Genetic algorithms using SISAL parallel programming language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tejada, S.
1994-05-06
Genetic algorithms are a mathematical optimization technique developed by John Holland at the University of Michigan [1]. The SISAL programming language possesses many of the characteristics desired to implement genetic algorithms. SISAL is a deterministic, functional programming language which is inherently parallel. Because SISAL is functional and based on mathematical concepts, genetic algorithms can be efficiently translated into the language. Several of the steps involved in genetic algorithms, such as mutation, crossover, and fitness evaluation, can be parallelized using SISAL. In this paper I will l discuss the implementation and performance of parallel genetic algorithms in SISAL.
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2013-05-01
With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.
A novel pipeline based FPGA implementation of a genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2014-05-01
To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.
Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2001-01-01
A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.
Applying a Genetic Algorithm to Reconfigurable Hardware
NASA Technical Reports Server (NTRS)
Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim
2004-01-01
This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.
Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming
NASA Astrophysics Data System (ADS)
Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita
2018-03-01
We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.
MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION
In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...
Astrophysical data mining with GPU. A case study: Genetic classification of globular clusters
NASA Astrophysics Data System (ADS)
Cavuoti, S.; Garofalo, M.; Brescia, M.; Paolillo, M.; Pescape', A.; Longo, G.; Ventre, G.
2014-01-01
We present a multi-purpose genetic algorithm, designed and implemented with GPGPU/CUDA parallel computing technology. The model was derived from our CPU serial implementation, named GAME (Genetic Algorithm Model Experiment). It was successfully tested and validated on the detection of candidate Globular Clusters in deep, wide-field, single band HST images. The GPU version of GAME will be made available to the community by integrating it into the web application DAMEWARE (DAta Mining Web Application REsource, http://dame.dsf.unina.it/beta_info.html), a public data mining service specialized on massive astrophysical data. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm leads to a speedup of a factor of 200× in the training phase with respect to the CPU based version.
Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.
Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang
2017-01-01
Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.
NASA Technical Reports Server (NTRS)
Burt, Adam O.; Tinker, Michael L.
2014-01-01
In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.
Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.
2008-01-01
This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558
Helaers, Raphaël; Milinkovitch, Michel C
2010-07-15
The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org.
2010-01-01
Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org. PMID:20633263
Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem
NASA Astrophysics Data System (ADS)
Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf
2017-08-01
Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.
Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain
Fernando, Chrisantha; Vasas, Vera; Szathmáry, Eörs; Husbands, Phil
2011-01-01
We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain. PMID:21887266
Page, Andrew J.; Keane, Thomas M.; Naughton, Thomas J.
2010-01-01
We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms. PMID:20862190
The mGA1.0: A common LISP implementation of a messy genetic algorithm
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs). PMID:29662297
García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).
NASA Astrophysics Data System (ADS)
Pasik, Tomasz; van der Meij, Raymond
2017-12-01
This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.
Pose estimation for augmented reality applications using genetic algorithm.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-12-01
This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve
2000-01-01
A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.
Experience with a Genetic Algorithm Implemented on a Multiprocessor Computer
NASA Technical Reports Server (NTRS)
Plassman, Gerald E.; Sobieszczanski-Sobieski, Jaroslaw
2000-01-01
Numerical experiments were conducted to find out the extent to which a Genetic Algorithm (GA) may benefit from a multiprocessor implementation, considering, on one hand, that analyses of individual designs in a population are independent of each other so that they may be executed concurrently on separate processors, and, on the other hand, that there are some operations in a GA that cannot be so distributed. The algorithm experimented with was based on a gaussian distribution rather than bit exchange in the GA reproductive mechanism, and the test case was a hub frame structure of up to 1080 design variables. The experimentation engaging up to 128 processors confirmed expectations of radical elapsed time reductions comparing to a conventional single processor implementation. It also demonstrated that the time spent in the non-distributable parts of the algorithm and the attendant cross-processor communication may have a very detrimental effect on the efficient utilization of the multiprocessor machine and on the number of processors that can be used effectively in a concurrent manner. Three techniques were devised and tested to mitigate that effect, resulting in efficiency increasing to exceed 99 percent.
Algorithme intelligent d'optimisation d'un design structurel de grande envergure
NASA Astrophysics Data System (ADS)
Dominique, Stephane
The implementation of an automated decision support system in the field of design and structural optimisation can give a significant advantage to any industry working on mechanical designs. Indeed, by providing solution ideas to a designer or by upgrading existing design solutions while the designer is not at work, the system may reduce the project cycle time, or allow more time to produce a better design. This thesis presents a new approach to automate a design process based on Case-Based Reasoning (CBR), in combination with a new genetic algorithm named Genetic Algorithm with Territorial core Evolution (GATE). This approach was developed in order to reduce the operating cost of the process. However, as the system implementation cost is quite expensive, the approach is better suited for large scale design problem, and particularly for design problems that the designer plans to solve for many different specification sets. First, the CBR process uses a databank filled with every known solution to similar design problems. Then, the closest solutions to the current problem in term of specifications are selected. After this, during the adaptation phase, an artificial neural network (ANN) interpolates amongst known solutions to produce an additional solution to the current problem using the current specifications as inputs. Each solution produced and selected by the CBR is then used to initialize the population of an island of the genetic algorithm. The algorithm will optimise the solution further during the refinement phase. Using progressive refinement, the algorithm starts using only the most important variables for the problem. Then, as the optimisation progress, the remaining variables are gradually introduced, layer by layer. The genetic algorithm that is used is a new algorithm specifically created during this thesis to solve optimisation problems from the field of mechanical device structural design. The algorithm is named GATE, and is essentially a real number genetic algorithm that prevents new individuals to be born too close to previously evaluated solutions. The restricted area becomes smaller or larger during the optimisation to allow global or local search when necessary. Also, a new search operator named Substitution Operator is incorporated in GATE. This operator allows an ANN surrogate model to guide the algorithm toward the most promising areas of the design space. The suggested CBR approach and GATE were tested on several simple test problems, as well as on the industrial problem of designing a gas turbine engine rotor's disc. These results are compared to other results obtained for the same problems by many other popular optimisation algorithms, such as (depending of the problem) gradient algorithms, binary genetic algorithm, real number genetic algorithm, genetic algorithm using multiple parents crossovers, differential evolution genetic algorithm, Hookes & Jeeves generalized pattern search method and POINTER from the software I-SIGHT 3.5. Results show that GATE is quite competitive, giving the best results for 5 of the 6 constrained optimisation problem. GATE also provided the best results of all on problem produced by a Maximum Set Gaussian landscape generator. Finally, GATE provided a disc 4.3% lighter than the best other tested algorithm (POINTER) for the gas turbine engine rotor's disc problem. One drawback of GATE is a lesser efficiency for highly multimodal unconstrained problems, for which he gave quite poor results with respect to its implementation cost. To conclude, according to the preliminary results obtained during this thesis, the suggested CBR process, combined with GATE, seems to be a very good candidate to automate and accelerate the structural design of mechanical devices, potentially reducing significantly the cost of industrial preliminary design processes.
Packing Boxes into Multiple Containers Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Menghani, Deepak; Guha, Anirban
2016-07-01
Container loading problems have been studied extensively in the literature and various analytical, heuristic and metaheuristic methods have been proposed. This paper presents two different variants of a genetic algorithm framework for the three-dimensional container loading problem for optimally loading boxes into multiple containers with constraints. The algorithms are designed so that it is easy to incorporate various constraints found in real life problems. The algorithms are tested on data of standard test cases from literature and are found to compare well with the benchmark algorithms in terms of utilization of containers. This, along with the ability to easily incorporate a wide range of practical constraints, makes them attractive for implementation in real life scenarios.
A synthetic genetic edge detection program.
Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D
2009-06-26
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
A Synthetic Genetic Edge Detection Program
Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.
2009-01-01
Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759
Genetic algorithm to solve the problems of lectures and practicums scheduling
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.
DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.
Kalsi, Shruti; Kaur, Harleen; Chang, Victor
2017-12-05
Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.
A genetic algorithm solution to the unit commitment problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.
1996-02-01
This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 unitsmore » and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.« less
Mao, Yong; Zhou, Xiao-Bo; Pi, Dao-Ying; Sun, You-Xian; Wong, Stephen T C
2005-10-01
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.
Automatic page layout using genetic algorithms for electronic albuming
NASA Astrophysics Data System (ADS)
Geigel, Joe; Loui, Alexander C. P.
2000-12-01
In this paper, we describe a flexible system for automatic page layout that makes use of genetic algorithms for albuming applications. The system is divided into two modules, a page creator module which is responsible for distributing images amongst various album pages, and an image placement module which positions images on individual pages. Final page layouts are specified in a textual form using XML for printing or viewing over the Internet. The system makes use of genetic algorithms, a class of search and optimization algorithms that are based on the concepts of biological evolution, for generating solutions with fitness based on graphic design preferences supplied by the user. The genetic page layout algorithm has been incorporated into a web-based prototype system for interactive page layout over the Internet. The prototype system is built using client-server architecture and is implemented in java. The system described in this paper has demonstrated the feasibility of using genetic algorithms for automated page layout in albuming and web-based imaging applications. We believe that the system adequately proves the validity of the concept, providing creative layouts in a reasonable number of iterations. By optimizing the layout parameters of the fitness function, we hope to further improve the quality of the final layout in terms of user preference and computation speed.
NASA Astrophysics Data System (ADS)
Narwadi, Teguh; Subiyanto
2017-03-01
The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.
Model-based spectral estimation of Doppler signals using parallel genetic algorithms.
Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F
2000-05-01
Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.
Towards 100,000 CPU Cycle-Scavenging by Genetic Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Biegel, Bryan A. (Technical Monitor)
2001-01-01
We examine a web-centric design using standard tools such as web servers, web browsers, PHP, and mySQL. We also consider the applicability of Information Power Grid tools such as the Globus (no relation to the author) Toolkit. We intend to implement this architecture with JavaGenes running on at least two cycle-scavengers: Condor and United Devices. JavaGenes, a genetic algorithm code written in Java, will be used to evolve multi-species reactive molecular force field parameters.
Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means
NASA Astrophysics Data System (ADS)
Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.
2018-04-01
This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.
A novel structure-aware sparse learning algorithm for brain imaging genetics.
Du, Lei; Jingwen, Yan; Kim, Sungeun; Risacher, Shannon L; Huang, Heng; Inlow, Mark; Moore, Jason H; Saykin, Andrew J; Shen, Li
2014-01-01
Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are designed using the soft threshold strategy, which assumes that the features in the data are independent from each other. This independence assumption usually does not hold in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the independence assumption for the input data, but also incorporate group-like structure in the model. Empirical comparison with a widely used SCCA implementation, on both simulated and real imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and biologically meaningful findings.
Optimal Draft requirement for vibratory tillage equipment using Genetic Algorithm Technique
NASA Astrophysics Data System (ADS)
Rao, Gowripathi; Chaudhary, Himanshu; Singh, Prem
2018-03-01
Agriculture is an important sector of Indian economy. Primary and secondary tillage operations are required for any land preparation process. Conventionally different tractor-drawn implements such as mouldboard plough, disc plough, subsoiler, cultivator and disc harrow, etc. are used for primary and secondary manipulations of soils. Among them, oscillatory tillage equipment is one such type which uses vibratory motion for tillage purpose. Several investigators have reported that the requirement for draft consumption in primary tillage implements is more as compared to oscillating one because they are always in contact with soil. Therefore in this paper, an attempt is made to find out the optimal parameters from the experimental data available in the literature to obtain minimum draft consumption through genetic algorithm technique.
Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A
2014-09-22
We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid
2006-04-04
A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.
Advancing X-ray scattering metrology using inverse genetic algorithms.
Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph
2016-01-01
We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.
Acoustic Impedance Inversion of Seismic Data Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Eladj, Said; Djarfour, Noureddine; Ferahtia, Djalal; Ouadfeul, Sid-Ali
2013-04-01
The inversion of seismic data can be used to constrain estimates of the Earth's acoustic impedance structure. This kind of problem is usually known to be non-linear, high-dimensional, with a complex search space which may be riddled with many local minima, and results in irregular objective functions. We investigate here the performance and the application of a genetic algorithm, in the inversion of seismic data. The proposed algorithm has the advantage of being easily implemented without getting stuck in local minima. The effects of population size, Elitism strategy, uniform cross-over and lower mutation are examined. The optimum solution parameters and performance were decided as a function of the testing error convergence with respect to the generation number. To calculate the fitness function, we used L2 norm of the sample-to-sample difference between the reference and the inverted trace. The cross-over probability is of 0.9-0.95 and mutation has been tested at 0.01 probability. The application of such a genetic algorithm to synthetic data shows that the inverted acoustic impedance section was efficient. Keywords: Seismic, Inversion, acoustic impedance, genetic algorithm, fitness functions, cross-over, mutation.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
NASA Astrophysics Data System (ADS)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert
2018-05-01
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...
2018-05-29
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
Optimization of fiber grating couplers on SOI using advanced search algorithms.
Wohlfeil, Benjamin; Zimmermann, Lars; Petermann, Klaus
2014-06-01
A one-dimensional fiber grating coupler is derived from a waveguide with random etches using implementations of particle swarm and genetic algorithms. The resulting gratings yield a theoretical coupling efficiency of up to 1.1 dB and prompt clear design rules for the layout of highly efficient fiber grating couplers.
Gobin, Oliver C; Schüth, Ferdi
2008-01-01
Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.
Tsuruta, S; Misztal, I; Strandén, I
2001-05-01
Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is essential.
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker
2017-01-01
In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.
Evolving neural networks with genetic algorithms to study the string landscape
NASA Astrophysics Data System (ADS)
Ruehle, Fabian
2017-08-01
We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin
2017-01-01
This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.
Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs
NASA Astrophysics Data System (ADS)
Schalkoff, Robert J.; Shaaban, Khaled M.
1999-07-01
Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.
Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors
NASA Astrophysics Data System (ADS)
Mayer, Alexandre; Bay, Annick; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier
2014-09-01
We present a genetic algorithm (GA) we developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface of a LED can be covered by periodic structures whose geometrical and material parameters must be adjusted in order to maximize the extraction of light. The optimization of these parameters by the GA enabled us to get a light-extraction efficiency η of 11.0% from a GaN LED (for comparison, the flat material has a light-extraction efficiency η of only 3.7%). The solar thermal collector we considered consists of a waffle-shaped Al substrate with NiCrOx and SnO2 conformal coatings. We must in this case maximize the solar absorption α while minimizing the thermal emissivity ɛ in the infrared. A multi-objective genetic algorithm has to be implemented in this case in order to determine optimal geometrical parameters. The parameters we obtained using the multi-objective GA enable α~97.8% and ɛ~4.8%, which improves results achieved previously when considering a flat substrate. These two applications demonstrate the interest of genetic algorithms for addressing complex problems in physics.
NASA Astrophysics Data System (ADS)
Paksi, A. B. N.; Ma'ruf, A.
2016-02-01
In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.
A versatile multi-objective FLUKA optimization using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vlachoudis, Vasilis; Antoniucci, Guido Arnau; Mathot, Serge; Kozlowska, Wioletta Sandra; Vretenar, Maurizio
2017-09-01
Quite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and space available, or in the medical field optimizing the dose delivered to a patient under a hadron treatment. The present paper describes our implementation inside flair[1] the advanced user interface of FLUKA[2,3] of a multi-objective Genetic Algorithm[Erreur ! Source du renvoi introuvable.] to facilitate the search for the optimum solution.
Selecting materialized views using random algorithm
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi
2007-04-01
The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.
Genetic Algorithms for Multiple-Choice Problems
NASA Astrophysics Data System (ADS)
Aickelin, Uwe
2010-04-01
This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.
Genetically Engineered Microelectronic Infrared Filters
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
1998-01-01
A genetic algorithm is used for design of infrared filters and in the understanding of the material structure of a resonant tunneling diode. These two components are examples of microdevices and nanodevices that can be numerically simulated using fundamental mathematical and physical models. Because the number of parameters that can be used in the design of one of these devices is large, and because experimental exploration of the design space is unfeasible, reliable software models integrated with global optimization methods are examined The genetic algorithm and engineering design codes have been implemented on massively parallel computers to exploit their high performance. Design results are presented for the infrared filter showing new and optimized device design. Results for nanodevices are presented in a companion paper at this workshop.
Optimal sensor placement for spatial lattice structure based on genetic algorithms
NASA Astrophysics Data System (ADS)
Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian
2008-10-01
Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.
Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun
2018-05-01
Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
High performance genetic algorithm for VLSI circuit partitioning
NASA Astrophysics Data System (ADS)
Dinu, Simona
2016-12-01
Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.
Accelerating artificial intelligence with reconfigurable computing
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw
Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.
A genetic algorithm-based job scheduling model for big data analytics.
Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei
Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.
2012-01-01
Background Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the difficulty required to use these cutting-edge techniques, geneticists often revert to simpler, less powerful methods. Results To make structured association mapping more accessible to geneticists, we have developed an automatic processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured association mapping algorithms. Conclusions Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap. PMID:22471660
NASA Astrophysics Data System (ADS)
To, Cuong; Pham, Tuan D.
2010-01-01
In machine learning, pattern recognition may be the most popular task. "Similar" patterns identification is also very important in biology because first, it is useful for prediction of patterns associated with disease, for example cancer tissue (normal or tumor); second, similarity or dissimilarity of the kinetic patterns is used to identify coordinately controlled genes or proteins involved in the same regulatory process. Third, similar genes (proteins) share similar functions. In this paper, we present an algorithm which uses genetic programming to create decision tree for binary classification problem. The application of the algorithm was implemented on five real biological databases. Base on the results of comparisons with well-known methods, we see that the algorithm is outstanding in most of cases.
Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Taylor, Jaime R.
2003-01-01
NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.
Wang, Liang; Yang, Die; Fang, Cheng; Chen, Zuliang; Lesniewski, Peter J; Mallavarapu, Megharaj; Naidu, Ravendra
2015-01-01
Sodium potassium absorption ratio (SPAR) is an important measure of agricultural water quality, wherein four exchangeable cations (K(+), Na(+), Ca(2+) and Mg(2+)) should be simultaneously determined. An ISE-array is suitable for this application because its simplicity, rapid response characteristics and lower cost. However, cross-interferences caused by the poor selectivity of ISEs need to be overcome using multivariate chemometric methods. In this paper, a solid contact ISE array, based on a Prussian blue modified glassy carbon electrode (PB-GCE), was applied with a novel chemometric strategy. One of the most popular independent component analysis (ICA) methods, the fast fixed-point algorithm for ICA (fastICA), was implemented by the genetic algorithm (geneticICA) to avoid the local maxima problem commonly observed with fastICA. This geneticICA can be implemented as a data preprocessing method to improve the prediction accuracy of the Back-propagation neural network (BPNN). The ISE array system was validated using 20 real irrigation water samples from South Australia, and acceptable prediction accuracies were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris
2000-01-01
Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency issues in the GA, it is possible to have idle processors. However, as long as the load at each processing node is similar, the processors are kept busy nearly all of the time. In applying GAs to circuit design, a suitable genetic representation 'is that of a circuit-construction program. We discuss one such circuit-construction programming language and show how evolution can generate useful analog circuit designs. This language has the desirable property that virtually all sets of combinations of primitives result in valid circuit graphs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm and circuit simulation software, we present experimental results as applied to three analog filter and two amplifier design tasks. For example, a figure shows an 85 dB amplifier design evolved by our system, and another figure shows the performance of that circuit (gain and frequency response). In all tasks, our system is able to generate circuits that achieve the target specifications.
Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.
Ramadan Suleiman, Ahmed; Nehdi, Moncef L
2017-02-07
This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.
Genetic algorithms for protein threading.
Yadgari, J; Amir, A; Unger, R
1998-01-01
Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).
Compression and fast retrieval of SNP data
Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2014-01-01
Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564
A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem
NASA Astrophysics Data System (ADS)
Jolai, Fariborz; Assadipour, Ghazal
Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.
Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Lopez, Nicolas
This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.
JavaGenes: Evolving Graphs with Crossover
NASA Technical Reports Server (NTRS)
Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd
2000-01-01
Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
NASA Astrophysics Data System (ADS)
Orłowska-Szostak, Maria; Orłowski, Ryszard
2017-11-01
The paper discusses some relevant aspects of the calibration of a computer model describing flows in the water supply system. The authors described an exemplary water supply system and used it as a practical illustration of calibration. A range of measures was discussed and applied, which improve the convergence and effective use of calculations in the calibration process and also the effect of such calibration which is the validity of the results obtained. Drawing up results of performed measurements, i.e. estimating pipe roughnesses, the authors performed using the genetic algorithm implementation of which is a software developed by Resan Labs company from Brazil.
NASA Astrophysics Data System (ADS)
Somavarapu, Dhathri H.
This thesis proposes a new parallel computing genetic algorithm framework for designing fuel-optimal trajectories for interplanetary spacecraft missions. The framework can capture the deep search space of the problem with the use of a fixed chromosome structure and hidden-genes concept, can explore the diverse set of candidate solutions with the use of the adaptive and twin-space crowding techniques and, can execute on any high-performance computing (HPC) platform with the adoption of the portable message passing interface (MPI) standard. The algorithm is implemented in C++ with the use of the MPICH implementation of the MPI standard. The algorithm uses a patched-conic approach with two-body dynamics assumptions. New procedures are developed for determining trajectories in the Vinfinity-leveraging legs of the flight from the launch and non-launch planets and, deep-space maneuver legs of the flight from the launch and non-launch planets. The chromosome structure maintains the time of flight as a free parameter within certain boundaries. The fitness or the cost function of the algorithm uses only the mission Delta V, and does not include time of flight. The optimization is conducted with two variations for the minimum mission gravity-assist sequence, the 4-gravity-assist, and the 3-gravity-assist, with a maximum of 5 gravity-assists allowed in both the cases. The optimal trajectories discovered using the framework in both of the cases demonstrate the success of this framework.
COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM
Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...
NASA Astrophysics Data System (ADS)
Eladj, Said; bansir, fateh; ouadfeul, sid Ali
2016-04-01
The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow us to achieve a more accurate structural interpretation Key words: Hybrid Genetic Algorithm, number of generations, model space, local maxima, Number of hill climbing iteration, Minimum eigenvalue, cross-correlation table
Approximation algorithms for a genetic diagnostics problem.
Kosaraju, S R; Schäffer, A A; Biesecker, L G
1998-01-01
We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.
A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials
NASA Technical Reports Server (NTRS)
Hall, John Michael
2004-01-01
A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.
An efficient algorithm for function optimization: modified stem cells algorithm
NASA Astrophysics Data System (ADS)
Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi
2013-03-01
In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).
Self-Tuning of Design Variables for Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Lin, Chaung; Juang, Jer-Nan
2000-01-01
Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Geometrical optimization of sensors for eddy currents nondestructive testing and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thollon, F.; Burais, N.
1995-05-01
Design of Non Destructive Testing (NDT) and Non Destructive Evaluation (NDE) sensors is possible by solving Maxwell`s relations with FEM or BIM. But the large number of geometrical and electrical parameters of sensor and tested material implies many results that don`t give necessarily a well adapted sensor. The authors have used a genetic algorithm for automatic optimization. After having tested this algorithm with analytical solution of Maxwell`s relations for cladding thickness measurement, the method has been implemented in finite element package.
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570
Application of hybrid clustering using parallel k-means algorithm and DIANA algorithm
NASA Astrophysics Data System (ADS)
Umam, Khoirul; Bustamam, Alhadi; Lestari, Dian
2017-03-01
DNA is one of the carrier of genetic information of living organisms. Encoding, sequencing, and clustering DNA sequences has become the key jobs and routine in the world of molecular biology, in particular on bioinformatics application. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combined two type clustering i.e. K-Means (partitioning clustering) and DIANA (hierarchical clustering), therefore it called Hybrid clustering. Application of hybrid clustering using Parallel K-Means algorithm and DIANA algorithm used to clustering DNA sequences of Human Papillomavirus (HPV). The clustering process is started with Collecting DNA sequences of HPV are obtained from NCBI (National Centre for Biotechnology Information), then performing characteristics extraction of DNA sequences. The characteristics extraction result is store in a matrix form, then normalize this matrix using Min-Max normalization and calculate genetic distance using Euclidian Distance. Furthermore, the hybrid clustering is applied by using implementation of Parallel K-Means algorithm and DIANA algorithm. The aim of using Hybrid Clustering is to obtain better clusters result. For validating the resulted clusters, to get optimum number of clusters, we use Davies-Bouldin Index (DBI). In this study, the result of implementation of Parallel K-Means clustering is data clustered become 5 clusters with minimal IDB value is 0.8741, and Hybrid Clustering clustered data become 13 sub-clusters with minimal IDB values = 0.8216, 0.6845, 0.3331, 0.1994 and 0.3952. The IDB value of hybrid clustering less than IBD value of Parallel K-Means clustering only that perform at 1ts stage. Its means clustering using Hybrid Clustering have the better result to clustered DNA sequence of HPV than perform parallel K-Means Clustering only.
Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Kesharaju, Manasa; Nagarajah, Romesh
2015-09-01
The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.
Memetic algorithms for de novo motif-finding in biomedical sequences.
Bi, Chengpeng
2012-09-01
The objectives of this study are to design and implement a new memetic algorithm for de novo motif discovery, which is then applied to detect important signals hidden in various biomedical molecular sequences. In this paper, memetic algorithms are developed and tested in de novo motif-finding problems. Several strategies in the algorithm design are employed that are to not only efficiently explore the multiple sequence local alignment space, but also effectively uncover the molecular signals. As a result, there are a number of key features in the implementation of the memetic motif-finding algorithm (MaMotif), including a chromosome replacement operator, a chromosome alteration-aware local search operator, a truncated local search strategy, and a stochastic operation of local search imposed on individual learning. To test the new algorithm, we compare MaMotif with a few of other similar algorithms using simulated and experimental data including genomic DNA, primary microRNA sequences (let-7 family), and transmembrane protein sequences. The new memetic motif-finding algorithm is successfully implemented in C++, and exhaustively tested with various simulated and real biological sequences. In the simulation, it shows that MaMotif is the most time-efficient algorithm compared with others, that is, it runs 2 times faster than the expectation maximization (EM) method and 16 times faster than the genetic algorithm-based EM hybrid. In both simulated and experimental testing, results show that the new algorithm is compared favorably or superior to other algorithms. Notably, MaMotif is able to successfully discover the transcription factors' binding sites in the chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) data, correctly uncover the RNA splicing signals in gene expression, and precisely find the highly conserved helix motif in the transmembrane protein sequences, as well as rightly detect the palindromic segments in the primary microRNA sequences. The memetic motif-finding algorithm is effectively designed and implemented, and its applications demonstrate it is not only time-efficient, but also exhibits excellent performance while compared with other popular algorithms. Copyright © 2012 Elsevier B.V. All rights reserved.
Al-Rajab, Murad; Lu, Joan; Xu, Qiang
2017-07-01
This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Foulley, Jean-Louis; Van Dyk, David A
2000-01-01
This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399
Cordova: Web-based management of genetic variation data
Ephraim, Sean S.; Anand, Nikhil; DeLuca, Adam P.; Taylor, Kyle R.; Kolbe, Diana L.; Simpson, Allen C.; Azaiez, Hela; Sloan, Christina M.; Shearer, A. Eliot; Hallier, Andrea R.; Casavant, Thomas L.; Scheetz, Todd E.; Smith, Richard J. H.; Braun, Terry A.
2014-01-01
Summary: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician–scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. Availability and implementation: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova. Contact: sean.ephraim@gmail.com or terry-braun@uiowa.edu PMID:25123904
Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data.
Gallant, Andrew; Leiserson, Mark D M; Kachalov, Maxim; Cowen, Lenore J; Hescott, Benjamin J
2013-01-18
New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric.
Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data
2013-01-01
Background New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Results Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. Conclusion We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric. PMID:23331614
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the key points in power module design, especially for high power densities, where couplings are increased. In this paper, along with the design example, an automatic design processes by using a genetic algorithm are presented. Some practical considerations and implementations are introduced in the optimization of module layout design.
ERIC Educational Resources Information Center
Qiu, Shuhao
2015-01-01
In order to investigate the complexity of mutations, a computational approach named Genome Evolution by Matrix Algorithms ("GEMA") has been implemented. GEMA models genomic changes, taking into account hundreds of mutations within each individual in a population. By modeling of entire human chromosomes, GEMA precisely mimics real…
Elizabeth A. Eschenbach; Rebecca Teasley; Carlos Diaz; Mary Ann Madej
2007-01-01
Sediment contributions from unpaved forest roads have contributed to the degradation of anadromous fisheries streams in the Pacific Northwest.Efforts to reduce this degradation have included road decommissioning and road upgrading. These expensive activities have usually been implemented on a site specific basis without considering the sediment...
Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms
NASA Astrophysics Data System (ADS)
Da Pelo, P.; De Tommaso, M.; Monaco, A.; Stramaglia, S.; Bellotti, R.; Tangaro, S.
2018-04-01
Objective. Event-related potentials (ERPs) are usually obtained by averaging thus neglecting the trial-to-trial latency variability in cognitive electroencephalography (EEG) responses. As a consequence the shape and the peak amplitude of the averaged ERP are smeared and reduced, respectively, when the single-trial latencies show a relevant variability. To date, the majority of the methodologies for single-trial latencies inference are iterative schemes providing suboptimal solutions, the most commonly used being the Woody’s algorithm. Approach. In this study, a global approach is developed by introducing a fitness function whose global maximum corresponds to the set of latencies which renders the trial signals most aligned as possible. A suitable genetic algorithm has been implemented to solve the optimization problem, characterized by new genetic operators tailored to the present problem. Main results. The results, on simulated trials, showed that the proposed algorithm performs better than Woody’s algorithm in all conditions, at the cost of an increased computational complexity (justified by the improved quality of the solution). Application of the proposed approach on real data trials, resulted in an increased correlation between latencies and reaction times w.r.t. the output from RIDE method. Significance. The above mentioned results on simulated and real data indicate that the proposed method, providing a better estimate of single-trial latencies, will open the way to more accurate study of neural responses as well as to the issue of relating the variability of latencies to the proper cognitive and behavioural correlates.
Malki, Karim; Tosto, Maria Grazia; Mouriño-Talín, Héctor; Rodríguez-Lorenzo, Sabela; Pain, Oliver; Jumhaboy, Irfan; Liu, Tina; Parpas, Panos; Newman, Stuart; Malykh, Artem; Carboni, Lucia; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C; Bryson, Kevin; Herbster, Mark
2017-04-01
Response to antidepressant (AD) treatment may be a more polygenic trait than previously hypothesized, with many genetic variants interacting in yet unclear ways. In this study we used methods that can automatically learn to detect patterns of statistical regularity from a sparsely distributed signal across hippocampal transcriptome measurements in a large-scale animal pharmacogenomic study to uncover genomic variations associated with AD. The study used four inbred mouse strains of both sexes, two drug treatments, and a control group (escitalopram, nortriptyline, and saline). Multi-class and binary classification using Machine Learning (ML) and regularization algorithms using iterative and univariate feature selection methods, including InfoGain, mRMR, ANOVA, and Chi Square, were used to uncover genomic markers associated with AD response. Relevant genes were selected based on Jaccard distance and carried forward for gene-network analysis. Linear association methods uncovered only one gene associated with drug treatment response. The implementation of ML algorithms, together with feature reduction methods, revealed a set of 204 genes associated with SSRI and 241 genes associated with NRI response. Although only 10% of genes overlapped across the two drugs, network analysis shows that both drugs modulated the CREB pathway, through different molecular mechanisms. Through careful implementation and optimisations, the algorithms detected a weak signal used to predict whether an animal was treated with nortriptyline (77%) or escitalopram (67%) on an independent testing set. The results from this study indicate that the molecular signature of AD treatment may include a much broader range of genomic markers than previously hypothesized, suggesting that response to medication may be as complex as the pathology. The search for biomarkers of antidepressant treatment response could therefore consider a higher number of genetic markers and their interactions. Through predominately different molecular targets and mechanisms of action, the two drugs modulate the same Creb1 pathway which plays a key role in neurotrophic responses and in inflammatory processes. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Improving Search Properties in Genetic Programming
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.; DeWeese, Scott
1997-01-01
With the advancing computer processing capabilities, practical computer applications are mostly limited by the amount of human programming required to accomplish a specific task. This necessary human participation creates many problems, such as dramatically increased cost. To alleviate the problem, computers must become more autonomous. In other words, computers must be capable to program/reprogram themselves to adapt to changing environments/tasks/demands/domains. Evolutionary computation offers potential means, but it must be advanced beyond its current practical limitations. Evolutionary algorithms model nature. They maintain a population of structures representing potential solutions to the problem at hand. These structures undergo a simulated evolution by means of mutation, crossover, and a Darwinian selective pressure. Genetic programming (GP) is the most promising example of an evolutionary algorithm. In GP, the structures that evolve are trees, which is a dramatic departure from previously used representations such as strings in genetic algorithms. The space of potential trees is defined by means of their elements: functions, which label internal nodes, and terminals, which label leaves. By attaching semantic interpretation to those elements, trees can be interpreted as computer programs (given an interpreter), evolved architectures, etc. JSC has begun exploring GP as a potential tool for its long-term project on evolving dextrous robotic capabilities. Last year we identified representation redundancies as the primary source of inefficiency in GP. Subsequently, we proposed a method to use problem constraints to reduce those redundancies, effectively reducing GP complexity. This method was implemented afterwards at the University of Missouri. This summer, we have evaluated the payoff from using problem constraints to reduce search complexity on two classes of problems: learning boolean functions and solving the forward kinematics problem. We have also developed and implemented methods to use additional problem heuristics to fine-tune the searchable space, and to use typing information to further reduce the search space. Additional improvements have been proposed, but they are yet to be explored and implemented.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Research on vehicles and cargos matching model based on virtual logistics platform
NASA Astrophysics Data System (ADS)
Zhuang, Yufeng; Lu, Jiang; Su, Zhiyuan
2018-04-01
Highway less than truckload (LTL) transportation vehicles and cargos matching problem is a joint optimization problem of typical vehicle routing and loading, which is also a hot issue of operational research. This article based on the demand of virtual logistics platform, for the problem of the highway LTL transportation, the matching model of the idle vehicle and the transportation order is set up and the corresponding genetic algorithm is designed. Then the algorithm is implemented by Java. The simulation results show that the solution is satisfactory.
Methodology of Numerical Optimization for Orbital Parameters of Binary Systems
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2010-02-01
The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.
Swarming Robot Design, Construction and Software Implementation
NASA Technical Reports Server (NTRS)
Stolleis, Karl A.
2014-01-01
In this paper is presented an overview of the hardware design, construction overview, software design and software implementation for a small, low-cost robot to be used for swarming robot development. In addition to the work done on the robot, a full simulation of the robotic system was developed using Robot Operating System (ROS) and its associated simulation. The eventual use of the robots will be exploration of evolving behaviors via genetic algorithms and builds on the work done at the University of New Mexico Biological Computation Lab.
Pharmacogenetics of warfarin: challenges and opportunities
Ta Michael Lee, Ming; Klein, Teri E
2014-01-01
Since the introduction in the 1950s, warfarin has become the commonly used oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation or prosthetic heart valve replacement. Warfarin is highly efficacious; however, achieving the desired anticoagulation is difficult because of its narrow therapeutic window and highly variable dose response among individuals. Bleeding is often associated with overdose of warfarin. There is overwhelming evidence that an individual's warfarin maintenance is associated with clinical factors and genetic variations, most notably polymorphisms in cytochrome P450 2C9 and vitamin K epoxide reductase subunit 1. Numerous dose-prediction algorithms incorporating both genetic and clinical factors have been developed and tested clinically. However, results from major clinical trials are not available yet. This review aims to provide an overview of the field of warfarin which includes information about the drug, genetics of warfarin dose requirements, dosing algorithms developed and the challenges for the clinical implementation of warfarin pharmacogenetics. PMID:23657428
Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment
2011-01-01
Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510
NASA Astrophysics Data System (ADS)
Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan
2017-05-01
In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659
Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set
NASA Astrophysics Data System (ADS)
Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif
2018-03-01
Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.
Kling, Daniel; Tillmar, Andreas; Egeland, Thore; Mostad, Petter
2015-09-01
Several applications necessitate an unbiased determination of relatedness, be it in linkage or association studies or in a forensic setting. An appropriate model to compute the joint probability of some genetic data for a set of persons given some hypothesis about the pedigree structure is then required. The increasing number of markers available through high-density SNP microarray typing and NGS technologies intensifies the demand, where using a large number of markers may lead to biased results due to strong dependencies between closely located loci, both within pedigrees (linkage) and in the population (allelic association or linkage disequilibrium (LD)). We present a new general model, based on a Markov chain for inheritance patterns and another Markov chain for founder allele patterns, the latter allowing us to account for LD. We also demonstrate a specific implementation for X chromosomal markers that allows for computation of likelihoods based on hypotheses of alleged relationships and genetic marker data. The algorithm can simultaneously account for linkage, LD, and mutations. We demonstrate its feasibility using simulated examples. The algorithm is implemented in the software FamLinkX, providing a user-friendly GUI for Windows systems (FamLinkX, as well as further usage instructions, is freely available at www.famlink.se ). Our software provides the necessary means to solve cases where no previous implementation exists. In addition, the software has the possibility to perform simulations in order to further study the impact of linkage and LD on computed likelihoods for an arbitrary set of markers.
A genetic algorithm application in backcross breeding problem
NASA Astrophysics Data System (ADS)
Carnia, E.; Napitupulu, H.; Supriatna, A. K.
2018-03-01
In this paper we discuss a mathematical model of goat breeding strategy, i.e. the backcrossing breeding. The model is aimed to obtain a strategy in producing better variant of species. In this strategy, a female (doe) of a lesser quality goat, in terms of goat quality is bred with a male (buck) of an exotic goat which has a better goat quality. In this paper we will explore a problem on how to harvest the population optimally. A genetic algorithm (GA) approach will been devised to obtain the solution of the problem. We do several trials of the GA implementation which gives different set of solutions, but relatively close to each other in terms of the resulting total revenue, except a few. Further study need to be done to obtain GA solution that closer to the exact solution.
Alteration of Box-Jenkins methodology by implementing genetic algorithm method
NASA Astrophysics Data System (ADS)
Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad
2015-02-01
A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.
Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model
NASA Astrophysics Data System (ADS)
Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.
2009-04-01
The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.
Automatic Data Filter Customization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mandrake, Lukas
2013-01-01
This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.
The fatigue life prediction of aluminium alloy using genetic algorithm and neural network
NASA Astrophysics Data System (ADS)
Susmikanti, Mike
2013-09-01
The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space.
Kalathil, Shaeen; Elias, Elizabeth
2015-11-01
This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space
Kalathil, Shaeen; Elias, Elizabeth
2014-01-01
This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921
Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm
NASA Astrophysics Data System (ADS)
Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui
2017-05-01
The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.
Rusu, Mirabela; Birmanns, Stefan
2010-04-01
A structural characterization of multi-component cellular assemblies is essential to explain the mechanisms governing biological function. Macromolecular architectures may be revealed by integrating information collected from various biophysical sources - for instance, by interpreting low-resolution electron cryomicroscopy reconstructions in relation to the crystal structures of the constituent fragments. A simultaneous registration of multiple components is beneficial when building atomic models as it introduces additional spatial constraints to facilitate the native placement inside the map. The high-dimensional nature of such a search problem prevents the exhaustive exploration of all possible solutions. Here we introduce a novel method based on genetic algorithms, for the efficient exploration of the multi-body registration search space. The classic scheme of a genetic algorithm was enhanced with new genetic operations, tabu search and parallel computing strategies and validated on a benchmark of synthetic and experimental cryo-EM datasets. Even at a low level of detail, for example 35-40 A, the technique successfully registered multiple component biomolecules, measuring accuracies within one order of magnitude of the nominal resolutions of the maps. The algorithm was implemented using the Sculptor molecular modeling framework, which also provides a user-friendly graphical interface and enables an instantaneous, visual exploration of intermediate solutions. (c) 2009 Elsevier Inc. All rights reserved.
Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2015-01-01
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797
Detection of possible restriction sites for type II restriction enzymes in DNA sequences.
Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L
2011-01-01
In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.
View-Invariant Gait Recognition Through Genetic Template Segmentation
NASA Astrophysics Data System (ADS)
Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.
2017-08-01
Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.
Layout design-based research on optimization and assessment method for shipbuilding workshop
NASA Astrophysics Data System (ADS)
Liu, Yang; Meng, Mei; Liu, Shuang
2013-06-01
The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.
Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.
Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam
2016-01-01
We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.
Breuer, Christian; Lucas, Martin; Schütze, Frank-Walter; Claus, Peter
2007-01-01
A multi-criteria optimisation procedure based on genetic algorithms is carried out in search of advanced heterogeneous catalysts for total oxidation. Simple but flexible software routines have been created to be applied within a search space of more then 150,000 individuals. The general catalyst design includes mono-, bi- and trimetallic compositions assembled out of 49 different metals and depleted on an Al2O3 support in up to nine amount levels. As an efficient tool for high-throughput screening and perfectly matched to the requirements of heterogeneous gas phase catalysis - especially for applications technically run in honeycomb structures - the multi-channel monolith reactor is implemented to evaluate the catalyst performances. Out of a multi-component feed-gas, the conversion rates of carbon monoxide (CO) and a model hydrocarbon (HC) are monitored in parallel. In combination with further restrictions to preparation and pre-treatment a primary screening can be conducted, promising to provide results close to technically applied catalysts. Presented are the resulting performances of the optimisation process for the first catalyst generations and the prospect of its auto-adaptation to specified optimisation goals.
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer
Young, Jonathan H.; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D.; White, Michael A.; Marcotte, Edward M.
2016-01-01
Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26755624
An approach for multi-objective optimization of vehicle suspension system
NASA Astrophysics Data System (ADS)
Koulocheris, D.; Papaioannou, G.; Christodoulou, D.
2017-10-01
In this paper, a half car model of with nonlinear suspension systems is selected in order to study the vertical vibrations and optimize its suspension system with respect to ride comfort and road holding. A road bump was used as road profile. At first, the optimization problem is solved with the use of Genetic Algorithms with respect to 6 optimization targets. Then the k - ɛ optimization method was implemented to locate one optimum solution. Furthermore, an alternative approach is presented in this work: the previous optimization targets are separated in main and supplementary ones, depending on their importance in the analysis. The supplementary targets are not crucial to the optimization but they could enhance the main objectives. Thus, the problem was solved again using Genetic Algorithms with respect to the 3 main targets of the optimization. Having obtained the Pareto set of solutions, the k - ɛ optimality method was implemented for the 3 main targets and the supplementary ones, evaluated by the simulation of the vehicle model. The results of both cases are presented and discussed in terms of convergence of the optimization and computational time. The optimum solutions acquired from both cases are compared based on performance metrics as well.
An adaptive sharing elitist evolution strategy for multiobjective optimization.
Costa, Lino; Oliveira, Pedro
2003-01-01
Almost all approaches to multiobjective optimization are based on Genetic Algorithms (GAs), and implementations based on Evolution Strategies (ESs) are very rare. Thus, it is crucial to investigate how ESs can be extended to multiobjective optimization, since they have, in the past, proven to be powerful single objective optimizers. In this paper, we present a new approach to multiobjective optimization, based on ESs. We call this approach the Multiobjective Elitist Evolution Strategy (MEES) as it incorporates several mechanisms, like elitism, that improve its performance. When compared with other algorithms, MEES shows very promising results in terms of performance.
Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.
Bhandarkar, S M; Chirravuri, S; Arnold, J
1996-01-01
Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
Comparison of genetic algorithms with conjugate gradient methods
NASA Technical Reports Server (NTRS)
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
Software For Genetic Algorithms
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steve E.
1992-01-01
SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.
A Functional-Genetic Scheme for Seizure Forecasting in Canine Epilepsy.
Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad
2018-06-01
The objective of this work is the development of an accurate seizure forecasting algorithm that considers brain's functional connectivity for electrode selection. We start by proposing Kmeans-directed transfer function, an adaptive functional connectivity method intended for seizure onset zone localization in bilateral intracranial EEG recordings. Electrodes identified as seizure activity sources and sinks are then used to implement a seizure-forecasting algorithm on long-term continuous recordings in dogs with naturally-occurring epilepsy. A precision-recall genetic algorithm is proposed for feature selection in line with a probabilistic support vector machine classifier. Epileptic activity generators were focal in all dogs confirming the diagnosis of focal epilepsy in these animals while sinks spanned both hemispheres in 2 of 3 dogs. Seizure forecasting results show performance improvement compared to previous studies, achieving average sensitivity of 84.82% and time in warning of 0.1. Achieved performances highlight the feasibility of seizure forecasting in canine epilepsy. The ability to improve seizure forecasting provides promise for the development of EEG-triggered closed-loop seizure intervention systems for ambulatory implantation in patients with refractory epilepsy.
Chi-square-based scoring function for categorization of MEDLINE citations.
Kastrin, A; Peterlin, B; Hristovski, D
2010-01-01
Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine-learning algorithms (support vector machines, decision trees, naïve Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine-learning algorithms. We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.
Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan
2017-05-01
In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filho, Faete J; Tolbert, Leon M; Ozpineci, Burak
2012-01-01
The work developed here proposes a methodology for calculating switching angles for varying DC sources in a multilevel cascaded H-bridges converter. In this approach the required fundamental is achieved, the lower harmonics are minimized, and the system can be implemented in real time with low memory requirements. Genetic algorithm (GA) is the stochastic search method to find the solution for the set of equations where the input voltages are the known variables and the switching angles are the unknown variables. With the dataset generated by GA, an artificial neural network (ANN) is trained to store the solutions without excessive memorymore » storage requirements. This trained ANN then senses the voltage of each cell and produces the switching angles in order to regulate the fundamental at 120 V and eliminate or minimize the low order harmonics while operating in real time.« less
Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki
2009-10-01
Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.
Optimizing the availability of a buffered industrial process
Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.
2004-08-24
A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.
Sobel, E.; Lange, K.
1996-01-01
The introduction of stochastic methods in pedigree analysis has enabled geneticists to tackle computations intractable by standard deterministic methods. Until now these stochastic techniques have worked by running a Markov chain on the set of genetic descent states of a pedigree. Each descent state specifies the paths of gene flow in the pedigree and the founder alleles dropped down each path. The current paper follows up on a suggestion by Elizabeth Thompson that genetic descent graphs offer a more appropriate space for executing a Markov chain. A descent graph specifies the paths of gene flow but not the particular founder alleles traveling down the paths. This paper explores algorithms for implementing Thompson's suggestion for codominant markers in the context of automatic haplotyping, estimating location scores, and computing gene-clustering statistics for robust linkage analysis. Realistic numerical examples demonstrate the feasibility of the algorithms. PMID:8651310
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Weigel, K A; VanRaden, P M; Norman, H D; Grosu, H
2017-12-01
In the early 1900s, breed society herdbooks had been established and milk-recording programs were in their infancy. Farmers wanted to improve the productivity of their cattle, but the foundations of population genetics, quantitative genetics, and animal breeding had not been laid. Early animal breeders struggled to identify genetically superior families using performance records that were influenced by local environmental conditions and herd-specific management practices. Daughter-dam comparisons were used for more than 30 yr and, although genetic progress was minimal, the attention given to performance recording, genetic theory, and statistical methods paid off in future years. Contemporary (herdmate) comparison methods allowed more accurate accounting for environmental factors and genetic progress began to accelerate when these methods were coupled with artificial insemination and progeny testing. Advances in computing facilitated the implementation of mixed linear models that used pedigree and performance data optimally and enabled accurate selection decisions. Sequencing of the bovine genome led to a revolution in dairy cattle breeding, and the pace of scientific discovery and genetic progress accelerated rapidly. Pedigree-based models have given way to whole-genome prediction, and Bayesian regression models and machine learning algorithms have joined mixed linear models in the toolbox of modern animal breeders. Future developments will likely include elucidation of the mechanisms of genetic inheritance and epigenetic modification in key biological pathways, and genomic data will be used with data from on-farm sensors to facilitate precision management on modern dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
NASA Astrophysics Data System (ADS)
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
Mobile robot dynamic path planning based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.
Evaluation of the Intel Xeon Phi 7120 and NVIDIA K80 as accelerators for two-dimensional panel codes
2017-01-01
To optimize the geometry of airfoils for a specific application is an important engineering problem. In this context genetic algorithms have enjoyed some success as they are able to explore the search space without getting stuck in local optima. However, these algorithms require the computation of aerodynamic properties for a significant number of airfoil geometries. Consequently, for low-speed aerodynamics, panel methods are most often used as the inner solver. In this paper we evaluate the performance of such an optimization algorithm on modern accelerators (more specifically, the Intel Xeon Phi 7120 and the NVIDIA K80). For that purpose, we have implemented an optimized version of the algorithm on the CPU and Xeon Phi (based on OpenMP, vectorization, and the Intel MKL library) and on the GPU (based on CUDA and the MAGMA library). We present timing results for all codes and discuss the similarities and differences between the three implementations. Overall, we observe a speedup of approximately 2.5 for adding an Intel Xeon Phi 7120 to a dual socket workstation and a speedup between 3.4 and 3.8 for adding a NVIDIA K80 to a dual socket workstation. PMID:28582389
Einkemmer, Lukas
2017-01-01
To optimize the geometry of airfoils for a specific application is an important engineering problem. In this context genetic algorithms have enjoyed some success as they are able to explore the search space without getting stuck in local optima. However, these algorithms require the computation of aerodynamic properties for a significant number of airfoil geometries. Consequently, for low-speed aerodynamics, panel methods are most often used as the inner solver. In this paper we evaluate the performance of such an optimization algorithm on modern accelerators (more specifically, the Intel Xeon Phi 7120 and the NVIDIA K80). For that purpose, we have implemented an optimized version of the algorithm on the CPU and Xeon Phi (based on OpenMP, vectorization, and the Intel MKL library) and on the GPU (based on CUDA and the MAGMA library). We present timing results for all codes and discuss the similarities and differences between the three implementations. Overall, we observe a speedup of approximately 2.5 for adding an Intel Xeon Phi 7120 to a dual socket workstation and a speedup between 3.4 and 3.8 for adding a NVIDIA K80 to a dual socket workstation.
An Efficient Rank Based Approach for Closest String and Closest Substring
2012-01-01
This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA sequences. Our experiments show that the genetic algorithms based on rank distance have the best results. PMID:22675483
A hybrid genetic algorithm for resolving closely spaced objects
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Lillo, W. E.; Schulenburg, N.
1995-01-01
A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Yang, Lingyun
We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.
Curtis, Farren; Li, Xiayue; Rose, Timothy; Vázquez-Mayagoitia, Álvaro; Bhattacharya, Saswata; Ghiringhelli, Luca M; Marom, Noa
2018-04-10
We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.
Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.
Yang, Shengxiang
2008-01-01
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.
Boiler-turbine control system design using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.; Lee, K.Y.
1995-12-01
This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.
2012-01-01
Background As Next-Generation Sequencing data becomes available, existing hardware environments do not provide sufficient storage space and computational power to store and process the data due to their enormous size. This is and will be a frequent problem that is encountered everyday by researchers who are working on genetic data. There are some options available for compressing and storing such data, such as general-purpose compression software, PBAT/PLINK binary format, etc. However, these currently available methods either do not offer sufficient compression rates, or require a great amount of CPU time for decompression and loading every time the data is accessed. Results Here, we propose a novel and simple algorithm for storing such sequencing data. We show that, the compression factor of the algorithm ranges from 16 to several hundreds, which potentially allows SNP data of hundreds of Gigabytes to be stored in hundreds of Megabytes. We provide a C++ implementation of the algorithm, which supports direct loading and parallel loading of the compressed format without requiring extra time for decompression. By applying the algorithm to simulated and real datasets, we show that the algorithm gives greater compression rate than the commonly used compression methods, and the data-loading process takes less time. Also, The C++ library provides direct-data-retrieving functions, which allows the compressed information to be easily accessed by other C++ programs. Conclusions The SpeedGene algorithm enables the storage and the analysis of next generation sequencing data in current hardware environment, making system upgrades unnecessary. PMID:22591016
Compression and fast retrieval of SNP data.
Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2014-11-01
The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Wu, J.; Yang, Y.; Luo, Q.; Wu, J.
2012-12-01
This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.
Method for hyperspectral imagery exploitation and pixel spectral unmixing
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2003-01-01
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
Relabeling exchange method (REM) for learning in neural networks
NASA Astrophysics Data System (ADS)
Wu, Wen; Mammone, Richard J.
1994-02-01
The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.
GPU Accelerated Browser for Neuroimaging Genomics.
Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li
2018-04-25
Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Buckling and weight optimization for non-coupled antisymmetric laminates
NASA Astrophysics Data System (ADS)
Bhatnagar, Aditi
This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.
Aghamohammadi, Hossein; Saadi Mesgari, Mohammad; Molaei, Damoon; Aghamohammadi, Hasan
2013-01-01
Location-allocation is a combinatorial optimization problem, and is defined as Non deterministic Polynomial Hard (NP) hard optimization. Therefore, solution of such a problem should be shifted from exact to heuristic or Meta heuristic due to the complexity of the problem. Locating medical centers and allocating injuries of an earthquake to them has high importance in earthquake disaster management so that developing a proper method will reduce the time of relief operation and will consequently decrease the number of fatalities. This paper presents the development of a heuristic method based on two nested genetic algorithms to optimize this location allocation problem by using the abilities of Geographic Information System (GIS). In the proposed method, outer genetic algorithm is applied to the location part of the problem and inner genetic algorithm is used to optimize the resource allocation. The final outcome of implemented method includes the spatial location of new required medical centers. The method also calculates that how many of the injuries at each demanding point should be taken to any of the existing and new medical centers as well. The results of proposed method showed high performance of designed structure to solve a capacitated location-allocation problem that may arise in a disaster situation when injured people has to be taken to medical centers in a reasonable time.
NASA Astrophysics Data System (ADS)
Moon, Byung-Young
2005-12-01
The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.
Optimization of a Lunar Pallet Lander Reinforcement Structure Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Burt, Adam
2014-01-01
In this paper, a unique system level spacecraft design optimization will be presented. A Genetic Algorithm is used to design the global pattern of the reinforcing structure, while a gradient routine is used to adequately stiffen the sub-structure. The system level structural design includes determining the optimal physical location (and number) of reinforcing beams of a lunar pallet lander deck structure. Design of the substructure includes determining placement of secondary stiffeners and the number of rivets required for assembly.. In this optimization, several considerations are taken into account. The primary objective was to raise the primary natural frequencies of the structure such that the Pallet Lander primary structure does not significantly couple with the launch vehicle. A secondary objective is to determine how to properly stiffen the reinforcing beams so that the beam web resists the shear buckling load imparted by the spacecraft components mounted to the pallet lander deck during launch and landing. A third objective is that the calculated stress does not exceed the allowable strength of the material. These design requirements must be met while, minimizing the overall mass of the spacecraft. The final paper will discuss how the optimization was implemented as well as the results. While driven by optimization algorithms, the primary purpose of this effort was to demonstrate the capability of genetic algorithms to enable design automation in the preliminary design cycle. By developing a routine that can automatically generate designs through the use of Finite Element Analysis, considerable design efficiencies, both in time and overall product, can be obtained over more traditional brute force design methods.
The Study on Network Examinational Database based on ASP Technology
NASA Astrophysics Data System (ADS)
Zhang, Yanfu; Han, Yuexiao; Zhou, Yanshuang
This article introduces the structure of the general test base system based on .NET technology, discussing the design of the function modules and its implementation methods. It focuses on key technology of the system, proposing utilizing the WEB online editor control to solve the input problem and regular expression to solve the problem HTML code, making use of genetic algorithm to optimize test paper and the automated tools of WORD to solve the problem of exporting papers and others. Practical effective design and implementation technology can be used as reference for the development of similar systems.
Automated selection of synthetic biology parts for genetic regulatory networks.
Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob
2012-08-17
Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be
2014-10-28
A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables formore » the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.« less
Comparison of genetic algorithm methods for fuel management optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-12-31
The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
Jayashree, B; Rajgopal, S; Hoisington, D; Prasanth, V P; Chandra, S
2008-09-24
Structure, is a widely used software tool to investigate population genetic structure with multi-locus genotyping data. The software uses an iterative algorithm to group individuals into "K" clusters, representing possibly K genetically distinct subpopulations. The serial implementation of this programme is processor-intensive even with small datasets. We describe an implementation of the program within a parallel framework. Speedup was achieved by running different replicates and values of K on each node of the cluster. A web-based user-oriented GUI has been implemented in PHP, through which the user can specify input parameters for the programme. The number of processors to be used can be specified in the background command. A web-based visualization tool "Visualstruct", written in PHP (HTML and Java script embedded), allows for the graphical display of population clusters output from Structure, where each individual may be visualized as a line segment with K colors defining its possible genomic composition with respect to the K genetic sub-populations. The advantage over available programs is in the increased number of individuals that can be visualized. The analyses of real datasets indicate a speedup of up to four, when comparing the speed of execution on clusters of eight processors with the speed of execution on one desktop. The software package is freely available to interested users upon request.
Das, Arpita; Bhattacharya, Mahua
2011-01-01
In the present work, authors have developed a treatment planning system implementing genetic based neuro-fuzzy approaches for accurate analysis of shape and margin of tumor masses appearing in breast using digital mammogram. It is obvious that a complicated structure invites the problem of over learning and misclassification. In proposed methodology, genetic algorithm (GA) has been used for searching of effective input feature vectors combined with adaptive neuro-fuzzy model for final classification of different boundaries of tumor masses. The study involves 200 digitized mammograms from MIAS and other databases and has shown 86% correct classification rate.
2016-12-01
Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street... Genetic Algorithm 5a. CONTRACT NUMBER W199SR-15-2-001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin L Paul 5d. PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-03-01
When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.
NASA Astrophysics Data System (ADS)
Bonissone, Stefano R.
2001-11-01
There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.
Optimization of the ANFIS using a genetic algorithm for physical work rate classification.
Habibi, Ehsanollah; Salehi, Mina; Yadegarfar, Ghasem; Taheri, Ali
2018-03-13
Recently, a new method was proposed for physical work rate classification based on an adaptive neuro-fuzzy inference system (ANFIS). This study aims to present a genetic algorithm (GA)-optimized ANFIS model for a highly accurate classification of physical work rate. Thirty healthy men participated in this study. Directly measured heart rate and oxygen consumption of the participants in the laboratory were used for training the ANFIS classifier model in MATLAB version 8.0.0 using a hybrid algorithm. A similar process was done using the GA as an optimization technique. The accuracy, sensitivity and specificity of the ANFIS classifier model were increased successfully. The mean accuracy of the model was increased from 92.95 to 97.92%. Also, the calculated root mean square error of the model was reduced from 5.4186 to 3.1882. The maximum estimation error of the optimized ANFIS during the network testing process was ± 5%. The GA can be effectively used for ANFIS optimization and leads to an accurate classification of physical work rate. In addition to high accuracy, simple implementation and inter-individual variability consideration are two other advantages of the presented model.
Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero
2012-03-26
Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.
2012-01-01
Background Through the wealth of information contained within them, genome-wide association studies (GWAS) have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic variants themselves and in conjunction with one another. The construction of models that account for these subsets of variants requires methodologies that generate predictions based on the total risk of a particular group of polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far been computationally infeasible. Results We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of training examples, the number of features in the original data set, and the number of selected features. This speed is achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification performance on independent test data than a classifier trained using features selected by a statistical p-value-based filter, which is currently the most popular approach for constructing predictive models in GWAS. Conclusions Greedy RLS is the first known implementation of a machine learning based method with the capability to conduct a wrapper-based feature selection on an entire GWAS containing several thousand examples and over 400,000 variants. In our experiments, greedy RLS selected a highly predictive subset of genetic variants in a fraction of the time spent by wrapper-based selection methods used together with SVM classifiers. The proposed algorithms are freely available as part of the RLScore software library at http://users.utu.fi/aatapa/RLScore/. PMID:22551170
NASA Astrophysics Data System (ADS)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
A permutation-based non-parametric analysis of CRISPR screen data.
Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua
2017-07-19
Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo M.; Jarman, Kristin H.; Harvey, Scott D.
2005-05-28
A fundamental problem in analysis of highly multivariate spectral or chromatographic data is reduction of dimensionality. Principal components analysis (PCA), concerned with explaining the variance-covariance structure of the data, is a commonly used approach to dimension reduction. Recently an attractive alternative to PCA, sequential projection pursuit (SPP), has been introduced. Designed to elicit clustering tendencies in the data, SPP may be more appropriate when performing clustering or classification analysis. However, the existing genetic algorithm (GA) implementation of SPP has two shortcomings, computation time and inability to determine the number of factors necessary to explain the majority of the structure inmore » the data. We address both these shortcomings. First, we introduce a new SPP algorithm, a random scan sampling algorithm (RSSA), that significantly reduces computation time. We compare the computational burden of the RSS and GA implementation for SPP on a dataset containing Raman spectra of twelve organic compounds. Second, we propose a Bayes factor criterion, BFC, as an effective measure for selecting the number of factors needed to explain the majority of the structure in the data. We compare SPP to PCA on two datasets varying in type, size, and difficulty; in both cases SPP achieves a higher accuracy with a lower number of latent variables.« less
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Hosein; Nazemi, Ali; Hafezalkotob, Ashkan
2015-03-01
With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous optimization of multiple parameters. The problem is formulated analytically using the Nash equilibrium concept for games composed of large numbers of players having discrete and large strategy spaces. The solution methodology is based on a characterization of Nash equilibrium in terms of minima of a function and relies on a metaheuristic optimization approach to find these minima. This paper presents some metaheuristic algorithms to simulate how generators bid in the spot electricity market viewpoint of their profit maximization according to the other generators' strategies, such as genetic algorithm (GA), simulated annealing (SA) and hybrid simulated annealing genetic algorithm (HSAGA) and compares their results. As both GA and SA are generic search methods, HSAGA is also a generic search method. The model based on the actual data is implemented in a peak hour of Tehran's wholesale spot market in 2012. The results of the simulations show that GA outperforms SA and HSAGA on computing time, number of function evaluation and computing stability, as well as the results of calculated Nash equilibriums by GA are less various and different from each other than the other algorithms.
A Test of Genetic Algorithms in Relevance Feedback.
ERIC Educational Resources Information Center
Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de
2002-01-01
Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…
Intelligent inversion method for pre-stack seismic big data based on MapReduce
NASA Astrophysics Data System (ADS)
Yan, Xuesong; Zhu, Zhixin; Wu, Qinghua
2018-01-01
Seismic exploration is a method of oil exploration that uses seismic information; that is, according to the inversion of seismic information, the useful information of the reservoir parameters can be obtained to carry out exploration effectively. Pre-stack data are characterised by a large amount of data, abundant information, and so on, and according to its inversion, the abundant information of the reservoir parameters can be obtained. Owing to the large amount of pre-stack seismic data, existing single-machine environments have not been able to meet the computational needs of the huge amount of data; thus, the development of a method with a high efficiency and the speed to solve the inversion problem of pre-stack seismic data is urgently needed. The optimisation of the elastic parameters by using a genetic algorithm easily falls into a local optimum, which results in a non-obvious inversion effect, especially for the optimisation effect of the density. Therefore, an intelligent optimisation algorithm is proposed in this paper and used for the elastic parameter inversion of pre-stack seismic data. This algorithm improves the population initialisation strategy by using the Gardner formula and the genetic operation of the algorithm, and the improved algorithm obtains better inversion results when carrying out a model test with logging data. All of the elastic parameters obtained by inversion and the logging curve of theoretical model are fitted well, which effectively improves the inversion precision of the density. This algorithm was implemented with a MapReduce model to solve the seismic big data inversion problem. The experimental results show that the parallel model can effectively reduce the running time of the algorithm.
Portfolio optimization by using linear programing models based on genetic algorithm
NASA Astrophysics Data System (ADS)
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
An improved genetic algorithm and its application in the TSP problem
NASA Astrophysics Data System (ADS)
Li, Zheng; Qin, Jinlei
2011-12-01
Concept and research actuality of genetic algorithm are introduced in detail in the paper. Under this condition, the simple genetic algorithm and an improved algorithm are described and applied in an example of TSP problem, where the advantage of genetic algorithm is adequately shown in solving the NP-hard problem. In addition, based on partial matching crossover operator, the crossover operator method is improved into extended crossover operator in order to advance the efficiency when solving the TSP. In the extended crossover method, crossover operator can be performed between random positions of two random individuals, which will not be restricted by the position of chromosome. Finally, the nine-city TSP is solved using the improved genetic algorithm with extended crossover method, the efficiency of whose solution process is much higher, besides, the solving speed of the optimal solution is much faster.
Solving TSP problem with improved genetic algorithm
NASA Astrophysics Data System (ADS)
Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying
2018-05-01
The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.
A statistical framework for genetic association studies of power curves in bird flight
Lin, Min; Zhao, Wei
2006-01-01
How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution. PMID:17066123
Accurate construction of consensus genetic maps via integer linear programming.
Wu, Yonghui; Close, Timothy J; Lonardi, Stefano
2011-01-01
We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html.
NASA Astrophysics Data System (ADS)
Bashi-Azghadi, Seyyed Nasser; Afshar, Abbas; Afshar, Mohammad Hadi
2018-03-01
Previous studies on consequence management assume that the selected response action including valve closure and/or hydrant opening remains unchanged during the entire management period. This study presents a new embedded simulation-optimization methodology for deriving time-varying operational response actions in which the network topology may change from one stage to another. Dynamic programming (DP) and genetic algorithm (GA) are used in order to minimize selected objective functions. Two networks of small and large sizes are used in order to illustrate the performance of the proposed modelling schemes if a time-dependent consequence management strategy is to be implemented. The results show that for a small number of decision variables even in large-scale networks, DP is superior in terms of accuracy and computer runtime. However, as the number of potential actions grows, DP loses its merit over the GA approach. This study clearly proves the priority of the proposed dynamic operation strategy over the commonly used static strategy.
Weight optimization of large span steel truss structures with genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojolic, Cristian; Hulea, Radu; Pârv, Bianca Roxana
2015-03-10
The paper presents the weight optimization process of the main steel truss that supports the Slatina Sport Hall roof. The structure was loaded with self-weight, dead loads, live loads, snow, wind and temperature, grouped in eleven load cases. The optimization of the structure was made using genetic algorithms implemented in a Matlab code. A total number of four different cases were taken into consideration when trying to determine the lowest weight of the structure, depending on the types of connections with the concrete structure ( types of supports, bearing modes), and the possibility of the lower truss chord nodes tomore » change their vertical position. A number of restrictions for tension, maximum displacement and buckling were enforced on the elements, and the cross sections are chosen by the program from a user data base. The results in each of the four cases were analyzed in terms of weight, element tension, element section and displacement. The paper presents the optimization process and the conclusions drawn.« less
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2007-01-01
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, Xin-ran; Wang, Xin
2017-04-01
When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.
NASA Technical Reports Server (NTRS)
Wang, Lui; Valenzuela-Rendon, Manuel
1993-01-01
The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.
Ferrucci, Filomena; Salza, Pasquale; Sarro, Federica
2017-06-29
The need to improve the scalability of Genetic Algorithms (GAs) has motivated the research on Parallel Genetic Algorithms (PGAs), and different technologies and approaches have been used. Hadoop MapReduce represents one of the most mature technologies to develop parallel algorithms. Based on the fact that parallel algorithms introduce communication overhead, the aim of the present work is to understand if, and possibly when, the parallel GAs solutions using Hadoop MapReduce show better performance than sequential versions in terms of execution time. Moreover, we are interested in understanding which PGA model can be most effective among the global, grid, and island models. We empirically assessed the performance of these three parallel models with respect to a sequential GA on a software engineering problem, evaluating the execution time and the achieved speedup. We also analysed the behaviour of the parallel models in relation to the overhead produced by the use of Hadoop MapReduce and the GAs' computational effort, which gives a more machine-independent measure of these algorithms. We exploited three problem instances to differentiate the computation load and three cluster configurations based on 2, 4, and 8 parallel nodes. Moreover, we estimated the costs of the execution of the experimentation on a potential cloud infrastructure, based on the pricing of the major commercial cloud providers. The empirical study revealed that the use of PGA based on the island model outperforms the other parallel models and the sequential GA for all the considered instances and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has a set of different constraints that need to be considered during the design and the implementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses, communication, and latency requires solutions that reduce data store operations. For this reason, the island model is more suitable for PGAs than the global and grid model, also in terms of costs when executed on a commercial cloud provider.
STARL -- a Program to Correct CCD Image Defects
NASA Astrophysics Data System (ADS)
Narbutis, D.; Vanagas, R.; Vansevičius, V.
We present a program tool, STARL, designed for automatic detection and correction of various defects in CCD images. It uses genetic algorithm for deblending and restoring of overlapping saturated stars in crowded stellar fields. Using Subaru Telescope Suprime-Cam images we demonstrate that the program can be implemented in the wide-field survey data processing pipelines for production of high quality color mosaics. The source code and examples are available at the STARL website.
Multi-objective dynamic aperture optimization for storage rings
Li, Yongjun; Yang, Lingyun
2016-11-30
We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.
An Improved Heuristic Method for Subgraph Isomorphism Problem
NASA Astrophysics Data System (ADS)
Xiang, Yingzhuo; Han, Jiesi; Xu, Haijiang; Guo, Xin
2017-09-01
This paper focus on the subgraph isomorphism (SI) problem. We present an improved genetic algorithm, a heuristic method to search the optimal solution. The contribution of this paper is that we design a dedicated crossover algorithm and a new fitness function to measure the evolution process. Experiments show our improved genetic algorithm performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes, our algorithm outperforms the traditional tree search algorithms. We find that the performance of our improved genetic algorithm does not decrease as the number of nodes in prototype graphs.
Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie
2018-06-12
Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.
Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection.
Urbanowicz, Ryan J; Kiralis, Jeff; Fisher, Jonathan M; Moore, Jason H
2012-09-26
Algorithms designed to detect complex genetic disease associations are initially evaluated using simulated datasets. Typical evaluations vary constraints that influence the correct detection of underlying models (i.e. number of loci, heritability, and minor allele frequency). Such studies neglect to account for model architecture (i.e. the unique specification and arrangement of penetrance values comprising the genetic model), which alone can influence the detectability of a model. In order to design a simulation study which efficiently takes architecture into account, a reliable metric is needed for model selection. We evaluate three metrics as predictors of relative model detection difficulty derived from previous works: (1) Penetrance table variance (PTV), (2) customized odds ratio (COR), and (3) our own Ease of Detection Measure (EDM), calculated from the penetrance values and respective genotype frequencies of each simulated genetic model. We evaluate the reliability of these metrics across three very different data search algorithms, each with the capacity to detect epistatic interactions. We find that a model's EDM and COR are each stronger predictors of model detection success than heritability. This study formally identifies and evaluates metrics which quantify model detection difficulty. We utilize these metrics to intelligently select models from a population of potential architectures. This allows for an improved simulation study design which accounts for differences in detection difficulty attributed to model architecture. We implement the calculation and utilization of EDM and COR into GAMETES, an algorithm which rapidly and precisely generates pure, strict, n-locus epistatic models.
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
2013-01-01
intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram
NASA Astrophysics Data System (ADS)
Gamshadzaei, Mohammad Hossein; Rahimzadegan, Majid
2017-10-01
Identification of water extents in Landsat images is challenging due to surfaces with similar reflectance to water extents. The objective of this study is to provide stable and accurate methods for identifying water extents in Landsat images based on meta-heuristic algorithms. Then, seven Landsat images were selected from various environmental regions in Iran. Training of the algorithms was performed using 40 water pixels and 40 nonwater pixels in operational land imager images of Chitgar Lake (one of the study regions). Moreover, high-resolution images from Google Earth were digitized to evaluate the results. Two approaches were considered: index-based and artificial intelligence (AI) algorithms. In the first approach, nine common water spectral indices were investigated. AI algorithms were utilized to acquire coefficients of optimal band combinations to extract water extents. Among the AI algorithms, the artificial neural network algorithm and also the ant colony optimization, genetic algorithm, and particle swarm optimization (PSO) meta-heuristic algorithms were implemented. Index-based methods represented different performances in various regions. Among AI methods, PSO had the best performance with average overall accuracy and kappa coefficient of 93% and 98%, respectively. The results indicated the applicability of acquired band combinations to extract accurately and stably water extents in Landsat imagery.
Honey Bees Inspired Optimization Method: The Bees Algorithm.
Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo
2013-11-06
Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
NASA Astrophysics Data System (ADS)
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes
2013-01-01
Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704
Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni
2013-01-01
Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011
Scalability problems of simple genetic algorithms.
Thierens, D
1999-01-01
Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...
2017-06-06
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
An investigation of messy genetic algorithms
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley
1990-01-01
Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.
Wang, Tingting; Chen, Yi-Ping Phoebe; Bowman, Phil J; Goddard, Michael E; Hayes, Ben J
2016-09-21
Bayesian mixture models in which the effects of SNP are assumed to come from normal distributions with different variances are attractive for simultaneous genomic prediction and QTL mapping. These models are usually implemented with Monte Carlo Markov Chain (MCMC) sampling, which requires long compute times with large genomic data sets. Here, we present an efficient approach (termed HyB_BR), which is a hybrid of an Expectation-Maximisation algorithm, followed by a limited number of MCMC without the requirement for burn-in. To test prediction accuracy from HyB_BR, dairy cattle and human disease trait data were used. In the dairy cattle data, there were four quantitative traits (milk volume, protein kg, fat% in milk and fertility) measured in 16,214 cattle from two breeds genotyped for 632,002 SNPs. Validation of genomic predictions was in a subset of cattle either from the reference set or in animals from a third breeds that were not in the reference set. In all cases, HyB_BR gave almost identical accuracies to Bayesian mixture models implemented with full MCMC, however computational time was reduced by up to 1/17 of that required by full MCMC. The SNPs with high posterior probability of a non-zero effect were also very similar between full MCMC and HyB_BR, with several known genes affecting milk production in this category, as well as some novel genes. HyB_BR was also applied to seven human diseases with 4890 individuals genotyped for around 300 K SNPs in a case/control design, from the Welcome Trust Case Control Consortium (WTCCC). In this data set, the results demonstrated again that HyB_BR performed as well as Bayesian mixture models with full MCMC for genomic predictions and genetic architecture inference while reducing the computational time from 45 h with full MCMC to 3 h with HyB_BR. The results for quantitative traits in cattle and disease in humans demonstrate that HyB_BR can perform equally well as Bayesian mixture models implemented with full MCMC in terms of prediction accuracy, but with up to 17 times faster than the full MCMC implementations. The HyB_BR algorithm makes simultaneous genomic prediction, QTL mapping and inference of genetic architecture feasible in large genomic data sets.
Global Optimization of a Periodic System using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Stucke, David; Crespi, Vincent
2001-03-01
We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.
Research and application of multi-agent genetic algorithm in tower defense game
NASA Astrophysics Data System (ADS)
Jin, Shaohua
2018-04-01
In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel
2009-10-01
Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.
Improvement of ECM Techniques through Implementation of a Genetic Algorithm
2008-03-01
Range Gate Pull-Off (RGPO), where pulse returns are time - delayed to induce an increase in target distance, and Velocity Gate Pull-Off (VGPO), which...estima- tion, the assumption given is that the signal is a stationary, bandlimited process, 13 where the time delay will be fixed for each interval [11...This configuration, known as a transponder system with constant gain, uses time delayed copies of the original to rebroadcast back into the environment
NASA Technical Reports Server (NTRS)
Lohn, Jason; Smith, David; Frank, Jeremy; Globus, Al; Crawford, James
2007-01-01
JavaGenes is a general-purpose, evolutionary software system written in Java. It implements several versions of a genetic algorithm, simulated annealing, stochastic hill climbing, and other search techniques. This software has been used to evolve molecules, atomic force field parameters, digital circuits, Earth Observing Satellite schedules, and antennas. This version differs from version 0.7.28 in that it includes the molecule evolution code and other improvements. Except for the antenna code, JaveGenes is available for NASA Open Source distribution.
Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.
The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
2012-01-01
Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. Methods We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. Results The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. Conclusions By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications. PMID:22448851
Enabling Computational Nanotechnology through JavaGenes in a Cycle Scavenging Environment
NASA Technical Reports Server (NTRS)
Globus, Al; Menon, Madhu; Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
A genetic algorithm procedure is developed and implemented for fitting parameters for many-body inter-atomic force field functions for simulating nanotechnology atomistic applications using portable Java on cycle-scavenged heterogeneous workstations. Given a physics based analytic functional form for the force field, correlated parameters in a multi-dimensional environment are typically chosen to fit properties given either by experiments and/or by higher accuracy quantum mechanical simulations. The implementation automates this tedious procedure using an evolutionary computing algorithm operating on hundreds of cycle-scavenged computers. As a proof of concept, we demonstrate the procedure for evaluating the Stillinger-Weber (S-W) potential by (a) reproducing the published parameters for Si using S-W energies in the fitness function, and (b) evolving a "new" set of parameters using semi-empirical tightbinding energies in the fitness function. The "new" parameters are significantly better suited for Si cluster energies and forces as compared to even the published S-W potential.
Proceedings of the second SISAL users` conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, J T; Frerking, C; Miller, P J
1992-12-01
This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems;more » mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.« less
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
A New Challenge for Compression Algorithms: Genetic Sequences.
ERIC Educational Resources Information Center
Grumbach, Stephane; Tahi, Fariza
1994-01-01
Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…
Transmission over UWB channels with OFDM system using LDPC coding
NASA Astrophysics Data System (ADS)
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
A learning-based autonomous driver: emulate human driver's intelligence in low-speed car following
NASA Astrophysics Data System (ADS)
Wei, Junqing; Dolan, John M.; Litkouhi, Bakhtiar
2010-04-01
In this paper, an offline learning mechanism based on the genetic algorithm is proposed for autonomous vehicles to emulate human driver behaviors. The autonomous driving ability is implemented based on a Prediction- and Cost function-Based algorithm (PCB). PCB is designed to emulate a human driver's decision process, which is modeled as traffic scenario prediction and evaluation. This paper focuses on using a learning algorithm to optimize PCB with very limited training data, so that PCB can have the ability to predict and evaluate traffic scenarios similarly to human drivers. 80 seconds of human driving data was collected in low-speed (< 30miles/h) car-following scenarios. In the low-speed car-following tests, PCB was able to perform more human-like carfollowing after learning. A more general 120 kilometer-long simulation showed that PCB performs robustly even in scenarios that are not part of the training set.
Deterministic Design Optimization of Structures in OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Coroneos, Rula M.; Pai, Shantaram S.
2012-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2017-01-01
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.
Refined genetic algorithm -- Economic dispatch example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheble, G.B.; Brittig, K.
1995-02-01
A genetic-based algorithm is used to solve an economic dispatch (ED) problem. The algorithm utilizes payoff information of perspective solutions to evaluate optimality. Thus, the constraints of classical LaGrangian techniques on unit curves are eliminated. Using an economic dispatch problem as a basis for comparison, several different techniques which enhance program efficiency and accuracy, such as mutation prediction, elitism, interval approximation and penalty factors, are explored. Two unique genetic algorithms are also compared. The results are verified for a sample problem using a classical technique.
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
Flexible Space-Filling Designs for Complex System Simulations
2013-06-01
interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations
Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Wells, Valana L.
1996-01-01
This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.
Self-calibration of a noisy multiple-sensor system with genetic algorithms
NASA Astrophysics Data System (ADS)
Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua
1996-01-01
This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.
Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva
2018-04-01
Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.
3D Protein structure prediction with genetic tabu search algorithm
2010-01-01
Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256
Optimization of the transition path of the head hardening with using the genetic algorithms
NASA Astrophysics Data System (ADS)
Wróbel, Joanna; Kulawik, Adam
2016-06-01
An automated method of choice of the transition path of the head hardening in heat treatment process for the plane steel element is proposed in this communication. This method determines the points on the path of moving heat source using the genetic algorithms. The fitness function of the used algorithm is determined on the basis of effective stresses and yield point depending on the phase composition. The path of the hardening tool and also the area of the heat affected zone is determined on the basis of obtained points. A numerical model of thermal phenomena, phase transformations in the solid state and mechanical phenomena for the hardening process is implemented in order to verify the presented method. A finite element method (FEM) was used for solving the heat transfer equation and getting required temperature fields. The moving heat source is modeled with a Gaussian distribution and the water cooling is also included. The macroscopic model based on the analysis of the CCT and CHT diagrams of the medium-carbon steel is used to determine the phase transformations in the solid state. A finite element method is also used for solving the equilibrium equations giving us the stress field. The thermal and structural strains are taken into account in the constitutive relations.
Damage identification on spatial Timoshenko arches by means of genetic algorithms
NASA Astrophysics Data System (ADS)
Greco, A.; D'Urso, D.; Cannizzaro, F.; Pluchino, A.
2018-05-01
In this paper a procedure for the dynamic identification of damage in spatial Timoshenko arches is presented. The proposed approach is based on the calculation of an arbitrary number of exact eigen-properties of a damaged spatial arch by means of the Wittrick and Williams algorithm. The proposed damage model considers a reduction of the volume in a part of the arch, and is therefore suitable, differently than what is commonly proposed in the main part of the dedicated literature, not only for concentrated cracks but also for diffused damaged zones which may involve a loss of mass. Different damage scenarios can be taken into account with variable location, intensity and extension of the damage as well as number of damaged segments. An optimization procedure, aiming at identifying which damage configuration minimizes the difference between its eigen-properties and a set of measured modal quantities for the structure, is implemented making use of genetic algorithms. In this context, an initial random population of chromosomes, representing different damage distributions along the arch, is forced to evolve towards the fittest solution. Several applications with different, single or multiple, damaged zones and boundary conditions confirm the validity and the applicability of the proposed procedure even in presence of instrumental errors on the measured data.
Primary chromatic aberration elimination via optimization work with genetic algorithm
NASA Astrophysics Data System (ADS)
Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao
2008-09-01
Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic algorithm dynamics on a rugged landscape
NASA Astrophysics Data System (ADS)
Bornholdt, Stefan
1998-04-01
The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
A novel procedure on next generation sequencing data analysis using text mining algorithm.
Zhao, Weizhong; Chen, James J; Perkins, Roger; Wang, Yuping; Liu, Zhichao; Hong, Huixiao; Tong, Weida; Zou, Wen
2016-05-13
Next-generation sequencing (NGS) technologies have provided researchers with vast possibilities in various biological and biomedical research areas. Efficient data mining strategies are in high demand for large scale comparative and evolutional studies to be performed on the large amounts of data derived from NGS projects. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. We report a novel procedure to analyse NGS data using topic modeling. It consists of four major procedures: NGS data retrieval, preprocessing, topic modeling, and data mining using Latent Dirichlet Allocation (LDA) topic outputs. The NGS data set of the Salmonella enterica strains were used as a case study to show the workflow of this procedure. The perplexity measurement of the topic numbers and the convergence efficiencies of Gibbs sampling were calculated and discussed for achieving the best result from the proposed procedure. The output topics by LDA algorithms could be treated as features of Salmonella strains to accurately describe the genetic diversity of fliC gene in various serotypes. The results of a two-way hierarchical clustering and data matrix analysis on LDA-derived matrices successfully classified Salmonella serotypes based on the NGS data. The implementation of topic modeling in NGS data analysis procedure provides a new way to elucidate genetic information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of biological and medical big data. The implementation of topic modeling in NGS data analysis provides a new way to elucidate genetic information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of biological and medical big data.
Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm
NASA Technical Reports Server (NTRS)
Le Riche, Rodolphe; Haftka, Raphael T.
1992-01-01
The use of a genetic algorithm to optimize the stacking sequence of a composite laminate for buckling load maximization is studied. Various genetic parameters including the population size, the probability of mutation, and the probability of crossover are optimized by numerical experiments. A new genetic operator - permutation - is proposed and shown to be effective in reducing the cost of the genetic search. Results are obtained for a graphite-epoxy plate, first when only the buckling load is considered, and then when constraints on ply contiguity and strain failure are added. The influence on the genetic search of the penalty parameter enforcing the contiguity constraint is studied. The advantage of the genetic algorithm in producing several near-optimal designs is discussed.
Development of a Tool for an Efficient Calibration of CORSIM Models
DOT National Transportation Integrated Search
2014-08-01
This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...
Engineered Intrinsic Bioremediation of Ammonium Perchlorate in Groundwater
2010-12-01
German Collection of Microorganisms and Cell Cultures) GA Genetic Algorithms GA-ANN Genetic Algorithm Artificial Neural Network GMO genetically...for in situ treatment of perchlorate in groundwater. This is accomplished without the addition of genetically engineered microorganisms ( GMOs ) to the...perchlorate, even in the presence of oxygen and without the addition of genetically engineered microorganisms ( GMOs ) to the environment. This approach
[Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].
Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V
2014-01-01
Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2017-01-05
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
Convex Clustering: An Attractive Alternative to Hierarchical Clustering
Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth
2015-01-01
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340
Convex clustering: an attractive alternative to hierarchical clustering.
Chen, Gary K; Chi, Eric C; Ranola, John Michael O; Lange, Kenneth
2015-05-01
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/.
Distributed genetic algorithms for the floorplan design problem
NASA Technical Reports Server (NTRS)
Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.
1991-01-01
Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.
NASA Astrophysics Data System (ADS)
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.
a Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Delavar, M. R.
2016-06-01
In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.
Evolving aerodynamic airfoils for wind turbines through a genetic algorithm
NASA Astrophysics Data System (ADS)
Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI
2017-01-01
Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.
Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design
NASA Astrophysics Data System (ADS)
Liu, Li; Olszewski, Piotr; Goh, Pong-Chai
A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.
High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.
Fu, Xing; Kutz, J Nathan
2013-03-11
We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallick, S.
1999-03-01
In this paper, a prestack inversion method using a genetic algorithm (GA) is presented, and issues relating to the implementation of prestack GA inversion in practice are discussed. GA is a Monte-Carlo type inversion, using a natural analogy to the biological evolution process. When GA is cast into a Bayesian framework, a priori information of the model parameters and the physics of the forward problem are used to compute synthetic data. These synthetic data can then be matched with observations to obtain approximate estimates of the marginal a posteriori probability density (PPD) functions in the model space. Plots of thesemore » PPD functions allow an interpreter to choose models which best describe the specific geologic setting and lead to an accurate prediction of seismic lithology. Poststack inversion and prestack GA inversion were applied to a Woodbine gas sand data set from East Texas. A comparison of prestack inversion with poststack inversion demonstrates that prestack inversion shows detailed stratigraphic features of the subsurface which are not visible on the poststack inversion.« less
Blastocyst microinjection automation.
Mattos, Leonardo S; Grant, Edward; Thresher, Randy; Kluckman, Kimberly
2009-09-01
Blastocyst microinjections are routinely involved in the process of creating genetically modified mice for biomedical research, but their efficiency is highly dependent on the skills of the operators. As a consequence, much time and resources are required for training microinjection personnel. This situation has been aggravated by the rapid growth of genetic research, which has increased the demand for mutant animals. Therefore, increased productivity and efficiency in this area are highly desired. Here, we pursue these goals through the automation of a previously developed teleoperated blastocyst microinjection system. This included the design of a new system setup to facilitate automation, the definition of rules for automatic microinjections, the implementation of video processing algorithms to extract feedback information from microscope images, and the creation of control algorithms for process automation. Experimentation conducted with this new system and operator assistance during the cells delivery phase demonstrated a 75% microinjection success rate. In addition, implantation of the successfully injected blastocysts resulted in a 53% birth rate and a 20% yield of chimeras. These results proved that the developed system was capable of automatic blastocyst penetration and retraction, demonstrating the success of major steps toward full process automation.
An improved genetic algorithm for designing optimal temporal patterns of neural stimulation
NASA Astrophysics Data System (ADS)
Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.
2017-12-01
Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.
Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib
2017-10-01
Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO 3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO 3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.
1999-04-12
The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less
NASA Astrophysics Data System (ADS)
Rey, Martin P.; Pontzen, Andrew
2018-02-01
Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.
Modular analysis of the probabilistic genetic interaction network.
Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting
2011-03-15
Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.
On the improvement of blood sample collection at clinical laboratories
2014-01-01
Background Blood samples are usually collected daily from different collection points, such hospitals and health centers, and transported to a core laboratory for testing. This paper presents a project to improve the collection routes of two of the largest clinical laboratories in Spain. These routes must be designed in a cost-efficient manner while satisfying two important constraints: (i) two-hour time windows between collection and delivery, and (ii) vehicle capacity. Methods A heuristic method based on a genetic algorithm has been designed to solve the problem of blood sample collection. The user enters the following information for each collection point: postal address, average collecting time, and average demand (in thermal containers). After implementing the algorithm using C programming, this is run and, in few seconds, it obtains optimal (or near-optimal) collection routes that specify the collection sequence for each vehicle. Different scenarios using various types of vehicles have been considered. Unless new collection points are added or problem parameters are changed substantially, routes need to be designed only once. Results The two laboratories in this study previously planned routes manually for 43 and 74 collection points, respectively. These routes were covered by an external carrier company. With the implementation of this algorithm, the number of routes could be reduced from ten to seven in one laboratory and from twelve to nine in the other, which represents significant annual savings in transportation costs. Conclusions The algorithm presented can be easily implemented in other laboratories that face this type of problem, and it is particularly interesting and useful as the number of collection points increases. The method designs blood collection routes with reduced costs that meet the time and capacity constraints of the problem. PMID:24406140
Adaptable Constrained Genetic Programming: Extensions and Applications
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.
2005-01-01
An evolutionary algorithm applies evolution-based principles to problem solving. To solve a problem, the user defines the space of potential solutions, the representation space. Sample solutions are encoded in a chromosome-like structure. The algorithm maintains a population of such samples, which undergo simulated evolution by means of mutation, crossover, and survival of the fittest principles. Genetic Programming (GP) uses tree-like chromosomes, providing very rich representation suitable for many problems of interest. GP has been successfully applied to a number of practical problems such as learning Boolean functions and designing hardware circuits. To apply GP to a problem, the user needs to define the actual representation space, by defining the atomic functions and terminals labeling the actual trees. The sufficiency principle requires that the label set be sufficient to build the desired solution trees. The closure principle allows the labels to mix in any arity-consistent manner. To satisfy both principles, the user is often forced to provide a large label set, with ad hoc interpretations or penalties to deal with undesired local contexts. This unfortunately enlarges the actual representation space, and thus usually slows down the search. In the past few years, three different methodologies have been proposed to allow the user to alleviate the closure principle by providing means to define, and to process, constraints on mixing the labels in the trees. Last summer we proposed a new methodology to further alleviate the problem by discovering local heuristics for building quality solution trees. A pilot system was implemented last summer and tested throughout the year. This summer we have implemented a new revision, and produced a User's Manual so that the pilot system can be made available to other practitioners and researchers. We have also designed, and partly implemented, a larger system capable of dealing with much more powerful heuristics.
Harmony search optimization for HDR prostate brachytherapy
NASA Astrophysics Data System (ADS)
Panchal, Aditya
In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was implemented in this thesis was within 2% of the values computed by Varian BrachyVision for the prostate, within 3% for the rectum and bladder and 6% for the urethra. The calculation of dose compared to BrachyVision was determined to be different by only 0.38%. Isodose curves were also generated and were found to be similar to BrachyVision. The comparison between Harmony Search and genetic algorithm showed that Harmony Search was over 4 times faster when compared over multiple data sets. The optimal Harmony Memory Size was found to be 5 or lower; the Harmony Memory Considering Rate was determined to be 0.95, and the Pitch Adjusting Rate was found to be 0.9. Ultimately, the effect of multithreading showed that as intensive computations such as optimization and dose calculation are involved, the threads of execution scale with the number of processors, achieving a speed increase proportional to the number of processor cores. In conclusion, this work showed that Harmony Search is a viable alternative to existing algorithms for use in HDR prostate brachytherapy optimization. Coupled with the optimal parameters for the algorithm and a multithreaded simulation, this combination has the capability to significantly decrease the time spent on minimizing optimization problems in the clinic that are time intensive, such as brachytherapy, IMRT and beam angle optimization.
Population-based metaheuristic optimization in neutron optics and shielding design
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Björgvinsdóttir, H.; Zendler, C.; Bentley, P. M.
2016-11-01
Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.
Advanced Molecular Surveillance of Hepatitis C Virus
Gonçalves Rossi, Livia Maria; Escobar-Gutierrez, Alejandro; Rahal, Paula
2015-01-01
Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted. PMID:25781918
NASA Astrophysics Data System (ADS)
Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna
2017-12-01
The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.
Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian
2017-09-29
Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .
Cloud computing-based TagSNP selection algorithm for human genome data.
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-05
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.
New optimization model for routing and spectrum assignment with nodes insecurity
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-04-01
By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.
The Applications of Genetic Algorithms in Medicine.
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-11-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.].
The Applications of Genetic Algorithms in Medicine
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-01-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060
Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-01
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088
A real time microcomputer implementation of sensor failure detection for turbofan engines
NASA Technical Reports Server (NTRS)
Delaat, John C.; Merrill, Walter C.
1989-01-01
An algorithm was developed which detects, isolates, and accommodates sensor failures using analytical redundancy. The performance of this algorithm was demonstrated on a full-scale F100 turbofan engine. The algorithm was implemented in real-time on a microprocessor-based controls computer which includes parallel processing and high order language programming. Parallel processing was used to achieve the required computational power for the real-time implementation. High order language programming was used in order to reduce the programming and maintenance costs of the algorithm implementation software. The sensor failure algorithm was combined with an existing multivariable control algorithm to give a complete control implementation with sensor analytical redundancy. The real-time microprocessor implementation of the algorithm which resulted in the successful completion of the algorithm engine demonstration, is described.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2012-01-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2011-12-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Benford, Andrew; Tinker, Michael L.
2004-01-01
The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.
Superscattering of light optimized by a genetic algorithm
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-01
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
Neural-network-assisted genetic algorithm applied to silicon clusters
NASA Astrophysics Data System (ADS)
Marim, L. R.; Lemes, M. R.; dal Pino, A.
2003-03-01
Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.
Discrete mixture modeling to address genetic heterogeneity in time-to-event regression
Eng, Kevin H.; Hanlon, Bret M.
2014-01-01
Motivation: Time-to-event regression models are a critical tool for associating survival time outcomes with molecular data. Despite mounting evidence that genetic subgroups of the same clinical disease exist, little attention has been given to exploring how this heterogeneity affects time-to-event model building and how to accommodate it. Methods able to diagnose and model heterogeneity should be valuable additions to the biomarker discovery toolset. Results: We propose a mixture of survival functions that classifies subjects with similar relationships to a time-to-event response. This model incorporates multivariate regression and model selection and can be fit with an expectation maximization algorithm, we call Cox-assisted clustering. We illustrate a likely manifestation of genetic heterogeneity and demonstrate how it may affect survival models with little warning. An application to gene expression in ovarian cancer DNA repair pathways illustrates how the model may be used to learn new genetic subsets for risk stratification. We explore the implications of this model for censored observations and the effect on genomic predictors and diagnostic analysis. Availability and implementation: R implementation of CAC using standard packages is available at https://gist.github.com/programeng/8620b85146b14b6edf8f Data used in the analysis are publicly available. Contact: kevin.eng@roswellpark.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24532723
Googling DNA sequences on the World Wide Web.
Hajibabaei, Mehrdad; Singer, Gregory A C
2009-11-10
New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.
A Probabilistic Model of Social Working Memory for Information Retrieval in Social Interactions.
Li, Liyuan; Xu, Qianli; Gan, Tian; Tan, Cheston; Lim, Joo-Hwee
2018-05-01
Social working memory (SWM) plays an important role in navigating social interactions. Inspired by studies in psychology, neuroscience, cognitive science, and machine learning, we propose a probabilistic model of SWM to mimic human social intelligence for personal information retrieval (IR) in social interactions. First, we establish a semantic hierarchy as social long-term memory to encode personal information. Next, we propose a semantic Bayesian network as the SWM, which integrates the cognitive functions of accessibility and self-regulation. One subgraphical model implements the accessibility function to learn the social consensus about IR-based on social information concept, clustering, social context, and similarity between persons. Beyond accessibility, one more layer is added to simulate the function of self-regulation to perform the personal adaptation to the consensus based on human personality. Two learning algorithms are proposed to train the probabilistic SWM model on a raw dataset of high uncertainty and incompleteness. One is an efficient learning algorithm of Newton's method, and the other is a genetic algorithm. Systematic evaluations show that the proposed SWM model is able to learn human social intelligence effectively and outperforms the baseline Bayesian cognitive model. Toward real-world applications, we implement our model on Google Glass as a wearable assistant for social interaction.
Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.
ERIC Educational Resources Information Center
Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand
2003-01-01
Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…
Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...
Genetic algorithm in the structural design of Cooke triplet lenses
NASA Astrophysics Data System (ADS)
Hazra, Lakshminarayan; Banerjee, Saswatee
1999-08-01
This paper is in tune with our efforts to develop a systematic method for multicomponent lens design. Our aim is to find a suitable starting point in the final configuration space, so that popular local search methods like damped least squares (DLS) may directly lead to a useful solution. For 'ab initio' design problems, a thin lens layout specifying the powers of the individual components and the intercomponent separations are worked out analytically. Requirements of central aberration targets for the individual components in order to satisfy the prespecified primary aberration targets for the overall system are then determined by nonlinear optimization. The next step involves structural design of the individual components by optimization techniques. This general method may be adapted for the design of triplets and their derivatives. However, for the thin lens design of a Cooke triplet composed of three airspaced singlets, the two steps of optimization mentioned above may be combined into a single optimization procedure. The optimum configuration for each of the single set, catering to the required Gaussian specification and primary aberration targets for the Cooke triplet, are determined by an application of genetic algorithm (GA). Our implementation of this algorithm is based on simulations of some complex tools of natural evolution, like selection, crossover and mutation. Our version of GA may or may not converge to a unique optimum, depending on some of the algorithm specific parameter values. With our algorithm, practically useful solutions are always available, although convergence to a global optimum can not be guaranteed. This is perfectly in keeping with our need to allow 'floating' of aberration targets in the subproblem level. Some numerical results dealing with our preliminary investigations on this problem are presented.
NASA Astrophysics Data System (ADS)
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.
spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.
Dellicour, Simon; Mardulyn, Patrick
2014-05-01
SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.
A genetic algorithm for solving supply chain network design model
NASA Astrophysics Data System (ADS)
Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.
2013-09-01
Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.
NASA Astrophysics Data System (ADS)
Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.
2017-09-01
The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Accommodating Chromosome Inversions in Linkage Analysis
Chen, Gary K.; Slaten, Erin; Ophoff, Roel A.; Lange, Kenneth
2006-01-01
This work develops a population-genetics model for polymorphic chromosome inversions. The model precisely describes how an inversion changes the nature of and approach to linkage equilibrium. The work also describes algorithms and software for allele-frequency estimation and linkage analysis in the presence of an inversion. The linkage algorithms implemented in the software package Mendel estimate recombination parameters and calculate the posterior probability that each pedigree member carries the inversion. Application of Mendel to eight Centre d'Étude du Polymorphisme Humain pedigrees in a region containing a common inversion on 8p23 illustrates its potential for providing more-precise estimates of the location of an unmapped marker or trait gene. Our expanded cytogenetic analysis of these families further identifies inversion carriers and increases the evidence of linkage. PMID:16826515
Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense
2010-03-01
17 NSGA-II non-dominated sorting genetic algorithm II . . . . . . . . . . . . . . . . . . . 17 jMetal Metaheuristic Algorithms in...to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks robots to meet the two specific goals of...problem is defined as a constraint satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Both goals of
Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz
NASA Astrophysics Data System (ADS)
Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao
2018-05-01
In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
[Application of genetic algorithm in blending technology for extractions of Cortex Fraxini].
Yang, Ming; Zhou, Yinmin; Chen, Jialei; Yu, Minying; Shi, Xiufeng; Gu, Xijun
2009-10-01
To explore the feasibility of genetic algorithm (GA) on multiple objective blending technology for extractions of Cortex Fraxini. According to that the optimization objective was the combination of fingerprint similarity and the root-mean-square error of multiple key constituents, a new multiple objective optimization model of 10 batches extractions of Cortex Fraxini was built. The blending coefficient was obtained by genetic algorithm. The quality of 10 batches extractions of Cortex Fraxini that after blending was evaluated with the finger print similarity and root-mean-square error as indexes. The quality of 10 batches extractions of Cortex Fraxini that after blending was well improved. Comparing with the fingerprint of the control sample, the similarity was up, but the degree of variation is down. The relative deviation of the key constituents was less than 10%. It is proved that genetic algorithm works well on multiple objective blending technology for extractions of Cortex Fraxini. This method can be a reference to control the quality of extractions of Cortex Fraxini. Genetic algorithm in blending technology for extractions of Chinese medicines is advisable.
A., Javadpour; A., Mohammadi
2016-01-01
Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629
Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio
2013-09-01
Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.
Ant Lion Optimization algorithm for kidney exchanges.
Hamouda, Eslam; El-Metwally, Sara; Tarek, Mayada
2018-01-01
The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.
A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem.
Lo, C C; Chang, W H
2000-01-01
The capacitated multipoint network design problem (CMNDP) is NP-complete. In this paper, a hybrid genetic algorithm for CMNDP is proposed. The multiobjective hybrid genetic algorithm (MOHGA) differs from other genetic algorithms (GAs) mainly in its selection procedure. The concept of subpopulation is used in MOHGA. Four subpopulations are generated according to the elitism reservation strategy, the shifting Prufer vector, the stochastic universal sampling, and the complete random method, respectively. Mixing these four subpopulations produces the next generation population. The MOHGA can effectively search the feasible solution space due to population diversity. The MOHGA has been applied to CMNDP. By examining computational and analytical results, we notice that the MOHGA can find most nondominated solutions and is much more effective and efficient than other multiobjective GAs.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Genetic Algorithm Approaches for Actuator Placement
NASA Technical Reports Server (NTRS)
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa
2012-01-01
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.
Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures
NASA Technical Reports Server (NTRS)
Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland
1998-01-01
Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.
3D brain tumor localization and parameter estimation using thermographic approach on GPU.
Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi
2018-01-01
The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin
2017-01-01
We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.
Image reconstruction through thin scattering media by simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua
2018-07-01
An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Genetic algorithm for neural networks optimization
NASA Astrophysics Data System (ADS)
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Hybrid Architectures for Evolutionary Computing Algorithms
2008-01-01
other EC algorithms to FPGA Core Burns P1026/MAPLD 200532 Genetic Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based...on Parallel and Distributed Processing (IPPS/SPDP ), pp. 316-320, Proceedings. IEEE Computer Society 1998. [12] Scott, S. D. , Samal , A., and...Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Experimental setup for evaluating an adaptive user interface for teleoperation control
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.
2017-05-01
A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.
Accelerating epistasis analysis in human genetics with consumer graphics hardware.
Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H
2009-07-24
Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other tasks. The GPU workstation containing three GPUs costs $2000 while obtaining similar performance on a Beowulf cluster requires 150 CPU cores which, including the added infrastructure and support cost of the cluster system, cost approximately $82,500. Graphics hardware based computing provides a cost effective means to perform genetic analysis of epistasis using MDR on large datasets without the infrastructure of a computing cluster.
Belciug, Smaranda; Gorunescu, Florin
2016-03-01
Explore how efficient intelligent decision support systems, both easily understandable and straightforwardly implemented, can help modern hospital managers to optimize both bed occupancy and utilization costs. This paper proposes a hybrid genetic algorithm-queuing multi-compartment model for the patient flow in hospitals. A finite capacity queuing model with phase-type service distribution is combined with a compartmental model, and an associated cost model is set up. An evolutionary-based approach is used for enhancing the ability to optimize both bed management and associated costs. In addition, a "What-if analysis" shows how changing the model parameters could improve performance while controlling costs. The study uses bed-occupancy data collected at the Department of Geriatric Medicine - St. George's Hospital, London, period 1969-1984, and January 2000. The hybrid model revealed that a bed-occupancy exceeding 91%, implying a patient rejection rate around 1.1%, can be carried out with 159 beds plus 8 unstaffed beds. The same holding and penalty costs, but significantly different bed allocations (156 vs. 184 staffed beds, and 8 vs. 9 unstaffed beds, respectively) will result in significantly different costs (£755 vs. £1172). Moreover, once the arrival rate exceeds 7 patient/day, the costs associated to the finite capacity system become significantly smaller than those associated to an Erlang B queuing model (£134 vs. £947). Encoding the whole information provided by both the queuing system and the cost model through chromosomes, the genetic algorithm represents an efficient tool in optimizing the bed allocation and associated costs. The methodology can be extended to different medical departments with minor modifications in structure and parameterization. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen
2018-01-01
We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.
Goudie, Catherine; Coltin, Hallie; Witkowski, Leora; Mourad, Stephanie; Malkin, David; Foulkes, William D
2017-08-01
Identifying cancer predisposition syndromes in children with tumors is crucial, yet few clinical guidelines exist to identify children at high risk of having germline mutations. The McGill Interactive Pediatric OncoGenetic Guidelines project aims to create a validated pediatric guideline in the form of a smartphone/tablet application using algorithms to process clinical data and help determine whether to refer a child for genetic assessment. This paper discusses the initial stages of the project, focusing on its overall structure, the methodology underpinning the algorithms, and the upcoming algorithm validation process. © 2017 Wiley Periodicals, Inc.
An implementation of differential evolution algorithm for inversion of geoelectrical data
NASA Astrophysics Data System (ADS)
Balkaya, Çağlayan
2013-11-01
Differential evolution (DE), a population-based evolutionary algorithm (EA) has been implemented to invert self-potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators including mutation, crossover and selection similar to genetic algorithm (GA). Mutation is the most important operator for the success of DE. Three commonly used mutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2) and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE was realized without boundary constraints. For the test studies performed with SP data, in addition to both noise-free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine (Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies were carried out using synthetically produced resistivity data representing a three-layered earth model and a field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strategies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of these, strategy 1 was found to be the most effective strategy for the parameter estimation by providing less computational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimization algorithm than DE in geophysics. Estimated parameters of SP and VES data were also compared with those obtained from Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing (SA) without cooling to clarify uncertainties in the solutions. Comparison to the M-H algorithm shows that DE performs a fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.
Optimization of genomic selection training populations with a genetic algorithm
USDA-ARS?s Scientific Manuscript database
In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...
JCell--a Java-based framework for inferring regulatory networks from time series data.
Spieth, C; Supper, J; Streichert, F; Speer, N; Zell, A
2006-08-15
JCell is a Java-based application for reconstructing gene regulatory networks from experimental data. The framework provides several algorithms to identify genetic and metabolic dependencies based on experimental data conjoint with mathematical models to describe and simulate regulatory systems. Owing to the modular structure, researchers can easily implement new methods. JCell is a pure Java application with additional scripting capabilities and thus widely usable, e.g. on parallel or cluster computers. The software is freely available for download at http://www-ra.informatik.uni-tuebingen.de/software/JCell.
Processor design optimization methodology for synthetic vision systems
NASA Astrophysics Data System (ADS)
Wren, Bill; Tarleton, Norman G.; Symosek, Peter F.
1997-06-01
Architecture optimization requires numerous inputs from hardware to software specifications. The task of varying these input parameters to obtain an optimal system architecture with regard to cost, specified performance and method of upgrade considerably increases the development cost due to the infinitude of events, most of which cannot even be defined by any simple enumeration or set of inequalities. We shall address the use of a PC-based tool using genetic algorithms to optimize the architecture for an avionics synthetic vision system, specifically passive millimeter wave system implementation.
Genome-wide regression and prediction with the BGLR statistical package.
Pérez, Paulino; de los Campos, Gustavo
2014-10-01
Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.
A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification
NASA Astrophysics Data System (ADS)
Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.
MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.
Fireworks algorithm for mean-VaR/CVaR models
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Liu, Zhifeng
2017-10-01
Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.
Dynamic traffic assignment : genetic algorithms approach
DOT National Transportation Integrated Search
1997-01-01
Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehdi; Jahangirian, Alireza
2017-12-01
An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.
Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J
2017-12-01
To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine
NASA Astrophysics Data System (ADS)
Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.
2018-03-01
Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.
Research on laser marking speed optimization by using genetic algorithm.
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%.
Tag SNP selection via a genetic algorithm.
Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh
2010-10-01
Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.
Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit
NASA Astrophysics Data System (ADS)
Rong, R. W.; Ming, T. F.
2017-12-01
In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; McCulloch, Richard Chet James
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less
Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm
ERIC Educational Resources Information Center
Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.
2009-01-01
Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Sun, Tao; Xu, Ming-Hai
2017-01-01
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.
Genetic algorithm for nuclear data evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer Ann
These are slides on genetic algorithm for nuclear data evaluation. The following is covered: initial population, fitness (outer loop), calculate fitness, selection (first part of inner loop), reproduction (second part of inner loop), solution, and examples.
Implementation of an effective hybrid GA for large-scale traveling salesman problems.
Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi
2007-02-01
This correspondence describes a hybrid genetic algorithm (GA) to find high-quality solutions for the traveling salesman problem (TSP). The proposed method is based on a parallel implementation of a multipopulation steady-state GA involving local search heuristics. It uses a variant of the maximal preservative crossover and the double-bridge move mutation. An effective implementation of the Lin-Kernighan heuristic (LK) is incorporated into the method to compensate for the GA's lack of local search ability. The method is validated by comparing it with the LK-Helsgaun method (LKH), which is one of the most effective methods for the TSP. Experimental results with benchmarks having up to 316228 cities show that the proposed method works more effectively and efficiently than LKH when solving large-scale problems. Finally, the method is used together with the implementation of the iterated LK to find a new best tour (as of June 2, 2003) for a 1904711-city TSP challenge.
Automated design of infrared digital metamaterials by genetic algorithm
NASA Astrophysics Data System (ADS)
Sugino, Yuya; Ishikawa, Atsushi; Hayashi, Yasuhiko; Tsuruta, Kenji
2017-08-01
We demonstrate automatic design of infrared (IR) metamaterials using a genetic algorithm (GA) and experimentally characterize their IR properties. To implement the automated design scheme of the metamaterial structures, we adopt a digital metamaterial consisting of 7 × 7 Au nano-pixels with an area of 200 nm × 200 nm, and their placements are coded as binary genes in the GA optimization process. The GA combined with three-dimensional (3D) finite element method (FEM) simulation is developed and applied to automatically construct a digital metamaterial to exhibit pronounced plasmonic resonances at the target IR frequencies. Based on the numerical results, the metamaterials are fabricated on a Si substrate over an area of 1 mm × 1 mm by using an EB lithography, Cr/Au (2/20 nm) depositions, and liftoff process. In the FT-IR measurement, pronounced plasmonic responses of each metamaterial are clearly observed near the targeted frequencies, although the synthesized pixel arrangements of the metamaterials are seemingly random. The corresponding numerical simulations reveal the important resonant behavior of each pixel and their hybridized systems. Our approach is fully computer-aided without artificial manipulation, thus paving the way toward the novel device design for next-generation plasmonic device applications.
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer.
Young, Jonathan H; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D; White, Michael A; Marcotte, Edward M
2016-05-01
Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Optimization of contrast resolution by genetic algorithm in ultrasound tissue harmonic imaging.
Ménigot, Sébastien; Girault, Jean-Marc
2016-09-01
The development of ultrasound imaging techniques such as pulse inversion has improved tissue harmonic imaging. Nevertheless, no recommendation has been made to date for the design of the waveform transmitted through the medium being explored. Our aim was therefore to find automatically the optimal "imaging" wave which maximized the contrast resolution without a priori information. To overcome assumption regarding the waveform, a genetic algorithm investigated the medium thanks to the transmission of stochastic "explorer" waves. Moreover, these stochastic signals could be constrained by the type of generator available (bipolar or arbitrary). To implement it, we changed the current pulse inversion imaging system by including feedback. Thus the method optimized the contrast resolution by adaptively selecting the samples of the excitation. In simulation, we benchmarked the contrast effectiveness of the best found transmitted stochastic commands and the usual fixed-frequency command. The optimization method converged quickly after around 300 iterations in the same optimal area. These results were confirmed experimentally. In the experimental case, the contrast resolution measured on a radiofrequency line could be improved by 6% with a bipolar generator and it could still increase by 15% with an arbitrary waveform generator. Copyright © 2016 Elsevier B.V. All rights reserved.
Fuel management optimization using genetic algorithms and expert knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1996-09-01
The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.
Optimal placement of tuning masses on truss structures by genetic algorithms
NASA Technical Reports Server (NTRS)
Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.
1993-01-01
Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.
2008-06-01
postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the
Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming
2008-11-01
An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.
NASA Astrophysics Data System (ADS)
Wu, Q. H.; Ma, J. T.
1993-09-01
A primary investigation into application of genetic algorithms in optimal reactive power dispatch and voltage control is presented. The application was achieved, based on (the United Kingdom) National Grid 48 bus network model, using a novel genetic search approach. Simulation results, compared with that obtained using nonlinear programming methods, are included to show the potential of applications of the genetic search methodology in power system economical and secure operations.
NASA Astrophysics Data System (ADS)
Sun, Xiuqiao; Wang, Jian
2018-07-01
Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.
Research on Laser Marking Speed Optimization by Using Genetic Algorithm
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831
NASA Astrophysics Data System (ADS)
An, M.; Assumpcao, M.
2003-12-01
The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.
A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications
NASA Astrophysics Data System (ADS)
Entezari-Maleki, Reza; Movaghar, Ali
Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.
Genetic Algorithms to Optimizatize Lecturer Assessment's Criteria
NASA Astrophysics Data System (ADS)
Jollyta, Deny; Johan; Hajjah, Alyauma
2017-12-01
The lecturer assessment criteria is used as a measurement of the lecturer's performance in a college environment. To determine the value for a criteriais complicated and often leads to doubt. The absence of a standard valuefor each assessment criteria will affect the final results of the assessment and become less presentational data for the leader of college in taking various policies relate to reward and punishment. The Genetic Algorithm comes as an algorithm capable of solving non-linear problems. Using chromosomes in the random initial population, one of the presentations is binary, evaluates the fitness function and uses crossover genetic operator and mutation to obtain the desired crossbreed. It aims to obtain the most optimum criteria values in terms of the fitness function of each chromosome. The training results show that Genetic Algorithm able to produce the optimal values of lecturer assessment criteria so that can be usedby the college as a standard value for lecturer assessment criteria.
A theoretical comparison of evolutionary algorithms and simulated annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-08-28
This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less
Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm–Artificial Neural Network
Ramadan Suleiman, Ahmed; Nehdi, Moncef L.
2017-01-01
This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm–artificial neural network (GA–ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA–ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials. PMID:28772495
Design of Genetic Algorithms for Topology Control of Unmanned Vehicles
2010-01-01
decentralised topology control mechanism distributed among active running software agents to achieve a uniform spread of terrestrial unmanned vehicles...14. ABSTRACT We present genetic algorithms (GAs) as a decentralised topology control mechanism distributed among active running software agents to...inspired topology control algorithm. The topology control of UVs using a decentralised solution over an unknown geographical terrain is a challenging
Combinatorial optimization problem solution based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Zhang, Peng
2017-08-01
Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
NASA Astrophysics Data System (ADS)
Gladwin, D.; Stewart, P.; Stewart, J.
2011-02-01
This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control structures.
NASA Astrophysics Data System (ADS)
Bay, Annick; Mayer, Alexandre
2014-09-01
The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.
Efficient Scalable Median Filtering Using Histogram-Based Operations.
Green, Oded
2018-05-01
Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.
An Object-Oriented Collection of Minimum Degree Algorithms: Design, Implementation, and Experiences
NASA Technical Reports Server (NTRS)
Kumfert, Gary; Pothen, Alex
1999-01-01
The multiple minimum degree (MMD) algorithm and its variants have enjoyed 20+ years of research and progress in generating fill-reducing orderings for sparse, symmetric positive definite matrices. Although conceptually simple, efficient implementations of these algorithms are deceptively complex and highly specialized. In this case study, we present an object-oriented library that implements several recent minimum degree-like algorithms. We discuss how object-oriented design forces us to decompose these algorithms in a different manner than earlier codes and demonstrate how this impacts the flexibility and efficiency of our C++ implementation. We compare the performance of our code against other implementations in C or Fortran.
Bellucci, Michael A; Coker, David F
2011-07-28
We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Suja Priyadharsini, S.; Edward Rajan, S.; Femilin Sheniha, S.
2016-03-01
Electroencephalogram (EEG) is the recording of electrical activities of the brain. It is contaminated by other biological signals, such as cardiac signal (electrocardiogram), signals generated by eye movement/eye blinks (electrooculogram) and muscular artefact signal (electromyogram), called artefacts. Optimisation is an important tool for solving many real-world problems. In the proposed work, artefact removal, based on the adaptive neuro-fuzzy inference system (ANFIS) is employed, by optimising the parameters of ANFIS. Artificial Immune System (AIS) algorithm is used to optimise the parameters of ANFIS (ANFIS-AIS). Implementation results depict that ANFIS-AIS is effective in removing artefacts from EEG signal than ANFIS. Furthermore, in the proposed work, improved AIS (IAIS) is developed by including suitable selection processes in the AIS algorithm. The performance of the proposed method IAIS is compared with AIS and with genetic algorithm (GA). Measures such as signal-to-noise ratio, mean square error (MSE) value, correlation coefficient, power spectrum density plot and convergence time are used for analysing the performance of the proposed method. From the results, it is found that the IAIS algorithm converges faster than the AIS and performs better than the AIS and GA. Hence, IAIS tuned ANFIS (ANFIS-IAIS) is effective in removing artefacts from EEG signals.
Application of the gravity search algorithm to multi-reservoir operation optimization
NASA Astrophysics Data System (ADS)
Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.
2016-12-01
Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.
Quantum-behaved particle swarm optimization for the synthesis of fibre Bragg gratings filter
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Sun, Yunxu; Yao, Yong; Tian, Jiajun; Cong, Shan
2011-12-01
A method based on the quantum-behaved particle swarm optimization algorithm is presented to design a bandpass filter of the fibre Bragg gratings. In contrast to the other optimization algorithms such as the genetic algorithm and particle swarm optimization algorithm, this method is simpler and easier to implement. To demonstrate the effectiveness of the QPSO algorithm, we consider a bandpass filter. With the parameters the half the bandwidth of the filter 0.05 nm, the Bragg wavelength 1550 nm, the grating length with 2cm is divided into 40 uniform sections and its index modulation is what should be optimized and whole feasible solution space is searched for the index modulation. After the index modulation profile is known for all the sections, the transfer matrix method is used to verify the final optimal index modulation by calculating the refection spectrum. The results show the group delay is less than 12ps in band and the calculated dispersion is relatively flat inside the passband. It is further found that the reflective spectrum has sidelobes around -30dB and the worst in-band dispersion value is less than 200ps/nm . In addition, for this design, it takes approximately several minutes to find the acceptable index modulation values with a notebook computer.
Quantum annealing for combinatorial clustering
NASA Astrophysics Data System (ADS)
Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph
2018-02-01
Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.
Strain gage selection in loads equations using a genetic algorithm
NASA Technical Reports Server (NTRS)
1994-01-01
Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.
A hybrid genetic algorithm for solving bi-objective traveling salesman problems
NASA Astrophysics Data System (ADS)
Ma, Mei; Li, Hecheng
2017-08-01
The traveling salesman problem (TSP) is a typical combinatorial optimization problem, in a traditional TSP only tour distance is taken as a unique objective to be minimized. When more than one optimization objective arises, the problem is known as a multi-objective TSP. In the present paper, a bi-objective traveling salesman problem (BOTSP) is taken into account, where both the distance and the cost are taken as optimization objectives. In order to efficiently solve the problem, a hybrid genetic algorithm is proposed. Firstly, two satisfaction degree indices are provided for each edge by considering the influences of the distance and the cost weight. The first satisfaction degree is used to select edges in a “rough” way, while the second satisfaction degree is executed for a more “refined” choice. Secondly, two satisfaction degrees are also applied to generate new individuals in the iteration process. Finally, based on genetic algorithm framework as well as 2-opt selection strategy, a hybrid genetic algorithm is proposed. The simulation illustrates the efficiency of the proposed algorithm.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.
Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke
2012-01-01
Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.
Rabow, A. A.; Scheraga, H. A.
1996-01-01
We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904
The genetic algorithm: A robust method for stress inversion
NASA Astrophysics Data System (ADS)
Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.
2017-01-01
The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.
USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES
Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...
The application of immune genetic algorithm in main steam temperature of PID control of BP network
NASA Astrophysics Data System (ADS)
Li, Han; Zhen-yu, Zhang
In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.
Optimization of multicast optical networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Real coded genetic algorithm for fuzzy time series prediction
NASA Astrophysics Data System (ADS)
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Air data system optimization using a genetic algorithm
NASA Technical Reports Server (NTRS)
Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III
1992-01-01
An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.
Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm
Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...
2014-10-15
In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.
A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
NASA Astrophysics Data System (ADS)
Wang, Aimeng; Guo, Jiayu
2017-12-01
A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.
A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection
Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta
2016-01-01
This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500
Sethi, Gaurav; Saini, B S
2015-12-01
This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.
Data Compression for Maskless Lithography Systems: Architecture, Algorithms and Implementation
2008-05-19
Data Compression for Maskless Lithography Systems: Architecture, Algorithms and Implementation Vito Dai Electrical Engineering and Computer Sciences...servers or to redistribute to lists, requires prior specific permission. Data Compression for Maskless Lithography Systems: Architecture, Algorithms and...for Maskless Lithography Systems: Architecture, Algorithms and Implementation Copyright 2008 by Vito Dai 1 Abstract Data Compression for Maskless
Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A
2015-06-01
Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheng, Lizeng
The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noel M.
1990-01-01
It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.
Ortho Image and DTM Generation with Intelligent Methods
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadeghian, S.
2013-10-01
Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.
Optimum Allocation of Water to the Cultivation Farms Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Saeidian, B.; Saadi Mesgari, M.; Ghodousi, M.
2015-12-01
The water scarcity crises in the world and specifically in Iran, requires the proper management of this valuable resource. According to the official reports, around 90 percent of the water in Iran is used for agriculture. Therefore, the adequate management and usage of water in this section can help significantly to overcome the above crises. The most important aspect of agricultural water management is related to the irrigation planning, which is basically an allocation problem. The proper allocation of water to the farms is not a simple and trivial problem, because of the limited amount of available water, the effect of different parameters, nonlinear characteristics of the objective function, and the wideness of the solution space. Usually To solve such complex problems, a meta-heuristic method such as genetic algorithm could be a good candidate. In this paper, Genetic Algorithm (GA) is used for the allocation of different amount of water to a number of farms. In this model, the amount of water transferable using canals of level one, in one period of irrigation is specified. In addition, the amount of water required by each farm is calculated using crop type, stage of crop development, and other parameters. Using these, the water production function of each farm is determined. Then, using the water production function, farm areas, and the revenue and cost of each crop type, the objective function is calculated. This objective function is used by GA for the allocation of water to the farms. The objective function is defined such that the economical profit extracted from all farms is maximized. Moreover, the limitation related to the amount of available water is considered as a constraint. In general, the total amount of allocated water should be less than the finally available water (the water transferred trough the level one canals). Because of the intensive scarcity of water, the deficit irrigation method are considered. In this method, the planning is on the basis of the optimum and limited allocation of water, and not on the basis of the each crop water requirement. According to the available literature, in the condition of water scarcity, the implementation of deficit irrigation strategy results in higher economical income. The main difference of this research with others is the allocation of water to the farms. Whilst, most of similar researches concentrate on the allocation of water to different water consumption sections (such as agriculture, industry etc.), networks and crops. Using the GA for the optimization of the water allocation, proper solutions were generated that maximize the total economical income in the entire study area. In addition, although the search space was considerably wide, the results of the implementation showed an adequate convergence speed. The repeatability test of the algorithm also proved that the algorithm is reasonably stable. In general the usage of GA algorithm can be considered as an efficient and trustable method for such irrigation planning problems. By optimum allocation of the water to the farms with different areas and crop types, and considering the deficit irrigation method, the general income of the entire area can be improved substantially.
FPGA-based Klystron linearization implementations in scope of ILC
Omet, M.; Michizono, S.; Matsumoto, T.; ...
2015-01-23
We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn
2017-11-01
Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (<45 years) and body mass index (<25 kg/m 2 if diagnosed >30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
An Examination of Hypercube Implementations of Genetic Algorithms
1992-03-01
t of th s C!ie(tol.3 ) i ., r .’ Itor l’C ". Ing sUq , -Cs iS or reducing ,is ourlen : .V,isr,qon Heac uar’ers Ser .ces. Directorate for -nformation...is of length n and the building.block-size is r , all combinations of the n loc* taken r at a time must be generated. The cardinality of the size i n...U Approved for public release; distribution unlimited RO Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Pi C rponr! - ; Lurcen " r :T"s
Constrained minimization of smooth functions using a genetic algorithm
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Pamadi, Bandu N.
1994-01-01
The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.
The implement of Talmud property allocation algorithm based on graphic point-segment way
NASA Astrophysics Data System (ADS)
Cen, Haifeng
2017-04-01
Under the guidance of the Talmud allocation scheme's theory, the paper analyzes the algorithm implemented process via the perspective of graphic point-segment way, and designs the point-segment way's Talmud property allocation algorithm. Then it uses Java language to implement the core of allocation algorithm, by using Android programming to build a visual interface.
The SAPHIRE server: a new algorithm and implementation.
Hersh, W.; Leone, T. J.
1995-01-01
SAPHIRE is an experimental information retrieval system implemented to test new approaches to automated indexing and retrieval of medical documents. Due to limitations in its original concept-matching algorithm, a modified algorithm has been implemented which allows greater flexibility in partial matching and different word order within concepts. With the concomitant growth in client-server applications and the Internet in general, the new algorithm has been implemented as a server that can be accessed via other applications on the Internet. PMID:8563413
A cellular automata based FPGA realization of a new metaheuristic bat-inspired algorithm
NASA Astrophysics Data System (ADS)
Progias, Pavlos; Amanatiadis, Angelos A.; Spataro, William; Trunfio, Giuseppe A.; Sirakoulis, Georgios Ch.
2016-10-01
Optimization algorithms are often inspired by processes occuring in nature, such as animal behavioral patterns. The main concern with implementing such algorithms in software is the large amounts of processing power they require. In contrast to software code, that can only perform calculations in a serial manner, an implementation in hardware, exploiting the inherent parallelism of single-purpose processors, can prove to be much more efficient both in speed and energy consumption. Furthermore, the use of Cellular Automata (CA) in such an implementation would be efficient both as a model for natural processes, as well as a computational paradigm implemented well on hardware. In this paper, we propose a VHDL implementation of a metaheuristic algorithm inspired by the echolocation behavior of bats. More specifically, the CA model is inspired by the metaheuristic algorithm proposed earlier in the literature, which could be considered at least as efficient than other existing optimization algorithms. The function of the FPGA implementation of our algorithm is explained in full detail and results of our simulations are also demonstrated.
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds
Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas
2015-01-01
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613
Data mining in soft computing framework: a survey.
Mitra, S; Pal, S K; Mitra, P
2002-01-01
The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included.
NASA Astrophysics Data System (ADS)
de La Cal, E. A.; Fernández, E. M.; Quiroga, R.; Villar, J. R.; Sedano, J.
In previous works a methodology was defined, based on the design of a genetic algorithm GAP and an incremental training technique adapted to the learning of series of stock market values. The GAP technique consists in a fusion of GP and GA. The GAP algorithm implements the automatic search for crisp trading rules taking as objectives of the training both the optimization of the return obtained and the minimization of the assumed risk. Applying the proposed methodology, rules have been obtained for a period of eight years of the S&P500 index. The achieved adjustment of the relation return-risk has generated rules with returns very superior in the testing period to those obtained applying habitual methodologies and even clearly superior to Buy&Hold. This work probes that the proposed methodology is valid for different assets in a different market than previous work.
Convergence properties of simple genetic algorithms
NASA Technical Reports Server (NTRS)
Bethke, A. D.; Zeigler, B. P.; Strauss, D. M.
1974-01-01
The essential parameters determining the behaviour of genetic algorithms were investigated. Computer runs were made while systematically varying the parameter values. Results based on the progress curves obtained from these runs are presented along with results based on the variability of the population as the run progresses.
A genetic algorithm approach in interface and surface structure optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less
NASA Astrophysics Data System (ADS)
Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.
2016-06-01
The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.
An application of CART algorithm in genetics: IGFs and cGH polymorphisms in Japanese quail
NASA Astrophysics Data System (ADS)
Kaplan, Selçuk
2017-04-01
The avian insulin-like growth factor-1 (IGFs) and avian growth hormone (cGH) genes are the most important genes that can affect bird performance traits because of its important function in growth and metabolism. Understanding the molecular genetic basis of variation in growth-related traits is of importance for continued improvement and increased rates of genetic gain. The objective of the present study was to identify polymorphisms of cGH and IGFs genes in Japanese quail using conventional least square method (LSM) and CART algorithm. Therefore, this study was aimed to demonstrate at determining the polymorphisms of two genes related growth characteristics via CART algorithm. A simulated data set was generated to analyze by adhering the results of some poultry genetic studies which it includes live weights at 5 weeks of age, 3 alleles and 6 genotypes of cGH and 2 alleles and 3 genotypes of IGFs. As a result, it has been determined that the CART algorithm has some advantages as for that LSM.
Application of artificial intelligence to search ground-state geometry of clusters
NASA Astrophysics Data System (ADS)
Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.
2002-08-01
We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.
Application of genetic algorithms to focal mechanism determination
NASA Astrophysics Data System (ADS)
Kobayashi, Reiji; Nakanishi, Ichiro
1994-04-01
Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.
NASA Astrophysics Data System (ADS)
Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming
2013-05-01
An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.
NASA Astrophysics Data System (ADS)
Chen, Su Shing; Caulfield, H. John
1994-03-01
Adaptive Computing, vs. Classical Computing, is emerging to be a field which is the culmination during the last 40 and more years of various scientific and technological areas, including cybernetics, neural networks, pattern recognition networks, learning machines, selfreproducing automata, genetic algorithms, fuzzy logics, probabilistic logics, chaos, electronics, optics, and quantum devices. This volume of "Critical Reviews on Adaptive Computing: Mathematics, Electronics, and Optics" is intended as a synergistic approach to this emerging field. There are many researchers in these areas working on important results. However, we have not seen a general effort to summarize and synthesize these results in theory as well as implementation. In order to reach a higher level of synergism, we propose Adaptive Computing as the field which comprises of the above mentioned computational paradigms and various realizations. The field should include both the Theory (or Mathematics) and the Implementation. Our emphasis is on the interplay of Theory and Implementation. The interplay, an adaptive process itself, of Theory and Implementation is the only "holistic" way to advance our understanding and realization of brain-like computation. We feel that a theory without implementation has the tendency to become unrealistic and "out-of-touch" with reality, while an implementation without theory runs the risk to be superficial and obsolete.
Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections.
Parker, Anna J; Zia, Wasif; Rehorn, Christian W G; Blümich, Bernhard
2016-04-01
In recent years, permanent magnet-based NMR spectrometers have resurfaced as low-cost portable alternatives to superconducting instruments. While the development of these devices as well as clever shimming methods have yielded impressive advancements, scaling the size of these magnets to miniature lengths remains a problem to be addressed. Here we present the results of a study of a discrete shimming scheme for NMR Mandhalas constructed from a set of individual magnet blocks. While our calculations predict a modest reduction in field deviation by a factor of 9.3 in the case of the shimmed ideal Mandhala, a factor of 28 is obtained in the case of the shimmed imperfect Mandhala. This indicates that imperfections of magnet blocks can lead to improved field homogeneity. We also present a new algorithm to improve the homogeneity of a permanent magnet assembly. Strategies for future magnet construction can improve the agreement between simulation and practical implementation by using data from real magnets in these assemblies as the input to such an algorithm to optimize the homogeneity of a given design. Published by Elsevier Inc.
Benchmarking image fusion system design parameters
NASA Astrophysics Data System (ADS)
Howell, Christopher L.
2013-06-01
A clear and absolute method for discriminating between image fusion algorithm performances is presented. This method can effectively be used to assist in the design and modeling of image fusion systems. Specifically, it is postulated that quantifying human task performance using image fusion should be benchmarked to whether the fusion algorithm, at a minimum, retained the performance benefit achievable by each independent spectral band being fused. The established benchmark would then clearly represent the threshold that a fusion system should surpass to be considered beneficial to a particular task. A genetic algorithm is employed to characterize the fused system parameters using a Matlab® implementation of NVThermIP as the objective function. By setting the problem up as a mixed-integer constraint optimization problem, one can effectively look backwards through the image acquisition process: optimizing fused system parameters by minimizing the difference between modeled task difficulty measure and the benchmark task difficulty measure. The results of an identification perception experiment are presented, where human observers were asked to identify a standard set of military targets, and used to demonstrate the effectiveness of the benchmarking process.
Neural system for heartbeats recognition using genetically integrated ensemble of classifiers.
Osowski, Stanislaw; Siwek, Krzysztof; Siroic, Robert
2011-03-01
This paper presents the application of genetic algorithm for the integration of neural classifiers combined in the ensemble for the accurate recognition of heartbeat types on the basis of ECG registration. The idea presented in this paper is that using many classifiers arranged in the form of ensemble leads to the increased accuracy of the recognition. In such ensemble the important problem is the integration of all classifiers into one effective classification system. This paper proposes the use of genetic algorithm. It was shown that application of the genetic algorithm is very efficient and allows to reduce significantly the total error of heartbeat recognition. This was confirmed by the numerical experiments performed on the MIT BIH Arrhythmia Database. Copyright © 2011 Elsevier Ltd. All rights reserved.
Categorizing Variations of Student-Implemented Sorting Algorithms
ERIC Educational Resources Information Center
Taherkhani, Ahmad; Korhonen, Ari; Malmi, Lauri
2012-01-01
In this study, we examined freshmen students' sorting algorithm implementations in data structures and algorithms' course in two phases: at the beginning of the course before the students received any instruction on sorting algorithms, and after taking a lecture on sorting algorithms. The analysis revealed that many students have insufficient…
Prioritizing the Components of Vulnerability: A Genetic Algorithm Minimization of Flood Risk
NASA Astrophysics Data System (ADS)
Bongolan, Vena Pearl; Ballesteros, Florencio; Baritua, Karessa Alexandra; Junne Santos, Marie
2013-04-01
We define a flood resistant city as an optimal arrangement of communities according to their traits, with the goal of minimizing the flooding vulnerability via a genetic algorithm. We prioritize the different components of flooding vulnerability, giving each component a weight, thus expressing vulnerability as a weighted sum. This serves as the fitness function for the genetic algorithm. We also allowed non-linear interactions among related but independent components, viz, poverty and mortality rate, and literacy and radio/ tv penetration. The designs produced reflect the relative importance of the components, and we observed a synchronicity between the interacting components, giving us a more consistent design.
Algorithmic Trading with Developmental and Linear Genetic Programming
NASA Astrophysics Data System (ADS)
Wilson, Garnett; Banzhaf, Wolfgang
A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.
NASA Astrophysics Data System (ADS)
Shen, Yanqing
2018-04-01
LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.
Moore, J H
1995-06-01
A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.
An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hudec, Ján; Gramatová, Elena
2015-07-01
The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
NASA Astrophysics Data System (ADS)
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
Fast optimization of glide vehicle reentry trajectory based on genetic algorithm
NASA Astrophysics Data System (ADS)
Jia, Jun; Dong, Ruixing; Yuan, Xuejun; Wang, Chuangwei
2018-02-01
An optimization method of reentry trajectory based on genetic algorithm is presented to meet the need of reentry trajectory optimization for glide vehicle. The dynamic model for the glide vehicle during reentry period is established. Considering the constraints of heat flux, dynamic pressure, overload etc., the optimization of reentry trajectory is investigated by utilizing genetic algorithm. The simulation shows that the method presented by this paper is effective for the optimization of reentry trajectory of glide vehicle. The efficiency and speed of this method is comparative with the references. Optimization results meet all constraints, and the on-line fast optimization is potential by pre-processing the offline samples.
On Directly Solving SCHRÖDINGER Equation for H+2 Ion by Genetic Algorithm
NASA Astrophysics Data System (ADS)
Saha, Rajendra; Bhattacharyya, S. P.
Schrödinger equation (SE) is sought to be solved directly for the ground state of H+2 ion by invoking genetic algorithm (GA). In one approach the internuclear distance (R) is kept fixed, the corresponding electronic SE for H+2 is solved by GA at each R and the full potential energy curve (PEC) is constructed. The minimum of the PEC is then located giving Ve and Re. Alternatively, Ve and Re are located in a single run by allowing R to vary simultaneously while solving the electronic SE by genetic algorithm. The performance patterns of the two strategies are compared.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Implementing a self-structuring data learning algorithm
NASA Astrophysics Data System (ADS)
Graham, James; Carson, Daniel; Ternovskiy, Igor
2016-05-01
In this paper, we elaborate on what we did to implement our self-structuring data learning algorithm. To recap, we are working to develop a data learning algorithm that will eventually be capable of goal driven pattern learning and extrapolation of more complex patterns from less complex ones. At this point we have developed a conceptual framework for the algorithm, but have yet to discuss our actual implementation and the consideration and shortcuts we needed to take to create said implementation. We will elaborate on our initial setup of the algorithm and the scenarios we used to test our early stage algorithm. While we want this to be a general algorithm, it is necessary to start with a simple scenario or two to provide a viable development and testing environment. To that end, our discussion will be geared toward what we include in our initial implementation and why, as well as what concerns we may have. In the future, we expect to be able to apply our algorithm to a more general approach, but to do so within a reasonable time, we needed to pick a place to start.
Genetic algorithms and their use in Geophysical Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Paul B.
1999-04-01
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less
Genetic algorithms and their use in geophysical problems
NASA Astrophysics Data System (ADS)
Parker, Paul Bradley
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.
A sample implementation for parallelizing Divide-and-Conquer algorithms on the GPU.
Mei, Gang; Zhang, Jiayin; Xu, Nengxiong; Zhao, Kunyang
2018-01-01
The strategy of Divide-and-Conquer (D&C) is one of the frequently used programming patterns to design efficient algorithms in computer science, which has been parallelized on shared memory systems and distributed memory systems. Tzeng and Owens specifically developed a generic paradigm for parallelizing D&C algorithms on modern Graphics Processing Units (GPUs). In this paper, by following the generic paradigm proposed by Tzeng and Owens, we provide a new and publicly available GPU implementation of the famous D&C algorithm, QuickHull, to give a sample and guide for parallelizing D&C algorithms on the GPU. The experimental results demonstrate the practicality of our sample GPU implementation. Our research objective in this paper is to present a sample GPU implementation of a classical D&C algorithm to help interested readers to develop their own efficient GPU implementations with fewer efforts.
Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida
By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo
2018-06-25
The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.
Optimization of beam orientation in radiotherapy using planar geometry
NASA Astrophysics Data System (ADS)
Haas, O. C. L.; Burnham, K. J.; Mills, J. A.
1998-08-01
This paper proposes a new geometrical formulation of the coplanar beam orientation problem combined with a hybrid multiobjective genetic algorithm. The approach is demonstrated by optimizing the beam orientation in two dimensions, with the objectives being formulated using planar geometry. The traditional formulation of the objectives associated with the organs at risk has been modified to account for the use of complex dose delivery techniques such as beam intensity modulation. The new algorithm attempts to replicate the approach of a treatment planner whilst reducing the amount of computation required. Hybrid genetic search operators have been developed to improve the performance of the genetic algorithm by exploiting problem-specific features. The multiobjective genetic algorithm is formulated around the concept of Pareto optimality which enables the algorithm to search in parallel for different objectives. When the approach is applied without constraining the number of beams, the solution produces an indication of the minimum number of beams required. It is also possible to obtain non-dominated solutions for various numbers of beams, thereby giving the clinicians a choice in terms of the number of beams as well as in the orientation of these beams.
Distributed query plan generation using multiobjective genetic algorithm.
Panicker, Shina; Kumar, T V Vijay
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.
Distributed Query Plan Generation Using Multiobjective Genetic Algorithm
Panicker, Shina; Vijay Kumar, T. V.
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513
Parallel optimization algorithms and their implementation in VLSI design
NASA Technical Reports Server (NTRS)
Lee, G.; Feeley, J. J.
1991-01-01
Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.
Hybrid algorithms for fuzzy reverse supply chain network design.
Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.
Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design
Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057
An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.
Yoon, Yourim; Kim, Yong-Hyuk
2013-10-01
Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.
Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping
NASA Astrophysics Data System (ADS)
Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius
2018-02-01
Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.
Weather prediction using a genetic memory
NASA Technical Reports Server (NTRS)
Rogers, David
1990-01-01
Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.
Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.
2013-01-01
The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276
Integrative genetic risk prediction using non-parametric empirical Bayes classification.
Zhao, Sihai Dave
2017-06-01
Genetic risk prediction is an important component of individualized medicine, but prediction accuracies remain low for many complex diseases. A fundamental limitation is the sample sizes of the studies on which the prediction algorithms are trained. One way to increase the effective sample size is to integrate information from previously existing studies. However, it can be difficult to find existing data that examine the target disease of interest, especially if that disease is rare or poorly studied. Furthermore, individual-level genotype data from these auxiliary studies are typically difficult to obtain. This article proposes a new approach to integrative genetic risk prediction of complex diseases with binary phenotypes. It accommodates possible heterogeneity in the genetic etiologies of the target and auxiliary diseases using a tuning parameter-free non-parametric empirical Bayes procedure, and can be trained using only auxiliary summary statistics. Simulation studies show that the proposed method can provide superior predictive accuracy relative to non-integrative as well as integrative classifiers. The method is applied to a recent study of pediatric autoimmune diseases, where it substantially reduces prediction error for certain target/auxiliary disease combinations. The proposed method is implemented in the R package ssa. © 2016, The International Biometric Society.
Optimizing Approximate Weighted Matching on Nvidia Kepler K40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh
Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less
iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.
Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades
2014-01-01
Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.
2011-01-01
Background Elucidating the genetic basis of human diseases is a central goal of genetics and molecular biology. While traditional linkage analysis and modern high-throughput techniques often provide long lists of tens or hundreds of disease gene candidates, the identification of disease genes among the candidates remains time-consuming and expensive. Efficient computational methods are therefore needed to prioritize genes within the list of candidates, by exploiting the wealth of information available about the genes in various databases. Results We propose ProDiGe, a novel algorithm for Prioritization of Disease Genes. ProDiGe implements a novel machine learning strategy based on learning from positive and unlabeled examples, which allows to integrate various sources of information about the genes, to share information about known disease genes across diseases, and to perform genome-wide searches for new disease genes. Experiments on real data show that ProDiGe outperforms state-of-the-art methods for the prioritization of genes in human diseases. Conclusions ProDiGe implements a new machine learning paradigm for gene prioritization, which could help the identification of new disease genes. It is freely available at http://cbio.ensmp.fr/prodige. PMID:21977986
Communication and complexity in a GRN-based multicellular system for graph colouring.
Buck, Moritz; Nehaniv, Chrystopher L
2008-01-01
Artificial Genetic Regulatory Networks (GRNs) are interesting control models through their simplicity and versatility. They can be easily implemented, evolved and modified, and their similarity to their biological counterparts makes them interesting for simulations of life-like systems as well. These aspects suggest they may be perfect control systems for distributed computing in diverse situations, but to be usable for such applications the computational power and evolvability of GRNs need to be studied. In this research we propose a simple distributed system implementing GRNs to solve the well known NP-complete graph colouring problem. Every node (cell) of the graph to be coloured is controlled by an instance of the same GRN. All the cells communicate directly with their immediate neighbours in the graph so as to set up a good colouring. The quality of this colouring directs the evolution of the GRNs using a genetic algorithm. We then observe the quality of the colouring for two different graphs according to different communication protocols and the number of different proteins in the cell (a measure for the possible complexity of a GRN). Those two points, being the main scalability issues that any computational paradigm raises, will then be discussed.
NASA Astrophysics Data System (ADS)
Yan, Mingfei; Hu, Huasi; Otake, Yoshie; Taketani, Atsushi; Wakabayashi, Yasuo; Yanagimachi, Shinzo; Wang, Sheng; Pan, Ziheng; Hu, Guang
2018-05-01
Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed with metallic material. A novel approach for two-phase flow CT reconstruction based on an improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity of the reconstructed object. The adaptive crossover probability P c and mutation probability P m are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex flow regimes. It especially shows great advantages in restoring the simply connected flow regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms was conducted on the accelerator-driven neutron source to verify the performance of the developed IAGA-SC algorithm.
Model annotation for synthetic biology: automating model to nucleotide sequence conversion
Misirli, Goksel; Hallinan, Jennifer S.; Yu, Tommy; Lawson, James R.; Wimalaratne, Sarala M.; Cooling, Michael T.; Wipat, Anil
2011-01-01
Motivation: The need for the automated computational design of genetic circuits is becoming increasingly apparent with the advent of ever more complex and ambitious synthetic biology projects. Currently, most circuits are designed through the assembly of models of individual parts such as promoters, ribosome binding sites and coding sequences. These low level models are combined to produce a dynamic model of a larger device that exhibits a desired behaviour. The larger model then acts as a blueprint for physical implementation at the DNA level. However, the conversion of models of complex genetic circuits into DNA sequences is a non-trivial undertaking due to the complexity of mapping the model parts to their physical manifestation. Automating this process is further hampered by the lack of computationally tractable information in most models. Results: We describe a method for automatically generating DNA sequences from dynamic models implemented in CellML and Systems Biology Markup Language (SBML). We also identify the metadata needed to annotate models to facilitate automated conversion, and propose and demonstrate a method for the markup of these models using RDF. Our algorithm has been implemented in a software tool called MoSeC. Availability: The software is available from the authors' web site http://research.ncl.ac.uk/synthetic_biology/downloads.html. Contact: anil.wipat@ncl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21296753
Overview of implementation of DARPA GPU program in SAIC
NASA Astrophysics Data System (ADS)
Braunreiter, Dennis; Furtek, Jeremy; Chen, Hai-Wen; Healy, Dennis
2008-04-01
This paper reviews the implementation of DARPA MTO STAP-BOY program for both Phase I and II conducted at Science Applications International Corporation (SAIC). The STAP-BOY program conducts fast covariance factorization and tuning techniques for space-time adaptive process (STAP) Algorithm Implementation on Graphics Processor unit (GPU) Architectures for Embedded Systems. The first part of our presentation on the DARPA STAP-BOY program will focus on GPU implementation and algorithm innovations for a prototype radar STAP algorithm. The STAP algorithm will be implemented on the GPU, using stream programming (from companies such as PeakStream, ATI Technologies' CTM, and NVIDIA) and traditional graphics APIs. This algorithm will include fast range adaptive STAP weight updates and beamforming applications, each of which has been modified to exploit the parallel nature of graphics architectures.
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
ERIC Educational Resources Information Center
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Rakoczy, John; Steincamp, James; Taylor, Jaime
2003-01-01
A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.
By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...
A location selection policy of live virtual machine migration for power saving and load balancing.
Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.
A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing
Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24348165
Design of the VISITOR Tool: A Versatile ImpulSive Interplanetary Trajectory OptimizeR
NASA Technical Reports Server (NTRS)
Corpaccioli, Luca; Linskens, Harry; Komar, David R.
2014-01-01
The design of trajectories for interplanetary missions represents one of the most complex and important problems to solve during conceptual space mission design. To facilitate conceptual mission sizing activities, it is essential to obtain sufficiently accurate trajectories in a fast and repeatable manner. To this end, the VISITOR tool was developed. This tool modularly augments a patched conic MGA-1DSM model with a mass model, launch window analysis, and the ability to simulate more realistic arrival and departure operations. This was implemented in MATLAB, exploiting the built-in optimization tools and vector analysis routines. The chosen optimization strategy uses a grid search and pattern search, an iterative variable grid method. A genetic algorithm can be selectively used to improve search space pruning, at the cost of losing the repeatability of the results and increased computation time. The tool was validated against seven flown missions: the average total mission (Delta)V offset from the nominal trajectory was 9.1%, which was reduced to 7.3% when using the genetic algorithm at the cost of an increase in computation time by a factor 5.7. It was found that VISITOR was well-suited for the conceptual design of interplanetary trajectories, while also facilitating future improvements due to its modular structure.
NASA Astrophysics Data System (ADS)
Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis
2015-07-01
This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.
Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs
2014-09-28
Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.
Efficient privacy-preserving string search and an application in genomics
Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar
2016-01-01
Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. Approach: We propose a novel approach that combines efficient string data structures such as the Burrows–Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows–Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. Results: We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within ≈ 4.6 s and ≈ 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. Availability and implementation: https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec. Contacts: shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153731
NASA Astrophysics Data System (ADS)
Arimbi, Mentari Dian; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Data clustering can be executed through partition or hierarchical method for many types of data including DNA sequences. Both clustering methods can be combined by processing partition algorithm in the first level and hierarchical in the second level, called hybrid clustering. In the partition phase some popular methods such as PAM, K-means, or Fuzzy c-means methods could be applied. In this study we selected partitioning around medoids (PAM) in our partition stage. Furthermore, following the partition algorithm, in hierarchical stage we applied divisive analysis algorithm (DIANA) in order to have more specific clusters and sub clusters structures. The number of main clusters is determined using Davies Bouldin Index (DBI) value. We choose the optimal number of clusters if the results minimize the DBI value. In this work, we conduct the clustering on 1252 HPV DNA sequences data from GenBank. The characteristic extraction is initially performed, followed by normalizing and genetic distance calculation using Euclidean distance. In our implementation, we used the hybrid PAM and DIANA using the R open source programming tool. In our results, we obtained 3 main clusters with average DBI value is 0.979, using PAM in the first stage. After executing DIANA in the second stage, we obtained 4 sub clusters for Cluster-1, 9 sub clusters for Cluster-2 and 2 sub clusters in Cluster-3, with the BDI value 0.972, 0.771, and 0.768 for each main cluster respectively. Since the second stage produce lower DBI value compare to the DBI value in the first stage, we conclude that this hybrid approach can improve the accuracy of our clustering results.
Multiple feature fusion via covariance matrix for visual tracking
NASA Astrophysics Data System (ADS)
Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui
2018-04-01
Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
NASA Astrophysics Data System (ADS)
Wang, Pan; Zhang, Yi; Yan, Dong
2018-05-01
Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.
A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm
NASA Astrophysics Data System (ADS)
Ida, Kenichi; Osawa, Akira
In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.
Airport Flight Departure Delay Model on Improved BN Structure Learning
NASA Astrophysics Data System (ADS)
Cao, Weidong; Fang, Xiangnong
An high score prior genetic simulated annealing Bayesian network structure learning algorithm (HSPGSA) by combining genetic algorithm(GA) with simulated annealing algorithm(SAA) is developed. The new algorithm provides not only with strong global search capability of GA, but also with strong local hill climb search capability of SAA. The structure with the highest score is prior selected. In the mean time, structures with lower score are also could be choice. It can avoid efficiently prematurity problem by higher score individual wrong direct growing population. Algorithm is applied to flight departure delays analysis in a large hub airport. Based on the flight data a BN model is created. Experiments show that parameters learning can reflect departure delay.