, Linda; Nordström, Malin; Holmér, Andreas; Ohlsson, Mattias; Borrebaeck, Carl A K; Wingren, Christer

    2016-01-01

    In the quest for deciphering disease-associated biomarkers, high-performing tools for multiplexed protein expression profiling of crude clinical samples will be crucial. Affinity proteomics, mainly represented by antibody-based microarrays, have during recent years been established as a proteomic tool providing unique opportunities for parallelized protein expression profiling. But despite the progress, several main technical features and assay procedures remains to be (fully) resolved. Among these issues, the handling of protein microarray data, i.e. the biostatistics parts, is one of the key features to solve. In this study, we have therefore further optimized, validated, and standardized our in-house designed recombinant antibody microarray technology platform. To this end, we addressed the main remaining technical issues (e.g. antibody quality, array production, sample labelling, and selected assay conditions) and most importantly key biostatistics subjects (e.g. array data pre-processing and biomarker panel condensation). This represents one of the first antibody array studies in which these key biostatistics subjects have been studied in detail. Here, we thus present the next generation of the recombinant antibody microarray technology platform designed for clinical immunoproteomics.

  3. Probing the soybean Bowman-Birk inhibitor using recombinant antibody fragments.

    PubMed

    Muzard, Julien; Fields, Conor; O'Mahony, James John; Lee, Gil U

    2012-06-20

    The nutritional and health benefits of soy protein have been extensively studied over recent decades. The Bowman-Birk inhibitor (BBI), derived from soybeans, is a double-headed inhibitor of chymotrypsin and trypsin with anticarcinogenic and anti-inflammatory properties, which have been demonstrated in vitro and in vivo. However, the lack of analytical and purification methodologies complicates its potential for further functional and clinical investigations. This paper reports the construction of anti-BBI antibody fragments based on the principle of protein design. Recombinant antibody (scFv and diabody) molecules targeting soybean BBI were produced and characterized in vitro (K(D)~1.10(-9) M), and the antibody-binding site (epitope) was identified as part of the trypsin-specific reactive loop. Finally, an extremely fast purification strategy for BBI from soybean extracts, based on superparamagnetic particles coated with antibody fragments, was developed. To the best of the authors' knowledge, this is the first report on the design and characterization of recombinant anti-BBI antibodies and their potential application in soybean processing. PMID:22642722

  4. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    PubMed

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines.

  5. Method to convert N-terminal glutamine to pyroglutamate for characterization of recombinant monoclonal antibodies.

    PubMed

    Xu, Wei; Peng, Yan; Wang, Fengqiang; Paporello, Brittany; Richardson, Daisy; Liu, Hongcheng

    2013-05-01

    Cyclization of N-terminal glutamine to pyroglutamate is a common modification of recombinant monoclonal antibodies that has often been identified by liquid chromatography mass spectrometry (LC-MS) analysis using separated fractions. An alternative approach of using glutaminyl-peptide cyclotransferase to convert the N-terminal glutamine to pyroglutamate was developed in the current study. Enzymatic conversion of the N-terminal glutamine to pyroglutamate not only provides an identification of the N-terminal amino acids without fraction collection but also can significantly simplify the chromatograms to assist fraction collections for the characterization of other antibody variants.

  6. Plant Cell-Based Recombinant Antibody Manufacturing with a 200 L Orbitally Shaken Disposable Bioreactor.

    PubMed

    Raven, Nicole; Schillberg, Stefan; Rasche, Stefan

    2016-01-01

    Tobacco BY-2 cells are an attractive platform for the manufacture of a variety of biopharmaceutical proteins, including antibodies. Here, we describe the scaled-up cultivation of human IgG-secreting BY-2 cells in a 200 L orbitally shaken disposable bioreactor, resulting in cell growth and recombinant protein yields that are proportionately comparable with those obtained from cultivations in 500 mL shake flasks. Furthermore, we present an efficient downstream process for antibody recovery from the viscous spent culture medium using expanded bed adsorption (EBA) chromatography. PMID:26614289

  7. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism.

    PubMed

    Karim-Silva, Sabrina; Moura, Juliana de; Noiray, Magali; Minozzo, Joao Carlos; Aubrey, Nicolas; Alvarenga, Larissa M; Billiald, Philippe

    2016-08-01

    Loxosceles spider bites often lead to serious envenomings and no definite therapy has yet been established. In such a context, it is of interest to consider an antibody-based targeted therapy. We have previously prepared a murine monoclonal IgG (LiMab7) that binds to 32-35kDa components of Loxosceles intermedia venom and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a recombinant diabody. The protein was produced in bacteria and then it was functionally characterized. It proved to be efficient at neutralizing sphingomyelinase and hemolytic activities of the crude venom despite the slightly altered binding kinetic constants and the limited stability of the dimeric configuration. This is the first report of a specific recombinant antibody for a next-generation of Loxosceles antivenoms. PMID:27288291

  8. Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes

    PubMed Central

    Bonaldo, Myrna C; Mello, Samanta M; Trindade, Gisela F; Rangel, Aymara A; Duarte, Adriana S; Oliveira, Prisciliana J; Freire, Marcos S; Kubelka, Claire F; Galler, Ricardo

    2007-01-01

    Background The yellow fever virus, a member of the genus Flavivirus, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP). This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor. Results YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 ± 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus. Conclusion This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow in vivo studies on flavivirus cell and tissue tropism as well as cellular processes related to flavivirus infection. PMID

  9. Genetic recombination is targeted towards gene promoter regions in dogs.

    PubMed

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  10. Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs

    PubMed Central

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J. Kim; Hayward, Jessica J.; Cohen, Paula E.; Greally, John M.; Wang, Jun; Bustamante, Carlos D.; Boyko, Adam R.

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred. PMID:24348265

  11. Production and characterization of egg yolk antibody (IgY) against recombinant VP8-S2 antigen.

    PubMed

    Nasiri, K; Nassiri, M R; Tahmoorespur, M; Haghparast, A; Zibaee, S

    2016-01-01

    Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. VP8 subunit of rotavirus is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Studies showed that immunoglobulin of egg yolk (IgY) from immunized hens has been identified to be a convenient source for specific antibodies for using in immunotherapy and immunodiagnostic to limit the infections. In this study, chimeric VP8-S2 gene was designed using by computational techniques. The chimeric VP8-S2 gene was cloned and sub-cloned into pGH and pET32a (+) vectors. Then, recombinant pET32a-VP8-S2 vector was transferred into E. coli BL21 CodonPlus (DE3). The expressed protein was purified by Ni-NTA chromatography column. Hens were immunized with the purified VP8-S2 protein three times. IgY was purified from egg yolks using polyethylene glycol precipitation method. Activity and specificity of anti-VP8-S2 IgY were detected by dot-blotting, Western-blotting and indirect ELISA. We obtained anti-VP8-S2 IgY by immunizing hens with the recombinant VP8-S2 protein. The anti-VP8-S2 IgY was showed to bind specifically to the chimeric VP8-S2 protein by dot-blotting, Western-blotting analyses and indirect ELISA. The result of this study indicated that such construction can be useful to investigate as candidates for development of detection methods for simultaneous diagnosis of both infections. Specific IgY against the recombinant VP8-S2 could be recommended as a candidate for passive immunization against bovine rotavirus and bovine coronavirus. PMID:27487500

  12. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    PubMed

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  13. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

    PubMed Central

    Serra, Heïdi; Ziolkowski, Piotr A.; Yelina, Nataliya E.; Jackson, Matthew; Mézard, Christine; McVean, Gil; Henderson, Ian R.

    2016-01-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity. PMID:27415776

  14. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  15. Integrated Mimicry of B Cell Antibody Mutagenesis Using Yeast Homologous Recombination

    PubMed Central

    Wittrup, K. Dane

    2014-01-01

    Antibody affinity maturation proceeds in vivo via a combination of point mutations, insertions, deletions, and combinatorial shuffling of light chains or portions of the heavy chain, thereby reducing the probability of trapping in local affinity optima in sequence space. In vivo homologous recombination in yeast can be exploited to mimic the broad spectrum of mutational types deployed by B cells, incorporating both receptor revision and receptor editing together with polymerase-directed point mutagenesis. This method was used to effect a 10,000-fold affinity improvement in an anti-peptide single-chain antibody in three rounds of mutagenesis and screening, and a 1,000-fold affinity improvement in an anti-protein single-chain antibody in a single round. When recombinational mutagenesis (CDR or chain shuffling) was directly compared to error-prone PCR, the recombinational approach yielded greater affinity improvement with substantially reduced divergence from germline sequences, demonstrating an advantage of simultaneously testing a broad range of mutational strategies. PMID:20645027

  16. Integrated mimicry of B cell antibody mutagenesis using yeast homologous recombination.

    PubMed

    Swers, Jeffrey S; Yeung, Yik A; Wittrup, K Dane

    2011-01-01

    Antibody affinity maturation proceeds in vivo via a combination of point mutations, insertions, deletions, and combinatorial shuffling of light chains or portions of the heavy chain, thereby reducing the probability of trapping in local affinity optima in sequence space. In vivo homologous recombination in yeast can be exploited to mimic the broad spectrum of mutational types deployed by B cells, incorporating both receptor revision and receptor editing together with polymerase-directed point mutagenesis. This method was used to effect a 10,000-fold affinity improvement in an anti-peptide single-chain antibody in three rounds of mutagenesis and screening, and a 1,000-fold affinity improvement in an anti-protein single-chain antibody in a single round. When recombinational mutagenesis (CDR or chain shuffling) was directly compared to error-prone PCR, the recombinational approach yielded greater affinity improvement with substantially reduced divergence from germline sequences, demonstrating an advantage of simultaneously testing a broad range of mutational strategies.

  17. Detection of antibodies to caprine arthritis-encephalitis virus using recombinant gag proteins.

    PubMed

    Rimstad, E; East, N; DeRock, E; Higgins, J; Pedersen, N C

    1994-01-01

    The coding sequences of the core proteins p17 and p28 of caprine arthritis-encephalitis virus (CAEV) were amplified using the polymerase chain reaction and cloned into the plasmid expression vector p-GEX-2T. Both p17 and p28 were expressed as fusion proteins with glutathione S-transferase. The recombinant proteins were affinity purified from induced bacterial lysates using glutathione-agarose beads. The purified proteins were used in an enzyme-linked immunosorbent assay (ELISA) to detect antibodies against CAEV in goat sera and milk samples. Three different ELISA tests were developed based on p17, p28 or the combination of these two recombinant proteins (p17 + p28). A comparison was made to an ELISA based on purified whole virus particles and to agar immunodiffusion test (AGID). Sera with conflicting results in the different ELISA tests were examined by Western blotting. There was a high correlation between the ELISA tests based on p17 + p28 recombinant proteins and whole virus ELISA, with an estimated kappa value of 0.92. Only 72-75% of the sera that tested positive in these two ELISA tests were positive in AGID. Antibodies to CAEV were detected in significantly more animals when serum samples were tested compared to milk samples. Based on the time and materials required to prepare the reagents, the recombinant based ELISA test was less expensive than the whole virus ELISA.

  18. Hapten mediated display and pairing of recombinant antibodies accelerates assay assembly for biothreat countermeasures.

    PubMed

    Sherwood, Laura J; Hayhurst, Andrew

    2012-01-01

    A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes. PMID:23150778

  19. Hapten Mediated Display and Pairing of Recombinant Antibodies Accelerates Assay Assembly for Biothreat Countermeasures

    PubMed Central

    Sherwood, Laura J.; Hayhurst, Andrew

    2012-01-01

    A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes. PMID:23150778

  20. Sensitive radioimmunoassay for detection of antibodies to recombinant human interferon-alpha A

    SciTech Connect

    Palleroni, A.V.; Trown, P.W.

    1986-12-01

    A radioimmunoassay (RIA) for the detection of antibodies to recombinant human leukocyte interferon A (rHuIFN-alpha A) in human serum has been developed and validated against the standard antiviral neutralization bioassay (ANB). The assay measures the binding of /sup 125/I-labeled rHuIFN-alpha A to immunoglobulins in serum. Aliquots of patients' sera are incubated with /sup 125/I-rHuIFN-alpha A and the complexes formed between antibodies in the sera and the /sup 125/I-rHuIFN-alpha A are precipitated with goat anti-human IgG serum. The radioactivity in the immune precipitate is a measure of the quantity of antibody (if present) in the serum. The sensitivity of this RIA is 5 ng of IgG/ml of serum.

  1. Effect of recombinant canine distemper vaccine on antibody titers in previously vaccinated dogs.

    PubMed

    Larson, L J; Hageny, T L; Haase, C J; Schultz, R D

    2006-01-01

    Two canine distemper virus (CDV) vaccine types are currently commercially available: modified-live virus (MLV) vaccines and a canarypox recombinant CDV (rCDV) vaccine (Recombitek, Merial). This study compared the ability of the rCDV vaccine and MLV vaccines to significantly enhance (boost) the antibody response of previously immunized adult and juvenile dogs. A significant (fourfold or greater) increase in titer occurred in significantly more dogs revaccinated with Recombitek C-4 or Recombitek C-6 than with the MLV-CDV vaccines. This study demonstrates that Recombitek, the only vaccine for dogs containing rCDV, is more likely to significantly boost the CDV antibody response in previously vaccinated dogs than are the MLV-CDV vaccines. Because rCDV vaccine can boost the antibody titer of dogs previously vaccinated with an MLV vaccine, it can and should be used when core vaccines are readministered. PMID:16871492

  2. Redirected cellular cytotoxicity by infection of effector cells with a recombinant vaccinia virus encoding a tumor-specific monoclonal antibody.

    PubMed

    Paul, S; Bizouarne, N; Dott, K; Ruet, L; Dufour, P; Acres, R B; Kieny, M P

    2000-04-01

    Cytotoxicity is an important function of the immune system that results in the destruction of cellular targets by humoral and/or cellular mechanisms. We wanted to assess the possibility of targeting the lytic function of immune cells toward cancer cells, which express the gene coding for a known tumor antigen (Ag) (GA733-2/epithelial cell adhesion molecule), using a viral vector encoding a monoclonal antibody (mAb) specific for said tumor Ag (CO17-1A). To this end, we have constructed recombinant vaccinia viruses expressing the sequences corresponding to mAb CO17-1A, which recognizes a specific Ag (GA733-2) that is present on the surface of most gastrointestinal carcinomas. The recombinant vectors encoding either a secreted or membrane-anchored form of CO17-1A mAb were used to infect effector cells, which were subsequently assessed for their cytotoxic activity. The recombinant viruses were able to infect both granulocyte-macrophage colony-stimulating factor-activated human macrophages and Ag-stimulated murine cytotoxic T lymphocytes. Infected granulocyte-macrophage colony-stimulating factor-activated macrophages were found to be able to kill GA733-2-expressing tumor cells. Likewise, infected cytotoxic T lymphocytes, although conserving their original alloreactivity, gained the capability of killing GA733-2-expressing cancer cells. PMID:10811480

  3. Recombinant outer membrane protein C of Aeromonas hydrophila elicits mixed immune response and generates agglutinating antibodies.

    PubMed

    Yadav, Sunita Kumari; Meena, Jitendra Kumar; Sharma, Mahima; Dixit, Aparna

    2016-08-01

    Aeromonas hydrophila is a gram-negative fish pathogenic bacterium, also responsible for causing opportunistic pathological conditions in humans. It causes a number of diseases in fish due to which the fish industry incurs huge economic losses annually. Due to problems of antibiotic resistance, and the rapidity with which the infection spreads among fishes, vaccination remains the most effective strategy to combat this infection in fish populations. Among various virulence factors associated with bacterial virulence, outer membrane proteins have been widely evaluated for their vaccine potential owing to their surface exposure and related role in pathogenicity. In the present study, we have investigated the immunogenic potential of a non-specific porin, outer membrane protein C (OmpC) whose expression is regulated by the two-component regulatory system and plays a major role in the survival of A. hydrophila under different osmolaric conditions. The full-length gene (~1 kb) encoding OmpC of A. hydrophila was cloned, characterized and expressed in E. coli. High yield (~112 mg/L at shake flask level) of the recombinant OmpC (rOmpC) (~40 kDa) of A. hydrophila was obtained upon purification from inclusion bodies using Ni(2+)-NTA affinity chromatography. Immunization with purified rOmpC in murine model generated high endpoint (>1:40,000) titers. IgG isotyping, ELISA and ELISPOT assay indicated mixed immune response with a TH2 bias. Also, the anti-rOmpC antibodies were able to agglutinate A. hydrophila in vitro and exhibited specific cross-reactivity with different Aeromonas strains, which will facilitate easy detection of different Aeromonas isolates in infected samples. Taken together, these data clearly indicate that rOmpC could serve as an effective vaccine against different strains of Aeromonas, a highly heterogenous group of bacteria. PMID:27328672

  4. Gonadotropin-releasing hormone/human chorionic gonadotropin beta based recombinant antibodies and vaccines.

    PubMed

    Talwar, G P; Vyas, Hemant K; Purswani, Shilpi; Gupta, Jagdish C

    2009-12-01

    Gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) are unique targets for the control of fertility. Immunological approaches to neutralizing these hormones have additional utility in cancer treatment. Vaccines have been developed against both GnRH and hCG and these have undergone Phase I/II clinical trials documenting their safety, reversibility and efficacy. The heterospecies dimer hCG vaccine prevented pregnancy in women of proven fertility without impairment of ovulation or derangement of menstrual regularity and bleeding profiles. The protective threshold of antibody titers to achieve efficacy was determined in these first-ever trials. Recently, a recombinant vaccine against the beta subunit of hCG linked to the B subunit of heat labile enterotoxin has been made and expressed as a glycosylated conjugate in Pichia pastoris. Experiments indicate its ability to generate antibodies above the protective threshold in all immunized Balb/c mice. Ectopic expression of hCG/hCGbeta is observed in many advanced stage cancers of various origins. A chimeric high affinity and specific recombinant antibody against hCGbeta linked to curcumin kills hCGbeta expressing T lymphoblastic leukemia cells without any deleterious effect. Several synthetic and recombinant vaccines have been developed against GnRH. These reduce serum testosterone to castration levels causing atrophy of the prostate. Three Phase I/II clinical trials conducted in India and Austria have shown that these vaccines elicit non-surgical reduction of testosterone, a fall in prostate specific antigen and clinical improvement of prostate carcinoma patients. A multimer recombinant vaccine against GnRH has high efficacy for sterilization of pigs and other animals. PMID:19854518

  5. Recombinant nucleocapsid protein based single serum dilution ELISA for the detection of antibodies to infectious bronchitis virus in poultry.

    PubMed

    Pradhan, Sunil K; Kamble, Nitin M; Pillai, Aravind S; Gaikwad, Satish S; Khulape, Sagar A; Reddy, M R; Mohan, C Madhan; Kataria, Jag Mohan; Dey, Sohini

    2014-12-01

    Avian infectious bronchitis is ubiquitous and highly contagious disease of poultry, with profound effect on commercial poultry production. For effective control of infectious bronchitis virus (IBV), quick and specific diagnosis is of utmost importance. In this study, the virus was isolated from clinical samples from India and the full length nucleocapsid (N) gene was amplified, cloned and expressed in a prokaryotic system. The purified recombinant N protein based single serum dilution enzyme linked immunosorbent assay (ELISA) was developed for IBV to measure specific antibody in the sera of chickens. A total of 310 chicken sera samples were tested using the commercial IDEXX kit along with the assay developed. A linear correlation was obtained between predicted antibody titres at a single working dilution of 1:100 and the corresponding serum titres observed as determined by the standard serial dilution method. Regression analysis was used to construct a standard curve from which an equation was derived which confirmed their correlation. The developed equation was then used to extrapolate predicated ELISA antibody titer from corrected absorbance readings of the single working dilution. The assay proved to be specific (95.8%) and sensitive (96.8%) when compared to the commercial IDEXX ELISA test.

  6. An antibody Fab selected from a recombinant phage display library detects deesterified pectic polysaccharide rhamnogalacturonan II in plant cells.

    PubMed Central

    Williams, M N; Freshour, G; Darvill, A G; Albersheim, P; Hahn, M G

    1996-01-01

    Rhamnogalacturonan II (RG-II) is a structurally complex, low molecular weight pectic polysaccharide that is released from primary cell walls of higher plants by treatment with endopolygalacturonase and is chromatographically purified after alkaline deesterification. A recombinant monovalent antibody fragment (Fab) that specifically recognizes RG-II has been obtained by selection from a phage display library of mouse immunoglobulin genes. By itself, RG-II is not immunogenic. Therefore, mice were immunized with a neoglycoprotein prepared by covalent attachment of RG-II to modified BSA. A cDNA library of the mouse IgG1/kappa antibody repertoire was constructed in the phage display vector pComb3. Selection of antigen-binding phage particles resulted in the isolation of an antibody Fab, CCRC-R1, that binds alkali-treated RG-II with high specificity. CCRC-R1 binds an epitope found primarily at sites proximal to the plasma membrane of suspension-cultured sycamore maple cells. In cells deesterified by alkali, CCRC-R1 labels the entire wall, suggesting that the RG-II epitope recognized by CCRC-R1 is masked by esterification in most of the wall and tha such RG-II esterification is absent near the plasma membrane. PMID:8624441

  7. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  8. [Knock out of bovine beta casein gene by homologous recombination].

    PubMed

    Xue, Ke; Li, Feng; Luo, Guang-Bin; Huang, Wei-Wei; Chen, Xue-Jin

    2007-05-01

    It has been reported that homologous recombination with Red system has been successfully used for knock-out. We try to work on the construction of the expression vector of Mammary Gland with Red system. This study takes CSN2 as a vector for gene target, which contains the complete bovine beta casein gene. Different homologous arms were designed and the CDS region of the beta casein gene was successfully knocked out. The efficiency was also explored for knocking out different DNA fragment. Based on the study, it is very convenient for making a deep research of the foreign gene expression under the regulation of CSN2 flanking region.

  9. A recombinant vaccinia virus containing the papilloma E2 protein promotes tumor regression by stimulating macrophage antibody-dependent cytotoxicity.

    PubMed

    Rosales, C; Graham, V V; Rosas, G A; Merchant, H; Rosales, R

    2000-09-01

    Human papillomavirus infection is associated with cervical cancer. The E6 and E7 papillomavirus proteins are normally required for the maintenance of the malignant phenotype. Expression of these proteins in infected cells is negatively regulated by the binding of the papilloma E2 protein to the long terminal control region of the papilloma virus genome. The E2 protein can also promote cell arrest and apoptosis in HeLa cells. Therefore, it is clear that this protein has the potential of inhibiting the malignant phenotype. Because, anticancer vaccines based in vaccinia viruses have recently been shown to be an effective way to treat and to eradicate tumors, a recombinant vaccinia virus expressing the E2 gene of bovine papilloma virus (Modified Vaccinia Ankara, MVA E2) was created, to explore further the antitumor potential of the E2 protein. A series of rabbits, containing the VX2 transplantable papilloma carcinoma, were treated with MVA E2. An impressive tumor regression, up to a complete disappearance of tumor, was observed in most animals (80%). In contrast, very little or no regression was detected if the normal vaccinia virus was used. Lymphocytes isolated from MVA E2-treated rabbits did not show cytotoxic activity against tumor cells. However, in these animals a humoral immune response against tumor cells was observed. These antitumor antibodies were capable of activating macrophages to destroy tumor cells efficiently. These data indicate that injecting the MVA E2 recombinant vaccinia virus directly into the tumor results in a robust and long-lasting tumor regression. Data also suggest that antitumor antibodies are responsible, at least in part, for eliminating tumors by activating macrophage antibody-dependent cytotoxicity.

  10. Generation of Recombinant Monoclonal Antibodies from Immunised Mice and Rabbits via Flow Cytometry and Sorting of Antigen-Specific IgG+ Memory B Cells

    PubMed Central

    Starkie, Dale. O; Compson, Joanne E.; Rapecki, Stephen; Lightwood, Daniel J.

    2016-01-01

    Single B cell screening strategies, which avoid both hybridoma fusion and combinatorial display, have emerged as important technologies for efficiently sampling the natural antibody repertoire of immunized animals and humans. Having access to a range of methods to interrogate different B cell subsets provides an attractive option to ensure large and diverse panels of high quality antibody are produced. The generation of multiple antibodies and having the ability to find rare B cell clones producing IgG with unique and desirable characteristics facilitates the identification of fit-for-purpose molecules that can be developed into therapeutic agents or research reagents. Here, we describe a multi-parameter flow cytometry single-cell sorting technique for the generation of antigen-specific recombinant monoclonal antibodies from single IgG+ memory B cells. Both mouse splenocytes and rabbit PBMC from immunised animals were used as a source of B cells. Reagents staining both B cells and other unwanted cell types enabled efficient identification of class-switched IgG+ memory B cells. Concurrent staining with antigen labelled separately with two spectrally-distinct fluorophores enabled antigen-specific B cells to be identified, i.e. those which bind to both antigen conjugates (double-positive). These cells were then typically sorted at one cell per well using FACS directly into a 96-well plate containing reverse transcriptase reaction mix. Following production of cDNA, PCR was performed to amplify cognate heavy and light chain variable region genes and generate transcriptionally-active PCR (TAP) fragments. These linear expression cassettes were then used directly in a mammalian cell transfection to generate recombinant antibody for further testing. We were able to successfully generate antigen-specific recombinant antibodies from both the rabbit and mouse IgG+ memory B cell subset within one week. This included the generation of an anti-TNFR2 blocking antibody from mice

  11. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation.

    PubMed

    Hammerschmidt, Nikolaus; Tscheliessnig, Anne; Sommer, Ralf; Helk, Bernhard; Jungbauer, Alois

    2014-06-01

    Standard industry processes for recombinant antibody production employ protein A affinity chromatography in combination with other chromatography steps and ultra-/diafiltration. This study compares a generic antibody production process with a recently developed purification process based on a series of selective precipitation steps. The new process makes two of the usual three chromatographic steps obsolete and can be performed in a continuous fashion. Cost of Goods (CoGs) analyses were done for: (i) a generic chromatography-based antibody standard purification; (ii) the continuous precipitation-based purification process coupled to a continuous perfusion production system; and (iii) a hybrid process, coupling the continuous purification process to an upstream batch process. The results of this economic analysis show that the precipitation-based process offers cost reductions at all stages of the life cycle of a therapeutic antibody, (i.e. clinical phase I, II and III, as well as full commercial production). The savings in clinical phase production are largely attributed to the fact that expensive chromatographic resins are omitted. These economic analyses will help to determine the strategies that are best suited for small-scale production in parallel fashion, which is of importance for antibody production in non-privileged countries and for personalized medicine.

  12. Assigning and visualizing germline genes in antibody repertoires.

    PubMed

    Frost, Simon D W; Murrell, Ben; Hossain, A S Md Mukarram; Silverman, Gregg J; Pond, Sergei L Kosakovsky

    2015-09-01

    Identifying the germline genes involved in immunoglobulin rearrangements is an essential first step in the analysis of antibody repertoires. Based on our prior work in analysing diverse recombinant viruses, we present IgSCUEAL (Immunoglobulin Subtype Classification Using Evolutionary ALgorithms), a phylogenetic approach to assign V and J regions of immunoglobulin sequences to their corresponding germline alleles, with D regions assigned using a simple pairwise alignment algorithm. We also develop an interactive web application for viewing the results, allowing the user to explore the frequency distribution of sequence assignments and CDR3 region length statistics, which is useful for summarizing repertoires, as well as a detailed viewer of rearrangements and region alignments for individual query sequences. We demonstrate the accuracy and utility of our method compared with sequence similarity-based approaches and other non-phylogenetic model-based approaches, using both simulated data and a set of evaluation datasets of human immunoglobulin heavy chain sequences. IgSCUEAL demonstrates the highest accuracy of V and J assignment amongst existing approaches, even when the reassorted sequence is highly mutated, and can successfully cluster sequences on the basis of shared V/J germline alleles.

  13. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

    PubMed

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S; Greenblatt, Jack F; Marcon, Edyta; Arrowsmith, Cheryl H; Edwards, Aled M; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols. PMID:26437229

  14. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins

    PubMed Central

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A.; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S.; Greenblatt, Jack F.; Marcon, Edyta; Arrowsmith, Cheryl H.; Edwards, Aled M.; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols. PMID:26437229

  15. Reflectometric interference spectroscopy-based immunosensing using immobilized antibody via His-tagged recombinant protein A.

    PubMed

    Choi, Hyung Woo; Sakata, Yasuhiko; Ooya, Tooru; Takeuchi, Toshifumi

    2015-02-01

    The proposed approach demonstrated in this study provides an immunosensing system based on reflectometric interference spectroscopy (RIfS) in combination with an antibody immobilization method using histidine-tagged recombinant protein A. Carboxymethyldextran (CMD) was immobilized on a 3-aminopropyltriethoxysilane-treated a silicon nitride-coated silicon wafer, followed by chelating histidine-tagged recombinant protein A with copper (II) ions. The CMD-layer was found to be advantageous in terms of not only immobilization of histidine-tagged recombinant protein A-mediated an antibody against myoglobin (anti-Myo) but also prevention of non-specific binding of myoglobin. Myoglobin was repeatedly detected, and the apparent detection limit was 0.1 μg mL(-1). The proposed RIfS-based protein sensing system, in conjunction with the easy preparation of silicon-based inexpensive immunosensing chips, is expected to be applicable for label-free optical detection for other proteins in various fields.

  16. Recombinant-antibody-mediated resistance against Tomato yellow leaf curl virus in Nicotiana benthamiana.

    PubMed

    Safarnejad, Mohammad Reza; Fischer, Rainer; Commandeur, Ulrich

    2009-01-01

    Tomato yellow leaf curl virus (TYLCV) is a geminivirus species whose members cause severe crop losses in the tropics and subtropics. We report the expression of a single-chain variable fragment (scFv) antibody that protected Nicotiana benthamiana plants from a prevalent Iranian isolate of the virus (TYLCV-Ir). Two recombinant antibodies (scFv-ScRep1 and scFv-ScRep2) interacting with the multifunctional replication initiator protein (Rep) were obtained from phage display libraries and expressed in plants, both as stand-alone proteins and as N-terminal GFP fusions. Initial results indicated that both scFvs and both fusions accumulated to a detectable level in the cytosol and nucleus of plant cells. Transgenic plants challenged with TYLCV-Ir showed that the scFv-ScRep1, but more so the fusion proteins, were able to suppress TYLCV-Ir replication. These results show that expression of a scFv-ScRep1-GFP fusion protein can attenuate viral DNA replication and prevent the development of disease symptoms. The present article describes the first successful application of a recombinant antibody-mediated resistance approach against a plant DNA virus. PMID:19234665

  17. Analysis of antibody response in human dengue patients from the Mexican coast using recombinant antigens.

    PubMed

    Lazaro-Olán, L; Mellado-Sánchez, G; García-Cordero, J; Escobar-Gutiérrez, A; Santos-Argumedo, L; Gutiérrez-Castañeda, B; Cedillo-Barrón, L

    2008-01-01

    This study was undertaken to evaluate the feasibility of using recombinant dengue proteins to discriminate between acute dengue infections versus uninfected dengue samples. Dengue virus proteins E, NS1, NS3, and NS4B were cloned as fusion proteins and expressed in Escherichia coli. Recombinant products were tested in 100 serum samples obtained from acute dengue fever cases collected from 3 states of Mexico where dengue is endemic. Sera from 75 healthy individuals living in nonendemic areas for dengue were used as a control group. In sera from the dengue patients group, antibody responses to E protein were demonstrated in 91% of cases and NS1 protein was recognized to various extents (99%) within the first 7 days of infection. The antibody responses to NS3 and NS4B were frequently of low magnitude. Consistent negative antibody responses to all proteins were found in sera from the control group. These data suggest that the glutathione-S-transferase (GST)-dengue fusion proteins may be feasible antigens for a sensitive and specific serological assay.

  18. Recombination and Gene Flux Caused by Gene Conversion and Crossing over in Inversion Heterokaryotypes

    PubMed Central

    Navarro, A.; Betran, E.; Barbadilla, A.; Ruiz, A.

    1997-01-01

    A theoretical analysis of the effects of inversions on recombination and gene flux between arrangements caused by gene conversion and crossing over was carried out. Two different mathematical models of recombination were used: the Poisson model (without interference) and the Counting model (with interference). The main results are as follows. (1) Recombination and gene flux are highly site-dependent both inside and outside the inverted regions. (2) Crossing over overwhelms gene conversion as a cause of gene flux in large inversions, while conversion becomes relatively significant in short inversions and in regions around the breakpoints. (3) Under the Counting model the recombination rate between two markers depends strongly on the position of the markers along the inverted segment. Two equally spaced markers in the central part of the inverted segment have less recombination than if they are in a more extreme position. (4) Inversions affect recombination rates in the uninverted regions of the chromosome. Recombination increases in the distal segment and decreases in the proximal segment. These results provide an explanation for a number of observations reported in the literature. Because inversions are ubiquitous in the evolutionary history of many Drosophila species, the effects of inversions on recombination are expected to influence DNA variation patterns. PMID:9178017

  19. Recombinant production and characterization of human anti-influenza virus monoclonal antibodies identified from hybridomas fused with human lymphocytes.

    PubMed

    Misaki, Ryo; Fukura, Natsuko; Kajiura, Hiroyuki; Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Sasaki, Tadahiro; Momota, Masatoshi; Ono, Ken-Ichiro; Ohashi, Takao; Ikuta, Kazuyoshi; Fujiyama, Kazuhito

    2016-09-01

    In previous studies, hybridomas producing human immunoglobulin G, the antibodies 5E4 and 5A7 against influenza A and B virus were established using a novel human lymphocyte fusion partner, SPYMEG. In the present study, we succeeded in achieving the recombinant production and secretion of 5E4 and 5A7 in Chinese hamster ovary cells. Our N-glycan analysis by intact-mass detection and liquid chromatography mass spectrometry showed that recombinant 5E4 and 5A7 have one N-glycan and the typical mammalian-type N-glycan structures similar to those in hybridomas. However, the glycan distribution was slightly different among these antibodies. The amount of high-mannose-type structures was under 10% of the total N-glycans of recombinant 5E4 and 5A7, compared to 20% of the 5E4 and 5A7 produced in hybridomas. The amount of galactosylated N-glycans was increased in recombinants. Approximately 80% of the N-glycans of all antibodies was fucosylated, and no sialylated N-glycan was found. Recombinant 5E4 and 5A7 neutralized pandemic influenza A virus specifically, and influenza B virus broadly, quite similar to the 5E4 and 5A7 produced in hybridomas, respectively. Here we demonstrated that recombinants of antibodies identified from hybridomas fused with SPYMEG have normal N-glycans and that their neutralizing activities bear comparison with those of the original antibodies. PMID:27464991

  20. [Production of a recombinant CagA protein for the detection of Helicobacter pylori CagA antibodies].

    PubMed

    Akgüç, Miray; Karatayli, Ersin; Çelik, Esra; Koyuncu, Duygu; Çelik, İnci; Karatayli, Senem Ceren; Özden, Ali; Bozdayi, A Mithat

    2014-07-01

    At present, Helicobacter pylori infections affect approximately 50% of the world population. It is known that H.pylori is related with several gastric diseases including chronic atrophic gastritis, peptic and gastric ulcers as well as gastric carcinomas. CagA (Cytotoxin-associated gene A) protein which is one of the most important virulence factors of H.pylori, is thought to be responsible for the development of gastric cancer. CagA is a 128 kDa hydrophilic protein which binds to the epitelial stomach cells and is known to be phosphorylated on its EPIYA regions. The EPIYA regions are highly variable and carry a higher risk of developing gastric cancer than CagA negative strains. The aim of this study was to construct a prokaryotic expression system expressing a recombinant CagA protein, which can be used for the detection of anti-CagA antibodies. For the isolation of H.pylori genomic DNA, a total of 112 gastric biopsy samples obtained from patients who were previously found positive for rapid urease (CLO) test, were used. H.pylori DNAs were amplified from 57 of those samples by polymerase chain reaction (PCR) and of them 35 were found positive in terms of cagA gene. Different EPIYA motifs were detected in 25 out of 35 cagA positive samples, and one of those samples that contained the highest number of EPIYA motif, was chosen for the cloning procedure. Molecular cloning and expression of the recombinant fragment were performed with Champion Pet151/D expression vector (Invitrogen, USA), the expression of which was induced by the addition of IPTG (Isopropyl-beta-D-thiogalactopyranoside) into the E.coli culture medium. Expression was observed with anti-histidin HRP (Horse Radish Peroxidase) antibodies by SDS-PAGE and Western Blot (WB) analysis. In our study, two clones possessing different fragments from the same H.pylori strain with three different EPIYA motifs were succesfully expressed. Since CagA antigen plays a signicant role in the pathogenesis of H

  1. [Production of a recombinant CagA protein for the detection of Helicobacter pylori CagA antibodies].

    PubMed

    Akgüç, Miray; Karatayli, Ersin; Çelik, Esra; Koyuncu, Duygu; Çelik, İnci; Karatayli, Senem Ceren; Özden, Ali; Bozdayi, A Mithat

    2014-07-01

    At present, Helicobacter pylori infections affect approximately 50% of the world population. It is known that H.pylori is related with several gastric diseases including chronic atrophic gastritis, peptic and gastric ulcers as well as gastric carcinomas. CagA (Cytotoxin-associated gene A) protein which is one of the most important virulence factors of H.pylori, is thought to be responsible for the development of gastric cancer. CagA is a 128 kDa hydrophilic protein which binds to the epitelial stomach cells and is known to be phosphorylated on its EPIYA regions. The EPIYA regions are highly variable and carry a higher risk of developing gastric cancer than CagA negative strains. The aim of this study was to construct a prokaryotic expression system expressing a recombinant CagA protein, which can be used for the detection of anti-CagA antibodies. For the isolation of H.pylori genomic DNA, a total of 112 gastric biopsy samples obtained from patients who were previously found positive for rapid urease (CLO) test, were used. H.pylori DNAs were amplified from 57 of those samples by polymerase chain reaction (PCR) and of them 35 were found positive in terms of cagA gene. Different EPIYA motifs were detected in 25 out of 35 cagA positive samples, and one of those samples that contained the highest number of EPIYA motif, was chosen for the cloning procedure. Molecular cloning and expression of the recombinant fragment were performed with Champion Pet151/D expression vector (Invitrogen, USA), the expression of which was induced by the addition of IPTG (Isopropyl-beta-D-thiogalactopyranoside) into the E.coli culture medium. Expression was observed with anti-histidin HRP (Horse Radish Peroxidase) antibodies by SDS-PAGE and Western Blot (WB) analysis. In our study, two clones possessing different fragments from the same H.pylori strain with three different EPIYA motifs were succesfully expressed. Since CagA antigen plays a signicant role in the pathogenesis of H

  2. Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination

    PubMed Central

    Misaghi, Shahram; Senger, Kate; Sai, Tao; Qu, Yan; Sun, Yonglian; Hamidzadeh, Kajal; Nguyen, Allen; Jin, Zhaoyu; Zhou, Meijuan; Yan, Donghong; Lin, Wei Yu; Lin, Zhonghua; Lorenzo, Maria N.; Sebrell, Andrew; Ding, Jiabing; Xu, Min; Caplazi, Patrick; Austin, Cary D.; Balazs, Mercedesz; Roose-Girma, Merone; DeForge, Laura; Warming, Søren; Lee, Wyne P.; Dixit, Vishva M.; Zarrin, Ali A.

    2013-01-01

    Preceding antibody constant regions are switch (S) regions varying in length and repeat density that are targets of activation-induced cytidine deaminase. We asked how participating S regions influence each other to orchestrate rearrangements at the IgH locus by engineering mice in which the weakest S region, Sε, is replaced with prominent recombination hotspot Sμ. These mice produce copious polyclonal IgE upon challenge, providing a platform to study IgE biology and therapeutic interventions. The insertion enhances ε germ-line transcript levels, shows a preference for direct vs. sequential switching, and reduces intraswitch recombination events at native Sμ. These results suggest that the sufficiency of Sμ to mediate IgH rearrangements may be influenced by context-dependent cues. PMID:24019479

  3. Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination.

    PubMed

    Misaghi, Shahram; Senger, Kate; Sai, Tao; Qu, Yan; Sun, Yonglian; Hamidzadeh, Kajal; Nguyen, Allen; Jin, Zhaoyu; Zhou, Meijuan; Yan, Donghong; Lin, Wei Yu; Lin, Zhonghua; Lorenzo, Maria N; Sebrell, Andrew; Ding, Jiabing; Xu, Min; Caplazi, Patrick; Austin, Cary D; Balazs, Mercedesz; Roose-Girma, Merone; DeForge, Laura; Warming, Søren; Lee, Wyne P; Dixit, Vishva M; Zarrin, Ali A

    2013-09-24

    Preceding antibody constant regions are switch (S) regions varying in length and repeat density that are targets of activation-induced cytidine deaminase. We asked how participating S regions influence each other to orchestrate rearrangements at the IgH locus by engineering mice in which the weakest S region, Sε, is replaced with prominent recombination hotspot Sμ. These mice produce copious polyclonal IgE upon challenge, providing a platform to study IgE biology and therapeutic interventions. The insertion enhances ε germ-line transcript levels, shows a preference for direct vs. sequential switching, and reduces intraswitch recombination events at native Sμ. These results suggest that the sufficiency of Sμ to mediate IgH rearrangements may be influenced by context-dependent cues. PMID:24019479

  4. Anti-phospholipid antibodies following vaccination with recombinant hepatitis B vaccine

    PubMed Central

    Martinuč Porobič, J; Avčin, T; Božič, B; Kuhar, M; Čučnik, S; Zupančič, M; Prosenc, K; Kveder, T; Rozman, B

    2005-01-01

    This study was undertaken to evaluate the possible role of hepatitis B recombinant vaccine inducing the synthesis of IgG and IgM anti-cardiolipin antibodies (aCL), antibodies against β2GPI (anti-β2GPI), lupus anti-coagulant (LA), anti-nuclear antibodies and antibodies against extractable nuclear antigens (anti-ENA). The study population consisted of 85 healthy students (63 female, 22 male; mean age 20·8 years), vaccinated with three doses of recombinant DNA hepatitis B vaccine. One month after vaccination with the first dose of hepatitis B vaccine a minority of vaccinated individuals showed changes in IgG or IgM aCL or anti-β2GPI or LA activity (P < 0·001). Among subjects in whom changes of IgG anti-β2GPI were observed, a significantly higher number of increased (8/85) than decreased (2/85) values were found (P < 0·01). Analyses of paired data showed that differences in aCL or anti-β2GPI levels before vaccination or 1 month later did not reach statistical significance. In two people aCL transitorily reached medium positivity after the first dose of hepatitis B vaccine with a drop 5 months later. Similar evident anti-β2GPI fluctuation was also observed in one person. Another participant was initially low positive for IgG anti-β2GPI and the levels were increasing after vaccination. Two participants became positive for anti-nuclear antibodies during 6 months' follow-up. There were no sex-dependent differences in tested antibodies observed and no associations between levels of aPL and levels of anti-HBV antibodies. We conclude that HBV can induce aPL, although rarely. In genetically susceptible individuals or together with some other triggers such combination might confer the risk of developing a continuous autoimmune response in an individual. PMID:16232227

  5. [Characterization of a panel of monoclonal antibodies to hepatitis C NS3 recombinant protein ].

    PubMed

    Abdulmedzhidova, A G; Masalova, O V; Atanadze, S N; Ulanova, T I; Burkov, A N; Khudiakov, Iu E; Fields, H; Kushch, A A

    2002-01-01

    Recombinant protein rNS3 imitating helicase region (1356-1459 amino acid residues) of hepatitis C virus (HCV) was expressed in E. coli cells and used for BALB/c mice immunization. Seven hybrydoma clones producing monoclonal antibodies (MAbs) to rHS3 were obtained. All MAbs reacted in ELISA with NS3 protein from Murex anti-HCV Version III and in immunoblotting from RIBA 3. These MAbs detect 5 individual epitopes, 4 of which were conformational and 1 discontinuous. All MAbs could compete for rNS3 binding with serum antibodies from patients with chronic hepatitis C, which suggests that these MAbs can recognize the natural HCV NS3 protein.

  6. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene.

    PubMed

    Gadea, Gilles; Bos, Sandra; Krejbich-Trotot, Pascale; Clain, Elodie; Viranaicken, Wildriss; El-Kalamouni, Chaker; Mavingui, Patrick; Desprès, Philippe

    2016-10-01

    Zika virus (ZIKV) infection is a major public health problem with severe human congenital and neurological anomalies. The screening of anti-ZIKV compounds and neutralizing antibodies needs reliable and rapid virus-based assays. Here, we described a convenient method leading to the rapid production of molecular clones of ZIKV. To generate a molecular clone of ZIKV strain MR766(NIID), the viral genome was directly assembled into Vero cells after introduction of four overlapping synthetic fragments that cover the full-length genomic RNA sequence. Such strategy has allowed the production of a recombinant ZIKV expressing the GFP reporter gene that is stable over two culturing rounds on Vero cells. Our data demonstrate that the ZIKV reporter virus is a very reliable GFP-based tool for analyzing viral growth and measuring the neutralizing antibody as well as rapid screening of antiviral effect of different classes of inhibitors.

  7. Antibodies and intrabodies against huntingtin: production and screening of monoclonals and single-chain recombinant forms.

    PubMed

    Khoshnan, Ali; Ou, Susan; Ko, Jan; Patterson, Paul H

    2013-01-01

    Antibodies can be extremely useful tools for the field of triplet repeats diseases. These reagents are important for localizing proteins in tissues and they can be used in the isolation and characterization of the components of protein complexes. In the context of huntingtin (Htt), antibodies can distinguish Htt with normal or an expanded polyglutamine (polyQ) repeats, and they can identify distinct conformations of Htt. Htt is the protein that, when mutated to contain an expanded polyQ motif, causes Huntington's disease (HD). Our group has produced monoclonal and recombinant single-chain antibodies (intrabodies) that can be used for these purposes and to perturb the function of Htt in living cells. Studies with anti-Htt intrabodies have led to identification of novel pathogenic epitopes. Moreover, some of the isolated intrabodies can reduce the neurotoxicity of mutant Htt in cell culture and animal models of HD. Thus, the production of antibodies and intrabodies has made a significant contribution to the understanding of HD pathogenesis and has introduced a novel strategy to treat this debilitating neurodegenerative disorder.

  8. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine.

    PubMed

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  9. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine

    PubMed Central

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A.; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R.

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  10. Recombineering: using drug cassettes to knock out genes in vivo.

    PubMed

    Sawitzke, James A; Thomason, Lynn C; Bubunenko, Mikhail; Li, Xintian; Costantino, Nina; Court, Donald L

    2013-01-01

    A 'gene knockout' or 'knockout' is a mutation that inactivates a gene function. These mutations are very useful for classical genetic studies as well as for modern techniques including functional genomics. In the past, knockouts of bacterial genes were often made by transposon mutagenesis. In this case, laborious screens are required to find a knockout in the gene of interest. Knockouts of other organisms have traditionally been made by first using in vitro genetic engineering to modify genes contained on plasmids or bacterial artificial chromosomes (BACs) and later moving these modified constructs to the organism of interest by cell culture techniques. Other methods utilizing a combination of genetic engineering and in vivo homologous recombination were inefficient at best. Recombineering provides a new way to generate knockout mutations directly on the bacterial chromosome or to modify any plasmid or BAC in vivo as a prelude to making knockouts in other organisms. The constructs are designed to the base pair and are not dependent on suitable restriction sites. A drug cassette can be placed anywhere within a gene or the open reading frame of the gene can be replaced with the drug cassette. Either way, the desired construct is selected for.

  11. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors

    PubMed Central

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2013-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed. PMID:24523720

  12. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  13. Recombination events suggest potential sites for the Huntington's disease gene.

    PubMed

    MacDonald, M E; Haines, J L; Zimmer, M; Cheng, S V; Youngman, S; Whaley, W L; Wexler, N; Bucan, M; Allitto, B A; Smith, B

    1989-08-01

    The Huntington's disease gene (HD) maps distal to the D4S10 marker in the terminal 4p16.3 subband of chromosome 4. Directed cloning has provided several DNA segments that have been grouped into three clusters on a physical map of approximately 5 X 10(6) bp in 4p16.3. We have typed RFLPs in both reference and HD pedigrees to produce a fine-structure genetic map that establishes the relative order of the clusters and further narrows the target area containing the HD gene. Despite the large number of meiotic events examined, the HD gene cannot be positioned relative to the most distal cluster. One recombination event with HD suggests that the terminal-most markers flank the disease gene; two others favor a telomeric location for the defect. Efforts to isolate the HD gene must be divided between these two distinct intervals until additional genetic data resolve the apparent contradiction in localization.

  14. Detection of Q Fever Specific Antibodies Using Recombinant Antigen in ELISA with Peroxidase Based Signal Amplification

    PubMed Central

    Chen, Hua-Wei; Zhang, Zhiwen; Glennon, Erin; Ching, Wei-Mei

    2014-01-01

    Currently, the accepted method for Q fever serodiagnosis is indirect immunofluorescent antibody assay (IFA) using the whole cell antigen. In this study, we prepared the recombinant antigen of the 27-kDa outer membrane protein (Com1) which has been shown to be recognized by Q fever patient sera. The performance of recombinant Com1 was evaluated in ELISA by IFA confirmed serum samples. Due to the low titers of IgG and IgM in Q fever patients, the standard ELISA signals were further amplified by using biotinylated anti-human IgG or IgM plus streptavidin-HRP polymer. The modified ELISA can detect 88% (29 out of 33) of Q fever patient sera collected from Marines deployed to Iraq. Less than 5% (5 out of 156) of the sera from patients with other febrile diseases reacted with the Com1. These results suggest that the modified ELISA using Com1 may have the potential to improve the detection of Q fever specific antibodies. PMID:26904739

  15. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    PubMed

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  16. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment

    PubMed Central

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  17. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    PubMed

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  18. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    PubMed

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  19. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    PubMed

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples.

  20. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    PubMed

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  1. Proteomic differences in recombinant CHO cells producing two similar antibody fragments

    PubMed Central

    Sommeregger, Wolfgang; Mayrhofer, Patrick; Steinfellner, Willibald; Reinhart, David; Henry, Michael; Clynes, Martin

    2016-01-01

    ABSTRACT Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. “Omics” studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label‐free LC‐MS proteomic analyses to investigate product‐specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single‐chain Fv‐Fc homodimeric antibody fragments (scFv‐Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase‐mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label‐free proteomic analysis. LC‐MS‐MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902–1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26913574

  2. [Immunoglobulin genes encoding antibodies directed to oncodevelopmental carbohydrate antigens].

    PubMed

    Zenita, K; Yago, K; Fujimoto, E; Kannagi, R

    1990-07-01

    We investigated the immunoglobulin genes which encode the variable region of the monoclonal antibodies directed to the onco-developmental carbohydrate antigens such SSEA-1, fucosyl SSEA-1, SSEA-3 and SSEA-4. The VH region of these antibodies was preferentially encoded by the gene members of the X24, VH7183 and Q52 families, the families which are known to be located at the 3'-end region of the murine germ line VH gene. This result is interesting particularly when considering that the members of the 3'-end VH families are known to be preferentially expressed in embryonic B lymphocytes by an intrinsic genetic program. The comparative study of the nucleic acid sequences of mRNAs encoding these antibodies and the sequences of the corresponding germ line VH genes disclosed that the sequences encoding the antibodies contain no mutation from the germ line VH genes, or contain only a few somatic mutations, which are thought to be insignificant for the reactivity of the antibodies to the nominal antigens. These results imply that some of the embryonic B lymphocytes that express the unmutated germ line VH genes of the 3'-end families can be reactive with embryonic carbohydrate antigens, albeit rearranged with appropriate D-JH gene segments, and coupled with proper light chains. The VH region of the syngenic monoclonal anti-idiotypic antibodies directed to these anti-carbohydrate antibodies were also encoded preferentially by the members of the 3'-end VH families. We propose here that a part of the virgin embryonic B lymphocytes, which express the antibody encoded by the gene members of the 3'-end VH families at the cell surface, will be stimulated by the embryonic carbohydrate antigens which are abundantly present in the internal milieu of the embryo. The clonally expanded B lymphocytes, in turn, will facilitate the proliferation of other populations of embryonic B lymphocytes expressing the corresponding anti-idiotypic antibodies, which are also encoded by the gene members

  3. The Generation and Characterization of Recombinant Protein and Antibodies of Clostridium perfringens Beta2 Toxin

    PubMed Central

    Zeng, Jin; Song, Fuyang; Yang, Yi; Ma, Chenjie; Deng, Guangcun; Li, Yong; Wang, Yujiong

    2016-01-01

    Introduction. Clostridium perfringens (C. perfringens) beta2 toxin (CPB2) is an important virulent factor of necrotic enteritis in both animals and humans. However, studies of its pathogenic roles and functional mechanisms have been hampered due to the difficulty of purification and lack of specific antibodies against this toxin. Methods. A recombinant His-tagged C. perfringens beta2 (rCPB2) toxin and monoclonal antibodies (McAbs) against CPB2 were generated and characterized by assays of cytotoxicity, immunoblotting, ELISA, neutralization, and immunofluorescence. Results. A His-tagged rCPB2 with integrity and cytotoxicity of native CPB2 was purified from E. coli expressing system, which exhibited a moderate cytotoxicity on NCM460 human intestinal epithelial cells. The rCPB2 could induce apoptotic cell death rather than necrotic death in part through a pathway involved in caspase-3 signaling. Mechanistically, rCPB2 was able to first bind to cell membrane and dynamically translocate into cytoplasm for its cytotoxic activity. Three McAbs 1E23, 2G7 and 2H7 were characterized to be able to immunologically react with CPB2 and neutralize rCPB2 cytotoxicity on NCM460 cells. Conclusion. These results indicated the rCPB2 and antibodies generated in this study are useful tools for studies of biological functions and pathogenic mechanisms of CPB2 in future, which warrants for further investigations.

  4. The Generation and Characterization of Recombinant Protein and Antibodies of Clostridium perfringens Beta2 Toxin

    PubMed Central

    Zeng, Jin; Song, Fuyang; Yang, Yi; Ma, Chenjie; Deng, Guangcun; Li, Yong; Wang, Yujiong

    2016-01-01

    Introduction. Clostridium perfringens (C. perfringens) beta2 toxin (CPB2) is an important virulent factor of necrotic enteritis in both animals and humans. However, studies of its pathogenic roles and functional mechanisms have been hampered due to the difficulty of purification and lack of specific antibodies against this toxin. Methods. A recombinant His-tagged C. perfringens beta2 (rCPB2) toxin and monoclonal antibodies (McAbs) against CPB2 were generated and characterized by assays of cytotoxicity, immunoblotting, ELISA, neutralization, and immunofluorescence. Results. A His-tagged rCPB2 with integrity and cytotoxicity of native CPB2 was purified from E. coli expressing system, which exhibited a moderate cytotoxicity on NCM460 human intestinal epithelial cells. The rCPB2 could induce apoptotic cell death rather than necrotic death in part through a pathway involved in caspase-3 signaling. Mechanistically, rCPB2 was able to first bind to cell membrane and dynamically translocate into cytoplasm for its cytotoxic activity. Three McAbs 1E23, 2G7 and 2H7 were characterized to be able to immunologically react with CPB2 and neutralize rCPB2 cytotoxicity on NCM460 cells. Conclusion. These results indicated the rCPB2 and antibodies generated in this study are useful tools for studies of biological functions and pathogenic mechanisms of CPB2 in future, which warrants for further investigations. PMID:27672668

  5. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  6. Gene delivery into plant cells for recombinant protein production.

    PubMed

    Chen, Qiang; Lai, Huafang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  7. Analysis of the L1 gene product of human papillomavirus type 16 by expression in a vaccinia virus recombinant.

    PubMed

    Browne, H M; Churcher, M J; Stanley, M A; Smith, G L; Minson, A C

    1988-06-01

    The L1 open reading frame of human papillomavirus type 16 (HPV16) has been expressed in vaccinia virus under the control of both the 7.5K early and late promoter, and the 4b major late promoter. Antibodies to a beta-galactosidase fusion protein containing a C-terminal portion of the HPV16 L1 gene product were used to compare the levels of L1 expression in the two recombinants, and showed that greater levels of expression were obtained when the gene was placed under the control of the 4b late promoter. Immunofluorescence studies revealed a nuclear location of the L1 gene product when expressed in vaccinia virus. Antibodies to the beta-galactosidase fusion protein detected a major polypeptide species of 57K and a minor species of 64K in Western blots of recombinant-infected cell lysates. The 64K species was not detected when cells were infected in the presence of tunicamycin, indicating that the primary translation product of the HPV16 L1 open reading frame is modified by N-linked glycosylation when expressed in vaccinia virus. Whereas antibodies to HPV16 L1 fusion proteins and to a peptide containing amino acids from the C terminus of HPV16 L1 reacted well in Western blots with the HPV16 L1 target expressed in vaccinia virus, no reactivity was observed with antibodies to bovine papillomavirus type 1 particles or to a HPV6b fusion protein.

  8. Characterisation of antibody responses in pigs induced by recombinant oncosphere antigens from Taenia solium.

    PubMed

    Jayashi, César M; Gonzalez, Armando E; Castillo Neyra, Ricardo; Kyngdon, Craig T; Gauci, Charles G; Lightowlers, Marshall W

    2012-12-14

    Recombinant antigens cloned from the oncosphere life cycle stage of the cestode parasite Taenia solium (T. solium) have been proven to be effective as vaccines for protecting pigs against infections with T. solium. Previous studies have defined three different host protective oncosphere antigens, TSOL18, TSOL16 and TSOL45. In this study, we evaluated the potential for combining the antigens TSOL16 and TSOL18 as a practical vaccine. Firstly, in a laboratory trial, we compared the immunogenicity of the combined antigens (TSOL16/18) versus the immunogenicity of the antigens separately. Secondly, in a field trial, we tested the ability of the TSOL16/18 vaccine to induce detectable antibody responses in animals living under environmental stress and traditionally reared in areas where T. solium cysticercosis is endemic; and finally, we characterised the immune response of the study population. Pigs of 8-16 weeks of age were vaccinated with 200 μg each of TSOL16 and TSOL18, plus 5mg of Quil-A. Specific total IgG, IgG(1) and IgG(2) antibody responses induced by TSOL16 and TSOL18 were determined with ELISA. The immunogenicity of both antigens was retained in the combined TSOL16/18 vaccine. The combined vaccine TSOL16/18 induced detectable specific anti-TSOL18 antibody responses in 100% (113/113) and specific anti-TSOL16 in 99% (112/113) of the vaccinated animals measured at 2 weeks following the booster vaccination. From the two IgG antibody subtypes analysed we found there was stronger response to IgG(2).

  9. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  10. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  11. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  12. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  13. Detection and Quantitation of Afucosylated N-Linked Oligosaccharides in Recombinant Monoclonal Antibodies Using Enzymatic Digestion and LC-MS

    NASA Astrophysics Data System (ADS)

    Du, Yi; May, Kimberly; Xu, Wei; Liu, Hongcheng

    2012-07-01

    The presence of N-linked oligosaccharides in the CH2 domain has a significant impact on the structure, stability, and biological functions of recombinant monoclonal antibodies. The impact is also highly dependent on the specific oligosaccharide structures. The absence of core-fucose has been demonstrated to result in increased binding affinity to Fcγ receptors and, thus, enhanced antibody-dependent cellular cytotoxicity (ADCC). Therefore, a method that can specifically determine the level of oligosaccharides without the core-fucose (afucosylation) is highly desired. In the current study, recombinant monoclonal antibodies and tryptic peptides from the antibodies were digested using endoglycosidases F2 and H, which cleaves the glycosidic bond between the two primary GlcNAc residues. As a result, various oligosaccharides of either complex type or high mannose type that are commonly observed for recombinant monoclonal antibodies are converted to either GlcNAc residue only or GlcNAc with the core-fucose. The level of GlcNAc represents the sum of all afucosylated oligosaccharides, whereas the level of GlcNAc with the core-fucose represents the sum of all fucosylated oligosaccharides. LC-MS analysis of the enzymatically digested antibodies after reduction provided a quick estimate of the levels of afucosylation. An accurate determination of the level of afucosylation was obtained by LC-MS analysis of glycopeptides after trypsin digestion.

  14. Combining Yeast Display and Competitive FACS to Select Rare Hapten-Specific Clones from Recombinant Antibody Libraries

    PubMed Central

    2016-01-01

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 106) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used first to enrich the library between 20- and 100-fold for clones that bound to phenanthrene–protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. This selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies. PMID:27571429

  15. Combining Yeast Display and Competitive FACS to Select Rare Hapten-Specific Clones from Recombinant Antibody Libraries.

    PubMed

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew; Ansari, G A Shakeel; Blake, Diane A

    2016-09-20

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10(6)) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used first to enrich the library between 20- and 100-fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. This selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.

  16. Combining Yeast Display and Competitive FACS to Select Rare Hapten-Specific Clones from Recombinant Antibody Libraries.

    PubMed

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew; Ansari, G A Shakeel; Blake, Diane A

    2016-09-20

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10(6)) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used first to enrich the library between 20- and 100-fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. This selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies. PMID:27571429

  17. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    NASA Astrophysics Data System (ADS)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  18. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies

    PubMed Central

    Quetglas, José I.; John, Liza B.; Kershaw, Michael H.; Álvarez-Vallina, Luis; Melero, Ignacio; Darcy, Phillip K.; Smerdou, Cristian

    2012-01-01

    Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies. PMID:23243597

  19. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge.

    PubMed

    Liu, Xiaohui; Yang, Youtian; Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F; Niu, Xuefeng; Guo, Xiaofeng

    2014-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines. PMID:24498294

  20. Construction of a recombinant-BCG containing the LMP2A and BZLF1 genes and its significance in the Epstein-Barr virus positive gastric carcinoma.

    PubMed

    Xue, Qing-Jie; Dai, Jun; Li, Xiu-Zhen; Zhu, Wei; Si, Chuan-Ping; Chen, Ting

    2014-10-01

    The signal peptide Ag85B of Bacillus Chalmette-Guerin (BCG) was used to construct a recombinant plasmid of BCG. The BCG-Ag85B gene and fused EBV LMP2A and BZLF1 genes were amplified and successively inserted into the Escherichia coli-BCG shuttle-vector pMV261. The recombinant plasmids were then amplified in E. coli DH5α and transformed into competent BCG. The expression of BZLF1 and LMP2A fusion proteins in recombinant-BCG (rBCG) was shown by Western blot. After the injection of recombinant-BCG into mice, antibodies against the fusion protein BZLF1 and LMP2A were measured by ELISA, and the cellular immune effects were determined by the lactate dehydrogenate (LDH) release assays. The results confirmed that the cloned genes of BCG-Ag85B and Z2A were correctly inserted into the vector pMV261. The recombinant plasmid pMVZ2A expressed Z2A in BCG effectively after transformation. The rBCG proteins were recognized by the BZLF1 (LMP2A) antibody. An ELISA demonstrated that rBCG could stimulate the generation of antibody against the fusion protein. The fusion gene was constructed successfully, and the rBCG induced humoral and cellular immune response in mice.

  1. Eliminating tyrosine sequence variants in CHO cell lines producing recombinant monoclonal antibodies.

    PubMed

    Feeney, Lauren; Carvalhal, Veronica; Yu, X Christopher; Chan, Betty; Michels, David A; Wang, Yajun Jennifer; Shen, Amy; Ressl, Jan; Dusel, Brendon; Laird, Michael W

    2013-04-01

    Amino acid sequence variants are defined as unintended amino acid sequence changes that contribute to product variation with potential impact to product safety, immunogenicity, and efficacy. Therefore, it is important to understand the propensity for sequence variant (SV) formation during the production of recombinant proteins for therapeutic use. During the development of clinical therapeutic products, several monoclonal antibodies (mAbs) produced from Chinese Hamster Ovary (CHO) cells exhibited SVs at low levels (≤3%) in multiple locations throughout the mAbs. In these examples, the cell culture process depleted tyrosine, and the tyrosine residues in the recombinant mAbs were replaced with phenylalanine or histidine. In this work, it is demonstrated that tyrosine supplementation eliminated the tyrosine SVs, while early tyrosine starvation significantly increased the SV level in all mAbs tested. Additionally, it was determined that phenylalanine is the amino acid preferentially misincorporated in the absence of tyrosine over histidine, with no other amino acid misincorporated in the absence of tyrosine, phenylalanine, and histidine. The data support that the tyrosine SVs are due to mistranslation and not DNA mutation, most likely due to tRNA(Tyr) mischarging due to the structural similarities between tyrosine and phenylalanine.

  2. Antibodies induced with recombinant VP1 from human rhinovirus exhibit cross-neutralisation.

    PubMed

    Edlmayr, J; Niespodziana, K; Popow-Kraupp, T; Krzyzanek, V; Focke-Tejkl, M; Blaas, D; Grote, M; Valenta, R

    2011-01-01

    Human rhinoviruses (HRVs) are the major cause of the common cold and account for 30-50% of all acute respiratory illnesses. Although HRV infections are usually harmless and invade only the upper respiratory tract, several studies demonstrate that HRV is involved in the exacerbation of asthma. VP1 is one of the surface-exposed proteins of the viral capsid that is important for the binding of rhinoviruses to the corresponding receptors on human cells. Here we investigated its potential usefulness for vaccination against the common cold. We expressed VP1 proteins from two distantly related HRV strains, HRV89 and HRV14, in Escherichia coli. Mice and rabbits were immunised with the purified recombinant proteins. The induced antibodies reacted with natural VP1 and with whole virus particles as shown by immunoblotting and immunogold electron microscopy. They exhibited strong cross-neutralising activity for different HRV strains. Therefore, recombinant VP1 may be considered a candidate HRV vaccine to prevent HRV-induced asthma exacerbations.

  3. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    PubMed

    Dong, Jinhua; Sakurai, Akira; Nomura, Namiko; Park, Enoch Y; Shibasaki, Futoshi; Ueda, Hiroshi

    2013-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS) in the hemagglutinin protein (HA). Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  4. Characterization of mechanical properties of transgenic tobacco roots expressing a recombinant monoclonal antibody against tooth decay.

    PubMed

    Hassan, Sally; Liu, Wei; Ma, Julian K-C; Thomas, Colin R; Keshavarz-Moore, Eli

    2008-07-01

    In this article, we describe a new approach that allows the determination of the magnitude of force required to break single plant roots. Roots were taken from transgenic tobacco plants, expressing a secreted monoclonal antibody. They were divided into four key developmental stages. A novel micromanipulation technique was used to pull to breakage, single tobacco roots in buffer in order to determine their breaking force. A characteristic uniform step-wise increase in the force up to a peak force for breakage was observed. The mean breaking force and mean work done were 101mN and 97microJ per root respectively. However, there was a significant increase in breaking force from the youngest white roots to the oldest, dark red-brown roots. We speculate that this was due to increasing lignin deposition with root stage of development (shown by phloroglucinol staining). No significant differences between fresh root mass, original root length, or mean root diameter for any of the root categories were found, displaying their uniformity, which would be beneficial for bioprocessing. In addition, no significant difference in antibody yield from the different root categories was found. These data show that it is possible to characterise the force requirements for root breakage and should assist in the optimisation of recombinant protein extraction from these roots.

  5. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography.

    PubMed

    Hilbrig, Frank; Freitag, Ruth

    2012-01-01

    Hydroxyapatite and related stationary phases increasingly play a role in the downstream processing of high-value biological materials, such as recombinant proteins, therapeutic antibodies and pharmaceutical-grade plasmid DNA. Chromatographic hydroxyapatite is an inorganic, ceramic material identical in composition, if not in structure, to calcium phosphate found in human bones and teeth. The interaction of hydroxyapatite with biomacromolecules is complex and highly dynamic, which can make predicting performance difficult, but also allows the design of very selective isolation processes. This review discusses the currently commercially available chromatographic materials, different retention mechanisms supported by these materials and differential exploitation for the design of highly specific isolation procedures. The state of the art of antibody purification by hydroxy- and fluoroapatite is reviewed together with tested routines for method development and implementation. Finally, the isolation of plasmid DNA is discussed, since the purification of DNA therapeutics at a sufficiently large scale is an emerging need in bioprocess development and perhaps the area in bioseparation where apatite chromatography can make its most important contribution to date.

  6. Production of cocktail of polyclonal antibodies using bacterial expressed recombinant protein for multiple virus detection.

    PubMed

    Kapoor, Reetika; Mandal, Bikash; Paul, Prabir Kumar; Chigurupati, Phaneendra; Jain, Rakesh Kumar

    2014-02-01

    Cocktail of polyclonal antibodies (PAb) were produced that will help in multiple virus detection and overcome the limitation of individual virus purification, protein expression and purification as well as immunization in multiple rabbits. A dual fusion construct was developed using conserved coat protein (CP) sequences of Cucumber mosaic virus (CMV) and Papaya ringspot virus (PRSV) in an expression vector, pET-28a(+). The fusion protein (∼40kDa) was expressed in Escherichia coli and purified. Likewise, a triple fusion construct was developed by fusing conserved CP sequences of CMV and PRSV with conserved nucleocapsid protein (N) sequence of Groundnut bud necrosis virus (GBNV) and expressed as a fusion protein (∼50kDa) in pET-28a(+). PAb made separately to each of these three viruses recognized the double and triple fusion proteins in Western blot indicating retention of desired epitopes for binding with target antibodies. The fusion proteins (∼40kDa and ∼50kDa) were used to produce cocktail of PAb by immunizing rabbits, which simultaneously detected natural infection of CMV and PRSV or CMV, PRSV and GBNV in Cucurbitaceous, Solanaceous and other hosts in DAC-ELISA. This is the first report on production of a cocktail of PAb to recombinant fusion protein of two or three distinct viruses.

  7. Detection of antibodies to Toxoplasma gondii in domesticated ruminants by recombinant truncated SAG2 enzyme-linked immunosorbent assay.

    PubMed

    Singh, Harkirat; Tewari, Anup Kumar; Mishra, Ashok Kumar; Maharana, Biswaranjan; Sudan, Vikrant; Raina, Opinder Krishan; Rao, Jammi Raghavendra

    2015-01-01

    An antibody detection recombinant enzyme-linked immunosorbent assay (ELISA) specific for Toxoplasma gondii was laboratory standardized using recombinant truncated surface antigen 2 (SAG2) protein of T. gondii. A 483-bp sequence coding for truncated tachyzoite stage-specific SAG2 protein was amplified and ligated in pPROExHT-b expression vector to transform Escherichia coli DH5α cells. A high-level expression of the histidine-tagged fusion protein was obtained after 8 h of incubation. The recombinant protein was affinity purified using Ni-NTA agarose column and characterized by SDS-PAGE and Western blot analysis. Subsequently, the diagnostic potential of the recombinant protein was assessed with 168 field sera samples from sheep, goats and cattle. Among the small ruminants, 50% (n = 60) sheep sera samples and 41.26% (n = 63) goat samples were detected positive for T. gondii-specific antibodies. As far as seroprevalence of toxoplasmosis in cattle is concerned, 64.44% (n = 45) of sera samples assayed were found to be positive. When compared to indirect fluorescent antibody test (IFAT), the sensitivity of the recombinant truncated SAG2 antigen-based ELISA (rec-SAG2-ELISA) ranged from 81.25 to 87.10% while the specificity was 85.71 to 91.43% with substantial agreement between the tests.

  8. Passive immunization against HIV/AIDS by antibody gene transfer.

    PubMed

    Yang, Lili; Wang, Pin

    2014-01-27

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  9. Development of a Recombinant Antigen for Antibody-Based Diagnosis of Mycoplasma bovis Infection in Cattle

    PubMed Central

    Brank, Marion; Le Grand, Dominique; Poumarat, François; Bezille, Pierre; Rosengarten, Renate; Citti, Christine

    1999-01-01

    Mycoplasma bovis induces various clinical manifestations in cattle, such as mastitis, arthritis, and pneumonia. We have evaluated the immunoreactivity of three variable surface proteins (Vsps) of M. bovis, namely VspA, VspB, and VspC, with sera collected from herds with mycoplasmosis or from cattle experimentally infected with M. bovis. Western blot analysis revealed that the Vsps are the predominant antigens recognized by the host humoral response during M. bovis infection. The immunoreactivity of VspA, VspB, and VspC with host antibodies was independent of the clinical manifestations, the geographical origin of the M. bovis isolates, the mode of infection, and the animal’s history. Moreover, the results showed that Vsp-specific host antibodies can be detected about 10 days after experimental infection and for up to several months. The full-length or truncated versions of the VspA product were overexpressed in Escherichia coli as fusion proteins (FP-VspA). Recombinant products showed strong immunoreactivity with the Vsp-specific monoclonal antibodies 1A1 and 1E5, with the corresponding epitopes localized at the VspA N-terminal and C-terminal ends, respectively. Anti-M. bovis sera of cattle naturally or experimentally infected also strongly recognized the full-length FP-VspA. The seroreactivity of sera collected from cattle between 6 and 10 days after experimental infection was weaker with truncated versions of VspA lacking the 1E5 epitope than with the full-length VspA or the truncated versions lacking the 1A1 epitope. Overall, the results indicate that the Vsps, despite their inter- and intraclonal variability, may be applied as target antigens in serodiagnostic assays for epidemiological studies. PMID:10548577

  10. Functional Activity of Antibodies against the Recombinant OpaJ Protein from Neisseria meningitidis

    PubMed Central

    de Jonge, M. I.; Vidarsson, G.; van Dijken, H. H.; Hoogerhout, P.; van Alphen, L.; Dankert, J.; van der Ley, P.

    2003-01-01

    The opacity proteins belong to the major outer membrane proteins of the pathogenic Neisseria and are involved in adhesion and invasion. We studied the functional activity of antibodies raised against the OpaJ protein from strain H44/76. Recombinant OpaJ protein was obtained from Escherichia coli in two different ways: cytoplasmic expression in the form of inclusion bodies followed by purification and refolding and cell surface expression followed by isolation of outer membrane complexes (OMCs). Immunization with purified protein and Quillaja saponin A (QuilA) induced high levels of Opa-specific antibodies, whereas the E. coli OMC preparations generally induced lower levels of antibodies. Two chimeric Opa proteins, hybrids between OpaB and OpaJ, were generated to demonstrate that the hypervariable region 2 is immunodominant. Denatured OpaJ with QuilA induced high levels of immunoglobulin G2a (IgG2a) in addition to IgG1, whereas refolded OpaJ with QuilA induced IgG1 exclusively. These sera did not induce significant complement-mediated killing. However, all sera blocked the interaction of OpaJ-expressing bacteria to CEACAM1-transfected cells. In addition, cross-reactive blocking of OpaB-expressing bacteria to both CEACAM1- and CEA-transfected cells was found for all sera. Sera raised against purified OpaJ and against OpaJ-containing meningococcal OMCs also blocked the nonopsonic interaction of Opa-expressing meningococci with human polymorphonuclear leukocytes. PMID:12704102

  11. Detection of Leptospira-Specific Antibodies Using a Recombinant Antigen-Based Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Chen, Hua-Wei; Zhang, Zhiwen; Halsey, Eric S.; Guevara, Carolina; Canal, Enrique; Hall, Eric; Maves, Ryan; Tilley, Drake H.; Kochel, Tadeusz J.; Ching, Wei-Mei

    2013-01-01

    We produced three highly purified recombinant antigens rLipL32, rLipL41, and rLigA-Rep (leptospiral immunoglobulin-like A repeat region) for the detection of Leptospira-specific antibodies in an enzyme-linked immunosorbent assay (ELISA). The performance of these recombinant antigens was evaluated using 121 human sera. Among them, 63 sera were microscopic agglutination test (MAT)-confirmed positive sera from febrile patients in Peru, 22 sera were indigenous MAT-negative febrile patient sera, and 36 sera were from patients with other febrile diseases from Southeast Asia, where leptospirosis is also endemic. Combining the results of immunoglobulin M (IgM) and IgG detection from these three antigens, the overall sensitivity is close to 90% based on the MAT. These results suggest that an ELISA using multiple recombinant antigens may be used as an alternative method for the detection of Leptospira-specific antibodies. PMID:24166046

  12. Characterization of recombinant bacteriophages containing mosquito ribosomal RNA genes

    SciTech Connect

    Park, Y.J.

    1988-01-01

    A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been isolated by screening two different genomic DNA libraries - Charon 30 and EMBL 3 using {sup 32}P-labeled 18S and 28S rRNA as probes. These nine recombinant bacteriophages were characterized by restriction mapping, Southern blotting, and S1 nuclease analysis. The 18S rRNA coding region contains an evolutionarily conserved EcoRI site near the 3{prime}-end, and measures 1800 bp. The 28S rRNA genes were divided into {alpha} and {beta} coding regions measuring 1750 bp and 2000 bp, respectively. The gap between these two regions measures about 340 bp. No insertion sequences were found in the rRNA coding regions. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region. The non-transcribed spacer region of cloned A. albopictus rDNA contained a common series of seven PvuI sites within a 1250 bp region upstream of the 18S rRNA coding region, and a proportion of this region also showed heterogeneity both in the length and in the restriction sites.

  13. Refinement of the canine CD1 locus topology and investigation of antibody binding to recombinant canine CD1 isoforms.

    PubMed

    Schjaerff, Mette; Keller, Stefan M; Fass, Joseph; Froenicke, Lutz; Grahn, Robert A; Lyons, Leslie; Affolter, Verena K; Kristensen, Annemarie T; Moore, Peter F

    2016-03-01

    CD1 molecules are antigen-presenting glycoproteins primarily found on dendritic cells (DCs) responsible for lipid antigen presentation to CD1-restricted T cells. Despite their pivotal role in immunity, little is known about CD1 protein expression in dogs, notably due to lack of isoform-specific antibodies. The canine (Canis familiaris) CD1 locus was previously found to contain three functional CD1A genes: canCD1A2, canCD1A6, and canCD1A8, where two variants of canCD1A8, canCD1A8.1 and canCD1A8.2, were assumed to be allelic variants. However, we hypothesized that these rather represented two separate genes. Sequencing of three overlapping bacterial artificial chromosomes (BACs) spanning the entire canine CD1 locus revealed canCD1A8.2 and canCD1A8.1 to be located in tandem between canCD1A7 and canCD1C, and canCD1A8.1 was consequently renamed canCD1A9. Green fluorescent protein (GFP)-fused canine CD1 transcripts were recombinantly expressed in 293T cells. All proteins showed a highly positive GFP expression except for canine CD1d and a splice variant of canine CD1a8 lacking exon 3. Probing with a panel of anti-CD1 monoclonal antibodies (mAbs) showed that Ca13.9H11 and Ca9.AG5 only recognized canine CD1a8 and CD1a9 isoforms, and Fe1.5F4 mAb solely recognized canine CD1a6. Anti-CD1b mAbs recognized the canine CD1b protein, but also bound CD1a2, CD1a8, and CD1a9. Interestingly, Ca9.AG5 showed allele specificity based on a single nucleotide polymorphism (SNP) located at position 321. Our findings have refined the structure of the canine CD1 locus and available antibody specificity against canine CD1 proteins. These are important fundamentals for future investigation of the role of canine CD1 in lipid immunity. PMID:26687789

  14. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA.

    PubMed

    Giménez-Lirola, Luis G; Mur, Lina; Rivera, Belen; Mogler, Mark; Sun, Yaxuan; Lizano, Sergio; Goodell, Christa; Harris, D L Hank; Rowland, Raymond R R; Gallardo, Carmina; Sánchez-Vizcaíno, José Manuel; Zimmerman, Jeff

    2016-01-01

    In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence. PMID:27611939

  15. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA

    PubMed Central

    Giménez-Lirola, Luis G.; Mur, Lina; Rivera, Belen; Mogler, Mark; Sun, Yaxuan; Lizano, Sergio; Goodell, Christa; Harris, D. L. Hank; Rowland, Raymond R. R.; Gallardo, Carmina; Sánchez-Vizcaíno, José Manuel; Zimmerman, Jeff

    2016-01-01

    In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence. PMID:27611939

  16. Dynamics and Predictive Potential of Antibodies against Insect-Derived Recombinant Leishmania infantum Proteins during Chemotherapy of Naturally Infected Dogs

    PubMed Central

    Todolí, Felicitat; Galindo, Inmaculada; Gómez-Sebastián, Silvia; Pérez-Filgueira, Mariano; Escribano, José M.; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-01-01

    A predictive marker for the success treatment of canine leishmaniasis is required for the application of a more rational therapy protocol, which must improve the probability of cure and reduce Leishmania resistance to drugs. We investigated the dynamics and predictive value of antibodies against insect-derived recombinant L. infantum proteins rKMPII and rTRYP by using an enzyme-linked immunosorbent assay with retrospective serum samples from 36 dogs during treatment of canine leishmaniasis. In the entire group of dogs, concentrations of antibodies against rKMPII and rTRYP significantly decreased earlier than concentrations of antibodies against crude total Leishmania antigen (one versus six months), which suggested that the dynamics of antibodies against recombinant proteins may be useful for assessing clinical improvement after treatment. Interestingly, decreases in antibody concentrations against rKMPII occurred earlier in disease-free dogs than in dogs that remain clinically ill one year after beginning of treatment, which suggested that these antibodies may be useful for predicting disease-free survival one year after the beginning of therapy against canine leishmaniasis. PMID:20439957

  17. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    NASA Astrophysics Data System (ADS)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing

  18. Identification of recombination between Muscovy duck parvovirus and goose parvovirus structural protein genes.

    PubMed

    Shen, Hongxing; Zhang, Wen; Wang, Hua; Zhou, Yang; Shao, Shihe

    2015-10-01

    Waterfowl parvoviruses are divided into Muscovy duck parvoviruses (MDPVs) and goose parvoviruses (GPVs). Phylogenetic analysis based on structural gene nucleotide sequences showed that the strains of three GPVs (DY, PT and D strains) and two MDPVs (GX5 and SAAH-SHNH) are closely related and formed one cluster. Recombination analysis showed that recombination between GPV-GDFsh and MDPV-89384/FRANCE strains led to five recombinant strains: GPV-DY, GPV-PT, GPV-D, MDPV-GX5 and MDPV-SAAH-SHNH. The recombinant event was confirmed using the Simplot program and phylogenetic analysis. This is the first comprehensive investigation of recombination between MDPV and GPV structural genes.

  19. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines.

    PubMed

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    2000-07-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1

  20. Vaccination against Canine Distemper Virus Infection in Infant Ferrets with and without Maternal Antibody Protection, Using Recombinant Attenuated Poxvirus Vaccines

    PubMed Central

    Welter, Janet; Taylor, Jill; Tartaglia, James; Paoletti, Enzo; Stephensen, Charles B.

    2000-01-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log10 inverse mean titer ± standard deviation of 2.30 ± 0.12 and 2.20 ± 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 ± 0.57 versus 0.40 ± 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 ± 0.54 and 1.28 ± 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 ± 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 ± 0.32; n = 8, P = 7 × 10−6). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1.63 ± 0

  1. Development and evaluation of a recombinant-glycoprotein-based latex agglutination test for rabies virus antibody assessment.

    PubMed

    Jemima, Ebenezer Angel; Manoharan, Seeralan; Kumanan, Kathaperumal

    2014-08-01

    The measurement of neutralizing antibodies induced by the glycoprotein of rabies virus is indispensable for assessing the level of neutralizing antibodies in animals or humans. A rapid fluorescent focus inhibition test (RFFIT) has been approved by WHO and is the most widely used method to measure the virus-neutralizing antibody content in serum, but a rapid test system would be of great value to screen large numbers of serum samples. To develop and evaluate a latex agglutination test (LAT) for measuring rabies virus antibodies, a recombinant glycoprotein was expressed in an insect cell system and purified, and the protein was coated onto latex beads at concentrations of 0.1, 0.25, 0.5, 0.75, and 1 mg/ml to find out the optimal concentration for coating latex beads. It was found that 0.5 mg/ml of recombinant protein was optimal for coating latex beads, and this concentration was used to sensitize the latex beads for screening of dog serum samples. Grading of LAT results was done with standard reference serum with known antibody titers. A total of 228 serum samples were tested, out of which 145 samples were positive by both RFFIT and LAT, and the specificity was found to be 100 %. In RFFIT, 151 samples were positive, the sensitivity was found to be 96.03 %, and the accuracy/concordance was found to be 97.39 %. A rapid field test-a latex agglutination test (LAT)-was developed and evaluated for rabies virus antibody assessment using recombinant glycoprotein of rabies virus expressed in an insect cell system.

  2. Passive immunization against dental caries and periodontal disease: development of recombinant and human monoclonal antibodies.

    PubMed

    Abiko, Y

    2000-01-01

    and periodontal diseases are summarized, and the biotechnological approaches for developing recombinant and human-type antibodies are introduced. Furthermore, our own attempts to construct single-chain variable fragments (ScFv) and human-type antibodies capable of neutralizing virulence factors are discussed.

  3. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens.

    PubMed

    Vennema, H; de Groot, R J; Harbour, D A; Horzinek, M C; Spaan, W J

    1991-03-01

    Feline infectious peritonitis virus (FIPV) causes a mostly fatal, immunologically mediated disease in cats. Previously, we demonstrated that immunization with a recombinant vaccinia virus expressing the FIPV spike protein (S) induced early death after challenge with FIPV (Vennema et al., 1990, J. Virol. 64, 1407-1409). In this paper we describe similar immunizations with the FIPV membrane (M) and nucleocapsid (N) proteins. The genes encoding these proteins were cloned and sequenced. Comparison of the amino acid sequences with the corresponding sequences of porcine transmissible gastroenteritis virus revealed 84.7 and 77% identity for M and N, respectively. Vaccinia virus recombinants expressing the cloned genes induced antibodies in immunized kittens. Immunization with neither recombinant induced early death after challenge with FIPV, strongly suggesting that antibody-dependent enhancement is mediated by antibodies against S only. Immunization with the N protein recombinant had no apparent effect on the outcome of challenge. However, three of eight kittens immunized with the M protein recombinant survived the challenge, as compared to one of eight kittens of the control group.

  4. Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands.

    PubMed

    Alturki, Norah A; Henry, Kevin A; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    Generation of antibodies against desired epitopes on folded proteins may be hampered by various characteristics of the target protein, including antigenic and immunogenic dominance of irrelevant epitopes and/or steric occlusion of the desired epitope. In such cases, peptides encompassing linear epitopes of the native protein represent attractive alternative reagents for immunization and screening. Peptide antigens are typically prepared by fusing or conjugating the peptide of interest to a carrier protein. The utility of such antigens depends on many factors including the peptide's amino acid sequence, display valency, display format (synthetic conjugate vs. recombinant fusion) and characteristics of the carrier. Here we provide detailed protocols for: (1) preparation of DNA constructs encoding peptides fused to verotoxin (VT) multimerization domain; (2) expression, purification, and characterization of the multivalent peptide-VT ligands; (3) concurrent panning of a non-immune phage-displayed camelid VHH library against the peptide-VT ligands and native protein; and (4) identification of VHHs enriched via panning using next-generation sequencing techniques. These methods are simple, rapid and can be easily adapted to yield custom peptide-VT ligands that appear to maintain the antigenic structures of the peptide. However, we caution that peptide sequences should be chosen with great care, taking into account structural, immunological, and biophysical information on the protein of interest.

  5. Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library.

    PubMed

    Rahumatullah, Anizah; Ahmad, Azimah; Noordin, Rahmah; Lim, Theam Soon

    2015-10-01

    Phage display technology is an important tool for antibody generation or selection. This study describes the development of a scFv library and the subsequent analysis of identified monoclonal antibodies against BmSXP, a recombinant antigen for lymphatic filariasis. The immune library was generated from blood of lymphatic filariasis infected individuals. A TA based intermediary cloning approach was used to increase cloning efficiency for the library construction process. A diverse immune scFv library of 10(8) was generated. Six unique monoclonal antibodies were identified from the 50 isolated clones against BmSXP. Analysis of the clones showed a bias for the IgHV3 and Vκ1 (45.5%) and IgHV2 and Vκ3 (27.3%) gene family. The most favored J segment for light chain is IgKJ1 (45.5%). The most favored D and J segment for heavy chain are IgHD6-13 (75%) and IgHJ3 (47.7%). The information may suggest a predisposition of certain V genes in antibody responses against lymphatic filariasis.

  6. A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice.

    PubMed

    Sabzevari, H; Gillies, S D; Mueller, B M; Pancook, J D; Reisfeld, R A

    1994-09-27

    A genetically engineered fusion protein consisting of a human/mouse chimeric anti-ganglioside GD2 antibody (ch14.18) and recombinant human interleukin 2 (rhIL-2) was tested for its ability to target rhIL-2 to tumor sites and stimulate immune effector cells sufficiently to achieve effective tumor cell lysis in vivo. The ch14.18-IL-2 fusion protein proved more effective than equivalent doses of rhIL-2 in suppressing dissemination and growth of human neuroblastoma in an experimental hepatic metastases model of scid (severe combined immunodeficiency) mice reconstituted with human lymphokine-activated killer cells. The ch14.18-IL-2 fusion protein was also more proficient than equivalent doses of rhIL-2 in prolonging the life-span of these animals. This recombinant antibody-cytokine fusion protein may prove useful for future treatment of GD2-expressing human tumors in an adjuvant setting.

  7. Molecular Mechanisms of Recombination Restriction in the Envelope Gene of the Human Immunodeficiency Virus

    PubMed Central

    Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P.; Robertson, David L.; Negroni, Matteo

    2009-01-01

    The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology. PMID:19424420

  8. Measuring Immune Responses to recombinant AAV Gene Transfer

    PubMed Central

    Martino, Ashley T.; Herzog, Roland W.; Anegon, Ignacio; Adjali, Oumeya

    2013-01-01

    Following AAV-based gene transfer, the occurrence of adaptive immune responses specific to the vector or the transgene product is a major roadblock to successful clinical translation. These responses include antibodies against the AAV capsid, which can be neutralizing and therefore prevent the ability to repeatedly administer the vector, and CD8+ cytotoxic T lymphocytes, which can eliminate transduced cells. In addition, humans may have both humoral and cellular pre-existing immunity, as a result from natural infection with parent virus or related serotypes. The need for assays to detect and measure these anti-capsid immune responses in humans and in experimental animals is profound. Here, ELISPOT, immunocapture (ELISA), and neutralization assays are explained and provided in detail. Furthermore, such techniques can readily be adapted to monitor and quantify immune responses against therapeutic transgene products encoded by the vector genome. PMID:22034034

  9. Defining specificities, genes, antigens, and antibodies- A matrix approach.

    PubMed

    Wohlgemuth, A

    1978-12-01

    We study the consequences of assigning single letter symbols to operationally defined entities such as genes, antigens, specificities, and antibodies. If this is to be done and if reagents are not specific in recognizing the products of single genes or single antigens, then these entities must be defined by a 'definition matrix' to avoid mislabeling a matrix of data. A method is given whereby for a given matrix of data all possible definition matrices consistent with this data can be obtained. In particular, all the ways of labeling by the complex-complex code of Hirschfeld can be so obtained.

  10. Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals

    PubMed Central

    Sankhyan, Anurag; Sharma, Chandresh; Dutta, Durgashree; Sharma, Tarang; Chosdol, Kunzang; Wakita, Takaji; Watashi, Koichi; Awasthi, Amit; Acharya, Subrat K.; Khanna, Navin; Tiwari, Ashutosh; Sinha, Subrata

    2016-01-01

    Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21–47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21–47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants. PMID:26888694

  11. Gene Disruption by Homologous Recombination in the Xylella fastidiosa Citrus Variegated Chlorosis Strain

    PubMed Central

    Gaurivaud, Patrice; Souza, Leonardo C. A.; Virgílio, Andrea C. D.; Mariano, Anelise G.; Palma, Renê R.; Monteiro, Patrícia B.

    2002-01-01

    Mutagenesis by homologous recombination was evaluated in Xylella fastidiosa by using the bga gene, coding for β-galactosidase, as a model. Integration of replicative plasmids by homologous recombination between the cloned truncated copy of bga and the endogenous gene was produced by one or two crossover events leading to β-galactosidase mutants. A promoterless chloramphenicol acetyltransferase gene was used to monitor the expression of the target gene and to select a cvaB mutant. PMID:12200328

  12. Germline humanization of a murine Abeta antibody and crystal structure of the humanized recombinant Fab fragment.

    PubMed

    Robert, Remy; Streltsov, Victor A; Newman, Janet; Pearce, Lesley A; Wark, Kim L; Dolezal, Olan

    2010-02-01

    Alzheimer's disease is the most common form of dementia, affecting 26 million people worldwide. The Abeta peptide (39-43 amino acids) derived from the proteolytic cleavage of the amyloid precursor protein is one of the main constituents of amyloid plaques associated with disease pathogenesis and therefore a validated target for therapy. Recently, we characterized antibody fragments (Fab and scFvs) derived from the murine monoclonal antibody WO-2, which bind the immunodominant epitope ((3)EFRH(6)) in the Abeta peptide at the N-terminus. In vitro, these fragments are able to inhibit fibril formation, disaggregate preformed amyloid fibrils, and protect neuroblastoma cells against oligomer-mediated toxicity. In this study, we describe the humanization of WO-2 using complementary determining region loop grafting onto the human germline gene and the determination of the three-dimensional structure by X-ray crystallography. This humanized version retains a high affinity for the Abeta peptide and therefore is a potential candidate for passive immunotherapy of Alzheimer's disease.

  13. Identification of recombination in the NS1 and VPs genes of parvovirus B19.

    PubMed

    Shen, Hongxing; Zhang, Wen; Wang, Hua; Shao, Shihe

    2016-08-01

    Human parvovirus B19 (B19V), a member of the genus Erythrovirus of the family Parvoviridae, is a pathogenic virus distributed worldwide in the human population. In this study, we performed phylogenetic and recombination analysis of B19V based on the available nonstructural gene (NS1) and capsid proteins (VPs) genes in GenBank. Results indicated that recombination occurred between genotypes 3 and 1, leading to the recombinant cluster genotype 2. Other three inter-genotype recombination events were also discovered. Moreover, our results showed that among the four recombinant events in the present study, all of the major parents belonged to genotype 1, the minor parents were from genotypes 3 or 2, and all of the recombinants belonged to genotype 2. These recombinant events were confirmed by SimPlot Program and phylogenetic analysis. J. Med. Virol. 88:1457-1461, 2016. © 2016 Wiley Periodicals, Inc.

  14. Construction of a prokaryotic expression system of vacA gene and detection of vacA gene, VacA protein in Helicobacter pylori isolates and ant-VacA antibody in patients’ sera

    PubMed Central

    Yan, Jie; Mao, Ya-Fei

    2004-01-01

    AIM: To construct a recombinant prokaryotic expression vector inserted with Helicobacter pylori vacA gene and identify the immunity of the expressed recombinant protein, and to determine prevalence of vacA-carrying/VacA expressing H pylori isolates and seroprevalence of specific ant-VacA antibody in H pylori infected patients. METHODS: Polymerase chain reaction technique was used to amplify complete vacA gene of H pylori strain NCTC11637 and to detect vacA gene in 109 H pylori isolates. The amplification product of the complete vacA gene was sequenced after T-A cloning. A recombinant expression vector inserted with a complete vacA gene fragment, named as pET32a-vacA, was constructed. Expression of the target recombinant protein VacA (rVacA) was examined by SDS-PAGE. Western blot using commercial antibodies against whole cell of H pylori and an immunodiffusion assay using self-prepared rabbit anti-rVacA antibody were applied to determine immunoreaction and antigenicity of rVacA. Two ELISA methods were established to detect VacA expression in H pylori isolates and the specific anti-VacA antibody in sera from 125 patients infected with H pylori. RESULTS: In comparison with the reported corresponding sequences, homologies of nucleotide and putative amino acid sequences of the cloned vacA gene were 99.82% and 100%, respectively. The constructed recombinant prokaryotic expression system efficiently produced rVacA. rVacA was able to combine with the commercial antibodies against whole cell of H pylori and to induce the immunized rabbit to produce specific antibody with an immunodiffusion titer of 1:4. All tested H pylori isolates carried vacA gene, but only 66.1% expressed VacA protein. Of the serum samples tested, 42.4% were positive for specific anti-VacA antibody. CONCLUSION: A prokaryotic expression system of H pylori vacA gene was successfully constructed. The expressed rVacA can be used to detect specific anti-VacA antibody in human and to prepare antiserum in

  15. Divergence of human [alpha]-chain constant region gene sequences: A novel recombinant [alpha]2 gene

    SciTech Connect

    Chintalacharuvu, K. R.; Morrison, S.L. ); Raines, M. )

    1994-06-01

    IgA is the major Ig synthesized in humans and provides the first line of defense at the mucosal surfaces. The constant region of IgA heavy chain is encoded by the [alpha] gene on chromosome 14. Previous studies have indicated the presence of two [alpha] genes, [alpha]1 and [alpha]2 existing in two allotypic forms, [alpha]2 m(1) and [alpha]2 m(2). Here the authors report the cloning and complete nucleotide sequence determination of a novel human [alpha] gene. Nucleotide sequence comparison with the published [alpha] sequences suggests that the gene arose as a consequence of recombination or gene conversion between the two [alpha]2 alleles. The authors have expressed the gene as a chimeric protein in myeloma cells indicating that it encodes a functional protein. The novel IgA resembles IgA2 m(2) in that disulfide bonds link H and L chains. This novel recombinant gene provides insights into the mechanisms of generation of different constant regions and suggests that within human populations, multiple alleles of [alpha] may be present providing IgAs of different structures.

  16. Genetic Analysis of Fusion Recombinants in Bacillus Subtilis: Function of the Rece Gene

    PubMed Central

    Ftouhi, N.; Guillen, N.

    1990-01-01

    Bacillus subtilis protoplast fusion allows the study of the genetic recombination of an entire procaryotic genome. Protoplasts from bacterial strains marked genetically by chromosomal mutations were fused using polyethylene glycol and the regenerated cells analyzed. Recombinants represent 19.3% of heterozygotic cells; they are haploids. Individual characterization of clones show a unique particular phenotype in each colony suggesting that recombination takes place immediately after fusion, probably before the first cellular division. Recombination occurs in the whole chromosome; in one-third of the cases both reciprocal recombinants could be shown in the colony. The genetic interval that includes the chromosome replication origin shows the highest recombination level. Our results suggest that the RecE protein accounts for most of the fused protoplast recombination; however, some ``replication origin-specific'' recombination events were independent of the recE gene product. PMID:2123461

  17. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  18. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates

    PubMed Central

    Spring-Pearson, Senanu M.; Stone, Joshua K.; Doyle, Adina; Allender, Christopher J.; Okinaka, Richard T.; Mayo, Mark; Broomall, Stacey M.; Hill, Jessica M.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; McNew, Lauren A.; Rosenzweig, C. Nicole; Gibbons, Henry S.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is ‘open’, with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order. PMID:26484663

  19. Predicting the expression of recombinant monoclonal antibodies in Chinese hamster ovary cells based on sequence features of the CDR3 domain.

    PubMed

    Pybus, Leon P; James, David C; Dean, Greg; Slidel, Tim; Hardman, Colin; Smith, Andrew; Daramola, Olalekan; Field, Ray

    2014-01-01

    Despite the development of high-titer bioprocesses capable of producing >10 g L(-1) of recombinant monoclonal antibody (MAb), some so called "difficult-to-express" (DTE) MAbs only reach much lower process titers. For widely utilized "platform" processes the only discrete variable is the protein coding sequence of the recombinant product. However, there has been little systematic study to identify the sequence parameters that affect expression. This information is vital, as it would allow us to rationally design genetic sequence and engineering strategies for optimal bioprocessing. We have therefore developed a new computational tool that enables prediction of MAb titer in Chinese hamster ovary (CHO) cells based on the recombinant coding sequence of the expressed MAb. Model construction utilized a panel of MAbs, which following a 10-day fed-batch transient production process varied in titer 5.6-fold, allowing analysis of the sequence features that impact expression over a range of high and low MAb productivity. The model identified 18 light chain (LC)-specific sequence features within complementarity determining region 3 (CDR3) capable of predicting MAb titer with a root mean square error of 0.585 relative expression units. Furthermore, we identify that CDR3 variation influences the rate of LC-HC dimerization during MAb synthesis, which could be exploited to improve the production of DTE MAb variants via increasing the transfected LC:HC gene ratio. Taken together these data suggest that engineering intervention strategies to improve the expression of DTE recombinant products can be rationally implemented based on an identification of the sequence motifs that render a recombinant product DTE.

  20. Regeneration of recombinant antigen microarrays for the automated monitoring of antibodies against zoonotic pathogens in swine sera.

    PubMed

    Meyer, Verena K; Kober, Catharina; Niessner, Reinhard; Seidel, Michael

    2015-01-23

    The ability to regenerate immobilized proteins like recombinant antigens (rAgs) on surfaces is an unsolved problem for flow-based immunoassays on microarray analysis systems. The regeneration on microarray chip surfaces is achieved by changing the protein structures and desorption of antibodies. Afterwards, reactivation of immobilized protein antigens is necessary for reconstitution processes. Any backfolding should be managed in a way that antibodies are able to detect the protein antigens in the next measurement cycle. The regeneration of rAg microarrays was examined for the first time on the MCR3 flow-based chemiluminescence (CL) microarray analysis platform. The aim was to reuse rAg microarray chips in order to reduce the screening effort and costs. An antibody capturing format was used to detect antibodies against zoonotic pathogens in sera of slaughtered pigs. Different denaturation and reactivation buffers were tested. Acidic glycine-SDS buffer (pH 2.5) and 8 M guanidinium hydrochloride showed the best results in respect of denaturation efficiencies. The highest CL signals after regeneration were achieved with a carbonate buffer containing 10 mM DTT and 0.1% BSA for reactivation. Antibodies against Yersinia spp. and hepatitis E virus (HEV) were detected in swine sera on one immunochip over 4 days and 25 measurement cycles. Each cycle took 10 min for detection and regeneration. By using the rAg microarray chip, a fast and automated screening of antibodies against pathogens in sera of slaughtered pigs would be possible for zoonosis monitoring.

  1. An ELISA for detection of trout antibodies to viral haemorrhagic septicemia virus using recombinant fragments of their viral G protein.

    PubMed

    Encinas, P; Gomez-Casado, E; Estepa, A; Coll, J M

    2011-09-01

    An enzyme linked immunosorbent assay (ELISA) method to study serum antibodies to viral haemorrhagic septicemia virus (VHSV) was designed by using recombinant fragments of their G protein. By using this fragment-ELISA, we describe the binding of antibodies against recombinant G fragments of 45-445 amino acids present in VHSV-hyperimmunized trout sera. Fragments were designed by taking into account their tridimensional pH-dependent structure and functional domains. Sera were obtained from hyperimmunized trout following 4-5 intraperitoneal injections of VHSV antigens by using Freund's or saponin adjuvants. Sera from different hyperimmunized trout differed quantitatively rather than qualitatively in their recognition of solid-phase frg11 (56-110), frg12 (65-109), frg13 (97-167), frg14 (141-214), frg15 (65-250), frg16 (252-450) and G (G21-465) by Western blot and ELISA. However, titres were higher when using frg11, frg15 or frg16, rather than G21-465, suggesting higher accessibility to G epitopes. Further knowledge of the antigenicity of the G protein of rhabdoviruses by using fragments might be used to improve current vaccines. On the other hand, they might be used to dissect the trout antibody response to VHSV infections, to complement in vitro neutralizing assays, and/or to quantitate anti-VHSV antibodies in VHSV-infected/vaccinated trout, other fish and/or other body fluids such as mucus.

  2. Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer.

    PubMed

    Wang, G; Qiu, J; Wang, R; Krause, A; Boyer, J L; Hackett, N R; Crystal, R G

    2010-08-01

    Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody (mAb) directed against an extracellular region of the human epidermal growth-factor receptor type 2 (HER2) protein. We hypothesized that a single adeno-associated virus (AAV)-mediated genetic delivery of an anti-HER2 antibody should be effective in mediating long-term production of anti-HER2 and in suppressing the growth of human tumors in a xenograft model in nude mice. The adeno-associated virus gene transfer vector AAVrh.10alphaHER2 was constructed based on a non-human primate AAV serotype rh.10 to express the complementary DNAs for the heavy and light chains of mAb 4D5, the murine precursor to trastuzumab. The data show that genetically transferred anti-HER2 selectively bound human HER2 protein and suppressed the proliferation of HER2(+) tumor cell lines. A single administration of AAVrh.10alphaHER2 provided long-term therapeutic levels of anti-HER2 antibody expression without inducing an anti-idiotype response, suppressed the growth of HER2(+) tumors and increased the survival of tumor bearing mice. In the context that trastuzumab therapy requires frequent and repeated administration, this strategy might be developed as an alternate platform for delivery of anti-HER2 therapy.

  3. An applied printing immunoassay with recombinant Nc-SAG1 for detection of antibodies to Neospora caninum in cattle.

    PubMed

    Wilkowsky, Silvina Elizabeth; Bareiro, Guillermo Gimenez; Mon, María Laura; Moore, Dadin Prando; Caspe, Gastón; Campero, Carlos; Fort, Marcelo; Romano, María Isabel

    2011-09-01

    Neospora caninum is a protozoan parasite that causes an important reproductive disease in cattle. Neospora caninum surface antigen 1 (Nc-SAG1) is an immunodominant candidate for the development of a diagnostic reagent for neosporosis. The current study describes the development and evaluation of an antigen print immunoassay (APIA) with recombinant Nc-SAG1 for the detection of specific antibodies to N. caninum in cattle. The concordance between APIA and a commercial enzyme-linked immunosorbent assay (ELISA) was evaluated with 232 serum samples from experimentally and naturally infected cattle. Sixty-one (26.7%) samples were positive for antibodies to N. caninum by ELISA and 58 (25.4%) by APIA. The new assay had a sensitivity of 85% and a specificity of 96%. These results, along with the potential of APIA to evolve into a multiple antigen detection format, suggest that this method would be a reliable diagnostic test for detection of antibodies to N. caninum in cattle.

  4. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies.

    PubMed

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  5. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  6. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  7. Development of an enzyme immunoassay using recombinant expressed antigen to detect hepatitis delta virus antibodies.

    PubMed

    Puig, J; Fields, H A

    1989-10-01

    Two generic enzyme immunoassays (EIAs) were developed for detection of anti-hepatitis delta virus antibodies (anti-HD) and compared with a commercially available radioimmunoassay. Both generic assays were configured as blocking assays and used hepatitis delta antigen (HDAg) derived from infected chimpanzee liver (EIA-1) or from Escherichia coli transformed with a plasmid containing an insert from within an open reading frame encoding HDAg (EIA-2). Absolute sensitivity was ascertained by endpoint titration, which demonstrated essentially identical endpoints for EIA-1 and EIA-2. The absolute sensitivities of the EIAs were approximately four times greater than that of the radioimmunoassay. Specificity and sensitivity were ascertained by testing a panel of 176 serum specimens by each assay. The specimens were selected to represent a panel composed of sera from individuals with or without markers of viral hepatitis as follows: (i) serologically confirmed by exclusion as posttransfusion non-A, non-B hepatitis; (ii) acute or chronic hepatitis B virus infection, positive for hepatitis B surface antigen; (iii) resolved hepatitis B virus infection, positive for anti-hepatitis B surface antigen; (iv) acute hepatitis A virus infection, positive for anti-hepatitis A virus immunoglobulin M; and (v) normal human sera. All three assays for anti-HD gave similar specificity and sensitivity values. In conclusion, the recombinant expressed HDAg can replace antigen derived from infected liver tissue as a diagnostic reagent used to configure an EIA for detection of anti-HD. Furthermore, the results suggest that the expressed antigen contains the important immunodominant epitope(s).

  8. Use of antibody gene library for the isolation of specific single chain antibodies by ampicillin-antigen conjugates.

    PubMed

    Neumann-Schaal, Meina; Messerschmidt, Katrin; Grenz, Nicole; Heilmann, Katja

    2013-03-01

    Isolation of recombinant antibodies from antibody libraries is commonly performed by different molecular display formats including phage display and ribosome display or different cell-surface display formats. We describe a new method which allows the selection of Escherichia coli cells producing the required single chain antibody by cultivation in presence of ampicillin conjugated to the antigen of interest. The method utilizes the neutralization of the conjugate by the produced single chain antibody which is secreted to the periplasm. Therefore, a new expression system based on the pET26b vector was designed and a library was constructed. The method was successfully established first for the selection of E. coli BL21 Star (DE3) cells expressing a model single chain antibody (anti-fluorescein) by a simple selection assay on LB-agar plates. Using this selection assay, we could identify a new single chain antibody binding biotin by growing E. coli BL21 Star (DE3) containing the library in presence of a biotin-ampicillin conjugate. In contrast to methods as molecular or cell surface display our selection system applies the soluble single chain antibody molecule and thereby avoids undesired effects, e.g. by the phage particle or the yeast fusion protein. By selecting directly in an expression strain, production and characterization of the selected single chain antibody is possible without any further cloning or transformation steps.

  9. Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions.

    PubMed

    Voulgaris, Ioannis; Finka, Gary; Uden, Mark; Hoare, Mike

    2015-10-01

    The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli.

  10. A Robust High Throughput Platform to Generate Functional Recombinant Monoclonal Antibodies Using Rabbit B Cells from Peripheral Blood

    PubMed Central

    Seeber, Stefan; Ros, Francesca; Thorey, Irmgard; Tiefenthaler, Georg; Kaluza, Klaus; Lifke, Valeria; Fischer, Jens André Alexander; Klostermann, Stefan; Endl, Josef; Kopetzki, Erhard; Pashine, Achal; Siewe, Basile; Kaluza, Brigitte; Platzer, Josef; Offner, Sonja

    2014-01-01

    We have developed a robust platform to generate and functionally characterize rabbit-derived antibodies using B cells from peripheral blood. The rapid high throughput procedure generates a diverse set of antibodies, yet requires only few animals to be immunized without the need to sacrifice them. The workflow includes (i) the identification and isolation of single B cells from rabbit blood expressing IgG antibodies, (ii) an elaborate short term B-cell cultivation to produce sufficient monoclonal antigen specific IgG for comprehensive phenotype screens, (iii) the isolation of VH and VL coding regions via PCR from B-cell clones producing antigen specific and functional antibodies followed by the sequence determination, and (iv) the recombinant expression and purification of IgG antibodies. The fully integrated and to a large degree automated platform (demonstrated in this paper using IL1RL1 immunized rabbits) yielded clonal and very diverse IL1RL1-specific and functional IL1RL1-inhibiting rabbit antibodies. These functional IgGs from individual animals were obtained at a short time range after immunization and could be identified already during primary screening, thus substantially lowering the workload for the subsequent B-cell PCR workflow. Early availability of sequence information permits one to select early-on function- and sequence-diverse antibodies for further characterization. In summary, this powerful technology platform has proven to be an efficient and robust method for the rapid generation of antigen specific and functional monoclonal rabbit antibodies without sacrificing the immunized animal. PMID:24503933

  11. Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions.

    PubMed

    Voulgaris, Ioannis; Finka, Gary; Uden, Mark; Hoare, Mike

    2015-10-01

    The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli. PMID:26184976

  12. High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100.

    PubMed

    Leonard, Paul; Säfsten, Pär; Hearty, Stephen; McDonnell, Barry; Finlay, William; O'Kennedy, Richard

    2007-06-30

    Advances in molecular evolution strategies have made it possible to identify antibodies with exquisite specificities and also to fine-tune their biophysical properties for practically any specified application. Depending on the desired function, antibody/antigen interactions can be long-lived or short-lived and, therefore, particular attention is needed when seeking to identify antibodies with specific reaction-rate and affinity properties. Surface plasmon resonance (SPR) biosensors routinely generate sensitive and reliable kinetic data from antibody/antigen interactions for both therapeutic and diagnostic applications. However, many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To ameliorate this problem, we developed a rapid and reliable assay for characterising recombinant scFv antibody fragments, directly from crude bacterial lysates. Ninety-six scFv antibodies derived from chickens immunised with C-reactive protein (CRP) were selected by phage display and evaluated using the Biacore A100 protein interaction array system. Antibodies were captured from crude bacterial extracts on the sensor chip surface and ranked based on the percentage of the complex left (% left) after dissociation in buffer. Kinetic rate constants (k(a) and k(d)) and affinity (K(D)) data were obtained for six clones that bound monomeric CRP across a broad affinity range (2.54 x 10(-8) to 3.53 x 10(-10) M). Using this assay format the A100 biosensor yielded high quality kinetic data, permitting the screening of nearly 400 antibody clones per day. PMID:17532001

  13. A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood.

    PubMed

    Seeber, Stefan; Ros, Francesca; Thorey, Irmgard; Tiefenthaler, Georg; Kaluza, Klaus; Lifke, Valeria; Fischer, Jens André Alexander; Klostermann, Stefan; Endl, Josef; Kopetzki, Erhard; Pashine, Achal; Siewe, Basile; Kaluza, Brigitte; Platzer, Josef; Offner, Sonja

    2014-01-01

    We have developed a robust platform to generate and functionally characterize rabbit-derived antibodies using B cells from peripheral blood. The rapid high throughput procedure generates a diverse set of antibodies, yet requires only few animals to be immunized without the need to sacrifice them. The workflow includes (i) the identification and isolation of single B cells from rabbit blood expressing IgG antibodies, (ii) an elaborate short term B-cell cultivation to produce sufficient monoclonal antigen specific IgG for comprehensive phenotype screens, (iii) the isolation of VH and VL coding regions via PCR from B-cell clones producing antigen specific and functional antibodies followed by the sequence determination, and (iv) the recombinant expression and purification of IgG antibodies. The fully integrated and to a large degree automated platform (demonstrated in this paper using IL1RL1 immunized rabbits) yielded clonal and very diverse IL1RL1-specific and functional IL1RL1-inhibiting rabbit antibodies. These functional IgGs from individual animals were obtained at a short time range after immunization and could be identified already during primary screening, thus substantially lowering the workload for the subsequent B-cell PCR workflow. Early availability of sequence information permits one to select early-on function- and sequence-diverse antibodies for further characterization. In summary, this powerful technology platform has proven to be an efficient and robust method for the rapid generation of antigen specific and functional monoclonal rabbit antibodies without sacrificing the immunized animal.

  14. A tumor targeted gene vector modified with G250 monoclonal antibody for gene therapy.

    PubMed

    Duan, Yajun; Zheng, Junnian; Han, Sufang; Wu, Yi; Wang, Yanming; Li, Deguan; Kong, Deling; Yu, Yaoting

    2008-04-21

    G250 is a tumor associated antigen that is found on > 90% of renal cell carcinoma (RCC). In order to develop a highly targeting gene vector for RCC gene therapy, G250 monoclonal antibody was prepared, purified and characterized. The antibody was chemically bound to Polyethylenimine (PEI) to form the IgG-PEI conjugate. The conjugate is capable of forming DNA complexes in the size of nano meters and with a narrow size distribution. The targeting effect and transfection efficiency were tested on five cell lines, ketr 3, Hela, ACHN, HepG2, and smooth muscle cells. The transfection was quantitatively determined by fluorescence activated cell sorting (FACS) and luciferase assay. The FACS results show that for G250 positive cells ketr 3 and Hela, the transfection efficiency of IgG-PEI are 2-fold higher than that of PEI. But for G250 negative cells, antibody modification has no effect on transfection. The expression of luciferase in ketr 3 cells which is expressed as enzyme activity is 15-fold and 61-fold higher than that in ACHN and SMC, respectively. In the presence of free antibody, the targeting effect of IgG-PEI is impaired and the transfection efficiency is normalized. It indicates that G250 antibody is an ideal targeting ligand for delivery of genes into RCC. Application of this IgG-PEI conjugate in RCC gene therapy will be of great interest. PMID:18316136

  15. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.

    PubMed

    Li, Jin; Stoddard, Thomas J; Demorest, Zachary L; Lavoie, Pierre-Olivier; Luo, Song; Clasen, Benjamin M; Cedrone, Frederic; Ray, Erin E; Coffman, Andrew P; Daulhac, Aurelie; Yabandith, Ann; Retterath, Adam J; Mathis, Luc; Voytas, Daniel F; D'Aoust, Marc-André; Zhang, Feng

    2016-02-01

    Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked β(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and β(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.

  16. Development of Monoclonal Antibodies against CMP-N-Acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1 (ST3Gal-I) Recombinant Protein Expressed in E. coli.

    PubMed

    Gupta, Anuj Kumar; Kaur, Parvinder; Patil, Harshada; Kadam, Pallavi; Bhanushali, Paresh B; Chugh, Manoj

    2015-01-01

    Aberrant glycosylation is one of the major hallmarks of cancer with altered gene expression signatures of sialyltransferases. ST3Gal-I, a sialyltransferase, is known to play a crucial role in sialylation of T antigen in bladder cancer and it has reported elevated expression in breast carcinogenesis with increased tumor progression stages. The aim of the current study is to develop new monoclonal antibodies (mAbs) against human ST3Gal-I and evaluate their diagnostic potential. We developed a repertoire of stable hybridoma cell lines producing high-affinity IgG antibodies against recombinant human ST3Gal-I, expressed in E. coli BL21-DE3 strain. In order to demonstrate the diagnostic value of the mAbs, various clones were employed for the immunohistochemistry analysis of ST3Gal-I expression in cancerous tissues. Antibodies generated by 7E51C83A10 clone demonstrated a strong and specific fluorescence staining in breast cancer tissue sections and did not exhibit significant background in fibroadenoma sections. In conclusion, the mAbs raised against recombinant ST3Gal-I recognize cellular ST3Gal-I and represent a promising diagnostic tool for the immunodetection of ST3Gal-I expressing cells. Specific-reactivity of clone 7E51C83A10 mAbs towards ST3Gal-I was also confirmed by immunoblotting. Therefore, our observations warrant evaluation of ST3Gal-I as a potential marker for cancer diagnosis at larger scale. PMID:26783462

  17. The Purification of Natural and Recombinant Peptide Antibodies by Affinity Chromatographic Strategies.

    PubMed

    Ma, Hui; O'Kennedy, Richard

    2015-01-01

    The purification of peptide antibodies (e.g., IgG, IgY, scFv, and Fab) are described in this chapter. Affinity chromatographic purification, a very convenient and effective antibody purification strategy, is used to isolate peptide antibodies based on specific binding, i.e., binding of the antibody to a column on which its specific ligand is immobilized with subsequent elution of the purified antibody. In addition, the application of purification methods based on the use of proteins A, G, and L, each of which bind to specific domains on an antibody/fragment, or the use of specific tags (e.g., histidine and biotin) attached to antibodies or antigens are also described.

  18. [Site-directed mutagensis of the major antigen E2 gene of CSFV, its high level expression in Escherichia coli and the immunonicity of recombinant E2 protein].

    PubMed

    Yu, Xing-Long; Tu, Chang-Chun; Xu, Xing-Ran; Zhang, Mao-Lin; Chen, Yi-Xiang; Liu, Bo-Hua

    2003-07-01

    Classical swine fever virus (CSFV), an enveloped positive-stranded RNA virus in the genus Pestivirus of the Flaviviridae family, is the causative agent of a highly contagious swine disease characterized by symptoms of hemorrhagic fever and immune depression, usually leading to substantial economic losses. The serological methods for detection of CSFV antibody such as ELISA are important means for the diagnosis of CSFV and immune surveillance. It is difficult to obtain CSFV antigen with high quality using traditional method because its titration titer is low in cell culture. CSFV has four structural protein named C, E0, El and E2. The E2 protein contains major antigenic determinants that are conserved between different CSFV strains and involved in neutralization by antibodies. So recombinant E2 protein can be developed as an alternative to the intact viral antigen. So far, CSFV E2 have not been expressed in E. coli with high level. Many factors, such as the secondary structure, the stability of 5' and 3' terminus of gene, the location of SD sequence and the bias of codes, are involved in the expressing level of foreign gene in E. coli . In this study, two sites of the E2 gene sequence were confirmed to be detrimental to its expression efficiency in E. coli through the computer-aided analysis. So they were mutated using recombinant PCR without changing the amino acids sequence of CSFV E2 gene. A plasmid was constructed by inserting the mutated E2 gene into the prokaryotic expression vector pET-28a(+) and named pETE2. The E. coli competent host BL21 (DE3)lysS transformed with pETE2 could express the E2 gene at high level, amounting to 28% of the total protein of the induced recombinant bacteria at the presence of IPTG. Except the hydrophobic transmembrane domain at C terminus, the recombinant E2 protein includes the total aa sequence. So it contains all the potential linear antigen epitopes of E2 protein because hydrophobic aa region can not form epitope. The

  19. The essential helicase gene RAD3 suppresses short-sequence recombination in Saccharomyces cerevisiae.

    PubMed Central

    Bailis, A M; Maines, S; Negritto, M T

    1995-01-01

    We have isolated an allele of the essential DNA repair and transcription gene RAD3 that relaxes the restriction against recombination between short DNA sequences in Saccharomyces cerevisiae. Double-strand break repair and gene replacement events requiring recombination between short identical or mismatched sequences were stimulated in the rad3-G595R mutant cells. We also observed an increase in the physical stability of double-strand breaks in the rad3-G595R mutant cells. These results suggest that the RAD3 gene suppresses recombination involving short homologous sequences by promoting the degradation of the ends of broken DNA molecules. PMID:7623796

  20. Gene Evolutionary Trajectories and GC Patterns Driven by Recombination in Zea mays

    PubMed Central

    Sundararajan, Anitha; Dukowic-Schulze, Stefanie; Kwicklis, Madeline; Engstrom, Kayla; Garcia, Nathan; Oviedo, Oliver J.; Ramaraj, Thiruvarangan; Gonzales, Michael D.; He, Yan; Wang, Minghui; Sun, Qi; Pillardy, Jaroslaw; Kianian, Shahryar F.; Pawlowski, Wojciech P.; Chen, Changbin; Mudge, Joann

    2016-01-01

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another intriguing GC pattern exists. Maize genes show a bimodal GC content distribution that has been attributed to nucleotide bias in the third, or wobble, position of the codon. Recombination may be an underlying driving force given that recombination sites are often associated with high GC content. Here we explore the relationship between recombination and genomic GC patterns by comparing GC gene content at each of the three codon positions (GC1, GC2, and GC3, collectively termed GCx) to instances of a variable GC-rich motif that underlies double strand break (DSB) hotspots and to meiocyte-specific gene expression. Surprisingly, GCx bimodality in maize cannot be fully explained by the codon wobble hypothesis. High GCx genes show a strong overlap with the DSB hotspot motif, possibly providing a mechanism for the high evolutionary rates seen in these genes. On the other hand, genes that are turned on in meiosis (early prophase I) are biased against both high GCx genes and genes with the DSB hotspot motif, possibly allowing important meiotic genes to avoid DSBs. Our data suggests a strong link between the GC-rich motif underlying DSB hotspots and high GCx genes. PMID:27713757

  1. Recombinant HT.sub.m4 gene, protein and assays

    DOEpatents

    Lim, Bing; Adra, Chaker N.; Lelias, Jean-Michel

    1996-01-01

    The invention relates to a recombinant DNA molecule which encodes a HT.sub.m4 protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT.sub.m4 protein and a recombinant HT.sub.m4 protein. The invention also relates to a method for detecting the presence of a hereditary atopy.

  2. A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14

    PubMed Central

    Weil, Gary J.; Curtis, Kurt C.; Fischer, Peter U.; Won, Kimberly Y.; Lammie, Patrick J.; Joseph, Hayley; Melrose, Wayne D.; Brattig., Norbert W.

    2010-01-01

    Antibody tests are useful for mapping the distribution of lymphatic filariasis (LF) in countries and regions and for monitoring progress in elimination programs based on mass drug administration (MDA). Prior antibody tests have suffered from poor sensitivity and/or specificity or from a lack of standardization. We conducted a multicenter evaluation of a new commercial ELISA that detects IgG4 antibodies to the recombinant filarial antigen Bm14. Four laboratories tested a shared panel of coded serum or plasma samples that included 55 samples from people with microfilaremic Wuchereria bancrofti or Brugia infections and 26 control samples. Qualitative results were identical in all four test sites. In addition, each laboratory tested samples from their own serum banks. The test detected antibodies in 32 of 36 samples (91%) from people with Brugian filariasis and in 96 of 98 samples (98%) from people with Bancroftian filariasis. Specificity testing showed that many serum or plasma samples from patients with other filarial infections such as onchocerciasis had positive antibody tests. Specificity was otherwise excellent, although 3 of 30 samples from patients with ascariasis and 4 of 51 with strongyloidiasis had positive antibody tests; it is likely that some or all of these people had previously lived in filariasis-endemic areas. Antibody test results obtained with eluates from blood dried on filter paper were similar to those obtained with plasma tested at the same dilution. This test may be helpful for diagnosing LF in patients with clinical signs of filariasis. It may also be a useful tool for use in LF endemic countries to monitor the progress of filariasis elimination programs and for post-MDA surveillance. PMID:20430004

  3. A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14.

    PubMed

    Weil, Gary J; Curtis, Kurt C; Fischer, Peter U; Won, Kimberly Y; Lammie, Patrick J; Joseph, Hayley; Melrose, Wayne D; Brattig, Norbert W

    2011-09-01

    Antibody tests are useful for mapping the distribution of lymphatic filariasis (LF) in countries and regions and for monitoring progress in elimination programs based on mass drug administration (MDA). Prior antibody tests have suffered from poor sensitivity and/or specificity or from a lack of standardization. We conducted a multicenter evaluation of a new commercial ELISA that detects IgG4 antibodies to the recombinant filarial antigen Bm14. Four laboratories tested a shared panel of coded serum or plasma samples that included 55 samples from people with microfilaremic Wuchereria bancrofti or Brugia infections and 26 control samples. Qualitative results were identical in all four test sites. In addition, each laboratory tested samples from their own serum banks. The test detected antibodies in 32 of 36 samples (91%) from people with Brugian filariasis and in 96 of 98 samples (98%) from people with Bancroftian filariasis. Specificity testing showed that many serum or plasma samples from patients with other filarial infections such as onchocerciasis had positive antibody tests. Specificity was otherwise excellent, although 3 of 30 samples from patients with ascariasis and 4 of 51 with strongyloidiasis had positive antibody tests; it is likely that some or all of these people had previously lived in filariasis-endemic areas. Antibody test results obtained with eluates from blood dried on filter paper were similar to those obtained with plasma tested at the same dilution. This test may be helpful for diagnosing LF in patients with clinical signs of filariasis. It may also be a useful tool for use in LF endemic countries to monitor the progress of filariasis elimination programs and for post-MDA surveillance.

  4. Localized DNA Demethylation at Recombination Intermediates during Immunoglobulin Heavy Chain Gene Assembly

    PubMed Central

    Selimyan, Roza; Gerstein, Rachel M.; Ivanova, Irina; Precht, Patricia; Subrahmanyam, Ramesh; Perlot, Thomas; Alt, Frederick W.; Sen, Ranjan

    2013-01-01

    Multiple epigenetic marks have been proposed to contribute to the regulation of antigen receptor gene assembly via V(D)J recombination. Here we provide a comprehensive view of DNA methylation at the immunoglobulin heavy chain (IgH) gene locus prior to and during V(D)J recombination. DNA methylation did not correlate with the histone modification state on unrearranged alleles, indicating that these epigenetic marks were regulated independently. Instead, pockets of tissue-specific demethylation were restricted to DNase I hypersensitive sites within this locus. Though unrearranged diversity (DH) and joining (JH) gene segments were methylated, DJH junctions created after the first recombination step were largely demethylated in pro-, pre-, and mature B cells. Junctional demethylation was highly localized, B-lineage-specific, and required an intact tissue-specific enhancer, Eμ. We propose that demethylation occurs after the first recombination step and may mark the junction for secondary recombination. PMID:23382652

  5. Localized DNA demethylation at recombination intermediates during immunoglobulin heavy chain gene assembly.

    PubMed

    Selimyan, Roza; Gerstein, Rachel M; Ivanova, Irina; Precht, Patricia; Subrahmanyam, Ramesh; Perlot, Thomas; Alt, Frederick W; Sen, Ranjan

    2013-01-01

    Multiple epigenetic marks have been proposed to contribute to the regulation of antigen receptor gene assembly via V(D)J recombination. Here we provide a comprehensive view of DNA methylation at the immunoglobulin heavy chain (IgH) gene locus prior to and during V(D)J recombination. DNA methylation did not correlate with the histone modification state on unrearranged alleles, indicating that these epigenetic marks were regulated independently. Instead, pockets of tissue-specific demethylation were restricted to DNase I hypersensitive sites within this locus. Though unrearranged diversity (D(H)) and joining (J(H)) gene segments were methylated, DJ(H) junctions created after the first recombination step were largely demethylated in pro-, pre-, and mature B cells. Junctional demethylation was highly localized, B-lineage-specific, and required an intact tissue-specific enhancer, Eμ. We propose that demethylation occurs after the first recombination step and may mark the junction for secondary recombination.

  6. Mutants of Streptomyces roseosporus that express enhanced recombination within partially homologous genes.

    PubMed

    Hosted, T J; Baltz, R H

    1996-10-01

    Streptomyces roseosporus mutants that express enhanced recombination between partially homologous (homeologous) sequences were isolated by selection for recombination between the bacteriophage phi C31 derivative KC570 containing the Streptomyces coelicolor glucose kinase (glk) gene and the S. roseosporus chromosome. The frequencies of homeologous recombination in the ehr mutants were determined by measuring the chromosomal insertion frequencies of plasmids containing S. coelicolor glnA or whiG genes. S. roseosporus ehr mutants showed 10(2)- to 10(4)-fold increases in homeologous recombination relative to Ehr+ strains, but no increase in homologous recombination. Southern hybridization analysis revealed single unique sites for the insertion of each of the plasmids, and the crossovers occurred in frame and in proper translational register, yielding functional chimeric glnA and whiG genes.

  7. Reduction of enterotoxin induced fluid accumulation in ileal loops of neonatal calves with anti-F5 fimbriae recombinant antibody.

    PubMed

    Sahagun-Ruiz, Alfredo; Velazquez, Leticia V; Bhaskaran, Shoba; Jay, Chris M; Morales-Salinas, E; Rathore, Keerti; Wagner, Gale G; Waghela, Suryakant D

    2015-12-01

    Neonatal calf colibacillosis caused by enterotoxigenic Escherichia coli (ETEC) is an economically significant problem in most parts of the world. The most common ETEC found in calves express the F5 (K99) fimbriae, which are necessary for the attachment of the bacteria to the ganglioside receptors on enterocytes. It is known that prevention of ETEC F5(+) adhesion to its ganglioside receptors with specific antibodies protects calves from colibacillosis. Previously we have described the development and characterization of a mouse recombinant antibody fragment (moRAb) that prevents F5 fimbrial protein induced agglutination of horse red blood cells (HRBC), which exhibit the same gangloside receptor for F5 fimbriae. Here we demonstrate that this recombinant antibody fragment inhibits in vitro the attachment of ETEC F5(+) bacteria to HRBC as well as isolated calf enterocytes, and in vivo it decreases fluid accumulation in intestinal loops of calves. Thus, correct oral administration of this anti-F5 moRAb may serve as an immunoprophylactic for cost effective control of colibacillosis in calves. PMID:26521056

  8. Production of Polyclonal Antibodies to the Recombinant Coat Protein of Citrus tristeza virus and Their Effectiveness for Virus Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The p25 coat protein gene of three Citrus tristeza virus (CTV) isolates, two from Mexico and one from India, was amplified by RT-PCR and further cloned and expressed in Escherichia coli cells. The recombinant coat protein (rCP) of the three CTV isolates was injected into rabbits and goats for antibo...

  9. Tumor gene therapy by MVA-mediated expression of T-cell-stimulating antibodies.

    PubMed

    Paul, Stephane; Regulier, Etienne; Rooke, Ronald; Stoeckel, Fabienne; Geist, Michel; Homann, Horst; Balloul, Jean-Marc; Villeval, Dominique; Poitevin, Yves; Kieny, Marie-Paule; Acres, R Bruce

    2002-05-01

    Immune responses to tumor-associated antigens are often dampened by a tumor-induced state of immune anergy. Previous work has attempted to overcome tumor-induced T-cell anergy by the direct injection of vectors carrying the genes encoding one of a variety of cytokines. We hypothesised that the polyclonal stimulation of T cells, preferably through the TCR complex, would result in a cascade of cytokines associated with T-cell activation and would be best able to overcome T-cell anergy. Here we use the highly attenuated MVA poxvirus to express on tumor cells, in vitro and in vivo, either of three membrane-bound monoclonal antibodies specific for murine TCR complex. Using this system, we have expressed antibodies specific for the CD3 epsilon chain (KT3), TCR alpha/beta complex (H57-597), and V beta 7 chain (TR310). Tumor cells bristling with these antibodies are capable of inducing murine T-cell proliferation and cytokine production. When injected into growing tumors (P815, RenCa, and B16F10), these constructs induce the activation of immune effector cells and result in the rejection of the tumor. Histological and FACS analysis of tumor-infiltrating leukocytes reveal that the injection of recombinant virus-expressing antibodies specific for the TCR complex attracts and activates (CD25(+), CD69(+)) CD4 and CD8 lymphocytes. This approach represents a novel strategy to overcome T-cell anergy in tumors and allow the stimulation of tumor-specific T cells. PMID:11961670

  10. Recombinative events of the T cell antigen receptor delta gene in peripheral T cell lymphomas.

    PubMed Central

    Kanavaros, P; Farcet, J P; Gaulard, P; Haioun, C; Divine, M; Le Couedic, J P; Lefranc, M P; Reyes, F

    1991-01-01

    Recombinative events of the T cell antigen receptor (TCR) delta-chain gene were studied in 37 cases of peripheral T cell lymphoma (PTCL) and related to their clinical presentation and the expression of the alpha beta or gamma delta heterodimers as determined by immunostaining of frozen tissue samples. There were 22 cases of alpha beta, 5 cases of gamma delta, and 10 cases of silent TCR expressing neither the alpha beta nor gamma delta TCR. 5 different probes were used to examine the delta locus. The 22 cases of alpha beta PTCL displayed biallelic and monoallelic deletions; a monoallelic V delta 1 J delta 1 rearrangement was observed in 1 case and a monoallelic germ line configuration in 7 cases. The 5 cases of gamma delta PTCL displayed biallelic rearrangements: the productive rearrangements could be ascribed to V delta 1J delta 1 joining in 3 cases and VJ delta 1 joining in 2 cases according to the combined pattern of DNA hybridization with the appropriate probes and of cell reactivity with the TCR delta-1, delta TCS-1, and anti-V delta 2 monoclonal antibodies. In the VJ delta 1 joining, the rearranged V segments were located between V delta 1 and V delta 2. Interestingly, in the third group of 10 cases of silent PTCL, 5 cases were found to have a TCR gene configuration identical to that in the TCR alpha beta PTCL, as demonstrated by biallelic delta gene deletion. These 5 cases were CD3 positive. The 5 remaining cases showed a monoallelic delta gene rearrangement with a monoallelic germ line configuration in 4 and a monoallelic deletion in 1. Four of these cases were CD3 negative, which was consistent with an immature genotype the TCR commitent of which could not be ascertained. Finally, TCR gamma delta PTCL consisted of a distinct clinical morphological and molecular entity whereas TCR alpha beta and silent PTCL had a similar presentation. Images PMID:1991851

  11. Production and characterization of a monoclonal antibody against recombinant cathepsin L1 of Fasciola gigantica.

    PubMed

    Anuracpreeda, Panat; Srirakam, Thippawan; Pandonlan, Sudarat; Changklungmoa, Narin; Chotwiwatthanakun, Charoonroj; Tinikul, Yotsawan; Poljaroen, Jaruwan; Meemon, Krai; Sobhon, Prasert

    2014-08-01

    Monoclonal antibodies (MoAbs) against a recombinant cathepsin L1 of Fasciola gigantica (rFgCatL1) were produced in vitro by fusion of BALB/c mice spleen cells immunized with rFgCatL1 and mouse myeloma cells. Reactivity and specificity of these MoAbs were evaluated by indirect ELISA and immunoblotting techniques. Seven MoAb clones were selected from the stable hybridoma clones, namely 1E10, 1F5, 3D11, 4B10, 4D3, 4E3 and 5E7. Clones 1E10, 1F5 and 3D11 were IgM, whereas clones 4B10, 4D3, 4E3 and 5E7 were IgG1. All MoAbs had kappa light chain isotypes. All MoAbs reacted with rCatL1 at molecular weight (MW) 30kDa and with the native CatL1 at MW 27kDa in whole body (WB) extracts of metacercariae (Met), newly excysted juveniles (NEJ), 1, 3, 5-week-old juveniles (Ju), adult WB and adult excretory-secretory (ES) fractions, but not with adult tegumental antigens (TA). All of these MoAbs showed no cross-reactions with antigens of other parasites commonly found in ruminants and human, including Paramphistomum cervi, Eurytrema pancreaticum, Gigantocotyle explanatum, Schistosoma spindale, Schistosoma mansoni, Moniezia benedeni, Avitellina centripunctata, Trichuris sp., Haemonchus placei and Setaria labiato-papillosa. Localization of CatL1 in each developmental stages of F. gigantica by immunoperoxidase technique, using these MoAbs as probes, indicated that CatL1 was present at high concentration in the caecal epithelium and caecal lumen of metacercariae, NEJ, 1, 3, 5-week-old juveniles and adult fluke. This finding indicated that CatL1 is a copiously expressed parasite protein that is released into the ES, thus CatL1 and its MoAb could be a good candidate for immunodiagnosis of fasciolosis in ruminant and human. PMID:24736227

  12. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses.

  13. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses. PMID:26458835

  14. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination*

    PubMed Central

    Zhang, Qiang; Chen, Qi-he; Fu, Ming-liang; Wang, Jin-ling; Zhang, Hong-bo; He, Guo-qing

    2008-01-01

    The bglS gene encoding endo-l,3-1,4-β-glucanase from Bacillus subtilis was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone α-factor (MFα1S), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-l,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-l,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-l,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer. PMID:18600782

  15. Induction of neutralizing antibodies by varicella-zoster virus gpII glycoprotein expressed from recombinant vaccinia virus.

    PubMed

    Massaer, M; Haumont, M; Place, M; Bollen, A; Jacobs, P

    1993-03-01

    The gpII glycoprotein of varicella-zoster virus (VZV) was produced in CV1 cells via vaccinia virus recombinants. Two different DNA constructs were expressed: the first one encodes the complete gpII protein (gpII s+a+) and the second a truncated species lacking the membrane anchorage domain (gpII s+a-). To achieve expression both coding sequences had to be engineered at the 5' end by substituting the unusually short (24 bp) natural signal sequence by a more conventional one encoding 29 amino acids. Recombinant gpII proteins were detected in vaccinia virus-infected cells by ELISA and immunoprecipitation. Both forms of recombinant gpII proteins were produced as glycosylated single-chain molecules of respectively 110K and 90K. Upon reduction these were only partially converted into subunits. A rabbit infected with the vaccinia virus recombinant expressing the complete gpII produced antibodies which recognized VZV antigens and neutralized VZV infectivity in vitro, independent of complement.

  16. Protective Immunity against Eimeria acervulina following In Ovo Immunization with a Recombinant Subunit Vaccine and Cytokine Genes

    PubMed Central

    Ding, Xicheng; Lillehoj, Hyun S.; Quiroz, Marco A.; Bevensee, Erich; Lillehoj, Erik P.

    2004-01-01

    A purified recombinant protein from Eimeria acervulina (3-1E) was used to vaccinate chickens in ovo against coccidiosis both alone and in combination with expression plasmids encoding the interleukin 1 (IL-1), IL-2, IL-6, IL-8, IL-15, IL-16, IL-17, IL-18, or gamma interferon (IFN-γ) gene. When used alone, vaccination with 100 or 500 μg of 3-1E resulted in significantly decreased oocyst shedding compared with that in nonvaccinated chickens. Simultaneous vaccination of the 3-1E protein with the IL-1, -15, -16, or -17 gene induced higher serum antibody responses than 3-1E alone. To evaluate protective intestinal immunity, vaccinated birds were challenged with live E. acervulina oocysts 14 days posthatch, and fecal-oocyst shedding and body weight gain were determined as parameters of coccidiosis. Chickens vaccinated with 3-1E protein showed significantly lower oocyst shedding and normal body weight gain than nonvaccinated and infected controls. Simultaneous immunization with 3-1E and the IL-2, -15, -17, or -18 or IFN-γ gene further reduced oocyst shedding compared with that achieved with 3-1E alone. These results provide the first evidence that in ovo vaccination with the recombinant 3-1E Eimeria protein induces protective intestinal immunity against coccidiosis, and this effect was enhanced by coadministration of genes encoding immunity-related cytokines. PMID:15557615

  17. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa).

    PubMed Central

    Chin, D B; Arroyo-Garcia, R; Ochoa, O E; Kesseli, R V; Lavelle, D O; Michelmore, R W

    2001-01-01

    Two sets of overlapping experiments were conducted to examine recombination and spontaneous mutation events within clusters of resistance genes in lettuce. Multiple generations were screened for recombinants using PCR-based markers flanking Dm3. The Dm3 region is not highly recombinagenic, exhibiting a recombination frequency 18-fold lower than the genome average. Recombinants were identified only rarely within the cluster of Dm3 homologs and no crossovers within genes were detected. Three populations were screened for spontaneous mutations in downy mildew resistance. Sixteen Dm mutants were identified corresponding to spontaneous mutation rates of 10(-3) to 10(-4) per generation for Dm1, Dm3, and Dm7. All mutants carried single locus, recessive mutations at the corresponding Dm locus. Eleven of the 12 Dm3 mutations were associated with large chromosome deletions. When recombination could be analyzed, deletion events were associated with exchange of flanking markers, consistent with unequal crossing over; however, although the number of Dm3 paralogs was changed, no novel chimeric genes were detected. One mutant was the result of a gene conversion event between Dm3 and a closely related homolog, generating a novel chimeric gene. In two families, spontaneous deletions were correlated with elevated levels of recombination. Therefore, the short-term evolution of the major cluster of resistance genes in lettuce involves several genetic mechanisms including unequal crossing over and gene conversion. PMID:11157000

  18. Recombination rates of Streptococcus pneumoniae isolates with both erm(B) and mef(A) genes.

    PubMed

    Lee, Ji-Young; Song, Jae-Hoon; Ko, Kwan Soo

    2010-08-01

    Erythromycin-resistant Streptococcus pneumoniae isolates containing both erm(B) and mef(A) genes have a higher rate of multidrug resistance (MDR). We investigated the relationships between the presence of erythromycin resistance determinants and the recombination rate. We determined the mutation and recombination frequencies of 46 S. pneumoniae isolates, which included 19 with both erm(B) and mef(A), nine with only erm(B), six with only mef(A), and 11 erythromycin-susceptible isolates. Mutation frequency values were estimated as the number of rifampin-resistant colonies as a proportion of total viable count. Genotypes and serotypes of isolates with the hyper-recombination phenotype were determined. Twelve S. pneumoniae isolates were hypermutable and four isolates were determined to have hyper-recombination frequency. Streptococcus pneumoniae isolates with both erm(B) and mef(A) genes did not show a high mutation frequency. In contrast, all isolates with a hyper-recombination phenotype contained both erm(B) and mef(A) genes. In addition, the recombination rate of isolates with both erm(B) and mef(A) genes was statistically higher than the rate of other isolates. The dual presence of erm(B) and mef(A) genes in some pneumococcal isolates may be associated with high recombination frequency. This may be one of the reasons for the frequent emergence of MDR in certain pneumococcal isolates.

  19. Reciprocal and Nonreciprocal Recombination at the Glucocerebrosidase Gene Region: Implications for Complexity in Gaucher Disease

    PubMed Central

    Tayebi, Nahid; Stubblefield, Barbara K.; Park, Joseph K.; Orvisky, Eduard; Walker, Jamie M.; LaMarca, Mary E.; Sidransky, Ellen

    2003-01-01

    Gaucher disease results from an autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase. The glucocerebrosidase gene is located in a gene-rich region of 1q21 that contains six genes and two pseudogenes within 75 kb. The presence of contiguous, highly homologous pseudogenes for both glucocerebrosidase and metaxin at the locus increases the likelihood of DNA rearrangements in this region. These recombinations can complicate genotyping in patients with Gaucher disease and contribute to the difficulty in interpreting genotype-phenotype correlations in this disorder. In the present study, DNA samples from 240 patients with Gaucher disease were examined using several complementary approaches to identify and characterize recombinant alleles, including direct sequencing, long-template polymerase chain reaction, polymorphic microsatellite repeats, and Southern blots. Among the 480 alleles studied, 59 recombinant alleles were identified, including 34 gene conversions, 18 fusions, and 7 downstream duplications. Twenty-two percent of the patients evaluated had at least one recombinant allele. Twenty-six recombinant alleles were found among 310 alleles from patients with type 1 disease, 18 among 74 alleles from patients with type 2 disease, and 15 among 96 alleles from patients with type 3 disease. Several patients carried two recombinations or mutations on the same allele. Generally, alleles resulting from nonreciprocal recombination (gene conversion) could be distinguished from those arising by reciprocal recombination (crossover and exchange), and the length of the converted sequence was determined. Homozygosity for a recombinant allele was associated with early lethality. Ten different sites of crossover and a shared pentamer motif sequence (CACCA) that could be a hotspot for recombination were identified. These findings contribute to a better understanding of genotype-phenotype relationships in Gaucher disease and may provide insights into the mechanisms

  20. Antibody study in canine distemper virus nucleocapsid protein gene-immunized mice.

    PubMed

    Yuan, B; Li, X Y; Zhu, T; Yuan, L; Hu, J P; Chen, J; Gao, W; Ren, W Z

    2015-01-01

    The gene for the nucleocapsid (N) protein of canine distemper virus was cloned into the pMD-18T vector, and positive recombinant plasmids were obtained by enzyme digestion and sequencing. After digestion by both EcoRI and KpnI, the plasmid was directionally cloned into the eukaryotic expression vector pcDNA; the positive clone pcDNA-N was screened by electrophoresis and then transfected into COS-7 cells. Immunofluorescence analysis results showed that the canine distemper virus N protein was expressed in the cytoplasm of transfected COS-7 cells. After emulsification in Freund's adjuvant, the recombinant plasmid pcDNA-N was injected into the abdominal cavity of 8-week-old BABL/c mice, with the pcDNA original vector used as a negative control. Mice were immunized 3 times every 2 weeks. The blood of immunized mice was drawn 2 weeks after completing the immunizations to measure titer levels. The antibody titer in the pcDNA-N test was 10(1.62 ± 0.164), while in the control group this value was 10(0.52 ± 0.56), indicating that specific humoral immunity was induced in canine distemper virus nucleocapsid protein-immunized mice. PMID:25966074

  1. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

    PubMed Central

    Bartolini, Erika; Ianni, Elvira; Frigimelica, Elisabetta; Petracca, Roberto; Galli, Giuliano; Berlanda Scorza, Francesco; Norais, Nathalie; Laera, Donatello; Giusti, Fabiola; Pierleoni, Andrea; Donati, Manuela; Cevenini, Roberto; Finco, Oretta; Grandi, Guido; Grifantini, Renata

    2013-01-01

    Background Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform. PMID:24009891

  2. Simultaneous detection of antibodies to mouse hepatitis virus recombinant structural proteins by a microsphere-based multiplex fluorescence immunoassay.

    PubMed

    Kunita, Satoshi; Kato, Kanako; Ishida, Miyuki; Hagiwara, Kozue; Kameda, Shuko; Ishida, Tomoko; Takakura, Akira; Goto, Kazuo; Sugiyama, Fumihiro; Yagami, Ken-Ichi

    2011-05-01

    We describe a new microsphere-based multiplex fluorescent immunoassay (MFI) using recombinant mouse hepatitis virus (MHV) proteins to detect antibodies to coronaviruses in mouse and rat sera. All the recombinant proteins, including nucleocapsid (N) and 3 subunits of spike protein, S1, S2, and Smid, showed positive reactivity in MFI with mouse antisera to 4 MHV strains (MHV-S, -A59, -JHM, and -Nu67) and rat antiserum to a strain of sialodacryoadenitis virus (SDAV-681). The MFI was evaluated for its diagnostic power, with panels of mouse sera classified as positive or negative for anti-MHV antibodies by enzyme-linked immunosorbent assay (ELISA) using MHV virion antigen and indirect fluorescent antibody assay. The reactivities of 236 naturally infected mouse sera were examined; 227 samples were positive by MFI using S2 antigen (96% sensitivity), and 208 samples were positive using N antigen (88% sensitivity). Based on the assessment by MFI using the S2 and N antigens, only 3 serum samples showed double-negative results, indicating a false-negative rate of 1.3%. In 126 uninfected mouse sera, including 34 ELISA false-positive sera, only 7 samples showed false-positive results by MFI using either the S2 or N antigen (94% specificity). Similarly, the S2 and N antigen-based MFI was 98% sensitive and 100% specific in detecting anticoronavirus antibodies in rat sera. Thus, this MFI-based serologic assay using the S2 and N antigens promises to be a reliable diagnostic method, representing a highly sensitive and specific alternative to traditional ELISA for detection of coronavirus infections in laboratory mouse and rat colonies.

  3. Diversification of the Primary Antibody Repertoire by AID-Mediated Gene Conversion.

    PubMed

    Lanning, Dennis K; Knight, Katherine L

    2015-01-01

    Gene conversion, mediated by activation-induced cytidine deaminase (AID), has been found to contribute to generation of the primary antibody repertoire in several vertebrate species. Generation of the primary antibody repertoire by gene conversion of immunoglobulin (Ig) genes occurs primarily in gut-associated lymphoid tissues (GALT) and is best described in chicken and rabbit. Here, we discuss current knowledge of the mechanism of gene conversion as well as the contribution of the microbiota in promoting gene conversion of Ig genes. Finally, we propose that the antibody diversification strategy used in GALT species, such as chicken and rabbit, is conserved in a subset of human and mouse B cells.

  4. Evidence for trisulfide bonds in a recombinant variant of a human IgG2 monoclonal antibody.

    PubMed

    Pristatsky, Pavlo; Cohen, Steven L; Krantz, Debra; Acevedo, Jillian; Ionescu, Roxana; Vlasak, Josef

    2009-08-01

    The hinge region of human IgG2 contains four cysteine residues involved in disulfide linkages between the heavy chains, as well as the heavy and light chains. These linkages provide the fundamental framework of three distinct IgG2 disulfide isoforms recently described. Here, we detail another, disulfide-related post-translational modification in a recombinant variant of human IgG2. Heterogeneity associated with this antibody was separated into several fractions by anion-exchange chromatography (AEX), which is an important initial step that highlights the resolving power of surface charge-based HPLC techniques. Mass spectrometry of the intact antibody revealed weakly resolved discrete covalent additions of 25-35 Da in one of the two main AEX fractions. Digestion by endoproteinase Lys-C performed under nonreducing conditions, as well as tandem MS experiments, narrowed the modification to the peptide-containing disulfide-bridged hinge structure. High mass resolution and accuracy measurements of the peptide strongly suggested an addition of one or two S atoms. The modification could be eliminated by a mild reducing treatment of the intact antibody. Overall, these findings are consistent with the replacement of up to two disulfide bridges (S-S) with a like number of trisulfides (S-S-S) in the antibody hinge. The trisulfide modification is rather uncommon for proteins and its possible origins in the IgG2 variant are discussed.

  5. Recombinant N-Domain of Pregnancy-Specific Glycoprotein from E. coli Cells: Analysis of the Spectrum of Polyclonal Antibodies.

    PubMed

    Prokopenko, P G; Shkoporov, A N; Petrenko, O Yu; Efimov, B A; Negrebetskii, V V; Terent'ev, A A

    2015-11-01

    We studied antibody spectrum in antisera to IgG-like recombinant N-domain of pregnancyspecific glycoprotein-1 (rPSG-N) from E. coli cells. In three experimental series, the fraction of IgG antibodies from anti-rPSG-N sera was immobilized on 3 immunoadsorbents: by polymerization with glutaraldehyde, on glutaraldehyde activated biogel P-300, and on commercial CNBr-activated 4B sepharose. Retroplacental serum was incubated with immobilized antibodies to rPSG1-N, protein was eluted and tested in the precipitation test in standard test systems with PSG1, IgG, and human serum albumin. Three proteins were eluted from all 3 immunoadsorbents: PSG1, IgG, and human serum albumin, which demonstrated the spectrum of antibodies to 3 proteins present also in natural serum PSG1 complex. The proportions of PSG1 and IgG obtained in these experiments were similar to those in natural serum PSG1 complex, while the level of human serum albumin was significantly higher in natural PSG1 complex. Thus, we failed to obtain PSG1 monoprotein free from IgG and human serum albumin. Antigenic mosaicism of the polypeptide chain of IgG-like rPSG1-N relative to the antigenic polyvalence of the complex of three proteins present in bioactive preparation of natural serum PSG1 was discussed.

  6. Recombinant HT{sub m4} gene, protein and assays

    DOEpatents

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  7. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production.

    PubMed

    Noguchi, Chiemi; Araki, Yoshio; Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.

  8. Fusion of the Dhfr/Mtx and IR/MAR Gene Amplification Methods Produces a Rapid and Efficient Method for Stable Recombinant Protein Production

    PubMed Central

    Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone. PMID:23300841

  9. Use of in vivo biotinylated GST fusion proteins to select recombinant antibodies.

    PubMed

    Blanc, Cedric; Zufferey, Madeleine; Cosson, Pierre

    2014-01-01

    Over the last 20 years, continuous advances in the field of molecular biology have led to the development of new strategies to discover and produce monoclonal antibodies, notably by phage display.Here we describe a simple procedure for antibody selection that reduces considerably the undesired selection of non-specific antibodies, based on the use of biotinylated GST proteins fused to a target antigenic sequence. This procedure was tested on a collection of 7 different targets and resulted in the selection of a high percentage (71%) of antibodies specific for each target. This simple and effective in vitro procedure has a strong potential to replace animal immunization for the development of specific antibodies.

  10. Chimpanzees Immunized with Recombinant Soluble CD4 Develop Anti-Self CD4 Antibody Responses with Anti-Human Immunodeficiency Virus Activity

    NASA Astrophysics Data System (ADS)

    Watanabe, Mamoru; Boyson, Jonathan E.; Lord, Carol I.; Letvin, Norman L.

    1992-06-01

    In view of the efficiency with which human immunodeficiency virus replication can be blocked in vitro with anti-CD4 antibodies, the elicitation of an anti-CD4 antibody response through active immunization might represent a useful therapeutic strategy for AIDS. Here we demonstrate that immunization of chimpanzees with recombinant soluble human CD4 elicited an anti-CD4 antibody response. The elicited antibody bound self CD4 on digitonin-treated but not freshly isolated lymphocytes. Nevertheless, this antibody blocked human immunodeficiency virus replication in chimpanzee and human lymphocytes. These observations suggest that immunization with recombinant soluble CD4 from human immunodeficiency virus-infected humans may be feasible and therapeutically beneficial.

  11. Clustering of Drosophila melanogaster Immune Genes in Interplay with Recombination Rate

    PubMed Central

    Wegner, K. Mathias

    2008-01-01

    Background Gene order in eukaryotic chromosomes is not random and has been linked to coordination of gene expression, chromatin structure and also recombination rate. The evolution of recombination rate is especially relevant for genes involved in immunity because host-parasite co-evolution could select for increased recombination rate (Red Queen hypothesis). To identify patterns left by the intimate interaction between hosts and parasites, I analysed the genomic parameters of the immune genes from 24 gene families/groups of Drosophila melanogaster. Principal Findings Immune genes that directly interact with the pathogen (i.e. recognition and effector genes) clustered in regions of higher recombination rates. Out of these, clustered effector genes were transcribed fastest indicating that transcriptional control might be one major cause for cluster formation. The relative position of clusters to each other, on the other hand, cannot be explained by transcriptional control per se. Drosophila immune genes that show epistatic interactions can be found at an average distance of 15.44±2.98 cM, which is considerably closer than genes that do not interact (30.64±1.95 cM). Conclusions Epistatically interacting genes rarely belong to the same cluster, which supports recent models of optimal recombination rates between interacting genes in antagonistic host-parasite co-evolution. These patterns suggest that formation of local clusters might be a result of transcriptional control, but that in the condensed genome of D. melanogaster relative position of these clusters may be a result of selection for optimal rather than maximal recombination rates between these clusters. PMID:18665272

  12. Probing the human antibody repertoire to exogenous antigens: Characterization of the H and L chain V region gene segments from anti-hepatitis B virus antibodies

    SciTech Connect

    Andris, J.S.; Capra, J.D. ); Ehrlich, P.H.; Oestberg, L. )

    1992-12-15

    Structural studies of human antibody V regions have been largely limited to those involving the fetal repertoire, autoantibodies, and malignant cell rearrangements, leaving the normal' repertoire relatively unexplored. In this study the authors describe the nucleotide sequences of the H and L chain V regions of four antibodies specific for the surface Ag of the hepatitis B virus. Monoclonal cell lines were derived from healthy individuals who received standard immunizations with the serum-derived or recombinant hepatitis B virus vaccines by fusion of PBL to a heterohybridoma cell line, SPAZ-4. They utilized the polymerase chain reaction to aimplify the H and L chain V regions for cloning and sequencing. The four antibodies express the following V region combinations: V[sub H]III/V[lambda]V, V[sub H]III/V[kappa]II, V[sub H]IV/V[kappa]I, V[sub H]V/V[lambda]III. When compared to germline genes with the closest sequence homology, all of the V regions appear to have undergone somatic mutation, ranging from 3.4 to 11.3% for the H chain, and 5.1 to 9.2% for the L chain. Analysis of the mutations shows them to be typical for an Ag-driven immune response. 50 refs., 3 figs., 2 tabs.

  13. Production of monoclonal antibodies to porcine interleukin-18 and their use for immunoaffinity purification of recombinant porcine interleukin-18.

    PubMed

    Muneta, Y; Shimoji, Y; Yokomizo, Y; Mori, Y

    2000-03-01

    We have recently reported the cloning and expression of porcine interleukin-18 (IL-18). In this study, we describe the production of anti-porcine IL-18 monoclonal antibodies (mAb) and their use in the purification of a large amount of recombinant porcine IL-18 by immunoaffinity column chromatography. Five monoclonal antibodies (2-2-B, 2-5-B, 2-13-C, 3-1-C and 5-3-B) were established and characterized. Three (2-2-B, 3-1-C and 5-3-B) of them were of IgG1 subclass, and the other two were IgMs. Epitope analysis of the three IgG1 mAbs showed that they recognized the same epitope. All five mAbs demonstrated reactivity with baculovirus generated porcine IL-18 by immunoblot analysis. Biologically active porcine IL-18 was obtained by immunoaffinity chromatography using anti-porcine IL-18 mAb at more than 85% purity from culture supernatants of Trichoplusia ni (Tn5) derived cells infected with recombinant baculovirus containing the coding sequence of porcine mature IL-18. These results suggest that the anti-porcine IL-18 mAbs established in this study are useful for one-step purification of porcine mature IL-18 as well as the detection of porcine IL-18 by immunoblotting. PMID:10699583

  14. An enzyme-linked immunosorbent assay for detection of Theileria parva antibodies in cattle using a recombinant polymorphic immunodominant molecule.

    PubMed

    Katende, J; Morzaria, S; Toye, P; Skilton, R; Nene, V; Nkonge, C; Musoke, A

    1998-05-01

    Field and experimental bovine infection sera were used in immunoblots of sporozoite and schizont lysates of Theileria parva to identify candidate diagnostic antigens. Four parasite antigens of Mr 67,000 (p67), 85,000 (the polymorphic immunodominant molecule, PIM), 104,000 (p104), and 150,000 (p150) were selected for a more detailed analysis. The p67 and p104 antigens were present only in the sporozoite lysates, whereas PIM and p150 were found in both sporozoite and schizont lysates. The four antigens were expressed as recombinant fusion proteins and were compared with each other in an enzyme-linked immunosorbent assay (ELISA) and in the whole-schizont-based indirect fluorescent antibody test (IFAT) in terms of their ability to detect antibodies in sera of experimentally infected cattle. The PIM-based ELISA provided a higher degree of sensitivity and specificity than did the ELISA using the other three recombinant antigens or the IFAT. Further evaluation of the PIM-ELISA using experimental sera derived from cattle infected with different hemoparasites and field sera from endemic and nonendemic T. parva areas showed that the assay had a sensitivity of > 99% and a specificity of between 94% and 98%. PMID:9610640

  15. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation. PMID:26747642

  16. Construction and Characterization of an Infectious Vaccinia Virus Recombinant That Expresses the Influenza Hemagglutinin Gene and Induces Resistance to Influenza Virus Infection in Hamsters

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Murphy, Brian R.; Moss, Bernard

    1983-12-01

    A DNA copy of the influenza virus hemagglutinin gene, derived from influenza virus A/Jap/305/57 (H2N2) was inserted into the genome of vaccinia virus under the control of an early vaccinia virus promoter. Tissue culture cells infected with the purified recombinant virus synthesized influenza hemagglutinin, which was glycosylated and transported to the cell surface where it could be cleaved with trypsin into HA1 and HA2 subunits. Rabbits and hamsters inoculated intradermally with recombinant virus produced circulating antibodies that inhibited hemagglutination by influenza virus. Furthermore, vaccinated hamsters achieved levels of antibody similar to those obtained upon primary infection with influenza virus and were protected against respiratory infection with the A/Jap/305/57 influenza virus.

  17. Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's disease virus.

    PubMed

    Lee, Lucy E; Witter, R L; Reddy, S M; Wu, P; Yanagida, N; Yoshida, S

    2003-01-01

    Recombinant fowl poxviruses (rFPVs) were constructed to express genes from serotype 1 Marek's disease virus (MDV) coding for glycoproteins B, E, I, H, and UL32 (gB1, gE, gI, gH, and UL32). An additional rFPV was constructed to contain four MDV genes (gB1, gE, gI, and UL32). These rFPVs were evaluated for their ability to protect maternal antibody-positive chickens against challenge with highly virulent MDV isolates. The protection induced by a single rFPV/gB1 (42%) confirmed our previous finding. The protection induced by rFPV/gI (43%), rFPV/gB1UL32 (46%), rFPV/gB1gEgI (72%), and rFPV/gB1gEgIUL32 (70%) contributed to additional knowledge on MDV genes involved in protective immunity. In contrast, the rFPV containing gE, gH, or UL32 did not induce significant protection compared with turkey herpesvirus (HVT). Levels of protection by rFPV/gB1 and rFPV/gl were comparable with that of HVT. Only gB1 and gI conferred synergism in rFPV containing these two genes. Protection by both rFPV/gB1gEgI (72%) and rFPV/gB1gEgIUL32(70%) against Marek's disease was significantly enhanced compared with a single gB1 or gI gene (40%). This protective synergism between gB1 and gI in rFPVs may be the basis for better protection when bivalent vaccines between serotypes 2 and 3 were used. When rFPV/gB1gIgEUL32 + HVT were used as vaccine against Md5 challenge, the protection was significantly enhanced (94%). This synergism between rFPV/gB1gIgEUL32 and HVT indicates additional genes yet to be discovered in HVT may be responsible for the enhancement.

  18. Protection against herpes simplex virus infection in mice by recombinant murine interferon-beta in combination with antibody.

    PubMed

    Kumano, Y; Yamamoto, M; Mori, R

    1987-06-01

    A recombinant murine interferon -beta (rMuIFN-beta) was used to suppress the development of skin lesions and death of mice after challenge with herpes simplex virus (HSV) type 1 (HSV-1). Depilated female BALB/c mice were inoculated intradermally with HSV-1, Hayashida strain, and were administered various concentrations of interferon (IFN) intraperitoneally 3 h later. The treatment with IFN was given once a day for 10 successive days. Under the conditions in which almost all control mice died after development of severe zosteriform skin lesions, the mortality of mice treated with IFN (8 X 10(5) or 8 X 10(4) U/mouse) was less than 50% (9/20 and 4/10, respectively), though all mice treated with a lower dose of IFN (8 X 10(3) U/mouse) died. Titration revealed that there was no significant suppression of virus growth by IFN in the skin or dorsal root ganglia, but it was significantly suppressed in the brain. The protective effect of IFN was enhanced when it was used in combination with human anti-HSV antibody having a neutralizing titer (NT) of 1:16. All mice treated with IFN (8 X 10(5) U/mouse) and antibody (NT, 1:16) survived, and only 40% of them developed slight zosteriform skin lesions. The effect of the combination was observed even when both IFN and antibody were diluted 1:10. The protective effect of IFN was also observed when athymic nude mice were used as the host. In this system, though the IFN-treated nude mice survived significantly longer than the controls, they finally died. In antibody- or acyclovir (ACV)-treated nude mice, there was also a prolongation of survival time as compared with control mice. The effect of antibody was enhanced by the addition of IFN, but IFN did not potentiate the effect of ACV.

  19. Toxoplasma gondii: Recombinant GRA5 antigen for detection of immunoglobulin G antibodies using enzyme-linked immunosorbent assay.

    PubMed

    Holec-Gasior, Lucyna; Kur, Józef

    2010-03-01

    In this study, for the first time, the evaluation of Toxoplasma gondii full-length recombinant GRA5 antigen for the serodiagnosis of human toxoplasmosis is shown. The recombinant GRA5 antigen as a fusion protein containing His-tag at both terminals was obtained using an Escherichia coli expression system. The usefulness of rGRA5 for the diagnosis of toxoplasmosis in an ELISA was tested on a total of 189 sera from patients with different stages of the infection and 31 sera from sero-negative individuals, obtained during routine diagnostic tests. Anti-GRA5 IgG antibodies were detected in 70.9% of all seropositive serum samples. This result was comparable to ELISA using a Toxoplasma lysate antigen (TLA) and six combinations of recombinant antigens. The sensitivity of IgG ELISA calculated from all positive serum samples was similar for TLA (94.2%), rMAG1+rSAG1+rGRA5 (92.6%), rGRA2+rSAG1+rGRA5 (93.1%) and rROP1+rSAG1+rGRA5 (94.2%) cocktails, whereas the sensitivity of cocktails without rGRA5 antigens was lower giving 82.0%, 86.2% and 87.8%, respectively. Thus, the present study showed that the full-length rGRA5 is suitable for use as a component of an antigen cocktail for the detection of anti-T. gondii IgG antibodies.

  20. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  1. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese. PMID:26341925

  2. Construction and identification of recombinant adenovirus carrying human TIMP-1shRNA gene.

    PubMed

    Sun, Y L; Xie, H; Lin, H L; Feng, Q; Liu, Y

    2015-01-16

    The aim of this study was to construct the recombinant adenovirus carrying human TIMP-1shRNA gene expression system for preliminary identification to lay the foundation for the further study of gene therapy. Using the Adeno-X system, the recombinant adenovirus plasmid pAdeno-X green fluorescent protein (GFP)-tissue inhibitor of metalloprotease (TIMP)-1 small hairpin (1shRNA) was constructed by including the target gene fragment of the TIMP-1shRNA shuttle plasmid pShuttle2-GFP-TIMP-1shRNA and the backbone plasmid pAdeno-X by homologous recombination in Escherichia coli. Recombinant plasmids were transfected into HEK293A cells to package the recombinant adenovirus rvAdeno-XGFP-TIMP-1shRNA. The recombinant adenovirus was identified by polymerase chain reaction, and the viral titer and infection efficiency were detected using GFP. Polymerase chain reaction and restriction endonuclease digestion demonstrated that rvAdeno-XGFP-TIMP-1shRNA had been successfully constructed, which has a strong ability to infect the kidney. The TIMP-1shRNA adenovirus expression vector was successfully constructed using homologous recombination methods.

  3. [Preparation of recombinant serpins B3 and B4 and investigation of their specific interactions with antibodies using hydrogel-based microarrays].

    PubMed

    Butvilovskaya, V I; Tsybulskaya, M V; Tikhonov, A A; Talibov, V O; Belousov, P V; Sazykin, A Yu; Schwartz, A M; Putlyaeva, L V; Surzhikov, S A; Stomakhin, A A; Solopova, O N; Rubina, A Yu

    2015-01-01

    The objective of this work was to obtain preparations of recombinant squamous-cell carcinoma antigens (serpins B3 and B4) and to investigate their interactions with different monoclonal antibodies using hydrogel-based microarrays (biochips). Two genetic constructs encoding full-length serpin B3 and serpin B4 molecules were created to produce recombinant SPB3 and SPB4 proteins carrying a N-terminal His6-tag. Monoclonal antibodies against serpin B3 (H3, C5, H5, H81, and G9) were also obtained. An experimental gel-based biological microchip was designed to contain gel elements that carry immobilized antibodies against SPB3, immobilized commercial monoclonal SCC107 and SCC140 antibodies against squamous-cell carcinoma antigen (SCCA), and gel elements with immobilized SPB3 or SPB4. Judging by the specificity of recombinant SPB3 and SPB4, which bind to monoclonal antibodies against SCCA and, according to the manufacturer's data, can recognize conformational epitopes of both SPB3 and SPB4, it was concluded that the obtained recombinant serpins had the correct tertiary structure. A biochip-based direct immunoassay showed that SPB4 could bind effectively only to SCC107 and SCC140 antibodies, while SPB3 interacted specifically not only with these antibodies, but also with H3 and C5 monoclonal antibodies. Using biochip-based sandwich immunoassay, a pair of monoclonal antibodies SCC107/C5 that interacted specifically with serpin B3 but did not interact with serpin B4 was identified. Thus, it has been demonstrated that serpin B3 can be selectively determined in the presence of highly homologous serpin B4 using a biochip-based assay. PMID:26510597

  4. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  5. Host range selection of vaccinia recombinants containing insertions of foreign genes into non-coding sequences.

    PubMed

    Smith, K A; Stallard, V; Roos, J M; Hart, C; Cormier, N; Cohen, L K; Roberts, B E; Payne, L G

    1993-01-01

    A simple yet powerful selection system was developed for the insertion of foreign genes in vaccinia virus. The selection system utilizes the vaccinia virus K1L (29K) host range gene which is located in HindIII M. This gene is necessary for growth in RK-13 cells but not in BSC40 or CV-1 cells. A vaccinia mutant (vAbT33) unable to grow on RK-13 cells was constructed having sequences at the 3' end of the K1L gene and the adjacent M2L gene deleted and replaced with the beta-galactosidase gene regulated by the BamHI F (F7L) promoter. A recombination plasmid containing the hepatitis B surface (HBs) antigen gene regulated by the M2L promoter and the complete sequence of the K1L gene was used to insert the HBs gene into vAbT33. The M2L negative K1L positive recombinant was easily isolated in two rounds of plaque purification by plating the virus on RK-13 cell monolayers. The K1L gene selection system allows the isolation of recombinants arising at frequencies as low as 1/100,000. It was noted that recombinants containing vaccinia sequence duplications (promoters) resulted in intragenomic recombinations that eliminated all sequences between the duplications. A second recombination plasmid was constructed that allowed insertion into the vaccinia genome without the loss of vaccinia coding sequences. This was achieved by insertion of the pseudorabies virus GIII gene regulated by the vaccinia H5R (40K) promoter between the translation and transcription stop signals at the 3' end of the K1L gene. The K1L gene transcription stop signal thus became the stop signal for the inserted GIII gene and an upstream transcription stop signal present in the H5R promoter fragment provided the stop signal for the K1L gene. This manipulation of the vaccinia genome had no effect on the accumulation or 5' end of the M2L gene transcripts. Although the insertion lengthened the 3' end and lowered the accumulation of K1L transcripts it altered neither the virulence nor the immunogenicity of the

  6. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.

    PubMed

    Komatsubara, Akira T; Matsuda, Michiyuki; Aoki, Kazuhiro

    2015-01-01

    Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have been developed to visualize spatio-temporal dynamics of signalling molecules in living cells. Many of them adopt a backbone of intramolecular FRET biosensor with a cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as donor and acceptor, respectively. However, there remains the difficulty of establishing cells stably expressing FRET biosensors with a YFP and CFP pair by lentiviral or retroviral gene transfer, due to the high incidence of recombination between YFP and CFP genes. To address this, we examined the effects of codon-diversification of YFP on the recombination of FRET biosensors introduced by lentivirus or retrovirus. The YFP gene that was fully codon-optimized to E.coli evaded the recombination in lentiviral or retroviral gene transfer, but the partially codon-diversified YFP did not. Further, the length of spacer between YFP and CFP genes clearly affected recombination efficiency, suggesting that the intramolecular template switching occurred in the reverse-transcription process. The simple mathematical model reproduced the experimental data sufficiently, yielding a recombination rate of 0.002-0.005 per base. Together, these results show that the codon-diversified YFP is a useful tool for expressing FRET biosensors by lentiviral or retroviral gene transfer. PMID:26290434

  7. Positive correlation between evolutionary rate and recombination rate in Drosophila genes with male-biased expression.

    PubMed

    Zhang, Zhi; Parsch, John

    2005-10-01

    Previous studies have shown that genes that are expressed predominantly or exclusively in males tend to evolve rapidly in comparison to other genes. In most cases, however, it is unknown whether this rapid evolution is the result of increased positive (or sexual) selection on male-expressed traits or if it is due to a relaxation of selective constraints. To distinguish between these two possibilities, we analyzed the relationship between the nonsynonymous substitution rate (dN) and local recombination rate for 343 Drosophila genes that were classified as male, female, or nonsex biased in their expression. For the male-biased genes, a positive correlation between dN and recombination rate was observed. This can be explained by an increased rate of adaptive evolution in regions of higher recombination due to a reduction of Hill-Robertson interference. In contrast, the correlation between dN and recombination rate was negative for both female- and nonsex-biased genes, suggesting that these genes are primarily subject to purifying selection, which is expected to be less effective in regions of reduced recombination.

  8. Impact of karyotype organization on interlocus recombination between T cell receptor genes in Equidae.

    PubMed

    Drbalova, Jitka; Musilova, Petra; Kubickova, Svatava; Sebestova, Hana; Vahala, Jiri; Rubes, Jiri

    2014-01-01

    The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.

  9. In Vitro Neutralisation of Rotavirus Infection by Two Broadly Specific Recombinant Monovalent Llama-Derived Antibody Fragments

    PubMed Central

    Aladin, Farah; Einerhand, Alexandra W. C.; Bouma, Janneke; Bezemer, Sandra; Hermans, Pim; Wolvers, Danielle; Bellamy, Kate; Frenken, Leon G. J.; Gray, Jim; Iturriza-Gómara, Miren

    2012-01-01

    Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains. PMID:22403728

  10. Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines.

    PubMed

    Xu, Ping; Dai, Xiao-Ping; Graf, Erica; Martel, Richard; Russell, Reb

    2014-01-01

    A unique and nontraditional approach using glutamine and asparagine supplements for CHO-glutamine synthetase (GS) cell lines was studied. In our experiments, we found that a decrease in pH and an increase in cell death occurred in production phase of a GS cell line, leading to reduced antibody expression and lower antibody yields. The experimental results and the statistical analysis (ANOVA) indicated that additions of glutamine and asparagine in the basal and feed media were effective to buffer the cell culture pH, reduce lactate generation, maintain a higher cell viability profile, and improve antibody productivity. In bench-top bioreactors, glutamine and asparagine supplementation helped to prevent cell death, improve antibody yield, and reduce base usage. Glutamine is normally excluded from culture media for GS cell lines to prevent the bypass of selection pressure. In this study, however, the addition of glutamine did not affect cell population homogeneity, protein quality, or decrease antibody yield of two GS cell lines. PMID:25079388

  11. Recombinant antibodies for specific detection of clostridial [Fe-Fe] hydrogenases

    PubMed Central

    Mangayil, Rahul; Karp, Matti; Lamminmäki, Urpo; Santala, Ville

    2016-01-01

    Biological hydrogen production is based on activity of specific enzymes called hydrogenases. Hydrogenases are oxygen sensitive metalloenzymes containing Ni and/or Fe atoms at the active site, catalyzing reversible reduction of protons. Generally, [Fe-Fe] hydrogenases prefer proton reduction to molecular hydrogen, a potential energy carrier molecule that can be produced by bioprocesses in sustainable manner. Thus, monitoring tools have been developed to study the relationship between [Fe-Fe] hydrogenases and biohydrogen production in bioreactors at DNA and RNA levels. In the present study, novel molecular tools are introduced for quantitative monitoring of clostridial [Fe-Fe] hydrogenases at the protein level. Aerobic and anaerobic biopanning (for inactive and active [Fe-Fe] hydrogenase, respectively) of phage displayed single-chain variable fragment (scFv) antibody libraries aided in isolating nine potential scFvs. The enriched antibodies demonstrated high specificity towards Clostridium spp. [Fe-Fe] hydrogenases allowing detection from pure and mixed cultures. Additionally, the antibodies showed different binding characteristics towards hydrogenase catalytic states, providing a possible means for functional detection of clostridial [Fe-Fe] hydrogenases. From hydrogenase-antibody interaction studies we observed that though antibody binding reduced the enzyme catalytic activity, it facilitated to retain hydrogen evolution from oxygen exposed hydrogenases. PMID:27786270

  12. Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines.

    PubMed

    Xu, Ping; Dai, Xiao-Ping; Graf, Erica; Martel, Richard; Russell, Reb

    2014-01-01

    A unique and nontraditional approach using glutamine and asparagine supplements for CHO-glutamine synthetase (GS) cell lines was studied. In our experiments, we found that a decrease in pH and an increase in cell death occurred in production phase of a GS cell line, leading to reduced antibody expression and lower antibody yields. The experimental results and the statistical analysis (ANOVA) indicated that additions of glutamine and asparagine in the basal and feed media were effective to buffer the cell culture pH, reduce lactate generation, maintain a higher cell viability profile, and improve antibody productivity. In bench-top bioreactors, glutamine and asparagine supplementation helped to prevent cell death, improve antibody yield, and reduce base usage. Glutamine is normally excluded from culture media for GS cell lines to prevent the bypass of selection pressure. In this study, however, the addition of glutamine did not affect cell population homogeneity, protein quality, or decrease antibody yield of two GS cell lines.

  13. Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems.

    PubMed

    Pogue, Gregory P; Vojdani, Fakhrieh; Palmer, Kenneth E; Hiatt, Ernie; Hume, Steve; Phelps, Jim; Long, Lori; Bohorova, Natasha; Kim, Do; Pauly, Michael; Velasco, Jesus; Whaley, Kevin; Zeitlin, Larry; Garger, Stephen J; White, Earl; Bai, Yun; Haydon, Hugh; Bratcher, Barry

    2010-06-01

    Plants have been proposed as an attractive alternative for pharmaceutical protein production to current mammalian or microbial cell-based systems. Eukaryotic protein processing coupled with reduced production costs and low risk for mammalian pathogen contamination and other impurities have led many to predict that agricultural systems may offer the next wave for pharmaceutical product production. However, for this to become a reality, the quality of products produced at a relevant scale must equal or exceed the predetermined release criteria of identity, purity, potency and safety as required by pharmaceutical regulatory agencies. In this article, the ability of transient plant virus expression systems to produce a wide range of products at high purity and activity is reviewed. The production of different recombinant proteins is described along with comparisons with established standards, including high purity, specific activity and promising preclinical outcomes. Adaptation of transient plant virus systems to large-scale manufacturing formats required development of virus particle and Agrobacterium inoculation methods. One transient plant system case study illustrates the properties of greenhouse and field-produced recombinant aprotinin compared with an US Food and Drug Administration-approved pharmaceutical product and found them to be highly comparable in all properties evaluated. A second transient plant system case study demonstrates a fully functional monoclonal antibody conforming to release specifications. In conclusion, the production capacity of large quantities of recombinant protein offered by transient plant expression systems, coupled with robust downstream purification approaches, offers a promising solution to recombinant protein production that compares favourably to cell-based systems in scale, cost and quality.

  14. Detection of Antibodies to U.S. Isolates of Avian Pneumovirus by a Recombinant Nucleocapsid Protein-Based Sandwich Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Gulati, Baldev R.; Munir, Shirin; Patnayak, Devi P.; Goyal, Sagar M.; Kapur, Vivek

    2001-01-01

    The nucleocapsid (N) protein of subgroup C (United States-specific) avian pneumovirus (APV/US) was expressed in Escherichia coli, and antibodies to the recombinant N protein were shown to specifically recognize the ≈47-kDa N protein of APV/US by Western immunoblot analysis. The recombinant APV/US N protein was used in a sandwich-capture enzyme-linked immunosorbent assay (ELISA), and the resulting assay was found to be more sensitive and specific than the routine indirect ELISA for the detection of APV/US antibodies in turkey sera. PMID:11474024

  15. Pyelolithotomy in a patient with Glanzmann thrombasthenia and antiglycoprotein IIb/IIIa antibodies: the shortest possible duration of treatment with recombinant activated factor VII and platelet transfusions.

    PubMed

    Devecioğlu, Omer; Unüvar, Ayşegül; Anak, Sema; Bilge, Ilmay; Ander, Haluk; Ziylan, Orhan

    2003-01-01

    Transfusion of platelet concentrates remains the first-line therapy for Glanzmann thrombasthenia in case of bleeding or preparation for surgery. However, development of antibodies to platelet glycoprotein (Gp) IIb/IIIa complex or human leukocyte antigens (HLA) is frequent and the main cause of platelet refractoriness. Recombinant activated factor VII (rFVIIa) is a potent alternative for patients with Glanzmann thrombasthenia with anti-platelet antibodies. We describe a case of Glanzmann thrombasthenia with alloantibodies to platelet Gp IIb/IIIa complex who underwent a successful pyelolithotomy operation under the coverage of recombinant activated factor VIIa and platelet transfusions. PMID:12718376

  16. Construction of adenovirus vectors encoding the lumican gene by gateway recombinant cloning technology

    PubMed Central

    Wang, Gui-Fang; Qi, Bing; Tu, Lei-Lei; Liu, Lian; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2016-01-01

    AIM To construct adenovirus vectors of lumican gene by gateway recombinant cloning technology to further understand the role of lumican gene in myopia. METHODS Gateway recombinant cloning technology was used to construct adenovirus vectors. The wild-type (wt) and mutant (mut) forms of the lumican gene were synthesized and amplified by polymerase chain reaction (PCR). The lumican cDNA fragments were purified and ligated into the adenovirus shuttle vector pDown-multiple cloning site (MCS)-/internal ribozyme entry site (IRES)/enhanced green fluorescent protein (EGFP). Then the desired DNA fragments were integrated into the destination vector pAV.Des1d yielding the final expression constructs pAV.Ex1d-cytomegalovirus (CMV)>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES /EGFP, respectively. RESULTS The adenovirus plasmids pAV.Ex1d-CMV>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES/EGFP were successfully constructed by gateway recombinant cloning technology. Positive clones identified by PCR and sequencing were selected and packaged into recombinant adenovirus in HEK293 cells. CONCLUSION We construct adenovirus vectors containing the lumican gene by gateway recombinant cloning technology, which provides a basis for investigating the role of lumican gene in the pathogenesis of high myopia. PMID:27672590

  17. Construction of adenovirus vectors encoding the lumican gene by gateway recombinant cloning technology

    PubMed Central

    Wang, Gui-Fang; Qi, Bing; Tu, Lei-Lei; Liu, Lian; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2016-01-01

    AIM To construct adenovirus vectors of lumican gene by gateway recombinant cloning technology to further understand the role of lumican gene in myopia. METHODS Gateway recombinant cloning technology was used to construct adenovirus vectors. The wild-type (wt) and mutant (mut) forms of the lumican gene were synthesized and amplified by polymerase chain reaction (PCR). The lumican cDNA fragments were purified and ligated into the adenovirus shuttle vector pDown-multiple cloning site (MCS)-/internal ribozyme entry site (IRES)/enhanced green fluorescent protein (EGFP). Then the desired DNA fragments were integrated into the destination vector pAV.Des1d yielding the final expression constructs pAV.Ex1d-cytomegalovirus (CMV)>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES /EGFP, respectively. RESULTS The adenovirus plasmids pAV.Ex1d-CMV>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES/EGFP were successfully constructed by gateway recombinant cloning technology. Positive clones identified by PCR and sequencing were selected and packaged into recombinant adenovirus in HEK293 cells. CONCLUSION We construct adenovirus vectors containing the lumican gene by gateway recombinant cloning technology, which provides a basis for investigating the role of lumican gene in the pathogenesis of high myopia.

  18. Recombinant HPA-1a antibody therapy for treatment of fetomaternal alloimmune thrombocytopenia: proof of principle in human volunteers

    PubMed Central

    Herbert, Nina; Hawkins, Louise; Grehan, Nicola; Cookson, Philip; Garner, Steve F.; Crisp-Hihn, Abigail; Lloyd-Evans, Paul; Evans, Amanda; Balan, Kottekkattu; Ouwehand, Willem H.; Armour, Kathryn L.; Clark, Mike R.; Williamson, Lorna M.

    2013-01-01

    Fetomaternal alloimmune thrombocytopenia, caused by the maternal generation of antibodies against fetal human platelet antigen-1a (HPA-1a), can result in intracranial hemorrhage and intrauterine death. We have developed a therapeutic human recombinant high-affinity HPA-1a antibody (B2G1Δnab) that competes for binding to the HPA-1a epitope but carries a modified constant region that does not bind to Fcγ receptors. In vitro studies with a range of clinical anti–HPA-1a sera have shown that B2G1Δnab blocks monocyte chemiluminescence by >75%. In this first-in-man study, we demonstrate that HPA-1a1b autologous platelets (matching fetal phenotype) sensitized with B2G1Δnab have the same intravascular survival as unsensitized platelets (190 hours), while platelets sensitized with a destructive immunoglobulin G1 version of the antibody (B2G1) are cleared from the circulation in 2 hours. Mimicking the situation in fetuses receiving B2G1Δnab as therapy, we show that platelets sensitized with a combination of B2G1 (representing destructive HPA-1a antibody) and B2G1Δnab survive 3 times as long in circulation compared with platelets sensitized with B2G1 alone. This confirms the therapeutic potential of B2G1Δnab. The efficient clearance of platelets sensitized with B2G1 also opens up the opportunity to carry out studies of prophylaxis to prevent alloimmunization in HPA-1a–negative mothers. PMID:23656729

  19. Recombinant Gene Expression in vivo within Endothelial Cells of the Arterial Wall

    NASA Astrophysics Data System (ADS)

    Nabel, Elizabeth G.; Plautz, Gregory; Boyce, Frederick M.; Stanley, James C.; Nabel, Gary J.

    1989-06-01

    A technique for the transfer of endothelial cells and expression of recombinant genes in vivo could allow the introduction of proteins of therapeutic value in the management of cardiovascular diseases. Porcine endothelial cells expressing recombinant β -galactosidase from a murine amphotropic retroviral vector were introduced with a catheter into denuded iliofemoral arteries of syngeneic animals. Arterial segments explanted 2 to 4 weeks later contained endothelial cells expressing β -galactosidase, an indication that they were successfully implanted on the vessel wall.

  20. Identification of cellular genes critical to recombinant protein production using a Gaussia luciferase-based siRNA screening system.

    PubMed

    Lwa, Teng Rhui; Tan, Chuan Hao; Lew, Qiao Jing; Chu, Kai Ling; Tan, Janice; Lee, Yih Yean; Chao, Sheng-Hao

    2010-04-15

    Development of high-throughput functional genomic screening, including siRNA screening, provides a novel approach for quick identification of critical factors involved in biological processes. Here, we apply this strategy to search for cellular genes involved in recombinant protein production. Since most of biopharmaceutical proteins are secreted proteins, we develop a cell-based reporter assay using a secreted luciferase, Gaussia luciferase (Gluc), as the reporter. Human embryonic kidney 293 (HEK293) cells transiently transfected with the Gluc reporter plasmid are used to screen our siRNA panel. Three cellular genes, CCAAT/enhancer binding protein gamma (CEBPG), potassium channel tetramerisation domain containing 2 (KCTD2), transmembrane protein 183A (TMEM183A), were isolated from the screening. Production of erythropoietin (EPO) was significantly inhibited when CEBPG, KCTD2, and TMEM183A were knocked down. Furthermore, overexpression of CEBPG is shown to significantly improve production of recombinant EPO, interferon gamma, and monoclonal antibody in HEK293 and Chinese hamster ovary cells. Collectively, this novel Gluc-based siRNA screening system is proven to be a useful tool for investigation of secreted protein production in mammalian cells. PMID:20188772

  1. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer.

    PubMed

    Yin, Mingru; Jiang, Weihua; Fang, Zhenfu; Kong, Pengcheng; Xing, Fengying; Li, Yao; Chen, Xuejin; Li, Shangang

    2015-11-02

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT. Gene trap strategies were employed to enhance the gene targeting rates. The male and female gene knockout fibroblast cell lines were derived by different strategies. When male HPRT knockout cells were used for SCNT, no live rabbits were obtained. However, when female HPRT(+/-) cells were used for SCNT, live, healthy rabbits were generated. The cloned HPRT(+/-) rabbits were fertile at maturity. We demonstrate a new technique to produce gene-targeted rabbits. This approach may also be used in the genetic manipulation of different genes or in other species.

  2. A genome-wide identification of genes undergoing recombination and positive selection in Neisseria.

    PubMed

    Yu, Dong; Jin, Yuan; Yin, Zhiqiu; Ren, Hongguang; Zhou, Wei; Liang, Long; Yue, Junjie

    2014-01-01

    Currently, there is particular interest in the molecular mechanisms of adaptive evolution in bacteria. Neisseria is a genus of gram negative bacteria, and there has recently been considerable focus on its two human pathogenic species N. meningitidis and N. gonorrhoeae. Until now, no genome-wide studies have attempted to scan for the genes related to adaptive evolution. For this reason, we selected 18 Neisseria genomes (14 N. meningitidis, 3 N. gonorrhoeae and 1 commensal N. lactamics) to conduct a comparative genome analysis to obtain a comprehensive understanding of the roles of natural selection and homologous recombination throughout the history of adaptive evolution. Among the 1012 core orthologous genes, we identified 635 genes with recombination signals and 10 genes that showed significant evidence of positive selection. Further functional analyses revealed that no functional bias was found in the recombined genes. Positively selected genes are prone to DNA processing and iron uptake, which are essential for the fundamental life cycle. Overall, the results indicate that both recombination and positive selection play crucial roles in the adaptive evolution of Neisseria genomes. The positively selected genes and the corresponding amino acid sites provide us with valuable targets for further research into the detailed mechanisms of adaptive evolution in Neisseria.

  3. Extensive Recombination Due to Heteroduplexes Generates Large Amounts of Artificial Gene Fragments during PCR

    PubMed Central

    Liu, Jia; Song, Hongshuo; Liu, Donglai; Zuo, Tao; Lu, Fengmin; Zhuang, Hui; Gao, Feng

    2014-01-01

    Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35 genetically distinct HIV-1 genomes was affected by different PCR conditions using the parallel allele-specific sequencing (PASS) assay and the next generation sequencing method. In a standard PCR condition, about 40% of amplicons in a PCR reaction were recombinants. The high recombination frequency could be significantly reduced if the number of amplicons in a PCR reaction was below a threshold of 1013–1014 using low thermal cycles, fewer input templates, and longer extension time. Heteroduplexes (each DNA strand from a distinct template) were present at a large proportion in the PCR products when more thermal cycles, more templates, and shorter extension time were used. Importantly, the majority of recombinants were identified in heteroduplexes, indicating that the recombinants were mainly generated through heteroduplexes. Since prematurely terminated extension fragments can form heteroduplexes by annealing to different templates during PCR amplification, recombination has a better chance to occur with samples containing different genomes when the number of amplicons accumulate over the threshold. New technologies are warranted to accurately characterize complex quasispecies gene populations. PMID:25211143

  4. Selection of recombinant anti-SH3 domain antibodies by high-throughput phage display.

    PubMed

    Huang, Haiming; Economopoulos, Nicolas O; Liu, Bernard A; Uetrecht, Andrea; Gu, Jun; Jarvik, Nick; Nadeem, Vincent; Pawson, Tony; Moffat, Jason; Miersch, Shane; Sidhu, Sachdev S

    2015-11-01

    Antibodies are indispensable tools in biochemical research and play an expanding role as therapeutics. While hybridoma technology is the dominant method for antibody production, phage display is an emerging technology. Here, we developed and employed a high-throughput pipeline that enables selection of antibodies against hundreds of antigens in parallel. Binding selections using a phage-displayed synthetic antigen-binding fragment (Fab) library against 110 human SH3 domains yielded hundreds of Fabs targeting 58 antigens. Affinity assays demonstrated that representative Fabs bind tightly and specifically to their targets. Furthermore, we developed an efficient affinity maturation strategy adaptable to high-throughput, which increased affinity dramatically but did not compromise specificity. Finally, we tested Fabs in common cell biology applications and confirmed recognition of the full-length antigen in immunoprecipitation, immunoblotting and immunofluorescence assays. In summary, we have established a rapid and robust high-throughput methodology that can be applied to generate highly functional and renewable antibodies targeting protein domains on a proteome-wide scale.

  5. Augmentation of antibody dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin 2.

    PubMed

    Hank, J A; Robinson, R R; Surfus, J; Mueller, B M; Reisfeld, R A; Cheung, N K; Sondel, P M

    1990-09-01

    Monoclonal antibodies (mAB) with tumor specificity are able to enhance the immunological specificity of interleukin 2 (IL-2)-activated lymphokine activated killer (LAK) cells. Antibodies may also be used to broaden the range of tumor types susceptible to immune mediated cytotoxicity by the activated LAK cells. In these studies, mAB with relative tumor specificity were used to target immunologically activated effector cells in an in vitro antibody dependent cell mediated cytotoxicity (ADCC) assay. The mAB included: 3F8 and 14.G2a, which are both specific for neuroblastoma and melanoma and recognize ganglioside GD2, and mAB ING-1, a mouse-human chimeric antibody with constant regions from human IgG1 and kappa chains and variable regions from a mouse mAB that binds to a broad range of human adenocarcinomas. Each of these mAB was able to mediate ADCC with fresh effector cells and antibody binding targets. When peripheral blood mononuclear cells were obtained from cancer patients prior to and following in vivo therapy with interleukin 2, a significant increase was noted in ADCC activity by peripheral blood mononuclear cells obtained following IL-2 therapy. Inclusion of IL-2 in the medium during the cytotoxic assay with mAB further boosted ADCC. The total activity seen was often greater than the sum of the independent LAK activity and standard ADCC activity. The cells responsible for this ADCC had the CD16+ Fc receptor. Combining IL-2 with mAB in clinical tumor therapy may lead to a wider range of tumor types being responsive to immunotherapy and may also enhance the efficacy of therapy by specifically targeting activated effector cells to tumor cells recognized by mAB. Our results provide strong support for the testing of these hypotheses in clinical trials by combining in vivo treatment with IL-2 and mAB able to mediate ADCC.

  6. Targeting antibodies to the cytoplasm.

    PubMed

    Marschall, Andrea L J; Frenzel, André; Schirrmann, Thomas; Schüngel, Manuela; Dübel, Stefan

    2011-01-01

    A growing number of research consortia are now focused on generating antibodies and recombinant antibody fragments that target the human proteome. A particularly valuable application for these binding molecules would be their use inside a living cell, e.g., for imaging or functional intervention. Animal-derived antibodies must be brought into the cell through the membrane, whereas the availability of the antibody genes from phage display systems allows intracellular expression. Here, the various technologies to target intracellular proteins with antibodies are reviewed.

  7. Yeast-produced recombinant virus-like particles of coxsackievirus A6 elicited protective antibodies in mice.

    PubMed

    Zhou, Yu; Shen, Chaoyun; Zhang, Chao; Zhang, Wei; Wang, Lili; Lan, Ke; Liu, Qingwei; Huang, Zhong

    2016-08-01

    Coxsackievirus A6 (CA6) has recently emerged as the predominant pathogen of hand, foot and mouth disease (HFMD), causing significant morbidity in children and adults. The increasing prevalence of CA6 infection and its associated disease burden underscore the need for effective CA6 vaccines. However, CA6 grows poorly in cultured cells, making it difficult to develop inactivated whole-virus or live attenuated vaccines. Here we report the development of a recombinant virus-like particle (VLP) based CA6 vaccine. CA6 VLPs were produced in Pichia pastoris yeast transformed with a vector encoding both P1 and 3CD proteins of CA6. Immunization with CA6 VLPs elicited CA6-specific serum antibodies in mice. Passive transfer of anti-VLP antisera protected recipient mice against lethal CA6 challenge. Collectively, these results demonstrate that CA6 VLPs represent a viable CA6 vaccine candidate which warrants further preclinical and clinical development. PMID:27315772

  8. Liquid chromatography-fluorescence and liquid chromatography-mass spectrometry detection of tryptophan degradation products of a recombinant monoclonal antibody.

    PubMed

    Nowak, Christine; Ponniah, Gomathinayagam; Cheng, Guilong; Kita, Adriana; Neill, Alyssa; Kori, Yekaterina; Liu, Hongcheng

    2016-03-01

    Light exposure is one of several conditions used to study the degradation pathways of recombinant monoclonal antibodies. Tryptophan is of particular interest among the 20 amino acids because it is the most photosensitive. Tryptophan degradation forms several products, including an even stronger photosensitizer and several reactive oxygen species. The current study reports a specific peptide mapping procedure to monitor tryptophan degradation. Instead of monitoring peptides using UV 214 nm, fluorescence detection with an excitation wavelength of 295 nm and an emission wavelength of 350 nm was used to enable specific detection of tryptophan-containing peptides. Peaks that decreased in area over time are likely to contain susceptible tryptophan residues. This observation can allow further liquid chromatography-mass spectrometry (LC-MS) analysis to focus only on those peaks to confirm tryptophan degradation products. After confirmation of tryptophan degradation, susceptibility of tryptophan residues can be compared based on the peak area decrease. PMID:26717898

  9. Recombination between elongation factor 1α genes from distantly related archaeal lineages

    PubMed Central

    Inagaki, Yuji; Susko, Edward; Roger, Andrew J.

    2006-01-01

    Homologous recombination (HR) and lateral gene transfer are major processes in genome evolution. The combination of the two processes, HR between genes in different species, has been documented but is thought to be restricted to very similar sequences in relatively closely related organisms. Here we report two cases of interspecific HR in the gene encoding the core translational protein translation elongation factor 1α (EF-1α) between distantly related archaeal groups. Maximum-likelihood sliding window analyses indicate that a fragment of the EF-1α gene from the archaeal lineage represented by Methanopyrus kandleri was recombined into the orthologous gene in a common ancestor of the Thermococcales. A second recombination event appears to have occurred between the EF-1α gene of the genus Methanothermobacter and its ortholog in a common ancestor of the Methanosarcinales, a distantly related euryarchaeal lineage. These findings suggest that HR occurs across a much larger evolutionary distance than generally accepted and affects highly conserved essential “informational” genes. Although difficult to detect by standard whole-gene phylogenetic analyses, interspecific HR in highly conserved genes may occur at an appreciable frequency, potentially confounding deep phylogenetic inference and hypothesis testing. PMID:16537397

  10. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster.

    PubMed

    Nagy, Ervin D; Bennetzen, Jeffrey L

    2008-12-01

    The Pc locus of sorghum (Sorghum bicolor) determines dominant sensitivity to a host-selective toxin produced by the fungal pathogen Periconia circinata. The Pc region was cloned by a map-based approach and found to contain three tandemly repeated genes with the structures of nucleotide binding site-leucine-rich repeat (NBS-LRR) disease resistance genes. Thirteen independent Pc-to-pc mutations were analyzed, and each was found to remove all or part of the central gene of the threesome. Hence, this central gene is Pc. Most Pc-to-pc mutations were associated with unequal recombination. Eight recombination events were localized to different sites in a 560-bp region within the approximately 3.7-kb NBS-LRR genes. Because any unequal recombination located within the flanking NBS-LRR genes would have removed Pc, the clustering of cross-over events within a 560-bp segment indicates that a site-directed recombination process exists that specifically targets unequal events to generate LRR diversity in NBS-LRR loci.

  11. Selection, Recombination, and Virulence Gene Diversity among Group B Streptococcal Genotypes▿ †

    PubMed Central

    Springman, A. Cody; Lacher, David W.; Wu, Guangxi; Milton, Nicole; Whittam, Thomas S.; Davies, H. Dele; Manning, Shannon D.

    2009-01-01

    Transmission of group B Streptococcus (GBS) from mothers to neonates during childbirth is a leading cause of neonatal sepsis and meningitis. Although subtyping tools have identified specific GBS phylogenetic lineages that are important in neonatal disease, little is known about the genetic diversity of these lineages or the roles that recombination and selection play in the generation of emergent genotypes. Here, we examined genetic variation, selection, and recombination in seven multilocus sequence typing (MLST) loci from 94 invasive, colonizing, and bovine strains representing 38 GBS sequence types and performed DNA sequencing and PCR-based restriction fragment length polymorphism analysis of several putative virulence genes to identify gene content differences between genotypes. Despite the low level of diversity in the MLST loci, a neighbor net analysis revealed a variable range of genetic exchange among the seven clonal complexes (CCs) identified, suggesting that recombination is partly responsible for the diversity observed between genotypes. Recombination is also important for several virulence genes, as some gene alleles had evidence for lateral gene exchange across divergent genotypes. The CC-17 lineage, which is associated with neonatal disease, is relatively homogeneous and therefore appears to have diverged independently with an exclusive set of virulence characteristics. These data suggest that different GBS genetic backgrounds have distinct virulence gene profiles that may be important for disease pathogenesis. Such profiles could be used as markers for the rapid detection of strains with an increased propensity to cause neonatal disease and may be considered useful vaccine targets. PMID:19581371

  12. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    NASA Astrophysics Data System (ADS)

    Golubnitchaya-Labudová, O.; Portele, A.; Vaçata, V.; Lubec, G.; Rink, H.; Höfer, M.

    1997-10-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating domains in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the insert of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9.

  13. Recombinant antibodies in the immunotherapy of neuroblastoma: perspectives of new developments.

    PubMed

    Bestagno, Marco; Occhino, Marzia; Corrias, Maria Valeria; Burrone, Oscar; Pistoia, Vito

    2003-07-18

    The impact of monoclonal antibodies (mAbs) in the treatment of human tumors has greatly increased in recent years. mAb engineering has allowed reducing the immunogenicity of therapeutic antibodies as well as improving their biodistribution. Furthermore, engineered mAbs have been used to vehiculate toxins, drugs and other anti-neoplastic agents to the tumor site. In the case of neuroblastoma (NB), a pediatric malignancy originating from the neural crest, both murine and chimeric antibodies against the tumor associated antigen GD2 have been tested in clinical trials, either alone or in combination with cytokines. A novel promising approach to mAb engineering is the small immuno-protein (SIP) technique, whereby the variable regions of heavy and light chains of a mAb with a given specificity are connected to the dimerizing CH(3) domain of an immunoglobulin molecule. The current status of mAb therapy for NB is discussed together with our preliminary results on the generation of novel anti-GD2 molecules using the SIP technique.

  14. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process.

    PubMed

    Luo, Ying; Pierce, Karisa M

    2012-07-01

    Plant-derived hydrolysates are widely used in mammalian cell culture media to increase yields of recombinant proteins and monoclonal antibodies (mAbs). However, these chemically varied and undefined raw materials can have negative impact on yield and/or product quality in large-scale cell culture processes. Traditional methods that rely on fractionation of hydrolysates yielded little success in improving hydrolysate quality. We took a holistic approach to develop an efficient and reliable method to screen intact soy hydrolysate lots for commercial recombinant mAb manufacturing. Combined high-resolution (1) H nuclear magnetic resonance (NMR) spectroscopy and partial least squares (PLS) analysis led to a prediction model between product titer and NMR fingerprinting of soy hydrolysate with cross-validated correlation coefficient R(2) of 0.87 and root-mean-squared-error of cross-validation RMSECV% of 11.2%. This approach screens for high performance hydrolysate lots, therefore ensuring process consistency and product quality in the mAb manufacturing process. Furthermore, PLS analysis was successful in discerning multiple markers (DL-lactate, soy saccharides, citrate and succinate) among hydrolysate components that positively and negatively correlate with titer. Interestingly, these markers correlate to the metabolic characteristics of some strains of taxonomically diverse lactic acid bacteria (LAB). Thus our findings indicate that LAB strains may exist during hydrolysate manufacturing steps and their biochemical activities may attribute to the titer enhancement effect of soy hydrolysates. PMID:22641483

  15. Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody.

    PubMed

    Spain, Elaine; Gilgunn, Sarah; Sharma, Shikha; Adamson, Kellie; Carthy, Eadaoin; O'Kennedy, Richard; Forster, Robert J

    2016-03-15

    Highly sensitive and label free detection of prostate specific antigen (PSA) still remains a challenge in prostate cancer diagnosis. In this paper, we propose a sensitive electrochemical immunosensor based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Gold disc electrodes functionalised with a l-Cysteine (Cys) self-assembled monolayer (SAM) were used to covalently bind PSA specific monoclonal antibody (anti-PSA) using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) chemistry. Immunosensing was completed using sandwich-type immunoreaction of the PSA-antigen (1-30 ng/mL) between anti-PSA immobilized on the l-Cys modified electrode using label free electrochemical impedance (EIS) technique. Furthermore, highly specific in-house generated scFv fragments as receptor proteins were utilised for one step site-directed immobilisation on the surface of platinum nanoparticles (PtNPs). To improve the sensitivity of the immunoassay, these scFV labelled electrocatalytic PtNPs were then used for covalent hybridisation to the PSA modified electrode and then applied in a hybridisation assay to determine the concentration of the PSA by measuring the faradaic current associated with reduction of peroxide in solution. Semi-log plots of the PSA concentration vs. faradaic current are linear from 1 to 30 ng/mL and pM concentrations can be detected without the need for molecular, e.g., PCR or NASBA, amplification. PMID:26513282

  16. An indirect ELISA for detection of Theileria spp. antibodies using a recombinant protein (rTlSP) from Theileria luwenshuni.

    PubMed

    He, Haining; Li, Youquan; Liu, Junlong; Liu, Zhijie; Yang, Jifei; Liu, Aihong; Chen, Ze; Ren, Qiaoyun; Guan, Guiquan; Liu, Guangyuan; Luo, Jianxun; Yin, Hong

    2016-07-01

    Theileria is a tick-borne, intracellular protozoan parasite of worldwide economic and veterinary importance in small ruminants. Here, an enzyme-linked immunosorbent assay (ELISA) was developed based on Theileria luwenshuni recombinant surface protein (rTlSP) and was used in the standardization and validation of an ELISA for the detection of circulating antibodies against ovine and caprine theileriosis. A total of 233 sera samples were used for the calculation of the cut-off value which served as a threshold between the positive and the negative sera. When the positive threshold was chosen as 19% of the specific mean antibody rate, the specificity was 97.9%, and the sensitivity was 97.1%. There was a cross-reaction with sera against Theileria uilenbergi and Theileria ovis, and no cross-reaction with sera against Babesia spp. in the ELISA and Western blotting. Two hundred forty samples collected from sheep in Gansu province were detected with blood smears and ELISA, respectively. The results showed that the positive rate of Theileria infection in Gansu province were 63.75% with rTlSP-ELISA, and 46.67% with blood smears, respectively. Our test proved that the rTlSP ELISA is suitable to diagnose Theileria infection and could be used in serological surveys to map out the prevalence of ovine and caprine theileriosis. PMID:27048941

  17. Selective Blockade of Trypanosomatid Protein Synthesis by a Recombinant Antibody Anti-Trypanosoma cruzi P2β Protein

    PubMed Central

    Simonetti, Leandro; Duffy, Tomas; Longhi, Silvia A.; Gómez, Karina A.; Hoebeke, Johan; Levin, Mariano J.; Smulski, Cristian R.

    2012-01-01

    The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope. PMID:22570698

  18. A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus.

    PubMed

    Su, Mingjun; Li, Chunqiu; Guo, Donghua; Wei, Shan; Wang, Xinyu; Geng, Yufei; Yao, Shuang; Gao, Jing; Wang, Enyu; Zhao, Xiwen; Wang, Zhihui; Wang, Jianfa; Wu, Rui; Feng, Li; Sun, Dongbo

    2016-05-01

    Recently, porcine deltacoronavirus (PDCoV) has been proven to be associated with enteric disease in piglets. Diagnostic tools for serological surveys of PDCoV remain in the developmental stage when compared with those for other porcine coronaviruses. In our study, an indirect enzyme-linked immunosorbent assay (ELISA) (rPDCoV-N-ELISA) was developed to detect antibodies against PDCoV using a histidine-tagged recombinant nucleocapsid (N) protein as an antigen. The rPDCoV-N-ELISA did not cross-react with antisera against porcine epidemic diarrhea virus, swine transmissible gastroenteritis virus, porcine group A rotavirus, classical swine fever virus, porcine circovirus-2, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus; the receiver operating characteristic (ROC) curve analysis revealed 100% sensitivity and 90.4% specificity of the rPDCoV-N-ELISA based on samples of known status (n=62). Analyses of field samples (n=319) using the rPDCoV-N-ELISA indicated that 11.59% of samples were positive for antibodies against PDCoV. These data demonstrated that the rPDCoV-N-ELISA can be used for epidemiological investigations of PDCoV and that PDCoV had a low serum prevalence in pig population in Heilongjiang province, northeast China. PMID:26668175

  19. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  20. Immunoblot Assay Using Recombinant Antigens as a Supplemental Test To Confirm the Presence of Antibodies to Trypanosoma cruzi▿

    PubMed Central

    Cheng, Kevin Y.; Chang, Chi-Deu; Salbilla, Vince A.; Kirchhoff, Louis V.; Leiby, David A.; Schochetman, Gerald; Shah, Dinesh O.

    2007-01-01

    The diagnosis of chronic Chagas' disease is generally made by detecting antibodies to Trypanosoma cruzi. Most conventional serological tests are based on lysates of whole parasites or semipurified antigen fractions from T. cruzi epimastigotes grown in culture. The occurrence of inconclusive and false-positive results has been a persistent problem with the conventional assays, and there is no universally accepted gold standard for confirmation of positive test results. We describe here an immunoblot assay for detecting antibodies to T. cruzi in which four chimeric recombinant antigens (rAgs), designated FP3, FP6, FP10, and TcF, are used as target antigens. Each of these rAgs is composed of several antigenically distinct regions and includes repetitive as well as nonrepetitive sequences. Each rAg is coated as a discrete line on a nitrocellulose strip. Assay sensitivity was assessed by testing 345 specimens known to be positive for antibodies to T. cruzi. All 345 of these samples showed two to four reactive test bands in addition to the three on-board control bands that are on each strip. Assay specificity was determined by testing 500 specimens from random U.S. blood donors, all of which gave negative results. Based on the results obtained in this study, we propose the following scheme for interpretation of test results: (i) no bands or a single test band = a negative result; (ii) two or more test bands with at least one band showing intensity of 1+ or higher = a positive result; and (iii) multiple faint test bands (±) = indeterminate result. Based on this scheme, the prototype immunoblot assay showed sensitivity of 100% (n = 345) and specificity of 100% (n = 500). Additionally, all 269 potentially cross-reacting and T. cruzi antibody-negative specimens tested negative in our immunoblot assay. The rAg-based immunoblot assay has potential as a supplemental test for confirming the presence of antibodies to T. cruzi in blood specimens and for identifying false

  1. Intranasal immunization of mice with recombinant Streptococcus gordonii expressing NadA of Neisseria meningitidis induces systemic bactericidal antibodies and local IgA.

    PubMed

    Ciabattini, Annalisa; Giomarelli, Barbara; Parigi, Riccardo; Chiavolini, Damiana; Pettini, Elena; Aricò, Beatrice; Giuliani, Marzia M; Santini, Laura; Medaglini, Donata; Pozzi, Gianni

    2008-08-01

    NadA and NhhA, two surface proteins of serogroup B Neisseria meningitidis identified as candidate vaccine antigens, were expressed on the surface of the human oral commensal bacterium Streptococcus gordonii. Recombinant strains were used to immunize BALB/c mice by the intranasal route and the local and systemic immune response was assessed. Mice were inoculated with recombinant bacteria administered alone or with LTR72, a partially inactivated mutant of Escherichia coli heat-labile enterotoxin, as a mucosal adjuvant. Intranasal immunization with live bacteria expressing NadA induced a significant serum antibody response, with a prevalence of the IgG2a subclass, bactericidal activity in the sera of 71% of animals, and a NadA-specific IgA response in nasal and bronchoalveolar lavages. A formalin-inactivated recombinant strain of S. gordonii expressing NadA was also administered intranasally, inducing a systemic and mucosal humoral response comparable to that of live bacteria. The administration of recombinant bacteria with the mucosal adjuvant LTR72 stimulated a stronger systemic antibody response, protective in 85% of sera, while did not increase the local IgA response. Recombinant S. gordonii expressing NhhA induced a systemic but not mucosal antibody response. These data support the role of NadA as vaccine candidate against serogroup B meningococci, and the use of S. gordonii as vector for intranasal vaccination.

  2. Recombinant IL-21 and anti-CD4 antibodies cooperate in syngeneic neuroblastoma immunotherapy and mediate long-lasting immunity.

    PubMed

    Rigo, Valentina; Corrias, Maria Valeria; Orengo, Anna Maria; Brizzolara, Antonella; Emionite, Laura; Fenoglio, Daniela; Filaci, Gilberto; Croce, Michela; Ferrini, Silvano

    2014-05-01

    IL-21 is an immune-enhancing cytokine, which showed promising results in cancer immunotherapy. We previously observed that the administration of anti-CD4 cell-depleting antibody strongly enhanced the anti-tumor effects of an IL-21-engineered neuroblastoma (NB) cell vaccine. Here, we studied the therapeutic effects of a combination of recombinant (r) IL-21 and anti-CD4 monoclonal antibodies (mAb) in a syngeneic model of disseminated NB. Subcutaneous rIL-21 therapy at 0.5 or 1 μg/dose (at days 2, 6, 9, 13 and 15 after NB induction) had a limited effect on NB development. However, coadministration of rIL-21 at the two dose levels and a cell-depleting anti-CD4 mAb cured 28 and 70 % of mice, respectively. Combined immunotherapy was also effective if started 7 days after NB implant, resulting in a 30 % cure rate. Anti-CD4 antibody treatment efficiently depleted CD4(+) CD25(high) Treg cells, but alone had limited impact on NB. Combination immunotherapy by anti-CD4 mAb and rIL-21 induced a CD8(+) cytotoxic T lymphocyte response, which resulted in tumor eradication and long-lasting immunity. CD4(+) T cells, which re-populated mice after combination immunotherapy, were required for immunity to NB antigens as indicated by CD4(+) T cell depletion and re-challenge experiments. In conclusion, these data support a role for regulatory CD4(+) T cells in a syngeneic NB model and suggest that rIL-21 combined with CD4(+) T cell depletion reprograms CD4(+) T cells from immune regulatory to anti-tumor functions. These observations open new perspectives for the use of IL-21-based immunotherapy in conjunction with transient CD4(+) T cell depletion, in human metastatic NB.

  3. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    PubMed

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium.

  4. Immunoglobulin Heavy Chain Variable Region and Major Histocompatibility Region Genes Are Linked to Induced Graves' Disease in Females From Two Very Large Families of Recombinant Inbred Mice

    PubMed Central

    Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil

    2014-01-01

    Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451

  5. Does lack of recombination enhance asymmetric evolution among duplicate genes? Insights from the Drosophila melanogaster genome.

    PubMed

    Clément, Yves; Tavares, Raquel; Marais, Gabriel A B

    2006-12-30

    Gene duplication has different outcomes: pseudogenization (death of one of the two copies), gene amplification (both copies remain the same), sub-functionalization (both copies are required to perform the ancestral function) and neo-functionalization (one copy acquires a new function). Asymmetric evolution (one copy evolves faster than the other) is usually seen as a signature of neo-functionalization. However, it has been proposed that sub-functionalization could also generate asymmetric evolution among duplicate genes when they experience different local recombination rates. Indeed, the low recombination copy is expected to evolve faster because of Hill-Robertson effects. Here we tested this idea with about 100 pairs of young duplicates from the Drosophila melanogaster genome. Looking only at young duplicates allowed us to compare recombination rates and evolutionary rates on a similar time-scale contrary to previous work. We found that dispersed pairs tend to evolve more asymmetrically than tandem ones. Among dispersed copies, the low recombination copy tends to be the fast-evolving one. We also tested the possibility that all this was explained by a confounding factor (expression level) but found no evidence for it. In conclusion, our results do support the idea that asymmetric evolution among duplicates is enhanced by restricted recombination. However, further work is needed to clearly distinguish between sub-functionalization and neo-functionalization for the asymmetrically-evolving duplicate pairs that we found.

  6. Direct evidence of recombination in the recA gene of Aeromonas bestiarum.

    PubMed

    Sanglas, Ariadna; Albarral, Vicenta; Farfán, Maribel; Lorén, J Gaspar; Fusté, M Carmen

    2016-03-01

    Two hundred and twenty-one strains representative of all Aeromonas species were characterized using the recA gene sequence, assessing its potential as a molecular marker for the genus Aeromonas. The inter-species distance values obtained demonstrated that recA has a high discriminatory power. Phylogenetic analysis, based on full-length gene nucleotide sequences, revealed a robust topology with clearly separated clusters for each species. The maximum likelihood tree showed the Aeromonas bestiarum strains in a well-defined cluster, containing a subset of four strains of different geographical origins in a deep internal branch. Data analysis provided strong evidence of recombination at the end of the recA sequences in these four strains. Intergenomic recombination corresponding to partial regions of the two adjacent genes recA and recX (248 bp) was identified between A. bestiarum (major parent) and Aeromonas eucrenophila (minor parent). The low number of recombinant strains detected (1.8%) suggests that horizontal flow between recA sequences is relatively uncommon in this genus. Moreover, only a few nucleotide differences were detected among these fragments, indicating that recombination has occurred recently. Finally, we also determined if the recombinant fragment could have influenced the structure and basic functions of the RecA protein, comparing models reconstructed from the translated amino acid sequences of our A. bestiarum strains with known Escherichia coli RecA structures.

  7. Competitive ELISA for detection of antibodies to porcine reproductive and respiratory syndrome virus using recombinant E. coli-expressed nucleocapsid protein as antigen.

    PubMed

    Dea, S; Wilson, L; Therrien, D; Cornaglia, E

    2000-06-01

    The 15 kDa nucleocapsid (N) protein is the most abundant protein of the porcine reproductive and respiratory syndrome virus (PRRSV), and is highly antigenic, which therefore makes it a suitable candidate for the detection of virus-specific antibodies and diagnosis of the disease. In this study, complementary DNA corresponding to the entire N gene of the IAF-Klop strain of PRRSV was cloned into the pGEX-4T-1 vector, and the N protein was expressed in Escherichia coli fused to the glutathione S-transferase (GST) protein. The resulting GST-N recombinant fusion protein was purified by affinity chromatography and used as antigen for serological testing by indirect enzyme-linked immunosorbent assay (ELISA). Two anti-N specific monoclonal antibodies (MAbs) (IAF-K8 and IAF-2B4), obtained following fusion experiments with spleen cells of BAlb/c mice that were immunized with the purified virus, were used in a competitive assay to increase the specificity of the ELISA. Both MAbs were found to be directed against highly conserved conformational epitopes of North American isolates of PRRSV. Optimal concentration of GST-N protein was determined by checkerboard titration, using hyperimmune pig antiserum to the homologous PRRSV strain, and corresponded to a range of 0.1-0.5 microg protein per well. When tested on 95 sera from pigs that were experimentally infected with the IAF-Klop strain, the competitive ELISA (K8-ELISA) was capable of detecting anti-PRRSV antibodies in 86.7% (65/75) and 92.6% (63/68) of pig sera known to be seropositive by indirect immunofluorescence (antibody titers >16) and a currently used commercial ELISA (HerdCheck(R); Idexx), with specificity values of 100 and 96.2%, respectively. When tested on clinical samples (542 sera) from 28 positive and 28 negative pig herds, the K8-ELISA performed in a similar way to HerdCheck(R) and immunofluorescence (IF) tests as shown by kappa values of 0.762 and 0.803. The sensitivity and specificity of K8-ELISA were 100% on a

  8. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    SciTech Connect

    Gong, Y.; Li, X.M.; Shapiro, L.J.

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  9. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes

    PubMed Central

    Serra-Moreno, Ruth; Acosta, Sandra; Hernalsteens, Jean Pierre; Jofre, Juan; Muniesa, Maite

    2006-01-01

    Background The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in E. coli K-12 through homologous recombination using linear PCR products. The aim of this study was to induce mutations in the genome of some temperate Shiga toxin encoding bacteriophages. When phage genes are in the prophage state, they behave like chromosomal genes. This enables marker genes, such as antibiotic resistance genes, to be incorporated into the stx gene. Once the phages' lytic cycle is activated, recombinant Shiga toxin converting phages are produced. These phages can transfer the marker genes to the bacteria that they infect and convert. As the Red system's effectiveness decreased when used for our purposes, we had to introduce significant variations to the original method. These modifications included: confirming the stability of the target stx gene increasing the number of cells to be transformed and using a three-step PCR method to produce the amplimer containing the antibiotic resistance gene. Results Seven phages carrying two different antibiotic resistance genes were derived from phages that are directly involved in the pathogenesis of Shiga toxin-producing strains, using this modified protocol. Conclusion This approach facilitates exploration of the transduction processes and is a valuable tool for studying phage-mediated horizontal gene transfer. PMID:16984631

  10. Production of pseudorabies virus recombinant glycoprotein B and its use in an agar gel immunodiffusion (AGID) test for detection of antibodies with sensitivity and specificity equal to the virus neutralization assay.

    PubMed

    Serena, María Soledad; Geisler, Christoph; Metz, Germán Ernesto; Mórtola, Eduardo Carlos; Echeverría, María Gabriela

    2016-04-01

    Pseudorabies virus (PrV) causes Aujeszky's disease (AD), which affects mainly swine, but also cattle, sheep, and wild animals, resulting in substantial economic losses due to animal mortality and lost productivity worldwide. To combat PrV, eradication programs using PrV strains lacking the gene encoding glycoprotein E (gE) are ongoing in several countries. These eradication programs have generated a currently unmet demand for affordable, easy-to-use, and sensitive tests that can detect PrV infection in pigs infected with either wild-type virus or vaccine strain (gE-deleted) virus. To meet this demand, we used the baculovirus-insect cell system to produce recombinant glycoprotein B (gB) as antigen for an immune assay. The high GC-content (70% average) of the gB gene from the Argentinian PrV CL15 strain necessitated the use of betaine as a PCR enhancer to amplify the extracellular domain. Recombinant gB was expressed at high levels and reacted strongly with sera from PrV infected pigs. We used the recombinant gB to develop an agar gel immunodiffusion (AGID) test for detection of PrV antibodies. Compared to the gold standard virus neutralization (VN) assay, the AGID sensitivity and specificity were 95% and 96.6% respectively. Thus, recombinant gB produced in the baculovirus-insect cell system is a viable source of antigen for the detection of PrV antibodies in AGID tests. Considering its relatively lower cost, simplicity of use and result interpretation, our AGID is a valuable alternative tool to the VN assay. PMID:26800775

  11. Sensitive recovery of recombinant antibody clones after their in silico identification within NGS datasets.

    PubMed

    Spiliotopoulos, Anastasios; Owen, Jonathan P; Maddison, Ben C; Dreveny, Ingrid; Rees, Helen C; Gough, Kevin C

    2015-05-01

    Recently the analytical power of the latest high throughput next generation DNA sequencing platforms has been used to analyse phage that have been selected from the panning of large combinatorial libraries displaying either peptide or antibody ligands. This process, commonly referred to as next generation phage display (NGPD), allows the researcher to determine the identity of specific phage that are being enriched against an antigen target by analysis of the DNA sequence encoding the displayed ligand. This method bypasses several steps in conventional phage panning that include laborious colony picking and functional ligand screening. A downside of this approach is that the only output from such experiments is the DNA sequence information of such enriched phage particles. In the case of peptides, the peptide sequence can be synthesised directly and used for further screening; however this is more difficult with larger antibody fragments such as ScFvs. In the case of ScFvs, their coding sequence would have to be fully elucidated, synthesised and re-cloned before expression. We describe here the application of an inverse PCR-ligation methodology that enables the specific recovery of ScFvs of interest from enriched sub-libraries of phage clones. Phagemid particles are recovered using sequence information derived from their unique heavy chain CDR3/FR4 domains and specific clones can be recovered irrespective of CDR3 size and at levels of abundance that would be refractory to their discovery during conventional phage panning and screening. PMID:25771970

  12. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs

    PubMed Central

    Corsiero, Elisa; Bombardieri, Michele; Carlotti, Emanuela; Pratesi, Federico; Robinson, William; Migliorini, Paola; Pitzalis, Costantino

    2016-01-01

    Objectives Rheumatoid arthritis (RA) is characterised by breach of self-tolerance towards citrullinated antigens with generation of anti-citrullinated peptide/proteins antibodies (ACPA). Currently, the nature and source of citrullinated antigens driving the humoral autoimmune response within synovial ectopic lymphoid structures (ELS) is a crucial unknown aspect of RA pathogenesis. Here we characterised the autoreactive B-cell response of lesional B cells isolated from ELS+RA synovium. Methods Single synovial tissue CD19+cells were Fluorescence Activated Cell Sorting (FACS)-sorted and VH/VL Ig genes cloned to generate recombinant monoclonal antibodies (rmAbs) from patients with ELS+/ACPA+RA. Results RA-rmAbs immunoreactivity analysis provided the following key findings: (1) in a chIP-based array containing 300 autoantigens and in a ‘citrullinome’ multiplex assay, a strong reactivity against citrullinated histones H2A/H2B (citH2A/H2B) was observed in ∼40% of RA-rmAbs, followed by cit-fibrinogen and cit-vimentin; (2) anti-citH2A/H2B-reactive RA-rmAbs (but not anti-citH2A/H2B negative) selectively recognised neutrophil extracellular traps (NETs) from peripheral blood and/or RA joint neutrophils; (3) anti-citH2A/citH2B and anti-NET immunobinding was dependent on affinity maturation and was completely abrogated following reversion of hypermutated IgVH/VL genes to germline sequences; (4) ELS+ (not ELS−) RA synovial tissues engrafted into Severe Combined ImmunoDeficiency (SCID) mice released human anti-citH2A/citH2B and anti-NET antibodies in association with the intra-graft expression of CXCL13 and lymphotoxin (LT)-β, two master regulators of ELS. Conclusion We provided novel evidence that B cells differentiated within synovial ELS in the RA joints frequent target deiminated proteins which could be generated during NETosis of RA synovial neutrophils including histones. Thus, NETs could represent a source of citrullinated antigens fuelling the ACPA autoimmune

  13. Identification of a recent recombination event within the human beta-globin gene cluster.

    PubMed Central

    Gerhard, D S; Kidd, K K; Kidd, J R; Egeland, J A; Housman, D E

    1984-01-01

    In a detailed study of inheritance of DNA sequence polymorphism in a large reference pedigree, an individual was identified with an apparent genetic recombination event within the human beta-globin gene cluster. Analysis of the haplotypes of relevant individuals within this pedigree suggested that the meiotic crossing-over event is likely to have occurred within a 19.8-kilobase-pair region of the beta-globin gene cluster. Analysis of other DNA markers closely linked to the beta-globin gene cluster--segment 12 of chromosome 11 (D11S12) and loci for insulin, the cellular oncogene c-Ha-ras, and preproparathyroid hormone--confirmed that a crossover event must have occurred within the region of chromosome 11 between D11S12 and the beta-globin gene cluster. It is suggested that the event observed has occurred within a DNA region compatible with recombinational "hot spots" suggested by population studies. PMID:6096866

  14. Homologous recombination within the capsid gene of porcine circovirus type 2 subgroup viruses via natural co-infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies had reported homologous recombination between porcine circovirus type 2 (PCV2)-group 1 (Gp1) and -group 2 (Gp2) viruses. Interestingly, the recombination events described thus far mapped either within the Rep gene sequences or the sequences flanking the Rep gene region. Previously, ...

  15. Evolution and homologous recombination of the hemagglutinin-esterase gene sequences from porcine torovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the present study was to gain new insights into the evolution, homologous recombination and selection pressures imposed on the porcine torovirus (PToV), by examining changes in the hemagglutinin-esterase (HE) gene. The most recent common ancestor of PToV was estimated to have emerge...

  16. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    ERIC Educational Resources Information Center

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  17. Potent Functional Antibody Responses Elicited by HIV-I DNA Priming and Boosting with Heterologous HIV-1 Recombinant MVA in Healthy Tanzanian Adults

    PubMed Central

    Joachim, Agricola; Nilsson, Charlotta; Aboud, Said; Bakari, Muhammad; Lyamuya, Eligius F.; Robb, Merlin L.; Marovich, Mary A.; Earl, Patricia; Moss, Bernard; Ochsenbauer, Christina; Wahren, Britta; Mhalu, Fred; Sandström, Eric; Biberfeld, Gunnel; Ferrari, Guido; Polonis, Victoria R.

    2015-01-01

    Vaccine-induced HIV antibodies were evaluated in serum samples collected from healthy Tanzanian volunteers participating in a phase I/II placebo-controlled double blind trial using multi-clade, multigene HIV-DNA priming and recombinant modified vaccinia Ankara (HIV-MVA) virus boosting (HIVIS03). The HIV-DNA vaccine contained plasmids expressing HIV-1 gp160 subtypes A, B, C, Rev B, Gag A, B and RTmut B, and the recombinant HIV-MVA boost expressed CRF01_AE HIV-1 Env subtype E and Gag-Pol subtype A. While no neutralizing antibodies were detected using pseudoviruses in the TZM-bl cell assay, this prime-boost vaccination induced neutralizing antibodies in 83% of HIVIS03 vaccinees when a peripheral blood mononuclear cell (PBMC) assay using luciferase reporter-infectious molecular clones (LucR-IMC) was employed. The serum neutralizing activity was significantly (but not completely) reduced upon depletion of natural killer (NK) cells from PBMC (p=0.006), indicating a role for antibody-mediated Fcγ-receptor function. High levels of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies against CRF01_AE and/or subtype B were subsequently demonstrated in 97% of the sera of vaccinees. The magnitude of ADCC-mediating antibodies against CM235 CRF01_AE IMC-infected cells correlated with neutralizing antibodies against CM235 in the IMC/PBMC assay. In conclusion, HIV-DNA priming, followed by two HIV-MVA boosts elicited potent ADCC responses in a high proportion of Tanzanian vaccinees. Our findings highlight the potential of HIV-DNA prime HIV-MVA boost vaccines for induction of functional antibody responses and suggest this vaccine regimen and ADCC studies as potentially important new avenues in HIV vaccine development. Trial Registration Controlled-Trials ISRCTN90053831 The Pan African Clinical Trials Registry ATMR2009040001075080 (currently PACTR2009040001075080) PMID:25874723

  18. Ultraviolet-irradiated vaccinia virus recombinants, exposing HIV-envelope on their outer membrane, induce antibodies against this antigen in rabbits.

    PubMed

    Loewinger, M; Katz, E

    2002-01-01

    The construction and isolation of recombinants of vaccinia virus (IHD-J strain), bearing on their outer membrane a chimeric protein consisting of the cytoplasmic and transmembrane domains of vaccinia B5R protein and the external domain of HIV envelope, has been previously described by us. The present study aimed to investigate the potential use of such recombinants as a vaccine, following inactivation of their infectivity by ultraviolet (UV) irradiation. The minimal dose of UV irradiation, required for the complete inactivation of the infectivity of these recombinants, was determined. Injections of rabbits with the irradiated noninfectious recombinant viruses successfully induced specific antibodies against the HIV envelope antigen, in addition to those against the poxvirus. PMID:12479396

  19. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme

    SciTech Connect

    Chen, Y.R.; Hartman, F.C.; Lu, T.Y.S.; Larimer, F.W.

    1998-09-01

    The authors have achieved, to their knowledge, the first high-level heterologous expression of the gene encoding D-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by DL-{alpha}-glycerophosphate or ethanol and destabilized by D-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deduced from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.

  20. Capillary isoelectric focusing method development and validation for investigation of recombinant therapeutic monoclonal antibody.

    PubMed

    Suba, Dávid; Urbányi, Zoltán; Salgó, András

    2015-10-10

    Capillary isoelectric focusing (cIEF) is a basic and highly accurate routine analytical tool to prove identity of protein drugs in quality control (QC) and release tests in biopharmaceutical industries. However there are some "out-of-the-box" applications commercially available which provide easy and rapid isoelectric focusing solutions for investigating monoclonal antibody drug proteins. However use of these kits in routine testings requires high costs. A capillary isoelectric focusing method was developed and validated for identification testing of monoclonal antibody drug products with isoelectric point between 7.0 and 9.0. A method was developed providing good pH gradient for internal calibration (R(2)>0.99) and good resolution between all of the isoform peaks (R=2), minimizing the time and complexity of sample preparation (no urea or salt used). The method is highly reproducible and it is suitable for validation and method transfer to any QC laboratories. Another advantage of the method is that it operates with commercially available chemicals which can be purchased from any suppliers. The interaction with capillary walls (avoid precipitation and adsorption as far as possible) was minimized and synthetic isoelectric small molecular markers were used instead of peptide or protein based markers. The developed method was validated according to the recent ICH guideline (Q2(R1)). Relative standard deviation results were below 0.2% for isoelectric points and below 4% according to the normalized migration times. The method is robust to buffer components with different lot numbers and neutral capillaries with different type of inner coatings. The fluoro-carbon coated column was chosen because of costs-effectivity aspects. PMID:26025812

  1. Use of dried blood spots to define antibody response to the Strongyloides stercoralis recombinant antigen NIE.

    PubMed

    Mounsey, Kate; Kearns, Therese; Rampton, Melanie; Llewellyn, Stacey; King, Mallory; Holt, Deborah; Currie, Bart J; Andrews, Ross; Nutman, Thomas; McCarthy, James

    2014-10-01

    An approach to improve the diagnosis of Strongyloides stercoralis infection is the use of serologic assays utilising the NIE antigen from S. stercoralis, with good diagnostic sensitivity and excellent specificity reported. Detection of antibody eluted from dried blood spots (DBS) has shown utility in large-scale seroepidemiological studies for a range of conditions and is appealing for use with children where sample collection is difficult. We adapted an existing NIE-enzyme linked immunosorbent assay (ELISA) for the testing of strongyloides antibody response on DBS, and evaluated it in a population screening and mass drug administration programme (MDA) for strongyloidiasis conducted in an Australian indigenous community. Study participants were treated with 200 μg/kg ivermectin (>15 kg) or 3× 400 mg albendazole (<15kg). The sensitivity of the NIE DBS-ELISA was determined by receiver operator characteristic (ROC) analysis to be 85.7%. A total of 214 DBS were collected from 184 participants across two screening and MDA encounters. A total of 27 of 164 participants (16.5%) tested positive for S. stercoralis NIE-DBS prior to MDA treatment, and 6 of 50 participants (12.0%) tested positive after treatment. These prevalence values are similar to those documented by standard serology in the same community. For 30 participants where a DBS was collected at both MDA 1 and 2, a significant decline in ELISA values was evident post treatment (0.12-0.02, p=0.0012). These results are in agreement with previous studies documenting the high seroprevalence of S. stercoralis in remote Australian Indigenous communities, and suggest that collection of dried blood spots may be a useful approach for field diagnosis of S. stercoralis seroprevalence.

  2. Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-born mycotoxin, fumonisin B1.

    PubMed

    Min, Won-Ki; Cho, Young-Jin; Park, Jun-Bock; Bae, Yi-Hyun; Kim, Eun-Jeong; Park, Kyungmoon; Park, Yong-Cheol; Seo, Jin-Ho

    2010-01-01

    Fumonisin B(1) (FMB(1)) is a food-born mycotoxin produced by Fusarium moniliforme. Monoclonal antibody against FMB(1) (anti-FMB(1) mAb) was produced in the hybridoma DV9, which was established from a BALB/c mouse immunized with bovine serum albumin conjugated FMB(1) (FMB(1)-BSA). A competitive direct enzyme-linked immunosorbent assay (ELISA) showed that anti-FMB(1) mAb has about 10 ppb of minimum FMB(1) detection concentration and 220 ppb of 50% inhibition concentration (IC(50)). Much lower cross-reactivity of anti-FMB(1) mAb on ochratoxin A, aflatoxin B(1) and deoxynivalenol provided that anti-FMB(1) mAb was specific for FMB(1). The gene coding single chain variable fragment against FMB(1) (anti-FMB(1) scFv) was cloned from the hybridoma DV9 and was expressed in recombinant Escherichia coli. Insoluble anti-FMB(1) scFv required optimization of its refolding condition, and hence functional scFv was obtained. By using indirect ELISA, about 12-fold lower binding activity of anti-FMB(1) scFv on FMB(1)-BSA was obtained in comparison with that of the parental mAb. PMID:19597742

  3. Monoclonal antibody against recombinant Fasciola gigantica cathepsin L1H could detect juvenile and adult cathepsin Ls of Fasciola gigantica.

    PubMed

    Wongwairot, Sirima; Kueakhai, Pornanan; Changklungmoa, Narin; Jaikua, Wipaphorn; Sansri, Veerawat; Meemon, Krai; Songkoomkrong, Sineenart; Riengrojpitak, Suda; Sobhon, Prasert

    2015-01-01

    Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans.

  4. Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Kim, Dong-Wan; Park, Hong-Kyu; Byambaragchaa, Munkhzaya; Lee, Nam-Sil; Hong, Sun-Mee; Seo, Mi-Young; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-07-01

    We prepared monoclonal antibodies (mAbs) against a recombinant tethered follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica that was produced in Escherichia coli. Positive hybridomas (clones eFA-C5, eFA-C10, eFA-C11, eFA-C12, eFA-C13, and eFB-C14) were selected by using the eel FSH antigen in ELISA, and anti-eel FSH mAbs were purified from culture supernatants by performing affinity chromatography. Three of the 6mAbs were characterized and their isotypes were identified as IgG2b (eFA-C5 and eFA-C11) and IgG1 (eFB-C14). In western blotting assays, the mAbs recognized the antigen as a 24.3-kDa band, and further detected bands of 34 and 32kDa in the supernatants of CHO cells transfected with cDNA encoding tethered eel FSHβ/α and LHβ/α, respectively. PNase F-mediated deglycosylation of the recombinant proteins resulted in a drastic reduction in their molecular weight, to 7-9kDa. The mAbs eFA-C5 and eFA-C11 recognized the eel FSHα-subunit that is commonly encoded among glycoprotein hormones, whereas eFB-C14 recognized the eel FSHβ-subunit, and immunohistochemical analysis revealed that the staining by these mAbs was specifically localized in the eel pituitary. We also established an ELISA system for detecting rec-tethered FSHβ/α and LHβ/α produced from CHO cell lines. Measurement of biological activities in vitro revealed that only weak activity of rec-FSHβ/α was detected. The activity of rec-LHβ/α was found to be increased in a dose-dependent manner for eel oocyte maturation.

  5. Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Kim, Dong-Wan; Park, Hong-Kyu; Byambaragchaa, Munkhzaya; Lee, Nam-Sil; Hong, Sun-Mee; Seo, Mi-Young; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-07-01

    We prepared monoclonal antibodies (mAbs) against a recombinant tethered follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica that was produced in Escherichia coli. Positive hybridomas (clones eFA-C5, eFA-C10, eFA-C11, eFA-C12, eFA-C13, and eFB-C14) were selected by using the eel FSH antigen in ELISA, and anti-eel FSH mAbs were purified from culture supernatants by performing affinity chromatography. Three of the 6mAbs were characterized and their isotypes were identified as IgG2b (eFA-C5 and eFA-C11) and IgG1 (eFB-C14). In western blotting assays, the mAbs recognized the antigen as a 24.3-kDa band, and further detected bands of 34 and 32kDa in the supernatants of CHO cells transfected with cDNA encoding tethered eel FSHβ/α and LHβ/α, respectively. PNase F-mediated deglycosylation of the recombinant proteins resulted in a drastic reduction in their molecular weight, to 7-9kDa. The mAbs eFA-C5 and eFA-C11 recognized the eel FSHα-subunit that is commonly encoded among glycoprotein hormones, whereas eFB-C14 recognized the eel FSHβ-subunit, and immunohistochemical analysis revealed that the staining by these mAbs was specifically localized in the eel pituitary. We also established an ELISA system for detecting rec-tethered FSHβ/α and LHβ/α produced from CHO cell lines. Measurement of biological activities in vitro revealed that only weak activity of rec-FSHβ/α was detected. The activity of rec-LHβ/α was found to be increased in a dose-dependent manner for eel oocyte maturation. PMID:27174750

  6. Monoclonal antibody against recombinant Fasciola gigantica cathepsin L1H could detect juvenile and adult cathepsin Ls of Fasciola gigantica.

    PubMed

    Wongwairot, Sirima; Kueakhai, Pornanan; Changklungmoa, Narin; Jaikua, Wipaphorn; Sansri, Veerawat; Meemon, Krai; Songkoomkrong, Sineenart; Riengrojpitak, Suda; Sobhon, Prasert

    2015-01-01

    Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans. PMID:25324133

  7. Immune response and functional role of antibodies raised in heifers against a Staphylococcus aureus CP5 lysate and recombinant antigens vaccine formulated with Iscom Matrix adjuvant.

    PubMed

    Camussone, C M; Pujato, N; Renna, M S; Veaute, C M; Morein, B; Marcipar, I S; Calvinho, L F

    2014-12-15

    Staphylococcus aureus is the most frequently isolated pathogen from bovine intramammary infections worldwide. Commercially available vaccines for mastitis control are composed either of S. aureus lysates or inactivated whole-cells formulated with traditional adjuvants. We recently showed the ability of a S. aureus CP5 lysate vaccine adjuvanted with Iscom Matrix to generate a longer lasting specific antibody response in blood and milk, with improved opsonic capacity, compared with a S. aureus CP5 whole-cell formulation. The aim of the present study was to obtain an experimental immunogen composed of lysed cells of a CP5 S. aureus strain supplemented with recombinant clumping factor A, fibronectin binding protein A and β-toxin formulated with Iscom Matrix, characterize the immune response generated when immunizing pregnant heifers and assess the functional role of antibodies raised against this immunogen in experimental models. Both a lysate vaccine and a lysate+recombinant antigens vaccine elicited antibodies that promoted neutrophil phagocytosis and inhibited internalization into mammary epithelial cells, in vitro. Incorporation of defined antigenic molecules to the lysate formulation elicited a strong specific humoral immune response against both lysate and recombinant antigens and was associated with higher expression of regulatory and pro-inflammatory cytokines. In addition, antibodies were efficient for blocking S. aureus binding to bovine fibrinogen and fibronectin, and neutralizing β-toxin effect in vitro, placing these antigens as candidates to be included in a formulation directed to prevent staphylococcal bovine mastitis. PMID:25454469

  8. Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain.

    PubMed

    Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun

    2014-08-01

    The contributing molecular pathways underlying the pathogenesis of breast cancer need to be better characterized. The principle of our study was to better understand the genetic mechanism of oncogenesis for human breast cancer and to discover new possible tumor markers for use in clinical practice. We used complimentary DNA (cDNA) microarrays to compare gene expression profiles of treated Michigan Cancer Foundation-7 (MCF-7) with recombinant bromelain and untreated MCF-7. SpringGene analysis was carried out of differential expression followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We identified 1,102 known genes differentially expressed to a significant degree (p<0.001) changed between the treatment. Within this gene set, 20 genes were significantly changed between treated cells and the control cells with cutoff fold change of more than 1.5. These genes are RNA-binding motif, single-stranded interacting protein 1 (RBMS1), ribosomal protein L29 (RPL29), glutathione S-transferase mu 2 (GSTM2), C15orf32, Akt3, B cell translocation gene 1 (BTG1), C6orf62, C7orf60, kinesin-associated protein 3 (KIFAP3), FBXO11, AT-rich interactive domain 4A (ARID4A), COPS2, TBPL1|SLC2A12, TMEM59, SNORD46, glioma tumor suppressor candidate region gene 2 (GLTSCR2), and LRRFIP. Our observation on gene expression indicated that recombinant bromelain produces a unique signature affecting different pathways, specific for each congener. The microarray results give a molecular mechanistic insight and functional effects, following recombinant bromelain treatment. The extent of changes in genes is related to and involved significantly in gap junction signaling, amyloid processing, cell cycle regulation by BTG family proteins, and breast cancer regulation by stathmin1 that play major roles.

  9. Protection of cats from infectious peritonitis by vaccination with a recombinant raccoon poxvirus expressing the nucleocapsid gene of feline infectious peritonitis virus.

    PubMed

    Wasmoen, T L; Kadakia, N P; Unfer, R C; Fickbohm, B L; Cook, C P; Chu, H J; Acree, W M

    1995-01-01

    Feline Infectious Peritonitis Virus (FIPV) is a coronavirus that induces an often fatal, systemic infection in cats. Various vaccines designed to prevent FIPV infection have been shown to exacerbate the disease, probably due to immune enhancement mediated by virus-specific immunoglobulins against the outer envelope (S) protein. An effective vaccine would be one that induces cell-mediated immunity without disease enhancing antibodies. In this report, we describe the use of a recombinant raccoon poxvirus that expresses the gene encoding the nucleocapsid protein of FIPV (rRCNV-FIPV N) as an effective vaccine against FIPV-induced disease. Cats were parenterally or orally vaccinated twice, three weeks apart. Cats were then orally challenged with Feline Enteric Coronavirus (FECV), which induces a subclinical infection that can cause enhancement of subsequent FIPV infection. Three weeks later, cats were orally challenged with FIPV. The FIPV challenge induced a fatal infection in 4/5 (80%) of the controls. On the other hand, all five cats vaccinated subcutaneously with rRCNV-FIPV N showed no signs of disease after challenge with FIPV. Four of the five subcutaneous vaccinates survived an additional FIPV challenge. Vaccination with rRCNV-FIPV N induced serum IgG antibody responses to FIPV nucleocapsid protein, but few, if any, FIPV neutralizing antibodies. In contrast to the controls, protected vaccinates maintained low FIPV serum neutralizing antibody titers after FIPV challenge. This suggests that the protective immune response involves a mechanism other than humoral immunity consisting of FIPV neutralizing antibodies.

  10. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome.

    PubMed

    Pereira, Soraya S; Moreira-Dill, Leandro S; Morais, Michelle S S; Prado, Nidiane D R; Barros, Marcos L; Koishi, Andrea C; Mazarrotto, Giovanny A C A; Gonçalves, Giselle M; Zuliani, Juliana P; Calderon, Leonardo A; Soares, Andreimar M; Pereira da Silva, Luiz H; Duarte dos Santos, Claudia N; Fernandes, Carla F C; Stabeli, Rodrigo G

    2014-01-01

    In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ₈₅) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ₈₅. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ₈₅ in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus

  11. The breast cancer susceptibility gene, BRCA2: at the crossroads between DNA replication and recombination?

    PubMed Central

    Venkitaraman, A R

    2000-01-01

    The identification and cloning of the familial breast cancer susceptibility gene, BRCA2, has excited much interest in its biological functions. Here, evidence is reviewed that the protein encoded by BRCA2 has an essential role in DNA repair through its association with mRad51, a mammalian homologue of bacterial and yeast proteins involved in homologous recombination. A model is proposed that the critical requirement for BRCA2 in cell division and the maintenance of chromosome stability stems from its participation in recombinational processes essential for DNA replication. PMID:10724455

  12. Development and Evaluation of an Enzyme-Linked Immunosorbent Assay Based on Recombinant VP2 Capsids for the Detection of Antibodies to Aleutian Mink Disease Virus▿

    PubMed Central

    Knuuttila, Anna; Aronen, Pirjo; Saarinen, Auli; Vapalahti, Olli

    2009-01-01

    Aleutian disease (AD), a common infectious disease in farmed minks worldwide, is caused by Aleutian mink disease virus (AMDV). Serodiagnosis of AD in minks has been based on detection of AMDV antibodies by counterimmunoelectrophoresis (CIE) since the 1980s. The aim of this study was to develop and evaluate an enzyme-linked immunosorbent assay (ELISA) based on recombinant virus-like particles (VLPs) for identifying AMDV antibodies from mink sera. AMDV capsid protein (VP2) of a Finnish wild-type strain was expressed by the baculovirus system in Spodoptera frugiperda 9 insect cells and was shown to self-assemble to VLPs (with an ultrastructure similar to that of the actual virion). A direct immunoglobulin G ELISA was established using purified recombinant AMDV VP2 VLPs as an antigen. Sera from farmed minks were collected to evaluate the AMDV VP2 ELISA (n = 316) and CIE (n = 209) based on AMDV VP2 recombinant antigen in parallel with CIE performed using a commercially available traditional antigen. CIE performed with the recombinant antigen had a sensitivity and specificity of 100% and ELISA a sensitivity of 99% and a specificity of 97%, with reference to CIE performed with the commercial antigen. The results show that the recombinant AMDV VP2 VLPs are antigenic and that AMDV VP2 ELISA is sensitive and specific and encourage further development of the method for high-throughput diagnostics, involving hundreds of thousands of samples in Finland annually. PMID:19641102

  13. Development and evaluation of an enzyme-linked immunosorbent assay based on recombinant VP2 capsids for the detection of antibodies to Aleutian mink disease virus.

    PubMed

    Knuuttila, Anna; Aronen, Pirjo; Saarinen, Auli; Vapalahti, Olli

    2009-09-01

    Aleutian disease (AD), a common infectious disease in farmed minks worldwide, is caused by Aleutian mink disease virus (AMDV). Serodiagnosis of AD in minks has been based on detection of AMDV antibodies by counterimmunoelectrophoresis (CIE) since the 1980s. The aim of this study was to develop and evaluate an enzyme-linked immunosorbent assay (ELISA) based on recombinant virus-like particles (VLPs) for identifying AMDV antibodies from mink sera. AMDV capsid protein (VP2) of a Finnish wild-type strain was expressed by the baculovirus system in Spodoptera frugiperda 9 insect cells and was shown to self-assemble to VLPs (with an ultrastructure similar to that of the actual virion). A direct immunoglobulin G ELISA was established using purified recombinant AMDV VP2 VLPs as an antigen. Sera from farmed minks were collected to evaluate the AMDV VP2 ELISA (n = 316) and CIE (n = 209) based on AMDV VP2 recombinant antigen in parallel with CIE performed using a commercially available traditional antigen. CIE performed with the recombinant antigen had a sensitivity and specificity of 100% and ELISA a sensitivity of 99% and a specificity of 97%, with reference to CIE performed with the commercial antigen. The results show that the recombinant AMDV VP2 VLPs are antigenic and that AMDV VP2 ELISA is sensitive and specific and encourage further development of the method for high-throughput diagnostics, involving hundreds of thousands of samples in Finland annually. PMID:19641102

  14. Antibody repertoire diversification through VH gene replacement in mice cloned from an IgA plasma cell.

    PubMed

    Kumar, Rashmi; Bach, Martina P; Mainoldi, Federica; Maruya, Mikako; Kishigami, Satoshi; Jumaa, Hassan; Wakayama, Teruhiko; Kanagawa, Osami; Fagarasan, Sidonia; Casola, Stefano

    2015-02-01

    In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell. In VHQ52(NT) mice, IgA replaced IgM to drive early B-cell development and peripheral B-cell maturation. In VHQ52(NT) animals, over 20% of mature B cells disrupted the single productive, nonautoimmune IgH rearrangement through VH replacement and exchanged it with a highly diversified pool of IgH specificities. VH replacement occurred in early pro-B cells, was independent of pre-B-cell receptor signaling, and involved predominantly one adjacent VH germ-line gene. VH replacement was also identified in 5% of peripheral B cells of mice inheriting a different productive VH rearrangement expressed in the form of an IgM H chain. In summary, editing of a productive IgH rearrangement through VH replacement can account for up to 20% of the IgH repertoire expressed by mature B cells.

  15. Applications of monoclonal antibodies and recombinant cytokines for the treatment of human colorectal and other carcinomas

    SciTech Connect

    Greiner, J.W.; Smalley, R.V.; Borden, E.C.; Martin, E.W.; Guadagni, F.; Roselli, M.; Schlom, J. )

    1991-01-01

    Monoclonal antibodies (MAbs) which recognize a human tumor antigen, termed tumor-associated glycoprotein-72 (TAG-72), have successfully been used to localize primary as well as metastatic colorectal tumor lesions in patients. The localization of the anti-TAG-72 MAbs has also been exploited intraoperatively using a hand-held gamma probe. That procedure, termed radioimmunoguided surgery (RIGS), has identified occult tumors which were not detected using standard external imaging techniques. In another clinical trial, interferon-gamma (IFN-gamma) was administered intraperitoneally to patients diagnosed with either gastrointestinal or ovarian carcinoma with secondary ascites. Analysis of the tumor cells isolated from the malignant ascites revealed a substantial increase in TAG-72 expression on the surface of tumor cells isolated from seven of eight patients. The results provide evidence that the combination of an anti-carcinoma MAb with the administration of a cytokine, such as IFN-gamma, may be an effective approach for the detection and subsequent treatment, of colorectal carcinoma. 15 references.

  16. A neutralizing recombinant single chain antibody, scFv, against BaP1, A P-I hemorrhagic metalloproteinase from Bothrops asper snake venom.

    PubMed

    Castro, J M A; Oliveira, T S; Silveira, C R F; Caporrino, M C; Rodriguez, D; Moura-da-Silva, A M; Ramos, O H P; Rucavado, A; Gutiérrez, J M; Magalhães, G S; Faquim-Mauro, E L; Fernandes, I

    2014-09-01

    BaP1 is a P-I class snake venom metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomings by Bothrops asper, a medically important snake species in Central America and parts of South and North America. The main treatment for these accidents is the passive immunotherapy using antibodies raised in horses. In order to obtain more specific and batch-to-batch consistent antivenons, recombinant antibodies are considered a good option compared to animal immunization. We constructed a recombinant single chain variable fragment (scFv) from a monoclonal antibody against BaP1 (MABaP1) formerly secreted by a hybridoma clone. This recombinant antibody was cloned into pMST3 vector in fusion with SUMO protein and contains VH and VL domains linked by a flexible (G4S)3 polypeptide (scFvBaP1). The aim of this work was to produce scFvBaP1 and to evaluate its potential concerning the neutralization of biologically important activities of BaP1. The cytoplasmic expression of this construct was successfully achieved in C43 (DE3) bacteria. Our results showed that scFvBaP1-SUMO fusion protein presented an electrophoretic band of around 43 kDa from which SUMO alone corresponded to 13.6 kDa, and only the scFv was able to recognize BaP1 as well as the whole venom by ELISA. In contrast, neither an irrelevant scFv anti-LDL nor its MoAb partner recognized it. BaP1-induced fibrinolysis was significantly neutralized by scFvBaP1, but not by SUMO, in a concentration-dependent manner. In addition, scFvBaP1, as well as MaBaP1, completely neutralized in vivo hemorrhage, muscle necrosis, and inflammation induced by the toxin. Docking analyses revealed possible modes of interaction of the recombinant antibody with BaP1. Our data showed that scFv recognized BaP1 and whole B. asper venom, and neutralized biological effects of this SVMP. This scFv antibody can be used for understanding the molecular mechanisms of neutralization of SVMPs, and for exploring the potential of

  17. [Constructing recombinant plasmid pSH-CUP and knockout of acid trehalase gene in baker's yeast].

    PubMed

    He, Dongqin; Xiao, Dongguang; Lv, Ye

    2008-02-01

    The ATH1 gene encoded acid trehalase in Saccharomyces cerevisiae. The gene disruption cassette combined the heterologous dominant kan(r) resistance marker with a Cre/loxP-mediated marker removal procedure. The gene disruption cassette was produced by PCR using the same long oligonucleotides comprising 50 nucleotides that annealed to sites upstream or downstream of the genomic target sequence to be deleted. After transformation of the linear disruption cassettes with a Cre/loxP-mediated marker into the cells of Saccharomyces cerevisiae BY-6, selected transformants were checked by PCR for correct the integration of the cassette and concurrent deletion of the chromosomal target sequence. The copper-resistance gene (CUP1-MT1) was cloned into pSH47, which yielded pSH-CUP. The recombinant plasmid pSH-CUP was transformed into the cells of Saccharomyces cerevisiae BY-6(delta ATH1, G418(r)), and transformants were selected for copper resistance. Upon expression of the Cre recombinase results in removal of the kan(r) gene, leaving behind a single loxP site at the chromosomal locus. Construction of the recombinant plasmid pSH-CUP avoided inserting non-yeast gene and made the loxP - kanMX - loxP gene disruption cassette more conventional for eukaryotic organism gene disruption.

  18. Single-domain antibody-based ligands for immunoaffinity separation of recombinant human lactoferrin from the goat lactoferrin of transgenic goat milk.

    PubMed

    Tillib, S V; Privezentseva, M E; Ivanova, T I; Vasilev, L F; Efimov, G A; Gursky, Y G; Georgiev, G P; Goldman, I L; Sadchikova, E R

    2014-02-15

    Single-domain antibody generation technology was applied to make new Sepharose-bound ligands for affinity separation of closely related proteins, such as human and goat lactoferrin. We generated recombinant antibodies that can selectively bind/recognize only lactoferrins having amino acid sequences identical to that of human natural lactoferrin (anti-hLF Ab). Selected and purified histidine-tagged single-domain antibodies were used as ligands, and different lactoferrins were used as analytes in the kinetics analysis of lactoferrin binding to captured anti-hLF Abs using the Bio-Rad ProteOn XPR36 protein interaction array system. The data obtained were consistent with a 1:1 binding model with very high affinity, practically equal in the case of hLF and rec-hLF (calculated KD varied from 0.43nM to 3.7nM). Interaction of captured fsdAbs with goat LF was significantly weaker and not detectable under the same analysis conditions. We demonstrated the high efficiency of the recombinant human lactoferrin purification from goat lactoferrin and other proteins using the obtained single domain antibody-based affinity ligands. We believe this approach can be used for the generation of single-domain antibody-based affinity media for the efficient separation/purification of a wide spectrum of other highly homologous proteins.

  19. Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency.

    PubMed

    Gruntman, Alisha M; Flotte, Terence R

    2015-06-01

    The pathway to a clinical gene therapy product often involves many changes of course and strategy before obtaining successful results. Here we outline the methodologies, both clinical and preclinical, that went into developing a gene therapy approach to the treatment of alpha-1 antitrypsin deficiency lung disease using muscle-targeted recombinant adeno-associated virus. From initial gene construct development in mouse models through multiple rounds of safety and biodistribution studies in rodents, rabbits, and nonhuman primates to ultimate human trials, this review seeks to provide insight into what clinical translation entails and could thereby inform the process for future investigators.

  20. Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector.

    PubMed Central

    Shimada, T; Fujii, H; Mitsuya, H; Nienhuis, A W

    1991-01-01

    We have established a recombinant HIV gene transfer system based on transient expression of the HIV packaging functions and a recombinant vector genome in monkey kidney Cos cells. The recombinant HIV retroviral vector introduced the neoR gene into CD4+ cells with high efficiency, comparable to that achieved with the highest titer amphotropic murine recombinant retrovirus. Vector preparations were devoid of replication competent, infectious HIV. Gene transfer was dependent on CD4 expression, as shown by expression of the CD4 gene in HeLa cells, and could be inhibited by soluble CD4. This specific and efficient gene transfer system may be useful for development of gene therapy for which T cells are the desired targets. Images PMID:1885765

  1. The cloning and characterization of the enolase2 gene of Gekko japonicus and its polyclonal antibody preparation.

    PubMed

    Li, Jing; Wu, Ronghua; Chen, Haijiao; Zhou, Youlang; Li, Yan; Wang, Yongjun; Liu, Yan; Liu, Mei

    2013-01-01

    The enolase2 gene is usually expressed in mature neurons and also named neuron specific enolase (NSE). In the present study, we first obtained the NSE gene cDNA sequence by using the RACE method based on the expressed sequence tag (EST) fragment from the cDNA library of Gekko japonicus and identified one transcript of about 2.2 kb in central nervous system of Gekko japonicus by Northern blotting. The open reading frame of NSE is 1305 bp, which encodes a 435 amino-acid protein. We further investigated the multi-tissue expression pattern of NSE by RT-PCR and found that the expression of NSE mRNA was very high in brain, spinal cord and low in heart, while it was not detectable in other tissues. The real-time quantitative PCR was used to investigate the time-dependent change in the expression of the NSE mRNA level after gecko spinal cord transection and found it significantly increased at one day, reaching its highest level three days post-injury and then decreasing at the seventh day of the experiment. The recombinant plasmid of pET-32a-NSE was constructed and induced to express His fused NSE protein. The purified NSE protein was used to immunize rabbits to generate polyclonal antisera. The titer of the antiserum was more than 1:65536 determined by ELISA. Western blotting showed that the prepared antibody could specifically recognize the recombinant and endogenous NSE protein. The result of immunohistochemistry revealed that positive signals were present in neurons of the brain and the spinal cord. This study provided the tools of cDNA and polyclonal antibody for studying NSE function in Gekko japonicus. PMID:23615470

  2. A Single-Chain Antibody Using LoxP511 as the Linker Enables Large-Content Phage Library Construction via Cre/LoxP Recombination.

    PubMed

    Zhang, Yan; Wang, Wei; Lv, Ming; Lin, Zhou; Geng, Jing; Li, Yali; Shen, Beifen; Ma, Yuanfang; Li, Yan; Qiao, Chunxia; Feng, Jiannan

    2014-07-01

    To obtain natural or "me-better" antibodies (e.g., affinity-maturated antibodies), phage display libraries are widely used. However, the likelihood of obtaining satisfactory antibodies depends on the library content. Here, we used computer-aided design to model the use of the LoxP511 site as a linker between the heavy and light variable domains of an antibody for construction of a large single-chain fragment (scFv) antibody phage library by using the Cre/LoxP recombinant system. Then, we constructed two novel scFvs based on 2C4, namely, AH_scFv15 (15 amino acid [aa] linker; common [SG4]3 sequence) and AH_scFv21 (21-aa linker; LoxP511 sequence), to verify the use of the LoxP511 site as a linker. Our results indicate that LoxP511 could be used effectively for the construction of a large (e.g., 5 × 10(12)) phage display library of scFv antibodies from which it was possible to isolate an antibody with the same epitope as 2C4 but with higher affinity.

  3. A Viable Recombinant Rhabdovirus Lacking Its Glycoprotein Gene and Expressing Influenza Virus Hemagglutinin and Neuraminidase Is a Potent Influenza Vaccine

    PubMed Central

    Ryder, Alex B.; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian

    2014-01-01

    ABSTRACT The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell

  4. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    PubMed Central

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior. PMID:27148349

  5. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    PubMed

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  6. Region-specific meiotic recombination in Schizosaccharomyces pombe: the rec11 gene.

    PubMed

    Li, Y F; Numata, M; Wahls, W P; Smith, G R

    1997-03-01

    Mutations in the rec11 gene of Schizosaccharomyces pombe reduce meiotic recombinant frequencies by as much as a factor of 300 on chromosome III but less than a factor of 4 in the intervals tested on chromosomes I and II. To gain insight into the function of this region- (or chromosome-) specific activator of recombination, we have cloned and sequenced the rec11 gene. Meiotic crosses with rec11 disruption mutations placed the rec11 gene 6 cM from ade6 on chromosome III. Transcripts of rec11 accumulated transiently at 2-3 h after induction of melosis in a pat1-114 (Ts) mutant. Reverse transcriptase/polymerase chain reaction (RT-PCR) analysis of these transcripts revealed eight introns. The spliced RNA is predicted to encode a polypeptide of 923 amino acids with only very limited homology to reported proteins. The transient accumulation of rec11 transcripts and the phenotype of rec11 mutations suggest that the novel rec11 gene product acts early in meiosis to activate recombination preferentially on chromosome III. PMID:9076725

  7. Genetic diversity and recombination analysis in the coat protein gene of Banana bract mosaic virus.

    PubMed

    Balasubramanian, V; Selvarajan, R

    2014-06-01

    Banana bract mosaic virus (BBrMV), a member of the genus Potyvirus, family Potyviridae, is the causal agent of the bract mosaic disease (BBrMD) that causes serious yield losses in banana and plantain in India and the Philippines. In this study, global genetic diversity and molecular evolution of BBrMV based on the capsid protein (CP) gene were investigated. Multiple alignments of CP gene of 49 BBrMV isolates showed nucleotide (nt) and amino acid (aa) identity of 79-100 and 80-100 %, respectively. Phylogenetic analysis revealed that except two Indians isolates (TN14 and TN16), all isolates clustered together. Eleven recombination events were detected using Recombination Detection Program. Codon-based maximum-likelihood methods revealed that most of the codons in the CP gene were under negative or neutral selection except for codons 28, 43, and 92 which were under positive selection. Gene flow between BBrMV populations of banana and cardamom was relatively frequent but not between two different populations of banana infecting isolates identified in this study. This is the first report on genetic diversity, and evolution of BBrMV isolates based on recombination and phylogenetic analysis in India. PMID:24691817

  8. Genetic diversity and recombination analysis in the coat protein gene of Banana bract mosaic virus.

    PubMed

    Balasubramanian, V; Selvarajan, R

    2014-06-01

    Banana bract mosaic virus (BBrMV), a member of the genus Potyvirus, family Potyviridae, is the causal agent of the bract mosaic disease (BBrMD) that causes serious yield losses in banana and plantain in India and the Philippines. In this study, global genetic diversity and molecular evolution of BBrMV based on the capsid protein (CP) gene were investigated. Multiple alignments of CP gene of 49 BBrMV isolates showed nucleotide (nt) and amino acid (aa) identity of 79-100 and 80-100 %, respectively. Phylogenetic analysis revealed that except two Indians isolates (TN14 and TN16), all isolates clustered together. Eleven recombination events were detected using Recombination Detection Program. Codon-based maximum-likelihood methods revealed that most of the codons in the CP gene were under negative or neutral selection except for codons 28, 43, and 92 which were under positive selection. Gene flow between BBrMV populations of banana and cardamom was relatively frequent but not between two different populations of banana infecting isolates identified in this study. This is the first report on genetic diversity, and evolution of BBrMV isolates based on recombination and phylogenetic analysis in India.

  9. A system for assaying homologous recombination at the endogenous human thymidine kinase gene

    SciTech Connect

    Benjamin, M.B.; Little, J.B. ); Potter, H. ); Yandell, D.W. Massachusetts Eye and Ear Infirmary, Boston Harvard Medical School, Boston, MA )

    1991-08-01

    A system for assaying human interchromosomal recombination in vitro was developed, using a cell line containing two different mutant thymidine kinase genes (TK) on chromosomes 17. Heteroalleles were generated in the TK{sup +/+} parent B-lymphoblast cell line WIL-2 by repeated exposure to the alkylating nitrogen mustard ICR-191, which preferentially causes +1 or {minus}1 frameshifts. Resulting TK{sup {minus}/{minus}} mutants were selected in medium containing the toxic thymidine analog trifluorothymidine. In two lines, heterozygous frameshifts were located in exons 4 and 7 of the TK gene separated by {approx}8 kilobases. These lines undergo spontaneous reversion to TK{sup +} at a frequency of < 10{sup {minus}7}, and revertants can be selected in cytidine/hypoxanthine/aminopterin/thymidine medium. The nature and location of these heteroallelic mutations make large deletions, rearrangements, nondisjunction, and reduplication unlikely mechanisms for reversion to TK{sup +}. The mode of reversion to TK{sup +} was specifically assessed by DNA sequencing, use of single-strand conformation polymorphisms, and analysis of various restriction fragment length polymorphisms (RFLPs) linked to the TK gene on chromosome 17. The data suggest that a proportion of revertants has undergone recombination and gene conversion at the TK locus, with concomitant loss of frameshifts and allele loss at linked RFLPs. Models are presented for the origin of two recombinants.

  10. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer

  11. Construction of a mouse hepatitis virus recombinant expressing a foreign gene.

    PubMed

    Fischer, F; Stegen, C F; Koetzner, C A; Masters, P S

    1998-01-01

    The genome of the coronavirus mouse hepatitis virus (MHV) contains genes which have been shown to be nonessential for viral replication and which could, in principle, be used as sites for the introduction of foreign sequences. We have inserted heterologous genetic material into gene 4 of MHV in order (i) to test the applicability of targeted RNA recombination for site-directed mutagenesis of the MHV genome upstream of the N gene; (ii) to develop further genetic tools for mutagenesis of structural genes other than N; and (iii) to examine the feasibility of using MHV as an expression vector. A DI-like donor RNA vector containing the MHV S gene and all genes distal to S was constructed. Initially, a derivative of this was used to insert a 19-nucleotide tag into the start of ORF 4a of MHV-A59 using the N gene deletion mutant A1b4 as the recipient virus. Subsequently, the entire gene for the green fluorescent protein (GFP) was inserted in place of gene 4. This heterologous gene was shown to be expressed by recombinant viruses but not at levels sufficient to allow detection of fluorescence of viral plaques. Northern blot analysis of transcripts of GFP recombinants showed the expected displacement of the mobility, relative to those of wild-type, of all subgenomic mRNAs larger than mRNA5. An unexpected result of the Northern analysis was the observation that GFP recombinants also produced an RNA species the same size as that of wild-type mRNA4. RT-PCR analysis of the 5' end of this species revealed that it was actually a collection of mRNAs originating from a cluster of 10 different sites, none of which possessed a canonical intergenic sequence. The finding of these aberrant mRNAs, all of nearly the same size as wild-type mRNA4, suggests that long range structure of the MHV genome can sometimes be the sole determinant of the site of initiation of transcription.

  12. Generation and characterization of functional recombinant antibody fragments against tomato yellow leaf curl virus replication-associated protein.

    PubMed

    Safarnejad, M R; Fischer, R; Commandeur, U

    2008-01-01

    Tomato yellow leaf curl virus (TYLCV) is a complex of geminivirus species prevalent in the tropics and sub-tropics, which causes severe diseases in economically important crops such as tomato. Conventional strategies for disease management have shown little success and new approaches based on genetic engineering need to be considered. We generated two single-chain variable fragment antibodies (scFv-ScRep1 and scFv-ScRep2) that bound strongly to continuous epitopes within the TYLCV replication-associated protein (Rep). The TYLCV-Ir C1 gene (encoding Rep) was expressed as glutathione-S-transferase (GST) and maltose-binding protein (MBP) fusions. Purified MBP-Rep was used to immunize mice allowing the construction of naïve and pre-immunized scFv phage display libraries. Immunoassays showed that scFv-ScRep1 recognized an N-terminal epitope of Rep, whereas scFv-ScRep2 recognized a more central epitope. This is the first successful production of scFv antibodies against a geminivirus Rep, the initial step in the production of transgenic plants with resistance to TYLCV. PMID:19226769

  13. Adjuvant poly(N-isopropylacrylamide) generates more efficient monoclonal antibodies against truncated recombinant histidine-rich protein2 of Plasmodium falciparum for malaria diagnosis.

    PubMed

    Verma, Reena; Ravichandran, Ramakrishnan; Jayaprakash, Naatamai S; Kumar, Ashok; Vijayalakshmi, Mookambeswaran A; Venkataraman, Krishnan

    2015-05-01

    Adjuvants play an important role in eliciting immune responses and subsequent generation of antibodies with high specificity. Recently, poly(N-isopropylacrylamide) (PNiPAAm), also known as a "smart" polymer, has been proposed as a potential adjuvant for making antibodies and vaccines. This material exhibits efficient delivery, protection against degradation, and preservation of antigen epitopes. In this work, we used both CFA and smart polymer to develop a highly specific murine monoclonal antibody (mAb) against recombinant truncated histidine rich protein2 (HRP2) of Plasmodium falciparum. Our results indicate that the mAbs developed using these adjuvants were able to recognize recombinant HRP2 and native PfHRP2 protein from spent medium. The mAbs generated against recombinant truncated HRP2 showed better sensitivity to the antigen and importantly mAbs generated using PNiPAAm adjuvant were in the range of 10(8)-10(9) M(-1). The mAbs generated using PNiPAAm are very efficient and sensitive in detecting HRP2. To the best of our knowledge, this is the first report of such comparison having been made between these two adjuvants and we propose that the smart polymer has huge potential as an alternative to CFA. Additionally, we discuss the utility of the mAbs generated through PNiPAAm for specific diagnosis of malaria caused by P. falciparum. PMID:25641957

  14. Recombination products suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens.

    PubMed

    Wendeler, Edelgard; Zobell, Oliver; Chrost, Bozena; Reiss, Bernd

    2015-02-01

    In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non-homologous end-joining (NHEJ). RAD51-mediated strand-invasion and subsequent strand-exchange is central to the two-end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector-derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51-dependent suggesting the existence of a pathway mechanistically similar to two-end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one-sided integration of two independent donor fragments occurred simultaneously leading to a double-strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.

  15. The persistence of anti-HBs antibody and anamnestic response 20 years after primary vaccination with recombinant hepatitis B vaccine at infancy.

    PubMed

    Bagheri-Jamebozorgi, Masoomeh; Keshavarz, Jila; Nemati, Maryam; Mohammadi-Hossainabad, Saeed; Rezayati, Mohammad-Taghi; Nejad-Ghaderi, Mohsen; Jamalizadeh, Ahmad; Shokri, Fazel; Jafarzadeh, Abdollah

    2014-01-01

    Hepatitis B (HB) vaccine induces protective levels of antibody response (anti-HBs≥10 mIU/mL) in 90-99% of vaccinees. The levels of anti-HBs antibody decline after vaccination. The aim of this study was to evaluate the persistence of anti-HBs antibodies and immunologic memory in healthy adults at 20 years after primary vaccination with recombinant HB vaccine. Blood samples were collected from 300 adults at 20 years after primary HB vaccination and their sera were tested for anti-HBs antibody by ELISA technique. A single booster dose of HB vaccine was administered to a total of 138 subjects, whose anti-HBs antibody titer was <10 mIU/mL. The sera of subjects were re-tested for the anti-HBs antibody levels at 4 weeks after booster vaccination. At 20 years after primary vaccination 37.0% of participants had protective levels of antibody with geometric mean titer (GMT) of 55.44±77.01 mIU/mL. After booster vaccination, 97.1% of vaccinees developed protective levels of antibody and the GMT rose from 2.35±6.49 mIU/mL to 176.28±161.78 mIU/mL. 125/138 (90.6%) of re-vaccinated subjects also showed an anamnestic response to booster vaccination. At 20 years after primary vaccination with HB vaccine, low proportion of the subjects had protective levels of antibody. However, the majority of the re-vaccinated subjects developed protective levels of anti-HBs and showed an anamnestic response after booster vaccination. Additional follow-up studies are necessary to determine the duration of immunological memory.

  16. Oral administration of recombinant Neisseria meningitidis PorA genetically fused to H. pylori HpaA antigen increases antibody levels in mouse serum, suggesting that PorA behaves as a putative adjuvant

    PubMed Central

    Vasquez, Abel E; Manzo, Ricardo A; Soto, Daniel A; Barrientos, Magaly J; Maldonado, Aurora E; Mosqueira, Macarena; Avila, Anastasia; Touma, Jorge; Bruce, Elsa; Harris, Paul R; Venegas, Alejandro

    2015-01-01

    The Neisseria meningitidis outer membrane protein PorA from a Chilean strain was purified as a recombinant protein. PorA mixed with AbISCO induced bactericidal antibodies against N. meningitidis in mice. When PorA was fused to the Helicobacter pylori HpaA antigen gene, the specific response against H. pylori protein increased. Splenocytes from PorA-immunized mice were stimulated with PorA, and an increase in the secretion of IL-4 was observed compared with that of IFN-γ. Moreover, in an immunoglobulin sub-typing analysis, a substantially higher IgG1 level was found compared with IgG2a levels, suggesting a Th2-type immune response. This study revealed a peculiar behavior of the purified recombinant PorA protein per se in the absence of AbISCO as an adjuvant. Therefore, the resistance of PorA to proteolytic enzymes, such as those in the gastrointestinal tract, was analyzed, because this is an important feature for an oral protein adjuvant. Finally, we found that PorA fused to the H. pylori HpaA antigen, when expressed in Lactococcus lactis and administered orally, could enhance the antibody response against the HpaA antigen approximately 3 fold. These observations strongly suggest that PorA behaves as an effective oral adjuvant. PMID:25750999

  17. Rescue and expression of human immunoglobulin genes to generate functional human monoclonal antibodies.

    PubMed

    Lewis, A P; Parry, N; Peakman, T C; Crowe, J S

    1992-07-01

    Human monoclonal antibody production has been hampered for many years by the instability of cell lines and low levels of expression of the antibodies. We describe here the rescue of human immunoglobulin genes utilizing micro-mRNA preparation from a small number of human hybridoma cells and conventional cDNA cloning. This allows cloning and immediate high-level expression from full-length human heavy and light chain cDNA molecules and provides a mechanism to rescue whole human monoclonal antibodies of proven efficacy.

  18. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization.

    PubMed

    Vennema, H; de Groot, R J; Harbour, D A; Dalderup, M; Gruffydd-Jones, T; Horzinek, M C; Spaan, W J

    1990-03-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis was recombined into the genome of vaccinia virus. The recombinant induced spike-protein-specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with feline infectious peritonitis virus, these animals succumbed earlier than did the control group immunized with wild-type vaccinia virus (early death syndrome).

  19. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens.

    PubMed

    Vennema, H; de Groot, R J; Harbour, D A; Dalderup, M; Gruffydd-Jones, T; Horzinek, M C; Spaan, W J

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis (FIPV) was recombined into the genome of vaccinia virus, strain WR. The recombinant induced spike protein specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with FIPV, these animals succumbed earlier than the vWR-immunized control group ("early death syndrome").

  20. Principles and application of antibody libraries for infectious diseases.

    PubMed

    Lim, Bee Nar; Tye, Gee Jun; Choong, Yee Siew; Ong, Eugene Boon Beng; Ismail, Asma; Lim, Theam Soon

    2014-12-01

    Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.

  1. Construction of expression systems for flaA and flaB genes of Helicobacter pylori and determination of immunoreactivity and antigenicity of recombinant proteins

    PubMed Central

    Yan, Jie; Liang, Shao-Hui; Mao, Ya-Fei; Li, Li-Wei; Li, Shu-Ping

    2003-01-01

    AIM: To clone flagellin genes A (flaA) and B (flaB) from a clinical strain of Helicobacter pylori (H pylori) and to construct prokaryotic expression systems of the genes and identify immunity of the fusion proteins. METHODS: The flaA and flaB genes from a clinical H pylori isolate Y06 were amplified by high fidelity PCR. The nucleotide sequences of target DNA amplification fragments from the two genes were sequenced after T-A cloning. The recombinant expression vector pET32a inserted with flaA and flaB genes was constructed, respectively. The expressions of FlaA and FlaB fusion proteins in E. coli BL21DE3 induced by isopropylthio-β-D-galactoside (IPTG) at different concentrations were examined by SDS-PAGE. Western blot using commercial antibodies against whole cell of H pylori and immunodiffusion assay using self-prepared rabbit antiserum against FlaA (rFlaA) or FlaB (rFlaB) recombinant proteins were applied to the determination of the fusion proteins immunity. ELISA was used to detect the antibodies against rFlaA and rFlaB in sera of 125 H pylori infected patients and to examine rFlaA and rFlaB expression in 98 clinical isolates of H pylori, respectively. RESULTS: In comparison with the reported corresponding sequences, the nucleotide sequence homologies of the cloned flaA and flaB genes were from 96.28%-97.13% and 96.31%-97.73%, and their putative amino acid sequence homologies were 99.61%-99.80% and 99.41%-100% for the two genes, respectively. The output of rFlaA and rFlaB expressed by pET32a-flaA-BL21DE3 and pET32a-flaB-BL21DE3 systems was as high as 40%-50% of the total bacterial proteins. Both rFlaA and rFlaB were able to combine with the commercial antibodies against whole cell of H pylori and to induce rabbits to produce specific antibodies with the same 1:2 immunodiffusion titers after the animals were immunized with the two recombinant proteins. Ninety-eight and zero point 4 and 92.80% of the serum samples from 125 patients infected with H pylori were

  2. Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity.

    PubMed

    Groves, Maria A T; Amanuel, Lily; Campbell, Jamie I; Rees, D Gareth; Sridharan, Sudharsan; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2014-01-01

    In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics.In our analyses, we observed distinct differences in the pattern of beneficial mutations in antibodies derived from phage and ribosome display selections, and discovered the lead antibody Jedi067 had a ~3700-fold improvement in KD over the parent KENB061. We constructed a homology model of the Fv region of Jedi067 to map the specific positions where mutations occurred in the CDR3 loops. For VL CDR3, positions 94 to 97 carry greater diversity in the ribosome display variants compared with the phage display. The positions 95a, 95b and 96 of VLCDR3 form part of the interface with VH in this model. The model shows that positions 96, 98, 100e, 100f, 100 g, 100h, 100i and 101 of the VHCDR3 include residues at the VH and VL interface. Importantly, Leu96 and Tyr98 are conserved at the interface positions in both phage and ribosome display indicating their importance in maintaining the VH-VL interface. For antibodies derived from ribosome display, there is significant diversity at residues 100a to 100f of the VH CDR3 compared with phage display. A unique deletion of isoleucine at position 102 of the lead candidate, Jedi067, also occurs in the VHCDR3.As anticipated, recombining the mutations via ribosome display led to a greater structural diversity, particularly in the heavy chain CDR3, which in turn

  3. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  4. A Recombinant Humanized Anti-Cocaine Monoclonal Antibody Inhibits the Distribution of Cocaine to the Brain in Rats

    PubMed Central

    Gooden, Felicia C. T.; Tabet, Michael R.; Ball, William J.

    2014-01-01

    The monoclonal antibody (mAb), h2E2, is a humanized version of the chimeric human/murine anti-cocaine mAb 2E2. The recombinant h2E2 protein was produced in vitro from a transfected mammalian cell line and retained high affinity (4 nM Kd) and specificity for cocaine over its inactive metabolites benzoylecgonine (BE) and ecgonine methyl ester. In rats, pharmacokinetic studies of h2E2 (120 mg/kg i.v.) showed a long terminal elimination half-life of 9.0 days and a low volume of distribution at steady state (Vdss) of 0.3 l/kg. Pretreatment with h2E2 produced a dramatic 8.8-fold increase in the area under the plasma cocaine concentration-time curve (AUC) and in brain a concomitant decrease of 68% of cocaine’s AUC following an i.v. injection of an equimolar cocaine dose. Sequestration of cocaine in plasma by h2E2, shown via reduction of cocaine’s Vdss, indicates potential clinical efficacy. Although the binding of cocaine to h2E2 in plasma should inhibit distribution and metabolism, the elimination of cocaine remained multicompartmental and was still rapidly eliminated from plasma despite the presence of h2E2. BE was the major cocaine metabolite, and brain BE concentrations were sixfold higher than in plasma, indicating that cocaine is normally metabolized in the brain. In the presence of h2E2, brain BE concentrations were decreased and plasma BE was increased, consistent with the observed h2E2-induced changes in cocaine disposition. The inhibition of cocaine distribution to the brain confirms the humanized mAb, h2E2, as a lead candidate for development as an immunotherapy for cocaine abuse. PMID:24733787

  5. Rainbow trout surviving infections of viral haemorrhagic septicemia virus (VHSV) show lasting antibodies to recombinant G protein fragments.

    PubMed

    Encinas, P; Gomez-Casado, E; Fregeneda-Grandes; Olesen, N J; Lorenzen, N; Estepa, A; Coll, J M

    2011-03-01

    Rainbow trout antibodies (Abs) binding to recombinant fragments (frgs) derived from the protein G of the viral haemorrhagic septicemia virus (VHSV)-07.71 strain, could be detected by ELISA (frg-ELISA) in sera from trout surviving laboratory-controlled infections. Abs were detected not only by using sera from trout infected with the homologous VHSV isolate but also with the VHSV-DK-201433 heterologous isolate, which had 13 amino acid changes. Sera from healthy trout and/or from trout surviving infectious haematopoietic necrosis virus (IHNV) infection, were used to calculate cut-off absorbances to differentiate negative from positive sera. Specific anti-VHSV Abs could then be detected by using any of the following frgs: frg11 (56-110), frg15 (65-250), frg16 (252-450) or G21-465. While high correlations were found among the ELISA values obtained with the different frgs, no correlations between any frg-ELISA and complement-dependent 50% plaque neutralization test (PNT) titres could be demonstrated. Between 4 and 10 weeks after VHSV infection, more trout sera were detected as positives by using heterologous frg-ELISA rather than homologous PNT. Furthermore, the percentage of positive sera detected by frg11-ELISA increased with time after infection to reach 100%, while those detected by complement-dependent PNT decreased to 29.4%, thus confirming that the lack of neutralizing Abs does not mean the lack of any anti-VHSV Abs in survivor trout sera. Preliminary results with sera from field samples suggest that further refinements of the frg-ELISA could allow detection of anti-VHSV trout Abs in natural outbreaks caused by different heterologous VHSV isolates. The homologous frg-ELISA method could be useful to follow G immunization attempts during vaccine development and/or to best understand the fish Ab response during VHSV infections. The viral frgs approach might also be used with other fish species and/or viruses.

  6. A recombinant humanized anti-cocaine monoclonal antibody inhibits the distribution of cocaine to the brain in rats.

    PubMed

    Norman, Andrew B; Gooden, Felicia C T; Tabet, Michael R; Ball, William J

    2014-07-01

    The monoclonal antibody (mAb), h2E2, is a humanized version of the chimeric human/murine anti-cocaine mAb 2E2. The recombinant h2E2 protein was produced in vitro from a transfected mammalian cell line and retained high affinity (4 nM Kd) and specificity for cocaine over its inactive metabolites benzoylecgonine (BE) and ecgonine methyl ester. In rats, pharmacokinetic studies of h2E2 (120 mg/kg i.v.) showed a long terminal elimination half-life of 9.0 days and a low volume of distribution at steady state (Vdss) of 0.3 l/kg. Pretreatment with h2E2 produced a dramatic 8.8-fold increase in the area under the plasma cocaine concentration-time curve (AUC) and in brain a concomitant decrease of 68% of cocaine's AUC following an i.v. injection of an equimolar cocaine dose. Sequestration of cocaine in plasma by h2E2, shown via reduction of cocaine's Vdss, indicates potential clinical efficacy. Although the binding of cocaine to h2E2 in plasma should inhibit distribution and metabolism, the elimination of cocaine remained multicompartmental and was still rapidly eliminated from plasma despite the presence of h2E2. BE was the major cocaine metabolite, and brain BE concentrations were sixfold higher than in plasma, indicating that cocaine is normally metabolized in the brain. In the presence of h2E2, brain BE concentrations were decreased and plasma BE was increased, consistent with the observed h2E2-induced changes in cocaine disposition. The inhibition of cocaine distribution to the brain confirms the humanized mAb, h2E2, as a lead candidate for development as an immunotherapy for cocaine abuse. PMID:24733787

  7. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    SciTech Connect

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W.

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  8. Identification of a DNA binding protein that recognizes the nonamer recombinational signal sequence of immunoglobulin genes.

    PubMed

    Halligan, B D; Desiderio, S V

    1987-10-01

    Extracts of nuclei from B- and T-lymphoid cells contain a protein that binds specifically to the conserved nonamer DNA sequence within the recombinational signals of immunoglobulin genes. Complexes with DNA fragments from four kappa light-chain joining (J) segments have the same electrophoretic mobility. Nonamer-containing DNA fragments from heavy-chain and light-chain genes compete for binding. Within the 5'-flanking DNA of the J kappa 4 gene segment, the binding site has been localized to a 27-base-pair interval spanning the nonamer region. The binding activity is recovered as a single peak after ion-exchange chromatography. The site of binding of the protein and its presence in nuclei of lymphoid cells suggest that it may function in the assembly of immunoglobulin genes.

  9. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis

    PubMed Central

    Piriya, P. Sobana; Vasan, P. Thirumalai; Padma, V. S.; Vidhyadevi, U.; Archana, K.; Vennison, S. John

    2012-01-01

    The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production. PMID:22919503

  10. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis.

    PubMed

    Piriya, P Sobana; Vasan, P Thirumalai; Padma, V S; Vidhyadevi, U; Archana, K; Vennison, S John

    2012-01-01

    The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  11. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-12-29

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene).

  12. Assessing drivers of the IgG4 antibody reactivity to recombinant antigen Bm14 in Wuchereria bancrofti endemic populations in East Africa.

    PubMed

    Damgaard, Johanne; Meyrowitsch, Dan W; Rwegoshora, Rwehumbiza T; Magesa, Stephen M; Mukoko, Dunstan A; Simonsen, Paul E

    2016-09-01

    A high proportion of the human population in lymphatic filariasis (LF) endemic areas is positive for filarial specific IgG4 antibodies, including many individuals without microfilariae (mf; circulating larvae in the human blood) or circulating filarial antigens (CFA; marker of adult worm infection). The antibodies are commonly regarded as markers of infection and/or exposure to filarial larvae, but a direct association between the antibodies and these indices has not been well documented. The present study assessed the role and relative effect of potential drivers of the human IgG4 antibody reactivity to the recombinant filarial antigen Bm14 in Wuchereria bancrofti endemic populations in East Africa. Sera collected during previous studies from 395 well characterized individuals with regard to age, sex, mf, CFA, household vector biting and household exposure to infective filarial larvae were tested for IgG4 antibodies to Bm14, and associations between antibody reactivity and the different variables were statistically analyzed. IgG4 reactivity to Bm14 was highly positively associated with CFA, and to a lesser extent with age. However, an expected association with household exposure to infective filarial larvae was not found. Bm14 antibody reactivity thus appeared mainly to reflect actual infection of individuals with adult filarial worms rather than ongoing exposure to transmission. The analyses moreover suggested that many of the CFA negative but Bm14 positive individuals had early or low level infections where antibodies had been induced but where CFA was not (yet?) measurable. Although the study indicated that IgG4 reactivity to Bm14 is a marker of filarial infection, assessment of this reactivity, especially in children, will still be useful for indirect monitoring of changes in transmission intensity, including break of transmission and post-elimination surveillance, in LF control. PMID:27172877

  13. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    SciTech Connect

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan; Li, Lin; Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen; Jiang, Shibo

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  14. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    PubMed

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. PMID:23867013

  15. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    PubMed

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine.

  16. Vaccination of koalas with a recombinant Chlamydia pecorum major outer membrane protein induces antibodies of different specificity compared to those following a natural live infection.

    PubMed

    Kollipara, Avinash; Polkinghorne, Adam; Beagley, Kenneth W; Timms, Peter

    2013-01-01

    Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.

  17. A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin.

    PubMed

    Parsons, Juliana; Altmann, Friedrich; Graf, Manuela; Stadlmann, Johannes; Reski, Ralf; Decker, Eva L

    2013-01-01

    Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modification in higher eukaryotes is prolyl-4-hydroxylase (P4H)-catalysed prolyl-hydroxylation. P4H sequence recognition sites on target proteins differ between humans and plants leading to non-human posttranslational modifications of recombinant human proteins produced in plants. The resulting hydroxyprolines display the anchor for plant-specific O-glycosylation, which bears immunogenic potential for patients. Here we describe the identification of a plant gene responsible for non-human prolyl-hydroxylation of human erythropoietin (hEPO) recombinantly produced in plant (moss) bioreactors. Targeted ablation of this gene abolished undesired prolyl-hydroxylation of hEPO and thus paves the way for plant-made pharmaceuticals humanized via glyco-engineering in moss bioreactors.

  18. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice.

    PubMed

    Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D

    2014-04-01

    Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.

  19. Enhanced production of ε-caprolactone by coexpression of bacterial hemoglobin gene in recombinant Escherichia coli expressing cyclohexanone monooxygenase gene.

    PubMed

    Lee, Won-Heong; Park, Eun-Hee; Kim, Myoung-Dong

    2014-12-28

    Baeyer-Villiger (BV) oxidation of cyclohexanone to epsilon-caprolactone in a microbial system expressing cyclohexanone monooxygenase (CHMO) can be influenced by not only the efficient regeneration of NADPH but also a sufficient supply of oxygen. In this study, the bacterial hemoglobin gene from Vitreoscilla stercoraria (vhb) was introduced into the recombinant Escherichia coli expressing CHMO to investigate the effects of an oxygen-carrying protein on microbial BV oxidation of cyclohexanone. Coexpression of Vhb allowed the recombinant E. coli strain to produce a maximum epsilon-caprolactone concentration of 15.7 g/l in a fed-batch BV oxidation of cyclohexanone, which corresponded to a 43% improvement compared with the control strain expressing CHMO only under the same conditions.

  20. Construction of recombinant Marek's disease virus (MDV) lacking the meq oncogene and co-expressing AIV-H9N2 HA and NA genes under control of exogenous promoters.

    PubMed

    Zhang, Zhenjie; Chen, Wenqing; Ma, Chengtai; Zhao, Peng; Duan, Luntao; Zhang, Fushou; Sun, Aijun; Li, Yanpeng; Su, Hongqin; Li, Sifei; Cui, He; Cui, Zhizhong

    2014-07-10

    To develop a recombinant Marek's disease virus (rMDV1) co-expressing the hemagglutinin gene (HA) and neuramidinase gene (NA) from a low pathogenic avian influenza virus (LPAIV) H9N2 strain and lacking the meq oncogene that shares homology with the Jun/Fos family of transcriptional factors, a wild strain of MDV GX0101 was used as parental virus, the HA and NA genes co-expression cassette under control of the CMV and SV40 early promoters was inserted at two meq sites of GX0101 to form a new meq knock-out mutant MDV (MZC12HA/NA) through homologous recombination. MZC12HA/NA was reconstituted by transfection of recombinant BAC-MDV DNA into the secondary chicken embryo fibroblast (CEF) cells. Highly purified MZC12HA/NA was obtained after four rounds of plaque purification and proliferation. In vitro growth properties of recombinant virus were also inspected and concluded that the MZC12HA/NA had the same growth kinetics in CEF cultures as its parental wild type virus GX0101. Southern blot indicated that co-expression cassette was successfully inserted at two copies sites of meq gene, so two meq genes were knocked-out completely. RT-qPCR showed transcription and expression levels of the HA and NA genes were both significantly higher than that of GX0101 own pp38 gene. Indirect fluorescence antibody (IFA) test, and Western blot analyses indicated that HA and NA genes were co-expressed simultaneously under control of the different promoters but meq genes were not. These results herald a new and effective recombinant meq-deleted MDV-based AIV-H9N2 vaccine may be useful in protecting chickens from very virulent MDV and H9N2 challenges.

  1. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer

    PubMed Central

    Mosig, Gisela; Gewin, John; Luder, Andreas; Colowick, Nancy; Vo, Daniel

    2001-01-01

    Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses. PMID:11459968

  2. Comparison of affinity chromatography and adsorption to vaccinia virus recombinant infected cells for depletion of antibodies directed against respiratory syncytial virus glycoproteins present in a human immunoglobulin preparation.

    PubMed

    Sastre, Patricia; Melero, José A; García-Barreno, Blanca; Palomo, Concepción

    2005-06-01

    Antibodies directed against human respiratory syncytial virus (HRSV) glycoproteins were depleted from a commercial immunoglobulin preparation (RespiGam) by two different methods. The first method consisted of repeated adsorption of RespiGam to Sepharose beads with covalently bound soluble forms of the two major viral glycoproteins (F or G). The second method consisted of adsorption of immunoglobulins to live cells expressing F or G glycoproteins on their surfaces after infection with vaccinia virus recombinants. While the first method removed efficiently antibodies that reacted with F and/or G glycoproteins by ELISA, it was inefficient in the elimination of anti-HRSV neutralizing antibodies. In contrast, the second method removed efficiently anti-HRSV antibodies that both reacted by ELISA and neutralized virus infectivity. These results confirm that human neutralizing antibodies are directed exclusively against HRSV F and G glycoproteins, and, they raise the possibility that F and G glycoproteins inserted into cell membranes differ antigenically from their soluble forms linked covalently to Sepharose beads.

  3. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules.

    PubMed

    Nabors, G S; Braun, P A; Herrmann, D J; Heise, M L; Pyle, D J; Gravenstein, S; Schilling, M; Ferguson, L M; Hollingshead, S K; Briles, D E; Becker, R S

    2000-03-01

    Pneumococcal surface protein A (PspA) is a highly variable protein found on all strains of pneumococci. To be successful, a PspA-based vaccine for S. pneumoniae must induce antibodies that are broadly cross-reactive. To address whether cross-reactive antibodies could be induced in man, we evaluated serum from adults immunized with recombinant clade 2 PspA from strain Rx1. Immunization with 5-125 microg rPspA lead to a significant increase in circulating anti-PspA antibodies, as well as antibodies reactive to heterologous rPspA molecules. Increased binding of post-immune sera to 37 pneumococcal strains expressing a variety of PspA and capsule types was observed, versus pre-immune sera. The extent of cross-clade reactivity of human anti-rPspA followed roughly the amount of sequence homology to the non-clade 2 antigens. It is hypothesized that priming of humans by natural exposure to S. pneumoniae contributes to the breadth of the cross-reactivity of antibody to PspA.

  4. Production of methionine γ- lyase in recombinant Citrobacter freundii bearing the hemoglobin gene.

    PubMed

    Kahraman, Huseyin; Aytan, Emel; Kurt, Ash Giray

    2011-09-01

    The production of antileukemic enzyme methionine γ-lyase (MGL) in distinctly related bacteria, Citrobacter freundii and in their recombinants expressing the Vitresocilla hemoglobin (VHb) has been studied. This study concerns the potential of Citrobacter freundii expressing the Vitreoscilla hemoglobin gene (vgb) for the methionine γ- liyase production. Methionine γ- liyase production by Citrobacter freundii and its vgb(-) and vgb(+) bearing recombinant strain was studied in shake-flasks under 200 rpm agitation, culture medium and 30 °C in a time-course manner. The vgb(+) and especially the carbon type had a dramatic effect on methionine γ- liyase production. The vgb(+) strain of C. freundii had about 2-fold and 3.1-fold higher levels of MGL than the host and vgb(-) strain, respectively.

  5. CYS3, a hotspot of meiotic recombination in Saccharomyces cerevisiae. Effects of heterozygosity and mismatch repair functions on gene conversion and recombination intermediates.

    PubMed Central

    Vedel, M; Nicolas, A

    1999-01-01

    We have examined meiotic recombination at the CYS3 locus. Genetic analysis indicates that CYS3 is a hotspot of meiotic gene conversion, with a putative 5'-3' polarity gradient of conversion frequencies. This gradient is relieved in the presence of msh2 and pms1 mutations, indicating an involvement of mismatch repair functions in meiotic recombination. To investigate the role of mismatch repair proteins in meiotic recombination, we performed a physical analysis of meiotic DNA in wild-type and msh2 pms1 strains in the presence or absence of allelic differences at CYS3. Neither the mutations in CYS3 nor the absence of mismatch repair functions affects the frequency and distribution of nearby recombination-initiating DNA double-strand breaks (DSBs). Processing of DSBs is also similar in msh2 pms1 and wild-type strains. We conclude that mismatch repair functions do not control the distribution of meiotic gene conversion events at the initiating steps. In the MSH2 PMS1 background, strains heteroallelic for frameshift mutations in CYS3 exhibit a frequency of gene conversion greater than that observed for either marker alone. Physical analysis revealed no modification in the formation of DSBs, suggesting that this marker effect results from subsequent processing events that are not yet understood. PMID:10101154

  6. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  7. Application of a recombinant capsid polyprotein (P1) expressed in a prokaryotic system to detect antibodies against foot-and-mouth disease virus serotype O.

    PubMed

    Biswal, Jitendra K; Bisht, Punam; Mohapatra, Jajati K; Ranjan, Rajeev; Sanyal, Aniket; Pattnaik, Bramhadev

    2015-04-01

    Foot-and-mouth disease (FMD) is a highly contagious epidemic disease of transboundary importance. In India, the disease is endemic in nature and is controlled primarily by prophylactic bi-annual mass vaccination. In this control programme, liquid-phase blocking ELISA (LPBE) is being used widely for post vaccination seromonitoring. In order to develop an alternative assay to LPBE, the recombinant capsid polyprotein (rP1) of FMD virus (FMDV) serotype O was expressed in Escherichia coli and used as an antigen for the detection of antibodies to FMDV. The capsid polyprotein of FMDV serotype O could be expressed successfully as a recombinant 6xHis-SUMO tagged protein in soluble form. In a Western blot assay, the rP1 protein reacted strongly with anti-FMDV serotype O guinea pig and bovine serum. Further, in this study, an rP1 protein-based solid phase competitive ELISA (rP1-SPCE) was developed and evaluated with a set of serum samples representing the various epidemiological situation of the country. The performance of the rP1-SPCE was compared with the in-house LPBE, and overall, an excellent agreement (kappa = 0.95) was observed between the two tests. This report demonstrates that the recombinant capsid polyprotein-based ELISA has the potential to be an easy-to-perform, safe alternative to the conventional LPBE for the quantitative detection of antibodies to FMDV serotype O. PMID:25701759

  8. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects

    PubMed Central

    Gach, Johannes S.; Gorlani, Andrea; Dotsey, Emmanuel Y.; Becerra, Juan C.; Anderson, Chase T. M.; Berzins, Baiba; Felgner, Philip L.; Forthal, Donald N.; Deeks, Steven G.; Wilkin, Timothy J.; Casazza, Joseph P.; Koup, Richard A.; Katlama, Christine; Autran, Brigitte; Murphy, Robert L.; Achenbach, Chad J.

    2016-01-01

    Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5) boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART). Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB) and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC). We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir. PMID:27500639

  9. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    PubMed

    Gach, Johannes S; Gorlani, Andrea; Dotsey, Emmanuel Y; Becerra, Juan C; Anderson, Chase T M; Berzins, Baiba; Felgner, Philip L; Forthal, Donald N; Deeks, Steven G; Wilkin, Timothy J; Casazza, Joseph P; Koup, Richard A; Katlama, Christine; Autran, Brigitte; Murphy, Robert L; Achenbach, Chad J

    2016-01-01

    Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5) boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART). Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB) and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC). We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir. PMID:27500639

  10. The clearance kinetics of autologous RhD-positive erythrocytes coated ex vivo with novel recombinant and monoclonal anti-D antibodies

    PubMed Central

    Chapman, G E; Ballinger, J R; Norton, M J; Parry-Jones, D R; Beharry, N A; Cousins, C; Dash, C H; Peters, A M

    2007-01-01

    Anti-D is given routinely to pregnant RhD-negative women to prevent haemolytic disease of the fetus and newborn. To overcome the potential drawbacks associated with plasma-derived products, monoclonal and recombinant forms of anti-D have been developed. The ability of two such antibodies, BRAD-3/5 monoclonal anti-D IgG (MAD) and rBRAD-3/5 recombinant anti-D IgG (RAD), to clear RhD-positive erythrocytes from the circulation was compared using a dual radiolabelling technique. Six RhD-positive males received autologous erythrocytes radiolabelled with 99mTc and 51Cr and coated ex vivo with MAD and RAD. Blood samples were collected up to 1 h following intravenous injection, and percentage dose of radioactivity in the samples determined. Three different levels of coating were used on three separate occasions. No significant differences between MAD and RAD were observed in the initial clearance rate constant at any dose level. The log[activity]-time clearance plots were curved, showing a reduction in the clearance rate constant with time. This reduction was more marked for RAD than for MAD. The results support a dynamic model for the clearance of antibody-coated erythrocytes that may have wider relevance for the therapeutic use of antibodies. PMID:17680827

  11. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    NASA Astrophysics Data System (ADS)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  12. Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair.

    PubMed

    Penttinen, Petri; Greco, Dario; Muntyan, Victoria; Terefework, Zewdu; De Lajudie, Philippe; Roumiantseva, Marina; Becker, Anke; Auvinen, Petri; Lindström, Kristina

    2016-06-01

    To serve as inoculants of legumes, nitrogen-fixing rhizobium strains should be competitive and tolerant of diverse environments. We hybridized the genomes of symbiotically efficient and salt tolerant Sinorhizobium inoculant strains onto the Sinorhizobium meliloti Rm1021 microarray. The number of variable genes, that is, divergent or putatively multiplied genes, ranged from 503 to 1556 for S. meliloti AK23, S. meliloti STM 1064 and S. arboris HAMBI 1552. The numbers of divergent genes affiliated with the symbiosis plasmid pSymA and related to DNA replication, recombination and repair were significantly higher than expected. The variation was mainly in the accessory genome, implying that it was important in shaping the adaptability of the strains.

  13. Ectopic recombination within homologous immunoglobulin mu gene constant regions in a mouse hybridoma cell line.

    PubMed Central

    Baker, M D; Read, L R

    1992-01-01

    We have transferred a pSV2neo vector containing the wild-type constant region of the immunoglobulin mu gene (C mu) into the mutant hybridoma igm482, which bears a 2-bp deletion in the third constant-region exon of its haploid chromosomal mu gene (C mu 3). Independent igm482 transformants contain the wild-type immunoglobulin C mu region stably integrated in ectopic chromosomal positions. We report here that the wild-type immunoglobulin C mu region can function as the donor sequence in a gene conversion event which corrects the 2-bp deletion in the mutant igm482 chromosomal C mu 3 exon. The homologous recombination event restores normal immunoglobulin M production in the mutant cell. Images PMID:1406631

  14. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  15. Gene CATCHR--gene cloning and tagging for Caenorhabditis elegans using yeast homologous recombination: a novel approach for the analysis of gene expression.

    PubMed

    Sassi, Holly E; Renihan, Stephanie; Spence, Andrew M; Cooperstock, Ramona L

    2005-01-01

    Expression patterns of gene products provide important insights into gene function. Reporter constructs are frequently used to analyze gene expression in Caenorhabditis elegans, but the sequence context of a given gene is inevitably altered in such constructs. As a result, these transgenes may lack regulatory elements required for proper gene expression. We developed Gene Catchr, a novel method of generating reporter constructs that exploits yeast homologous recombination (YHR) to subclone and tag worm genes while preserving their local sequence context. YHR facilitates the cloning of large genomic regions, allowing the isolation of regulatory sequences in promoters, introns, untranslated regions and flanking DNA. The endogenous regulatory context of a given gene is thus preserved, producing expression patterns that are as accurate as possible. Gene Catchr is flexible: any tag can be inserted at any position without introducing extra sequence. Each step is simple and can be adapted to process multiple genes in parallel. We show that expression patterns derived from Gene Catchr transgenes are consistent with previous reports and also describe novel expression data. Mutant rescue assays demonstrate that Gene Catchr-generated transgenes are functional. Our results validate the use of Gene Catchr as a valuable tool to study spatiotemporal gene expression. PMID:16254074

  16. Flexible long-range loops in the VH gene region of the Igh locus facilitate the generation of a diverse antibody repertoire.

    PubMed

    Medvedovic, Jasna; Ebert, Anja; Tagoh, Hiromi; Tamir, Ido M; Schwickert, Tanja A; Novatchkova, Maria; Sun, Qiong; Huis In 't Veld, Pim J; Guo, Chunguang; Yoon, Hye Suk; Denizot, Yves; Holwerda, Sjoerd J B; de Laat, Wouter; Cogné, Michel; Shi, Yang; Alt, Frederick W; Busslinger, Meinrad

    2013-08-22

    The immunoglobulin heavy-chain (Igh) locus undergoes large-scale contraction in pro-B cells, which facilitates VH-DJH recombination by juxtaposing distal VH genes next to the DJH-rearranged gene segment in the 3' proximal Igh domain. By using high-resolution mapping of long-range interactions, we demonstrate that local interaction domains established the three-dimensional structure of the extended Igh locus in lymphoid progenitors. In pro-B cells, these local domains engaged in long-range interactions across the Igh locus, which depend on the regulators Pax5, YY1, and CTCF. The large VH gene cluster underwent flexible long-range interactions with the more rigidly structured proximal domain, which probably ensures similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire. These long-range interactions appear to be an intrinsic feature of the VH gene cluster, because they are still generated upon mutation of the Eμ enhancer, IGCR1 insulator, or 3' regulatory region in the proximal Igh domain.

  17. Novel Recombinant Hepatitis B Virus Vectors Efficiently Deliver Protein and RNA Encoding Genes into Primary Hepatocytes

    PubMed Central

    Hong, Ran; Bai, Weiya; Zhai, Jianwei; Liu, Wei; Li, Xinyan; Zhang, Jiming; Cui, Xiaoxian; Zhao, Xue; Ye, Xiaoli; Deng, Qiang; Tiollais, Pierre; Wen, Yumei

    2013-01-01

    Hepatitis B virus (HBV) has extremely restricted host and hepatocyte tropism. HBV-based vectors could form the basis of novel therapies for chronic hepatitis B and other liver diseases and would also be invaluable for the study of HBV infection. Previous attempts at developing HBV-based vectors encountered low yields of recombinant viruses and/or lack of sufficient infectivity/cargo gene expression in primary hepatocytes, which hampered follow-up applications. In this work, we constructed a novel vector based on a naturally occurring, highly replicative HBV mutant with a 207-bp deletion in the preS1/polymerase spacer region. By applying a novel insertion strategy that preserves the continuity of the polymerase open reading frame (ORF), recombinant HBV (rHBV) carrying protein or small interfering RNA (siRNA) genes were obtained that replicated and were packaged efficiently in cultured hepatocytes. We demonstrated that rHBV expressing a fluorescent reporter (DsRed) is highly infective in primary tree shrew hepatocytes, and rHBV expressing HBV-targeting siRNA successfully inhibited antigen expression from coinfected wild-type HBV. This novel HBV vector will be a powerful tool for hepatocyte-targeting gene delivery, as well as the study of HBV infection. PMID:23552416

  18. Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11.

    PubMed

    Chowdhury, Emdadull H; Mikami, Osamu; Murata, Hideo; Sultana, Parvin; Shimada, Nobuaki; Yoshioka, Miyako; Guruge, Keerthi S; Yamamoto, Sachiko; Miyazaki, Shigeru; Yamanaka, Noriko; Nakajima, Yasuyuki

    2004-02-01

    The presence of maize intrinsic and recombinant cry1Ab genes in the gastrointestinal (GI) contents, peripheral blood mononuclear cells (PBMC), and visceral organs of calves fed genetically modified Bt11 maize was examined by PCR in a subchronic 90-day performance study. Samples were collected from six Japanese Black/Holstein calves fed Bt11 maize and from six calves fed non-Bt maize. Fragments of maize zein (Ze1), invertase, chloroplast, and cry1Ab were detected inconsistently in the rumen fluid and rectal contents 5 and 18 h after feeding. The chloroplast DNA fragments of ribulose-1,5-bisphosphate carboxylase/oxygenase and tRNA were detected inconsistently in the PBMC, the visceral organs, and the longissimus muscle, while the cry1Ab gene was never detected in PBMC or in the visceral organs. These results suggest that feed-derived maize DNA was mostly degraded in the GI tract but that fragmented DNA was detectable in the GI contents as a possible source of transfer to calf tissues. These results also suggest that the recombinant cry1Ab genes were not transferred to the PBMC and tissues of calves fed Bt11 maize.

  19. Diversity and Recombination of Dispersed Ribosomal DNA and Protein Coding Genes in Microsporidia

    PubMed Central

    Ironside, Joseph Edward

    2013-01-01

    Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual reproduction, a

  20. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis

    SciTech Connect

    Lawford, H.G.; Rousseau, J.D.

    1991-12-31

    Efficient utilization of lignocellulosic feedstocks offers an opportunity to reduce the cost of producing fuel ethanol. The fermentation performance characteristics of recombinant Escherichia coli ATCC 11303 carrying the {open_quotes}PET plasmid{close_quotes} (pLO1297) with the lac operon controlling the expression of pyruvate decarboxylase (pdc) and alcohol dehydrogenase 11 (adhB) genes cloned from Zymomonas mobilis CP4 were assessed in batch and continuous processes with sugar mixtures designed to mimic process streams from lignocellulosic hydrolysis systems.

  1. Gene cloning and prokaryotic expression of recombinant flagellin A from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Liu, Yang; Ge, Hui; Qiu, Xuemei

    2010-11-01

    The Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. Bacteria flagellins play an important role during infection and induction of the host immune response. Thus, flagellin proteins are an ideal target for vaccines. We amplified the complete flagellin subunit gene ( flaA) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 62.78 kDa. We purified and characterized the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for further studies into the utility of the FlaA protein as a vaccine candidate against infection by Vibrio parahaemolyticus. In addition, the purified FlaA protein can be used for further functional and structural studies.

  2. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  3. Booster immunization with a partially purified citrus tristeza virus (CTV) preparation after priming with recombinant CTV coat protein enhances the binding capacity of capture antibodies by ELISA.

    PubMed

    Bar-Joseph, M; Filatov, V; Gofman, R; Guang, Y; Hadjinicolis, A; Mawassi, M; Gootwine, E; Weisman, Y; Malkinson, M

    1997-08-01

    Groups of rabbits and young lambs were immunized subcutaneously and intramuscularly with a recombinant citrus tristeza virus (CTV) coat protein (rCTV-CP) antigen. Three weeks after primary immunization the animals were divided into two groups that were boosted either with rCTV-CP or with a partially purified preparation of CTV particles (ppCTV). Twelve and 15 days after the last injection, the animals were bled and the binding capacity of the antisera for CTV detection was examined for capture antibodies by the indirect ELISA. Considerably higher ELISA titers were obtained from animals that were boosted with ppCTV than with rCP. Boosting with partially purified native antigens after priming with recombinant antigens is expected to extend the applicability of the antisera for detecting other structural and non-structural viral antigens by trapping ELISA. PMID:9274814

  4. Intragenomic heterogeneity and intergenomic recombination among Vibrio parahaemolyticus 16S rRNA genes.

    PubMed

    Harth, Erika; Romero, Jaime; Torres, Rafael; Espejo, Romilio T

    2007-08-01

    Vibrio parahaemolyticus is a marine bacterium bearing 11 copies of ribosomal operons. In some strains, such as RIMD2210633, the genome includes identical copies of 16S rRNA genes (rrs). However, it is known that other strains of the species, such as strains ATCC 17802 and RIMD2210856, show conspicuous intragenomic rrs heterogeneity. The extent and diversity of the rrs heterogeneity in V. parahaemolyticus were studied in further detail by characterization of the rrs copies in environmental isolates belonging to 21 different genotype groups. Thirteen of these groups showed intragenomic heterogeneity, containing altogether 16 sequences differing within a 25 bp segment of their rrs. These sequences grouped into four clusters differing in at least four nucleotide sites. Some isolates contained rrs alleles from up to three different clusters. Each segment sequence conserved the stem-loop characteristic of the 16S rRNA structure of this 25 bp sequence. The double-stranded stem sequence was quite variable, but almost every variation had a compensatory change to maintain seven to eight paired bases. Conversely, the single-strand loop sequence was conserved. The results may be explained as a consequence of recombination among rrs evolving in different bacteria. The results suggest that intergenomic rrs recombination is very high in V. parahaemolyticus and that it occurs solely among Vibrio species. This high rrs homologous intergenomic recombination could be an effective mechanism to maintain intragenomic rrs cohesion, mediating the dispersal of the most abundant rrs version among the 11 intragenomic loci. PMID:17660428

  5. Developing protocols for recombinant adeno-associated virus-mediated gene therapy in space.

    PubMed

    Ohi, S

    2000-07-01

    With the advent of the era of International Space Station (ISS) and Mars exploration, it is important more than ever to develop means to cure genetic and acquired diseases, which include cancer and AIDS, for these diseases hamper human activities. Thus, our ultimate goal is to develop protocols for gene therapy, which are suitable to humans on the earth as well as in space. Specifically, we are trying to cure the hemoglobinopathies, beta-thalassemia (Cooley's anemia) and sickle cell anemia, by gene therapy. These well-characterized molecular diseases serve as models for developing ex vivo gene therapy, which would apply to other disorders as well. For example, the procedure may become directly relevant to treating astronauts for space-anemia, immune suppression and bone marrow derived tumors, e.g. leukemia. The adeno-associated virus serotype 2 (AAV2) is a non-pathogenic human parvovirus with broad host-range and tissue specificity. Exploiting these characteristics we have been developing protocols for recombinant AAV2 (rAAV)-based gene therapy. With the rAAV constructs and hematopoietic stem cell (HSC) culture systems in hand, we are currently attempting to cure the mouse model of beta-thalassemia [C57BL/6- Hbbth/Hbbth, Hb(d-minor)] by HSC transplantation (HST) as well as by gene therapy. This paper describes the current status of our rAAV-gene therapy research.

  6. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    PubMed Central

    Hwang, In Sun; Ahn, Il-Pyung

    2016-01-01

    Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 ), which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi. PMID:27298592

  7. Recombinant AAV-directed gene therapy for type I glycogen storage diseases

    PubMed Central

    Chou, JY; Mansfield, BC

    2011-01-01

    Introduction Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. Areas covered A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. Expert opinion rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-prong approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney, and hematopoietic stem cells is required for treating GSD-I. PMID:21504389

  8. Novel recombinant adenoviral vector that targets the interleukin-13 receptor alpha2 chain permits effective gene transfer to malignant glioma.

    PubMed

    Ulasov, Ilya V; Tyler, Matthew A; Han, Yu; Glasgow, Joel N; Lesniak, Maciej S

    2007-02-01

    Transduction of malignant glioma with adenovirus serotype 5 (Ad5) vectors is limited by the low levels of coxsackievirus and adenovirus receptor (CAR) on tumor cells. However, malignant brain tumors have been found to overexpress a glioma-associated receptor, interleukin-13 receptor alpha2 chain (IL-13Ralpha2), a marker of both glial transformation and tumor grade. To selectively target Ad5 to IL-13Ralpha2, we constructed a replication-deficient adenoviral vector that possesses an IL-13 ligand presented by a T4 phage fibritin shaft, and designated the new virus LU-13. Western blot and sequence analyses confirmed proper trimerization and ligand presentation by the T4 fibritin shaft. Confocal microscopy analysis of primary glioma suspensions incubated with viral recombinants showed that LU-13 colocalized with IL-13Ralpha2. Luciferase transduction assays conducted in both primary and passaged glioma cell cultures exhibited at least 10-fold enhanced gene transduction. Moreover, the virus preferentially bound to glioma cells, as documented by increased adenoviral E4 DNA copy number. In vitro competition assays performed with anti-human IL-13 monoclonal antibody confirmed significant attenuation of LU-13 transduction. These results were further confirmed in vivo, where LU-13 showed a 300-fold increase in transgene expression. In summary, we describe here the development of a novel and targeted adenoviral vector that binds IL-13Ralpha2. Our findings confirm the ability of LU-13 to bind IL-13Ralpha2 and increase transgene expression, making it an attractive gene therapy vector for the treatment of malignant glioma in a clinical setting.

  9. Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge.

    PubMed

    Minke, J M; Siger, L; Karaca, K; Austgen, L; Gordy, P; Bowen, R; Renshaw, R W; Loosmore, S; Audonnet, J C; Nordgren, B

    2004-01-01

    An ALVAC (canarypoxvirus)-based recombinant (vCP2017) expressing the prM and E genes derived from a 1999 New York isolate of West Nile virus (WNV) was constructed and assessed for its protective efficacy in horses in two different experiments. In the first trial, a dose titration study was conducted to evaluate both serum neutralising antibody responses to WNV and duration of immunity. In the second trial the onset of protection was determined. Twenty-eight adult horses received two doses of vCP2017 administered intramuscularly at 5-week intervals and sixteen horses comprised age-matched non-vaccinated controls. Individual sera were taken periodically and tested for neutralising antibodies against WNV. Horses were challenged by allowing WNV-infected Aedes albopictus mosquitoes to feed on them two weeks (second trial) or one year (first trial) after the second vaccination. After challenge, horses were monitored for clinical signs of disease, and blood samples were collected for detection of WNV viremia and antibody. In both trials, all vaccinated horses developed neutralising antibodies against WNV. None of the vaccinated or control horses developed clinical signs of WNV disease upon challenge. None of the nine horses challenged 2 weeks after primary vaccination and only one of the ten vaccinated horses challenged 1 year after vaccination developed detectable viremia after challenge, whereas more than 80% of the controls became infected. Results from these studies demonstrated that a primary course of two doses of vCP2017 provides both antibody response and an early immunity in horses against WNV viremia.

  10. Recombinant Pseudomonas putida carrying both the dsz and hcu genes can desulfurize dibenzothiophene in n-tetradecane.

    PubMed

    Noda, Ken-ichi; Watanabe, Kimiko; Maruhashi, Kenji

    2003-07-01

    Pseudomonas putida IFO13696, a recombinant strain with dsz desulfurization genes, desulfurized dibenzothiophene (DBT) in water but not in n-tetradecane. By introducing into this recombinant strain the hcuABC genes that take part in the uptake of DBT in the oil phase into the cell, 82% of 1 mM DBT in n-tetradecane was degraded in 24 h by resting cells. The products of hcuABC genes thus acted in the uptake of DBT in n-tetradecane into the cells and were effective in desulfurization of DBT in the hydrocarbon phase.

  11. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    PubMed

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  12. Human anti-varicella-zoster virus (VZV) recombinant monoclonal antibody produced after Zostavax immunization recognizes the gH/gL complex and neutralizes VZV infection.

    PubMed

    Birlea, Marius; Owens, Gregory P; Eshleman, Emily M; Ritchie, Alanna; Traktinskiy, Igor; Bos, Nathan; Seitz, Scott; Azarkh, Yevgeniy; Mahalingam, Ravi; Gilden, Don; Cohrs, Randall J

    2013-01-01

    Varicella-zoster virus (VZV) is a ubiquitous, highly cell-associated, and exclusively human neurotropic alphaherpesvirus. VZV infection is initiated by membrane fusion, an event dependent in part on VZV glycoproteins gH and gL. Consistent with its location on the virus envelope, the gH/gL complex is a target of neutralizing antibodies produced after virus infection. One week after immunizing a 59-year-old VZV-seropositive man with Zostavax, we sorted his circulating blood plasma blasts and amplified expressed immunoglobulin variable domain sequences by single-cell PCR. Sequence analysis identified two plasma blast clones, one of which was used to construct a recombinant monoclonal antibody (rec-RC IgG). The rec-RC IgG colocalized with VZV gE on the membranes of VZV-infected cells and neutralized VZV infection in tissue culture. Mass spectrometric analysis of proteins immunoprecipitated by rec-RC IgG identified both VZV gH and gL. Transfection experiments showed that rec-RC IgG recognized a VZV gH/gL protein complex but not individual gH or gL proteins. Overall, our recombinant monoclonal anti-VZV antibody effectively neutralizes VZV and recognizes a conformational epitope within the VZV gH/L protein complex. An unlimited supply of this antibody provides the opportunity to analyze membrane fusion events that follow virus attachment and to identify multiple epitopes on VZV-specific proteins.

  13. Development and Characterization of Recombinant Antibody Fragments That Recognize and Neutralize In Vitro Stx2 Toxin from Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Luz, Daniela; Chen, Gang; Maranhão, Andrea Q.; Rocha, Leticia B.; Sidhu, Sachdev; Piazza, Roxane M. F.

    2015-01-01

    Background Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB) bind to globotria(tetra)osylceramide receptors (Gb3/Gb4) on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC) may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes. Methods and Findings In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA. Conclusion In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro. PMID:25790467

  14. Generation of recombinant monoclonal antibodies to study structure-function of envelope protein VP28 of white spot syndrome virus from shrimp

    SciTech Connect

    Wang Yuzhen; Zhang Xiaohua; Yuan Li; Xu Tao; Rao Yu; Li Jia; Dai Heping

    2008-08-08

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.

  15. Validation of a recombinant integrin αvβ6/monoclonal antibody based antigen ELISA for the diagnosis of foot-and-mouth disease.

    PubMed

    Ferris, Nigel P; Grazioli, Santina; Hutchings, Geoffrey H; Brocchi, Emiliana

    2011-08-01

    A sandwich ELISA using recombinant integrin αvβ6 as a capture ligand and serotype-specific monoclonal antibodies (Mabs) as detecting reagents has been compared with a polyclonal antibody based ELISA (using type-specific rabbit antibodies as capture and guinea pig antibodies as detectors), which is employed routinely at the FAO World Reference Laboratory for Foot-and-Mouth Disease (FMD), for the identification and serotyping of FMD virus (FMDV). The study used cell culture grown antigens (1351 FMDV positive) derived from suspected cases of vesicular disease collected from 86 countries between 1924 and 2011, those positive for the other vesicular diseases of swine vesicular disease (n = 25) and vesicular stomatitis (n = 45) and negative samples collected from uninfected cell cultures (n = 36). The diagnostic sensitivity of the assays was similar at 98.1% (polyclonal ELISA) compared to 97.9% (integrin/Mab ELISA) but the serotypic-specificity of the latter was vastly superior (96%) to that of the former (61.5%). Reactions with the viruses of swine vesicular disease and vesicular stomatitis, which produce clinically indistinguishable syndromes in pigs and cattle, did not occur. The integrin/Mab ELISA recognized FMDV strains of wide antigenic and molecular diversity of all seven serotypes and although some FMDV isolates were not detected, the greater specificity of the assay, while retaining test sensitivity comparable to the conventional assay, warrants its consideration for adoption for routine diagnostic use. PMID:21635921

  16. In vivo gene therapy of murine melanoma mediated by recombinant vaccinia virus encoding human IL-2 gene.

    PubMed

    Wan, T; Cao, X; Ju, D; Aces, B

    1997-04-01

    Direct gene transfer into somatic tissue iii vivo is a developing technology with potential application for cancer gene therapy. In this study, recombinant vaccinia virus encoding human IL-2 gene (rVV-IL-2) was used as a candidate vector in mediating iii vivo gene therapy. After rVV-IL-2 was expanded in VERO cells for 72 h, high titer (10(8)-10(10) PFU/ml) rVV-IL-2 were harvested. When 10(6) murine melanoma cells (F16-F10) were infected with rVV-IL-2, about 200 U/ml IL-2 activity was detected in the supernatants at 8 h, and the up-regulation of ICAM-1 and MHC-I expressions on the melanoma cells were observed. The treatment of murine melanoma model by local injection of rVV-IL-2 into the tumor site showed that rVV-IL-2 transfection significantly inhibited the tumor growth and prolonged the survival time of tumor-bearing mice. The splenocytes from rVV-IL-2 treated mice showed higher cytotoxicities of NK, LAK and CTL in comparison with those from the controls. These results suggest that in vivo transfection mediated by rVV-IL-2 has potential effectiveness in enhancing host immunity and would be a useful approach to cancer gene therapy. PMID:21533434

  17. Screening for genes involved in antibody response to sheep red blood cells in the chicken, Gallus gallus.

    PubMed

    Geng, Tuoyu; Guan, Xiaojing; Smith, Edward J

    2015-09-01

    Antibody response, an important trait in both agriculture and biomedicine, plays a part in protecting animals from infection. Dissecting molecular basis of antibody response may improve artificial selection for natural disease resistance in livestock and poultry. A number of genetic markers associated with antibody response have been identified in the chicken and mouse by linkage-based association studies, which only define genomic regions by genetic markers but do not pinpoint genes for antibody response. In contrast, global expression profiling has been applied to define the molecular bases of a variety of biological traits through identification of differentially expressed genes (DEGs). Here, we employed Affimetrix GeneChip Chicken Genome Arrays to identify differentially expressed genes for antibody response to sheep red blood cells (SRBC) using chickens challenged with and without SRBC or chickens with high and low anti-SRBC titers. The DEGs include those with known (i.e., MHC class I and IgH genes) or unknown function in antibody response. Classification test of these genes suggested that the response of the chicken to intravenous injection of SRBC involved multiple biological processes, including response to stress or other different stimuli, sugar, carbohydrate or protein binding, and cell or soluble fraction, in addition to antibody response. This preliminary study thus provides an insight into molecular basis of antibody response to SRBC in the chicken.

  18. The joint effects of background selection and genetic recombination on local gene genealogies.

    PubMed

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  19. In vivo and in vitro analyses of recombinant baculoviruses lacking a functional cg30 gene.

    PubMed

    Passarelli, A L; Miller, L K

    1994-02-01

    The cg30 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) encodes two sequence motifs, a zinc finger-like motif and a leucine zipper, found in other polypeptides known to be involved in gene regulation. To gain insight into the function of the cg30 product, CG30, we constructed and characterized recombinant viruses lacking a functional cg30 gene. We found that cg30 mutants had no striking phenotype in cell lines derived from Spodoptera frugiperda or Trichoplusia ni or in T. ni larvae. Although cg30 is known to be transcribed as an early monocistronic RNA and as the second cistron of an abundant late bicistronic RNA, production of a CG30-beta-galactosidase fusion protein was observed mainly at early times postinfection. Viruses containing cg30 had a subtle growth advantage over those lacking cg30 after several viral passages in cell culture. We employed transient expression assays to determine whether cg30 and pe-38, an AcMNPV gene that encodes a polypeptide with zinc finger-like and leucine zipper motifs similar to those of cg30, have redundant functions. Although pe-38 may have a role in AcMNPV gene expression, there was no indication that cg30 and pe-38 are functionally redundant.

  20. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall.

    PubMed

    Ye, Y W; Landau, C; Willard, J E; Rajasubramanian, G; Moskowitz, A; Aziz, S; Meidell, R S; Eberhart, R C

    1998-01-01

    The use of intravascular stents as an adjunct for percutaneous transluminal revascularization is limited by two principal factors, acute thrombosis and neointimal proliferation, resulting in restenosis. To overcome these limitations, we have investigated the potential of microporous bioresorbable polymer stents formed from poly(L-lactic acid) (PLLA)/poly(epsilon-caprolactone) (PCL) blends to function both to provide mechanical support and as reservoirs for local delivery of therapeutic molecules and particles to the vessel wall. Tubular PLLA/PCL stents were fabricated by the flotation-precipitation method, and helical stents were produced by a casting/winding technique. Hybrid structures in which a tubular sheath is deposited on a helical skeleton were also generated. Using a two-stage solvent swelling technique, polyethylene oxide has been incorporated into these stents to improve hydrophilicity and water uptake, and to facilitate the ability of these devices to function as drug carriers. Stents modified in this manner retain axial and radial mechanical strength sufficient to stabilize the vessel wall against elastic recoil caused by vasoconstrictive and mechanical forces. Because of the potential of direct gene transfer into the vessel wall to ameliorate thrombosis and neointimal proliferation, we have investigated the capacity of these polymer stents to function in the delivery of recombinant adenovirus vectors to the vessel wall. In vitro, virus stock was observed to readily absorb into, and elute from these devices in an infectious form, with suitable kinetics. Successful gene transfer and expression has been demonstrated following implantation of polymer stents impregnated with a recombinant adenovirus carrying a nuclear-localizing betaGal reporter gene into rabbit carotid arteries. These studies suggest that surface-modified polymer stents may ultimately be useful adjunctive devices for both mechanical support and gene transfer during percutaneous

  1. Accurate comparison of antibody expression levels by reproducible transgene targeting in engineered recombination-competent CHO cells.

    PubMed

    Mayrhofer, Patrick; Kratzer, Bernhard; Sommeregger, Wolfgang; Steinfellner, Willibald; Reinhart, David; Mader, Alexander; Turan, Soeren; Qiao, Junhua; Bode, Juergen; Kunert, Renate

    2014-12-01

    Over the years, Chinese hamster ovary (CHO) cells have emerged as the major host for expressing biotherapeutic proteins. Traditional methods to generate high-producer cell lines rely on random integration(s) of the gene of interest but have thereby left the identification of bottlenecks as a challenging task. For comparison of different producer cell lines derived from various transfections, a system that provides control over transgene expression behavior is highly needed. This motivated us to develop a novel "DUKX-B11 F3/F" cell line to target different single-chain antibody fragments into the same chromosomal target site by recombinase-mediated cassette exchange (RMCE) using the flippase (FLP)/FLP recognition target (FRT) system. The RMCE-competent cell line contains a gfp reporter fused to a positive/negative selection system flanked by heterospecific FRT (F) variants under control of an external CMV promoter, constructed as "promoter trap". The expression stability and FLP accessibility of the tagged locus was demonstrated by successive rounds of RMCE. As a proof of concept, we performed RMCE using cassettes encoding two different anti-HIV single-chain Fc fragments, 3D6scFv-Fc and 2F5scFv-Fc. Both targeted integrations yielded homogenous cell populations with comparable intracellular product contents and messenger RNA (mRNA) levels but product related differences in specific productivities. These studies confirm the potential of the newly available "DUKX-B11 F3/F" cell line to guide different transgenes into identical transcriptional control regions by RMCE and thereby generate clones with comparable amounts of transgene mRNA. This new host is a prerequisite for cell biology studies of independent transfections and transgenes.

  2. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    NASA Astrophysics Data System (ADS)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  3. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses.

    PubMed

    Jouet, Agathe; McMullan, Mark; van Oosterhout, Cock

    2015-06-01

    Plant immune genes, or resistance genes, are involved in a co-evolutionary arms race with a diverse range of pathogens. In agronomically important grasses, such R genes have been extensively studied because of their role in pathogen resistance and in the breeding of resistant cultivars. In this study, we evaluate the importance of recombination, mutation and selection on the evolution of the R gene complex Rp1 of Sorghum, Triticum, Brachypodium, Oryza and Zea. Analyses show that recombination is widespread, and we detected 73 independent instances of sequence exchange, involving on average 1567 of 4692 nucleotides analysed (33.4%). We were able to date 24 interspecific recombination events and found that four occurred postspeciation, which suggests that genetic introgression took place between different grass species. Other interspecific events seemed to have been maintained over long evolutionary time, suggesting the presence of balancing selection. Significant positive selection (i.e. a relative excess of nonsynonymous substitutions (dN /dS >1)) was detected in 17-95 codons (0.42-2.02%). Recombination was significantly associated with areas with high levels of polymorphism but not with an elevated dN /dS ratio. Finally, phylogenetic analyses show that recombination results in a general overestimation of the divergence time (mean = 14.3%) and an alteration of the gene tree topology if the tree is not calibrated. Given that the statistical power to detect recombination is determined by the level of polymorphism of the amplicon as well as the number of sequences analysed, it is likely that many studies have underestimated the importance of recombination relative to the mutation rate.

  4. Signs of neutralization in a redundant gene involved in homologous recombination in Wolbachia endosymbionts.

    PubMed

    Badawi, Myriam; Giraud, Isabelle; Vavre, Fabrice; Grève, Pierre; Cordaux, Richard

    2014-09-17

    Genomic reduction in bacterial endosymbionts occurs through large genomic deletions and long-term accumulation of mutations. The latter process involves successive steps including gene neutralization, pseudogenization, and gradual erosion until complete loss. Although many examples of pseudogenes at various levels of degradation have been reported, neutralization cases are scarce because of the transient nature of the process. Gene neutralization may occur due to relaxation of selection in nonessential genes, for example, those involved in redundant functions. Here, we report an example of gene neutralization in the homologous recombination (HR) pathway of Wolbachia, a bacterial endosymbiont of arthropods and nematodes. The HR pathway is often depleted in endosymbiont genomes, but it is apparently intact in some Wolbachia strains. Analysis of 12 major HR genes showed that they have been globally under strong purifying selection during the evolution of Wolbachia strains hosted by arthropods, supporting the evolutionary importance of the HR pathway for these Wolbachia genomes. However, we detected signs of recent neutralization of the ruvA gene in a subset of Wolbachia strains, which might be related to an ancestral, clade-specific amino acid change that impaired DNA-binding activity. Strikingly, RuvA is part of the RuvAB complex involved in branch migration, whose function overlaps with the RecG helicase. Although ruvA is experiencing neutralization, recG is under strong purifying selection. Thus, our high phylogenetic resolution suggests that we identified a rare example of targeted neutralization of a gene involved in a redundant function in an endosymbiont genome.

  5. Signs of Neutralization in a Redundant Gene Involved in Homologous Recombination in Wolbachia Endosymbionts

    PubMed Central

    Badawi, Myriam; Giraud, Isabelle; Vavre, Fabrice; Grève, Pierre; Cordaux, Richard

    2014-01-01

    Genomic reduction in bacterial endosymbionts occurs through large genomic deletions and long-term accumulation of mutations. The latter process involves successive steps including gene neutralization, pseudogenization, and gradual erosion until complete loss. Although many examples of pseudogenes at various levels of degradation have been reported, neutralization cases are scarce because of the transient nature of the process. Gene neutralization may occur due to relaxation of selection in nonessential genes, for example, those involved in redundant functions. Here, we report an example of gene neutralization in the homologous recombination (HR) pathway of Wolbachia, a bacterial endosymbiont of arthropods and nematodes. The HR pathway is often depleted in endosymbiont genomes, but it is apparently intact in some Wolbachia strains. Analysis of 12 major HR genes showed that they have been globally under strong purifying selection during the evolution of Wolbachia strains hosted by arthropods, supporting the evolutionary importance of the HR pathway for these Wolbachia genomes. However, we detected signs of recent neutralization of the ruvA gene in a subset of Wolbachia strains, which might be related to an ancestral, clade-specific amino acid change that impaired DNA-binding activity. Strikingly, RuvA is part of the RuvAB complex involved in branch migration, whose function overlaps with the RecG helicase. Although ruvA is experiencing neutralization, recG is under strong purifying selection. Thus, our high phylogenetic resolution suggests that we identified a rare example of targeted neutralization of a gene involved in a redundant function in an endosymbiont genome. PMID:25230723

  6. Virus Attenuation after Deletion of the Cytomegalovirus Fc Receptor Gene Is Not due to Antibody Control

    PubMed Central

    Crnković-Mertens, Irena; Messerle, Martin; Milotić, Irena; Szepan, Uwe; Kučić, Natalija; Krmpotić, Astrid; Jonjić, Stipan; Koszinowski, Ulrich H.

    1998-01-01

    The murine cytomegalovirus (MCMV) fcr-1 gene codes for a glycoprotein located at the surface of infected cells which strongly binds the Fc fragment of murine immunoglobulin G. To determine the biological significance of the fcr-1 gene during viral infection, we constructed MCMV fcr-1 deletion mutants and revertants. The fcr-1 gene was disrupted by insertion of the Escherichia coli lacZ gene. In another mutant, the marker gene was also deleted, by recombinase cre. As expected for its hypothetical role in immunoevasion, the infection of mice with fcr-1 deletion mutants resulted in significantly restricted replication in comparison with wild-type MCMV and revertant virus. In mutant mice lacking antibodies, however, the fcr-1 deletion mutants also replicated poorly. This demonstrated that the cell surface-expressed viral glycoprotein with FcR activity strongly modulates the virus-host interaction but that this biological function is not caused by the immunoglobulin binding property. PMID:9445038

  7. Comparison of an antibody and its recombinant derivative for the detection of the small molecule explosive 2,4,6-trinitrotoluene.

    PubMed

    Liu, Jinny L; Zabetakis, Dan; Acevedo-Vélez, Glendalys; Goldman, Ellen R; Anderson, George P

    2013-01-01

    Antibodies are commonly used as recognition elements in immunoassays because of their high specificity and affinity, and have seen extensive use in competitive assays for the detection of small molecules. However, these complex molecules require production either in animals or by mammalian cell cultures, and are not easily tailored through genetic manipulation. Single chain antibodies (scFv), recombinantly expressed molecules consisting of only the antibody's binding region joined via a linking peptide, can provide an alternative to intact antibodies. We describe the characterization of a new monoclonal antibody (mAb), 2G5B5, able to detect the small molecule explosive 2,4,6-trinitrotoluene (TNT) and the scFv derived from its variable regions. The mAb and scFv were tested by surface plasmon resonance to determine their affinity for an immobilized TNT surrogate; dissociation constants were determined to be 1.5×10(-13) M and 4.8×10(-10) M respectively. Circular dichroism was used to determine their melting temperatures. The mAb is more stable melting at ∼75°C while the scFv melts at ∼65°C. The recognition elements were incorporated into a competitive assay format using a bead-based multiplexing platform to examine their sensitivity and specificity. The scFv was able to detect TNT ∼10-fold more sensitively than the mAb in this assay format, allowing detection of TNT concentrations down to at least 1 μg L(-1). The 2G5B gave similar detection limits to a commercial anti-TNT mAb, but was less specific, recognizing 1,3,5-trinitrobenzene (TNB) equally well as TNT.

  8. Recombineering-based dissection of flanking and paralogous Hox gene functions in mouse reproductive tracts.

    PubMed

    Raines, Anna M; Adam, Mike; Magella, Bliss; Meyer, Sara E; Grimes, H Leighton; Dey, Sudhansu K; Potter, S Steven

    2013-07-01

    Hox genes are key regulators of development. In mammals, the study of these genes is greatly confounded by their large number, overlapping functions and interspersed shared enhancers. Here, we describe the use of a novel recombineering strategy to introduce simultaneous frameshift mutations into the flanking Hoxa9, Hoxa10 and Hoxa11 genes, as well as their paralogs on the HoxD cluster. The resulting Hoxa9,10,11 mutant mice displayed dramatic synergistic homeotic transformations of the reproductive tracts, with the uterus anteriorized towards oviduct and the vas deferens anteriorized towards epididymis. The Hoxa9,10,11 mutant mice also provided a genetic setting that allowed the discovery of Hoxd9,10,11 redundant reproductive tract patterning function. Both shared and distinct Hox functions were defined. Hoxd9,10,11 play a crucial role in the regulation of uterine immune function. Non-coding non-polyadenylated RNAs were among the key Hox targets, with dramatic downregulation in mutants. We observed Hox cross-regulation of transcription and splicing. In addition, we observed a surprising anti-dogmatic apparent posteriorization of the uterine epithelium. In caudal regions of the uterus, the normal simple columnar epithelium flanking the lumen was replaced by a pseudostratified transitional epithelium, normally found near the more posterior cervix. These results identify novel molecular functions of Hox genes in the development of the male and female reproductive tracts.

  9. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma.

    PubMed

    Shi, Feng; Zhan, Wubing; Li, Yongfu; Wang, Xiaoyuan

    2014-01-01

    Red yeast Phaffia rhodozyma is a prominent microorganism able to synthesize carotenoid. Here, three carotenogenic cDNAs of P. rhodozyma CGMCC 2.1557, crtE, crtYB and crtI, were cloned and introduced into Saccharomyces cerevisiae INVSc1. The recombinant Sc-EYBI cells could synthesize 258.8 ± 43.8 μg g(-1) dry cell weight (DCW) of β-carotene when growing at 20 °C, about 59-fold higher than in those growing at 30 °C. Additional expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from S. cerevisiae (Sc-EYBIH) increased the β-carotene level to 528.8 ± 13.3 μg g(-1) DCW as cells growing at 20 °C, 27-fold higher than cells growing at 30 °C, although cells grew faster at 30 °C than at 20 °C. Consistent with the much higher β-carotene level in cells growing at 20 °C, transcription level of three crt genes and cHMG1 gene in cells growing at 20 °C was a little higher than in those growing at 30 °C. Meanwhile, expression of three carotenogenic genes and accumulation of β-carotene promoted cell growth. These results reveal the influence of temperature on β-carotene biosynthesis and may be helpful for improving β-carotene production in recombinant S. cerevisiae. PMID:23861041

  10. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria.

    PubMed

    Przystałowska, Hanna; Zeyland, Joanna; Szymanowska-Powałowska, Daria; Szalata, Marlena; Słomski, Ryszard; Lipiński, Daniel

    2015-02-01

    1,3-Propanediol (1,3-PDO) is an organic compound, which is a valuable intermediate product, widely used as a monomer for synthesizing biodegradable polymers, increasing their strength; as well as an ingredient of textile, cosmetic and medical products. 1,3-PDO is mostly synthesized chemically. Global companies have developed technologies for 1,3-PDO synthesis from petroleum products such as acrolein and ethylene oxide. A potentially viable alternative is offered by biotechnological processes using microorganisms capable of synthesizing 1,3-PDO from renewable substrates (waste glycerol, a by-product of biofuel production, or glucose). In the present study, genes from Citrobacter freundii and Klebsiella pneumoniae were introduced into Escherichia coli bacteria to enable the synthesis of 1,3-PDO from waste glycerol. These strains belong to the best 1,3-PDO producers, but they are pathogenic, which restricts their application in industrial processes. The present study involved the construction of two gene expression constructs, containing a total of six heterologous glycerol catabolism pathway genes from C. freundii ATCC 8090 and K. pneumoniae ATCC 700721. Heterologous genes encoding glycerol dehydratase (dhaBCE) and the glycerol dehydratase reactivation factor (dhaF, dhaG) from C. freundii and gene encoding 1,3-PDO oxidoreductase (dhaT) from K. pneumoniae were expressed in E. coli under the control of the T7lac promoter. An RT-PCR analysis and overexpression confirmed that 1,3-PDO synthesis pathway genes were expressed on the RNA and protein levels. In batch fermentation, recombinant E. coli bacteria used 32.6gl(-1) of glycerol to produce 10.6 gl(-1) of 1,3-PDO, attaining the efficiency of 0.4 (mol₁,₃-PDO molglycerol(-1)). The recombinant E. coli created is capable of metabolizing glycerol to produce 1,3-PDO, and the efficiency achieved provides a significant research potential of the bacterium. In the face of shortage of fossil fuel supplies and climate warming

  11. Development of a Highly Sensitive and Specific Enzyme-Linked Immunosorbent Assay Based on Recombinant Matrix Protein for Detection of Avian Pneumovirus Antibodies

    PubMed Central

    Gulati, Baldev R.; Cameron, Kjerstin T.; Seal, Bruce S.; Goyal, Sagar M.; Halvorson, David A.; Njenga, M. Kariuki

    2000-01-01

    The matrix (M) protein of avian pneumovirus (APV) was evaluated for its antigenicity and reliability in an enzyme-linked immunosorbent assay (ELISA) for diagnosis of APV infection, a newly emergent disease of turkeys in United States. Sera from APV-infected turkeys consistently contained antibodies to a 30-kDa protein (M protein). An ELISA based on recombinant M protein generated in Escherichia coli was compared with the routine APV ELISA that utilizes inactivated virus as antigen. Of 34 experimentally infected turkeys, 33 (97.1%) were positive by M protein ELISA whereas only 18 (52.9%) were positive by routine APV ELISA 28 days after infection. None of the serum samples from 41 uninfected experimental turkeys were positive by M protein ELISA. Of 184 field sera from turkey flocks suspected of having APV infection, 133 (72.3%) were positive by M protein ELISA whereas only 99 (53.8%) were positive by routine APV ELISA. Twelve serum samples, which were negative by M protein ELISA but positive by routine APV ELISA, were not reactive with either recombinant M protein or denatured purified APV proteins by Western analysis. This indicates that the samples had given false-positive results by routine APV ELISA. The M protein ELISA was over six times more sensitive than virus isolation (11.5%) in detecting infections from samples obtained from birds showing clinical signs of APV infection. Taken together, these results show that ELISA based on recombinant M protein is a highly sensitive and specific test for detecting antibodies to APV. PMID:11060061

  12. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors.

    PubMed

    Tan, Janice G L; Lee, Yih Yean; Wang, Tianhua; Yap, Miranda G S; Tan, Tin Wee; Ng, Say Kong

    2015-05-01

    CHO cells are major production hosts for recombinant biologics including the rapidly expanding recombinant monoclonal antibodies (mAbs). Heat shock protein 27 (HSP27) expression was observed to be down-regulated towards the late-exponential and stationary phase of CHO fed-batch bioreactor cultures, whereas HSP27 was found to be highly expressed in human pathological cells and reported to have anti-apoptotic functions. These phenotypes suggest that overexpression of HSP27 is a potential cell line engineering strategy for improving robustness of CHO cells. In this work, HSP27 was stably overexpressed in CHO cells producing recombinant mAb and the effects of HSP27 on cell growth, volumetric production titer and product quality were assessed. Concomitantly, HSP27 anti-apoptosis functions in CHO cells were investigated. Stably transfected clones cultured in fed-batch bioreactors displayed 2.2-fold higher peak viable cell density, delayed loss of culture viability by two days and 2.3-fold increase in mAb titer without affecting the N-glycosylation profile, as compared to clones stably transfected with the vector backbone. Co-immunoprecipitation studies revealed HSP27 interactions with Akt, pro-caspase 3 and Daxx and caspase activity profiling showed delayed increase in caspase 2, 3, 8 and 9 activities. These results suggest that HSP27 modulates apoptosis signaling pathways and delays caspase activities to improve performance of CHO fed-batch bioreactor cultures.

  13. Induction of antibodies and T cell responses by a recombinant influenza virus carrying an HIV-1 TatΔ51-59 protein in mice.

    PubMed

    Garulli, B; Di Mario, G; Stillitano, M G; Compagnoni, D; Titti, F; Cafaro, A; Ensoli, B; Kawaoka, Y; Castrucci, M R

    2014-01-01

    Recombinant influenza viruses hold promise as vectors for vaccines to prevent transmission of mucosal pathogens. In this study, we generated a recombinant WSN/TatΔ(51-59) virus in which Tat protein lacking residues 51 to 59 of the basic domain was inserted into the N-terminus of the hemagglutinin (HA) of A/WSN/33 virus. The TatΔ(51-59) insertion into the viral HA caused a 2-log reduction in viral titers in cell culture, compared with the parental A/WSN/33 virus, and severely affected virus replication in vivo. Nevertheless, Tat-specific antibodies and T cell responses were elicited upon a single intranasal immunization of BALB/c mice with WSN/TatΔ(51-59) virus. Moreover, Tat-specific immune responses were also detected following vaccine administration via the vaginal route. These data provide further evidence that moderately large HIV antigens can be delivered by chimeric HA constructs and elicit specific immune responses, thus increasing the options for the potential use of recombinant influenza viruses, and their derivatives, for prophylactic and therapeutic vaccines.

  14. Simultaneous Detection of Antibodies to five Simian Viruses in Nonhuman Primates using Recombinant Viral Protein Based Multiplex Microbead ImmunoAssays

    PubMed Central

    Liao, Qi; Guo, Huishan; Tang, Min; Touzjian, Neal; Lerche, Nicholas W.; Lu, Yichen; Yee, JoAnn L.

    2011-01-01

    Routine screening for infectious agents is critical in establishing and maintaining specific pathogen free (SPF) nonhuman primate (NHP) colonies. More efficient, higher throughput, less costly reagent, and reduced sample consumption multiplex microbead immunoassays (MMIAs) using purified viral lysates have been developed previously to address some disadvantages of the traditional individual enzyme-linked immunosorbent assay (ELISA) methods. To overcome some of the technical and biosafety difficulties in preparing antigens from live viruses for viral lysate protein based MMIAs, novel MMIAs using recombinant glycoprotein D precursor (gD) protein of herpesvirus B and four viral gag proteins of Simian Immunodeficiency Virus (SIV), Simian T Cell Lymphotropic Virus (STLV), Simian Foamy Virus (SFV) and Simian Betaretrovirus (SRV) as antigens have been developed in the current study. The data showed that the recombinant viral protein based MMIAs detected simultaneously antibodies to each of these five viruses with high sensitivity and specificity, and correlated well with viral lysate based MMIAs. Therefore, recombinant viral protein based MMIA is an effective and efficient routine screening method to determine the infection status of nonhuman primates. PMID:21945221

  15. New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat.

    PubMed

    Dong, Lingli; Zhang, Xiaofei; Liu, Dongcheng; Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  16. New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    PubMed Central

    Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  17. Deep sequencing and Circos analyses of antibody libraries reveal antigen-driven selection of Ig VH genes during HIV-1 infection.

    PubMed

    Xiao, Madelyne; Prabakaran, Ponraj; Chen, Weizao; Kessing, Bailey; Dimitrov, Dimiter S

    2013-12-01

    The vast diversity of antibody repertoires is largely attributed to heavy chain (V(H)) recombination of variable (V), diversity (D) and joining (J) gene segments. We used 454 sequencing information of the variable domains of the antibody heavy chain repertoires from neonates, normal adults and an HIV-1-infected individual, to analyze, with Circos software, the VDJ pairing patterns at birth, adulthood and a time-dependent response to HIV-1 infection. Our comparative analyses of the Ig VDJ repertoires from these libraries indicated that, from birth to adulthood, VDJ recombination patterns remain the same with some slight changes, whereas some V(H) families are selected and preferentially expressed after long-term infection with HIV-1. We also demonstrated that the immune system responds to HIV-1 chronic infection by selectively expanding certain HV families in an attempt to combat infection. Our findings may have implications for understanding immune responses in pathology as well as for development of new therapeutics and vaccines.

  18. Half-life measurements of chemical inducers for recombinant gene expression

    PubMed Central

    2014-01-01

    Background Inducible promoters are widely spread genetic tools for triggering, tuning and optimizing the expression of recombinant genes in engineered biological systems. Most of them are controlled by the addition of a specific exogenous chemical inducer that indirectly regulates the promoter transcription rate in a concentration-dependent fashion. In order to have a robust and predictable degree of control on promoter activity, the degradation rate of such chemicals should be considered in many applications like recombinant protein production. Results In this work, we use whole-cell biosensors to assess the half-life of three commonly used chemical inducers for recombinant Escherichia coli: Isopropyl β-D-1-thiogalactopyranoside (IPTG), anhydrotetracycline (ATc) and N-(3-oxohexanoyl)-L-homoserine lactone (HSL). A factorial study was conducted to investigate the conditions that significantly contribute to the decay rate of these inducers. Temperature has been found to be the major factor affecting ATc, while medium and pH have been found to highly affect HSL. Finally, no significant degradation was observed for IPTG among the tested conditions. Conclusions We have quantified the decay rate of IPTG, ATc and HSL in many conditions, some of which were not previously tested in the literature, and the main effects affecting their degradation were identified via a statistics-based framework. Whole-cell biosensors were successfully used to conduct this study, yielding reproducible measurements via simple multiwell-compatible assays. The knowledge of inducer degradation rate in several contexts has to be considered in the rational design of synthetic biological systems for improving the predictability of induction effects, especially for prolonged experiments. PMID:24485151

  19. Design and characterization of novel recombinant listeriolysin O-protamine fusion proteins for enhanced gene delivery.

    PubMed

    Kim, Na Hyung; Provoda, Chester; Lee, Kyung-Dall

    2015-02-01

    To improve the efficiency of gene delivery for effective gene therapy, it is essential that the vector carries functional components that can promote overcoming barriers in various steps leading to the transport of DNA from extracellular to ultimately nuclear compartment. In this study, we designed genetically engineered fusion proteins as a platform to incorporate multiple functionalities in one chimeric protein. Prototypes of such a chimera tested here contain two domains: one that binds to DNA; the other that can facilitate endosomal escape of DNA. The fusion proteins are composed of listeriolysin O (LLO), the endosomolytic pore-forming protein from Listeria monocytogenes, and a 22 amino acid sequence of the DNA-condensing polypeptide protamine (PN), singly or as a pair: LLO-PN and LLO-PNPN. We demonstrate dramatic enhancement of the gene delivery efficiency of protamine-condensed DNA upon incorporation of a small amount of LLO-PN fusion protein and further improvement with LLO-PNPN in vitro using cultured cells. Additionally, the association of anionic liposomes with cationic LLO-PNPN/protamine/DNA complexes, yielding a net negative surface charge, resulted in better in vitro transfection efficiency in the presence of serum. An initial, small set of data in mice indicated that the observed enhancement in gene expression could also be applicable to in vivo gene delivery. This study suggests that incorporation of a recombinant fusion protein with multiple functional components, such as LLO-protamine fusion protein, in a nonviral vector is a promising strategy for various nonviral gene delivery systems.

  20. Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family.

    PubMed

    Bonsignori, Mattia; Pollara, Justin; Moody, M Anthony; Alpert, Michael D; Chen, Xi; Hwang, Kwan-Ki; Gilbert, Peter B; Huang, Ying; Gurley, Thaddeus C; Kozink, Daniel M; Marshall, Dawn J; Whitesides, John F; Tsao, Chun-Yen; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Kim, Jerome H; Michael, Nelson L; Tomaras, Georgia D; Montefiori, David C; Lewis, George K; DeVico, Anthony; Evans, David T; Ferrari, Guido; Liao, Hua-Xin; Haynes, Barton F

    2012-11-01

    The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs. PMID:22896626

  1. Two DNA repair and recombination genes in Saccharomyces cerevisiae, RAD52 and RAD54, are induced during meiosis

    SciTech Connect

    Cole, G.M.; Mortimer, R.K. ); Schild, D. )

    1989-07-01

    The DNA repair and recombination genes of Saccharomyces cerevisiae, RAD52 and RAD54, were transcriptionally induced approximately 10- to 15-fold in sporulating MATa/{alpha} cells. Congenic MATa/a cells, which did not sporulate, did not show similar increases. Assays of {beta}-galactosidase activity in strains harboring either a RAD52- or RAD54-lacZ gene fusion indicated that this induction occurred at a time concomitant with a commitment to meiotic recombination, as measured by prototroph formation from his1 heteroalleles.

  2. Direct estimation of the recombination frequency between the RB1 gene and two closely linked microsatellites using sperm typing.

    PubMed

    Girardet, A; Lien, S; Leeflang, E P; Beaufrère, L; Tuffery, S; Munier, F; Arnheim, N; Claustres, M; Pellestor, F

    1999-01-01

    In this study, single sperm typing has been used for high-resolution recombination analysis between the retinoblastoma gene and two closely linked extragenic microsatellites (D13S284 and D13S1307). The analysis of 1198 single sperm from three donors allowed the determination of recombination fractions between RB1.20 and D13S284 and RB1.20 and D13S1307 of 0.022 and 0.033, respectively. These results show that RB1 gene and the two microsatellites are closely linked, which validates their potential use in indirect genetic diagnosis of retinoblastoma. PMID:10196709

  3. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus.

    PubMed

    Guthrie, Alan J; Quan, Melvyn; Lourens, Carina W; Audonnet, Jean-Christophe; Minke, Jules M; Yao, Jiansheng; He, Ling; Nordgren, Robert; Gardner, Ian A; Maclachlan, N James

    2009-07-16

    We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n=8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (<10-80) of virus-specific neutralizing antibodies and were completely resistant to challenge infection with a virulent strain of AHSV-4. In contrast, a horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to live-attenuated AHSV vaccines.

  4. Strain variation, based on the hemagglutinin gene, in Norwegian ISA virus isolates collected from 1987 to 2001: indications of recombination.

    PubMed

    Devold, M; Falk, K; Dale, B; Krossøy, B; Biering, E; Aspehaug, V; Nilsen, F; Nylund, A

    2001-11-01

    Infectious salmon anemia (ISA) is caused by a virus that probably belongs to the Orthomyxoviridae and was first recorded in Norway in 1984. The disease has since spread along the Norwegian coast and has later been found in Canada, Scotland, the Faroe Islands, Chile, and the USA. This study presents sequence variation of the hemagglutinin gene from 37 ISA virus isolates, viz. one isolate from Scotland, one from Canada and 35 from Norway. The hemagglutinin gene contains a highly polymorphic region (HPR), which together with the rest of the gene sequence provides a good tool for studies of epizootics. The gene shows temporal and geographical sequence variation, where certain areas are dominated by distinct groups of isolates. Evidence of transmission of ISA virus isolates within and between regions is given. It is suggested that the hemagglutinin gene from different isolates may recombine. Possible recombination sites are found within the HPR and in the 5'-end flanking region close to the HPR. PMID:11775793

  5. Development of an enzyme-linked immunosorbent assay for the monitoring and surveillance of antibodies to porcine epidemic diarrhea virus based on a recombinant membrane protein.

    PubMed

    Fan, Jing-Hui; Zuo, Yu-Zhu; Shen, Xiao-Qiang; Gu, Wen-Yuan; Di, Jing-Mei

    2015-12-01

    The recent dramatic increase in reported cases of porcine epidemic diarrhea (PED) in pig farms is a potential threat to the global swine industry. Therefore, the accurate diagnosis, serological monitoring, and surveillance of specific antibodies in pigs resulting from porcine epidemic diarrhea virus (PEDV) infection or vaccination would be essential in helping to control the spread of PED. We developed and validated an indirect enzyme-linked immunosorbent assay (ELISA) based on the recombinant membrane (M) protein of PEDV. To detect PEDV antibodies in eight herds, 382 serum samples were collected from sows that had been immunized with a PED vaccine, and screened using the developed ELISA in parallel with a serum neutralization (SN) assay. Of the tested samples, 276 were positive for the presence of PEDV antibodies according to both assays, while 98 were negative. An excellent agreement between the ELISA and the SN assay was observed (kappa=0.947; 95% confidence interval=0.910-0.984; McNemar's test, P=0.727). No cross-reaction was detected for the developed ELISA with other coronaviruses or other common pig pathogens. The developed ELISA could be used for serological evaluation and indirect diagnosis of PED infection.

  6. Selection of recombinant antibodies by phage display technology and application for detection of allergenic Brazil nut (Bertholletia excelsa) in processed foods.

    PubMed

    de la Cruz, Silvia; López-Calleja, Inés María; Alcocer, Marcos; González, Isabel; Martín, Rosario; García, Teresa

    2013-10-30

    Current immunological methods for detection of Brazil nut allergens in foods are based on polyclonal antibodies raised in animals. Phage display technology allows the procurement of high-affinity antibodies avoiding animal immunization steps and therefore attaining the principle of replacement supported by animal welfare guidelines. In this study, we screened Tomlinson I and J libraries for specific binders against Brazil nut by employing a Brazil nut protein extract and a purified Brazil nut 2S globulin, and we successfully isolated a phage single chain variable fragment (named BE95) that specifically recognizes Brazil nut proteins. The selected phage scFv was further used as affinity probe to develop an indirect phage-ELISA for detection of Brazil nut in experimental binary mixtures and in commercial food products, with a limit of detection of 5 mg g(-1). This study describes for the first time the isolation of recombinant antibody fragments specific for an allergenic tree nut protein from a naïve library and paves the way to develop new immunoassays for food analysis based on probes that can be produced in vitro when required and do not rely on animal immunization.

  7. Characterization of the Native and Denatured Herceptin by ELISA and QCM using a High-Affinity Single Chain Fragment Variable (scFv) Recombinant Antibody

    PubMed Central

    Shang, Yuqin; Mernaugh, Ray

    2012-01-01

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain an scFv (designated 2B4) to a linear synthetic peptide representing Herceptin’s heavy chain CDR3. ELISAs and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35–220.5 nM) dynamic range. Herceptin denatures and forms significant amount of aggregates when heated. UV-Vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 1013 M−2. The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize non-specific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of using QCM to characterize human therapeutic antibodies in samples are also discussed. PMID:22934911

  8. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein.

    PubMed

    Komatsu, Nobukazu; Jackson, Heather M; Chan, Kok-fei; Oveissi, Sara; Cebon, Jonathan; Itoh, Kyogo; Chen, Weisan

    2013-07-01

    The tumor antigen NY-ESO-1 is one of the most antigenic cancer-testis antigens, first identified by serologic analysis of a recombinant cDNA expression library (SEREX). NY-ESO-1 is expressed in different types of cancers including melanoma. NY-ESO-1-specific spontaneous humoral and cellular immune responses are detected in a large proportion of patients with advanced NY-ESO-1-expressing cancers. Therefore NY-ESO-1 is a good candidate antigen for immunotherapy. Although cellular immune responses to NY-ESO-1 are well characterized, much less is known about the humoral immune responses. In this study, we finely mapped linear antibody epitopes using sera from melanoma patients and shorter overlapping peptide sets. We have shown that melanoma patients' humoral immune systems responded to NY-ESO-1 differently in each individual with widely differing antibody specificity, intensity and antibody subtypes. This knowledge will help us further understand anti-tumor immunity and may also help us to monitor cancer progress and cancer vaccine efficacy in the future.

  9. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.

    PubMed

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-10-09

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  10. Recombinant plasmids containing Xenopus laevis globin structural genes derived from complementary DNA.

    PubMed Central

    Humphries, P; Old, R; Coggins, L W; McShane, T; Watson, C; Paul, J

    1978-01-01

    Details are presented of the in vitro synthesis of double-stranded DNA complementary to purified Xenopus globin messenger RNA, using a combination of reverse transcriptase, fragment 'A' of E. coli DNA polymerase 1 and S1 endonuclease. After selection of duplex DNA molecules approaching the length of Xenopus globin messenger RNA by sedimentation of the DNA through neutral sucrose gradients, the 3'-OH termini of the synthetic globin gene sequences were extended with short tracts of oligo dGMP using terminal transferase. This material was integrated into oligo dCMP-extended linear pCR1 plasmid DNA and amplified by transfection of E. coli. Plasmids carrying globin sequences were identified by hybridization of 32P-labelled globin mRNA to total cellular DNA in situ, by hybridization of purified plasmids to globin cDNA in solution, by analysis of recombinant DNA on polyacrylamide and agarose gels, and by heteroduplex mapping. The results show that extensive DNA copies of Xenopus globin mRNA have been integrated into recombinant plasmids. Images PMID:347404

  11. Human antibody expression in transgenic rats: comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions.

    PubMed

    Ma, Biao; Osborn, Michael J; Avis, Suzanne; Ouisse, Laure-Hélène; Ménoret, Séverine; Anegon, Ignacio; Buelow, Roland; Brüggemann, Marianne

    2013-12-31

    Expression of human antibody repertoires in transgenic animals has been accomplished by introducing large human Ig loci into mice and, more recently, a chimeric IgH locus into rats. With human VH, D and JH genes linked to the rat C-region antibody expression was significantly increased, similar to wild-type levels not found with fully human constructs. Here we compare four rat-lines containing the same human VH-region (comprising 22 VHs, all Ds and all JHs in natural configuration) but linked to different rat CH-genes and regulatory sequences. The endogenous IgH locus was silenced by zinc-finger nucleases. After breeding, all lines produced exclusively chimeric human H-chain with near normal IgM levels. However, in two lines poor IgG expression and inefficient immune responses were observed, implying that high expression, class-switching and hypermutation are linked to optimal enhancer function provided by the large regulatory region at the 3' end of the IgH locus. Furthermore, exclusion of Cδ and its downstream interval region may assist recombination. Highly diverse IgG and immune responses similar to normal rats were identified in two strains carrying diverse and differently spaced C-genes.

  12. Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice.

    PubMed Central

    Su, H; Feilzer, K; Caldwell, H D; Morrison, R P

    1997-01-01

    The importance of antibody-mediated immunity in primary and secondary Chlamydia trachomatis genital tract infections was examined by using a definitive model of B-cell deficiency, the microMT/microMT gene knockout mouse. Vaginally infected B-cell-deficient microMT/microMT mice developed a self-limiting primary infection that was indistinguishable from infection of control C57BL/6 mice. Sera and vaginal secretions from infected mice were analyzed for anti-Chlamydia antibodies. C57BL/6 mice produced high-titered serum anti-Chlamydia immunoglobulin G2a (IgG2a), IgG2b, and IgA antibodies, and vaginal washes contained predominately anti-Chlamydia IgA. Serum and vaginal washes from infected B-cell-deficient mice were negative for anti-Chlamydia antibody. T-cell proliferation and delayed-type hypersensitivity assays were used as measures of Chlamydia-specific cell-mediated immunity and were found to be comparable for C57BL/6 and B-cell-deficient mice. Seventy days following primary infection, mice were rechallenged to assess acquired immunity. B-cell-deficient mice which lack anti-Chlamydia antibodies were more susceptible to reinfection than immunocompetent C57BL/6 mice. However, acquired immune resistance was evident in both strains of mice and characterized by decreased shedding of chlamydiae and an infection of shorter duration. Thus, this study demonstrates that cell-mediated immune responses alone were capable of resolving chlamydial infection; however, in the absence of specific antibody, mice were more susceptible to reinfection. Therefore, these data suggest that both humoral and cell-mediated immune responses were important mediators of immune protection in this model, though cell-mediated immune responses appear to play a more dominant role. PMID:9169723

  13. Analysis of the CYP21A2 gene with intergenic recombination and multiple gene deletions in the RCCX module.

    PubMed

    Chang, Shwu-Fen; Lee, Hsien-Hsiung

    2011-01-01

    The most frequent bimodular RCCX module of the RP1-C4A-CYP21A1P-TNXA-RP2-C4B-CYP21A2-TNXB gene sequence is located on chromosome 6p21.3. To determine RCCX alterations, we used the polymerase chain reaction (PCR) product containing the tenascin B (TNXB) and CYP21A2 genes with TaqI digestion and Southern blot analysis with AseI and NdeI endonuclease digestion of genomic DNA from congenital adrenal hyperplasia patients with common mutations resulting from an intergenic conversion of CYP21A1P, such as an I2 splice, I172N, V281L, F306-L307insT, Q318X, and R356W, and dual mutations of I236N/V237E in the CYP21A2 gene. The results showed that a 3.7-kb fragment of the CYP21A2 gene was detected in each case, and 21.6- and 11.3-kb DNA fragments were found in the RCCX region by a Southern blot analysis with these corresponding mutations. However, the IVS2-12A/C- > G (I2 splice) haplotype in combination with the 707-714delGAGACTAC (without the P30L mutation) mutation produced a 3.2-kb TaqI fragment in the PCR product analysis and a specific 9.3-kb fragment by the Southern blot method. Therefore, we concluded that the rearrangement in the RCCX region resulting from processing of either an intergenic recombination or multiple gene deletions can be identified by the PCR analysis and Southern blot method based on a fragment-distinguishing configuration without a family study.

  14. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  15. Biological Activity of Recombinant Bovine Interferon τ Produced by a Silkworm-Baculovirus Gene Expression System

    PubMed Central

    TAKAHASHI, Hitomi; TSUNAZAKI, Makoto; HAMANO, Takashi; TAKAHASHI, Masashi; OKUDA, Kiyoshi; INUMARU, Shigeki; OKANO, Akira; GESHI, Masaya; HIRAKO, Makoto

    2013-01-01

    ABSTRACT Bovine interferon (bIFN) τ plays a crucial role in maternal-fetal recognition and was expressed using a Bombyx mori (Bm) nuclear polyhedrosis virus (silkworm baculovirus) gene expression system. The biological effects of Bm-recombinant bIFNτ (rbIFNτ) on prostaglandin (PG) F2α synthesis were investigated in cultured bovine endometrial epithelial cells with oxytocin (OT, 100 nM) and on the in vitro development of bovine embryos. Bm-rbIFNτ and OT were shown to suppress PGF2α production in a dose-dependent manner. When in vitro produced morula stage embryos were cultured for 72 hr in modified CR1aa medium supplemented with or without rbIFNτ, Bm-rbIFNτ (10 ng/ml) significantly promoted development to the expanded blastocyst stage. In conclusion, Bm-rbIFNτ was suggested to have the same bioactivity as native IFNτ. PMID:24212505

  16. Expression of a foreign gene by recombinant canine distemper virus recovered from cloned DNAs.

    PubMed

    Parks, Christopher L; Wang, Hai-Ping; Kovacs, Gerald R; Vasilakis, Nikos; Kowalski, Jacek; Nowak, Rebecca M; Lerch, Robert A; Walpita, Pramila; Sidhu, Mohinderjit S; Udem, Stephen A

    2002-02-26

    A canine distemper virus (CDV) genomic cDNA clone and expression plasmids required to establish a CDV rescue system were generated from a laboratory-adapted strain of the Onderstepoort vaccine virus. In addition, a CDV minireplicon was prepared and used in transient expression studies performed to identify optimal virus rescue conditions. Results from the transient expression experiments indicated that minireplicon-encoded reporter gene activity was increased when transfected cell cultures were maintained at 32 rather than 37 degrees C, and when the cellular stress response was induced by heat shock. Applying these findings to rescue of recombinant CDV (rCDV) resulted in efficient recovery of virus after transfected HEp2 or A549 cells were co-cultured with Vero cell monolayers. Nucleotide sequence determination and analysis of restriction site polymorphisms confirmed that rescued virus was rCDV. A rCDV strain also was engineered that contained the luciferase gene inserted between the P and M genes; this virus directed high levels of luciferase expression in infected cells. PMID:11864746

  17. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering

    PubMed Central

    Tu, Qiang; Herrmann, Jennifer; Hu, Shengbiao; Raju, Ritesh; Bian, Xiaoying; Zhang, Youming; Müller, Rolf

    2016-01-01

    Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation. PMID:26875499

  18. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes.

    PubMed

    Cai, Yizhi; Agmon, Neta; Choi, Woo Jin; Ubide, Alba; Stracquadanio, Giovanni; Caravelli, Katrina; Hao, Haiping; Bader, Joel S; Boeke, Jef D

    2015-02-10

    Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer's yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational "safeguard" control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10(-10)), consistent with their orthogonal nature and the individual escape frequencies of <10(-6). Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance. PMID:25624482

  19. Intrinsic biocontainment: Multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes

    PubMed Central

    Cai, Yizhi; Agmon, Neta; Choi, Woo Jin; Ubide, Alba; Stracquadanio, Giovanni; Caravelli, Katrina; Hao, Haiping; Bader, Joel S.; Boeke, Jef D.

    2015-01-01

    Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer’s yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational “safeguard” control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10−10), consistent with their orthogonal nature and the individual escape frequencies of <10−6. Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance. PMID:25624482

  20. Development of recombinant antibody-based enzyme-linked immunosorbent assay (ELISA) for the detection of skatole.

    PubMed

    Leivo, Janne; Mäkelä, Joonas; Rosenberg, Jaana; Lamminmäki, Urpo

    2016-01-01

    The occurrence of boar taint and the European Commission recommendation to discontinue the surgical castration of pigs by the year 2018 creates an urgent need for new analytical methods that are simple, affordable, and suitable for field testing. We describe the generation and engineering of a skatole-specific antibody derived from a synthetic antibody library and the development of ELISA for its detection. The immunoassay is capable of detecting skatole with IC50 of 222 μg L(-1), which is within the analytical threshold level suggested for skatole, and with low cross-reactivity interference from other indolic compounds. PMID:26410338

  1. Infectious bronchitis virus S2 expressed from recombinant virus confers broad protection against challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed recombinant Newcastle disease virus (NDV) LaSota (rLS) expressing the IBV S2 gene (rLS/IBV.S2). The recombinant virus showed reduced pathogenicity compared to the parental LaSota strain but effectively elicited hemagglutination inhibition antibodies and protected chickens against lethal...

  2. Evaluation of a novel type of imaging probe based on a recombinant bivalent mini-antibody construct for detection of CD44v6-expressing squamous cell carcinoma.

    PubMed

    Haylock, Anna-Karin; Spiegelberg, Diana; Mortensen, Anja C; Selvaraju, Ram K; Nilvebrant, Johan; Eriksson, Olof; Tolmachev, Vladimir; Nestor, Marika V

    2016-02-01

    We have developed the CD44v6-targeting human bivalent antibody fragment AbD19384, an engineered recombinant human bivalent Fab antibody formed via dimerization of dHLX (synthetic double helix loop helix motif) domains, for potential use in antibody-based molecular imaging of squamous cell carcinoma in the head and neck region. This is a unique construct that has, to the best of our knowledge, never been assessed for molecular imaging in vivo before. The objective of the present study was to evaluate for the first time the in vitro and in vivo binding properties of radio-iodinated AbD19384, and to assess its utility as a targeting agent for molecular imaging of CD44v6-expressing tumors. Antigen specificity and binding properties were assessed in vitro. In vivo specificity and biodistribution of 125I-AbD19384 were next evaluated in tumor-bearing mice using a dual-tumor setup. Finally, AbD19384 was labeled with 124I, and its imaging properties were assessed by small animal PET/CT in tumor bearing mice, and compared with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). In vitro studies demonstrated CD44v6-specific binding with slow off-rate for AbD19384. A favorable biodistribution profile was seen in vivo, with tumor-specific uptake. Small animal PET/CT images of 124I-AbD19384 supported the results through clearly visible high CD44v6-expressing tumors and faintly visible low expressing tumors, with superior imaging properties compared to 18F-FDG. Tumor-to-blood ratios increased with time for the conjugate (assessed up to 72 h p.i.), although 48 h p.i. proved best for imaging. Biodistribution and small-animal PET studies demonstrated that the recombinant Fab-dHLX construct AbD19384 is a promising tracer for imaging of CD44v6 antigen expression in vivo, with the future aim to be used for individualized diagnosis and early detection of squamous cell carcinomas in the head and neck region. Furthermore, this proof-of-concept research established the feasibility of using

  3. Evaluation of a novel type of imaging probe based on a recombinant bivalent mini-antibody construct for detection of CD44v6-expressing squamous cell carcinoma

    PubMed Central

    HAYLOCK, ANNA-KARIN; SPIEGELBERG, DIANA; MORTENSEN, ANJA C.; SELVARAJU, RAM K.; NILVEBRANT, JOHAN; ERIKSSON, OLOF; TOLMACHEV, VLADIMIR; NESTOR, MARIKA V.

    2016-01-01

    We have developed the CD44v6-targeting human bivalent antibody fragment AbD19384, an engineered recombinant human bivalent Fab antibody formed via dimerization of dHLX (synthetic double helix loop helix motif) domains, for potential use in antibody-based molecular imaging of squamous cell carcinoma in the head and neck region. This is a unique construct that has, to the best of our knowledge, never been assessed for molecular imaging in vivo before. The objective of the present study was to evaluate for the first time the in vitro and in vivo binding properties of radio-iodinated AbD19384, and to assess its utility as a targeting agent for molecular imaging of CD44v6-expressing tumors. Antigen specificity and binding properties were assessed in vitro. In vivo specificity and biodistribution of 125I-AbD19384 were next evaluated in tumor-bearing mice using a dual-tumor setup. Finally, AbD19384 was labeled with 124I, and its imaging properties were assessed by small animal PET/CT in tumor bearing mice, and compared with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). In vitro studies demonstrated CD44v6-specific binding with slow off-rate for AbD19384. A favorable biodis-tribution profile was seen in vivo, with tumor-specific uptake. Small animal PET/CT images of 124I-AbD19384 supported the results through clearly visible high CD44v6-expressing tumors and faintly visible low expressing tumors, with superior imaging properties compared to 18F-FDG. Tumor-to-blood ratios increased with time for the conjugate (assessed up to 72 h p.i.), although 48 h p.i. proved best for imaging. Biodistribution and small-animal PET studies demonstrated that the recombinant Fab-dHLX construct AbD19384 is a promising tracer for imaging of CD44v6 antigen expression in vivo, with the future aim to be used for individualized diagnosis and early detection of squamous cell carcinomas in the head and neck region. Furthermore, this proof-of-concept research established the feasibility of using