Sample records for genetic background

  1. Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis

    PubMed Central

    Chandler, Christopher H.; Chari, Sudarshan; Dworkin, Ian

    2014-01-01

    The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scallopedE3 allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines—two commonly used laboratory strains—to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well. PMID:24504186

  2. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity.

    PubMed

    Kocsis, Tamas; Trencsenyi, Gyorgy; Szabo, Kitti; Baan, Julia Aliz; Muller, Geza; Mendler, Luca; Garai, Ildiko; Reinauer, Hans; Deak, Ferenc; Dux, Laszlo; Keller-Pinter, Aniko

    2017-03-01

    The TGFβ family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compact s, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18 FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared. Copyright © 2017 the American Physiological Society.

  3. Genetic background effects in Neuroligin-3 mutant mice: Minimal behavioral abnormalities on C57 background.

    PubMed

    Jaramillo, Thomas C; Escamilla, Christine Ochoa; Liu, Shunan; Peca, Lauren; Birnbaum, Shari G; Powell, Craig M

    2018-02-01

    Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein that interacts with presynaptic ligands including neurexin-1 (NRXN1) [Ichtchenko et al., Journal of Biological Chemistry, 271, 2676-2682, 1996]. Mice harboring a mutation in the NLGN3 gene (NL3R451C) mimicking a mutation found in two brothers with autism spectrum disorder (ASD) were previously generated and behaviorally phenotyped for autism-related behaviors. In these NL3R451C mice generated and tested on a hybrid C57BL6J/129S2/SvPasCrl background, we observed enhanced spatial memory and reduced social interaction [Tabuchi et al., Science, 318, 71-76, 2007]. Curiously, an independently generated second line of mice harboring the same mutation on a C57BL6J background exhibited minimal aberrant behavior, thereby providing apparently discrepant results. To investigate the origin of the discrepancy, we previously replicated the original findings of Tabuchi et al. by studying the same NL3R451C mutation on a pure 129S2/SvPasCrl genetic background. Here we complete the behavioral characterization of the NL3R451C mutation on a pure C57BL6J genetic background to determine if background genetics play a role in the discrepant behavioral outcomes involving NL3R451C mice. NL3R451C mutant mice on a pure C57BL6J background did not display spatial memory enhancements or social interaction deficits. We only observed a decreased startle response and mildly increased locomotor activity in these mice suggesting that background genetics influences behavioral outcomes involving the NL3R451C mutation. Autism Res 2018, 11: 234-244. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Behavioral symptoms of autism can be highly variable, even in cases that involve identical genetic mutations. Previous studies in mice with a mutation of the Neuroligin-3 gene showed enhanced learning and social deficits. We replicated these findings on the same and different genetic backgrounds. In this study, however, the same mutation in mice on a different genetic background did not reproduce our previous findings. Our results suggest that genetic background influences behavioral symptoms of this autism-associated mutation. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations.

    PubMed

    Alberio, Constanza; Aguirrezábal, Luis An; Izquierdo, Natalia G; Reid, Roberto; Zuil, Sebastián; Zambelli, Andrés

    2018-02-01

    The effect of genetic background on the stability of fatty acid composition in sunflower near isogenic lines (NILs) carrying high-oleic Pervenets (P) or high-oleic NM1 mutations was studied. The materials were field-tested in different locations and at different sowing dates to evaluate a wide range of environmental conditions. Relationships were established between the fatty acids and the minimum night temperature (MNT) and the response was characterized. A genetic background effect for the fatty acid composition was found in both groups of NILs. The NM1-NILs showed an oleic level higher than 910 g kg -1 and they were more stable across environments with a zero or low dependence on the genetic background; on the other hand, high oleic materials bearing the P mutation showed lower levels of oleic acid, with a higher variation in fatty acid composition and a highly significant dependence on the genetic background. The NM1 mutation is the best option to develop ultra-high oleic sunflower oil that is stable across environments and genetic backgrounds, making its agronomical production more efficient and predictable. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  6. Genetic testing in asymptomatic minors Background considerations towards ESHG Recommendations

    PubMed Central

    Borry, Pascal; Evers-Kiebooms, Gerry; Cornel, Martina C; Clarke, Angus; Dierickx, Kris

    2009-01-01

    Although various guidelines and position papers have discussed, in the past, the ethical aspects of genetic testing in asymptomatic minors, the European Society of Human Genetics had not earlier endorsed any set of guidelines exclusively focused on this issue. This paper has served as a background document in preparation of the development of the policy recommendations of the Public and Professional Committee of the European Society of Human Genetics. This background paper first discusses some general considerations with regard to the provision of genetic tests to minors. It discusses the concept of best interests, participation of minors in health-care decisions, parents' responsibilities to share genetic information, the role of clinical genetics and the health-care system in communication within the family. Second, it discusses, respectively, the presymptomatic and predictive genetic testing for adult-onset disorders, childhood-onset disorders and carrier testing. PMID:19277061

  7. Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Birdsell, J; Wills, C

    1996-01-01

    The presumed advantages of genetic recombinations are difficult to demonstrate directly. To investigate the effects of recombination and background heterozygosity on competitive ability, we have performed serial-transfer competition experiments between isogenic sexual and asexual strains of the yeast Saccharomyces cerevisiae. The members of these diploid pairs of strains differed only in being heterozygous (sexual) or homozygous (asexual) at the mating type or MAT locus. Competing pairs had either a completely homozygous or a heterozygous genetic background, the latter being heterozygous at many different loci throughout the genome. A round of meiotic recombination (automixis) conferred a large and statistically significant enhancement of competitive ability on sexual strains with a heterozygous genetic background. By contrast, in homozygous background competitions, meiosis decreased the sexual strains' initial relative competitive ability. In all cases, however, the sexual strains outcompeted their isogenic asexual counterparts, whether meiotic recombination had occurred or not. In some genetic backgrounds, this was due in part to an overdominance effect on competitive advantage of heterozygosity at the MAT locus. The advantage of the sexual strains also increased significantly during the course of the homozygous background competitions, particularly when meiosis had occurred. This latter effect either did not occur or was very weak in heterozygous background competitions. Overall, sexual strains with heterozygous genetic backgrounds had a significantly higher initial relative competitive ability than those with homozygous backgrounds. The advantage of mating type heterozygosity in this organism extends far beyond the ability to recombine meiotically. PMID:8570658

  8. [The genetic background for the eye malformations anophthalmia and microphthalmia].

    PubMed

    Roos, Laura Sønderberg; Grønskov, Karen; Jensen, Hanne; Tümer, Zeynep

    2012-03-12

    Anophthalmia and microphthalmia (AO/MO) are rare congenital eye malformations, in which the eyeball is apparently absent or smaller than normal, which causes various degrees of visual impairment. Over 200 different AO/MO-related syndromes have been described, but the genetic background is unknown in many cases. The aim of this article is to give an overview of AO/MO, focusing on the genetic background. It is illustrated that the future identification of new AO/MO related genes will benefit in the genetic counseling of AO/MO patients, and in the understanding of eye development and congenital eye malformations.

  9. Genetic characterization and fine mapping of S25, a hybrid male sterility gene, on rice chromosome 12.

    PubMed

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2018-02-10

    Hybrid male sterility genes are important factors in creating postzygotic reproductive isolation barriers in plants. One such gene, S25, is known to cause severe transmission ratio distortion in inter-subspecific progeny of cultivated rice Oryza sativa ssp. indica and japonica. To further characterize the S25 gene, we fine-mapped and genetically characterized the S25 gene using near-isogenic lines with reciprocal genetic backgrounds. We mapped the S25 locus within the 0.67-1.02 Mb region on rice chromosome 12. Further genetic analyses revealed that S25 substantially reduced male fertility in the japonica background, but not in the indica background. In first-generation hybrid progeny, S25 had a milder effect than it had in the japonica background. These results suggest that the expression of S25 is epistatically regulated by at least one partially dominant gene present in the indica genome. This finding supports our previous studies showing that hybrid male sterility due to pollen killer genes results from epistatic interaction with other genes that are hidden in the genetic background.

  10. Genetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms Underlying Their Benefit

    DTIC Science & Technology

    2015-08-01

    another trait (Losos 2011). All of these factors make it hard to identify adaptations. Mutations are the ultimate source of genetic variation that is...effects when added to the same evolved background (See Table 2.2 for results of one-way ANOVAs). Genetic background explains most (~ 88%) of the variation ...in fitness whereas the variation explained by different pykF alleles is negligible (~2%) compared to statistical noise (~8%) (Table 2.3). These

  11. Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background.

    PubMed

    Siuciak, Judith A; McCarthy, Sheryl A; Chapin, Douglas S; Martin, Ashley N; Harms, John F; Schmidt, Christopher J

    2008-02-01

    The phenotype of genetically modified animals is strongly influenced by both the genetic background of the animal as well as environmental factors. We have previously reported the behavioral and neurochemical characterization of PDE10A knockout mice maintained on a DBA1LacJ (PDE10A(DBA)) genetic background. The aim of the present studies was to assess the behavioral and neurochemical phenotype of PDE10A knockout mice on an alternative congenic C57BL/6N (PDE10A(C57)) genetic background. Consistent with our previous results, PDE10A(C57) knockout mice showed a decrease in exploratory locomotor activity and a delay in the acquisition of conditioned avoidance responding. Also consistent with previous studies, the elimination of PDE10A did not alter basal levels of striatal cGMP or cAMP or affect behavior in several other well-characterized behavioral assays. PDE10A(C57) knockout mice showed a blunted response to MK-801, although to a lesser degree than previously observed in the PDE10A(DBA) knockout mice, and no differences were observed following a PCP challenge. PDE10A(C57) knockout mice showed a significant change in striatal dopamine turnover, which was accompanied by an enhanced locomotor response to AMPH, These studies demonstrate that while many of the behavioral effects of the PDE10A gene deletion appear to be independent of genetic background, the impact of the deletion on behavior can vary in magnitude. Furthermore, the effects on the dopaminergic system appear to be background-dependent, with significant effects observed only in knockout mice on the C57BL6N genetic background.

  12. Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model.

    PubMed

    Haybaeck, Johannes; Stumptner, Cornelia; Thueringer, Andrea; Kolbe, Thomas; Magin, Thomas M; Hesse, Michael; Fickert, Peter; Tsybrovskyy, Oleksiy; Müller, Heimo; Trauner, Michael; Zatloukal, Kurt; Denk, Helmut

    2012-06-01

    Keratin 8 (K8) and keratin 18 (K18) form the major hepatocyte cytoskeleton. We investigated the impact of genetic loss of either K8 or K18 on liver homeostasis under toxic stress with the hypothesis that K8 and K18 exert different functions. krt8⁻/⁻ and krt18⁻/⁻ mice crossed into the same 129-ola genetic background were treated by acute and chronic administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). In acutely DDC-intoxicated mice, macrovesicular steatosis was more pronounced in krt8⁻/⁻ and krt18⁻/⁻ compared with wild-type (wt) animals. Mallory-Denk bodies (MDBs) appeared in krt18⁻/⁻ mice already at an early stage of intoxication in contrast to krt8⁻/⁻ mice that did not display MDB formation when fed with DDC. Keratin-deficient mice displayed significantly lower numbers of apoptotic hepatocytes than wt animals. krt8⁻/⁻, krt18⁻/⁻ and control mice displayed comparable cell proliferation rates. Chronically DDC-intoxicated krt18⁻/⁻ and wt mice showed a similarly increased degree of steatohepatitis with hepatocyte ballooning and MDB formation. In krt8⁻/⁻ mice, steatosis was less, ballooning, and MDBs were absent. krt18⁻/⁻ mice developed MDBs whereas krt8⁻/⁻ mice on the same genetic background did not, highlighting the significance of different structural properties of keratins. They are independent of the genetic background as an intrinsic factor. By contrast, toxicity effects may depend on the genetic background. krt8⁻/⁻ and krt18⁻/⁻ mice on the same genetic background show similar sensitivity to DDC intoxication and almost resemble wt animals regarding survival, degree of porphyria, liver-to-body weight ratio, serum bilirubin and liver enzyme levels. This stands in contrast to previous work where krt8⁻/⁻ and krt18⁻/⁻ mice on different genetic backgrounds were investigated.

  13. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  14. The mathematical limits of genetic prediction for complex chronic disease.

    PubMed

    Keyes, Katherine M; Smith, George Davey; Koenen, Karestan C; Galea, Sandro

    2015-06-01

    Attempts at predicting individual risk of disease based on common germline genetic variation have largely been disappointing. The present paper formalises why genetic prediction at the individual level is and will continue to have limited utility given the aetiological architecture of most common complex diseases. Data were simulated on one million populations with 10 000 individuals in each populations with varying prevalences of a genetic risk factor, an interacting environmental factor and the background rate of disease. The determinant risk ratio and risk difference magnitude for the association between a gene variant and disease is a function of the prevalence of the interacting factors that activate the gene, and the background rate of disease. The risk ratio and total excess cases due to the genetic factor increase as the prevalence of interacting factors increase, and decrease as the background rate of disease increases. Germline genetic variations have high predictive capacity for individual disease only under conditions of high heritability of particular genetic sequences, plausible only under rare variant hypotheses. Under a model of common germline genetic variants that interact with other genes and/or environmental factors in order to cause disease, the predictive capacity of common genetic variants is determined by the prevalence of the factors that interact with the variant and the background rate. A focus on estimating genetic associations for the purpose of prediction without explicitly grounding such work in an understanding of modifiable (including environmentally influenced) factors will be limited in its ability to yield important insights about the risk of disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects

    PubMed Central

    Choi, Lin; DeNieu, Michael; Sonnenschein, Anne; Hummel, Kristen; Marier, Christian; Victory, Andrew; Porter, Cody; Mammel, Anna; Holms, Julie; Sivaratnam, Gayatri

    2017-01-01

    For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis. PMID:29166655

  16. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  17. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease.

    PubMed

    Prince, Kelly L; Colvin, Stephanie C; Park, Soyoung; Lai, Xianyin; Witzmann, Frank A; Rhodes, Simon J

    2013-02-01

    Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.

  18. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.

    PubMed

    Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H

    2016-10-21

    Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.

  19. Developmental Analysis and Influence of Genetic Background on the Lhx3 W227ter Mouse Model of Combined Pituitary Hormone Deficiency Disease

    PubMed Central

    Prince, Kelly L.; Colvin, Stephanie C.; Park, Soyoung; Lai, Xianyin; Witzmann, Frank A.

    2013-01-01

    Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3W227ter/W227ter mouse model. Lhx3W227ter/W227ter embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3W227ter/W227ter genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3W227ter/W227ter animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3W227ter/W227ter mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3W227ter/W227ter mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases. PMID:23288907

  20. The role of genetic background in susceptibility to chemical warfare nerve agents across rodent and non-human primate models.

    PubMed

    Matson, Liana M; McCarren, Hilary S; Cadieux, C Linn; Cerasoli, Douglas M; McDonough, John H

    2018-01-15

    Genetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies. Here, we discuss the available literature on strain and selected line differences in cholinesterase activity levels and response to nerve agent-induced toxicity and seizures. We also discuss the available cholinesterase and toxicity literature across different non-human primate species. The available data suggest that robust genetic differences exist in cholinesterase activity, nerve agent-induced toxicity, and chemical-induced seizures. Available cholinesterase data suggest that acetylcholinesterase activity differs across strains, but are limited by the paucity of carboxylesterase data in strains and selected lines. Toxicity and seizures, two outcomes of nerve agent exposure, have not been fully evaluated for genetic differences, and thus further studies are required to understand baseline strain and selected line differences. Published by Elsevier B.V.

  1. Wildlife translocation: the conservation implications of pathogen exposure and genetic heterozygosity

    PubMed Central

    2011-01-01

    Background A key challenge for conservation biologists is to determine the most appropriate demographic and genetic management strategies for wildlife populations threatened by disease. We explored this topic by examining whether genetic background and previous pathogen exposure influenced survival of translocated animals when captive-bred and free-ranging bighorn sheep (Ovis canadensis) were used to re-establish a population that had been extirpated in the San Andres Mountains in New Mexico, USA. Results Although the free-ranging source population had significantly higher multi-locus heterozygosity at 30 microsatellite loci than the captive bred animals, neither source population nor genetic background significantly influenced survival or cause of death. The presence of antibodies to a respiratory virus known to cause pneumonia was associated with increased survival, but there was no correlation between genetic heterozygosity and the presence of antibodies to this virus. Conclusions Although genetic theory predicts otherwise, increased heterozygosity was not associated with increased fitness (survival) among translocated animals. While heterosis or genetic rescue effects may occur in F1 and later generations as the two source populations interbreed, we conclude that previous pathogen exposure was a more important marker than genetic heterozygosity for predicting survival of translocated animals. Every wildlife translocation is an experiment, and whenever possible, translocations should be designed and evaluated to test hypotheses that will further improve our understanding of how pathogen exposure and genetic variability influence fitness. PMID:21284886

  2. Combinatorial Therapies for Neurofibroma and MPNST Treatment and Prevention

    DTIC Science & Technology

    2017-08-01

    experiments utilizing genetically engineered mouse models. Consequently, we were not allowed to start actual experimental work towards the goals of this...different genetic backgrounds. Consequently, before beginning the full study, it was necessary that we will first determine the MTD for tamoxifen and...trifluoperazine in C57BL/6 mice (the genetic background of the Krox20-Cre;Nf1flox/- and P0-GGFβ3;Trp53+/- mice that are being used for our preclinical

  3. Contribution of genetic background, traditional risk factors, and HIV-related factors to coronary artery disease events in HIV-positive persons.

    PubMed

    Rotger, Margalida; Glass, Tracy R; Junier, Thomas; Lundgren, Jens; Neaton, James D; Poloni, Estella S; van 't Wout, Angélique B; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P; Li, Xiuhong; Kingsley, Lawrence A; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A; Reiss, Peter; Weber, Rainer; Bucher, Heiner C; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E

    2013-07-01

    Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9 × 10(-4)). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05-2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06-1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16-1.96), diabetes (OR = 1.66; 95% CI, 1.10-2.49), ≥ 1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06-1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17-2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.

  4. Astrocytic Disruption in Traumatic Brain Injury and Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    appropriate age range and pressure to use. A major challenge has been the genetic heterogeneity of the 5xFAD mice that were generated and maintained on a...mixed C57BL/6J and SJL/J background. As hemizygous 5xFAD mice carrying the AD related allele with unknown genetic background were backcrossed with...imaging from astrocytes will be extremely feasible using a genetic approach in the future once the C57 congenic 5xFAD line is established. Aim 3 - To

  5. Porphyria: A Suitable Case for Teaching.

    ERIC Educational Resources Information Center

    Hawkey, Roy

    1990-01-01

    The porphyrias are a family of genetic disorders whose genetics and biochemistry are largely identified. Background information on these diseases are discussed including porphyrins, gene expression, population genetics, and historical significance. (CW)

  6. [Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].

    PubMed

    Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue

    2014-12-01

    In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.

  7. Quasi-causal associations of physical activity and neighborhood walkability with body mass index: a twin study.

    PubMed

    Duncan, Glen E; Cash, Stephanie Whisnant; Horn, Erin E; Turkheimer, Eric

    2015-01-01

    Physical activity, neighborhood walkability, and body mass index (BMI, kg/m(2)) associations were tested using quasi-experimental twin methods. We hypothesized that physical activity and walkability were independently associated with BMI within twin pairs, controlling for genetic and environmental background shared between them. Data were from 6376 (64% female; 58% identical) same-sex pairs, University of Washington Twin Registry, 2008-2013. Neighborhood walking, moderate-to-vigorous physical activity (MVPA), and BMI were self-reported. Residential address was used to calculate walkability. Phenotypic (non-genetically informed) and biometric (genetically informed) regression was employed, controlling for age, sex, and race. Walking and MVPA were associated with BMI in phenotypic analyses; associations were attenuated but significant in biometric analyses (Ps<0.05). Walkability was not associated with BMI, however, was associated with walking (but not MVPA) in both phenotypic and biometric analyses (Ps<0.05), with no attenuation accounting for shared genetic and environmental background. The association between activity and BMI is largely due to shared genetic and environmental factors, but a significant causal relationship remains accounting for shared background. Although walkability is not associated with BMI, it is associated with neighborhood walking (but not MVPA) accounting for shared background, suggesting a causal relationship between them. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effect of genetic background on the dystrophic phenotype in mdx mice

    PubMed Central

    Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina

    2016-01-01

    Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673

  9. Generation of gene-targeted mice using embryonic stem cells derived from a transgenic mouse model of Alzheimer's disease.

    PubMed

    Yamamoto, Satoshi; Ooshima, Yuki; Nakata, Mitsugu; Yano, Takashi; Matsuoka, Kunio; Watanabe, Sayuri; Maeda, Ryouta; Takahashi, Hideki; Takeyama, Michiyasu; Matsumoto, Yoshio; Hashimoto, Tadatoshi

    2013-06-01

    Gene-targeting technology using mouse embryonic stem (ES) cells has become the "gold standard" for analyzing gene functions and producing disease models. Recently, genetically modified mice with multiple mutations have increasingly been produced to study the interaction between proteins and polygenic diseases. However, introduction of an additional mutation into mice already harboring several mutations by conventional natural crossbreeding is an extremely time- and labor-intensive process. Moreover, to do so in mice with a complex genetic background, several years may be required if the genetic background is to be retained. Establishing ES cells from multiple-mutant mice, or disease-model mice with a complex genetic background, would offer a possible solution. Here, we report the establishment and characterization of novel ES cell lines from a mouse model of Alzheimer's disease (3xTg-AD mouse, Oddo et al. in Neuron 39:409-421, 2003) harboring 3 mutated genes (APPswe, TauP301L, and PS1M146V) and a complex genetic background. Thirty blastocysts were cultured and 15 stable ES cell lines (male: 11; female: 4) obtained. By injecting these ES cells into diploid or tetraploid blastocysts, we generated germline-competent chimeras. Subsequently, we confirmed that F1 mice derived from these animals showed similar biochemical and behavioral characteristics to the original 3xTg-AD mice. Furthermore, we introduced a gene-targeting vector into the ES cells and successfully obtained gene-targeted ES cells, which were then used to generate knockout mice for the targeted gene. These results suggest that the present methodology is effective for introducing an additional mutation into mice already harboring multiple mutated genes and/or a complex genetic background.

  10. Genetic background of osteoporosis.

    PubMed

    Obermayer-Pietsch, B; Chararas, C; Kotschan, S; Walter, D; Leb, G

    2000-01-01

    Osteoporosis is a systemic disorder of decreased skeletal mass as measured by bone mineral density (BMD), and disturbed skeletal architecture and function which results in an increased risk for bone fractures with consecutively increased morbidity and mortality. Twin and family studies have shown an important genetic component of BMD of about 40-60%. This exceeds other well known factors influencing BMD such as environmental factors like dietary calcium, physical activity or several drugs and diseases. Therefore, interest increased in the genetic background of bone mineral density. Polymorphisms of the Vitamin D receptor gene were the first to be published in this area. Studies on other loci or candidate genes such as the estrogen receptor gene or the collagen type I alpha1 gene also showed associations with bone mineral density that could explain at least a part of the genetic background of osteoporosis. Recently published data suggest that these genetic markers of bone metabolism are important in interaction with each other or in certain bone-affecting diseases. In the future, genetic studies on osteoporosis will have to screen further relevant genes and markers for bone metabolism as well as to evaluate the complex interactions of genetic influences, so that it would be possible to calculate a patient's individual risk for osteoporosis in the context of environmental influences.

  11. Genetic Knowledge Among Participants in the Coriell Personalized Medicine Collaborative.

    PubMed

    Schmidlen, Tara J; Scheinfeldt, Laura; Zhaoyang, Ruixue; Kasper, Rachel; Sweet, Kevin; Gordon, Erynn S; Keller, Margaret; Stack, Cathy; Gharani, Neda; Daly, Mary B; Jarvis, Joseph; Christman, Michael F

    2016-04-01

    Genetic literacy is essential for the effective integration of genomic information into healthcare; yet few recent studies have been conducted to assess the current state of this knowledge base. Participants in the Coriell Personalized Medicine Collaborative (CPMC), a prospective study assessing the impact of personalized genetic risk reports for complex diseases and drug response on behavior and health outcomes, completed genetic knowledge questionnaires and other surveys through an online portal. To assess the association between genetic knowledge and genetic education background, multivariate linear regression was performed. 4 062 participants completed a genetic knowledge and genetic education background questionnaire. Most were older (mean age: 50), Caucasian (90 %), female (59 %), highly educated (69 % bachelor's or higher), with annual household income over $100 000 (49 %). Mean percent correct was 76 %. Controlling for demographics revealed that health care providers, participants previously exposed to genetics, and participants with 'better than most' self-rated knowledge were significantly more likely to have a higher knowledge score (p < 0.001). Overall, genetic knowledge was high with previous genetic education experience predictive of higher genetic knowledge score. Education is likely to improve genetic literacy, an important component to expanded use of genomics in personalized medicine.

  12. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    PubMed Central

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  13. The pleiotropic phenotype of Apc mutations in the mouse: allele specificity and effects of the genetic background.

    PubMed

    Halberg, Richard B; Chen, Xiaodi; Amos-Landgraf, James M; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C; Dove, William F

    2008-09-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.

  14. Selected Readings in Genetic Engineering

    ERIC Educational Resources Information Center

    Mertens, Thomas R.; Robinson, Sandra K.

    1973-01-01

    Describes different sources of readings for understanding issues and concepts of genetic engineering. Broad categories of reading materials are: concerns about genetic engineering; its background; procedures; and social, ethical and legal issues. References are listed. (PS)

  15. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  16. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses

    PubMed Central

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-01-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population. PMID:28722705

  17. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses.

    PubMed

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-10-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population.

  18. Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise.

    PubMed

    Giudicessi, John R; Ackerman, Michael J

    2013-01-01

    In this review, we summarize the basic principles governing rare variant interpretation in the heritable cardiac arrhythmia syndromes, focusing on recent advances that have led to disease-specific approaches to the interpretation of positive genetic testing results. Elucidation of the genetic substrates underlying heritable cardiac arrhythmia syndromes has unearthed new arrhythmogenic mechanisms and given rise to a number of clinically meaningful genotype-phenotype correlations. As such, genetic testing for these disorders now carries important diagnostic, prognostic, and therapeutic implications. Recent large-scale systematic studies designed to explore the background genetic 'noise' rate associated with these genetic tests have provided important insights and enhanced how positive genetic testing results are interpreted for these potentially lethal, yet highly treatable, cardiovascular disorders. Clinically available genetic tests for heritable cardiac arrhythmia syndromes allow the identification of potentially at-risk family members and contribute to the risk-stratification and selection of therapeutic interventions in affected individuals. The systematic evaluation of the 'signal-to-noise' ratio associated with these genetic tests has proven critical and essential to assessing the probability that a given variant represents a rare pathogenic mutation or an equally rare, yet innocuous, genetic bystander.

  19. Local adaptation within a hybrid species

    PubMed Central

    Eroukhmanoff, F; Hermansen, J S; Bailey, R I; Sæther, S A; Sætre, G-P

    2013-01-01

    Ecological divergence among populations may be strongly influenced by their genetic background. For instance, genetic admixture through introgressive hybridization or hybrid speciation is likely to affect the genetic variation and evolvability of phenotypic traits. We studied geographic variation in two beak dimensions and three other phenotypic traits of the Italian sparrow (Passer italiae), a young hybrid species formed through interbreeding between house sparrows (P. domesticus) and Spanish sparrows (P. hispaniolensis). We found that beak morphology was strongly influenced by precipitation regimes and that it appeared to be the target of divergent selection within Italian sparrows. Interestingly, however, the degree of parental genetic contribution in the hybrid species had no effect on phenotypic beak variation. Moreover, beak height divergence may mediate genetic differentiation between populations, consistent with isolation-by-adaptation within this hybrid species. The study illustrates how hybrid species may be relatively unconstrained by their admixed genetic background, allowing them to adapt rapidly to environmental variation. PMID:23695379

  20. CRISPR/Cas9 Editing of the Bacillus subtilis Genome

    PubMed Central

    Burby, Peter E.; Simmons, Lyle A.

    2017-01-01

    A fundamental procedure for most modern biologists is the genetic manipulation of the organism under study. Although many different methods for editing bacterial genomes have been used in laboratories for decades, the adaptation of CRISPR/Cas9 technology to bacterial genetics has allowed researchers to manipulate bacterial genomes with unparalleled facility. CRISPR/Cas9 has allowed for genome edits to be more precise, while also increasing the efficiency of transferring mutations into a variety of genetic backgrounds. As a result, the advantages are realized in tractable organisms and organisms that have been refractory to genetic manipulation. Here, we describe our method for editing the genome of the bacterium Bacillus subtilis. Our method is highly efficient, resulting in precise, markerless mutations. Further, after generating the editing plasmid, the mutation can be quickly introduced into several genetic backgrounds, greatly increasing the speed with which genetic analyses may be performed. PMID:28706963

  1. On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity.

    PubMed

    Renzette, Nicholas; Kowalik, Timothy F; Jensen, Jeffrey D

    2016-01-01

    A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms. © 2015 John Wiley & Sons Ltd.

  2. Identification of mutant phenotypes associated with loss of individual microRNAs in sensitized genetic backgrounds in Caenorhabditis elegans

    PubMed Central

    Brenner, John L.; Jasiewicz, Kristen L.; Fahley, Alisha F.; Kemp, Benedict J.; Abbott, Allison L.

    2010-01-01

    Summary MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the translation and/or the stability of their mRNA targets. Previous work showed that for most miRNA genes of C. elegans, single gene knockouts did not result in detectable mutant phenotypes [1]. This may be due, in part, to functional redundancy between miRNAs. However, in most cases, worms carrying deletions of all members of a miRNA family do not display strong mutant phenotypes [2]. They may function together with unrelated miRNAs or with non-miRNA genes in regulatory networks, possibly to ensure the robustness of developmental mechanisms. To test this, we examined worms lacking individual miRNAs in genetically sensitized backgrounds. These include genetic backgrounds with reduced processing and activity of all miRNAs or with reduced activity of a wide array of regulatory pathways [3]. Using these two approaches, mutant phenotypes were identified for 25 out of 31 miRNAs included in this analysis. Our findings describe biological roles for individual miRNAs and suggest that use of sensitized genetic backgrounds provides an efficient approach for miRNA functional analysis. PMID:20579881

  3. Arabidopsis research requires a critical re-evaluation of genetic tools.

    PubMed

    Nikonorova, Natalia; Yue, Kun; Beeckman, Tom; De Smet, Ive

    2018-06-27

    An increasing number of reports question conclusions based on loss-of-function lines that have unexpected genetic backgrounds. In this opinion paper, we urge researchers to meticulously (re)investigate phenotypes retrieved from various genetic backgrounds and be critical regarding some previously drawn conclusions. As an example, we provide new evidence that acr4-2 mutant phenotypes with respect to columella stem cells are due to the lack of ACR4 and not - at least not as a major contributor - to a mutation in QRT1. In addition, we take the opportunity to alert the scientific community about the qrt1-2 background of a large number of Syngenta Arabidopsis Insertion Library (SAIL) T-DNA lines, a feature that is not commonly recognized by Arabidopsis researchers. This qrt1-2 background might have an important impact on the interpretation of the results obtained using these research tools, now and in the past. In conclusion, as a community, we should continuously assess and - if necessary - correct our conclusions based on the large number of (genetic) tools our work is built on. In addition, the positive or negative results of this self-criticism should be made available to the scientific community.

  4. Background Selection in Partially Selfing Populations

    PubMed Central

    Roze, Denis

    2016-01-01

    Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high. PMID:27075726

  5. Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.

    PubMed

    Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q

    2010-12-01

    The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.

  6. MHC odours are not required or sufficient for recognition of individual scent owners

    PubMed Central

    Hurst, Jane L; Thom, Michael D; Nevison, Charlotte M; Humphries, Richard E; Beynon, Robert J

    2005-01-01

    To provide information about specific depositors, scent marks need to encode a stable signal of individual ownership. The highly polymorphic major histocompatibility complex (MHC) influences scents and contributes to the recognition of close kin and avoidance of inbreeding when MHC haplotypes are shared. MHC diversity between individuals has also been proposed as a primary source of scents used in individual recognition. We tested this in the context of scent owner recognition among male mice, which scent mark their territories and countermark scents from other males. We examined responses towards urine scent according to the scent owner's genetic difference to the territory owner (MHC, genetic background, both and neither) or genetic match to a familiar neighbour. While urine of a different genetic background from the subject always stimulated greater scent marking than own, regardless of familiarity, MHC-associated odours were neither necessary nor sufficient for scent owner recognition and failed to stimulate countermarking. Urine of a different MHC type to the subject stimulated increased investigation only when this matched both the MHC and genetic background of a familiar neighbour. We propose an associative model of scent owner recognition in which volatile scent profiles, contributed by both fixed genetic and varying non-genetic factors, are learnt in association with a stable involatile ownership signal provided by other highly polymorphic urine components. PMID:15906464

  7. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  8. Contribution of Genetic Background, Traditional Risk Factors, and HIV-Related Factors to Coronary Artery Disease Events in HIV-Positive Persons

    PubMed Central

    Rotger, Margalida; Glass, Tracy R.; Junier, Thomas; Lundgren, Jens; Neaton, James D.; Poloni, Estella S.; van 't Wout, Angélique B.; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F.; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A.; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P.; Li, Xiuhong; Kingsley, Lawrence A.; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S.; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M.; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H.; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R.; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A.; Reiss, Peter; Weber, Rainer; Bucher, Heiner C.; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E.

    2013-01-01

    Background Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. Methods In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. Results A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. Conclusions In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD. PMID:23532479

  9. ALTERED SENSITIVITY OF THE MOUSE FETUS TO IMPAIRED PROSTATIC BUD FORMATION BY DIOXIN: INFLUENCE OF GENETIC BACKGROUND AND NULL EXPRESSION OF TGF-ALFA AND EGF

    EPA Science Inventory

    Altered sensitivity of the mouse fetus to impaired prostatic bud formation by dioxin: Influence of genetic background and null expression of TGF and EGF.
    Rasmussen, N.T., Lin T-M., Fenton, S.E., Abbott, B.D. and R.E. Peterson.
    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)...

  10. Probing Genetic Control of Swine Responses to PRRSV Infection: Current Progress of the PRRS Host Genetics Consortium

    USDA-ARS?s Scientific Manuscript database

    Background: Understanding the role of host genetics in resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection, and the effects of PRRS on pig health and related growth, are goals of the PRRS Host Genetics Consortium (PHGC). Methods: The project uses a nursery pig model ...

  11. Autism-related neuroligin-3 mutation alters social behavior and spatial learning.

    PubMed

    Jaramillo, Thomas C; Liu, Shunan; Pettersen, Ami; Birnbaum, Shari G; Powell, Craig M

    2014-04-01

    Multiple candidate genes have been identified for autism spectrum disorders. While some of these genes reach genome-wide significance, others, such as the R451C point mutation in the synaptic cell adhesion molecule neuroligin-3, appear to be rare. Interestingly, two brothers with the same R451C point mutation in neuroligin-3 present clinically on seemingly disparate sides of the autism spectrum. These clinical findings suggest genetic background may play a role in modifying the penetrance of a particular autism-associated mutation. Animal models may contribute additional support for such mutations as functionally relevant and can provide mechanistic insights. Previously, in collaboration with the Südhof laboratory, we reported that mice with an R451C substitution in neuroligin-3 displayed social deficits and enhanced spatial learning. While some of these behavioral abnormalities have since been replicated independently in the Südhof laboratory, observations from the Crawley laboratory failed to replicate these findings in a similar neuroligin-3 mutant mouse model and suggested that genetic background may contribute to variation in observations across laboratories. Therefore, we sought to replicate our findings in the neuroligin-3 R451C point mutant knock-in mouse model (NL3R451C) in a different genetic background. We backcrossed our NL3R451C mouse line onto a 129S2/SvPasCrl genetic background and repeated a subset of our previous behavioral testing. NL3R451C mice on a 129S2/SvPasCrl displayed social deficits, enhanced spatial learning, and increased locomotor activity. These data extend our previous findings that NL3R451C mice exhibit autism-relevant behavioral abnormalities and further suggest that different genetic backgrounds can modify this behavioral phenotype through epistatic genetic interactions. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  12. The genetic architecture of maize (Zea mays L.) kernel weight determination.

    PubMed

    Alvarez Prado, Santiago; López, César G; Senior, M Lynn; Borrás, Lucas

    2014-09-18

    Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Copyright © 2014 Alvarez Prado et al.

  13. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations1[OPEN

    PubMed Central

    Pan, Qingchun; Xu, Yuancheng; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin

    2017-01-01

    Plant architecture is a key factor affecting planting density and grain yield in maize (Zea mays). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3, has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. PMID:28838954

  14. Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster

    PubMed Central

    Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros

    2017-01-01

    Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160

  15. Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos

    PubMed Central

    Conomos, Matthew P.; Laurie, Cecelia A.; Stilp, Adrienne M.; Gogarten, Stephanie M.; McHugh, Caitlin P.; Nelson, Sarah C.; Sofer, Tamar; Fernández-Rhodes, Lindsay; Justice, Anne E.; Graff, Mariaelisa; Young, Kristin L.; Seyerle, Amanda A.; Avery, Christy L.; Taylor, Kent D.; Rotter, Jerome I.; Talavera, Gregory A.; Daviglus, Martha L.; Wassertheil-Smoller, Sylvia; Schneiderman, Neil; Heiss, Gerardo; Kaplan, Robert C.; Franceschini, Nora; Reiner, Alex P.; Shaffer, John R.; Barr, R. Graham; Kerr, Kathleen F.; Browning, Sharon R.; Browning, Brian L.; Weir, Bruce S.; Avilés-Santa, M. Larissa; Papanicolaou, George J.; Lumley, Thomas; Szpiro, Adam A.; North, Kari E.; Rice, Ken; Thornton, Timothy A.; Laurie, Cathy C.

    2016-01-01

    US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness. PMID:26748518

  16. How biological background assumptions influence scientific risk evaluation of stacked genetically modified plants: an analysis of research hypotheses and argumentations.

    PubMed

    Rocca, Elena; Andersen, Fredrik

    2017-08-14

    Scientific risk evaluations are constructed by specific evidence, value judgements and biological background assumptions. The latter are the framework-setting suppositions we apply in order to understand some new phenomenon. That background assumptions co-determine choice of methodology, data interpretation, and choice of relevant evidence is an uncontroversial claim in modern basic science. Furthermore, it is commonly accepted that, unless explicated, disagreements in background assumptions can lead to misunderstanding as well as miscommunication. Here, we extend the discussion on background assumptions from basic science to the debate over genetically modified (GM) plants risk assessment. In this realm, while the different political, social and economic values are often mentioned, the identity and role of background assumptions at play are rarely examined. We use an example from the debate over risk assessment of stacked genetically modified plants (GM stacks), obtained by applying conventional breeding techniques to GM plants. There are two main regulatory practices of GM stacks: (i) regulate as conventional hybrids and (ii) regulate as new GM plants. We analyzed eight papers representative of these positions and found that, in all cases, additional premises are needed to reach the stated conclusions. We suggest that these premises play the role of biological background assumptions and argue that the most effective way toward a unified framework for risk analysis and regulation of GM stacks is by explicating and examining the biological background assumptions of each position. Once explicated, it is possible to either evaluate which background assumptions best reflect contemporary biological knowledge, or to apply Douglas' 'inductive risk' argument.

  17. Advantages of using molecular coancestry in the removal of introgressed genetic material

    PubMed Central

    2013-01-01

    Background When introgression of undesired exogenous genetic material occurs in a population intended to remain pure, actions are necessary to recover the original background. It has been shown that genome-wide information can replace pedigree information for different objectives and is a valuable tool in the fields of genetic conservation and breeding. In this simulation study, molecular information provided by 50 000 SNP was used to minimise the molecular coancestry between individuals of an admixed population and the foreign individuals that originally introgressed a native population in order to remove the exogenous DNA. Results This management method, which detects the ‘purest’ individuals to be used as parents for the next generation, allowed recovery of the native genetic background to a great extent in all simulated scenarios. However, it also caused an increase in inbreeding larger than expected because of the lower number of individuals selected as parents and the higher coancestry between them. In scenarios involving several introgression events the method was more efficient than in those involving a single introgression event because part of the genetic information was mixed with the native genetic material for a shorter period. Conclusions Genome-wide information can be used to identify the purest individuals via the minimisation of molecular coancestry between individuals of the admixed and exogenous populations. Removal of the undesired genetic material is more efficient with a molecular-based approach than with a pedigree-based approach. PMID:23634969

  18. Cognitive, Noncognitive, and Family Background Contributions to College Attainment: A Behavioral Genetic Perspective.

    PubMed

    McGue, Matt; Rustichini, Aldo; Iacono, William G

    2017-02-01

    There is considerable evidence that college attainment is associated with family background and cognitive and noncognitive skills. Behavioral genetic methods are used to determine whether the family background effect is mediated through cognitive and noncognitive skill development. We analyze data from two longitudinal behavioral genetic studies: the Minnesota Twin Family Study, consisting of 1,382 pairs of like-sex twins and their parents, and the Sibling Interaction and Behavior Study, consisting of 409 adoptive and 208 nonadoptive families with two offspring and their rearing parents. Cognitive ability, noncognitive skills, and family background are all associated with offspring college attainment. Biometric analysis shows that the intergenerational transmission of college attainment owes to both genetic and shared environmental factors. The shared environmental influence was not due to highly educated parents fostering noncognitive skill development in their children, and there was limited evidence that they foster cognitive skill development. The environmental transmission of educational attainment does not appear to be a consequence of highly educated parents fostering cognitive and noncognitive skill development. Alternative mechanisms are needed to explain the strong shared environmental influence on college attainment. Possibilities include academic expectations, social network effects, and the economic benefits of having wealthy parents. © 2015 Wiley Periodicals, Inc.

  19. Attention Deficit Hyperactivity Disorder with Reading Disabilities: Preliminary Genetic Findings on the Involvement of the ADRA2A Gene

    ERIC Educational Resources Information Center

    Stevenson, J.; Langley, K.; Pay, H.; Payton, A.; Worthington, J.; Ollier, W.; Thapar, A.

    2005-01-01

    Background: Attention deficit/hyperactivity disorder (ADHD) and reading disability (RD) tend to co-occur and quantitative genetic studies have shown this to arise primarily through shared genetic influences. However, molecular genetic studies have shown different genes to be associated with each of these conditions. Neurobiological studies have…

  20. Genetic Testing in Intellectual Disability Psychiatry: Opinions and Practices of UK Child and Intellectual Disability Psychiatrists

    ERIC Educational Resources Information Center

    Wolfe, Kate; Stueber, Kerstin; McQuillin, Andrew; Jichi, Fatima; Patch, Christine; Flinter, Frances; Strydom, André; Bass, Nick

    2018-01-01

    Background: An increasing number of genetic causes of intellectual disabilities (ID) are identifiable by clinical genetic testing, offering the prospect of bespoke patient management. However, little is known about the practices of psychiatrists and their views on genetic testing. Method: We undertook an online survey of 215 psychiatrists, who…

  1. Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds.

    PubMed

    Izquierdo, Natalia G; Martínez-Force, Enrique; Garcés, Rafael; Aguirrezábal, Luis An; Zambelli, Andrés; Reid, Roberto

    2016-10-01

    This study characterized the influence of temperature during grain filling on the saturated fatty acid distribution in triacylglycerol molecules from high stearic sunflower lines with different genetic backgrounds. Two growth chamber experiments were conducted with day/night temperatures of 16/16, 26/16, 26/26 and 32/26 °C. In all genotypes, independently of the genetic background, higher temperatures increased palmitic and oleic acid and reduced linoleic acid concentrations. Increasing night temperature produced an increase in saturated-unsaturated-saturated species, indicating a more symmetrical distribution of saturated fatty acids. The solid fat index was more affected by temperature during grain filling in lines with high linoleic than high oleic background. Higher variations in symmetry among night temperatures were observed in lines with high oleic background, which are more stable in fatty acid composition. The effect of temperature on triacylglycerol composition is not completely explained by its effect on fatty acid composition. Thus night temperature affects oil properties via its effects on fatty acid synthesis and on the distribution of fatty acids in the triacylglycerol molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population from Argentina

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Cafaro, Thamara A.; Suarez, María F.

    2013-01-01

    Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK. PMID:24040292

  3. Genetic background and climatic droplet keratopathy incidence in a Mapuche population from Argentina.

    PubMed

    Schurr, Theodore G; Dulik, Matthew C; Cafaro, Thamara A; Suarez, María F; Urrets-Zavalia, Julio A; Serra, Horacio M

    2013-01-01

    To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.

  4. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

    PubMed

    Read, Timothy; Richmond, Phillip A; Dowell, Robin D

    2016-01-01

    Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.

  5. The genetic architecture of long QT syndrome: A critical reappraisal.

    PubMed

    Giudicessi, John R; Wilde, Arthur A M; Ackerman, Michael J

    2018-03-30

    Collectively, the completion of the Human Genome Project and subsequent development of high-throughput next-generation sequencing methodologies have revolutionized genomic research. However, the rapid sequencing and analysis of thousands upon thousands of human exomes and genomes has taught us that most genes, including those known to cause heritable cardiovascular disorders such as long QT syndrome, harbor an unexpected background rate of rare, and presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise the genetic architecture underlying both the acquired and congenital forms of long QT syndrome by examining how the clinical phenotype associated with and background genetic variation in long QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease associations and the variant classification and reporting strategies that serve as the foundation for diagnostic long QT syndrome genetic testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Ovariectomy results in inbred strain-specific increases in anxiety-like behavior in mice

    PubMed Central

    Schoenrock, Sarah Adams; Oreper, Daniel; Young, Nancy; Ervin, Robin Betsch; Bogue, Molly A.; Valdar, William; Tarantino, Lisa M.

    2017-01-01

    Women are at an increased risk for developing affective disorders during times of hormonal flux, including menopause when the ovaries cease production of estrogen. However, while all women undergo menopause, not all develop an affective disorder. Increased vulnerability can result from genetic predisposition, environmental factors and gene by environment interactions. In order to investigate interactions between genetic background and estrogen depletion, we performed bilateral ovariectomy, a surgical procedure that results in estrogen depletion and is thought to model the post-menopausal state, in a genetically defined panel of 37 inbred mouse strains. Seventeen days post-ovariectomy, we assessed behavior in two standard rodent assays of anxiety- and depressive-like behavior, the open field and forced swim tests. We detected a significant interaction between ovariectomy and genetic background on anxiety-like behavior in the open field. No strain specific effects of ovariectomy were observed in the forced swim assay. However, we did observe significant strain effects for all behaviors in both the open field and forced swim tests. This study is the largest to date to look at the effects of ovariectomy on behavior and provides evidence that ovariectomy interacts with genetic background to alter anxiety-like behavior in an animal model of menopause. PMID:27693591

  7. Genetic and Environmental Influences on Adolescent Attachment

    ERIC Educational Resources Information Center

    Fearon, Pasco; Shmueli-Goetz, Yael; Viding, Essi; Fonagy, Peter; Plomin, Robert

    2014-01-01

    Background: Twin studies consistently point to limited genetic influence on attachment security in the infancy period, but no study has examined whether this remains the case in later development. This study presents the findings from a twin study examining the relative importance of genetic and environmental influences on attachment in…

  8. Genetic Distinctiveness of Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources

    PubMed Central

    Monteiro, Filipa; Vidigal, Patrícia; Barros, André B.; Monteiro, Ana; Oliveira, Hugo R.; Viegas, Wanda

    2016-01-01

    Rye (Secale cereale L.) is a cereal crop of major importance in many parts of Europe and rye breeders are presently very concerned with the restrict pool of rye genetic resources available. Such narrowing of rye genetic diversity results from the presence of “Petkus” pool in most modern rye varieties as well as “Petkus” × “Carsten” heterotic pool in hybrid rye breeding programs. Previous studies on rye's genetic diversity revealed moreover a common genetic background on landraces (ex situ) and cultivars, regardless of breeding level or geographical origin. Thus evaluation of in situ populations is of utmost importance to unveil “on farm” diversity, which is largely undervalued. Here, we perform the first comprehensive assessment of rye's genetic diversity and population structuring using cultivars, ex situ landraces along a comprehensive sampling of in situ accessions from Portugal, through a molecular-directed analysis using SSRs markers. Rye genetic diversity and population structure analysis does not present any geographical trend but disclosed marked differences between genetic backgrounds of in situ accessions and those of cultivars/ex situ collections. Such genetic distinctiveness of in situ accessions highlights their unexplored potential as new genetic resources, which can be used to boost rye breeding strategies and the production of new varieties. Overall, our study successfully demonstrates the high prospective impact of comparing genetic diversity and structure of cultivars, ex situ, and in situ samples in ascertaining the status of plant genetic resources (PGR). PMID:27630658

  9. Effect of genetic background on the contribution of New Zealand Black loci to autoimmune lupus nephritis

    PubMed Central

    Rozzo, Stephen J.; Vyse, Timothy J.; Drake, Charles G.; Kotzin, Brian L.

    1996-01-01

    Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease. PMID:8986781

  10. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.

    PubMed

    Pan, Qingchun; Xu, Yuancheng; Li, Kun; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin; Yan, Jianbing

    2017-10-01

    Plant architecture is a key factor affecting planting density and grain yield in maize ( Zea mays ). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3 , has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Genetic background has a major effect on the penetrance and severity of craniofacial defects in mice heterozygous for the gene encoding the nucleolar protein Treacle.

    PubMed

    Dixon, Jill; Dixon, Michael James

    2004-04-01

    Treacher Collins syndrome (TCS) is a craniofacial disorder that results from mutations in TCOF1, which encodes the nucleolar protein Treacle. The severity of the clinical features exhibits wide variation and includes hypoplasia of the mandible and maxilla, abnormalities of the external ears and middle ear ossicles, and cleft palate. To determine the in vivo function of Treacle, we previously generated Tcof1 heterozygous mice on a mixed C57BL/6 and 129 background. These mice exhibited a lethal phenotype, which included abnormal development of the maxilla, absence of the eyes and nasal passages, and neural tube defects. Here, we show that placing the mutation onto different genetic backgrounds has a major effect on the penetrance and severity of the craniofacial and other defects. The offspring exhibit markedly variable strain-dependent phenotypes that range from extremely severe and lethal in a mixed CBA/Ca and 129 background, to apparently normal and viable in a mixed BALB/c and 129 background. In the former case, in addition to a profoundly severe craniofacial phenotype, CBA-derived heterozygous mice also exhibited delayed ossification of the long bones, rib fusions, and digit anomalies. The results of our studies indicate that factors in the different genetic backgrounds contribute extensively to the Tcof1 phenotype. Copyright 2004 Wiley-Liss, Inc.

  12. American Society of Human Genetics

    MedlinePlus

    ... and Background Risk October 20, 2017 Personal Omics Data Informative for Precision Health and Preventive Care October 20, 2017 Physical Inactivity and Restless Sleep Exacerbate Genetic Risk of Obesity October 20, 2017 ASHG 2018 ...

  13. Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice.

    PubMed

    Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2012-04-01

    Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.

  14. Genetic variation and co-variation for fitness between intra-population and inter-population backgrounds in the red flour beetle, Tribolium castaneum

    PubMed Central

    Drury, Douglas W.; Wade, Michael J.

    2010-01-01

    Hybrids from crosses between populations of the flour beetle, Tribolium castaneum, express varying degrees of inviability and morphological abnormalities. The proportion of allopatric population hybrids exhibiting these negative hybrid phenotypes varies widely, from 3% to 100%, depending upon the pair of populations crossed. We crossed three populations and measured two fitness components, fertility and adult offspring numbers from successful crosses, to determine how genes segregating within populations interact in inter-population hybrids to cause the negative phenotypes. With data from crosses of 40 sires from each of three populations to groups of 5 dams from their own and two divergent populations, we estimated the genetic variance and covariance for breeding value of fitness between the intra- and inter-population backgrounds and the sire × dam-population interaction variance. The latter component of the variance in breeding values estimates the change in genic effects between backgrounds owing to epistasis. Interacting genes with a positive effect, prior to fixation, in the sympatric background but a negative effect in the hybrid background cause reproductive incompatibility in the Dobzhansky-Muller speciation model. Thus, the sire × dam-population interaction provides a way to measure the progress toward speciation of genetically differentiating populations on a trait by trait basis using inter-population hybrids. PMID:21044199

  15. Education Status of Oral Genetics at the Fourth Military Medical University and other Chinese Dental Schools.

    PubMed

    Zhang, Yan Li; Wang, Chang Ning; Fan, Zhi Peng; Jiao, Yang; Duan, Xiao Hong

    To investigate the current state of genetics education at the Fourth Military Medical University (FMMU) and compare it with other dental schools of China. Detailed information about the history and current education status of Oral Genetics in the FMMU were collected and questionnaires were completed to acquire the feedback of twenty-seven students on the course. In the other thirty-five dental schools including the capitals of twenty-five provinces and four municipalities in China, information about the oral genetic course were collected by a telephone survey. The contents of survey included whether or not the Oral Genetic course is offered and some basic information about the curriculum (such as the content, hours, teachers' background and teaching methods). Among a total of thirty-six dental schools investigated, six of them (16.7%) offered the Oral Genetic course or related lectures/seminars. The length and contents of the curriculum vary among these schools. The FMMU offered the oral genetic curriculum both to undergraduates and graduated students. Their teachers had a broad range of backgrounds, such as dentistry, biology, genetics, and biochemistry. The students considered the Oral Genetics course to be helpful for their future professional careers. Genetic education in dentistry in China is still at a preliminary stage. More effort must be paid to spread the knowledge of Oral Genetics in China. In addition, domestic and international communications and networks for Oral Genetics should be set up in the near future.

  16. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.

  17. Using the Eastern Hellbender Salamander in a High School Genetics & Ecological Conservation Activity

    ERIC Educational Resources Information Center

    Chudyk, Sarah; McMillan, Amy; Lange, Catherine

    2014-01-01

    This article contains an original 5E lesson plan developed from conservation genetics research on the giant North American hellbender salamander, Cryptobranchus alleganiensis alleganiensis. The lesson plan provides background information on the hellbender, reviews basic genetics, and exposes students to the scientific process that is used during…

  18. Anger/Frustration, Task Persistence, and Conduct Problems in Childhood: A Behavioral Genetic Analysis

    ERIC Educational Resources Information Center

    Deater-Deckard, Kirby; Petrill, Stephen A.; Thompson, Lee A.

    2007-01-01

    Background: Individual differences in conduct problems arise in part from proneness to anger/frustration and poor self-regulation of behavior. However, the genetic and environmental etiology of these connections is not known. Method: Using a twin design, we examined genetic and environmental covariation underlying the well-documented correlations…

  19. Loneliness in Adolescence: Gene x Environment Interactions Involving the Serotonin Transporter Gene

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Scholte, Ron H. J.; Verhagen, Maaike; Goossens, Luc; Engels, Rutger C. M. E.

    2010-01-01

    Background: Loneliness is assumed to peak in early adolescence and to decrease throughout middle and late adolescence, but longitudinal confirmation of this tendency is lacking. Behavioral genetic studies with twin designs have found a significant genetic component for loneliness in children and adults, but no molecular genetic studies have been…

  20. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    ERIC Educational Resources Information Center

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  1. Genetic and Environmental Influences on the Growth of Early Reading Skills

    ERIC Educational Resources Information Center

    Petrill, Stephen A.; Hart, Sara A.; Harlaar, Nicole; Logan, Jessica; Justice, Laura M.; Schatschneider, Christopher; Thompson, Lee; DeThorne, Laura S.; Deater-Deckard, Kirby; Cutting, Laurie

    2010-01-01

    Background: Studies have suggested genetic and environmental influences on overall level of early reading whereas the larger reading literature has shown environmental influences on the rate of growth of early reading skills. This study is the first to examine the genetic and environmental influences on both initial level of performance and rate…

  2. Effects of Elevated Pax6 Expression and Genetic Background on Mouse Eye Development

    PubMed Central

    Chanas, Simon A.; Collinson, J. Martin; Ramaesh, Thaya; Dorà, Natalie; Kleinjan, Dirk A.; Hill, Robert E.; West, John D.

    2009-01-01

    Purpose To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. Methods Histologic features of eyes from hemizygous PAX77+/− transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77+/−↔wild-type and control wild-type↔wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77+/− mice. Results PAX77+/− mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6+/− heterozygotes (low Pax6 dose). Some previously reported PAX77+/− eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77+/−↔wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77+/− cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77+/− and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77+/− and wild-type cells to mix normally and overrepresentation of PAX77+/− in the lens epithelium and RPE. Conclusions The extent of PAX77+/− eye abnormalities depended on PAX77+/− genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77+/− genotype. Abnormal cell mixing between PAX77+/− and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77+/−↔wild-type and Pax6+/−↔wild-type chimeras may reflect differences in the levels of PAX77+/− and Pax6+/− contributions to chimeric lenses. PMID:19387074

  3. Migratory orientation in a narrow avian hybrid zone

    PubMed Central

    Toews, David P.L.; Delmore, Kira E.; Osmond, Matthew M.; Taylor, Philip D.

    2017-01-01

    Background Zones of contact between closely related taxa with divergent migratory routes, termed migratory divides, have been suggested as areas where hybrid offspring may have intermediate and inferior migratory routes, resulting in low fitness of hybrids and thereby promoting speciation. In the Rocky Mountains of Canada there is a narrow hybrid zone between Audubon’s and myrtle warblers that is likely maintained by selection against hybrids. Band recoveries and isotopic studies indicate that this hybrid zone broadly corresponds to the location of a possible migratory divide, with Audubon’s warblers migrating south-southwest and myrtle warblers migrating southeast. We tested a key prediction of the migratory divide hypothesis: that genetic background would be predictive of migratory orientation among warblers in the center of the hybrid zone. Methods We recorded fall migratory orientation of wild-caught migrating warblers in the center of the hybrid zone as measured by video-based monitoring of migratory restlessness in circular orientation chambers. We then tested whether there was a relationship between migratory orientation and genetic background, as measured using a set of species-specific diagnostic genetic markers. Results We did not detect a significant association between orientation and genetic background. There was large variation among individuals in orientation direction. Mean orientation was towards the NE, surprising for birds on fall migration, but aligned with the mountain valley in which the study took place. Conclusions Only one other study has directly analyzed migratory orientation among naturally-produced hybrids in a migratory divide. While the other study showed an association between genetic background and orientation, we did not observe such an association in yellow-rumped warblers. We discuss possible reasons, including the possibility of a lack of a strong migratory divide in this hybrid zone and/or methodological limitations that may have prevented accurate measurements of long-distance migratory orientation. PMID:28439469

  4. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.

    PubMed

    Shi, Ainong; Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.

  5. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    PubMed Central

    Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs. PMID:29190770

  6. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    PubMed

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was functional when any one of these effector mechanisms was completely absent, except some noticeably reduced penetrance, but not abolishment, of the phenotype in the male background in comparison to female background. These results also indicate that some other effector mechanism(s) of granulocytes may be involved in the killing of cancer cells in SR/CR mice.

  7. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans)

    PubMed Central

    2008-01-01

    Background Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. Results A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea. A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area. Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Conclusion Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background. PMID:18312628

  8. Genetics Home Reference: non-alcoholic fatty liver disease

    MedlinePlus

    ... different populations of microorganisms in the intestines (gut microbiota) on the breakdown and absorption of nutrients are ... Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol Res Pract. 2016;2016: ...

  9. Genetic structure of wild boar (Sus scrofa) populations from East Asia based on microsatellite loci analyses

    PubMed Central

    2014-01-01

    Background Wild boar, Sus scrofa, is an extant wild ancestor of the domestic pig as an agro-economically important mammal. Wild boar has a worldwide distribution with its geographic origin in Southeast Asia, but genetic diversity and genetic structure of wild boar in East Asia are poorly understood. To characterize the pattern and amount of genetic variation and population structure of wild boar in East Asia, we genotyped and analyzed microsatellite loci for a total of 238 wild boar specimens from ten locations across six countries in East and Southeast Asia. Results Our data indicated that wild boar populations in East Asia are genetically diverse and structured, showing a significant correlation of genetic distance with geographic distance and implying a low level of gene flow at a regional scale. Bayesian-based clustering analysis was indicative of seven inferred genetic clusters in which wild boars in East Asia are geographically structured. The level of genetic diversity was relatively high in wild boars from Southeast Asia, compared with those from Northeast Asia. This gradient pattern of genetic diversity is consistent with an assumed ancestral population of wild boar in Southeast Asia. Genetic evidences from a relationship tree and structure analysis suggest that wild boar in Jeju Island, South Korea have a distinct genetic background from those in mainland Korea. Conclusions Our results reveal a diverse pattern of genetic diversity and the existence of genetic differentiation among wild boar populations inhabiting East Asia. This study highlights the potential contribution of genetic variation of wild boar to the high genetic diversity of local domestic pigs during domestication in East Asia. PMID:25034725

  10. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    PubMed

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01

    Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability for ASD can accumulate in a given family in successive generations.

  11. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background

    PubMed Central

    Tsao, Amy C.; Gillilland, Merritt G.; Merchant, Juanita L.

    2016-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. PMID:27810953

  12. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background

    PubMed Central

    Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès

    2016-01-01

    Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies. PMID:27406785

  13. Wildlife translocation: the conservation implications of pathogen exposure and genetic heterozygosity.

    PubMed

    Boyce, Walter M; Weisenberger, Mara E; Penedo, M Cecilia T; Johnson, Christine K

    2011-02-01

    A key challenge for conservation biologists is to determine the most appropriate demographic and genetic management strategies for wildlife populations threatened by disease. We explored this topic by examining whether genetic background and previous pathogen exposure influenced survival of translocated animals when captive-bred and free-ranging bighorn sheep (Ovis canadensis) were used to re-establish a population that had been extirpated in the San Andres Mountains in New Mexico, USA. Although the free-ranging source population had significantly higher multi-locus heterozygosity at 30 microsatellite loci than the captive bred animals, neither source population nor genetic background significantly influenced survival or cause of death. The presence of antibodies to a respiratory virus known to cause pneumonia was associated with increased survival, but there was no correlation between genetic heterozygosity and the presence of antibodies to this virus. Although genetic theory predicts otherwise, increased heterozygosity was not associated with increased fitness (survival) among translocated animals. While heterosis or genetic rescue effects may occur in F1 and later generations as the two source populations interbreed, we conclude that previous pathogen exposure was a more important marker than genetic heterozygosity for predicting survival of translocated animals. Every wildlife translocation is an experiment, and whenever possible, translocations should be designed and evaluated to test hypotheses that will further improve our understanding of how pathogen exposure and genetic variability influence fitness.

  14. The Contribution of Buckwheat Genetic Resources to Health and Dietary Diversity

    PubMed Central

    Sytar, Oksana; Brestic, Marian; Zivcak, Marek; Tran, Lam-Son Phan

    2016-01-01

    Despite several reports on the beneficial effects of buckwheat in prevention of human diseases, little attention has been devoted to the variability of biochemical and physiological traits in different buckwheat genetic resources. This review describes the biochemical evaluation of buckwheat genetic resources and the identification of elite genotypes for plant breeding and exploitation. The various types of bioactive compounds present in different varieties provide basic background information needed for the efficient production of buckwheat foods with added value. In this review, we will provide an integrated view of the biochemistry of bioactive compounds of buckwheat plants of different origin, especially of fagopyrin, proteins and amino acids, as well as of other phenolic compounds including rutin and chlorogenic acid. In addition to the genetic background, the effect of different growth conditions is discussed. The health effects of fagopyrin, phenolic acids, specific proteins and rutin are also presented. PMID:27252586

  15. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time.

    PubMed

    van Dijk, Aalt D J; Molenaar, Jaap

    2017-01-01

    The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  16. Telomerase RNA Component (TERC) genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study

    USDA-ARS?s Scientific Manuscript database

    Background: Leukocyte telomere length (LTL) attrition has been associated with age-related diseases. Telomerase RNA Component (TERC) genetic variants have been associated with LTL; whereas fatty acids (FAs) can interact with genetic factors and influence in aging. We explore whether variability at t...

  17. Are Endophenotypes Based on Measures of Executive Functions Useful for Molecular Genetic Studies of ADHD?

    ERIC Educational Resources Information Center

    Doyle, Alysa E.; Faraone, Stephen V.; Seidman, Larry J.; Willcutt, Erik G.; Nigg, Joel T.; Waldman, Irwin D.; Pennington, Bruce F.; Peart, Joanne; Biederman, Joseph

    2005-01-01

    Background: Behavioral genetic studies provide strong evidence that attention-deficit/hyperactivity disorder (ADHD) has a substantial genetic component. Yet, due to the complexity of the ADHD phenotype, questions remain as to the specific genes that contribute to this condition as well as the pathways from genes to behavior. Endophenotypes, or…

  18. A Multivariate Genetic Analysis of Specific Phobia, Separation Anxiety and Social Phobia in Early Childhood

    ERIC Educational Resources Information Center

    Eley, Thalia C.; Rijsdijk, Fruhling V.; Perrin, Sean; O'Connor, Thomas G.; Bolton, Derek

    2008-01-01

    Background: Comorbidity amongst anxiety disorders is very common in children as in adults and leads to considerable distress and impairment, yet is poorly understood. Multivariate genetic analyses can shed light on the origins of this comorbidity by revealing whether genetic or environmental risks for one disorder also influence another. We…

  19. Phenotypic and Genetic Associations between Reading Comprehension, Decoding Skills, and ADHD Dimensions: Evidence from Two Population-Based Studies

    ERIC Educational Resources Information Center

    Plourde, Vickie; Boivin, Michel; Forget-Dubois, Nadine; Brendgen, Mara; Vitaro, Frank; Marino, Cecilia; Tremblay, Richard T.; Dionne, Ginette

    2015-01-01

    Background: The phenotypic and genetic associations between decoding skills and ADHD dimensions have been documented but less is known about the association with reading comprehension. The aim of the study is to document the phenotypic and genetic associations between reading comprehension and ADHD dimensions of inattention and…

  20. Using multi-trait and random regression models to identify genetic variation in tolerance of pigs to Porcine Reproductive and Respiratory Syndrome virus

    USDA-ARS?s Scientific Manuscript database

    Background A host can adopt two response strategies to infection: resistance (reduce pathogen load) and tolerance (minimize impact of infection on performance). Both strategies may be under genetic control and could thus be targeted for genetic improvement. Although there is evidence in support of a...

  1. A Specific Pathway Can Be Identified between Genetic Characteristics and Behaviour Profiles in Prader-Willi Syndrome via Cognitive, Environmental and Physiological Mechanisms

    ERIC Educational Resources Information Center

    Woodcock, K. A.; Oliver, C.; Humphreys, G. W.

    2009-01-01

    Background: Behavioural phenotypes associated with genetic syndromes have been extensively investigated in order to generate rich descriptions of phenomenology, determine the degree of specificity of behaviours for a particular syndrome, and examine potential interactions between genetic predispositions for behaviour and environmental influences.…

  2. Neurodevelopmental Malformations of the Cerebellar Vermis in Genetically Engineered Rats.

    PubMed

    Ramos, Raddy L; Van Dine, Sarah E; Gilbert, Mary E; Leheste, Joerg R; Torres, German

    2015-12-01

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformations are almost exclusively found along the primary fissure and are indicative of deficits of neuronal migration during cerebellar development. In the present report, we test the prediction that genetically engineered rats on Sprague-Dawley or Long-Evans backgrounds will also exhibit the same cerebellar malformations. Consistent with our hypothesis, we found that three different transgenic lines on two different backgrounds had cerebellar malformations. Heterotopia in transgenic rats had identical cytoarchitecture as that observed in wild-type rats including altered morphology of Bergmann glia. In light of the possibility that heterotopia could affect results from behavioral studies, these data suggest that histological analyses be performed in studies of cerebellar function or development when using genetically engineered rats on these backgrounds in order to have more careful interpretation of experimental findings.

  3. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds.

    PubMed

    Ament, Seth A; Pearl, Jocelynn R; Grindeland, Andrea; St Claire, Jason; Earls, John C; Kovalenko, Marina; Gillis, Tammy; Mysore, Jayalakshmi; Gusella, James F; Lee, Jong-Min; Kwak, Seung; Howland, David; Lee, Min Young; Baxter, David; Scherler, Kelsey; Wang, Kai; Geman, Donald; Carroll, Jeffrey B; MacDonald, Marcy E; Carlson, George; Wheeler, Vanessa C; Price, Nathan D; Hood, Leroy E

    2017-03-01

    Huntington's disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, molecular and cellular phenotypes in the striatum of six distinct knock-in mouse models of the HD mutation. We studied the effects of the HttQ111 allele on the C57BL/6J, CD-1, FVB/NCr1, and 129S2/SvPasCrl genetic backgrounds, and of two additional alleles, HttQ92 and HttQ50, on the C57BL/6J background. We describe the emergence of a transcriptomic signature in HttQ111/+  mice involving hundreds of differentially expressed genes and changes in diverse molecular pathways. We also show that this time course spanned the onset of mutant huntingtin nuclear localization phenotypes and somatic CAG-length instability in the striatum. Genetic background strongly influenced the magnitude and age at onset of these effects. This work provides a foundation for understanding the earliest transcriptional and molecular changes contributing to HD pathogenesis. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative biological effectiveness (RBE) of radiation are different for different radiation sources, for different cell types, and for the same cell type with different genetic background at different times after radiation exposure. Caution must be taken in using RBE value to estimate biological effects from radiation exposure.

  5. Gene interaction at seed-awning loci in the genetic background of wild rice.

    PubMed

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  6. Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans

    PubMed Central

    2011-01-01

    Background Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. Results We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. Conclusions We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits. PMID:21492473

  7. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy.

    PubMed

    Löscher, Wolfgang; Ferland, Russell J; Ferraro, Thomas N

    2017-08-01

    It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Background differences in baseline and stimulated MMP levels influence abdominal aortic aneurysm susceptibility

    PubMed Central

    Dale, Matthew A.; Ruhlman, Melissa K.; Zhao, Shijia; Meisinger, Trevor; Gu, Linxia; Swier, Vicki J.; Agrawal, Devendra K.; Greiner, Timothy C.; Carson, Jeffrey S.; Baxter, B. Timothy; Xiong, Wanfen

    2015-01-01

    Objective Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression. Methods Mice of C57Bl/6 or 129/SvEv background underwent AAA induction by periaortic application of CaCl2. Baseline aortic diameters, tissue properties and MMP levels were measured. After aneurysm induction, diameters, MMP expression, and immune response (macrophage infiltration and bone marrow transplantation) were measured. Results Aneurysms were larger in 129/SvEv mice than C57Bl/6 mice (83.0% ± 13.6 increase compared to 57.8% ± 6.4). The aorta was stiffer in the 129/SvEv mice compared to C57Bl/6 mice (952.5 kPa ± 93.6 versus 621.4 kPa ± 84.2). Baseline MMP-2 and post-aneurysm MMP-2 and -9 levels were higher in 129/SvEv aortas compared to C57Bl/6 aortas. Elastic lamella disruption/fragmentation and macrophage infiltration were increased in 129/SvEv mice. Myelogenous cell reversal by bone marrow transplantation did not affect aneurysm size. Conclusions These data demonstrate that 129/SvEv mice are more susceptible to AAA compared to C57Bl/6 mice. Intrinsic properties of the aorta between the two strains of mice, including baseline expression of MMP-2, influence susceptibility to AAA. PMID:26546710

  9. Genetic Diversity Influences the Response of the Brain to Developmental Lead Exposure

    PubMed Central

    Schneider, Jay S.; Talsania, Keyur; Mettil, William; Anderson, David W.

    2014-01-01

    Although extrinsic factors, such as nutritional status, and some intrinsic genetic factors may modify susceptibility to developmental lead (Pb) poisoning, no studies have specifically examined the influence of genetic background on outcomes from Pb exposure. In this study, we used gene microarray profiling to identify Pb-responsive genes in rats of different genetic backgrounds, including inbred (Fischer 344 (F344)) and outbred (Long Evans (LE), Sprague Dawley (SD)) strains, to investigate the role that genetic variation may play in influencing outcomes from developmental Pb exposure. Male and female animals received either perinatal (gestation through lactation) or postnatal (birth through weaning) exposure to Pb in food (0, 250, or 750 ppm). RNA was extracted from the hippocampus at day 55 and hybridized to Affymetrix Rat Gene 1.0 ST Arrays. There were significant strain-specific effects of Pb on the hippocampal transcriptome with 978 transcripts differentially expressed in LE rats across all experimental groups, 269 transcripts differentially expressed in F344 rats, and only 179 transcripts differentially expressed in SD rats. These results were not due to strain-related differences in brain accumulation of Pb. Further, no genes were consistently differentially regulated in all experimental conditions. There was no set of “Pb toxicity” genes that are a molecular signature for Pb neurotoxicity that transcended sex, exposure condition, and strain. These results demonstrate the influence that strain and genetic background play in modifying the brain's response to developmental Pb exposure and may have relevance for better understanding the molecular underpinnings of the lack of a neurobehavioral signature in childhood Pb poisoning. PMID:24913800

  10. A mutational approach for the detection of genetic factors affecting seed size in maize.

    PubMed

    Sangiorgio, Stefano; Carabelli, Laura; Gabotti, Damiano; Manzotti, Priscilla Sofia; Persico, Martina; Consonni, Gabriella; Gavazzi, Giuseppe

    2016-12-01

    Genes influencing seed size. The designation emp (empty pericarp) refers to a group of defective kernel mutants that exhibit a drastic reduction in endosperm tissue production. They allow the isolation of genes controlling seed development and affecting seed size. Nine independently isolated emp mutants have been analyzed in this study and in all cases longitudinal sections of mature seeds revealed the absence of morphogenesis in the embryo proper, an observation that correlates with their failure to germinate. Complementation tests with the nine emp mutants, crossed inter se in all pairwise combinations, identified complementing and non-complementing pairs in the F 1 progenies. Data were then validated in the F 2 /F 3 generations. Mutant chromosomal location was also established. Overall our study has identified two novel emp genes and a novel allele at the previously identified emp4 gene. The introgression of single emp mutants in a different genetic background revealed the existence of a cryptic genetic variation (CGV) recognizable as a variable increase in the endosperm tissue. The unmasking of CGV by introducing single mutants in different genetic backgrounds is the result of the interaction of the emp mutants with a suppressor that has no obvious phenotype of its own and is present in the genetic background of the inbred lines into which the emp mutants were transferred. On the basis of these results, emp mutants could be used as tools for the detection of genetic factors that enhance the amount of endosperm tissue in the maize kernel and which could thus become valuable targets to exploit in future breeding programs.

  11. Genetic Testing: Understanding the Personal Stories.

    PubMed

    DuBois, James M

    2015-01-01

    Twelve personal narratives address the challenges, benefits, and pitfalls of genetic testing. Three commentary articles explore these stories and suggest lessons that can be learned from them. The commentators come from backgrounds that include bioethics, public health, psychology, and philosophy.

  12. Recovery of Native Genetic Background in Admixed Populations Using Haplotypes, Phenotypes, and Pedigree Information – Using Cika Cattle as a Case Breed

    PubMed Central

    Simčič, Mojca; Smetko, Anamarija; Sölkner, Johann; Seichter, Doris; Gorjanc, Gregor; Kompan, Dragomir; Medugorac, Ivica

    2015-01-01

    The aim of this study was to obtain unbiased estimates of the diversity parameters, the population history, and the degree of admixture in Cika cattle which represents the local admixed breeds at risk of extinction undergoing challenging conservation programs. Genetic analyses were performed on the genome-wide Single Nucleotide Polymorphism (SNP) Illumina Bovine SNP50 array data of 76 Cika animals and 531 animals from 14 reference populations. To obtain unbiased estimates we used short haplotypes spanning four markers instead of single SNPs to avoid an ascertainment bias of the BovineSNP50 array. Genome-wide haplotypes combined with partial pedigree and type trait classification show the potential to improve identification of purebred animals with a low degree of admixture. Phylogenetic analyses demonstrated unique genetic identity of Cika animals. Genetic distance matrix presented by rooted Neighbour-Net suggested long and broad phylogenetic connection between Cika and Pinzgauer. Unsupervised clustering performed by the admixture analysis and two-dimensional presentation of the genetic distances between individuals also suggest Cika is a distinct breed despite being similar in appearance to Pinzgauer. Animals identified as the most purebred could be used as a nucleus for a recovery of the native genetic background in the current admixed population. The results show that local well-adapted strains, which have never been intensively managed and differentiated into specific breeds, exhibit large haplotype diversity. They suggest a conservation and recovery approach that does not rely exclusively on the search for the original native genetic background but rather on the identification and removal of common introgressed haplotypes would be more powerful. Successful implementation of such an approach should be based on combining phenotype, pedigree, and genome-wide haplotype data of the breed of interest and a spectrum of reference breeds which potentially have had direct or indirect historical contribution to the genetic makeup of the breed of interest. PMID:25923207

  13. Crosses prior to parthenogenesis explain the current genetic diversity of tropical plant-parasitic Meloidogyne species (Nematoda: Tylenchida).

    PubMed

    Fargette, Mireille; Berthier, Karine; Richaud, Myriam; Lollier, Virginie; Franck, Pierre; Hernandez, Adan; Frutos, Roger

    2010-08-01

    The tropical and subtropical parthenogenetic plant-parasitic nematodes Meloidogyne are polyphagous major agricultural pests. Implementing proper pest management approaches requires a good understanding of mechanisms, population structure, evolutionary patterns and species identification. A comparative analysis of the mitochondrial vs nuclear diversity was conducted on a selected set of Meloidogyne lines from various geographic origins. Mitochondrial co2-16S sequences and AFLP markers of total DNA were applied because of their ability to evidence discrete genetic variation between closely related isolates. Several distinct maternal lineages were present, now associated with different genetic backgrounds. Relative discordances were found when comparing mitochondrial and nuclear diversity patterns. These patterns are most likely related to crosses within one ancestral genetic pool, followed by the establishment of parthenogenesis. In this case, they mirror the genetic backgrounds of the original individuals. Another aspect could be that species emergence was recent or on process from this original genetic pool and that the relatively short time elapsed since then and before parthenogenesis settlement did not allow for lineage sorting. This could also be compatible with the hypothesis of hybrids between closely related species. This genetic pool would correspond to a species as defined by the species interbreeding concept, but also including the grey area of species boundaries. This complex process has implications on the way genotypic and phenotypic diversity should be addressed. The phenotype of parthenogenetic lines is at least for part determined by the ancestral amphimictic genetic background. A direct consequence is, therefore, in terms of risk management, the limited confidence one can have on the direct association of an agronomic threat to a simple typing or species delineation. Risk management strategies and tools must thus consider this complexity when designing quarantine implementation, resistance breeding programmes or molecular diagnostic. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    PubMed

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  15. Phenotypic plasticity in female mate choice behavior is mediated by an interaction of direct and indirect genetic effects in Drosophila melanogaster.

    PubMed

    Filice, David C S; Long, Tristan A F

    2017-05-01

    Female mate choice is a complex decision-making process that involves many context-dependent factors. In Drosophila melanogaster , a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience-dependent mate choice behaviors, indicating a genotype-by-environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.

  16. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    PubMed

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  17. Intention to Obtain Genetic Testing for Melanoma among Individuals at Low to Moderate Risk for Hereditary Melanoma

    ERIC Educational Resources Information Center

    Vadaparampil, Susan T.; Azzarello, Lora; Pickard, Jennifer; Jacobsen, Paul B.

    2007-01-01

    Background: Melanoma is a serious skin cancer that has been on the rise in the United States. Some genetic component is apparent. Purpose: The purpose of this study was to identify demographic, clinical, attitudinal, and health belief factors associated with intention to obtain genetic testing for hereditary melanoma among unaffected first-degree…

  18. Developmental-Genetic Effects on Level and Change in Childhood Fears of Twins during Adolescence

    ERIC Educational Resources Information Center

    Eaves, Lindon J.; Silberg, Judy L.

    2008-01-01

    Background: If the adaptive significance of specific fears changes with age, the genetic contribution to individual differences may be lowest at the age of greatest salience. The roles of genes and environment in the developmental-genetic trajectory of five common childhood fears are explored in 1094 like-sex pairs of male and female monozygotic…

  19. Identification and Targeting of Tyrosine Kinase Activity in Prostate Cancer Initiation, Progression, and Metastasis

    DTIC Science & Technology

    2012-10-01

    accomplishments. Aim 1: Identify the specific tyrosine kinases activated during initiation and progression of genetically altered prostate cancer... Genetics Departmental Retreat (October 2011). (see appendices) • Presented research findings at the AACR Advances in Prostate Cancer Research Conference... genetic backgrounds. However, preliminary data suggests that phosphopeptides from metastatic tumors do indeed segregate from primary prostate tumors and

  20. Relationship between the IQ of People with Prader-Willi Syndrome and that of Their Siblings: Evidence for Imprinted Gene Effects

    ERIC Educational Resources Information Center

    Whittington, J.; Holland, A.; Webb, T.

    2009-01-01

    Background: Genetic disorders occasionally provide the means to uncover potential mechanisms linking gene expression and physical or cognitive characteristics or behaviour. Prader-Willi syndrome (PWS) is one such genetic disorder in which differences between the two main genetic subtypes have been documented (e.g. higher verbal IQ in one vs.…

  1. An Investigation of Executive Function Abilities in Adults with Praderwilli Syndrome

    ERIC Educational Resources Information Center

    Walley, R. M.; Donaldson, M. D. C.

    2005-01-01

    Background: PraderWilli syndrome (PWS) is a genetic disorder caused by the absence of expression of maternally imprinted genes on the long arm of chromosome 15 (15q 11-13). There are two main genetic sub-types: (1) deletion, caused by the absence of paternally derived genetic material; and (2) uniparental disomy (UPD), where two copies of…

  2. The Future of Genetics in Psychology and Psychiatry: Microarrays, Genome-Wide Association, and Non-Coding RNA

    ERIC Educational Resources Information Center

    Plomin, Robert; Davis, Oliver S. P.

    2009-01-01

    Background: Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? Methods: Although quantitative genetics such as twin studies will continue…

  3. Identification of individuals at risk for Lynch syndrome using targeted evaluations and genetic testing: National Society of Genetic Counselors and the Collaborative Group of the Americas on Inherited Colorectal Cancer joint practice guideline.

    PubMed

    Weissman, Scott M; Burt, Randall; Church, James; Erdman, Steve; Hampel, Heather; Holter, Spring; Jasperson, Kory; Kalady, Matt F; Haidle, Joy Larsen; Lynch, Henry T; Palaniappan, Selvi; Wise, Paul E; Senter, Leigha

    2012-08-01

    Identifying individuals who have Lynch syndrome (LS) involves a complex diagnostic work up that includes taking a detailed family history and a combination of various genetic and immunohistochemical tests. The National Society of Genetic Counselors (NSGC) and the Collaborative Group of the Americas on Inherited Colorectal Cancer (CGA-ICC) have come together to publish this clinical practice testing guideline for the evaluation of LS. The purpose of this practice guideline is to provide guidance and a testing algorithm for LS as well as recommendations on when to offer testing. This guideline does not replace a consultation with a genetics professional. This guideline includes explanations in support of this and a summary of background data. While this guideline is not intended to serve as a review of LS, it includes a discussion of background information on LS, and cites a number of key publications which should be reviewed for a more in-depth understanding of LS. These guidelines are intended for genetic counselors, geneticists, gastroenterologists, surgeons, medical oncologists, obstetricians and gynecologists, nurses and other healthcare providers who evaluate patients for LS.

  4. Genetic effects on mating success and partner choice in a social mammal

    PubMed Central

    Tung, Jenny; Charpentier, Marie JE; Mukherjee, Sayan; Altmann, Jeanne; Alberts, Susan C

    2012-01-01

    Mating behavior has profound consequences for two phenomena – individual reproductive success and the maintenance of species boundaries – that contribute to evolutionary processes. Studies of mating behavior in relation to individual reproductive success are common in many species, but studies of mating behavior in relation to genetic variation and species boundaries are less commonly conducted in socially complex species. Here, we leveraged extensive observations of a wild yellow baboon (Papio cynocephalus) population that has experienced recent gene flow from a close sister taxon, the anubis baboon (Papio anubis), to examine how admixture-related genetic background affects mating behavior. We identified novel effects of genetic background on mating patterns, including an advantage accruing to anubis-like males and assortative mating among both yellow-like and anubis-like pairs. These genetic effects acted alongside social dominance rank, inbreeding avoidance, and age to produce highly nonrandom mating patterns. Our results suggest that this population may be undergoing admixture-related evolutionary change, driven in part by nonrandom mating. However, the strength of the genetic effects is mediated by behavioral plasticity and social interactions, emphasizing the strong influence of social context on mating behavior in socially complex species. PMID:22673655

  5. Genetic architecture of atherosclerosis dissected by QTL analyses in three F2 intercrosses of apolipoprotein E-null mice on C57BL6/J, DBA/2J and 129S6/SvEvTac backgrounds

    PubMed Central

    Makhanova, Natalia; Morgan, Andrew P.; Kayashima, Yukako; Makhanov, Andrei; Hiller, Sylvia; Zhilicheva, Svetlana; Xu, Longquan; Pardo-Manuel de Villena, Fernando; Maeda, Nobuyo

    2017-01-01

    Quantitative trait locus (QTL) analyses of intercross populations between widely used mouse inbred strains provide a powerful approach for uncovering genetic factors that influence susceptibility to atherosclerosis. Epistatic interactions are common in complex phenotypes and depend on genetic backgrounds. To dissect genetic architecture of atherosclerosis, we analyzed F2 progeny from a cross between apolipoprotein E-null mice on DBA/2J (DBA-apoE) and C57BL/6J (B6-apoE) genetic backgrounds and compared the results with those from two previous F2 crosses of apolipoprotein E-null mice on 129S6/SvEvTac (129-apoE) and DBA-apoE backgrounds, and B6-apoE and 129-apoE backgrounds. In these round-robin crosses, in which each parental strain was crossed with two others, large-effect QTLs are expected to be detectable at least in two crosses. On the other hand, observation of QTLs in one cross only may indicate epistasis and/or absence of statistical power. For atherosclerosis at the aortic arch, Aath4 on chromosome (Chr)2:66 cM follows the first pattern, with significant QTL peaks in (DBAx129)F2 and (B6xDBA)F2 mice but not in (B6x129)F2 mice. We conclude that genetic variants unique to DBA/2J at Aath4 confer susceptibility to atherosclerosis at the aortic arch. A similar pattern was observed for Aath5 on chr10:35 cM, verifying that the variants unique to DBA/2J at this locus protect against arch plaque development. However, multiple loci, including Aath1 (Chr1:49 cM), and Aath2 (Chr1:70 cM) follow the second type of pattern, showing significant peaks in only one of the three crosses (B6-apoE x 129-apoE). As for atherosclerosis at aortic root, the majority of QTLs, including Ath29 (Chr9:33 cM), Ath44 (Chr1:68 cM) and Ath45 (Chr2:83 cM), was also inconsistent, being significant in only one of the three crosses. Only the QTL on Chr7:37 cM was consistently suggestive in two of the three crosses. Thus QTL analysis of round-robin crosses revealed the genetic architecture of atherosclerosis. PMID:28837567

  6. Relationship between polycystic ovary syndrome and ancestry in European Americans.

    PubMed

    Bjonnes, Andrew C; Saxena, Richa; Welt, Corrine K

    2016-12-01

    To determine whether European Americans with polycystic ovary syndrome (PCOS) exhibit genetic differences associated with PCOS status and phenotypic features. Case-control association study in European Americans. Academic center. Women with PCOS diagnosed with the use of the National Institutes of Health criteria (n = 532) and control women with regular menstrual cycles and no evidence of hyperandrogenism (n = 432). Blood was drawn for measurement of sex steroids, metabolic parameters, and genotyping. Associations among PCOS status, phenotype, and genetic background identified with the use of principal component analysis. Principal component analysis identified five principal components (PCs). PC1 captured northwest-to-southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, and larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east-to-west European genetic variation and cholesterol levels. These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. The Relationship Between Polycystic Ovary Syndrome and Ancestry in European Americans

    PubMed Central

    Bjonnes, Andrew C.; Saxena, Richa; Welt, Corrine K.

    2016-01-01

    Objective To determine whether European Americans with PCOS would exhibit genetic differences associated with PCOS status and phenotypic features. Design The study was a case-control association study in European Americans. Setting Subjects were studied in an academic center. Subjects Women with PCOS diagnosed using the NIH criteria (n=532) and controls with regular menstrual cycles and no evidence of hyperandrogenism (n=432) were studied. Interventions Blood was drawn for measurement of sex steroids, metabolic parameters and genotyping. Main outcome measure Associations were identified between PCOS status, phenotype and genetic background determined using principal components. Results Principal component analysis identified 5 principal components (PCs). PC1 captured northwest to southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, while larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east to west European genetic variation and cholesterol levels. Conclusions These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. PMID:27666562

  8. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

    PubMed

    Lande, Russell

    2009-07-01

    Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.

  9. Genetic dissection of quantitative trait locus for ethanol sensitivity in long- and short-sleep mice.

    PubMed

    Bennett, B; Carosone-Link, P; Beeson, M; Gordon, L; Phares-Zook, N; Johnson, T E

    2008-08-01

    Interval-specific congenic strains (ISCS) allow fine mapping of a quantitative trait locus (QTL), narrowing its confidence interval by an order of magnitude or more. In earlier work, we mapped four QTL specifying differential ethanol sensitivity, assessed by loss of righting reflex because of ethanol (LORE), in the inbred long-sleep (ILS) and inbred short-sleep (ISS) strains, accounting for approximately 50% of the genetic variance for this trait. Subsequently, we generated reciprocal congenic strains in which each full QTL interval from ILS was bred onto the ISS background and vice versa. An earlier paper reported construction and results of the ISCS on the ISS background; here, we describe this process and report results on the ILS background. We developed multiple ISCS for each Lore QTL in which the QTL interval was broken into a number of smaller intervals. For each of the four QTL regions (chromosomes 1, 2, 11 and 15), we were successful in reducing the intervals significantly. Multiple, positive strains were overlapped to generate a single, reduced interval. Subsequently, this reduced region was overlaid on previous reductions from the ISS background congenics, resulting in substantial reductions in all QTL regions by approximately 75% from the initial mapping study. Genes with sequence or expression polymorphisms in the reduced intervals are potential candidates; evidence for these is presented. Genetic background effects can be important in detection of single QTL; combining this information with the generation of congenics on both backgrounds, as described here, is a powerful approach for fine mapping QTL.

  10. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background.

    PubMed

    Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès

    2016-08-01

    Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Pharmacogenetics in Neurodegenerative Diseases: Implications for Clinical Trials.

    PubMed

    Tortelli, Rosanna; Seripa, Davide; Panza, Francesco; Solfrizzi, Vincenzo; Logroscino, Giancarlo

    2016-01-01

    Pharmacogenetics has become extremely important over the last 20 years for identifying individuals more likely to be responsive to pharmacological interventions. The role of genetic background as a predictor of drug response is a young and mostly unexplored field in neurodegenerative diseases. Mendelian mutations in neurodegenerative diseases have been used as models for early diagnosis and intervention. On the other hand, genetic polymorphisms or risk factors for late-onset Alzheimer's disease (AD) or other neurodegenerative diseases, probably influencing drug response, are hardly taken into account in randomized clinical trial (RCT) design. The same is true for genetic variants in cytochrome P450 (CYP), the principal enzymes influencing drug metabolism. A better characterization of individual genetic background may optimize clinical trial design and personal drug response. This chapter describes the state of the art about the impact of genetic factors in RCTs on neurodegenerative disease, with AD, frontotemporal dementia, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease as examples. Furthermore, a brief description of the genetic bases of drug response focusing on neurodegenerative diseases will be conducted. The role of pharmacogenetics in RCTs for neurodegenerative diseases is still a young, unexplored, and promising field. Genetic tools allow increased sophistication in patient profiling and treatment optimization. Pharmaceutical companies are aware of the value of collecting genetic data during their RCTs. Pharmacogenetic research is bidirectional with RCTs: efficacy data are correlated with genetic polymorphisms, which in turn define subjects for treatment stratification. © 2016 S. Karger AG, Basel.

  12. What Goes Around Can Come Around: An Unexpected Deleterious Effect of Using Mouse Running Wheels for Environmental Enrichment

    PubMed Central

    Leduc, Renee Y M; Rauw, Gail; Baker, Glen B; McDermid, Heather E

    2017-01-01

    Environmental enrichment items such as running wheels can promote the wellbeing of laboratory mice. Growing evidence suggests that wheel running simulates exercise effects in many mouse models of human conditions, but this activity also might change other aspects of mouse behavior. In this case study, we show that the presence of running wheels leads to pronounced and permanent circling behavior with route-tracing in a proportion of the male mice of a genetically distinct cohort. The genetic background of this cohort includes a mutation in Arhgap19, but genetic crosses showed that an unknown second-site mutation likely caused the induced circling behavior. Behavioral tests for inner-ear function indicated a normal sense of gravity in the circling mice. However, the levels of dopamine, serotonin, and some dopamine metabolites were lower in the brains of circling male mice than in mice of the same genetic background that were weaned without wheels. Circling was seen in both singly and socially housed male mice. The additional stress of fighting may have exacerbated the predisposition to circling in the socially housed animals. Singly and socially housed male mice without wheels did not circle. Our current findings highlight the importance and possibly confounding nature of the environmental and genetic background in mouse behavioral studies, given that the circling behavior and alterations in dopamine and serotonin levels in this mouse cohort occurred only when the male mice were housed with running wheels. PMID:28315651

  13. Differences in genetic background influence the induction of innate and acquired immune responses in chickens depending on the virulence of the infecting infectious bursal disease virus (IBDV) strain.

    PubMed

    Aricibasi, Merve; Jung, Arne; Heller, E Dan; Rautenschlein, Silke

    2010-05-15

    Previous studies and field observations have suggested that genetic background influences infectious bursal disease virus (IBDV) pathogenesis. However, the influence of the virulence of the infecting IBDV strain and the mechanisms underlying the differences in susceptibility are not known. In the present study IBDV pathogenesis was compared between specific-pathogen-free layer-type (LT) chickens, which are the most susceptible chicken for IBDV and have been used as the model for pathogenesis studies, and broiler-type (BT) chickens, which are known to be less susceptible to clinical infectious bursal disease (IBD). The innate and acquired immune responses were investigated after inoculation of an intermediate (i), virulent (v) or very virulent (vv) strain of IBDV. IBDV pathogenesis was comparable among genetic backgrounds after infection with iIBDV. After infection with vIBDV and vvIBDV, LT birds showed severe clinical disease and mortality, higher bursal lesion scores and IBDV-antigen load relative to BT birds. Circulating cytokine induction varied significantly in both timing and quantity between LT and BT birds and among virus strains (P<0.05). Evaluation of different immune cell populations by flow-cytometric analysis in the bursa of Fabricius provided circumstantial evidence of a stronger local T cell response in BT birds vs. LT birds after infection with the virulent strain. On the other hand, LT birds showed a more significant increase in circulating macrophage-derived immune mediators such as total interferon (IFN) and serum nitrite than BT birds on days 2 and 3 post-vIBDV infection (P<0.05). Stronger stimulation of innate immune reactions especially after vIBDV infection in the early phase may lead to faster and more severe lesion development accompanied by clinical disease and death in LT chickens relative to BT chickens. Interestingly, no significant differences were seen between genetic backgrounds in induction of the IBDV-specific humoral response: timing of IBDV-antibody induction and antibody levels were comparable between BT and LT birds. This study clearly demonstrates a significant influence of chickens' genetic background on disease outcome. The difference between backgrounds in IBDV susceptibility is further influenced by the virulence of the infecting virus strain. Copyright 2009 Elsevier B.V. All rights reserved.

  14. [Difficulties of genetic counselling in rare, mainly neurogenetic disorders].

    PubMed

    Horváth, Emese; Nagy, Nikoletta; Széll, Márta

    2014-08-03

    In recent decades methods used for the investigation of the genetic background of rare diseases showed a great improvement. The aim of the authors was to demonstrate difficulties of genetic counselling and investigations in case of five rare, mainly neurogenetic diseases. During pre-test genetic counselling, the disease suspected from the clinical symptoms and the available genetic tests were considered. During post-test genetic counselling, the results of the genetic tests were discussed. In three of the five cases genetic tests identified the disease-causing genetic abnormalities, while in two cases the causative abnormalities were not identified. Despite a great improvement of the available genetic methods, the causative genetic abnormalities cannot be identified in some cases. The genetic counsellor has a key role in the assessment and interpretation of the results and in helping the family planning.

  15. Global trends on fears and concerns of genetic discrimination: a systematic literature review.

    PubMed

    Wauters, Annet; Van Hoyweghen, Ine

    2016-04-01

    Since the 1990s, developments in the field of genetics have led to many questions on the use and possible misuse of genetic information. 'Genetic discrimination' has been defined as the differential treatment of asymptomatic individuals or their relatives on the basis of their real or assumed genetic characteristics. Despite the public policy attention around genetic discrimination, there is currently still much confusion surrounding this phenomenon. On the one hand, there is little evidence of the occurrence of genetic discrimination. On the other hand, it appears that people remain concerned about this theme, and this fear influences their health and life choices. This article makes use of a systematic literature review to investigate what is already known about the nature, extent and background of these fears and concerns. The 42 included studies have found considerable levels of concerns about genetic discrimination. Concerns dominate in insurance contexts and within personal interactions. The extent of concerns appears to vary depending on the type of genetic illness. Furthermore, installed laws prohibiting genetic discrimination do not seem to alleviate existing fears. This raises important questions as to the origins of these fears. Based on the findings, recommendations for future research are made. First, research on the background of fears is needed. Second, future research needs to assess more fully all different forms (for example, direct and indirect) of genetic discrimination. Thirdly, it has to be studied whether genetic discrimination is a form of discrimination that is distinguishable from discrimination based on an illness or disability. Finally, a last element that should be addressed in future research is the most recent developments in research on genomics, such as next-generation sequencing or genome-wide association studies.

  16. Topological Signatures for Population Admixture

    USDA-ARS?s Scientific Manuscript database

    Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...

  17. Identification of Hotspots of Genetic Risk for Type 2 Diabetes Using GIS Methods

    EPA Science Inventory

    BACKGROUND: Having the ability to scan the entire country for potential "hotspots" with increased risk of developing chronic diseases due to various environmental, demographic, and genetic susceptibility factors may inform risk management decisions and enable better env...

  18. GENETIC BASIS OF MURINE ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL LUNG INFECTION

    EPA Science Inventory

    To evaluate the effect of genetic background and toll-like receptor 2 on antibacterial defense to streptococcal infection, eight genetically diverse strains of mice (A/J, DBA/2J, CAST/Ei, FVB/NJ, BALB/cJ, C57BL/6J, 129/SvImJ, and C3H/HeJ) and tlr2-deficient mice (C57BL/6

  19. The European Prader-Willi Syndrome Clinical Research Database: An Aid in the Investigation of a Rare Genetically Determined Neurodevelopmental Disorder

    ERIC Educational Resources Information Center

    Holland, A.; Whittington, J.; Cohen, O.; Curfs, L.; Delahaye, F.; Dudley, O.; Horsthemke, B.; Lindgren, A. -C.; Nourissier, C.; Sharma, N.; Vogels, A.

    2009-01-01

    Background: Prader-Willi Syndrome (PWS) is a rare genetically determined neurodevelopmental disorder with a complex phenotype that changes with age. The rarity of the syndrome and the need to control for different variables such as genetic sub-type, age and gender limits clinical studies of sufficient size in any one country. A clinical research…

  20. The Effectiveness of Hybrid Dynamic Visualisation in Learning Genetics in a Hong Kong Secondary School

    ERIC Educational Resources Information Center

    Hung, Venus; Fung, Dennis

    2017-01-01

    Background: A teaching method to improve students' ability to communicate ideas in genetics across the macro-micro levels of organisation was investigated in this study. Purpose: It is designed to help students deconstruct the level of organisation of each tier of a genetic diagram, as the symbols used in such diagrams (i.e. lines and letters) can…

  1. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    PubMed Central

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  2. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    PubMed

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    PubMed

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  4. Response of Predatory Mites to a Herbivore-Induced Plant Volatile: Genetic Variation for Context-Dependent Behaviour

    PubMed Central

    Sabelis, Maurice W.; Egas, Martijn

    2010-01-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators’ responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles. PMID:20574785

  5. Defining and redefining the scope and goals of genetic counseling.

    PubMed

    Resta, Robert G

    2006-11-15

    Many definitions of genetic counseling have been proposed since Sheldon Reed first defined the term in 1947. This study reviews selected definitions of genetic counseling including the most recent definition proposed by a committee of the National Society of Genetic Counselors. The analysis focuses on the professional background of who was formulating the definition; the reasons why the definition was created; medical, historical, and social factors; and the definer's implicit or explicit goals of genetic counseling. No definition of genetic counseling is ideal, and any definition can only reflect the values, ethics, goals, and medical practices of the person or group defining the practice of genetic counseling. (c) 2006 Wiley-Liss, Inc.

  6. Lack of robustness of life extension associated with several single-gene P element mutations in Drosophila melanogaster.

    PubMed

    Mockett, Robin J; Nobles, Amber C

    2013-10-01

    The hypothesis tested in this study was that single-gene mutations found previously to extend the life span of Drosophila melanogaster could do so consistently in both long-lived y w and standard w (1118) genetic backgrounds. GAL4 drivers were used to express upstream activation sequence (UAS)-responder transgenes globally or in the nervous system. Transgenes associated with oxidative damage prevention (UAS-hSOD1 and UAS-GCLc) or removal (EP-UAS-Atg8a and UAS-dTOR (FRB) ) failed to increase mean life spans in any expression pattern in either genetic background. Flies containing a UAS-EGFP-bMSRA (C) transgene associated with protein repair were found not to exhibit life extension or detectable enhanced green fluorescent protein (EGFP) activity. The presence of UAS-responder transgenes was confirmed by PCR amplification and sequencing at the 5' and 3' end of each insertion. These results cast doubt on the robustness of life extension in flies carrying single-gene mutations and suggest that the effects of all such mutations should be tested independently in multiple genetic backgrounds and laboratory environments.

  7. Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice.

    PubMed

    Cheng, Lirui; Wang, Yun; Meng, Lijun; Hu, Xia; Cui, Yanru; Sun, Yong; Zhu, Linghua; Ali, Jauhar; Xu, Jianlong; Li, Zhikang

    2012-01-01

    Effect of genetic background on detection of quantitative trait locus (QTL) governing salinity tolerance (ST) was studied using two sets of reciprocal introgression lines (ILs) derived from a cross between a moderately salinity tolerant japonica variety, Xiushui09 from China, and a drought tolerant but salinity susceptible indica breeding line, IR2061-520-6-9 from the Philippines. Salt toxicity symptoms (SST) on leaves, days to seedling survival (DSS), and sodium and potassium uptake by shoots were measured under salinity stress of 140 mmol/L of NaCl. A total of 47 QTLs, including 26 main-effect QTLs (M-QTLs) and 21 epistatic QTLs (E-QTLs), were identified from the two sets of reciprocal ILs. Among the 26 M-QTLs, only four (15.4%) were shared in the reciprocal backgrounds while no shared E-QTLs were detected, indicating that ST QTLs, especially E-QTLs, were very specific to the genetic background. Further, 78.6% of the M-QTLs for SST and DSS identified in the reciprocal ILs were also detected in the recombinant inbred lines (RILs) from the same cross, which clearly brings out the background effect on ST QTL detection and its utilization in ST breeding. The detection of ILs with various levels of pyramiding of nonallelic M-QTL alleles for ST from Xiushui09 into IR2061-520-6-9 allowed us to further improve the ST in rice.

  8. Williams Syndrome: A Relationship between Genetics, Brain Morphology and Behaviour

    ERIC Educational Resources Information Center

    Fahim, C.; Yoon, U.; Nashaat, N. H.; Khalil, A. K.; El-Belbesy, M.; Mancini-Marie, A.; Evans, A. C.; Meguid, N.

    2012-01-01

    Background: Genetically Williams syndrome (WS) promises to provide essential insight into the pathophysiology of cortical development because its ~28 deleted genes are crucial for cortical neuronal migration and maturation. Phenotypically, WS is one of the most puzzling childhood neurodevelopmental disorders affecting most intellectual…

  9. Abnormal Repetitive Behaviours: Shared Phenomenology and Pathophysiology

    ERIC Educational Resources Information Center

    Muehlmann, A. M.; Lewis, M. H.

    2012-01-01

    Background: Self-injurious behaviour (SIB) is a devastating problem observed in individuals with various neurodevelopmental disorders, including specific genetic syndromes as well as idiopathic intellectual and developmental disability. Although an increased prevalence of SIB has been documented in specific genetic mutations, little is known about…

  10. Recent developments in computer modeling add ecological realism to landscape genetics

    EPA Science Inventory

    Background / Question / Methods A factor limiting the rate of progress in landscape genetics has been the shortage of spatial models capable of linking life history attributes such as dispersal behavior to complex dynamic landscape features. The recent development of new models...

  11. Comparison of the physiological characteristics of transgenic insect-resistant cotton and conventional lines.

    PubMed

    Li, Xiaogang; Ding, Changfeng; Wang, Xingxiang; Liu, Biao

    2015-03-04

    The introduction of transgenic insect-resistant cotton into agricultural ecosystems has raised concerns regarding its ecological effects. Many studies have been conducted to compare the differences in characteristics between transgenic cotton and conventional counterparts. However, few studies have focused on the different responses of transgenic cotton to stress conditions, especially to the challenges of pathogens. The aim of this work is to determine the extent of variation in physiological characteristics between transgenic insect-resistant cotton and the conventional counterpart infected by cotton soil-borne pathogens. The results showed that the difference in genetic backgrounds is the main factor responsible for the effects on biochemical characteristics of transgenic cotton when incubating with cotton Fusarium oxysporum. However, genetic modification had a significantly greater influence on the stomatal structure of transgenic cotton than the effects of cotton genotypes. Our results highlight that the differences in genetic background and/or genetic modifications may introduce variations in physiological characteristics and should be considered to explore the potential unexpected ecological effects of transgenic cotton.

  12. Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice

    PubMed Central

    Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.

    2013-01-01

    BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407

  13. Disruptions in Energy Balance: Does Nature overcome Nurture?

    PubMed Central

    Fernández, José R.; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya

    2008-01-01

    Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments support the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual’s genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities. PMID:18096193

  14. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background.

    PubMed

    Saqui-Salces, Milena; Tsao, Amy C; Gillilland, Merritt G; Merchant, Juanita L

    2017-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. Copyright © 2017 the American Physiological Society.

  15. Shell shape variation of queen conch Strombus gigas (Mesograstropoda: Strombidae) from Southwest Caribbean.

    PubMed

    Márquez, Edna Judith; Restrepo-Escobar, Natalia; Montoya-Herrera, Francisco Luis

    2016-12-01

    The endangered species Strombus gigas is a marine gastropod of significant economic importance through the Greater Caribbean region. In contrast to phenotypic plasticity, the role of genetics on shell variations in S. gigas has not been addressed so far, despite its importance in evolution, management and conservation of this species. This work used geometric morphometrics to investigate the phenotypic variation of 219 shells of S. gigas from eight sites of the Colombian Southwest Caribbean. Differences in mean size between sexes and among sites were contrasted by analysis of variance. Allometry was tested by multivariate regression and the hypothesis of common slope was contrasted by covariance multivariate analysis. Differences in the shell shape among sites were analyzed by principal component analysis. Sexual size dimorphism was not significant, whereas sexual shape dimorphism was significant and variable across sites. Differences in the shell shape among sites were concordant with genetic differences based on microsatellite data, supporting its genetic background. Besides, differences in the shell shape between populations genetically similar suggest a role of phenotypic plasticity in the morphometric variation of the shell shape. These outcomes evidence the role of genetic background and phenotypic plasticity in the shell shape of S. gigas. Thus, geometric morphometrics of shell shape may constitute a complementary tool to explore the genetic diversity of this species.

  16. Ovine Reference Materials and Assays for Prion Genetic Testing

    USDA-ARS?s Scientific Manuscript database

    Background: Genetic predisposition to scrapie in sheep is associated with variation in the peptide sequence of the ovine prion protein encoded by Prnp. Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nin...

  17. Vitamin D and Autism: Clinical Review

    ERIC Educational Resources Information Center

    Kocovska, Eva; Fernell, Elisabeth; Billstedt, Eva; Minnis, Helen; Gillberg, Christopher

    2012-01-01

    Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multiple genetic and environmental risk factors. The interplay between genetic and environmental factors has become the subject of intensified research in the last several years. Vitamin D deficiency has recently been proposed as a possible environmental risk…

  18. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...

  19. Differential Susceptibility to Prevention: GABAergic, Dopaminergic, and Multilocus Effects

    ERIC Educational Resources Information Center

    Brody, Gene H.; Chen, Yi-fu; Beach, Steven R. H.

    2013-01-01

    Background: Randomized prevention trials provide a unique opportunity to test hypotheses about the interaction of genetic predispositions with contextual processes to create variations in phenotypes over time. Methods: Using two longitudinal, randomized prevention trials, molecular genetic and alcohol use outcome data were gathered from more than…

  20. Genetic response of a white sucker population to experimental whole lake acidification

    EPA Science Inventory

    Background/Question/MethodsLake acidification can strongly impact the structure and function of lake ecosystems, causing extirpation of some species while other organisms are able adapt to changing pH. We followed the genetics of a population of white sucker (Catostomus commerso...

  1. Elucidation of Genetic Backgrounds Necessary for Chlorophyll a Biosynthesis Toward Artificial Creation of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Tsukatani, Yusuke; Masuda, Shinji

    2015-09-01

    We succeeded to create the genetically modified purple photosynthetic bacterium capable of synthesizing chlorophyll a. The results indicate that not only chlorophyll synthase, but also an enzyme for galactolipid synthesis and reaction center proteins are required for accumulating chlorophyll a.

  2. The Joint Effects of Background Selection and Genetic Recombination on Local Gene Genealogies

    PubMed Central

    Zeng, Kai; Charlesworth, Brian

    2011-01-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data. PMID:21705759

  3. The joint effects of background selection and genetic recombination on local gene genealogies.

    PubMed

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  4. Mediterranean Diet Adherence and Genetic Background Roles within a Web-Based Nutritional Intervention: The Food4Me Study.

    PubMed

    San-Cristobal, Rodrigo; Navas-Carretero, Santiago; Livingstone, Katherine M; Celis-Morales, Carlos; Macready, Anna L; Fallaize, Rosalind; O'Donovan, Clare B; Lambrinou, Christina P; Moschonis, George; Marsaux, Cyril F M; Manios, Yannis; Jarosz, Miroslaw; Daniel, Hannelore; Gibney, Eileen R; Brennan, Lorraine; Drevon, Christian A; Gundersen, Thomas E; Gibney, Mike; Saris, Wim H M; Lovegrove, Julie A; Grimaldi, Keith; Parnell, Laurence D; Bouwman, Jildau; Van Ommen, Ben; Mathers, John C; Martinez, J Alfredo

    2017-10-11

    Mediterranean Diet (MedDiet) adherence has been proven to produce numerous health benefits. In addition, nutrigenetic studies have explained some individual variations in the response to specific dietary patterns. The present research aimed to explore associations and potential interactions between MedDiet adherence and genetic background throughout the Food4Me web-based nutritional intervention. Dietary, anthropometrical and biochemical data from volunteers of the Food4Me study were collected at baseline and after 6 months. Several genetic variants related to metabolic risk features were also analysed. A Genetic Risk Score (GRS) was derived from risk alleles and a Mediterranean Diet Score (MDS), based on validated food intake data, was estimated. At baseline, there were no interactions between GRS and MDS categories for metabolic traits. Linear mixed model repeated measures analyses showed a significantly greater decrease in total cholesterol in participants with a low GRS after a 6-month period, compared to those with a high GRS. Meanwhile, a high baseline MDS was associated with greater decreases in Body Mass Index (BMI), waist circumference and glucose. There also was a significant interaction between GRS and the MedDiet after the follow-up period. Among subjects with a high GRS, those with a high MDS evidenced a highly significant reduction in total carotenoids, while among those with a low GRS, there was no difference associated with MDS levels. These results suggest that a higher MedDiet adherence induces beneficial effects on metabolic outcomes, which can be affected by the genetic background in some specific markers.

  5. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction.

    PubMed

    Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E; Lau, Gee W

    2015-07-01

    The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. © 2015 John Wiley & Sons Ltd.

  6. Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster.

    PubMed

    Sarup, Pernille; Loeschcke, Volker

    2011-04-01

    Hormesis, the beneficial effect of a mild stress, has been proposed as a means to prolong the period of healthy ageing as it can increase the average lifespan of a cohort. However, if we want to use hormesis therapeutically it is important that the treatment is beneficial on the individual level and not just on average at the population level. Long lived lines have been shown not to benefit from a, in other lines, hormesis inducing heat treatment in Drosophila melanogaster, D. buzzatii and mice. Also in many experiments hormesis has been reported to occur in one sex only, usually males but not in females. Here we investigated the interaction between the hormetic response and genetic background, sex and duration of a mild heat stress in D. melanogaster, using three replicate lines that have been selected for increased longevity and their respective control lines. We found that genetic background influences the position of the hormetic zone. The implication of this result could be that in a genetically diverse populations a treatment that is life prolonging in one individual could be life shortening in other individuals. However, we did find a hormetic response in all combinations of line and sex in at least one of the experiments which suggests that if it is possible to identify the optimal hormetic dose individually hormesis might become a therapeutic treatment.

  7. What Use Is Population Genetics?

    PubMed

    Charlesworth, Brian

    2015-07-01

    The Genetic Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. For over 40 years, 2015 recipient Brian Charlesworth has been a leader in both theoretical and empirical evolutionary genetics, making substantial contributions to our understanding of how evolution acts on genetic variation. Some of the areas in which Charlesworth's research has been most influential are the evolution of sex chromosomes, transposable elements, deleterious mutations, sexual reproduction, and life history. He also developed the influential theory of background selection, whereby the recurrent elimination of deleterious mutations reduces variation at linked sites, providing a general explanation for the correlation between recombination rate and genetic variation. Copyright © 2015 by the Genetics Society of America.

  8. Expression of an (Engineered) 4,6-α-Glucanotransferase in Potato Results in Changes in Starch Characteristics

    PubMed Central

    Xu, Xuan; Dechesne, Annemarie; Visser, Richard G. F.; Trindade, Luisa M.

    2016-01-01

    Starch structure strongly influences starch physicochemical properties, determining the end uses of starch in various applications. To produce starches with novel structure and exploit the mechanism of starch granule formation, an (engineered) 4, 6-α-glucanotransferase (GTFB) from Lactobacillus reuteri 121 was introduced into two potato genetic backgrounds: amylose-containing line Kardal and amylose-free mutant amf. The resulting starches showed severe changes in granule morphology regardless of genetic backgrounds. Modified starches from amf background exhibited a significant increase in granule size and starch phosphate content relative to the control, while starches from Kardal background displayed a higher digestibility, but did not show changes in granule size and phosphate content. Transcriptome analysis revealed the existence of a mechanism to restore the regular packing of double helices in starch granules, which possibly resulted in the removal of novel glucose chains potentially introduced by the (engineered) GTFB. This amendment mechanics would also explain the difficulties to detect alterations in starch fine structure in the transgenic lines. PMID:27911907

  9. Extending and expanding the Darwinian synthesis: the role of complex systems dynamics.

    PubMed

    Weber, Bruce H

    2011-03-01

    Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Expression of an (Engineered) 4,6-α-Glucanotransferase in Potato Results in Changes in Starch Characteristics.

    PubMed

    Xu, Xuan; Dechesne, Annemarie; Visser, Richard G F; Trindade, Luisa M

    2016-01-01

    Starch structure strongly influences starch physicochemical properties, determining the end uses of starch in various applications. To produce starches with novel structure and exploit the mechanism of starch granule formation, an (engineered) 4, 6-α-glucanotransferase (GTFB) from Lactobacillus reuteri 121 was introduced into two potato genetic backgrounds: amylose-containing line Kardal and amylose-free mutant amf. The resulting starches showed severe changes in granule morphology regardless of genetic backgrounds. Modified starches from amf background exhibited a significant increase in granule size and starch phosphate content relative to the control, while starches from Kardal background displayed a higher digestibility, but did not show changes in granule size and phosphate content. Transcriptome analysis revealed the existence of a mechanism to restore the regular packing of double helices in starch granules, which possibly resulted in the removal of novel glucose chains potentially introduced by the (engineered) GTFB. This amendment mechanics would also explain the difficulties to detect alterations in starch fine structure in the transgenic lines.

  11. Acceptance of prenatal diagnosis for genetic disorders in Lebanon.

    PubMed

    Zahed, L; Nabulsi, M; Bou-Ghanim, M; Usta, I

    1999-12-01

    Acceptance of prenatal diagnosis and termination of pregnancy in the case of an affected fetus may vary from one country to another, depending on the health system, religious belief, cultural and educational backgrounds of the population. Following a previous study on couples at risk for a haemoglobin disorder in Lebanon, we have here interviewed 90 couples at risk for a variety of genetic disorders, in order to assess their acceptance of prenatal diagnosis and the variables that might influence their choice. Overall, 54 per cent of couples said they would request diagnosis in their next pregnancy, while 26 per cent were opposed to such a procedure. In 87. 5 per cent of cases, the reason for refusal was because of religious conviction against termination of pregnancy. Refusal of prenatal diagnosis was also related to a lower socio-economic background and poorer education. Only 12 per cent of couples were properly aware of their genetic risk. Therefore, for prevention of genetic disorders, the emphasis in countries such as Lebanon has probably to be placed on public awareness about genetic risks, the risks of consanguinity, availability of services, while taking into consideration the personal beliefs of the individuals. Copyright 1999 John Wiley & Sons, Ltd.

  12. Does Childhood Anxiety Evoke Maternal Control? A Genetically Informed Study

    ERIC Educational Resources Information Center

    Eley, Thalia C.; Napolitano, Maria; Lau, Jennifer Y. F.; Gregory, Alice M.

    2010-01-01

    Background: Despite theoretical and empirical support for an association between maternal control and child anxiety, few studies have examined the origins of this association. Furthermore, none use observer-ratings of maternal control within a genetically informative design. This study addressed three questions: 1) do children who experience…

  13. Does Religious Involvement Protect against Early Drinking? A Behavior Genetic Approach

    ERIC Educational Resources Information Center

    Harden, K. Paige

    2010-01-01

    Background: Adolescent involvement in religious organizations has been hypothesized to protect against early age at first drink. However, the correlation between adolescent religiosity and later age at first drink may be confounded by environmental or genetic differences between families. This study tests whether, after controlling for shared…

  14. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  15. Cooley's Anemia: A Psychosocial Directory.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Washington, DC.

    The directory is intended to aid patients and their families who are coping with the genetic disorder of Cooley's anemia. A brief review of the disease covers background, genetics, symptoms, effect on the patient, treatment, and current research. The next section looks at psychosocial needs at various times (time of diagnosis, infancy and toddler…

  16. Modes of Imprinted Gene Action in Learning Disability

    ERIC Educational Resources Information Center

    Isles, A. R.; Humby, T.

    2006-01-01

    Background: It is now widely acknowledged that there may be a genetic contribution to learning disability and neuropsychiatric disorders, stemming from evidence provided by family, twin and adoption studies, and from explicit syndromic conditions. Recently it has been recognized that in some cases the presentation of genetic syndromes (or discrete…

  17. Aetiology of Autism: Findings and Questions

    ERIC Educational Resources Information Center

    Rutter, M.

    2005-01-01

    Background Although there is good evidence that autism is a multifactorial disorder, an adequate understanding of the genetic and non-genetic causes has yet to be achieved. Methods Empirical research findings and conceptual reviews are reviewed with respect to evidence on possible causal influences. Results Much the strongest evidence concerns the…

  18. Evidence for the establishment and persistence of genetically modified canola populations in the U.S.

    EPA Science Inventory

    Background/Questions/Methods Concerns surrounding the commercial release of genetically modified crops include the risks of escape from cultivation, naturalization, and the transfer of beneficial traits to native and weedy species. Among the crops commonly grown in the U.S., a l...

  19. Behavior in Prader-Willi Syndrome: Relationship to Genetic Subtypes and Age

    ERIC Educational Resources Information Center

    Dykens, Elisabeth M.; Roof, Elizabeth

    2008-01-01

    Background: Some behavioral features of Prader-Willi syndrome (PWS) are associated with the major genetic subtypes of this disorder. While most agree that those with maternal uniparental disomy (UPD) have a distinctive cognitive and psychiatric profile, findings are more controversial regarding possible differences among persons who vary in…

  20. Genetic Contributions to Continuity and Change in Attachment Security: A Prospective, Longitudinal Investigation from Infancy to Young Adulthood

    ERIC Educational Resources Information Center

    Raby, K. Lee; Cicchetti, Dante; Carlson, Elizabeth A.; Egeland, Byron; Collins, W. Andrew

    2013-01-01

    Background: Longitudinal research has demonstrated that individual differences in attachment security show only modest continuity from infancy to adulthood. Recent findings based on retrospective reports suggest that individuals' genetic variation may moderate the developmental associations between early attachment-relevant relationship…

  1. A Longitudinal Twin Study on the Association between ADHD Symptoms and Reading

    ERIC Educational Resources Information Center

    Greven, Corina U.; Rijsdijk, Fruhling V.; Asherson, Philip; Plomin, Robert

    2012-01-01

    Background: Attention deficit hyperactivity disorder (ADHD) and reading disability commonly co-occur because of shared genetic risk factors. However, the stability and change of these genetic influences and the predictive relationships underlying this association longitudinally remain unclear. Methods: ADHD symptoms and reading were assessed as…

  2. [Genetic information and future medicine].

    PubMed

    Sakurai, Akihiro

    2012-11-01

    Rapid technological advances in genetic analysis have revealed the genetic background of various diseases. Elucidation of the genes responsible for a disease enables better clinical management of the disease and helps to develop targeted drugs. Also, early diagnosis and management of at-risk family members can be made by identification of a genetic disease in the proband. On the other hand, genetic issues often cause psychological distress to the family. To perform genetic testing appropriately and to protect patients and family members from any harm, guidelines for genetic testing were released from the alliance of Japanese genetics-related academic societies in 2003. As genetic testing is becoming incorporated into clinical practice more broadly, the guideline was revised and released by the Japanese Society of Medical Sciences in 2011. All medical professionals in Japan are expected to follow this guideline.

  3. The acquisition of molecular determinants involved in potato virus Y necrosis capacity leads to fitness reduction in tobacco plants.

    PubMed

    Rolland, Mathieu; Kerlan, Camille; Jacquot, Emmanuel

    2009-01-01

    The prevalence of necrotic potato virus Y (PVY) in natural populations could reflect increased fitness of necrotic isolates. In this paper, the effects of the acquisition of molecular determinants (A/G(2213) and A/C(2271)) involved in necrosis capacity on both the number of progeny produced and the competitiveness of PVY were characterized. The relationship between necrosis and fitness was tested using (i) Nicotiana tabacum cv. Xanthi and Nicotiana clevelandii, (ii) necrotic PVY(N)-605 and non-necrotic PVY(O)-139 isolates, (iii) single-mutated (PVY(KR) and PVY(ED)) and double-mutated (PVY(KRED)) versions of PVY(N)-605 and (iv) three quantitative PCR assays specific for nt A(2213), G(2213) and A(2271) of the PVY genome. The data demonstrated effects of both the genetic background and nt 2213 and 2271 on the fitness of PVY. Quantification of PVY RNA in singly infected plants revealed that both the PVY(N)-605 genetic background and the acquisition of necrotic capacity resulted in a decrease in the number of progeny produced. Competition experiments revealed that the genetic background of PVY(N) had a positive impact on competitiveness. In contrast, nucleotides involved in necrotic properties were associated with decreased fitness. Finally, in the host that did not respond to infection with necrosis, the benefit associated with the PVY(N)-605 genetic background was higher than the cost associated with the acquisition of molecular determinants involved in necrosis capacity. The opposite result was obtained in the host responding to the infection with necrosis. These results indicate that the emergence of necrotic isolates from a non-necrotic population is unlikely in tobacco.

  4. Persistence of transmitted HIV-1 drug resistance mutations associated with fitness costs and viral genetic backgrounds.

    PubMed

    Yang, Wan-Lin; Kouyos, Roger D; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Scherrer, Alexandra U; Shilaih, Mohaned; Hinkley, Trevor; Petropoulos, Christos; Bonhoeffer, Sebastian; Günthard, Huldrych F

    2015-03-01

    Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

  5. PKCepsilon overexpression, irrespective of genetic background, sensitizes skin to UVR-induced development of squamous-cell carcinomas.

    PubMed

    Sand, Jordan M; Aziz, Moammir H; Dreckschmidt, Nancy E; Havighurst, Thomas C; Kim, KyungMann; Oberley, Terry D; Verma, Ajit K

    2010-01-01

    Chronic exposure to UVR is the major etiologic factor in the development of human skin cancers including squamous-cell carcinoma (SCC). We have previously shown that protein Kinase C epsilon (PKCepsilon) transgenic mice on FVB/N background, which overexpress PKCepsilon protein approximately eightfold over endogenous levels in epidermis, exhibit about threefold more sensitivity than wild-type littermates to UVR-induced development of SCC. To determine whether it is PKCepsilon and not the mouse genetic background that determines susceptibility to UVR carcinogenesis, we cross-bred PKCepsilon FVB/N transgenic mice with SKH-1 hairless mice to generate PKCepsilon-overexpressing SKH-1 hairless mice. To evaluate the susceptibility of PKCepsilon SKH-1 hairless transgenic mice to UVR carcinogenesis, the mice were exposed to UVR (1-2 KJ m(-2)) three times weekly from a bank of six kodacel-filtered FS40 sunlamps. As compared with the wild-type hairless mice, PKCepsilon overexpression in SKH-1 hairless mice decreased the latency (12 weeks), whereas it increased the incidence (twofold) and multiplicity (fourfold) of SCC. The SKH hairless transgenic mice were observed to be as sensitive as FVB/N transgenic mice to UVR-induced development of SCC and expression of proliferative markers (proliferating cell nuclear antigen, signal transducers and activators of transcription 3, and extracellular signal-regulated kinase 1/2). The results indicate that PKCepsilon level dictates susceptibility, irrespective of genetic background, to UVR carcinogenesis.

  6. Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage

    DTIC Science & Technology

    2012-02-28

    Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage Andrew D. Haddow1*, Amy J. Schuh1, Chadwick Y. Yasuda2...Medical Research Unit, No. 2, Phnom Penh, Cambodia, 3 National Dengue Control Program, Phnom Penh, Cambodia Abstract Background: Zika virus (ZIKV) is a...underreported. Citation: Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, et al. (2012) Genetic Characterization of Zika Virus Strains: Geographic

  7. The background puzzle: how identical mutations in the same gene lead to different disease symptoms.

    PubMed

    Kammenga, Jan E

    2017-10-01

    Identical disease-causing mutations can lead to different symptoms in different people. The reason for this has been a puzzling problem for geneticists. Differential penetrance and expressivity of mutations has been observed within individuals with different and similar genetic backgrounds. Attempts have been made to uncover the underlying mechanisms that determine differential phenotypic effects of identical mutations through studies of model organisms. From these studies evidence is accumulating that to understand disease mechanism or predict disease prevalence, an understanding of the influence of genetic background is as important as the putative disease-causing mutations of relatively large effect. This review highlights current insights into phenotypic variation due to gene interactions, epigenetics and stochasticity in model organisms, and discusses their importance for understanding the mutational effect on disease symptoms. © 2017 Federation of European Biochemical Societies.

  8. Difficulties in diagnosing Marfan syndrome using current FBN1 databases.

    PubMed

    Groth, Kristian A; Gaustadnes, Mette; Thorsen, Kasper; Østergaard, John R; Jensen, Uffe Birk; Gravholt, Claus H; Andersen, Niels H

    2016-01-01

    The diagnostic criteria of Marfan syndrome (MFS) highlight the importance of a FBN1 mutation test in diagnosing MFS. As genetic sequencing becomes better, cheaper, and more accessible, the expected increase in the number of genetic tests will become evident, resulting in numerous genetic variants that need to be evaluated for disease-causing effects based on database information. The aim of this study was to evaluate genetic variants in four databases and review the relevant literature. We assessed background data on 23 common variants registered in ESP6500 and classified as causing MFS in the Human Gene Mutation Database (HGMD). We evaluated data in four variant databases (HGMD, UMD-FBN1, ClinVar, and UniProt) according to the diagnostic criteria for MFS and compared the results with the classification of each variant in the four databases. None of the 23 variants was clearly associated with MFS, even though all classifications in the databases stated otherwise. A genetic diagnosis of MFS cannot reliably be based on current variant databases because they contain incorrectly interpreted conclusions on variants. Variants must be evaluated by time-consuming review of the background material in the databases and by combining these data with expert knowledge on MFS. This is a major problem because we expect even more genetic test results in the near future as a result of the reduced cost and process time for next-generation sequencing.Genet Med 18 1, 98-102.

  9. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  10. FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae.

    PubMed

    Zara, Giacomo; Zara, Severino; Pinna, Claudia; Marceddu, Salvatore; Budroni, Marilena

    2009-12-01

    In Saccharomyces cerevisiae, FLO11 encodes an adhesin that is associated with different phenotypes, such as adherence to solid surfaces, hydrophobicity, mat and air-liquid biofilm formation. In the present study, we analysed FLO11 allelic polymorphisms and FLO11-associated phenotypes of 20 flor strains. We identified 13 alleles of different lengths, varying from 3.0 to 6.1 kb, thus demonstrating that FLO11 is highly polymorphic. Two alleles of 3.1 and 5.0 kb were cloned into strain BY4742 to compare the FLO11-associated phenotypes in the same genetic background. We show that there is a significant correlation between biofilm-forming ability and FLO11 length both in different and in the same genetic backgrounds. Moreover, we propose a multiple regression model that allows prediction of air-liquid biofilm-forming ability on the basis of transcription levels and lengths of FLO11 alleles in a population of S. cerevisiae flor strains. Considering that transcriptional differences are only partially explained by the differences in the promoter sequences, our results are consistent with the hypothesis that FLO11 transcription levels are strongly influenced by genetic background and affect biofilm-forming ability.

  11. Enlazin, a Natural Fusion of Two Classes of Canonical Cytoskeletal Proteins, Contributes to Cytokinesis Dynamics

    PubMed Central

    Octtaviani, Edelyn; Effler, Janet C.

    2006-01-01

    Cytokinesis requires a complex network of equatorial and global proteins to regulate cell shape changes. Here, using interaction genetics, we report the first characterization of a novel protein, enlazin. Enlazin is a natural fusion of two canonical classes of actin-associated proteins, the ezrin-radixin-moesin family and fimbrin, and it is localized to actin-rich structures. A fragment of enlazin, enl-tr, was isolated as a genetic suppressor of the cytokinesis defect of cortexillin-I mutants. Expression of enl-tr disrupts expression of endogenous enlazin, indicating that enl-tr functions as a dominant-negative lesion. Enlazin is distributed globally during cytokinesis and is required for cortical tension and cell adhesion. Consistent with a role in cell mechanics, inhibition of enlazin in a cortexillin-I background restores cytokinesis furrowing dynamics and suppresses the growth-in-suspension defect. However, as expected for a role in cell adhesion, inhibiting enlazin in a myosin-II background induces a synthetic cytokinesis phenotype, frequently arresting furrow ingression at the dumbbell shape and/or causing recession of the furrow. Thus, enlazin has roles in cell mechanics and adhesion, and these roles seem to be differentially significant for cytokinesis, depending on the genetic background. PMID:17050732

  12. Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding.

    PubMed

    Hernández, P; Dorado, G; Ramírez, M C; Laurie, D A; Snape, J W; Martín, A

    2003-01-01

    Hordeum chilense is a potential source of useful genes for wheat breeding. The use of this wild species to increase genetic variation in wheat will be greatly facilitated by marker-assisted introgression. In recent years, the search for the most suitable DNA marker system for tagging H. chilense genomic regions in a wheat background has lead to the development of RAPD and SCAR markers for this species. RAPDs represent an easy way of quickly generating suitable introgression markers, but their use is limited in heterogeneous wheat genetic backgrounds. SCARs are more specific assays, suitable for automatation or multiplexing. Direct sequencing of RAPD products is a cost-effective approach that reduces labour and costs for SCAR development. The use of SSR and STS primers originally developed for wheat and barley are additional sources of genetic markers. Practical applications of the different marker approaches for obtaining derived introgression products are described.

  13. Genetic counselling in the era of genomic medicine

    PubMed Central

    Middleton, Anna

    2018-01-01

    Abstract Background Genomic technology can now deliver cost effective, targeted diagnosis and treatment for patients. Genetic counselling is a communication process empowering patients and families to make autonomous decisions and effectively use new genetic information. The skills of genetic counselling and expertise of genetic counsellors are integral to the effective implementation of genomic medicine. Sources of data Original papers, reviews, guidelines, policy papers and web-resources. Areas of agreement An international consensus on the definition of genetic counselling. Genetic counselling is necessary for implementation of genomic medicine. Areas of controversy Models of genetic counselling. Growing points Genomic medicine is a growing and strategic priority for many health care systems. Genetic counselling is part of this. Areas timely for developing research An evidence base is necessary, incorporating implementation and outcome research, to enable health care systems, practitioners, patients and families to maximize the utility (medically and psychologically) of the new genomic possibilities. PMID:29617718

  14. Genetic variation and genomic context of antibiotic resistance genes and mobile genetic elements in Salmonella from animals and food production facilities

    USDA-ARS?s Scientific Manuscript database

    Background: From 1998-2008, Salmonella was the most common bacterial cause of foodborne disease outbreaks and antibiotic resistant Salmonella are considered a serious threat when treatment is warranted. Both agricultural and clinical uses of antibiotics contribute to the development of resistant Sal...

  15. GENES, IN ADDITION TO TOLL-LIKE RECEPTOR 2, PLAY A ROLE IN ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL PNEUMONIA

    EPA Science Inventory

    Streptococcus infection in human populations continues to be a major cause of morbidity and mortality. To evaluate the effect of genetic background and toll-like receptor 2 (TLR2) on antibacterial defense to streptococcal infection, eight genetically diverse strains of mic...

  16. The Genetic Etiology of Inhibitory Control and Behavior Problems at 24 Months of Age

    ERIC Educational Resources Information Center

    Gagne, Jeffrey R.; Saudino, Kimberly J.; Asherson, Philip

    2011-01-01

    Background: To investigate links between inhibitory control (IC) and behavior problems in early childhood, as well as genetic and environmental covariances between these two constructs. Methods: Parent and laboratory ratings of IC and parent ratings of externalizing and attention deficit hyperactivity disorder behaviors were administered at 24…

  17. Evidence for Shared Genetic Risk between ADHD Symptoms and Reduced Mathematics Ability: A Twin Study

    ERIC Educational Resources Information Center

    Greven, Corina U.; Kovas, Yulia; Willcutt, Erik G.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Background: Attention-deficit/hyperactivity disorder (ADHD) symptoms and mathematics ability are associated, but little is known about the genetic and environmental influences underlying this association. Methods: Data came from more than 6,000 twelve-year-old twin pairs from the UK population-representative Twins Early Development Study. Parents…

  18. New DArT markers for oat provide enhanced map coverage and global germplasm characterization

    USDA-ARS?s Scientific Manuscript database

    Background Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and ...

  19. Influence of genetic background on anthocyanin and copigment composition and behavior during thermoalkaline processing of maize

    USDA-ARS?s Scientific Manuscript database

    Visual color is a primary factor for foods purchase; identifying factors that influence in-situ color quality of pigmented maize during processing is important. We used 24 genetically distinct pigmented maize hybrids (red/blue, blue, red, and purple) to investigate the effect of pigment and copigme...

  20. The Prevalence and Phenomenology of Self-Injurious and Aggressive Behaviour in Genetic Syndromes

    ERIC Educational Resources Information Center

    Arron, K.; Oliver, C.; Moss, J.; Berg, K.; Burbidge, C.

    2011-01-01

    Background: Self-injurious and aggressive behaviours are reported as components of some behavioural phenotypes but there are few studies comparing across syndrome groups. In this study we examined the prevalence of these behaviours and the associated person characteristics in seven genetic syndromes. Methods: Questionnaire data on self-injury and…

  1. The Role Played by the Interaction between Genetic Factors and Attachment in the Stress Response in Infancy

    ERIC Educational Resources Information Center

    Frigerio, Alessandra; Ceppi, Elisa; Rusconi, Marianna; Giorda, Roberto; Raggi, Maria Elisabetta; Fearon, Pasco

    2009-01-01

    Background: The importance of understanding which environmental and biological factors are involved in determining individual differences in physiological response to stress is widely recognized, given the impact that stress has on physical and mental health. Methods: The child-mother attachment relationship and some genetic polymorphisms…

  2. Genetics at School Level: Addressing the Difficulties

    ERIC Educational Resources Information Center

    Chu, Yu-Chien; Reid, Norman

    2012-01-01

    Background: A wide range of studies has offered suggestions why genetics is difficult and some of their key findings are summarised. Underpinning all of this is the way the brain works when handling information. The limitations of working memory capacity offer an interpretation of these difficulties. Purpose: The aim is to confirm that working…

  3. Shared Genetic Influences on ADHD Symptoms and Very Low-Frequency EEG Activity: A Twin Study

    ERIC Educational Resources Information Center

    Tye, Charlotte; Rijsdijk, Fruhling; Greven, Corina U.; Kuntsi, Jonna; Asherson, Philip; McLoughlin, Grainne

    2012-01-01

    Background: Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with a complex aetiology. The identification of candidate intermediate phenotypes that are both heritable and genetically linked to ADHD may facilitate the detection of susceptibility genes and elucidate aetiological pathways.…

  4. Analysis of genetic data on Jewish populations. I. Historical background, demographic features, and genetic markers.

    PubMed Central

    Bonné-Tamir, B; Karlin, S; Kenett, R

    1979-01-01

    Part I describes the data sets on which the analysis of Part II is based. This covers the nature of the populations sampled, the extent to which the samples are representative, and a brief review of historical and demographic facts on the populations involved. PMID:380329

  5. Genetic and Environmental Influences on Victims, Bullies and Bully-Victims in Childhood

    ERIC Educational Resources Information Center

    Ball, Harriet A.; Arseneault, Louise; Taylor, Alan; Maughan, Barbara; Caspi, Avshalom; Moffitt, Terrie E.

    2008-01-01

    Background: Three groups of children are involved in bullying: victims, bullies and bully-victims who are both bullies and victims of bullying. Understanding the origins of these groups is important since they have elevated emotional and behavioural problems, especially the bully-victims. No research has examined the genetic and environmental…

  6. Externalizing Problems in Childhood and Adolescence Predict Subsequent Educational Achievement but for Different Genetic and Environmental Reasons

    ERIC Educational Resources Information Center

    Lewis, Gary J.; Asbury, Kathryn; Plomin, Robert

    2017-01-01

    Background: Childhood behavior problems predict subsequent educational achievement; however, little research has examined the etiology of these links using a longitudinal twin design. Moreover, it is unknown whether genetic and environmental innovations provide incremental prediction for educational achievement from childhood to adolescence.…

  7. Comparison of RAPD Linkage Maps Constructed For a Single Longleaf Pine From Both Haploid and Diploid Mapping Populations

    Treesearch

    Thomas L. Kubisiak; C.Dana Nelson; W.L. Name; M. Stine

    1996-01-01

    Considerable concern has been voiced regarding the reproducibility/transferability of RAPD markers across different genetic backgrounds in genetic mapping experiments. Therefore, separate gametic subsets (mapping populations) were used to construct individual random amplified polymorphic DNA (RAPD) linkage maps for a single longleaf pine (Pinus palustris...

  8. Genetic identity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by molecular markers

    USDA-ARS?s Scientific Manuscript database

    Indonesia is the 3rd largest cocoa producing countries in the world and 71% of its production is from Sulawesi Island. Knowledge about the genetic background of farmer selections is highly important for effective identification and rational deployment of superior cacao clones in farmers’ fields. Mor...

  9. Genetic diversity of cultured and wild populations of the freshwater prawn Macrobrachium rosenbergii based on microsatellite analysis

    USDA-ARS?s Scientific Manuscript database

    Freshwater prawn Macrobrachium rosenbergii culture in the Western Hemisphere is primarily, if not entirely, based on thirty-six individual prawn introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding the genetic background or current population status of cult...

  10. Genetic and Environmental Influences on Extreme Personality Dispositions in Adolescent Female Twins

    ERIC Educational Resources Information Center

    Pergadia, Michele L.; Madden, Pamela A. F.; Lessov, Christina N.; Todorov, Alexandre A.; Bucholz, Kathleen K.; Martin, Nicholas G.; Heath, Andrew C.

    2006-01-01

    Background: The objective was to determine whether the pattern of environmental and genetic influences on deviant personality scores differs from that observed for the normative range of personality, comparing results in adolescent and adult female twins. Methods: A sample of 2,796 female adolescent twins ascertained from birth records provided…

  11. The Genetic Architecture of a Complex Ecological Trait: Host Plant Use in the Specialist Moth, Heliothis subflexa

    PubMed Central

    Oppenheim, Sara J.; Gould, Fred; Hopper, Keith R.

    2012-01-01

    We used genetic mapping to examine the genetic architecture of differences in host plant use between two species of noctuid moths, Heliothis subflexa, a specialist on Physalis spp., and its close relative, the broad generalist H. virescens. We introgressed H. subflexa chromosomes into the H. virescens background and analyzed 1,462 backcross insects. The effects of H. subflexa-origin chromosomes were small when measured as the percent variation explained in backcross populations (0.2 to 5%), but were larger when considered in relation to the interspecific difference explained (1.5 to 165%). Most significant chromosomes had effects on more than one trait, and their effects varied between years, sexes, and genetic backgrounds. Different chromosomes could produce similar phenotypes, suggesting that the same trait might be controlled by different chromosomes in different backcross populations. It appears that many loci of small effect contribute to the use of Physalis by H. subflexa. We hypothesize that behavioral changes may have paved the way for physiological adaptation to Physalis by the generalist ancestor of H. subflexa and H. virescens. PMID:23106701

  12. Pelvic incidence variation among individuals: functional influence versus genetic determinism.

    PubMed

    Chen, Hong-Fang; Zhao, Chang-Qing

    2018-03-20

    Pelvic incidence has become one of the most important sagittal parameters in spinal surgery. Despite its great importance, pelvic incidence can vary from 33° to 85° in the normal population. The reasons for this great variability in pelvic incidence remain unexplored. The objective of this article is to present some possible interpretations for the great variability in pelvic incidence under both normal and pathological conditions and to further understand the determinants of pelvic incidence from the perspective of the functional requirements for bipedalism and genetic backgrounds via a literature review. We postulate that both pelvic incidence and pelvic morphology may be genetically predetermined, and a great variability in pelvic incidence may already exist even before birth. This great variability may also serve as a further reminder that the sagittal profile, bipedal locomotion mode, and genetic background of every individual are unique and specific, and clinicians should avoid making universally applying broad generalizations of pelvic incidence. Although PI is an important parameter and there are many theories behind its variability, we still do not have clear mechanistic answers.

  13. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction

    PubMed Central

    Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E.; Lau, Gee W.

    2015-01-01

    Summary The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 “late” competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. Graphical abstract During genetic transformation of pneumococcus, the alternative sigma factor ComX regulates expression of 14 late competence genes important for virulence. The constitutive baseline expression of some of these genes is important for bacteremia and acute pneumonia infections. In contrast, elevated expression of DprA, CbpD, CibAB, and Cinbox are dependent on competence development, enhancing the release of pneumolysin. These results distinguish the role of basal expression versus competence induction in virulence determinants regulated by ComX. PMID:25846124

  14. Ethnic background and genetic variation in the evaluation of cancer risk: a systematic review.

    PubMed

    Jing, Lijun; Su, Li; Ring, Brian Z

    2014-01-01

    The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort's ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be studied and employed.

  15. Obtaining genetic testing in pediatric epilepsy.

    PubMed

    Ream, Margie A; Patel, Anup D

    2015-10-01

    The steps from patient evaluation to genetic diagnosis remain complicated. We discuss some of the genetic testing methods available along with their general advantages and disadvantages. We briefly review common pediatric epilepsy syndromes with strong genetic association and provide a potentially useful algorithm for genetic testing in drug-resistant epilepsy. We performed an extensive literature review of available information as it pertains to genetic testing and genetics in pediatric epilepsy. If a genetic disorder is suspected as the cause of epilepsy, based on drug resistance, family history, or clinical phenotype, timely diagnosis may reduce overall cost, limit the diagnostic odyssey that can bring much anxiety to families, improve prognostic accuracy, and lead to targeted therapy. Interpretation of complicated results should be performed only in collaboration with geneticists and genetic counselors, unless the ordering neurologist has a strong background in and understanding of genetics. Genetic testing can play an important role in the care provided to patients with epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  16. Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans.

    PubMed

    Murray, Rosalind L; Kozlowska, Joanna L; Cutter, Asher D

    2011-04-14

    Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.

  17. Relatedness of Streptococcus suis Isolates of Various Serotypes and Clinical Backgrounds as Evaluated by Macrorestriction Analysis and Expression of Potential Virulence Traits

    PubMed Central

    Allgaier, Achim; Goethe, Ralph; Wisselink, Henk J.; Smith, Hilde E.; Valentin-Weigand, Peter

    2001-01-01

    We evaluated the genetic diversity of Streptococcus suis isolates of different serotypes by macrorestriction analysis and elucidated possible relationships between the genetic background, expression of potential virulence traits, and source of isolation. Virulence traits included expression of serotype-specific polysaccharides, muramidase-released protein (MRP), extracellular protein factor (EF), hemolysin activity, and adherence to epithelial cells. Macrorestriction analysis of streptococcal DNA digested with restriction enzymes SmaI and ApaI allowed differentiation of single isolates that could be assigned to four major clusters, named A1, A2, B1, and B2. Comparison of the genotypic and phenotypic features of the isolates with their source of isolation showed that (i) the S. suis population examined, which originated mainly from German pigs, exhibited a genetic diversity and phenotypic patterns comparable to those found for isolates from other European countries; (ii) certain phenotypic features, such as the presence of capsular antigens of serotypes 2, 1, and 9, expression of MRP and EF, and hemolysin activity (and in particular, combinations of these features), were strongly associated with the clinical background of meningitis and septicemia; and (iii) isolates from pigs with meningitis and septicemia showed a significantly higher degree of genetic homogeneity compared to that for isolates from pigs with pneumonia and healthy pigs. Since the former isolates are considered highly virulent, this supports the theory of a clonal relationship among highly virulent strains. PMID:11158088

  18. Characterizing Male–Female Interactions Using Natural Genetic Variation in Drosophila melanogaster

    PubMed Central

    Reinhart, Michael; Carney, Tara; Clark, Andrew G.

    2015-01-01

    Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be “generalists” and performed consistently across the different females; other males appeared to be “specialists” and performed very well with a particular female and poorly with others. “Specialist” males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male–female interactions. PMID:25425680

  19. Genetic background in nonalcoholic fatty liver disease: A comprehensive review

    PubMed Central

    Macaluso, Fabio Salvatore; Maida, Marcello; Petta, Salvatore

    2015-01-01

    In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease. PMID:26494964

  20. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity.

    PubMed

    Dato, Serena; Crocco, Paolina; D'Aquila, Patrizia; de Rango, Francesco; Bellizzi, Dina; Rose, Giuseppina; Passarino, Giuseppe

    2013-08-08

    Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.

  1. [Genetic factors in pathogenesis, course and treatment of inflammatory bowel diseases].

    PubMed

    Zatorski, Hubert; Sałaga, Maciej; Zielińska, Marta; Fichna, Jakub

    2015-03-17

    Inflammatory bowel diseases (IBD) are a group of chronic gastrointestinal disorders with alternating relapses and remissions. Two main types within IBD can be distinguished: Crohn's disease and ulcerative colitis. Considering the epidemiological, immunological and genetic data, it was concluded that IBD possess multifactorial etiology, where genetic and environmental factors form the immunological background for the disease. In this review we discuss the most important genes and their protein products in IBD etiology and their impact on IBD pharmacotherapy.

  2. [Genetic and epigenetic aspects of celiac disease].

    PubMed

    Kocsis, Dorottya; Béres, Nóra; Veres, Gábor; Szabó, Dolóresz; Müller, Katalin Eszter; Arató, András; Juhász, Márk

    2014-01-19

    Genetic background of coeliac disease has been subjects to intensive research since decades. However, only results of HLA phenotyping have been taken over to routine clinical practice. Meanwhile, data on the role of epigenetical factors in the manifestation of diseases have been emerging. In coeliac disease, there are several questions both in the fields of genetics and epigenetics yet to be answered. In this review, a cross section of current knowledge on these issues is presented with special interest regarding the future clinical applications.

  3. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance

    DOE PAGES

    Sardi, Maria; Rovinskiy, Nikolay; Zhang, Yaoping; ...

    2016-07-22

    We report a major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast)more » strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Lastly, our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms.« less

  4. The role of decreased levels of Niemann-Pick C1 intracellular cholesterol transport on obesity is reversed in the C57BL/6J, metabolic syndrome mouse strain: a metabolic or an inflammatory effect?

    PubMed

    Borbon, Ivan; Campbell, Erin; Ke, Wangjing; Erickson, Robert P

    2012-08-01

    We have previously shown that decreased dosage of Niemann-Pick C1 (Npc1) protein, caused by heterozygosity at the null mutation, Npc1 (nih), locus, causes altered lipid metabolism in mice. When studied on the "lean" BALB/cJ genetic background, the decreased protein was associated with no weight changes in either males or females when on a regular diet but increased weights and adiposity when on a high fat diet Jelinek et al. (Obesity 18: 1457-1459, 2010, Gene 491:128-134, 2012). When the heterozygotes were studied on a mixed C57BL/6J, BALB/cJ background, increased weight and adiposity were also found on a regular diet (sexes pooled Jelinek et al. [Hum Molec Genet 20:312-321, 2011]). We find somewhat different results when the hypomorphic Npc1 mutation, Npc1 (nmf164), is studied on a pure C57BL/6J, "metabolic syndrome" genetic background with male, but not female, heterozygotes having lower weights on the regular diet. The result does not seem to be due to the difference in the two mutations as heterozygous Npc1 (nmf164) mice on the BALB/cJ background acted like the null mutant heterozygotes. Studies of glucose tolerance, liver enzymes, liver triglycerides and fat deposition, and adipose tissue caveolin 1 levels did not disclose reasons for these differing results.

  5. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    USDA-ARS?s Scientific Manuscript database

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  6. Common Genetic and Nonshared Environmental Factors Contribute to the Association between Socioemotional Dispositions and the Externalizing Factor in Children

    ERIC Educational Resources Information Center

    Taylor, Jeanette; Allan, Nicholas; Mikolajewski, Amy J.; Hart, Sara A.

    2013-01-01

    Background: Childhood behavioral disorders including conduct disorder (CD), oppositional defiant disorder (ODD), and attention-deficit/hyperactivity disorder (ADHD) often co-occur. Prior twin research shows that common sets of genetic and environmental factors are associated with these various disorders and they form a latent factor called…

  7. Physical activity attenuates the effect of the FTO genotype on obesity-related traits in European adults: Findings from the Food4Me study

    USDA-ARS?s Scientific Manuscript database

    Background. The FTO gene harbours the strongest known susceptibility locus for obesity. Studies of the interaction between genetic and environmental factors such as physical activity (PA) could contribute to the understanding of how lifestyle can modulate genetic susceptibility to obesity. In this s...

  8. CYP2D60 and Clinical Response to Atomoxetine in Children and Adolescents with ADHD

    ERIC Educational Resources Information Center

    Michelson, David; Read, Holly A.; Ruff, Dustin D.; Witcher, Jennifer; Zhang, Shuyu; McCracken, James

    2007-01-01

    Background: Atomoxetine, a selective norepinephrine reuptake inhibitor effective in the treatment of attention-deficit/hyperactivity disorder (ADHD), is metabolized through the cytochrome P-450 2D6 (CYP2D6) enzyme pathway, which is genetically polymorphic in humans. Variations in plasma atomoxetine exposures can occur because of genetic variation…

  9. The Genetic Background of Neonatal Disease.

    PubMed

    Göpel, Wolfgang; Westermann, Eva; Pagel, Friederike

    2018-01-01

    More than 27,000 human genes have been sequenced and described. Only a few of these genes are relevant for common human diseases with regard to diagnostic or therapeutic purposes. This review describes the genetics of common traits and diseases with a particular focus on perspectives for drug discovery and drug therapy in neonates. © 2018 S. Karger AG, Basel.

  10. The Integrative Studies of Genetic and Environmental Factors in Systemic Sclerosis

    DTIC Science & Technology

    2008-05-01

    15. SUBJECT TERMS Scleroderma (SSc), fibroblasts, fibrosis, silica, environmental particles, susceptibility. 16. SECURITY CLASSIFICATION OF...factors in a viable system - human fibroblasts. Fibroblasts with a scleroderma (SSc) susceptible genetic background may be more vulnerable to...for understanding environmental contributions to fibrosing diseases such as scleroderma (SSc). Third, in the studies of specific biological

  11. Gregor Mendel's classic paper and the nature of science in genetics courses.

    PubMed

    Westerlund, Julie F; Fairbanks, Daniel J

    2010-12-01

    The discoveries of Gregor Mendel, as described by Mendel in his 1866 paper Versuche uber Pflanzen-Hybriden (Experiments on plant hybrids), can be used in undergraduate genetics and biology courses to engage students about specific nature of science characteristics and their relationship to four of his major contributions to genetics. The use of primary source literature as an instructional tool to enhance genetics students' understanding of the nature of science helps students more clearly understand how scientists work and how the science of genetics has evolved as a discipline. We offer a historical background of how the nature of science developed as a concept and show how Mendel's investigations of heredity can enrich biology and genetics courses by exemplifying the nature of science. © 2010 The Authors.

  12. Genetic Determinants of Parkinson's Disease: Can They Help to Stratify the Patients Based on the Underlying Molecular Defect?

    PubMed Central

    Redenšek, Sara; Trošt, Maja; Dolžan, Vita

    2017-01-01

    Parkinson's disease (PD) is a sporadic progressive neurodegenerative brain disorder with a relatively strong genetic background. We have reviewed the current literature about the genetic factors that could be indicative of pathophysiological pathways of PD and their applications in everyday clinical practice. Information on novel risk genes is coming from several genome-wide association studies (GWASs) and their meta-analyses. GWASs that have been performed so far enabled the identification of 24 loci as PD risk factors. These loci take part in numerous cellular processes that may contribute to PD pathology: protein aggregation, protein, and membrane trafficking, lysosomal autophagy, immune response, synaptic function, endocytosis, inflammation, and metabolic pathways are among the most important ones. The identified single nucleotide polymorphisms are usually located in the non-coding regions and their functionality remains to be determined, although they presumably influence gene expression. It is important to be aware of a very low contribution of a single genetic risk factor to PD development; therefore, novel prognostic indices need to account for the cumulative nature of genetic risk factors. A better understanding of PD pathophysiology and its genetic background will help to elucidate the underlying pathological processes. Such knowledge may help physicians to recognize subjects with the highest risk for the development of PD, and provide an opportunity for the identification of novel potential targets for neuroprotective treatment. Moreover, it may enable stratification of the PD patients according to their genetic fingerprint to properly personalize their treatment as well as supportive measures. PMID:28239348

  13. A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

    PubMed Central

    Dunlop, Malcolm G.; Houlston, Richard S.; Tomlinson, Ian P.; Holmes, Chris C.

    2012-01-01

    Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into “ancestry groups” and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions. PMID:23236349

  14. Predominant effect of host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut.

    PubMed

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Kashi, Yechezkel

    2011-09-01

    The gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines. Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, the L. johnsonii level decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance of L. johnsonii levels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similar L. johnsonii levels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence of L. johnsonii in the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach.

  15. Cardiac Teratogenicity in Mouse Maternal Phenylketonuria: Defining phenotype parameters and genetic background influences

    PubMed Central

    Seagraves, Nikki J.; McBride, Kim L.

    2012-01-01

    Maternal phenylketonuria (MPKU) is a syndrome including cardiovascular malformations (CVMs), microcephaly, intellectual impairment, and small for gestational age, caused by in-utero exposure to elevated serum phenylalanine (Phe) due to PKU in the mother. It is becoming a public health concern as more women with PKU reach child bearing age. Although a mouse model of PKU, BTBR Pahenu2, has been available for 20 years, it has not been well utilized for studying MPKU. We used this model to delineate critical parameters in Phe cardiovascular teratogenicity and study the effect of genetic background. Dosing and timing experiments were performed with the BTBR Pahenu2 mouse. A dose response curve was noted, with CVM rates at maternal serum Phe levels <360 μM (control), 360 – 600 μM (low), 600 – 900 μM (mid), and >900μM (high) of 11.86%, 16.67%, 30.86%, and 46.67% respectively. A variety of CVMs were noted on the BTBR background, including double outlet right ventricle (DORV), aortic arch artery (AAA)abnormalities, and ventricular septal defects (VSDs). Timed exposure experiments identified a teratogenic window from embryonic day 8.5-13.5, with higher rates of conotruncal and valve defects occurring in early exposure time and persistent truncus arteriosus (PTA) and aortic arch branching abnormalities occurring with late exposure. Compared to the BTBR strain, N10+ Pahenu2 congenics on the C3H/HeJ background had higher rates of CVMs in general and propensity to left ventricular outflow tract (LVOT) malformations, while the C57B/L6 background had similar CVM rates but predominately AAA abnormalities. We have delineated key parameters of Phe cardiovascular teratogenicity, demonstrated the utility of this MPKU model on different mouse strains, and shown how genetic background profoundly affects the phenotype. PMID:22951387

  16. The heterogeneous HLA genetic makeup of the Swiss population.

    PubMed

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also indicates that HLA data of local donor recruitment centers can be used as reference data in both epidemiological and population genetic studies focusing on the genetic history of present European populations.

  17. Genetic progression of malignant melanoma.

    PubMed

    Tímár, J; Vizkeleti, L; Doma, V; Barbai, T; Rásó, E

    2016-03-01

    Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the possible organ-specific metastatic drivers in melanoma. These observations suggest that clinical management of melanoma patients must rely on the genetic analysis of the metastatic lesions to be able to monitor progression-associated changes and to personalize therapies.

  18. The Heterogeneous HLA Genetic Makeup of the Swiss Population

    PubMed Central

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9–13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national—and hence global—donor registry. It also indicates that HLA data of local donor recruitment centers can be used as reference data in both epidemiological and population genetic studies focusing on the genetic history of present European populations. PMID:22848484

  19. Coalescence with Background and Balancing Selection in Systems with Bi- and Uniparental Reproduction: Contrasting Partial Asexuality and Selfing.

    PubMed

    Agrawal, Aneil F; Hartfield, Matthew

    2016-01-01

    Uniparental reproduction in diploids, via asexual reproduction or selfing, reduces the independence with which separate loci are transmitted across generations. This is expected to increase the extent to which a neutral marker is affected by selection elsewhere in the genome. Such effects have previously been quantified in coalescent models involving selfing. Here we examine the effects of background selection and balancing selection in diploids capable of both sexual and asexual reproduction (i.e., partial asexuality). We find that the effect of background selection on reducing coalescent time (and effective population size) can be orders of magnitude greater when rates of sex are low than when sex is common. This is because asexuality enhances the effects of background selection through both a recombination effect and a segregation effect. We show that there are several reasons that the strength of background selection differs between systems with partial asexuality and those with comparable levels of uniparental reproduction via selfing. Expectations for reductions in Ne via background selection have been verified using stochastic simulations. In contrast to background selection, balancing selection increases the coalescence time for a linked neutral site. With partial asexuality, the effect of balancing selection is somewhat dependent upon the mode of selection (e.g., heterozygote advantage vs. negative frequency-dependent selection) in a manner that does not apply to selfing. This is because the frequency of heterozygotes, which are required for recombination onto alternative genetic backgrounds, is more dependent on the pattern of selection with partial asexuality than with selfing. Copyright © 2016 by the Genetics Society of America.

  20. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  1. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype.

    PubMed

    Schuster-Gossler, K; Simon-Chazottes, D; Guenet, J L; Zachgo, J; Gossler, A

    1996-01-01

    We have produced a transgenic mouse line, Gtl2lacZ (Gene trap locus 2), that carries an insertional mutation with a dominant modified pattern of inheritance:heterozygous Gtl2lacZ mice that inherited the transgene from the father show a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype is strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. On a mixed genetic background this pattern of inheritance was reversible upon transmission of the transgene through the germ line of the opposite sex. On a predominantly 129/Sv genetic background, however, transgene passage through the female germ line modified the transgene effect, such that the penetrance of the mutation was drastically reduced and the phenotype was no longer obvious after subsequent male germ line transmission. Expression of the transgene, however, was neither affected by genetic background nor by parental legacy. Gtl2lacZ maps to mouse Chromosome 12 in a region that displays imprinting effects associated with maternal and paternal disomy. Our results suggest that the transgene insertion in Gtl2lacZ mice affects an endogenous gene(s) required for fetal and postnatal growth and that this gene(s) is predominantly paternally expressed.

  2. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds.

    PubMed

    Petkau, T L; Hill, A; Leavitt, B R

    2016-02-19

    Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Grandmothers as gems of genetic wisdom: exploring South African traditional beliefs about the causes of childhood genetic disorders.

    PubMed

    Penn, Claire; Watermeyer, Jennifer; MacDonald, Carol; Moabelo, Colleen

    2010-02-01

    With its diverse cultural and linguistic profile, South Africa provides a unique context to explore contextual influences on the process of genetic counseling. Prior research suggests intergenerational differences regarding models of causation which influence treatment-seeking paths. This pilot study therefore aimed to explore South African traditional beliefs regarding common childhood genetic disorders. Three focus groups were conducted with fifteen grandmothers from different cultural backgrounds in an urban community. Questions pertained to the role of the grandmother, traditional beliefs regarding causes of genetic disorders, explanations of heredity, and prevention and management of genetic disorders. Results indicate a variety of cultural explanations for causes of childhood genetic disorders. These causes can be classified into categories related to lifestyle, behavior, social issues, culture, religion, genetic, and familial causes. Prevention and treatment issues are also highlighted. These findings have implications for genetic counseling practice, which needs to include a greater focus on cultural issues.

  4. Hemiclonal analysis of interacting phenotypes in male and female Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create “hemiclonal” males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes. Using this approach, we were able to quantify the genetic contribution of each mate to the observed phenotypic variation in biologically important traits including mating speed, copulation duration, and subsequent offspring production, as well as measure the magnitude and direction of intersexual genetic correlation between female choosiness and male attractiveness. Results We found significant additive genetic variation contributing to mating speed that can be attributed to male genetic identity, female genetic identity, but not their interaction. Furthermore we found that phenotypic variation in copulation duration had a significant male-associated genetic component. Female genetic identity and the interaction between male and female genetic identity accounted for a substantial amount of the observed phenotypic variation in egg size. Although previous research predicts a trade-off between egg size and fecundity, this was not evident in our results. We found a strong negative genetic correlation between female choosiness and male attractiveness, a result that suggests a potentially important role for sexually antagonistic alleles in sexual selection processes in our population. Conclusion These results further our understanding of sexual selection because they identify that genetic identity plays a significant role in phenotypic variation in female behaviour and fecundity. This variation may be potentially due to ongoing sexual conflict found between the sexes for interacting phenotypes. Our unexpected observation of a negative correlation between female choosiness and male attractiveness highlights the need for more explicit theoretical models of genetic covariance to investigate the coevolution of female choosiness and male attractiveness. PMID:24884361

  5. Insights into the genetics of gastroesophageal reflux disease (GERD) and GERD-related disorders.

    PubMed

    Böhmer, A C; Schumacher, J

    2017-02-01

    Gastroesophageal reflux disease (GERD) is associated with obesity and hiatal hernia, and often precedes the development of Barrett's esophagus (BE) and esophageal adenocarcinoma (EA). Epidemiological studies show that the global prevalence of GERD is increasing. GERD is a multifactorial disease with a complex genetic architecture. Genome-wide association studies (GWAS) have provided initial insights into the genetic background of GERD. The present review summarizes current knowledge of the genetics of GERD and a possible genetic overlap between GERD and BE and EA. The review discusses genes and cellular pathways that have been implicated through GWAS, and provides an outlook on how future molecular research will enhance understanding of GERD pathophysiology. © 2017 John Wiley & Sons Ltd.

  6. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat

    USDA-ARS?s Scientific Manuscript database

    Background: Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity. Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK (Ug99) is virulent to most previously deployed resistance genes. Therefo...

  7. Prediction/Discussion-Based Learning Cycle versus Conceptual Change Text: Comparative Effects on Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Al khawaldeh, Salem A.

    2013-01-01

    Background and Purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of…

  8. Genetic and Environmental Influences on Socio-Emotional Behavior in Toddlers: An Initial Twin Study of the Infant-Toddler Social and Emotional Assessment

    ERIC Educational Resources Information Center

    Van Hulle, C. A.; Lemery-Chalfant, K.; Goldsmith, H. H.

    2007-01-01

    Background: Relatively little is known about the genetic architecture of childhood behavioral disorders in very young children. Method: In this study, parents completed the Infant-Toddler Social and Emotional Assessment, a questionnaire that assesses symptoms of childhood disorders, as well as socio-emotional competencies, for 822 twin pairs…

  9. Registration of soybean germplasm line DB0638-70 with high yield potential and diverse genetic background

    USDA-ARS?s Scientific Manuscript database

    The release of soybean [Glycine max (L.) Merr.] germplasm line ‘DB0638-70’ is part of an effort to broaden the genetic base of soybean germplasm in North American soybean breeding programs. DB0638-70 was developed and released by the U.S. Department of Agriculture-Agricultural Research Service, Ston...

  10. Bivariate Linkage Scan for Reading Disability and Attention-Deficit/Hyperactivity Disorder Localizes Pleiotropic Loci

    ERIC Educational Resources Information Center

    Gayan, J.; Willcutt, E. G.; Fisher, S. E.; Francks, C.; Cardon, L. R.; Olson, R. K.; Pennington, B. F.; Smith, S. D.; Monaco, A. P.; DeFries, J. C.

    2005-01-01

    Background: There is a growing interest in the study of the genetic origins of comorbidity, a direct consequence of the recent findings of genetic loci that are seemingly linked to more than one disorder. There are several potential causes for these shared regions of linkage, but one possibility is that these loci may harbor genes with manifold…

  11. In Search of Genes Associated with Risk for Psychopathic Tendencies in Children: A Two-Stage Genome-Wide Association Study of Pooled DNA

    ERIC Educational Resources Information Center

    Viding, Essi; Hanscombe, Ken B.; Curtis, Charles J. C.; Davis, Oliver S. P.; Meaburn, Emma L.; Plomin, Robert

    2010-01-01

    Background: Quantitative genetic data from our group indicates that antisocial behaviour (AB) is strongly heritable when coupled with psychopathic, callous-unemotional (CU) personality traits. We have also demonstrated that the genetic influences for AB and CU overlap considerably. We conducted a genome-wide association scan that capitalises on…

  12. Caregiver and Adult Patient Perspectives on the Importance of a Diagnosis of 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Costain, G.; Chow, E. W. C.; Ray, P. N.; Bassett, A. S.

    2012-01-01

    Background: Recent advances in genetics are particularly relevant in the field of intellectual disability (ID), where sub-microscopic deletions or duplications of genetic material are increasingly implicated as known or suspected causal factors. Data-driven reports on the impact of providing an aetiological explanation in ID are needed to help…

  13. Improving the Health and Well-Being of Adults with Conditions of a Genetic Origin: "Views from Professionals, Syndrome Support Groups and Parents"

    ERIC Educational Resources Information Center

    Redley, Marcus; Pannebakker, Merel; Holland, Anthony

    2018-01-01

    Background: Advances in medical genetics herald the possibility that health and social care services could be more responsive to the needs arising from a person's genotype. This development may be particularly important for those men and women whose learning disability (known internationally as intellectual disability) is linked to a…

  14. The Relationship between Compulsive Behaviour and Academic Achievement across the Three Genetic Subtypes of Prader-Willi Syndrome

    ERIC Educational Resources Information Center

    Zarcone, J.; Napolitano, D.; Peterson, C.; Breidbord, J.; Ferraioli, S.; Caruso-Anderson, M.; Holsen, L.; Butler, M. G.; Thompson, T.

    2007-01-01

    Background: Prader-Willi syndrome (PWS) is a genetic syndrome associated with several physical, cognitive and behavioural characteristics. For many individuals with this syndrome, compulsive behaviour is often noted in both food and non-food situations. The focus of this paper is on the non-food-related compulsions in individuals with PWS and…

  15. The Physiological Effects of Deleting the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Are Influenced by Gender and Genetic Background

    PubMed Central

    Pound, Lynley D.; Sarkar, Suparna A.; Ustione, Alessandro; Dadi, Prasanna K.; Shadoan, Melanie K.; Lee, Catherine E.; Walters, Jay A.; Shiota, Masakazu; McGuinness, Owen P.; Jacobson, David A.; Piston, David W.; Hutton, John C.; Powell, David R.; O’Brien, Richard M.

    2012-01-01

    Objective The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J genetic background of the mice studied. We therefore sought to remove the conflicting effect of 129SvEv-specific modifier genes. Methods The impact of Slc30a8 deletion was examined in the context of the pure C57BL/6J genetic background. Results Male C57BL/6J Slc30a8 knockout (KO) mice had normal fasting insulin levels and no change in glucose-stimulated insulin secretion (GSIS) from isolated islets in marked contrast to the ∼50% and ∼35% decrease, respectively, in both parameters observed in male mixed genetic background Slc30a8 KO mice. This observation suggests that 129SvEv-specific modifier genes modulate the impact of Slc30a8 deletion. In contrast, female C57BL/6J Slc30a8 KO mice had reduced (∼20%) fasting insulin levels, though this was not associated with a change in fasting blood glucose (FBG), or GSIS from isolated islets. This observation indicates that gender also modulates the impact of Slc30a8 deletion, though the physiological explanation as to why impaired insulin secretion is not accompanied by elevated FBG is unclear. Neither male nor female C57BL/6J Slc30a8 KO mice showed impaired glucose tolerance. Conclusions Our data suggest that, despite a marked reduction in islet zinc content, the absence of ZnT-8 does not have a substantial impact on mouse physiology. PMID:22829903

  16. Genetic Background Has a Major Impact on Differences in Sleep Resulting from Environmental Influences in Drosophila

    PubMed Central

    Zimmerman, John E.; Chan, May T.; Jackson, Nicholas; Maislin, Greg; Pack, Allan I.

    2012-01-01

    Study Objectives: To determine the effect of different genetic backgrounds on demographic and environmental interventions that affect sleep and evaluate variance of these measures; and to evaluate sleep and variance of sleep behaviors in 6 divergent laboratory strains of common origin. Design: Assessment of the effects of age, sex, mating status, food sources, and social experience using video analysis of sleep behavior in 2 different strains of Drosophila, white1118ex (w1118ex) and white Canton-S (wCS10). Sleep was also determined for 6 laboratory strains of Canton-S and 3 inbred lines. The variance of total sleep was determined for all groups and conditions. Measurements and Results: The circadian periods and the effects of age upon sleep were the same between w1118ex and wCS10 strains. However, the w1118ex and wCS10 strains demonstrated genotype-dependent differences in the effects upon sleep of sex, mating status, social experience, and being on different foods. Variance of total sleep was found to differ in a genotype dependent manner for interventions between the w1118ex and wCS10 strains. Six different laboratory Canton-S strains were found to have significantly different circadian periods (P < 0.001) and sleep phenotypes (P < 0.001). Three inbred lines showed reduced variance for sleep measurements. Conclusions: One must control environmental conditions in a rigorously consistent manner to ensure that sleep data may be compared between experiments. Genetic background has a significant impact upon changes in sleep behavior and variance of behavior due to demographic factors and environmental interventions. This represents an opportunity to discover new genes that modify sleep/wake behavior. Citation: Zimmerman JE; Chan MT; Jackson N; Maislin G; Pack AI. Genetic background has a major impact on differences in sleep resulting from environmental influences in Drosophila. SLEEP 2012;35(4):545-557. PMID:22467993

  17. A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry

    PubMed Central

    Bakken, Trygve E.; Dale, Anders M.; Schork, Nicholas J.

    2011-01-01

    Background Human skull and brain morphology are strongly influenced by genetic factors, and skull size and shape vary worldwide. However, the relationship between specific brain morphology and genetically-determined ancestry is largely unknown. Methods We used two independent data sets to characterize variation in skull and brain morphology among individuals of European ancestry. The first data set is a historical sample of 1,170 male skulls with 37 shape measurements drawn from 27 European populations. The second data set includes 626 North American individuals of European ancestry participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with magnetic resonance imaging, height and weight, neurological diagnosis, and genome-wide single nucleotide polymorphism (SNP) data. Results We found that both skull and brain morphological variation exhibit a population-genetic fingerprint among individuals of European ancestry. This fingerprint shows a Northwest to Southeast gradient, is independent of body size, and involves frontotemporal cortical regions. Conclusion Our findings are consistent with prior evidence for gene flow in Europe due to historical population movements and indicate that genetic background should be considered in studies seeking to identify genes involved in human cortical development and neuropsychiatric disease. PMID:21849792

  18. Genetic Doping and Health Damages

    PubMed Central

    Fallahi, AA; Ravasi, AA; Farhud, DD

    2011-01-01

    Background: Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as “the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ”. The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. Methods: This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. Conclusion: There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack. PMID:23113049

  19. Functional annotation of chemical libraries across diverse biological processes.

    PubMed

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  20. Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans.

    PubMed

    Palomeque, Laura; Liu, Li-Jun; Li, Wenbin; Hedges, Bradley R; Cober, Elroy R; Smid, Mathew P; Lukens, Lewis; Rajcan, Istvan

    2010-03-01

    The value of quantitative trait loci (QTL) is dependent on the strength of association with the traits of interest, allelic diversity at the QTL and the effect of the genetic background on the expression of the QTL. A number of recent studies have identified QTL associated with traits of interest that appear to be independent of the environment but dependent on the genetic background in which they are found. Therefore, the objective of this study was to validate universal and/or mega-environment-specific seed yield QTL that have been previously reported in an independent recombinant inbred line (RIL) population derived from the cross between an elite Chinese and Canadian parent. The population was evaluated at two field environments in China and in five environments in Canada in 2005 and 2006. Of the seven markers linked to seed yield QTL reported by our group in a previous study, four were polymorphic between the two parents. No association between seed yield and QTL was observed. The result could imply that seed yield QTL were either not stable in this particular genetic background or harboured different alleles than the ones in the original mapping population. QTL(U) Satt162 was associated with several agronomic traits of which lodging was validated. Both the non-adapted and adapted parent contributed favourable alleles to the progeny. Therefore, plant introductions have been validated as a source of favourable alleles that could increase the genetic variability of the soybean germplasm pool and lead to further improvements in seed yield and other agronomic traits.

  1. Multiple Genetic Backgrounds of the Amplified Plasmodium falciparum Multidrug Resistance (pfmdr1) Gene and Selective Sweep of 184F Mutation in Cambodia

    PubMed Central

    Vinayak, Sumiti; Alam, Md Tauqeer; Sem, Rithy; Shah, Naman K.; Susanti, Augustina I.; Lim, Pharath; Muth, Sinuon; Maguire, Jason D.; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam

    2011-01-01

    Background The emergence of artesunate-mefloquine (AS+MQ)–resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. Methods We characterized 13 microsatellite loci flanking (± 99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. Results Genetic analysis revealed no difference in the mean (± standard deviation) expected heterozygosity (He) at loci around single (0.75 ± 0.03) and multiple (0.76 ± 0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean He (± SD) around mutant allele (0.56 ± 0.05), compared with wild-type allele (0.84 ± 0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. Conclusion The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds. PMID:20367478

  2. RNA Editing Genes Associated with Extreme Old Age in Humans and with Lifespan in C. elegans

    PubMed Central

    Puca, Annibale; Solovieff, Nadia; Kojima, Toshio; Wang, Meng C.; Melista, Efthymia; Meltzer, Micah; Fischer, Sylvia E. J.; Andersen, Stacy; Hartley, Stephen H.; Sedgewick, Amanda; Arai, Yasumichi; Bergman, Aviv; Barzilai, Nir; Terry, Dellara F.; Riva, Alberto; Anselmi, Chiara Viviani; Malovini, Alberto; Kitamoto, Aya; Sawabe, Motoji; Arai, Tomio; Gondo, Yasuyuki; Steinberg, Martin H.; Hirose, Nobuyoshi; Atzmon, Gil; Ruvkun, Gary; Baldwin, Clinton T.; Perls, Thomas T.

    2009-01-01

    Background The strong familiality of living to extreme ages suggests that human longevity is genetically regulated. The majority of genes found thus far to be associated with longevity primarily function in lipoprotein metabolism and insulin/IGF-1 signaling. There are likely many more genetic modifiers of human longevity that remain to be discovered. Methodology/Principal Findings Here, we first show that 18 single nucleotide polymorphisms (SNPs) in the RNA editing genes ADARB1 and ADARB2 are associated with extreme old age in a U.S. based study of centenarians, the New England Centenarian Study. We describe replications of these findings in three independently conducted centenarian studies with different genetic backgrounds (Italian, Ashkenazi Jewish and Japanese) that collectively support an association of ADARB1 and ADARB2 with longevity. Some SNPs in ADARB2 replicate consistently in the four populations and suggest a strong effect that is independent of the different genetic backgrounds and environments. To evaluate the functional association of these genes with lifespan, we demonstrate that inactivation of their orthologues adr-1 and adr-2 in C. elegans reduces median survival by 50%. We further demonstrate that inactivation of the argonaute gene, rde-1, a critical regulator of RNA interference, completely restores lifespan to normal levels in the context of adr-1 and adr-2 loss of function. Conclusions/Significance Our results suggest that RNA editors may be an important regulator of aging in humans and that, when evaluated in C. elegans, this pathway may interact with the RNA interference machinery to regulate lifespan. PMID:20011587

  3. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    PubMed

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  5. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    PubMed Central

    Drapeau, Elodie; Dorr, Nate P.; Elder, Gregory A.; Buxbaum, Joseph D.

    2014-01-01

    Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent. PMID:24652766

  6. Understanding epigenetics of schizophrenia in the backdrop of its antipsychotic drug therapy.

    PubMed

    Swathy, Babu; Banerjee, Moinak

    2017-05-01

    The diatheses of gene and environment interaction in schizophrenia (SCZ) are becoming increasingly evident. Genetic and epigenetic backgrounds are being considered in stratifying and addressing phenotypic variation and drug response in SCZ. But how much of these epigenetic alterations are the primary contributing factor, toward disease pathogenesis and drug response, needs further clarity. Evidence indicates that antipsychotic drugs can also alter the epigenetic homeostasis thereby inducing pharmacoepigenomic effects. We re-examine the context of epigenetics in disease pathogenesis and antipsychotic drug therapy in SCZ to understand how much of these observations act as real indicators of the disease or therapeutic response. We propose that epigenetic viewpoint in SCZ needs to be critically examined under the genetic, epigenetic and pharmacoepigenetic background.

  7. Genetic variants associated with fetal hemoglobin levels show the diverse ethnic origin in Colombian patients with sickle cell anemia.

    PubMed

    Fong, Cristian; Menzel, Stephan; Lizarralde, María Alejandra; Barreto, Guillermo

    2015-01-01

    Fetal hemoglobin is an important factor in modulating the severity of sickle cell anemia. Its level in peripheral blood underlies strong genetic determination. Associated loci with increased levels of fetal hemoglobin display population-specific allele frequencies. We investigated the presence and effect of known common genetic variants promoting fetal hemoglobin persistence (rs11886868, rs9399137, rs4895441, and rs7482144) in 60 Colombian patients with sickle cell anemia. Four single nucleotide polymorphisms (SNP) were genotyped by restriction fragment length polymorphisms (RFLP) and the use of the TaqMan procedure. Fetal hemoglobin (HbF) from these patients was quantified using the oxyhemoglobin alkaline denaturation technique. Genotype frequencies were compared with frequencies reported in global reference populations. We detected genetic variants in the four SNPs, reported to be associated with higher HbF levels for all four SNPs in the Colombian patients. Genetic association between SNPs and HbF levels did not reach statistical significance. The frequency of these variants reflected the specific ethnic make-up of our patient population: A high prevalence of rs7482144-'A' reflects the West-African origin of the sickle cell mutation, while high frequencies of rs4895441-'G' and rs11886868-'C' point to a significant influence of an Amerindian ethnic background in the Colombian sickle cell disease population. These results showed that in the sickle cell disease population in Colombia there is not a unique genetic background, but two (African and Amerindian). This unique genetic situation will provide opportunities for a further study of these loci, such as fine-mapping and molecular-biological investigation. Colombian patients are expected to yield a distinctive insight into the effect of modifier loci in sickle cell disease.

  8. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata).

    PubMed

    Trucchi, Emiliano; Sbordoni, Valerio

    2009-05-18

    Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata) populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot) did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a simple demographic exponential growth from a single propagule seems to have characterized this long-term invasion.

  9. Predominant Effect of Host Genetics on Levels of Lactobacillus johnsonii Bacteria in the Mouse Gut▿†

    PubMed Central

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Kashi, Yechezkel

    2011-01-01

    The gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines. Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, the L. johnsonii level decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance of L. johnsonii levels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similar L. johnsonii levels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence of L. johnsonii in the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach. PMID:21803912

  10. [Practical guidelines for genetic testing in cardiovascular diseases].

    PubMed

    Reinhard, W; Trenkwalder, T; Schunkert, H

    2017-08-01

    In the last decade, genetic testing for cardiovascular disorders has become more and more relevant. Progress in molecular genetics has led to new opportunities for diagnostics, improved risk prediction and could lead to novel therapeutic approaches. Genetic diagnostic testing is relevant for both confirming a diagnosis as well as deciding on therapeutic consequences, if applicable. Furthermore, predictive testing in family members for specific cardiovascular diseases is now a standard procedure in holistic patient management. The process of genetic testing as well as documentation requirements and discussion of test results with patients are subject to legal regulations. These regulations might be confusing for clinical practitioners/cardiologists. The aim of this article is to provide a clinical framework for genetic testing. First, we explain the legal and ethical background. Second, we illustrate the process of genetic testing step by step and present updates on remuneration. Finally, we discuss the significance of genetic testing and specific disease indications in cardiology.

  11. Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    PubMed Central

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939

  12. Genetics of Movement Disorders and the Practicing Clinician; Who and What to Test for?

    PubMed

    Di Fonzo, Alessio; Monfrini, Edoardo; Erro, Roberto

    2018-05-23

    This review aims to provide the basic knowledge on the genetics of hypokinetic and hyperkinetic movement disorders to guide clinicians in the decision of "who and what to test for?" In recent years, the identification of various genetic causes of hypokinetic and hyperkinetic movement disorders has had a great impact on a better definition of different clinical syndromes. Indeed, the advent of next-generation sequencing (NGS) techniques has provided an impressive step forward in the easy identification of genetic forms. However, this increased availability of genetic testing has challenges, including the ethical issue of genetic testing in unaffected family members, "commercially" available home testing kits and the increasing number and relevance of "variants of unknown significance." The emergent role of genetic factors has important implications on clinical practice and counseling. As a consequence, it is fundamental that practicing neurologists have a proper knowledge of the genetic background of the diseases and perform an accurate selection of who has to be tested and for which gene mutations.

  13. Longitudinal Profiles of Expressive Vocabulary, Syntax and Pragmatic Language in Boys with Fragile X Syndrome or Down Syndrome

    ERIC Educational Resources Information Center

    Martin, Gary E.; Losh, Molly; Estigarribia, Bruno; Sideris, John; Roberts, Joanne

    2013-01-01

    Background: Fragile X syndrome (FXS) and Down syndrome (DS) are the two leading genetic causes of intellectual disability, and FXS is the most common known genetic condition associated with autism. Both FXS and DS are associated with significant language impairment, but little is known about expressive language across domains over time or the role…

  14. Effects of Familial Risk Factors and Place of Birth on the Risk of Autism: A Nationwide Register-Based Study

    ERIC Educational Resources Information Center

    Lauritsen, Marlene Briciet; Pedersen, Carsten Bocker; Mortensen, Preben Bo

    2005-01-01

    Background: The etiology of autism is unknown. A strong genetic component has been detected but non-genetic factors may also be involved in the etiology. Methods: We used data from the Danish Psychiatric Central Register and the Danish Civil Registration System to study some risk factors of autism, including place of birth, parental place of…

  15. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome

    PubMed Central

    Kamiyoshi, Naohiro; Fu, Xue Jun; Morisada, Naoya; Nozu, Yoshimi; Ye, Ming Juan; Imafuku, Aya; Miura, Kenichiro; Yamamura, Tomohiko; Minamikawa, Shogo; Shono, Akemi; Ninchoji, Takeshi; Morioka, Ichiro; Nakanishi, Koichi; Yoshikawa, Norishige; Kaito, Hiroshi; Iijima, Kazumoto

    2016-01-01

    Background and objectives Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. Design, setting, participants, & measurements We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport–related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. Results The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte–related genes. Conclusions The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X–linked Alport syndrome in men. It may, thus, be difficult to make an accurate diagnosis of autosomal dominant Alport syndrome on the basis of clinical or pathologic findings. No modifier genes were identified among the known podocyte–related genes. PMID:27281700

  16. Calculating expected DNA remnants from ancient founding events in human population genetics

    PubMed Central

    Stacey, Andrew; Sheffield, Nathan C; Crandall, Keith A

    2008-01-01

    Background Recent advancements in sequencing and computational technologies have led to rapid generation and analysis of high quality genetic data. Such genetic data have achieved wide acceptance in studies of historic human population origins and admixture. However, in studies relating to small, recent admixture events, genetic factors such as historic population sizes, genetic drift, and mutation can have pronounced effects on data reliability and utility. To address these issues we conducted genetic simulations targeting influential genetic parameters in admixed populations. Results We performed a series of simulations, adjusting variable values to assess the affect of these genetic parameters on current human population studies and what these studies infer about past population structure. Final mean allele frequencies varied from 0.0005 to over 0.50, depending on the parameters. Conclusion The results of the simulations illustrate that, while genetic data may be sensitive and powerful in large genetic studies, caution must be used when applying genetic information to small, recent admixture events. For some parameter sets, genetic data will not be adequate to detect historic admixture. In such cases, studies should consider anthropologic, archeological, and linguistic data where possible. PMID:18928554

  17. Ethnic Background and Genetic Variation in the Evaluation of Cancer Risk: A Systematic Review

    PubMed Central

    Jing, Lijun; Su, Li; Ring, Brian Z.

    2014-01-01

    The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort’s ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be studied and employed. PMID:24901479

  18. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean.

    PubMed

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may control frost tolerance genes. The two genetic backgrounds were useful in detecting new variation for improving frost tolerance in winter faba bean. Of the five validated SNP markers, one (VF_Mt3g086600) was found to be associated with frost tolerance and FAC in both populations. This marker was also associated with winter hardiness and high yield in earlier studies. This marker is located in a gene of unknown function.

  19. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean

    PubMed Central

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may control frost tolerance genes. The two genetic backgrounds were useful in detecting new variation for improving frost tolerance in winter faba bean. Of the five validated SNP markers, one (VF_Mt3g086600) was found to be associated with frost tolerance and FAC in both populations. This marker was also associated with winter hardiness and high yield in earlier studies. This marker is located in a gene of unknown function. PMID:27540381

  20. Genetic and environmental origins of obesity relevant to reproduction.

    PubMed

    Franks, Stephen

    2006-05-01

    Obesity has a negative impact on reproductive health, particularly in women with polycystic ovarian syndrome (PCOS). Obesity itself is the product of both genetic and environmental influences, although the current 'epidemic' of obesity is largely related to changes in diet and lifestyle. Single gene defects leading to obesity and disordered reproductive function are rare but can are informative about metabolic pathways involved in appetite regulation. There is good evidence that PCOS has an important genetic background, which probably involves the interaction of several genes. The phenotype of PCOS and its impact on reproductive function is profoundly affected by obesity, which, in turn has both genetic and environmental influences. Understanding the genetic basis of PCOS is important but improvements in diet and lifestyle are the best means of improving reproductive function.

  1. Population substructure in Cache County, Utah: the Cache County study

    PubMed Central

    2014-01-01

    Background Population stratification is a key concern for genetic association analyses. In addition, extreme homogeneity of ethnic origins of a population can make it difficult to interpret how genetic associations in that population may translate into other populations. Here we have evaluated the genetic substructure of samples from the Cache County study relative to the HapMap Reference populations and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Results Our findings show that the Cache County study is similar in ethnic diversity to the self-reported "Whites" in the ADNI sample and less homogenous than the HapMap CEU population. Conclusions We conclude that the Cache County study is genetically representative of the general European American population in the USA and is an appropriate population for conducting broadly applicable genetic studies. PMID:25078123

  2. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  3. Development and pilot evaluation of novel genetic educational materials designed for an underserved patient population.

    PubMed

    Lubitz, Rebecca Jean; Komaromy, Miriam; Crawford, Beth; Beattie, Mary; Lee, Robin; Luce, Judith; Ziegler, John

    2007-01-01

    Genetic counseling for BRCA1 and BRCA2 mutations involves teaching about hereditary cancer, genetics and risk, subjects that are difficult to grasp and are routinely misunderstood. Supported by a grant from the Avon Foundation, the UCSF Cancer Risk Program started the first genetic testing and counseling service for a population of traditionally underserved women of varied ethnic and social backgrounds at the San Francisco General Hospital (SFGH). Informed by educational theory and clinical experience, we devised and piloted two simplified explanations of heredity and genetic risk, with the aim of uncovering how to best communicate genetics and risk to this underserved population. A "conventional" version comprised pictures of genes, pedigrees, and quantitative representations of risk. A "colloquial" pictorial version used an analogy of the "information book" of genes, family stories and vignettes, and visual representations of risk, without using scientific words such as genes or chromosomes. A verbal narrative accompanied each picture. We presented these modules to four focus groups of five to eight women recruited from the SFGH Family Practice Clinic. Overall, women preferred a picture-based approach and commented that additional text would have been distracting. The majority of women preferred the colloquial version because it was easier to understand and better conveyed a sense of comfort and hope. We conclude that simplicity, analogies, and familiarity support comprehension while vignettes, family stories, and photos of real people provide comfort and hope. These elements may promote understanding of complex scientific topics in healthcare, particularly when communicating with patients who come from disadvantaged backgrounds.

  4. Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in Drosophila melanogaster

    PubMed Central

    Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.

    2016-01-01

    Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490

  5. Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets

    PubMed Central

    2013-01-01

    Background Both genetic background and finishing system can alter fat deposition, thus indicating their influence on adipogenic and lipogenic factors. However, the molecular mechanisms underlying fat deposition and fatty acid composition in beef cattle are not fully understood. This study aimed to assess the effect of breed and dietary silage level on the expression patterns of key genes controlling lipid metabolism in subcutaneous adipose tissue (SAT) and longissimus lumborum (LL) muscle of cattle. To that purpose, forty bulls from two genetically diverse Portuguese bovine breeds with distinct maturity rates, Alentejana and Barrosã, were selected and fed either low (30% maize silage/70% concentrate) or high silage (70% maize silage/30% concentrate) diets. Results The results suggested that enhanced deposition of fatty acids in the SAT from Barrosã bulls, when compared to Alentejana, could be due to higher expression levels of lipogenesis (SCD and LPL) and β-oxidation (CRAT) related genes. Our results also indicated that SREBF1 expression in the SAT is increased by feeding the low silage diet. Together, these results point out to a higher lipid turnover in the SAT of Barrosã bulls when compared to Alentejana. In turn, lipid deposition in the LL muscle is related to the expression of adipogenic (PPARG and FABP4) and lipogenic (ACACA and SCD) genes. The positive correlation between ACACA expression levels and total lipids, as well trans fatty acids, points to ACACA as a major player in intramuscular deposition in ruminants. Moreover, results reinforce the role of FABP4 in intramuscular fat development and the SAT as the major site for lipid metabolism in ruminants. Conclusions Overall, the results showed that SAT and LL muscle fatty acid composition are mostly dependent on the genetic background. In addition, dietary silage level impacted on muscle lipid metabolism to a greater extent than on that of SAT, as evaluated by gene expression levels of adipogenic and lipogenic factors. Moreover, the response to diet composition evaluated through mRNA levels and fatty acid composition showed interesting differences between Alentejana and Barrosã bulls. These findings provide evidence that the genetic background should be taken into account while devising diet-based strategies to manipulate fatty acid composition of beef cattle tissues. PMID:23767408

  6. Effects of strain and age on hepatic gene expression profiles in murine models of HFE-associated hereditary hemochromatosis.

    PubMed

    Lee, Seung-Min; Loguinov, Alexandre; Fleming, Robert E; Vulpe, Christopher D

    2015-01-01

    Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe-/- mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe-/-). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe-/- and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe-/- mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe-/- mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe-/- mice. These affects may underlie or reflect differences in iron loading in these mice.

  7. Role of major histocompatibility complex class II in the development of autoimmune type 1 diabetes and thyroiditis in rats

    PubMed Central

    Yokoi, N; Hidaka, S; Tanabe, S; Ohya, M; Ishima, M; Takagi, Y; Masui, N; Seino, S

    2012-01-01

    Although the MHC class II ‘u' haplotype is strongly associated with type 1 diabetes (T1D) in rats, the role of MHC class II in the development of tissue-specific autoimmune diseases including T1D and autoimmune thyroiditis remains unclear. To clarify this, we produced a congenic strain carrying MHC class II ‘a' and ‘u' haplotypes on the Komeda diabetes-prone (KDP) genetic background. The u/u homozygous animals developed T1D similar to the original KDP rat; a/u heterozygous animals did develop T1D but with delayed onset and low frequency. In contrast, none of the a/a homozygous animals developed T1D; about half of the animals with a/u heterozygous or a/a homozygous genotypes showed autoimmune thyroiditis. To investigate the role of genetic background in the development of thyroiditis, we also produced a congenic strain carrying Cblb mutation of the KDP rat on the PVG.R23 genetic background (MHC class II ‘a' haplotype). The congenic rats with homozygous Cblb mutation showed autoimmune thyroiditis without T1D and slight to severe alopecia, a clinical symptom of hypothyroidism such as Hashimoto's thyroiditis. These data indicate that MHC class II is involved in the tissue-specific development of autoimmune diseases, including T1D and thyroiditis. PMID:21918539

  8. A Recombinant Saccharomyces cerevisiae Strain Overproducing Mannoproteins Stabilizes Wine against Protein Haze▿

    PubMed Central

    Gonzalez-Ramos, Daniel; Cebollero, Eduardo; Gonzalez, Ramon

    2008-01-01

    Stabilization against protein haze was one of the first positive properties attributed to yeast mannoproteins in winemaking. In previous work we demonstrated that deletion of KNR4 leads to increased mannoprotein release in laboratory Saccharomyces cerevisiae strains. We have now constructed strains with KNR4 deleted in two different industrial wine yeast backgrounds. This required replacement of two and three alleles of KNR4 for the EC1118 and T73-4 backgrounds, respectively, and the use of three different selection markers for yeast genetic transformation. The actual effect of the genetic modification was dependent on both the genetic background and the culture conditions. The fermentation performance of T73-4 derivatives was clearly impaired, and these derivatives did not contribute to the protein stability of the wine, even though they showed increased mannoprotein release in vitro. In contrast, the EC1118 derivative with both alleles of KNR4 deleted released increased amounts of mannoproteins both in vitro and during wine fermentation assays, and the resulting wines were consistently less susceptible to protein haze. The fermentation performance of this strain was slightly impaired, but only with must with a very high sugar content. These results pave the way for the development of new commercial strains with the potential to improve several mannoprotein-related quality and technological parameters of wine. PMID:18606802

  9. BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?

    PubMed Central

    Tagliaferri, Pierosandro; Ventura, Monica; Baudi, Francesco; Cucinotto, Iole; Arbitrio, Mariamena; Di Martino, Maria Teresa; Tassone, Pierfrancesco

    2009-01-01

    Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients. PMID:19825178

  10. Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field.

    PubMed

    Taylor, Mark A; Cooper, Martha D; Sellamuthu, Reena; Braun, Peter; Migneault, Andrew; Browning, Alyssa; Perry, Emily; Schmitt, Johanna

    2017-10-01

    Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Genetic background contributes to the co-morbidity of anxiety and depression with audiogenic seizure propensity and responses to fluoxetine treatment.

    PubMed

    Sarkisova, Karine Yu; Fedotova, Irina B; Surina, Natalia M; Nikolaev, Georgy M; Perepelkina, Olga V; Kostina, Zoya A; Poletaeva, Inga I

    2017-03-01

    Anxiety and depression are the most frequent comorbidities of different types of convulsive and non-convulsive epilepsies. Increased anxiety and depression-like phenotype have been described in the genetic absence epilepsy models as well as in models of limbic epilepsy and acquired seizure models, suggesting a neurobiological connection. However, whether anxiety and/or depression are comorbid to audiogenic epilepsy remains unclear. The aim of this study was to investigate whether anxiety or depression-like behavior can be found in rat strains with different susceptibility to audiogenic seizures (AS) and whether chronic fluoxetine treatment affects this co-morbidity. Behavior in the elevated plus-maze and the forced swimming test was studied in four strains: Wistar rats non-susceptible to AS; Krushinsky-Molodkina (KM) strain, selectively bred for AS propensity from outbred Wistar rats; and a selection lines bred for maximal AS expression (strain "4") and for a lack of AS (strain "0") from KM×Wistar F2 hybrids. Effects of chronic antidepressant treatment on AS and behavior were also evaluated. Anxiety and depression levels were higher in KM rats (with AS) compared with Wistar rats (without AS), indicating the comorbidity with AS. However, in strains "4" and "0" with contrasting AS expression, but with a genetic background close to KM rats, anxiety and depression were not as divergent as in KMs versus Wistars. Fluoxetine treatment exerted an antidepressant effect in all rat strains irrespective of its effect on AS. Genetic background contributes substantively to the co-morbidity of anxiety and depression with AS propensity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Conserving, Distributing and Managing Genetically Modified Mouse Lines by Sperm Cryopreservation

    PubMed Central

    Farley, Jane S.; Taft, Robert A.

    2008-01-01

    Background Sperm from C57BL/6 mice are difficult to cryopreserve and recover. Yet, the majority of genetically modified (GM) lines are maintained on this genetic background. Methodology/Principal Findings Reported here is the development of an easily implemented method that consistently yields fertilization rates of 70±5% with this strain. This six-fold increase is achieved by collecting sperm from the vas deferens and epididymis into a cryoprotective medium of 18% raffinose (w/v), 3% skim milk (w/v) and 477 µM monothioglycerol. The sperm suspension is loaded into 0.25 mL French straws and cooled at 37±1°C/min before being plunged and then stored in LN2. Subsequent to storage, the sperm are warmed at 2,232±162°C/min and incubated in in vitro fertilization media for an hour prior to the addition of oocyte cumulus masses from superovulated females. Sperm from 735 GM mouse lines on 12 common genetic backgrounds including C57BL/6J, BALB/cJ, 129S1/SvImJ, FVB/NJ and NOD/ShiLtJ were cryopreserved and recovered. C57BL/6J and BALB/cByJ fertilization rates, using frozen sperm, were slightly reduced compared to rates involving fresh sperm; fertilization rates using fresh or frozen sperm were equivalent in all other lines. Developmental capacity of embryos produced using cryopreserved sperm was equivalent, or superior to, cryopreserved IVF-derived embryos. Conclusions/Significance Combined, these results demonstrate the broad applicability of our approach as an economical and efficient option for archiving and distributing mice. PMID:18665210

  13. Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette.

    PubMed

    Driver, John P; Scheuplein, Felix; Chen, Yi-Guang; Grier, Alexandra E; Wilson, S Brian; Serreze, David V

    2010-02-01

    In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.

  14. Developmental age strengthens barriers to ethanol accumulation in zebrafish.

    PubMed

    Lovely, C Ben; Nobles, Regina D; Eberhart, Johann K

    2014-09-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6-24 h post fertilization (hpf) and 24-48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6 to 24 hpf were 2.7-4.2-fold lower than media levels, while embryos were 5.7-6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis.

    PubMed

    Kerr, Jennifer E; Abramian, Jared R; Dao, Doan-Hieu V; Rigney, Todd W; Fritz, Jamie; Pham, Tan; Gay, Isabel; Parthasarathy, Kavitha; Wang, Bing-yan; Zhang, Wenjian; Tribble, Gena D

    2014-01-01

    Porphyromonas gingivalis is a gram-negative anaerobic bacterium, a member of the human oral microbiome, and a proposed "keystone" pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions.

  16. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance.

    PubMed

    Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique

    2018-01-05

    Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.

  17. Single nucleotide polymorphism discovery in cutthroat trout subspecies using genome reduction, barcoding, and 454 pyro-sequencing

    PubMed Central

    2012-01-01

    Background Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. Results Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. Conclusions Genomic and bioinformatic protocols were successfully implemented to identify 125 nuclear SNPs that are capable of differentiating most subspecies of cutthroat trout from one another. The ability to use this suite of SNPs to identify individuals of unknown genetic background to subspecies can be a valuable tool for management agencies in their efforts to evaluate the genetic structure of cutthroat trout populations prior to constructing and implementing conservation plans. PMID:23259499

  18. Lifestyle modifies the relationship between body composition and adrenergic receptor genetic polymorphisms, ADRB2, ADRB3 and ADRA2B: A secondary analysis of a randomized controlled trial of physical activity among postmenopausal women

    PubMed Central

    Bea, Jennifer W.; Lohman, Timothy G.; Cussler, Ellen C.; Going, Scott B.; Thompson, Patricia A.

    2013-01-01

    Genetic variations in the adrenergic receptor (ADR) have been associated with body composition in cross-sectional studies. Recent findings suggest that ADR variants may also modify body composition response to lifestyle. We assessed the role of ADR variants in body composition response to 12 months of resistance training versus control in previously sedentary postmenopausal women. Randomized trial completers were genotyped for A2BGlu9/12 by fragment length analysis, and B2Gln27Glu and B3Trp64Arg by TaqMan (n=148, 54% hormone therapy users). Associations between genotypes and body composition, by dual energy X-ray absorptiometry, were analyzed using univariate models. There was no main effect of individual genes on change in body composition, however, gene × exercise interactions were observed for A2BGlu9/12 and B2Gln27Glu on change in lean soft tissue (LST, p=0.02); exercisers on the A2BGlu9- background gained LST compared to a loss among controls over 12 months (p<0.05), with no significant intervention effect on the A2B Glu9+ background. Similarly, there was a significant LST gain with exercise on the B2Glu27+ background compared to loss among controls and no intervention effect on the B2Glu27- background. A non-significant association between total body fat (TBF) and B3Trp64Arg persisted among sedentary controls only when intervention groups were separated (%TBF gain with B3Arg 64+ carriage, p=0.03); exercisers lost TBF regardless of genotype. In summary, effect modification by lifestyle was demonstrated on ADR A2B, B2, and B3 genetic backgrounds. Individuals with certain ADR genotypes may be more vulnerable to adverse changes in body composition with sedentary behavior, thus these candidate genes warrant further study. PMID:20401689

  19. Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background

    PubMed Central

    Cook, Matthew S.; Munger, Steven C.; Nadeau, Joseph H.; Capel, Blanche

    2011-01-01

    Human germ cell tumors show a strong sensitivity to genetic background similar to Dnd1Ter/Ter mutant mice, where testicular teratomas arise only on the 129/SvJ genetic background. The introduction of the Bax mutation onto mixed background Dnd1Ter/Ter mutants, where teratomas do not typically develop, resulted in a high incidence of teratomas. However, when Dnd1Ter/Ter; Bax–/– double mutants were backcrossed to C57BL/6J, no tumors arose. Dnd1Ter/Ter germ cells show a strong downregulation of male differentiation genes including Nanos2. In susceptible strains, where teratomas initiate around E15.5-E17.5, many mutant germ cells fail to enter mitotic arrest in G0 and do not downregulate the pluripotency markers NANOG, SOX2 and OCT4. We show that DND1 directly binds a group of transcripts that encode negative regulators of the cell cycle, including p27Kip1 and p21Cip1. P27Kip1 and P21Cip1 protein are both significantly decreased in Dnd1Ter/Ter germ cells on all strain backgrounds tested, strongly suggesting that DND1 regulates mitotic arrest in male germ cells through translational regulation of cell cycle genes. Nonetheless, in C57BL/6J mutants, germ cells arrest prior to M-phase of the cell cycle and downregulate NANOG, SOX2 and OCT4. Consistent with their ability to rescue cell cycle arrest, C57BL/6J germ cells overexpress negative regulators of the cell cycle relative to 129/SvJ. This work suggests that reprogramming of pluripotency in germ cells and prevention of tumor formation requires cell cycle arrest, and that differences in the balance of cell cycle regulators between 129/SvJ and C57BL/6 might underlie differences in tumor susceptibility. PMID:21115610

  20. Genome-wide characterization of genetic diversity and population structure in Secale

    PubMed Central

    2014-01-01

    Background Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. Results Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. Conclusions Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies. PMID:25085433

  1. Assessing priorities for conservation in Tuscan cattle breeds using microsatellites.

    PubMed

    Bozzi, R; Alvarez, I; Crovetti, A; Fernández, I; De Petris, D; Goyache, F

    2012-02-01

    Preservation of rare genetic stocks requires assessment of within-population genetic diversity and between-population differentiation to make inferences on their degree of uniqueness. A total of 194 Tuscan cattle (44 Calvana, 35 Chianina, 25 Garfagnina, 31 Maremmana, 31 Mucca Pisana and 28 Pontremolese) individuals were genotyped for 34 microsatellite markers. Moreover, 56 samples belonging to Argentinean Creole and Asturiana de la Montaña cattle breeds were used as an outgroup. Genetic diversity was quantified in terms of molecular coancestry and allelic richness. STRUCTURE analyses showed that the Tuscan breeds have well-differentiated genetic backgrounds, except for the Calvana and Chianina breeds, which share the same genetic ancestry. The between-breed Nei's minimum distance (Dm) matrices showed that the pair Calvana-Chianina was less differentiated (0.049 ± 0.006). The endangered Tuscan breeds (Calvana, Garfagnina, Mucca Pisana and Pontremolese) made null or negative contributions to diversity, except for the Mucca Pisana contribution to allelic richness (CT = 1.8%). The Calvana breed made null or negative within-breed contributions (W = 0.0%; CW = -0.4%). The Garfagnina and Pontremolese breeds made positive contributions to between-breed diversity but negative and high within-breed contributions, thus suggesting population bottleneck with allelic losses and increase of homozygosity in the population. Exclusion of the four endangered Tuscan cattle breeds did not result in losses in genetic diversity (T = -0.7%; CT = -1.2%), whereas exclusion of the non-endangered breeds (Chianina and Maremmana) did (T = 2.1%; CT = 3.9%); the simple exclusion of the Calvana breed from the former group led to losses in genetic diversity (T = 0.47%; CT = 2.34%), indicating a diverse significance for this breed. We showed how quantifying both within-population diversity and between-population differentiation in terms of allelic frequencies and allelic richness provides different and complementary information on the genetic backgrounds assessed and may help to implement priorities and strategies for conservation in livestock.

  2. Analysis of Population Substructure in Two Sympatric Populations of Gran Chaco, Argentina

    PubMed Central

    Sevini, Federica; Yao, Daniele Yang; Lomartire, Laura; Barbieri, Annalaura; Vianello, Dario; Ferri, Gianmarco; Moretti, Edgardo; Dasso, Maria Cristina; Garagnani, Paolo; Pettener, Davide; Franceschi, Claudio; Luiselli, Donata; Franceschi, Zelda Alice

    2013-01-01

    Sub-population structure and intricate kinship dynamics might introduce biases in molecular anthropology studies and could invalidate the efforts to understand diseases in highly admixed populations. In order to clarify the previously observed distribution pattern and morbidity of Chagas disease in Gran Chaco, Argentina, we studied two populations (Wichí and Criollos) recruited following an innovative bio-cultural model considering their complex cultural interactions. By reconstructing the genetic background and the structure of these two culturally different populations, the pattern of admixture, the correspondence between genealogical and genetic relationships, this integrated perspective had the power to validate data and to link the gap usually relying on a singular discipline. Although Wichí and Criollos share the same area, these sympatric populations are differentiated from the genetic point of view as revealed by Non Recombinant Y Chromosome genotyping resulting in significantly high Fst values and in a lower genetic variability in the Wichí population. Surprisingly, the Amerindian and the European components emerged with comparable amounts (20%) among Criollos and Wichí respectively. The detailed analysis of mitochondrial DNA showed that the two populations have as much as 87% of private haplotypes. Moreover, from the maternal perspective, despite a common Amerindian origin, an Andean and an Amazonian component emerged in Criollos and in Wichí respectively. Our approach allowed us to highlight that quite frequently there is a discrepancy between self-reported and genetic kinship. Indeed, if self-reported identity and kinship are usually utilized in population genetics as a reliable proxy for genetic identity and parental relationship, in our model populations appear to be the result not only and not simply of the genetic background but also of complex cultural determinants. This integrated approach paves the way to a rigorous reconstruction of demographic and cultural history as well as of bioancestry and propensity to diseases of Wichí and Criollos. PMID:23717528

  3. A Quasi Experiment to Determine the Effectiveness of a "Partially Flipped" versus "Fully Flipped" Undergraduate Class in Genetics and Evolution

    ERIC Educational Resources Information Center

    Adams, Alison E. M.; Garcia, Jocelyn; Traustadóttir, Tinna

    2016-01-01

    Two sections of Genetics and Evolution were taught by one instructor. One group (the fully flipped section) had the entire class period devoted to active learning (with background material that had to be watched before class), and the other group (the partially flipped section) had just a portion of class time spent on active learning (with the…

  4. Genomic profiles of low-grade murine gliomas evolve during progression to glioblastoma. | Office of Cancer Genomics

    Cancer.gov

    Background: Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear.Methods: We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease.

  5. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background

    PubMed Central

    Marsh, Sharon; Hu, Junbo; Feng, Wenke

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met) in PNPLA3 and rs58542926 (Glu167Lys) in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression. PMID:27247565

  6. Pathogenesis of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Sarah; Orrell, Richard W

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) or motor neuron disease is a rapidly progressive neurodegenerative disorder. The primary involvement is of motor neurons in the brain, spinal cord and peripherally. There is secondary weakness of muscles and primary involvement of other brain regions, especially involving cognition. Peer-reviewed journal articles and reviews. PubMed.gov The pathogenesis of ALS remains largely unknown. There are a wide range of potential mechanisms related to neurodegeneration. An increasing number of genetic factors are recognized. There remains controversy, or lack of knowledge, in explaining how cellular events manifest as the complex human disease. There is controversy as to how well cellular and animal models of disease relate to the human disease. Large-scale international collaborative genetic epidemiological studies are replacing local studies. Therapies related to pathogenesis remain elusive, with the greatest advances to date relating to provision of care (including multidisciplinary management) and supportive care (nutrition and respiratory support). The identification of C9orf72 hexanucleotide repeats as the most frequent genetic background to ALS, and the association with frontotemporal dementia, gives the potential of a genetic background against which to study other risk factors, triggers and pathogenic mechanisms, and to develop potential therapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Genetic evidence of subaortic stenosis in the Newfoundland dog.

    PubMed

    Reist-Marti, S B; Dolf, G; Leeb, T; Kottmann, S; Kietzmann, S; Butenhoff, K; Rieder, S

    2012-06-09

    Subaortic stenosis (SAS) is a cardiac disorder with a narrowing of the descending aorta below the left ventricular outflow tract of the heart. It occurs in several species and breeds. The Newfoundland is one of the dog breeds where it is more common and usually leads to death at early adulthood. It is still discussed to which extent SAS has a genetic background and what its mode of inheritance could be. Extensive pedigree data comprising more than 230,000 Newfoundland dogs from the European and North American population reaching back to the 19th century including 6023 dogs with a SAS diagnosis were analysed for genetic factors influencing SAS affection. The incidence and prevalence of SAS in the analysed Newfoundland population sample were much higher than those reported in previous studies on smaller population samples. Assuming that some SAS-affected dogs remained undiscovered or were not reported, these figures may even be underestimated. SAS-affected Newfoundland dogs were more often inbred and closer related to each other than unaffected dogs, which is an indicator for a genetic background of SAS. The sex had no significant impact on SAS affectedness, pointing at an autosomal inheritance. The only simple mode of inheritance that fitted the data well was autosomal codominant with lethal homozygosity and a penetrance of 1/3 in the heterozygotes.

  8. Evidence that pairing with genetically similar mates is maladaptive in a monogamous bird

    USGS Publications Warehouse

    Mulard, Hervé; Danchin, E.; Talbot, S.L.; Ramey, A.M.; Hatch, Shyla A.; White, J.F.; Helfenstein, F.; Wagner, R.H.

    2009-01-01

    Background. Evidence of multiple genetic criteria of mate choice is accumulating in numerous taxa. In many species, females have been shown to pair with genetically dissimilar mates or with extra-pair partners that are more genetically compatible than their social mates, thereby increasing their offsprings' heterozygosity which often correlates with offspring fitness. While most studies have focused on genetically promiscuous species, few studies have addressed genetically monogamous species, in which mate choice tends to be mutual. Results. Here, we used microsatellite markers to assess individual global heterozygosity and genetic similarity of pairs in a socially and genetically monogamous seabird, the black-legged kittiwake Rissa tridactyla. We found that pairs were more genetically dissimilar than expected by chance. We also identified fitness costs of breeding with genetically similar partners: (i) genetic similarity of pairs was negatively correlated with the number of chicks hatched, and (ii) offspring heterozygosity was positively correlated with growth rate and survival. Conclusion. These findings provide evidence that breeders in a genetically monogamous species may avoid the fitness costs of reproducing with a genetically similar mate. In such species that lack the opportunity to obtain extra-pair fertilizations, mate choice may therefore be under high selective pressure. ?? 2009 Mulard et al; licensee BioMed Central Ltd.

  9. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.

  10. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility. PMID:24130809

  11. High genetic diversity and predominance of Rhinovirus A and C from Panamanian hospitalized children under five years with respiratory infections

    PubMed Central

    2012-01-01

    Background Human Rhinoviruses (HRVs) have high genetic diversity and three species have been described: HRV-A, HRV-B, and the recently recognized HRV-C, which has been rapidly identified worldwide. Findings In the present study, we report the frequency and diversity of Human Rhinovirus (HRV) strains circulating in Panama from children hospitalized with respiratory infections. Conclusions HRVs of species A, B and C have been identified with a predominance of HRV-A and HRV-C over HRV-B, and marked genetic diversity within each species. PMID:23116216

  12. Environment dominates over host genetics in shaping human gut microbiota.

    PubMed

    Rothschild, Daphna; Weissbrod, Omer; Barkan, Elad; Kurilshikov, Alexander; Korem, Tal; Zeevi, David; Costea, Paul I; Godneva, Anastasia; Kalka, Iris N; Bar, Noam; Shilo, Smadar; Lador, Dar; Vila, Arnau Vich; Zmora, Niv; Pevsner-Fischer, Meirav; Israeli, David; Kosower, Noa; Malka, Gal; Wolf, Bat Chen; Avnit-Sagi, Tali; Lotan-Pompan, Maya; Weinberger, Adina; Halpern, Zamir; Carmi, Shai; Fu, Jingyuan; Wijmenga, Cisca; Zhernakova, Alexandra; Elinav, Eran; Segal, Eran

    2018-03-08

    Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.

  13. A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii

    PubMed Central

    Lipscomb, Gina L.; Conway, Jonathan M.; Blumer-Schuette, Sara E.; Kelly, Robert M.

    2016-01-01

    ABSTRACT Caldicellulosiruptor bescii, an anaerobic Gram-positive bacterium with an optimal growth temperature of 78°C, is the most thermophilic cellulose degrader known. It is of great biotechnological interest, as it efficiently deconstructs nonpretreated lignocellulosic plant biomass. Currently, its genetic manipulation relies on a mutant uracil auxotrophic background strain that contains a random deletion in the pyrF genome region. The pyrF gene serves as a genetic marker to select for uracil prototrophy, and it can also be counterselected for loss via resistance to the compound 5-fluoroorotic acid (5-FOA). To expand the C. bescii genetic tool kit, kanamycin resistance was developed as a selection for genetic manipulation. A codon-optimized version of the highly thermostable kanamycin resistance gene (named Cbhtk) allowed the use of kanamycin selection to obtain transformants of either replicating or integrating vector constructs in C. bescii. These strains showed resistance to kanamycin at concentrations >50 μg · ml−1, whereas wild-type C. bescii was sensitive to kanamycin at 10 μg · ml−1. In addition, placement of the Cbhtk marker between homologous recombination regions in an integrating vector allowed direct selection of a chromosomal mutation using both kanamycin and 5-FOA. Furthermore, the use of kanamycin selection enabled the targeted deletion of the pyrE gene in wild-type C. bescii, generating a uracil auxotrophic genetic background strain resistant to 5-FOA. The pyrE gene functioned as a counterselectable marker, like pyrF, and was used together with Cbhtk in the ΔpyrE background strain to delete genes encoding lactate dehydrogenase and the CbeI restriction enzyme. IMPORTANCE Caldicellulosiruptor bescii is a thermophilic anaerobic bacterium with an optimal growth temperature of 78°C, and it has the ability to efficiently deconstruct nonpretreated lignocellulosic plant biomass. It is, therefore, of biotechnological interest for genetic engineering applications geared toward biofuel production. The current genetic system used with C. bescii is based upon only a single selection strategy, and this uses the gene involved in a primary biosynthetic pathway. There are many advantages with an additional genetic selection using an antibiotic. This presents a challenge for thermophilic microorganisms, as only a limited number of antibiotics are stable above 50°C, and a thermostable version of the enzyme conferring antibiotic resistance must be obtained. In this work, we have developed a selection system for C. bescii using the antibiotic kanamycin and have shown that, in combination with the biosynthetic gene marker, it can be used to efficiently delete genes in this organism. PMID:27208106

  14. Influence of language and ancestry on genetic structure of contiguous populations: A microsatellite based study on populations of Orissa

    PubMed Central

    Sahoo, Sanghamitra; Kashyap, VK

    2005-01-01

    Background We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja. These divergent groups provide a varied substratum for understanding variation of genetic patterns in a geographical area resulting from differential admixture between migrants groups and aboriginals, and the influence of this admixture on population stratification. Results The allele distribution pattern showed uniformity in the studied groups with approximately 81% genetic variability within populations. The coefficient of gene differentiation was found to be significantly higher in tribes (0.014) than caste groups (0.004). Genetic variance between the groups was 0.34% in both ethnic and linguistic clusters and statistically significant only in the ethnic apportionment. Although the populations were genetically close (FST = 0.010), the contemporary caste and tribal groups formed distinct clusters in both Principal-Component plot and Neighbor-Joining tree. In the phylogenetic tree, the Orissa Brahmins showed close affinity to populations of North India, while Khandayat and Gope clustered with the tribal groups, suggesting a possibility of their origin from indigenous people. Conclusions The extent of genetic differentiation in the contemporary caste and tribal groups of Orissa is highly significant and constitutes two distinct genetic clusters. Based on our observations, we suggest that since genetic distances and coefficient of gene differentiation were fairly small, the studied populations are indeed genetically similar and that the genetic structure of populations in a geographical region is primarily influenced by their ancestry and not by socio-cultural hierarchy or language. The scenario of genetic structure, however, might be different for other regions of the subcontinent where populations have more similar ethnic and linguistic backgrounds and there might be variations in the patterns of genomic and socio-cultural affinities in different geographical regions. PMID:15694006

  15. Interactive evolution of camouflage.

    PubMed

    Reynolds, Craig

    2011-01-01

    This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator.

  16. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    PubMed

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  17. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes.

    PubMed

    Araripe, L O; Tao, Y; Lemos, B

    2016-06-01

    Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of 'heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome-autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in specific genotypic combinations.

  18. Immunohistochemical and genetic profiles of endometrioid endometrial carcinoma arising from atrophic endometrium.

    PubMed

    Geels, Yvette P; van der Putten, Louis J M; van Tilborg, Angela A G; Lurkin, Irene; Zwarthoff, Ellen C; Pijnenborg, Johanna M A; van den Berg-van Erp, Saskia H; Snijders, Marc P L M; Bulten, Johan; Visscher, Daniel W; Dowdy, Sean C; Massuger, Leon F A G

    2015-05-01

    Endometrial carcinomas are divided into type I endometrioid endometrial carcinomas (EECs), thought to arise from hyperplastic endometrium, and type II nonendometrioid endometrial carcinomas, thought to arise from atrophic endometrium. However, a minority (20%) of EECs have atrophic background endometrium, which was shown to be a marker of a worse prognosis. This study compares the immunohistochemical and genetic profiles of this possible third type to that of the known two types. 43 patients with grade 1 EEC and hyperplastic background endometrium (type I), 43 patients with grade 1 EEC and atrophic background endometrium (type III) and 21 patients with serous carcinoma (type II) were included (n=107). Tissue microarrays of tumor samples were immunohistochemically stained for PTEN, L1CAM, ER, PR, p53, MLH1, PMS2, β-catenin, E-cadherin and MIB1. The BRAF, KRAS, and PIK3CA genes were analyzed for mutations. A significantly higher expression of ER and PR, and a lower expression of L1CAM, p53 and MLH1 were found in type I and III compared to type II carcinomas. Expression of E-cadherin was significantly reduced in type III compared to type I carcinomas. Mutation analysis showed significantly less mutations of KRAS in type III compared to type I and II carcinomas (p<0.01). There appear to be slight immunohistochemical and genetic differences between EECs with hyperplastic and atrophic background endometrium. Carcinogenesis of EEC in atrophic endometrium seems to be characterized by loss of E-cadherin and a lack of KRAS mutations. As expected, endometrioid and serous carcinomas were immunohistochemically different. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The influence of habitats on female mobility in Central and Western Africa inferred from human mitochondrial variation

    PubMed Central

    2013-01-01

    Background When studying the genetic structure of human populations, the role of cultural factors may be difficult to ascertain due to a lack of formal models. Linguistic diversity is a typical example of such a situation. Patrilocality, on the other hand, can be integrated into a biological framework, allowing the formulation of explicit working hypotheses. The present study is based on the assumption that patrilocal traditions make the hypervariable region I of the mtDNA a valuable tool for the exploration of migratory dynamics, offering the opportunity to explore the relationships between genetic and linguistic diversity. We studied 85 Niger-Congo-speaking patrilocal populations that cover regions from Senegal to Central African Republic. A total of 4175 individuals were included in the study. Results By combining a multivariate analysis aimed at investigating the population genetic structure, with a Bayesian approach used to test models and extent of migration, we were able to detect a stepping-stone migration model as the best descriptor of gene flow across the region, with the main discontinuities corresponding to forested areas. Conclusions Our analyses highlight an aspect of the influence of habitat variation on human genetic diversity that has yet to be understood. Rather than depending simply on geographic linear distances, patterns of female genetic variation vary substantially between savannah and rainforest environments. Our findings may be explained by the effects of recent gene flow constrained by environmental factors, which superimposes on a background shaped by pre-agricultural peopling. PMID:23360301

  20. Genetic Modifiers and Oligogenic Inheritance

    PubMed Central

    Kousi, Maria; Katsanis, Nicholas

    2015-01-01

    Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets. PMID:26033081

  1. Oral and Craniofacial Clinical Signs Associated to Genetic Conditions in Human Identification Part I: A Review

    PubMed Central

    Ayoub, Fouad; Aoun, Nicole; el Husseini, Hassan; Jassar, Houssam; Sayah, Fida; Salameh, Ziad

    2015-01-01

    Background: Forensic dentistry is one of the most reliable methods used in human identification when other technique as fingerprint, DNA, visual identification cannot be used. Genetic disorders have several manifestations that can target the intra-oral cavity, the cranio-facial area or any location in the human body. Materials and Methods: A literature search of the scientific database (Medline and Science Direct) for the years 1990 to 2014 was carried out to find out all the available papers that indicate oral, cranio-facial signs, genetic and human identification. Results: A table with 10 genetic conditions was described with oral and cranio-facial signs that can help forensic specialist in human identification. Conclusion: This review showed a correlation between genetics, facial and intra-oral signs that would help forensic ondontologist in the identification procedures. PMID:26028912

  2. When gene medication is also genetic modification--regulating DNA treatment.

    PubMed

    Foss, Grethe S; Rogne, Sissel

    2007-07-26

    The molecular methods used in DNA vaccination and gene therapy resemble in many ways the methods applied in genetic modification of organisms. In some regulatory regimes, this creates an overlap between 'gene medication' and genetic modification. In Norway, an animal injected with plasmid DNA, in the form of DNA vaccine or gene therapy, currently is viewed as being genetically modified for as long as the added DNA is present in the animal. However, regulating a DNA-vaccinated animal as genetically modified creates both regulatory and practical challenges. It is also counter-intuitive to many biologists. Since immune responses can be elicited also to alter traits, the borderline between vaccination and the modification of properties is no longer distinct. In this paper, we discuss the background for the Norwegian interpretation and ways in which the regulatory challenge can be handled.

  3. A Simple and Universal System for Gene Manipulation in Aspergillus fumigatus: In Vitro-Assembled Cas9-Guide RNA Ribonucleoproteins Coupled with Microhomology Repair Templates.

    PubMed

    Al Abdallah, Qusai; Ge, Wenbo; Fortwendel, Jarrod R

    2017-01-01

    CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 is a novel genome-editing system that has been successfully established in Aspergillus fumigatus . However, the current state of the technology relies heavily on DNA-based expression cassettes for delivering Cas9 and the guide RNA (gRNA) to the cell. Therefore, the power of the technology is limited to strains that are engineered to express Cas9 and gRNA. To overcome such limitations, we developed a simple and universal CRISPR-Cas9 system for gene deletion that works across different genetic backgrounds of A. fumigatus . The system employs in vitro assembly of dual Cas9 ribonucleoproteins (RNPs) for targeted gene deletion. Additionally, our CRISPR-Cas9 system utilizes 35 to 50 bp of flanking regions for mediating homologous recombination at Cas9 double-strand breaks (DSBs). As a proof of concept, we first tested our system in the Δ akuB (Δ akuB ku80 ) laboratory strain and generated high rates (97%) of gene deletion using 2 µg of the repair template flanked by homology regions as short as 35 bp. Next, we inspected the portability of our system across other genetic backgrounds of A. fumigatus , namely, the wild-type strain Af293 and a clinical isolate, A. fumigatus DI15-102. In the Af293 strain, 2 µg of the repair template flanked by 35 and 50 bp of homology resulted in highly efficient gene deletion (46% and 74%, respectively) in comparison to classical gene replacement systems. Similar deletion efficiencies were also obtained in the clinical isolate DI15-102. Taken together, our data show that in vitro -assembled Cas9 RNPs coupled with microhomology repair templates are an efficient and universal system for gene manipulation in A. fumigatus . IMPORTANCE Tackling the multifactorial nature of virulence and antifungal drug resistance in A. fumigatus requires the mechanistic interrogation of a multitude of genes, sometimes across multiple genetic backgrounds. Classical fungal gene replacement systems can be laborious and time-consuming and, in wild-type isolates, are impeded by low rates of homologous recombination. Our simple and universal CRISPR-Cas9 system for gene manipulation generates efficient gene targeting across different genetic backgrounds of A. fumigatus . We anticipate that our system will simplify genome editing in A. fumigatus , allowing for the generation of single- and multigene knockout libraries. In addition, our system will facilitate the delineation of virulence factors and antifungal drug resistance genes in different genetic backgrounds of A. fumigatus .

  4. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria.

    PubMed

    Żur, Joanna; Piński, Artur; Marchlewicz, Ariel; Hupert-Kocurek, Katarzyna; Wojcieszyńska, Danuta; Guzik, Urszula

    2018-06-19

    Currently, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are classified as one of the most emerging group of xenobiotics and have been detected in various natural matrices. Among them, monocyclic paracetamol and ibuprofen, widely used to treat mild and moderate pain are the most popular. Since long-term adverse effects of these xenobiotics and their biological and pharmacokinetic activity especially at environmentally relevant concentrations are better understood, degradation of such contaminants has become a major concern. Moreover, to date, conventional wastewater treatment plants (WWTPs) are not fully adapted to remove that kind of micropollutants. Bioremediation processes, which utilize bacterial strains with increased degradation abilities, seem to be a promising alternative to the chemical methods used so far. Nevertheless, despite the wide prevalence of paracetamol and ibuprofen in the environment, toxicity and mechanism of their microbial degradation as well as genetic background of these processes remain not fully characterized. In this review, we described the current state of knowledge about toxicity and biodegradation mechanisms of paracetamol and ibuprofen and provided bioinformatics analysis concerning the genetic bases of these xenobiotics decomposition.

  5. Endogenous enzyme activities and polyamine levels in diverse rice cultivars depend on the genetic background and are not affected by the presence of the hygromycin phosphotransferase selectable marker.

    PubMed

    Lepri, O.; Bassie, L.; Thu-Hang, P.; Christou, P.; Capell, T.

    2002-09-01

    We used the polyamine biosynthetic pathway and rice as a relevant model to understand the genetic basis of variation in endogenous levels of metabolites and key enzymes involved in the pathway. Wild-type tissues and also tissues containing a commonly used selectable marker gene were employed. We detected a wide variation in levels of arginine decarboxylase activity and in the three polyamines, putrescine, spermidine and spermine, in different tissues and varieties, but this was not dependent on the presence of the selectable marker. A more-extensive profile of enzyme activities (ADC, ODC, SAMDC, DAO and PAO) and polyamine levels in different tissues was generated in two different varieties. Our results indicate that genetic background is important in terms of the basal levels of metabolites and enzyme activity, particularly in situations in which we aim to engineer metabolic pathways that are also encoded by homologous endogenous genes. We did not find any evidence that the presence of a selectable marker in any way influences enzyme activity or metabolite levels.

  6. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii

    PubMed Central

    Kraemer, Susanne A.; Böndel, Katharina B.; Ness, Robert W.; Keightley, Peter D.; Colegrave, Nick

    2017-01-01

    Abstract Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain. PMID:28884790

  7. Generation of Mouse Lung Epithelial Cells.

    PubMed

    Kasinski, Andrea L; Slack, Frank J

    2013-08-05

    Although in vivo models are excellent for assessing various facets of whole organism physiology, pathology, and overall response to treatments, evaluating basic cellular functions, and molecular events in mammalian model systems is challenging. It is therefore advantageous to perform these studies in a refined and less costly setting. One approach involves utilizing cells derived from the model under evaluation. The approach to generate such cells varies based on the cell of origin and often the genetics of the cell. Here we describe the steps involved in generating epithelial cells from the lungs of Kras LSL-G12D/+ ; p53 LSL-R172/+ mice (Kasinski and Slack, 2012). These mice develop aggressive lung adenocarcinoma following cre-recombinase dependent removal of a stop cassette in the transgenes and subsequent expression of Kra -G12D and p53 R172 . While this protocol may be useful for the generation of epithelial lines from other genetic backgrounds, it should be noted that the Kras; p53 cell line generated here is capable of proliferating in culture without any additional genetic manipulation that is often needed for less aggressive backgrounds.

  8. [Advance of genetics and genomics in neurology].

    PubMed

    Ginter, E K; Illarioshkin, S N

    2012-01-01

    Studies of genomic background of neurological disorders are very actual in view of their high population prevalence, severe course, serious impact on patients' disability and progressive mental and physical de-adaptation. In the paper, problems of genetic heterogeneity of hereditary neurological disorders and character of the respective genetic burden in the regions of Russian Federation are discussed in detail, a 'dynamic' type of mutations (increase in number of microsatellite repeats copies) attributable to many neurodegenerative diseases is analyzed, and achievements of Russian researchers in the identification of genes for hereditary neurological disorders and in the realization of pilot protocols of gene therapy are presented. Problems related to studies of genetic predisposition to common multifactorial diseases of the nervous system are discussed.

  9. Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation.

    PubMed

    Kapplinger, Jamie D; Pundi, Krishna N; Larson, Nicholas B; Callis, Thomas E; Tester, David J; Bikker, Hennie; Wilde, Arthur A M; Ackerman, Michael J

    2018-02-01

    Pathogenic RYR2 variants account for ≈60% of clinically definite cases of catecholaminergic polymorphic ventricular tachycardia. However, the rate of rare benign RYR2 variants identified in the general population remains a challenge for genetic test interpretation. Therefore, we examined the results of the RYR2 genetic test among patients referred for commercial genetic testing and examined factors impacting variant interpretability. Frequency and location comparisons were made for RYR2 variants identified among 1355 total patients of varying clinical certainty and 60 706 Exome Aggregation Consortium controls. The impact of the clinical phenotype on the yield of RYR2 variants was examined. Six in silico tools were assessed using patient- and control-derived variants. A total of 18.2% (218/1200) of patients referred for commercial testing hosted rare RYR2 variants, statistically less than the 59% (46/78) yield among clinically definite cases, resulting in a much higher potential genetic false discovery rate among referrals considering the 3.2% background rate of rare, benign RYR2 variants. Exclusion of clearly putative pathogenic variants further complicates the interpretation of the next novel RYR2 variant. Exonic/topologic analyses revealed overrepresentation of patient variants in exons covering only one third of the protein. In silico tools largely failed to show evidence toward enhancement of variant interpretation. Current expert recommendations have resulted in increased use of RYR2 genetic testing in patients with questionable clinical phenotypes. Using the largest to date catecholaminergic polymorphic ventricular tachycardia patient versus control comparison, this study highlights important variables in the interpretation of variants to overcome the 3.2% background rate that confounds RYR2 variant interpretation. © 2018 American Heart Association, Inc.

  10. Differential Antidepressant-Like Response to Lithium Treatment between Mouse Strains: Effects of Sex, Maternal Care, and Mixed Genetic Background

    PubMed Central

    Can, Adem; Piantadosi, Sean C.; Gould, Todd D.

    2013-01-01

    Background Lithium is a mood stabilizer with both antidepressant and antimanic properties, though its mechanism of action is unclear. Identifying the genetic factors that influence lithium's therapeutic actions will be an important step to assist in identifying such mechanisms. We previously reported that lithium treatment of male mice has antidepressant-like effects in the C57BL/6J strain but that such effects were absent in the BALB/cJ strain. Objectives To assess the roles of both genetic, and non-genetic factors such as sex and non-shared environmental factors that may mediate differential behavioral responses to lithium. Methods Mice were treated with lithium for ten days and then tested in the forced swim test followed by lithium discontinuation and retesting to assess effects of lithium withdrawal. We also assessed effects of sex and cross-fostering on lithium response between the C57BL/6J and BALB/cJ strains, and antidepressant-like effects of lithium in the hybrid CB6F1/J strain that is derived from C57BL/6J and BALB/cJ parental strains. Results Neither sex nor maternal care significantly influenced the differential antidepressant-like profile of lithium. Withdrawal from lithium treatment reversed antidepressant-like effects in the C57BL/6J strain, but had no effects in BALB/cJ mice. Lithium treatment did not result in antidepressant-like effects in the CB6F1/J strain. Conclusions Genetic factors are likely primarily responsible for differential antidepressant-like effects of lithium in the C57BL/6J and BALB/cJ strains. Future studies identifying such genetic factors may help to elucidate the neurobiological mechanisms of lithium's therapeutic actions. PMID:23503701

  11. HLA-DRB1 Analysis Identified a Genetically Unique Subset within Rheumatoid Arthritis and Distinct Genetic Background of Rheumatoid Factor Levels from Anticyclic Citrullinated Peptide Antibodies.

    PubMed

    Hiwa, Ryosuke; Ikari, Katsunori; Ohmura, Koichiro; Nakabo, Shuichiro; Matsuo, Keitaro; Saji, Hiroh; Yurugi, Kimiko; Miura, Yasuo; Maekawa, Taira; Taniguchi, Atsuo; Yamanaka, Hisashi; Matsuda, Fumihiko; Mimori, Tsuneyo; Terao, Chikashi

    2018-04-01

    HLA-DRB1 is the most important locus associated with rheumatoid arthritis (RA) and anticitrullinated protein antibodies (ACPA). However, fluctuations of rheumatoid factor (RF) over the disease course have made it difficult to define fine subgroups according to consistent RF positivity for the analyses of genetic background and the levels of RF. A total of 2873 patients with RA and 2008 healthy controls were recruited. We genotyped HLA-DRB1 alleles for the participants and collected consecutive data of RF in the case subjects. In addition to RF+ and RF- subsets, we classified the RF+ subjects into group 1 (constant RF+) and group 2 (seroconversion). We compared HLA-DRB1 alleles between the RA subsets and controls and performed linear regression analysis to identify HLA-DRB1 alleles associated with maximal RF levels. Omnibus tests were conducted to assess important amino acid positions. RF positivity was 88%, and 1372 and 970 RF+ subjects were classified into groups 1 and 2, respectively. RF+ and RF- showed similar genetic associations to ACPA+ and ACPA- RA, respectively. We found that shared epitope (SE) was more enriched in group 2 than 1, p = 2.0 × 10 -5 , and that amino acid position 11 showed a significant association between 1 and 2, p = 2.7 × 10 -5 . These associations were independent of ACPA positivity. SE showed a tendency to be negatively correlated with RF titer (p = 0.012). HLA-DRB1*09:01, which reduces ACPA titer, was not associated with RF levels (p = 0.70). The seroconversion group was shown to have distinct genetic characteristics. The genetic architecture of RF levels is different from that of ACPA.

  12. Phenological mismatch and the effectiveness of assisted gene flow.

    PubMed

    Wadgymar, Susana M; Weis, Arthur E

    2017-06-01

    The persistence of narrowly adapted species under climate change will depend on their ability to migrate apace with their historical climatic envelope or to adapt in place to maintain fitness. This second path to persistence can only occur if there is sufficient genetic variance for response to new selection regimes. Inadequate levels of genetic variation can be remedied through assisted gene flow (AGF), that is the intentional introduction of individuals genetically adapted to localities with historic climates similar to the current or future climate experienced by the resident population. However, the timing of reproduction is frequently adapted to local conditions. Phenological mismatch between residents and migrants can reduce resident × migrant mating frequencies, slowing the introgression of migrant alleles into the resident genetic background and impeding evolutionary rescue efforts. Focusing on plants, we devised a method to estimate the frequency of resident × migrant matings based on flowering schedules and applied it in an experiment that mimicked the first generation of an AGF program with Chamaecrista fasciculata, a prairie annual, under current and expected future temperature regimes. Phenological mismatch reduced the potential for resident × migrant matings by 40-90%, regardless of thermal treatment. The most successful migrant sires were the most resident like in their flowering time, further biasing the genetic admixture between resident and migrant populations. Other loci contributing to local adaptation-heat-tolerance genes, for instance-may be in linkage disequilibrium with phenology when residents and migrants are combined into a single mating pool. Thus, introgression of potentially adaptive migrant alleles into the resident genetic background is slowed when selection acts against migrant phenology. Successful AGF programs may require sustained high immigration rates or preliminary breeding programs when phenologically matched migrant source populations are unavailable. © 2016 Society for Conservation Biology.

  13. Role of APOE Isforms in the Pathogenesis of TBI Induced Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    the inheritance of APOe4 is the only proven genetic risk factor for sporadic Alzheimer disease (AD). Importantly, TBI is a risk factor for the...mice on human APOE genetic background were exceptionally difficult to generate. We are considering changes in the genotype of those particular groups...mediated through ABCA1. 2 Keywords Traumatic brain injury, APOE isoforms, ABCA1, Alzheimer disease, APPmice, amyloid beta, axonal injury, inflamma

  14. Sensitivity of Female Inbreds of Cucumis sativus to Sex Reversion by Gibberellin.

    PubMed

    Shifriss, O; George, W L

    1964-03-27

    Two female inbred cucumbers were developed by substituting gene Acr for acr in the genetic backgrounds of the monoecious races Marketer and Tokyo, which exhibit weak and strong male tendency respectively. Marketer females are resistant and Tokyo females are sensitive to sex reversion in response to treatments with gibberellin A(3). Resistance and sensitivity of this type appear to depend upon the genetic system which controls sex tendency.

  15. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy

    PubMed Central

    Riordan, Sean M.; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Gazzin, Silvia; Tiribelli, Claudio; Watchko, Jon F.; Wennberg, Richard P.; Shapiro, Steven M.

    2016-01-01

    Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60–80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a “load” is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity in complex diseases. We anticipate that this method could be useful for improving the care of jaundiced newborns through its use as an at-risk screen. Importantly, this method would also be useful in uncovering basic knowledge about this and other polygenetic diseases whose genetic source is difficult to discern through traditional means such as a genome-wide association study. PMID:27587993

  16. Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice.

    PubMed

    Yassine, Nour; Lazaris, Anelise; Dorner-Ciossek, Cornelia; Després, Olivier; Meyer, Laurence; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy; Cassel, Jean-Christophe; Mathis, Chantal

    2013-03-01

    The retinal degeneration Pde6b(rd1) (rd) mutation can be a major pitfall in behavioral studies using tg2576 mice bred on a B6:SJL genetic background, 1 of the most widely used models of Alzheimer's disease. After a pilot study in wild type mice, performance of 8- and 16-month-old tg2576 mice were assessed in several behavioral tasks with the challenge of selecting 1 or more task(s) showing robust memory deficits on this genetic background. Water maze acquisition was impossible in rd homozygotes, whereas Y-maze alternation, object recognition, and olfactory discrimination were unaffected by both the transgene and the rd mutation. Spatial memory retention of 8- and 16-month-old tg2576 mice, however, was dramatically affected independently of the rd mutation when mice had to recognize a spatial configuration of objects or to perform the Barnes maze. Thus, the latter tasks appear extremely useful to evaluate spatial memory deficits and to test cognitive therapies in tg2576 mice and other mouse models bred on a background susceptible to visual impairment. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Dendritic Cells Program Non-Immunogenic Prostate-Specific T Cell Responses Beginning at Early Stages of Prostate Tumorigenesis

    PubMed Central

    Mihalyo, Marianne A.; Hagymasi, Adam T.; Slaiby, Aaron M.; Nevius, Erin E.; Adler, Adam J.

    2010-01-01

    BACKGROUND Prostate cancer promotes the development of T cell tolerance towards prostatic antigens, potentially limiting the efficacy of prostate cancer vaccines targeting these antigens. Here, we sought to determine the stage of disease progression when T cell tolerance develops, as well as the role of steady state dendritic cells (DC) and CD4+CD25+ T regulatory cells (Tregs) in programming tolerance. METHODS The response of naïve HA-specific CD4+ T cells were analyzed following adoptive transfer into Pro-HA × TRAMP transgenic mice harboring variably-staged HA-expressing prostate tumors on two genetic backgrounds that display different patterns and kinetics of tumorigenesis. The role of DC and Tregs in programming HA-specific CD4 cell responses were assessed via depletion. RESULTS HA-specific CD4 cells underwent non-immunogenic responses at all stages of tumorigenesis in both genetic backgrounds. These responses were completely dependent on DC, but not appreciably influenced by Tregs. CONCLUSIONS These results suggest that tolerogenicity is an early and general property of prostate tumors. PMID:17221844

  18. Genetics Home Reference: hereditary spherocytosis

    MedlinePlus

    ... occur anytime from early childhood to adulthood. About half of affected individuals develop hard deposits in the ... of hereditary spherocytosis in people of other ethnic backgrounds is unknown, but it is much less common. ...

  19. Cloning and Characterization of the P-l Promoter of Bacteriophage Lambda.

    ERIC Educational Resources Information Center

    Andino, Raul H.; And Others

    1986-01-01

    Background information, experimental approach, materials needed, procedures used, and typical results obtained are provided for genetic engineering experiments. The course in which these experiments are performed is also described. (JN)

  20. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota.

    PubMed

    Serino, Matteo; Luche, Elodie; Gres, Sandra; Baylac, Audrey; Bergé, Mathieu; Cenac, Claire; Waget, Aurelie; Klopp, Pascale; Iacovoni, Jason; Klopp, Christophe; Mariette, Jerome; Bouchez, Olivier; Lluch, Jerome; Ouarné, Francoise; Monsan, Pierre; Valet, Philippe; Roques, Christine; Amar, Jacques; Bouloumié, Anne; Théodorou, Vassilia; Burcelin, Remy

    2012-04-01

    The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.

  1. Full-Genome Sequencing Identifies in the Genetic Background Several Determinants That Modulate the Resistance Phenotype in Methicillin-Resistant Staphylococcus aureus Strains Carrying the Novel mecC Gene

    PubMed Central

    de Lencastre, Hermínia; Tomasz, Alexander

    2017-01-01

    ABSTRACT Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant—the mecC gene—was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant. PMID:28069659

  2. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus.

    PubMed

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2011-11-01

    In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F(1)) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC(2)F(1) population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis.

  3. Hybrid Male Sterility in Rice Is Due to Epistatic Interactions with a Pollen Killer Locus

    PubMed Central

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2011-01-01

    In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F1) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC2F1 population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis. PMID:21868603

  4. Autosomal and Mitochondrial Adaptation Following Admixture: A Case Study on the Honeybees of Reunion Island

    PubMed Central

    Wragg, David; Techer, Maéva Angélique; Canale-Tabet, Kamila; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Clémencet, Johanna; Delatte, Hélène

    2018-01-01

    Abstract The honeybee population of the tropical Reunion Island is a genetic admixture of the Apis mellifera unicolor subspecies, originally described in Madagascar, and of European subspecies, mainly A. m. carnica and A. m. ligustica, regularly imported to the island since the late 19th century. We took advantage of this population to study genetic admixing of the tropical-adapted indigenous and temperate-adapted European genetic backgrounds. Whole genome sequencing of 30 workers and 6 males from Reunion, compared with samples from Europe, Madagascar, Mauritius, Rodrigues, and the Seychelles, revealed the Reunion honeybee population to be composed on an average of 53.2 ± 5.9% A. m. unicolor nuclear genomic background, the rest being mainly composed of A. m. carnica and to a lesser extent A. m. ligustica. In striking contrast to this, only 1 out of the 36 honeybees from Reunion had a mitochondrial genome of European origin, suggesting selection has favored the A. m. unicolor mitotype, which is possibly better adapted to the island’s bioclimate. Local ancestry was determined along the chromosomes for all Reunion samples, and a test for preferential selection for the A. m. unicolor or European background revealed 15 regions significantly associated with the A. m. unicolor lineage and 9 regions with the European lineage. Our results provide insights into the long-term consequences of introducing exotic specimen on the nuclear and mitochondrial genomes of locally adapted populations. PMID:29202174

  5. Convergence of developmental mutants into a single tomato model system: 'Micro-Tom' as an effective toolkit for plant development research

    PubMed Central

    2011-01-01

    Background The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk. PMID:21714900

  6. An Association Mapping Framework To Account for Potential Sex Difference in Genetic Architectures.

    PubMed

    Kang, Eun Yong; Lee, Cue Hyunkyu; Furlotte, Nicholas A; Joo, Jong Wha J; Kostem, Emrah; Zaitlen, Noah; Eskin, Eleazar; Han, Buhm

    2018-05-11

    Over the past few years, genome-wide association studies have identified many trait-associated loci that have different effects on females and males, which increased attention to the genetic architecture differences between the sexes. The between-sex differences in genetic architectures can cause a variety of phenomena such as differences in the effect sizes at trait-associated loci, differences in the magnitudes of polygenic background effects, and differences in the phenotypic variances. However, current association testing approaches for dealing with sex, such as including sex as a covariate, cannot fully account for these phenomena and can be suboptimal in statistical power. We present a novel association mapping framework, MetaSex, that can comprehensively account for the genetic architecture differences between the sexes. Through simulations and applications to real data, we show that our framework has superior performance than previous approaches in association mapping. Copyright © 2018, Genetics.

  7. Putting my money where my mouth is: the Useful Genetics project.

    PubMed

    Redfield, Rosemary J

    2015-04-01

    The personal and societal importance of genetics has increased dramatically since the 1950s, but most introductory courses still focus on teaching students how to think like geneticists, training them in Mendelian and molecular analysis. This article is a personal account of a new course with a different goal, giving students knowledge and skills that they can use in their nonacademic lives. Useful Genetics differs from typical courses in emphasizing personal genomics, natural genetic and phenotypic variation in humans, and the consequences of genetic inheritance for breeding, inbreeding, and ancestry. Although it is a Massive Open Online Course (MOOC), taught to large global populations of learners of all ages and backgrounds, it maintains the academic rigor of a college course. The course materials are freely available for reuse by other instructors, and are being used as the foundation of a face-to-face university credit course. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking.

    PubMed

    Verspohl, Alexandra; Solieri, Lisa; Giudici, Paolo

    2017-03-01

    The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.

  9. Osteosarcoma Genetics and Epigenetics: Emerging Biology and Candidate Therapies

    PubMed Central

    Morrow, James J.; Khanna, Chand

    2016-01-01

    Osteosarcoma is the most common primary malignancy of bone, typically presenting in the first or second decade of life. Unfortunately, clinical outcomes for osteosarcoma patients have not substantially improved in over 30 years. This stagnation in therapeutic advances is perhaps explained by the genetic, epigenetic, and biological complexities of this rare tumor. In this review we provide a general background on the biology of osteosarcoma and the clinical status quo. We go on to enumerate the genetic and epigenetic defects identified in osteosarcoma. Finally, we discuss ongoing large-scale studies in the field and potential new therapies that are currently under investigation. PMID:26349415

  10. Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.

    PubMed

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during discrimination." Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks.

  11. Genetic analysis of the Hungarian draft horse population using partial mitochondrial DNA D-loop sequencing

    PubMed Central

    2018-01-01

    Background The Hungarian draft is a horse breed with a recent mixed ancestry created in the 1920s by crossing local mares with draught horses imported from France and Belgium. The interest in its conservation and characterization has increased over the last few years. The aim of this work is to contribute to the characterization of the endangered Hungarian heavy draft horse populations in order to obtain useful information to implement conservation strategies for these genetic stocks. Methods To genetically characterize the breed and to set up the basis for a conservation program, in the present study a hypervariable region of the mitochrondial DNA (D-loop) was used to assess genetic diversity in Hungarian draft horses. Two hundred and eighty five sequences obtained in our laboratory and 419 downloaded sequences available from Genbank were analyzed. Results One hundred and sixty-four haplotypes and thirty-six polymorphic sites were observed. High haplotype and nucleotide diversity values (Hd = 0.954 ± 0.004; π = 0.028 ± 0.0004) were identified in Hungarian population, although they were higher within than among the different populations (Hd = 0.972 ± 0.002; π = 0.03097 ± 0.002). Fourteen of the previously observed seventeen haplogroups were detected. Discussion Our samples showed a large intra- and interbreed variation. There was no clear clustering on the median joining network figure. The overall information collected in this work led us to consider that the genetic scenario observed for Hungarian draft breed is more likely the result of contributions from ‘ancestrally’ different genetic backgrounds. This study could contribute to the development of a breeding plan for Hungarian draft horses and help to formulate a genetic conservation plan, avoiding inbreeding while. PMID:29404201

  12. [Possibilities of genetic diagnostics of intestine tumour and inflammatory diseases in Slovakia].

    PubMed

    Desatová, B; Bátovský, M; Mľkva, I

    2013-11-01

    In recent years, gastroenterologists focused their interest on finding the genetic background of inflammatory bowel disease and colon cancer. NOD2/ CARD15 gene is still the most investigated gene of all known genes and its mutations can explain approximately 20% of genetic predisposition to Crohns disease. From later identified genes that play an important role in the etiology of Crohns disease, the IL23R and ATG16L1 genes have a perspective place. In the case of hereditary colorectal cancer, we can select by the help of genetic diagnostics, the group of patients with high risk of colon cancer, which requires more intensive monitoring. The aim is to find out the colon cancer in the early, treatable stage. In practical terms, genetic diagnostics of inflammatory bowel disease and colon cancer has no screening and only poor prognostic importance. It is pleasant, that the Slovak genetic workplaces are interested in this issue and in accordance with modern trends they try to expand its diapason.

  13. Social-emotional development through a behavior genetics lens: infancy through preschool.

    PubMed

    DiLalla, Lisabeth Fisher; Mullineaux, Paula Y; Biebl, Sara J W

    2012-01-01

    The field of developmental behavior genetics has added significantly to the collective understanding of what factors influence human behavior and human development. Research in this area has helped to explain not only how genes and environment contribute to individual differences but also how the interplay between genes and environment influences behavior and human development. The current chapter provides a background of the theory and methodology behind behavior genetic research and the field of developmental behavior genetics. It also examines three specific developmental periods as they relate to behavior genetic research: infancy, toddlerhood, and early preschool. The behavior genetic literature is reviewed for key socioemotional developmental behaviors that fit under each of these time periods. Temperament, attachment, frustration, empathy, and aggression are behaviors that develop in early life that were examined here. Thus, the general purpose of this chapter is to provide an overview of how genes and environment, as well as the interplay between them, relate to early socioemotional behaviors.

  14. Molecular Genetic of Atopic dermatitis: An Update

    PubMed Central

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Alnomair, Naief; Alobead, Zeiad Abdulaziz; Rasheed, Zafar

    2016-01-01

    Atopic dermatitis (AD) is a chronic multifactorial inflammatory skin disease. The pathogenesis of AD remains unclear, but the disease results from dysfunctions of skin barrier and immune response, where both genetic and environmental factors play a key role. Recent studies demonstrate the substantial evidences that show a strong genetic association with AD. As for example, AD patients have a positive family history and have a concordance rate in twins. Moreover, several candidate genes have now been suspected that play a central role in the genetic background of AD. In last decade advanced procedures similar to genome-wide association (GWA) and single nucleotide polymorphism (SNP) have been applied on different population and now it has been clarified that AD is significantly associated with genes of innate/adaptive immune systems, human leukocyte antigens (HLA), cytokines, chemokines, drug-metabolizing genes or various other genes. In this review, we will highlight the recent advancements in the molecular genetics of AD, especially on possible functional relevance of genetic variants discovered to date. PMID:27004062

  15. Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students.

    PubMed

    Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia

    2016-01-01

    This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants' explanatory models (EMs) of genetics and genetic risk. Participants' EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk.

  16. Oppositional defiant- and conduct disorder-like problems: neurodevelopmental predictors and genetic background in boys and girls, in a nationwide twin study.

    PubMed

    Kerekes, Nóra; Lundström, Sebastian; Chang, Zheng; Tajnia, Armin; Jern, Patrick; Lichtenstein, Paul; Nilsson, Thomas; Anckarsäter, Henrik

    2014-01-01

    Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD) and conduct disorder (CD). The aims of this study were to identify gender-specific associations between the behavioural problems-ODD/CD-like problems-and the neurodevelopmental disorders-attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD)-and to investigate underlying genetic effects. Methods. 17,220 twins aged 9 or 12 were screened using the Autism-Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting. Results. Social interaction problems (one of the ASD subdomains) was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%-62% of the variance in behavioural problems, except in CD-like problems in girls (26%). Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls. Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.

  17. Population Structure of Invasive Streptococcus pneumoniae in the Netherlands in the Pre-Vaccination Era Assessed by MLVA and Capsular Sequence Typing

    PubMed Central

    Elberse, Karin E. M.; van de Pol, Ingrid; Witteveen, Sandra; van der Heide, Han G. J.; Schot, Corrie S.; van Dijk, Anita; van der Ende, Arie; Schouls, Leo M.

    2011-01-01

    The introduction of nationwide pneumococcal vaccination may lead to serotype replacement and the emergence of new variants that have expanded their genetic repertoire through recombination. To monitor alterations in the pneumococcal population structure, we have developed and utilized Capsular Sequence Typing (CST) in addition to Multiple-Locus Variable number tandem repeat Analysis (MLVA). To assess the serotype of each isolate CST was used. Based on the determination of the partial sequence of the capsular wzh gene, this method assigns a capsular type of an isolate within a single PCR reaction using multiple primersets. The genetic background of pneumococcal isolates was assessed by MLVA. MLVA and CST were used to create a snapshot of the Dutch pneumococcal population causing invasive disease before the introduction of the 7-valent pneumococcal conjugate vaccine in the Netherlands in 2006. A total of 1154 clinical isolates collected and serotyped by the Netherlands Reference Laboratory for Bacterial Meningitis were included in the snapshot. The CST was successful in discriminating most serotypes present in our collection. MLVA demonstrated that isolates belonging to some serotypes had a relatively high genetic diversity whilst other serotypes had a very homogeneous genetic background. MLVA and CST appear to be valuable tools to determine the population structure of pneumococcal isolates and are useful in monitoring the effects of pneumococcal vaccination. PMID:21637810

  18. Mapping and annotating obesity-related genes in pig and human genomes.

    PubMed

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  19. Effective utilization of genetic information for athletes and coaches: focus on ACTN3 R577X polymorphism

    PubMed Central

    Kikuchi, Naoki; Nakazato, Koichi

    2015-01-01

    Training variants (type, intensity, and duration of exercise) can be selected according to individual aims and fitness assessment. Recently, various methods of resistance and endurance training have been used for muscle hypertrophy and VO2max improvement. Although several genetic variants are associated with elite athletic performance and muscle phenotypes, genetic background has not been used as variant for physical training. ACTN3 R577X is a well-studied genetic polymorphism. It is the only genotype associated with elite athletic performance in multiple cohorts. This association is strongly supported by mechanistic data from an Actn3-knockout mouse model. In this review, possible guidelines are discussed for effective utilization of ACTN3 R577X polymorphism for physical training. PMID:26526670

  20. Examining Two Sets of Introgression Lines in Rice (Oryza sativa L.) Reveals Favorable Alleles that Improve Grain Zn and Fe Concentrations

    PubMed Central

    Hu, Xia; Cheng, Li-Rui; Xu, Jian-Long; Shi, Yu-Min; Li, Zhi-Kang

    2015-01-01

    In the modern world, the grain mineral concentration (GMC) in rice (Oryza sativa L.) not only includes important micronutrient elements such as iron (Fe) and zinc (Zn), but it also includes toxic heavy metal elements, especially cadmium (Cd) and lead (Pb). To date, the genetic mechanisms underlying the regulation of GMC, especially the genetic background and G × E effects of GMC, remain largely unknown. In this study, we adopted two sets of backcross introgression lines (BILs) derived from IR75862 (a Zn-dense rice variety) as the donor parent and two elite indica varieties, Ce258 and Zhongguangxiang1, as recurrent parents to detect QTL affecting GMC traits including Fe, Zn, Cd and Pb concentrations in two environments. We detected a total of 22 loci responsible for GMC traits, which are distributed on all 12 rice chromosomes except 5, 9 and 10. Six genetic overlap (GO) regions affecting multiple elements were found, in which most donor alleles had synergistic effects on GMC. Some toxic heavy metal-independent loci (such as qFe1, qFe2 and qZn12) and some regions that have opposite genetic effects on micronutrient (Fe and Zn) and heavy metal element (Pb) concentrations (such as GO-IV) may be useful for marker-assisted biofortification breeding in rice. We discuss three important points affecting biofortification breeding efforts in rice, including correlations between different GMC traits, the genetic background effect and the G × E effect. PMID:26161553

  1. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women.

    PubMed

    Huerta-Chagoya, Alicia; Vázquez-Cárdenas, Paola; Moreno-Macías, Hortensia; Tapia-Maruri, Leonardo; Rodríguez-Guillén, Rosario; López-Vite, Erika; García-Escalante, Guadalupe; Escobedo-Aguirre, Fernando; Parra-Covarrubias, Adalberto; Cordero-Brieño, Roberto; Manzo-Carrillo, Lizette; Zacarías-Castillo, Rogelio; Vargas-García, Carlos; Aguilar-Salinas, Carlos; Tusié-Luna, Teresa

    2015-01-01

    Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16 x 10(-06); OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98 x 10(-05); OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60' OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM.

  2. Genetic Determinants for Gestational Diabetes Mellitus and Related Metabolic Traits in Mexican Women

    PubMed Central

    Huerta-Chagoya, Alicia; Vázquez-Cárdenas, Paola; Moreno-Macías, Hortensia; Tapia-Maruri, Leonardo; Rodríguez-Guillén, Rosario; López-Vite, Erika; García-Escalante, Guadalupe; Escobedo-Aguirre, Fernando; Parra-Covarrubias, Adalberto; Cordero-Brieño, Roberto; Manzo-Carrillo, Lizette; Zacarías-Castillo, Rogelio; Aguilar-Salinas, Carlos; Tusié-Luna, Teresa

    2015-01-01

    Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16x10-06; OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98x10-05; OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60’ OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM. PMID:25973943

  3. Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination

    PubMed Central

    Voigt, Emily A.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Kennedy, Richard B.; Larrabee, Beth R.; Schaid, Daniel J.; Poland, Gregory A.

    2017-01-01

    In addition to host genetic and environmental factors, variations in immune responses to vaccination are influenced by demographic variables, such as race and sex. The influence of genetic race and sex on measles vaccine responses is not well understood, yet important for the development of much-needed improved measles vaccines with lower failure rates. We assessed associations between genetically defined race and sex with measles humoral and cellular immunity after measles vaccination in three independent and geographically distinct cohorts totaling 2,872 healthy racially diverse children, older adolescents, and young adults. We found no associations between biological sex and either humoral or cellular immunity to measles vaccine, and no correlation between humoral and cellular immunity in these study subjects. Genetically defined race was, however, significantly associated with both measles vaccine-induced humoral and cellular immune responses, with subjects genetically classified as having African-American ancestry demonstrating significantly higher antibody and cell-mediated immune responses relative to subjects of Caucasian ancestry. This information may be useful in designing novel measles vaccines that are optimally effective across human genetic backgrounds. PMID:27591105

  4. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes

    PubMed Central

    Sharma, Shivali; Upadhyaya, H. D.; Varshney, R. K.; Gowda, C. L. L.

    2013-01-01

    The narrow genetic base of cultivars coupled with low utilization of genetic resources are the major factors limiting grain legume production and productivity globally. Exploitation of new and diverse sources of variation is needed for the genetic enhancement of grain legumes. Wild relatives with enhanced levels of resistance/tolerance to multiple stresses provide important sources of genetic diversity for crop improvement. However, their exploitation for cultivar improvement is limited by cross-incompatibility barriers and linkage drags. Pre-breeding provides a unique opportunity, through the introgression of desirable genes from wild germplasm into genetic backgrounds readily used by the breeders with minimum linkage drag, to overcome this. Pre-breeding activities using promising landraces, wild relatives, and popular cultivars have been initiated at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to develop new gene pools in chickpea, pigeonpea, and groundnut with a high frequency of useful genes, wider adaptability, and a broad genetic base. The availability of molecular markers will greatly assist in reducing linkage drags and increasing the efficiency of introgression in pre-breeding programs. PMID:23970889

  5. Understanding of research, genetics and genetic research in a rapid ethical assessment in north west Cameroon

    PubMed Central

    Kengne-Ouafo, Jonas A.; Millard, James D.; Nji, Theobald M.; Tantoh, William F.; Nyoh, Doris N.; Tendongfor, Nicholas; Enyong, Peter A.; Newport, Melanie J.; Davey, Gail; Wanji, Samuel

    2016-01-01

    Background There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. Methods Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. Results Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. Conclusion We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research. PMID:25969503

  6. Introducing genetic testing for cardiovascular disease in primary care: a qualitative study

    PubMed Central

    Middlemass, Jo B; Yazdani, Momina F; Kai, Joe; Standen, Penelope J; Qureshi, Nadeem

    2014-01-01

    Background While primary care systematically offers conventional cardiovascular risk assessment, genetic tests for coronary heart disease (CHD) are increasingly commercially available to patients. It is unclear how individuals may respond to these new sources of risk information. Aim To explore how patients who have had a recent conventional cardiovascular risk assessment, perceive additional information from genetic testing for CHD. Design and setting Qualitative interview study in 12 practices in Nottinghamshire from both urban and rural settings. Method Interviews were conducted with 29 adults, who consented to genetic testing after having had a conventional cardiovascular risk assessment. Results Individuals’ principal motivation for genetic testing was their family history of CHD and a desire to convey the results to their children. After testing, however, there was limited recall of genetic test results and scepticism about the value of informing their children. Participants dealt with conflicting findings from the genetic test, family history, and conventional assessment by either focusing on genetic risk or environmental lifestyle factors. In some participants, genetic test results appeared to reinforce healthy behaviour but others were falsely reassured, despite having an ‘above-average’ conventional cardiovascular risk score. Conclusion Although genetic testing was acceptable, participants were unclear how to interpret genetic risk results. To facilitate healthy behaviour, health professionals should explore patients’ understanding of genetic test results in light of their family history and conventional risk assessment. PMID:24771842

  7. Biological Clocks. Testing Our Internal Timing.

    ERIC Educational Resources Information Center

    Jones, M. Gail

    1991-01-01

    Presented are seven investigations that examine circadian rhythms. Topics include attention span, body temperature, rhythms found in rodents and spiders, and possible genetic determination of circadian rhythms. Background information on plants and animals is given. (KR)

  8. The Human Genome Project: An Imperative for International Collaboration.

    ERIC Educational Resources Information Center

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  9. When and How to Take Antibiotics

    MedlinePlus

    ... Work Contact Us ABOUT THE ISSUE What is Antibiotic Resistance? General Background Science of Resistance Glossary References POLICY ... for Adaptation Genetics and Drug Resistance Reservoirs of Antibiotic Resistance Project (ROAR) INTERNATIONAL CHAPTERS APUA Chapter Network Africa ...

  10. Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries

    PubMed Central

    2013-01-01

    Background Synthetic genetic transistors are vital for signal amplification and switching in genetic circuits. However, it is still problematic to efficiently select the adequate promoters, Ribosome Binding Sides (RBSs) and inducer concentrations to construct a genetic transistor with the desired linear amplification or switching in the Input/Output (I/O) characteristics for practical applications. Results Three kinds of promoter-RBS libraries, i.e., a constitutive promoter-RBS library, a repressor-regulated promoter-RBS library and an activator-regulated promoter-RBS library, are constructed for systematic genetic circuit design using the identified kinetic strengths of their promoter-RBS components. According to the dynamic model of genetic transistors, a design methodology for genetic transistors via a Genetic Algorithm (GA)-based searching algorithm is developed to search for a set of promoter-RBS components and adequate concentrations of inducers to achieve the prescribed I/O characteristics of a genetic transistor. Furthermore, according to design specifications for different types of genetic transistors, a look-up table is built for genetic transistor design, from which we could easily select an adequate set of promoter-RBS components and adequate concentrations of external inducers for a specific genetic transistor. Conclusion This systematic design method will reduce the time spent using trial-and-error methods in the experimental procedure for a genetic transistor with a desired I/O characteristic. We demonstrate the applicability of our design methodology to genetic transistors that have desirable linear amplification or switching by employing promoter-RBS library searching. PMID:24160305

  11. Occupational and genetic risk factors for osteoarthritis: A review

    PubMed Central

    Yucesoy, Berran; Charles, Luenda E.; Baker, Brent; Burchfiel, Cecil M.

    2015-01-01

    BACKGROUND Osteoarthritis (OA) is a multifactorial disease with strong genetic and occupational components. Although published studies have described several risk factors for OA, very few studies have investigated the occupational and genetic factors that contribute to this debilitating condition. OBJECTIVE To describe occupational and genetic factors that may contribute to the risk of developing (OA). METHODS A literature search was conducted in PubMed using the search terms osteoarthritis, occupation, work, and genetics. RESULTS Heavy physical work load was the most common occupational risk factor for OA in several anatomical locations. Other factors include kneeling and regular stair climbing, crawling, bending and whole body vibration, and repetitive movements. Numerous studies have also shown the influence of genetic variability in the pathogenesis of OA. Genetic variants of several groups of genes e.g., cartilage extracellular matrix structural genes and the genes related to bone density have been implicated in disease pathogenesis. CONCLUSION This review shows that occupational factors were extensively studied in knee OA unlike OA of other anatomical regions. Although genetic association studies performed to date identified a number of risk variants, some of these associations have not been consistently replicated across different studies and populations. Therefore, more research is needed. PMID:24004806

  12. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain

    PubMed Central

    2011-01-01

    Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141

  13. The relative nature of fertilization success: Implications for the study of post-copulatory sexual selection

    PubMed Central

    2008-01-01

    Background The determination of genetic variation in sperm competitive ability is fundamental to distinguish between post-copulatory sexual selection models based on good-genes vs compatible genes. The sexy-sperm and the good-sperm hypotheses for the evolution of polyandry require additive (intrinsic) effects of genes influencing sperm competitiveness, whereas the genetic incompatibility hypothesis invokes non-additive genetic effects. A male's sperm competitive ability is typically estimated from his fertilization success, a measure that is dependent on the ability of rival sperm competitors to fertilize the ova. It is well known that fertilization success may be conditional to genotypic interactions among males as well as between males and females. However, the consequences of effects arising from the random sampling of sperm competitors upon the estimation of genetic variance in sperm competitiveness have been overlooked. Here I perform simulations of mating trials performed in the context of sibling analysis to investigate whether the ability to detect additive genetic variance underlying the sperm competitiveness phenotype is hindered by the relative nature of fertilization success measurements. Results Fertilization success values render biased sperm competitive ability values. Furthermore, asymmetries among males in the errors committed when estimating sperm competitive abilities are likely to exist as long as males exhibit variation in sperm competitiveness. Critically, random effects arising from the relative nature of fertilization success lead to an underestimation of underlying additive genetic variance in sperm competitive ability. Conclusion The results show that, regardless of the existence of genotypic interactions affecting the output of sperm competition, fertilization success is not a perfect predictor of sperm competitive ability because of the stochasticity of the background used to obtain fertilization success measures. Random effects need to be considered in the debate over the maintenance of genetic variation in sperm competitiveness, and when testing good-genes and compatible-genes processes as explanations of polyandrous behaviour using repeatability/heritability data in sperm competitive ability. These findings support the notion that the genetic incompatibility hypothesis needs to be treated as an alternative hypothesis, rather than a null hypothesis, in studies that fail to detect intrinsic sire effects on the sperm competitiveness phenotype. PMID:18474087

  14. Molecular basis of atopic dermatitis.

    PubMed

    Bonness, Sonja; Bieber, Thomas

    2007-10-01

    Atopic dermatitis is a common chronic inflammatory skin disease and there are numerous publications on this topic. This review will focus on developments in understanding the molecular basis of atopic dermatitis while considering the genetic background, skin barrier impairment, immune system deviation and microbial superinfections. Atopic dermatitis is a complex genetic disease in which gene-gene and gene-environment interactions play a key role. Surprisingly some genetic regions of interest were found to be overlapping with loci identified to play a role in another very common inflammatory skin disease, psoriasis, while no overlap has so far been observed with asthma. Impairment of the skin barrier followed by antigens trespassing seems to play an important role, favouring sensitization via transepidermal penetration which is the focus of current investigations. Superinfections by pathogens such as Staphylococcus aureus due to a weak innate defence seem to be significant in atopic dermatitis as they elicit a strong inflammatory response. Atopic dermatitis is a chronic inflammatory skin disease with a high incidence in school children and adults. Disease pathogenesis is complex and the background is multifactorial, making the underlying predispositions elusive. Understanding new pathogenic pathways may lead to the development of new drugs with enhanced benefit for the patient.

  15. Genetic factors modulate the impact of pubertal androgen excess on insulin sensitivity and fertility.

    PubMed

    Dowling, Abigail R; Nedorezov, Laura B; Qiu, Xiaoliang; Marino, Joseph S; Hill, Jennifer W

    2013-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive age women. The syndrome is caused by a combination of environmental influences and genetic predisposition. Despite extensive efforts, the heritable factors contributing to PCOS development are not fully understood. The objective of this study was to test the hypothesis that genetic background contributes to the development of a PCOS-like reproductive and metabolic phenotype in mice exposed to excess DHEA during the pubertal transition. We tested whether the PCOS phenotype would be more pronounced on the diabetes-prone C57BL/6 background than the previously used strain, BALB/cByJ. In addition, we examined strain-dependent upregulation of the expression of ovarian and extra-ovarian candidate genes implicated in human PCOS, genes containing known strain variants, and genes involved with steroidogenesis or insulin sensitivity. These studies show that there are significant strain-related differences in metabolic response to excess androgen exposure during puberty. Additionally, our results suggest the C57BL/6J strain provides a more robust and uniform experimental platform for PCOS research than the BALB/cByJ strain.

  16. The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing

    PubMed Central

    Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László

    2015-01-01

    Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field. PMID:25785227

  17. The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing.

    PubMed

    Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László

    2015-01-01

    Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field.

  18. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun

    2018-02-01

    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  19. Characterization of Gastric Microbiota in Twins.

    PubMed

    Dong, Quanjiang; Xin, Yongning; Wang, Lili; Meng, Xinying; Yu, Xinjuan; Lu, Linlin; Xuan, Shiying

    2017-02-01

    Contribution of host genetic backgrounds in the development of gastric microbiota has not been clearly defined. This study was aimed to characterize the biodiversity, structure and composition of gastric microbiota among twins. A total of four pairs of twins and eight unrelated individuals were enrolled in the study. Antral biopsies were obtained during endoscopy. The bacterial 16S rRNA gene was amplified and pyrosequenced. Sequences were analyzed for the composition, structure, and α and β diversities of gastric microbiota. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria were the most predominant phyla of gastric microbiota. Each individual, twins as well as unrelated individuals, harbored a microbiota of distinct composition. There was no evidence of additional similarity in the richness and evenness of gastric microbiota among co-twins as compared to unrelated individuals. Calculations of θ YC and PCoA demonstrated that the structure similarity of gastric microbial community between co-twins did not increase compared to unrelated individuals. In contrast, the structure of microbiota was altered enormously by Helicobacter pylori infection. These results suggest that host genetic backgrounds had little effect in shaping the gastric microbiota. This property of gastric microbiota could facilitate the studies discerning the role of microbiota from genetic grounds in the pathogenesis.

  20. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology.

    PubMed

    Radde, Rebecca; Bolmont, Tristan; Kaeser, Stephan A; Coomaraswamy, Janaky; Lindau, Dennis; Stoltze, Lars; Calhoun, Michael E; Jäggi, Fabienne; Wolburg, Hartwig; Gengler, Simon; Haass, Christian; Ghetti, Bernardino; Czech, Christian; Hölscher, Christian; Mathews, Paul M; Jucker, Mathias

    2006-09-01

    We have generated a novel transgenic mouse model on a C57BL/6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter element (APPPS1 mice). Cerebral amyloidosis starts at 6-8 weeks and the ratio of human amyloid (A)beta42 to Abeta40 is 1.5 and 5 in pre-depositing and amyloid-depositing mice, respectively. Consistent with this ratio, extensive congophilic parenchymal amyloid but minimal amyloid angiopathy is observed. Amyloid-associated pathologies include dystrophic synaptic boutons, hyperphosphorylated tau-positive neuritic structures and robust gliosis, with neocortical microglia number increasing threefold from 1 to 8 months of age. Global neocortical neuron loss is not apparent up to 8 months of age, but local neuron loss in the dentate gyrus is observed. Because of the early onset of amyloid lesions, the defined genetic background of the model and the facile breeding characteristics, APPPS1 mice are well suited for studying therapeutic strategies and the pathomechanism of amyloidosis by cross-breeding to other genetically engineered mouse models.

  1. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology

    PubMed Central

    Radde, Rebecca; Bolmont, Tristan; Kaeser, Stephan A; Coomaraswamy, Janaky; Lindau, Dennis; Stoltze, Lars; Calhoun, Michael E; Jäggi, Fabienne; Wolburg, Hartwig; Gengler, Simon; Haass, Christian; Ghetti, Bernardino; Czech, Christian; Hölscher, Christian; Mathews, Paul M; Jucker, Mathias

    2006-01-01

    We have generated a novel transgenic mouse model on a C57BL/6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter element (APPPS1 mice). Cerebral amyloidosis starts at 6–8 weeks and the ratio of human amyloid (A)β42 to Aβ40 is 1.5 and 5 in pre-depositing and amyloid-depositing mice, respectively. Consistent with this ratio, extensive congophilic parenchymal amyloid but minimal amyloid angiopathy is observed. Amyloid-associated pathologies include dystrophic synaptic boutons, hyperphosphorylated tau-positive neuritic structures and robust gliosis, with neocortical microglia number increasing threefold from 1 to 8 months of age. Global neocortical neuron loss is not apparent up to 8 months of age, but local neuron loss in the dentate gyrus is observed. Because of the early onset of amyloid lesions, the defined genetic background of the model and the facile breeding characteristics, APPPS1 mice are well suited for studying therapeutic strategies and the pathomechanism of amyloidosis by cross-breeding to other genetically engineered mouse models. PMID:16906128

  2. Psoriasis.

    PubMed

    Nestle, Frank O

    2008-01-01

    Psoriasis is one of the most common chronic inflammatory disorders with a strong genetic background. Recent progress in the understanding of both the immunological as well as the genetic basis has provided an unprecedented opportunity to move scientific insights from the bench to bedside. Based on insights from laboratory research, targeted immunotherapies are now available for the benefit of patients suffering from psoriasis. The success of these therapies has validated insights into disease pathogenesis and also provides the opportunity to increase our understanding about the pathways underpinning autoimmune-type inflammation in the skin.

  3. Multiple sclerosis: individualized disease susceptibility and therapy response.

    PubMed

    Pravica, Vera; Markovic, Milos; Cupic, Maja; Savic, Emina; Popadic, Dusan; Drulovic, Jelena; Mostarica-Stojkovic, Marija

    2013-02-01

    Multiple sclerosis (MS) is a heterogeneous disease in which diverse genetic, pathological and clinical backgrounds lead to variable therapy response. Accordingly, MS care should be tailored to address disease traits unique to each person. At the core of personalized management is the emergence of new knowledge, enabling optimized treatment and disease-modifying therapies. This overview analyzes the promise of genetic and nongenetic biomarkers in advancing decision-making algorithms to assist diagnosis or in predicting the disease course and therapy response in any given MS patient.

  4. 22 CFR 96.48 - Preparation and training of prospective adoptive parent(s) in incoming cases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... genetic, health, emotional, and developmental risk factors associated with children from the expected..., ethnic, and linguistic background; (2) The known health risks in the specific region or country where the...

  5. County‐level cumulative environmental quality associated with cancer incidence

    EPA Science Inventory

    Background: Cancer risk is affected by a combination of behavioral, genetic, and environmental factors. Individual environmental exposures have been associated with cancer development; however, a variety of environmental exposures may occur simultaneously. The Environmental Quali...

  6. The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers

    PubMed Central

    Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels

    2015-01-01

    The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland. PMID:24801759

  7. The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers.

    PubMed

    Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels

    2015-02-01

    The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.

  8. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments

    PubMed Central

    Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.

    2016-01-01

    Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729

  9. Experience, Knowledge, and Opinions about Childhood Genetic Testing in Batten Disease

    PubMed Central

    Rose, Katherine; Augustine, Erika F.; Kwon, Jennifer M.; deBlieck, Elisabeth A.; Marshall, Frederick J.; Vierhile, Amy; Mink, Jonathan W.; Nance, Martha A.

    2013-01-01

    Background and Objectives Policies for genetic testing in children (GTIC) focus on medical or psychosocial benefit to the child, discouraging or prohibiting carrier testing, and advising caution regarding pre-symptomatic diagnosis if no treatment exists. This study sought to understand parents’ perspectives on these issues and determine their experiences and knowledge related to genetic testing for Batten disease – a set of inherited neurodegenerative diseases of childhood onset for which no disease modifying therapies yet exist. Methods Parents of children with Batten disease completed a survey of their knowledge of genetics, experience with genetic testing, and opinions regarding GTIC. Results 54% had sought genetic testing for non-affected family members, including predictive diagnosis of healthy, at-risk children. Participation in any genetic counseling was associated with greater knowledge on questions about genetics. The majority of parents felt it was better to know ahead of time that a child would develop Batten disease, believed that this knowledge would not alter how they related to their child, and that parents should have the final say in deciding whether to obtain GTIC. Conclusions Parents of children with an inherited disease are knowledgeable about genetics and wish to establish predictive or carrier status of at-risk children. PMID:24246680

  10. The Sardinian Way to Type 1 Diabetes

    PubMed Central

    Songini, Marco; Lombardo, Cira

    2010-01-01

    Sardinia and Finland are the “hottest” areas for type 1 diabetes mellitus (T1DM) worldwide. Its genetic and epidemiological background make Sardinia an ideal region for investigating environmental, immunological, and genetic factors related to the etiopathogenesis of T1DM. Consequently, in 1990, the Insulin-Dependent Diabetes Mellitus Sardinia Project was launched in order to map the geographical distribution of T1DM in the island and to investigate preclinical phases of T1DM in a large cohort of people genetically at risk. The final goal would be to design models of prediction and to formulate safe preventive measures, especially addressed to the general population living in areas at high risk. PMID:20920447

  11. ESHRE Task Force on Ethics and Law 21: genetic screening of gamete donors: ethical issues.

    PubMed

    Dondorp, W; De Wert, G; Pennings, G; Shenfield, F; Devroey, P; Tarlatzis, B; Barri, P; Diedrich, K; Eichenlaub-Ritter, U; Tüttelmann, F; Provoost, V

    2014-07-01

    This Task Force document explores the ethical issues involved in the debate about the scope of genetic screening of gamete donors. Calls for expanded donor screening arise against the background of both occasional findings of serious but rare genetic conditions in donors or donor offspring that were not detected through present screening procedures and the advent of new genomic technologies promising affordable testing of donors for a wide range of conditions. Ethical principles require that all stakeholders' interests are taken into account, including those of candidate donors. The message of the profession should be that avoiding all risks is impossible and that testing should remain proportional.

  12. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  13. [Implications of the new etiophatogenic approach in the classification of constitutional and genetic bone diseases].

    PubMed

    Morales Piga, Antonio; Alonso Ferreira, Verónica; Villaverde-Hueso, Ana

    2011-01-01

    Recent years have seen an unprecedented increase in the knowledge and understanding of biochemical disturbances involved on constitutional bone disorders. Recognition of the genetic background as the common cause of these diseases prompted the substitution of the term «constitutional» by «genetic», in referring to them. Understanding physiopathological bases by finding out the altered metabolic pathways as well as their regulatory and control systems, favours an earlier and more accurate diagnosis based on interdisciplinary collaboration. Although clinical and radiological assessment remains crucial in the study of these disorders, ever more often the diagnosis is achieved by molecular and genetic analysis. Elucidation of the damaged underlying molecular mechanisms offers targets potentially useful for therapeutic research in these complex and often disabling diseases. 2010 Elsevier España, S.L. All rights reserved.

  14. The Inclination to Evil and the Punishment of Crime - from the Bible to Behavioral Genetics

    PubMed Central

    Gold, Azgad; Appelbaum, Paul S.

    2012-01-01

    The evolving field of behavioral genetics is gradually elucidating the complex interplay between genes and environment. Scientific data pertaining to the behavioral genetics of violent behavior provides a new context for an old dilemma regarding criminal responsibility and punishment: if the inclination to violent behavior is inherent in someone's nature, how should it affect punishment for crime? Should it be considered as a mitigating or an aggravating factor? Given psychiatrists’ increasing involvement in providing testimony on behavioral genetics in the criminal justice system, this paper first provides the necessary background required for understanding how this question arises and reviews the relevant literature. Then, we address this question from the perspective of the Bible and its commentators, in the belief that their insights may enrich the contemporary discussion of this question. PMID:25618278

  15. The inclination to evil and the punishment of crime - from the bible to behavioral genetics.

    PubMed

    Gold, Azgad; S Appelbaum, Paul

    2014-01-01

    The evolving field of behavioral genetics is gradually elucidating the complex interplay between genes and environment. Scientific data pertaining to the behavioral genetics of violent behavior provides a new context for an old dilemma regarding criminal responsibility and punishment: if the inclination to violent behavior is inherent in someone's nature, how should it affect punishment for crime? Should it be considered as a mitigating or an aggravating factor? Given psychiatrists' increasing involvement in providing testimony on behavioral genetics in the criminal justice system, this paper first provides the necessary background required for understanding how this question arises and reviews the relevant literature. Then, we address this question from the perspective of the Bible and its commentators, in the belief that their insights may enrich the contemporary discussion of this question.

  16. Myriad Genetics: In the eye of the policy storm

    PubMed Central

    Gold, E. Richard; Carbone, Julia

    2011-01-01

    From the late 1980s, a storm surrounding the wisdom, ethics, and economics of human gene patents has been brewing. The various winds of concern in this storm touched on the impact of gene patents on basic and clinical research, on health care delivery, and on the ability of public health care systems to provide equal access when faced with costly patented genetic diagnostic tests. Myriad Genetics, Inc., along with its subsidiary, Myriad Genetic Laboratories, Inc., a small Utah-based biotechnology company, found itself unwittingly in the eye of this storm after a series of decisions it made regarding the commercialization of a hereditary breast cancer diagnostic test. This case study examine the background to Myriad's decisions, the context in which these decisions were made and the policy, research and business response to them. PMID:20393310

  17. Genetics of reflex seizures and epilepsies in humans and animals.

    PubMed

    Italiano, Domenico; Striano, Pasquale; Russo, Emilio; Leo, Antonio; Spina, Edoardo; Zara, Federico; Striano, Salvatore; Gambardella, Antonio; Labate, Angelo; Gasparini, Sara; Lamberti, Marco; De Sarro, Giovambattista; Aguglia, Umberto; Ferlazzo, Edoardo

    2016-03-01

    Reflex seizures are epileptic events triggered by specific motor, sensory or cognitive stimulation. This comprehensive narrative review focuses on the role of genetic determinants in humans and animal models of reflex seizures and epilepsies. References were mainly identified through MEDLINE searches until August 2015 and backtracking of references in pertinent studies. Autosomal dominant inheritance with reduced penetrance was proven in several families with photosensitivity. Molecular genetic studies on EEG photoparoxysmal response identified putative loci on chromosomes 6, 7, 13 and 16 that seem to correlate with peculiar seizure phenotype. No specific mutation has been found in Papio papio baboon, although a genetic etiology is likely. Mutation in synaptic vesicle glycoprotein 2A was found in another animal model of photosensitivity (Fayoumi chickens). Autosomal dominant inheritance with incomplete penetrance overlapping with a genetic background for IGE was proposed for some families with primary reading epilepsy. Musicogenic seizures usually occur in patients with focal symptomatic or cryptogenic epilepsies, but they have been reported in rare genetic epilepsies such as Dravet syndrome. A single LGI1 mutation has been described in a girl with seizures evoked by auditory stimuli. Interestingly, heterozygous knockout (Lgi1(+/-)) mice show susceptibility to sound-triggered seizures. Moreover, in Frings and Black Swiss mice, the spontaneous mutations of MASS1 and JAMS1 genes, respectively, have been linked to audiogenic seizures. Eating seizures usually occur in symptomatic epilepsies but evidences for a genetic susceptibility were mainly provided by family report from Sri Lanka. Eating seizures were also reported in rare patients with MECP2 duplication or mutation. Hot water seizures are genetically heterogeneous but two loci at chromosomes 4 and 10 were identified in families with likely autosomal dominant inheritance. Startle-induced seizures usually occur in patients with symptomatic epilepsies but have also been reported in the setting chromosomal disorders or genetically inherited lysosomal storage diseases. The genetic background of reflex seizures and epilepsies is heterogeneous and mostly unknown with no major gene identified in humans. The benefits offered by next-generation sequencing technologies should be merged with increasing information on animal models that represent an useful tool to study the mechanism underlying epileptogenesis. Finally, we expect that genetic studies will lead to a better understanding of the multiple factors involved in the pathophysiology of reflex seizures, and eventually to develop preventive strategies focused on seizure control and therapy optimization. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line

    PubMed Central

    Krentz, Anthony D.; Murphy, Mark W.; Zhang, Teng; Sarver, Aaron L.; Jain, Sanjay; Griswold, Michael D.; Bardwell, Vivian J.; Zarkower, David

    2013-01-01

    Dmrt1(doublesex and mab-3 related transcription factor 1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some variability in genetic background in these crosses, this result is consistent with previous genetic mapping of teratoma susceptibility loci to the region containing Gfra1. Using Nanos3-cre we also uncovered a strong genetic interaction between Dmrt1 and Nanos3, suggesting parallel functions for these two genes in fetal germ cells. Finally, we used chromatin immunoprecipitation (ChIP-seq) analysis to identify a number of potentially direct DMRT1 targets. This analysis suggested that DMRT1 controls pluripotency via transcriptional repression of Esrrb, Nr5a2/Lrh1, and Sox2. Given the strong evidence for involvement of DMRT1 in human TGCT, the downstream genes and pathways identified in this study provide potentially useful candidates for roles in the human disease. PMID:23473982

  19. Virulence of Melissococcus plutonius and secondary invaders associated with European foulbrood disease of the honey bee.

    PubMed

    Lewkowski, Oleg; Erler, Silvio

    2018-05-24

    European foulbrood is a globally distributed brood disease affecting honey bees. It may lead to lethal infections of larvae and, in severe cases, even to colony collapse. Lately, a profound genetic and phenotypic diversity was documented for the causative agent Melissococcus plutonius. However, experimental work on the impact of diverse M. plutonius strains on hosts with different genetic background is completely lacking and the role of secondary invaders is poorly understood. Here, we address these issues and elucidate the impact and interaction of both host and pathogen on one another. Moreover, we try to unravel the role of secondary bacterial invasions in foulbrood-diseased larvae. We employed in vitro infections with honey bee larvae from queens with different genetic background and three different M. plutonius strains. Larvae infection experiments showed host-dependent survival dynamics although M. plutonius strain 49.3 consistently had the highest virulence. This pattern was also reflected in significantly reduced weights of 49.3 strain-infected larvae compared to the other treatments. No difference was found in groups additionally inoculated with a secondary invader (Enterococcus faecalis or Paenibacillus alvei) neither in terms of larval survival nor weight. These results suggest that host background contributes markedly to the course of the disease but virulence is mainly dependent on pathogen genotype. Secondary invaders following a M. plutonius infection do not increase disease lethality and therefore may just be a colonization of weakened and immunodeficient, or dead larvae. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  1. Mutant power: using mutant allele collections for yeast functional genomics.

    PubMed

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE.

    PubMed

    De Wert, Guido; Heindryckx, Björn; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G; Forzano, Francesca; Goddijn, Mariëtte; Howard, Heidi C; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Dondorp, Wybo; Tarlatzis, Basil C; Cornel, Martina C

    2018-04-01

    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns.

  3. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes

    PubMed Central

    Araripe, L O; Tao, Y; Lemos, B

    2016-01-01

    Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of ‘heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome–autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in specific genotypic combinations. PMID:26980343

  4. Symposium review: Novel strategies to genetically improve mastitis resistance in dairy cattle.

    PubMed

    Martin, P; Barkema, H W; Brito, L F; Narayana, S G; Miglior, F

    2018-03-01

    Mastitis is a disease of major economic importance to the dairy cattle sector because of the high incidence of clinical mastitis and prevalence of subclinical mastitis and, consequently, the costs associated with treatment, production losses, and reduced animal welfare. Disease-recording systems compiling data from a large number of farms are still not widely implemented around the world; thus, selection for mastitis resistance is often based on genetically correlated indicator traits such as somatic cell count (SCC), udder depth, and fore udder attachment. However, in the past years, several countries have initiated collection systems of clinical mastitis, based on producers recording data in most cases. The large data sets generated have enabled researchers to assess incidence of this disease and to investigate the genetic background of clinical mastitis itself, as well as its relationships with other traits of interest to the dairy industry. The genetic correlations between clinical mastitis and its previous proxies were estimated more accurately and confirmed the strong relationship of clinical mastitis with SCC and udder depth. New traits deriving from SCC were also studied, with the most relevant findings being associated with mean somatic cell score (SCS) in early lactation, standard deviation of SCS, and excessive test-day SCC pattern. Genetic correlations between clinical mastitis and other economically important traits indicated that selection for mastitis resistance would also improve resistance against other diseases and enhance both fertility and longevity. However, milk yield remains negatively correlated with clinical mastitis, emphasizing the importance of including health traits in the breeding objectives to achieve genetic progress for all important traits. These studies enabled the establishment of new genetic and genomic evaluation models, which are more efficient for selection to mastitis resistance. Further studies that are potential keys for future improvement of mastitis resistance are deep investigation of the bacteriology of mastitis, identification of novel indicator traits and tools for selection, and development of a larger female reference population to improve reliability of genomic evaluations. These cutting-edge studies will result in a better understanding of the genetic background of mastitis resistance and enable a more accurate phenotyping and genetic selection to improve mastitis resistance, and consequently, animal welfare and industry profitability. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus)

    PubMed Central

    2014-01-01

    Background Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Results Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. Conclusions The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A large proportion of the markers in the integrated map are SSRs, InDels and SNPs, which are easily transferable across laboratories. Moreover, the populations used to construct the integrated map include all three watermelon subspecies, making this integrated map useful for the selection of breeding traits, identification of QTL, MAS, analysis of germplasm and commercial hybrid seed detection. PMID:24443961

  6. Monitoring Intracellular Redox Changes in Ozone-exposed airway epithelial cells

    EPA Science Inventory

    Background: The toxicity of many compounds involves oxidative injury to cells. Direct assessment of mechanistic events involved in xenobiotic-induced oxidative stress is not easily achievable. Development of genetically-encoded probes designed for monitoring intracellular redox s...

  7. High temperature increases the masculinization rate of the all-female (XX) rainbow trout "Mal" population.

    PubMed

    Valdivia, Karina; Jouanno, Elodie; Volff, Jean-Nicolas; Galiana-Arnoux, Delphine; Guyomard, René; Helary, Louise; Mourot, Brigitte; Fostier, Alexis; Quillet, Edwige; Guiguen, Yann

    2014-01-01

    Salmonids are generally considered to have a robust genetic sex determination system with a simple male heterogamety (XX/XY). However, spontaneous masculinization of XX females has been found in a rainbow trout population of gynogenetic doubled haploid individuals. The analysis of this masculinization phenotype transmission supported the hypothesis of the involvement of a recessive mutation (termed mal). As temperature effect on sex differentiation has been reported in some salmonid species, in this study we investigated in detail the potential implication of temperature on masculinization in this XX mal-carrying population. Seven families issued from XX mal-carrying parents were exposed from the time of hatching to different rearing water temperatures ((8, 12 and 18°C), and the resulting sex-ratios were confirmed by histological analysis of both gonads. Our results demonstrate that masculinization rates are strongly increased (up to nearly two fold) at the highest temperature treatment (18°C). Interestingly, we also found clear differences between temperatures on the masculinization of the left versus the right gonads with the right gonad consistently more often masculinized than the left one at lower temperatures (8 and 12°C). However, the masculinization rate is also strongly dependent on the genetic background of the XX mal-carrying families. Thus, masculinization in XX mal-carrying rainbow trout is potentially triggered by an interaction between the temperature treatment and a complex genetic background potentially involving some part of the genetic sex differentiation regulatory cascade along with some minor sex-influencing loci. These results indicate that despite its rather strict genetic sex determinism system, rainbow trout sex differentiation can be modulated by temperature, as described in many other fish species.

  8. High Temperature Increases the Masculinization Rate of the All-Female (XX) Rainbow Trout “Mal” Population

    PubMed Central

    Valdivia, Karina; Jouanno, Elodie; Volff, Jean-Nicolas; Galiana-Arnoux, Delphine; Guyomard, René; Helary, Louise; Mourot, Brigitte; Fostier, Alexis; Quillet, Edwige; Guiguen, Yann

    2014-01-01

    Salmonids are generally considered to have a robust genetic sex determination system with a simple male heterogamety (XX/XY). However, spontaneous masculinization of XX females has been found in a rainbow trout population of gynogenetic doubled haploid individuals. The analysis of this masculinization phenotype transmission supported the hypothesis of the involvement of a recessive mutation (termed mal). As temperature effect on sex differentiation has been reported in some salmonid species, in this study we investigated in detail the potential implication of temperature on masculinization in this XX mal-carrying population. Seven families issued from XX mal-carrying parents were exposed from the time of hatching to different rearing water temperatures ((8, 12 and 18°C), and the resulting sex-ratios were confirmed by histological analysis of both gonads. Our results demonstrate that masculinization rates are strongly increased (up to nearly two fold) at the highest temperature treatment (18°C). Interestingly, we also found clear differences between temperatures on the masculinization of the left versus the right gonads with the right gonad consistently more often masculinized than the left one at lower temperatures (8 and 12°C). However, the masculinization rate is also strongly dependent on the genetic background of the XX mal-carrying families. Thus, masculinization in XX mal-carrying rainbow trout is potentially triggered by an interaction between the temperature treatment and a complex genetic background potentially involving some part of the genetic sex differentiation regulatory cascade along with some minor sex-influencing loci. These results indicate that despite its rather strict genetic sex determinism system, rainbow trout sex differentiation can be modulated by temperature, as described in many other fish species. PMID:25501353

  9. Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field1[OPEN

    PubMed Central

    Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao

    2018-01-01

    Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104

  10. Is organic farming safer to farmers’ health? A comparison between organic and traditional farming

    PubMed Central

    Costa, Carla; García-Lestón, Julia; Costa, Solange; Coelho, Patrícia; Silva, Susana; Valdiglesias, Vanessa; Mattei, Francesca; Dall’Armi, Valentina; Bonassi, Stefano; Laffon, Blanca; Snawder, John; Teixeira, João Paulo

    2015-01-01

    Background Exposure to pesticides is a major public health concern, because of the widespread distribution of these compounds and their possible long term effects. Recently, organic farming has been introduced as a consumer and environmental friendly agricultural system, although little is known about the effects on workers’ health. Objectives To evaluate genetic damage and immunological alterations in workers of both traditional and organic farming. Methods Eighty-five farmers exposed to several pesticides, thirty–six organic farmers and sixty-one controls took part in the study. Biomarkers of exposure (pyrethroids, organophosphates, carbamates, and thioethers in urine and butyrylcholinesterase activity in plasma), early effect (micronuclei in lymphocytes and reticulocytes, T-cell receptor mutation assay, chromosomal aberrations, comet assay and lymphocytes subpopulations) and susceptibility (genetic polymorphisms related to metabolism - EPHX1, GSTM1, GSTT1 and GSTP1 - and DNA repair – XRCC1 and XRCC2) were evaluated. Results When compared to controls and organic farmers, pesticide farmers presented a significant increase of micronuclei in lymphocytes (frequency ratio, FR=2.80) and reticulocytes (FR=1.89), chromosomal aberrations (FR=2.19), DNA damage assessed by comet assay (mean ratio, MR=1.71), and a significant decrease in the proportion of B lymphocytes (MR=0.88). Overall, organic farmers presented similar levels of genetic damage as controls, in some cases modulated by GSTT1 and GSTM1, GSTP1 105Ile/Ile and XRCC1 399Gln/Gln genotypes. Conclusions Results confirmed the increased presence of DNA damage in farmers exposed to pesticides, and showed as exposure conditions and genetic background influence observed effects. Findings from this study indicate that no evident genetic or immunologic damage can be observed in organic farmers. PMID:24576785

  11. Unravelling fears of genetic discrimination: an exploratory study of Dutch HCM families in an era of genetic non-discrimination acts.

    PubMed

    Geelen, Els; Horstman, Klasien; Marcelis, Carlo L M; Doevendans, Pieter A; Van Hoyweghen, Ine

    2012-10-01

    Since the 1990s, many countries in Europe and the United States have enacted genetic non-discrimination legislation to prevent people from deferring genetic tests for fear that insurers or employers would discriminate against them based on that information. Although evidence for genetic discrimination exists, little is known about the origins and backgrounds of fears of discrimination and how it affects decisions for uptake of genetic testing. The aim of this article is to gain a better understanding of these fears and its possible impact on the uptake of testing by studying the case of hypertrophic cardiomyopathy (HCM). In a qualitative study, we followed six Dutch extended families involved in genetic testing for HCM for three-and-a-half years. Semi-structured interviews were conducted with 57 members of these families. Based on the narratives of the families, we suggest that fears of discrimination have to be situated in the broader social and life-course context of family and kin. We describe the processes in which families developed meaningful interpretations of genetic discrimination and how these interpretations affected family members' decisions to undergo genetic testing. Our findings show that fears of genetic discrimination do not so much stem from the opportunity of genetic testing but much more from earlier experiences of discrimination of diseased family members. These results help identify the possible limitations of genetic non-discrimination regulations and provide direction to clinicians supporting their clients as they confront issues of genetic testing and genetic discrimination.

  12. Unravelling fears of genetic discrimination: an exploratory study of Dutch HCM families in an era of genetic non-discrimination acts

    PubMed Central

    Geelen, Els; Horstman, Klasien; Marcelis, Carlo LM; Doevendans, Pieter A; Van Hoyweghen, Ine

    2012-01-01

    Since the 1990s, many countries in Europe and the United States have enacted genetic non-discrimination legislation to prevent people from deferring genetic tests for fear that insurers or employers would discriminate against them based on that information. Although evidence for genetic discrimination exists, little is known about the origins and backgrounds of fears of discrimination and how it affects decisions for uptake of genetic testing. The aim of this article is to gain a better understanding of these fears and its possible impact on the uptake of testing by studying the case of hypertrophic cardiomyopathy (HCM). In a qualitative study, we followed six Dutch extended families involved in genetic testing for HCM for three-and-a-half years. Semi-structured interviews were conducted with 57 members of these families. Based on the narratives of the families, we suggest that fears of discrimination have to be situated in the broader social and life-course context of family and kin. We describe the processes in which families developed meaningful interpretations of genetic discrimination and how these interpretations affected family members' decisions to undergo genetic testing. Our findings show that fears of genetic discrimination do not so much stem from the opportunity of genetic testing but much more from earlier experiences of discrimination of diseased family members. These results help identify the possible limitations of genetic non-discrimination regulations and provide direction to clinicians supporting their clients as they confront issues of genetic testing and genetic discrimination. PMID:22453290

  13. Genetic Literacy and Patient Perceptions of IBD Testing Utility and Disease Control: A Randomized Vignette Study of Genetic Testing

    PubMed Central

    Hooker, Gillian W.; Peay, Holly; Erby, Lori; Bayless, Theodore; Biesecker, Barbara B.; Roter, Debra L.

    2014-01-01

    Background Findings from inflammatory bowel disease (IBD) genome-wide association studies are being translated clinically into prognostic and diagnostic indicators of disease. Yet, patient perception and understanding of these tests and their applicability to providing risk information is unclear. The goal of this study was to determine, using hypothetical scenarios, whether patients with IBD perceive genetic testing to be useful for risk assessment, whether genetic test results impact perceived control, and whether low genetic literacy may be a barrier to patient understanding of these tests. Methods Two hundred fifty seven patients with IBD from the Johns Hopkins gastroenterology clinics were randomized to receive a vignette depicting either a genetic testing scenario or a standard blood testing scenario. Participants were asked questions about the vignette and responses were compared between groups. Results Perceptions of test utility for risk assessment were higher among participants responding to the genetic vignette (P < 0.001). There were no significant differences in perceptions of control over IBD after hypothetical testing between vignettes (P = 0.24). Participant responses were modified by genetic literacy, measured using a scale developed for this study. Participants randomized to the genetic vignette who scored higher on the genetic literacy scale perceived greater utility of testing for risk assessment (P = 0.008) and more control after testing (P = 0.02). Conclusions Patients with IBD perceive utility in genetic testing for providing information relevant to family members, and this appreciation is promoted by genetic literacy. Low genetic literacy among patients poses a potential threat to effective translation of genetic and genomic tests. PMID:24691112

  14. Phylogenetic information in polymorphic L1 and Alu insertions from East Asians and Native American populations.

    PubMed

    Mateus Pereira, L H; Socorro, A; Fernandez, I; Masleh, M; Vidal, D; Bianchi, N O; Bonatto, S L; Salzano, F M; Herrera, R J

    2005-09-01

    This study attempts to ascertain genetic affinities between Native American and East Asian populations by analyzing four polymorphic Alu insertions (PAIs) and three L1 polymorphic loci. These two genetic systems demonstrated strong congruence when levels of diversity and genetic distances were considered. Overall, genetic relatedness within Native American groups does not correlate with geographical and linguistic structure, although strong grouping for Native Americans with East Asians was demonstrated, with clear discrimination from African and European groups. Most of the variation was assigned to differences occurring within groups, but the interpopulation variation found for South Amerindians was recognizably higher in comparison to the other sampled groups of populations. Our data suggest that bottleneck events followed by strong influence of genetic drift in the process of the peopling of the Americas may have been determinant factors in delineating the genetic background of present-day South Amerindians. Since no clear subgroups were detected within Native Americans and East Asians, there is no indication of multiple waves in the early colonization of the New World. (c) 2005 Wiley-Liss, Inc.

  15. “To Prove This is the Industry’s Best Hope”: Big Tobacco’s Support of Research on the Genetics of Nicotine Addiction

    PubMed Central

    Gundle, Kenneth R.; Dingel, Molly J.

    2010-01-01

    Background New molecular techniques focus a genetic lens on nicotine addiction. Given the medical and economic costs associated with smoking, innovative approaches to smoking cessation and prevention must be pursued. But can sound research be manipulated by the tobacco industry? Methodology The chronological narrative of this paper was created using iterative reviews of primary sources (the Legacy Tobacco Documents), supplemented with secondary literature to provide broader context. The empirical data inform an ethics and policy analysis of tobacco-industry funded research. Findings The search for a genetic basis for smoking is consistent with industry’s decades-long plan to deflect responsibility away from the tobacco companies and onto individuals’ genetic constitutions. Internal documents reveal longstanding support for genetic research as a strategy to relieve the tobacco industry of its legal responsibility for tobacco-related disease. Conclusions Industry may turn the findings of genetics to its own ends, changing strategy from creating a “safe” cigarette to defining a “safe” smoker. PMID:20659058

  16. Studies on Monitoring and Tracking Genetic Resources: An Executive Summary

    PubMed Central

    Garrity, George M.; Thompson, Lorraine M.; Ussery, David W.; Paskin, Norman; Baker, Dwight; Desmeth, Philippe; Schindel, D.E.; Ong, P.S.

    2009-01-01

    The principles underlying fair and equitable sharing of benefits derived from the utilization of genetic resources are set out in Article 15 of the UN Convention on Biological Diversity, which stipulate that access to genetic resources is subject to the prior informed consent of the country where such resources are located and to mutually agreed terms regarding the sharing of benefits that could be derived from such access. One issue of particular concern for provider countries is how to monitor and track genetic resources once they have left the provider country and enter into use in a variety of forms. This report was commissioned to provide a detailed review of advances in DNA sequencing technologies, as those methods apply to identification of genetic resources, and the use of globally unique persistent identifiers for persistently linking to data and other forms of digital documentation that is linked to individual genetic resources. While the report was written for an audience with a mixture of technical, legal, and policy backgrounds it is relevant to the genomics community as it is an example of downstream application of genomics information. PMID:21304641

  17. Genetic variation and forensic characterization of highland Tibetan ethnicity reveled by autosomal STR markers.

    PubMed

    He, Guanglin; Wang, Zheng; Su, Yongdong; Zou, Xing; Wang, Mengge; Liu, Jing; Hou, Yiping

    2018-01-08

    Understanding the origin and genetic background of Chinese high-altitude Tibetans play a pivotal role in medical genetics, archeology, anthropology, and forensics. In this study, to investigate the forensic characterization and genetic diversity of Chinese Tibetan, allele frequencies and corresponding forensic statistical parameters of 15 autosomal STRs included in the AmpFℓSTR® Sinofiler™ kit were obtained from 1220 Tibetan individuals residing in Lhasa country, Tibet Autonomous Region. We identified 191 alleles with corresponding allele frequencies varied from 0.0004 to 0.3984. The combined probability of discrimination and the combined probability of exclusion are 0.9999999999999999997 and 0.9999996, respectively. Our study provided the valuable dataset for forensic individual identification and parentage testing in the high-altitude Tibetan population. In addition, comprehensive population comparisons among 30 Chinese populations via PCA, AMOVA, MDS, and N-J tree demonstrated that the genetic components of Tibet Tibetan have received gene introgression from surrounding lowland populations (Such as Gansu Hui and Yunnan Bai) and Tibetan keeps the close genetic relationship with geographic neighboring populations.

  18. Tracing the genetic origin of Europe's first farmers reveals insights into their social organization

    PubMed Central

    Szécsényi-Nagy, Anna; Brandt, Guido; Haak, Wolfgang; Keerl, Victoria; Jakucs, János; Möller-Rieker, Sabine; Köhler, Kitti; Mende, Balázs Gusztáv; Oross, Krisztián; Marton, Tibor; Osztás, Anett; Kiss, Viktória; Fecher, Marc; Pálfi, György; Molnár, Erika; Sebők, Katalin; Czene, András; Paluch, Tibor; Šlaus, Mario; Novak, Mario; Pećina-Šlaus, Nives; Ősz, Brigitta; Voicsek, Vanda; Somogyi, Krisztina; Tóth, Gábor; Kromer, Bernd; Bánffy, Eszter; Alt, Kurt W.

    2015-01-01

    Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in today's Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starčevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth–fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers. PMID:25808890

  19. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1.

    PubMed

    Uga, Yusaku; Kitomi, Yuka; Yamamoto, Eiji; Kanno, Noriko; Kawai, Sawako; Mizubayashi, Tatsumi; Fukuoka, Shuichi

    2015-01-01

    Root growth angle (RGA) is an important trait that influences the ability of rice to avoid drought stress. DEEPER ROOTING 1 (DRO1), which is a major quantitative trait locus (QTL) for RGA, is responsible for the difference in RGA between the shallow-rooting cultivar IR64 and the deep-rooting cultivar Kinandang Patong. However, the RGA differences between these cultivars cannot be fully explained by DRO1. The objective of this study was to identify new QTLs for RGA explaining the difference in RGA between these cultivars. By crossing IR64 (which has a non-functional allele of DRO1) with Kinandang Patong (which has a functional allele of DRO1), we developed 26 chromosome segment substitution lines (CSSLs) that carried a particular chromosome segment from Kinandang Patong in the IR64 genetic background. Using these CSSLs, we found only one chromosomal region that was related to RGA: on chromosome 9, which includes DRO1. Using an F2 population derived from a cross between Kinandang Patong and the Dro1-NIL (near isogenic line), which had a functional DRO1 allele in the IR64 genetic background, we identified a new QTL for RGA (DRO3) on the long arm of chromosome 7. DRO3 may only affect RGA in plants with a functional DRO1 allele, suggesting that DRO3 is involved in the DRO1 genetic pathway.

  20. All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza.

    PubMed

    Huang, Zhongyun; Young, Nelson D; Reagon, Michael; Hyma, Katie E; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2017-06-01

    Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the 'agricultural weed syndrome', making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed-crop pairs, but are not shared among all weed-crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms. © 2017 John Wiley & Sons Ltd.

  1. Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari

    PubMed Central

    Okada, Satoshi; Onogi, Akio; Iijima, Ken; Hori, Kiyosumi; Iwata, Hiroyoshi; Yokoyama, Wakana; Suehiro, Miki; Yamasaki, Masanori

    2018-01-01

    Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (qGL11, qGWh5, qGWh10, qGWt6-2, qGWt10-2, qDTH3, and qDTH6) that were detected in F2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice. PMID:29875604

  2. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  3. Genetic and Phenotypic Characterization of Manufacturing Seeds for a Tetravalent Dengue Vaccine (DENVax)

    PubMed Central

    Huang, Claire Y.-H.; Kinney, Richard M.; Livengood, Jill A.; Bolling, Bethany; Arguello, John J.; Luy, Betty E.; Silengo, Shawn J.; Boroughs, Karen L.; Stovall, Janae L.; Kalanidhi, Akundi P.; Brault, Aaron C.; Osorio, Jorge E.; Stinchcomb, Dan T.

    2013-01-01

    Background We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax) viruses. These viruses, containing the pre-membrane (prM) and envelope (E) genes of dengue serotypes 1–4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP. Methodology/Principal Findings After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai) Aedes aegypti mosquito vectors. Conclusion/Significance All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia. PMID:23738026

  4. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields

    PubMed Central

    Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan

    2013-01-01

    The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles. PMID:23919159

  5. Male Lineages in Brazil: Intercontinental Admixture and Stratification of the European Background.

    PubMed

    Resque, Rafael; Gusmão, Leonor; Geppert, Maria; Roewer, Lutz; Palha, Teresinha; Alvarez, Luis; Ribeiro-dos-Santos, Ândrea; Santos, Sidney

    2016-01-01

    The non-recombining nature of the Y chromosome and the well-established phylogeny of Y-specific Single Nucleotide Polymorphisms (Y-SNPs) make them useful for defining haplogroups with high geographical specificity; therefore, they are more apt than the Y-STRs to detect population stratification in admixed populations from diverse continental origins. Different Y-SNP typing strategies have been described to address issues of population history and movements within geographic territories of interest. In this study, we investigated a set of 41 Y-SNPs in 1217 unrelated males from the five Brazilian geopolitical regions, aiming to disclose the genetic structure of male lineages in the country. A population comparison based on pairwise FST genetic distances did not reveal statistically significant differences in haplogroup frequency distributions among populations from the different regions. The genetic differences observed among regions were, however, consistent with the colonization history of the country. The sample from the Northern region presented the highest Native American ancestry (8.4%), whereas the more pronounced African contribution could be observed in the Northeastern population (15.1%). The Central-Western and Southern samples showed the higher European contributions (95.7% and 93.6%, respectively). The Southeastern region presented significant European (86.1%) and African (12.0%) contributions. The subtyping of the most frequent European lineage in Brazil (R1b1a-M269) allowed differences in the genetic European background of the five Brazilian regions to be investigated for the first time.

  6. Male Lineages in Brazil: Intercontinental Admixture and Stratification of the European Background

    PubMed Central

    Geppert, Maria; Roewer, Lutz; Palha, Teresinha; Alvarez, Luis; Ribeiro-dos-Santos, Ândrea; Santos, Sidney

    2016-01-01

    The non-recombining nature of the Y chromosome and the well-established phylogeny of Y-specific Single Nucleotide Polymorphisms (Y-SNPs) make them useful for defining haplogroups with high geographical specificity; therefore, they are more apt than the Y-STRs to detect population stratification in admixed populations from diverse continental origins. Different Y-SNP typing strategies have been described to address issues of population history and movements within geographic territories of interest. In this study, we investigated a set of 41 Y-SNPs in 1217 unrelated males from the five Brazilian geopolitical regions, aiming to disclose the genetic structure of male lineages in the country. A population comparison based on pairwise FST genetic distances did not reveal statistically significant differences in haplogroup frequency distributions among populations from the different regions. The genetic differences observed among regions were, however, consistent with the colonization history of the country. The sample from the Northern region presented the highest Native American ancestry (8.4%), whereas the more pronounced African contribution could be observed in the Northeastern population (15.1%). The Central-Western and Southern samples showed the higher European contributions (95.7% and 93.6%, respectively). The Southeastern region presented significant European (86.1%) and African (12.0%) contributions. The subtyping of the most frequent European lineage in Brazil (R1b1a-M269) allowed differences in the genetic European background of the five Brazilian regions to be investigated for the first time. PMID:27046235

  7. Nutrigenetics: links between genetic background and response to Mediterranean-type diets.

    PubMed

    Lairon, Denis; Defoort, Catherine; Martin, Jean-Charles; Amiot-Carlin, Marie-Jo; Gastaldi, Marguerite; Planells, Richard

    2009-09-01

    It has been substantiated that the onset of most major diseases (CVD, diabetes, obesity, cancers, etc.) is modulated by the interaction between genetic traits (susceptibility) and environmental factors, especially diet. We aim to report more specific observations relating the effects of Mediterranean-type diets on cardiovascular risk factors and the genetic background of subjects. In the first part, general concepts about nutrigenetics are briefly presented. Human genome has, overall, only marginally changed since its origin but it is thought that minor changes (polymorphisms) of common genes that occurred during evolution are now widespread in human populations, and can alter metabolic pathways and response to diets. In the second part, we report the data obtained during the Medi-RIVAGE intervention study performed in the South-East of France. Data obtained in 169 subjects at moderate cardiovascular risk after a 3-month dietary intervention indicate that some of the twenty-three single nucleotide polymorphisms (SNP) studied exhibit interactions with diets regarding changes of particular parameters after 3-month regimens. Detailed examples are presented, such as interactions between SNP in genes coding for microsomial transfer protein (MTTP) or intestinal fatty acid binding protein (FABP2) and triglyceride, LDL-cholesterol or Framigham score lowering in responses to Mediterranean-type diets. The data provided add further evidence of the interaction between particular SNP and metabolic responses to diets. Finally, improvement in dietary recommendations by taking into account known genetic variability has been discussed.

  8. Association of Anxiety-Related Polymorphisms with Sports Performance in Chilean Long Distance Triathletes: A Pilot Study

    PubMed Central

    Sanhueza, Jorge A.; Zambrano, Tomás; Bahamondes-Avila, Carlos; Salazar, Luis A.

    2016-01-01

    Different factors affecting athletic performance are well established: intensity and type of training, anthropometric characteristics as well as an important psychological component. However, the contribution of the genetic background has been less investigated. The aim of the present study was to investigate the influence of polymorphisms within genes associated with stress and anxiety (5HTT, CRH2R, ACE, NK1R, 5HT1AR and CRF-BP) on the physical capability and sports performance in triathletes. One hundred and ninety two (192) unrelated Chilean triathletes who participated in the 2014 70.3 Pucón city triathlon were divided into opposite subgroups of sports performance according to their time results. We identified significant associations for five polymorphisms (5HTT 5-HTTLPR, ACE I/D, NK1R rs6715729, 5HT1AR -1019C>G and CRF-BP CRF-BPs11) with athletic performance. Our results indicate that these polymorphisms are associated with differential sports performance in Chilean triathletes, establishing an initial background for better understanding the relationship between physical performance, genetics and anxiety disorders. Key points Genetic factors influencing sports performance in the Chilean population are unknown. Differential outcomes from athletes who completed a triathlon competition were associated with five polymorphisms (5HTT 5-HTTLPR, ACE I/D, NK1R rs6715729, 5HT1AR -1019C>G and CRF-BP CRF-BPs11). We show that genetic variants within stress- and anxiety-related genes affect athletic performance. PMID:27928199

  9. The genetic basis of obesity complications.

    PubMed

    Skrypnik, Katarzyna; Suliburska, Joanna; Skrypnik, Damian; Pilarski, Łukasz; Reguła, Julita; Bogdański, Paweł

    2017-01-01

    Intensive research is currently being performed into the genetic background of excess body mass compli- cations such as diabetes, cardiovascular disorders, especially atherosclerosis and coronary heart disease. Chronic inflammation is an important process in the pathogenesis of obesity, wherein there is an aberrant ex- pression of genes encoding adipokines. Visceral tissue is characterized by a higher expression and secretion of interleukin-8, interleukin-1ß and plasminogen activator inhibitor 1 in the subcutaneous tissue secretion of leptin prevails. An important complication of obesity is obstructive sleep apnea, often observed in Prader- Willi syndrome. The genetic background of sleep apnea may be a polymorphism of the SREBF1 gene. The consequence of excess body mass is metabolic syndrome, which may be related to the occurrence of the rs926198 variant of gene encoding caveolin-1. The genes of transcription factor TCF7L2 and PPAR-γ2 take part in the pathogenesis of diabetes development. It has been demonstrated that oncogenes FOS, FOSB, and JUN may be co-responsible not only for obesity but also for osteoporosis and colorectal cancer. It has been shown that weight loss causes a modification in the expression of about 100 genes involvedt in the production of substances such as cytokines and other responsible for chronic inflammation in obesity. In future studies on the complications of obesity, such scientific disciplines as proteomics, peptidomics, metabolomics and transcriptomics should be used. The aim of this study is to present the current state of knowledge about the genetic basis of obesity complications.

  10. Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment

    PubMed Central

    Globa, Evgenia; Zelinska, Nataliya; Mackay, Deborah J.G.; Temple, Karen I.; Houghton, Jayne A.L.; Hattersley, Andrew T.; Flanagan, Sarah E.; Ellard, Sian

    2016-01-01

    Background Neonatal diabetes has not been previously studied in Ukraine. We investigated the genetic etiology in patients with onset of diabetes during the first 9 months of life. Methods We established a Pediatric Diabetes Register to identify patients diagnosed with diabetes before 9 months of age. Genetic testing was undertaken for 42 patients with permanent or transient diabetes diagnosed within the first 6 months of life (n=22) or permanent diabetes diagnosed between 6 and 9 months (n=20). Results We determined the genetic etiology in 23 of 42 (55%) patients; 86% of the patients diagnosed before 6 months and 20% diagnosed between 6 and 9 months. The incidence of neonatal diabetes in Ukraine was calculated to be 1 in 126,397 live births. Conclusions Genetic testing for patients identified through the Ukrainian Pediatric Diabetes Register identified KCNJ11 and ABCC8 mutations as the most common cause (52%) of neonatal diabetes. Transfer to sulfonylureas improved glycemic control in all 11 patients. PMID:26208381

  11. Race, Genomics and Chronic Disease: What Patients with African Ancestry Have to Say

    PubMed Central

    Horowitz, Carol R.; Ferryman, Kadija; Negron, Rennie; Sabin, Tatiana; Rodriguez, Mayra; Zinberg, Randi F.; Böttinger, Erwin; Robinson, Mimsie

    2017-01-01

    Background Variants of the APOL1 gene increase risk for kidney failure 10- fold, and are nearly exclusively found in people with African ancestry. To translate genomic discoveries into practice, we gathered information about effects and challenges incorporating genetic risk in clinical care. Methods An academic- community- clinical team tested 26 adults with self- reported African ancestry for APOL1 variants, conducting in- depth interviews about patients' beliefs and attitudes toward genetic testing- before, immediately, and 30 days after receiving test results. We used constant comparative analysis of interview transcripts to identify themes. Results Themes included: Knowledge of genetic risk for kidney failure may motivate providers and patients to take hypertension more seriously, rather than inspiring fatalism or anxiety. Having genetic risk for a disease may counter stereotypes of Blacks as non- adherent or low- literate, rather than exacerbate stereotypes. Conclusion Populations most likely to benefit from genomic research can inform strategies for genetic testing and future research. PMID:28238999

  12. Monogenic Autoinflammatory Diseases with Mendelian Inheritance: Genes, Mutations, and Genotype/Phenotype Correlations

    PubMed Central

    Martorana, Davide; Bonatti, Francesco; Mozzoni, Paola; Vaglio, Augusto; Percesepe, Antonio

    2017-01-01

    Autoinflammatory diseases (AIDs) are a genetically heterogeneous group of diseases caused by mutations of genes encoding proteins, which play a pivotal role in the regulation of the inflammatory response. In the pathogenesis of AIDs, the role of the genetic background is triggered by environmental factors through the modulation of the innate immune system. Monogenic AIDs are characterized by Mendelian inheritance and are caused by highly penetrant genetic variants in single genes. During the last years, remarkable progress has been made in the identification of disease-associated genes by using new technologies, such as next-generation sequencing, which has allowed the genetic characterization in undiagnosed patients and in sporadic cases by means of targeted resequencing of a gene panel and whole exome sequencing. In this review, we delineate the genetics of the monogenic AIDs, report the role of the most common gene mutations, and describe the evidences of the most sound genotype/phenotype correlations in AID. PMID:28421071

  13. When to suspect a genetic syndrome.

    PubMed

    Solomon, Benjamin D; Muenke, Maximilian

    2012-11-01

    Family physicians should be able to recognize findings on physical examination and history that suggest the presence of a genetic syndrome to aid in the diagnosis and treatment of potentially affected patients, as well as subspecialty referral. General themes that can alert family physicians to the presence of genetic conditions include dysmorphic features that are evident on physical examination; multiple anomalies in one patient; unexplained neurocognitive impairment; and a family history that is suggestive of a hereditary disease. The presence of one obvious malformation should not limit the full evaluation, because additional, subtler findings will often be important in the differential diagnosis. Taking an accurate three-generation family history is invaluable when considering a genetic syndrome. Important elements include the age and sex of family members; when family members were affected by disease or when they died; the ethnic background; and if there is consanguinity. Genetic subspecialists can assist family physicians in diagnosis, suggest additional testing and referrals if warranted, help direct medical care, and provide counseling for affected patients and their families.

  14. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction

    PubMed Central

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-01-01

    Background When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. Results We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). Conclusion We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs. PMID:19814792

  15. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    PubMed Central

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  16. Recent Advances in Human Genetics and Epigenetics of Adiposity: Pathway to Precision Medicine?

    PubMed

    Fall, Tove; Mendelson, Michael; Speliotes, Elizabeth K

    2017-05-01

    Obesity is a heritable trait that contributes to substantial global morbidity and mortality. Here, we summarize findings from the past decade of genetic and epigenetic research focused on unravelling the underpinnings of adiposity. More than 140 genetic regions now are known to influence adiposity traits. The genetics of general adiposity, as measured by body mass index, and that of abdominal obesity, as measured by waist-to-hip ratio, have distinct biological backgrounds. Gene expression associated with general adiposity is enriched in the nervous system. In contrast, genes associated with abdominal adiposity function in adipose tissue. Recent population-based epigenetic analyses have highlighted additional distinct loci. We discuss how associated genetic variants can lead to understanding causal mechanisms, and to disentangling reverse causation in epigenetic analyses. Discoveries emerging from population genomics are identifying new disease markers and potential novel drug targets to better define and combat obesity and related diseases. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Genetic Associations With White Matter Hyperintensities Confer Risk of Lacunar Stroke

    PubMed Central

    Rutten-Jacobs, Loes C.A.; Thijs, Vincent; Holliday, Elizabeth G.; Levi, Chris; Bevan, Steve; Malik, Rainer; Boncoraglio, Giorgio; Sudlow, Cathie; Rothwell, Peter M.; Dichgans, Martin; Markus, Hugh S.

    2016-01-01

    Background and Purpose— White matter hyperintensities (WMH) are increased in patients with lacunar stroke. Whether this is because of shared pathogenesis remains unknown. Using genetic data, we evaluated whether WMH-associated genetic susceptibility factors confer risk of lacunar stroke, and therefore whether they share pathogenesis. Methods— We used a genetic risk score approach to test whether single nucleotide polymorphisms associated with WMH in community populations were associated with magnetic resonance imaging–confirmed lacunar stroke (n=1,373), as well as cardioembolic (n=1,331) and large vessel (n=1,472) Trial of Org 10172 in Acute Stroke Treatment subtypes, against 9,053 controls. Second, we separated lacunar strokes into those with WMH (n=568) and those without (n=787) and tested for association with the risk score in these 2 groups. In addition, we evaluated whether WMH-associated single nucleotide polymorphisms are associated with lacunar stroke, or in the 2 groups. Results— The WMH genetic risk score was associated with lacunar stroke (odds ratio [OR; 95% confidence interval [CI

  18. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population.

    PubMed

    Camacho, Carlos; Canal, David; Potti, Jaime

    2016-08-08

    Habitat selection may have profound evolutionary consequences, but they strongly depend on the underlying preference mechanism, including genetically-determined, natal habitat and phenotype-dependent preferences. It is known that different mechanisms may operate at the same time, yet their relative contribution to population differentiation remains largely unexplored empirically mainly because of the difficulty of finding suitable study systems. Here, we investigate the role of early experience and genetic background in determining the outcome of settlement by pied flycatchers (Ficedula hypoleuca) breeding in two habitat patches between which dispersal and subsequent reproductive performance is influenced by phenotype (body size). For this, we conducted a cross-fostering experiment in a two-patch system: an oakwood and a conifer plantation separated by only 1 km. Experimental birds mostly returned to breed in the forest patch where they were raised, whether it was that of their genetic or their foster parents, indicating that decisions on where to settle are determined by individuals' experience in their natal site, rather than by their genetic background. Nevertheless, nearly a third (27.6 %) moved away from the rearing habitat and, as previously observed in unmanipulated individuals, dispersal between habitats was phenotype-dependent. Pied flycatchers breeding in the oak and the pine forests are differentiated by body size, and analyses of genetic variation at microsatellite loci now provide evidence of subtle genetic differentiation between the two populations. This suggests that phenotype-dependent dispersal may contribute to population structure despite the short distance and widespread exchange of birds between the study plots. Taken together, the current and previous findings that pied flycatchers do not always settle in the habitat to which they are best suited suggest that their strong tendency to return to the natal patch regardless of their body size might lead to maladaptive settlement decisions and thus constrain the potential of phenotype-dependent dispersal to promote microgeographic adaptation.

  19. The chicken genome: some good news and some bad news.

    PubMed

    Dodgson, J B

    2007-07-01

    The sequencing of the chicken genome has generated a wealth of good news for poultry science. It allows the chicken to be a major player in 21st century biology by providing an entrée into an arsenal of new technologies that can be used to explore virtually any chicken phenotype of interest. The initial technological onslaught has been described in this symposium. The wealth of data available now or soon to be available cannot be explained by simplistic models and will force us to treat the inherent complexity of the chicken in ways that are more realistic but at the same time more difficult to comprehend. Initial single nucleotide polymorphism analyses suggest that broilers retain a remarkable amount of the genetic diversity of predomesticated Jungle Fowl, whereas commercial layer genomes display less diversity and broader linkage disequilibrium. Thus, intensive commercial selection has not fixed a genome rich in wide selective sweeps, at least within the broiler population. Rather, a complex assortment of combinations of ancient allelic diversity survives. Low levels of linkage disequilibrium will make association analysis in broilers more difficult. The wider disequilibrium observed in layers should facilitate the mapping of quantitative trait loci, and at the same time make it more difficult to identify the causative nucleotide change(s). In addition, many quantitative traits may be specific to the genetic background in which they arose and not readily transferable to, or detectable in, other line backgrounds. Despite the obstacles it presents, the genetic complexity of the chicken may also be viewed as good news because it insures that long-term genetic progress will continue via breeding using quantitative genetics, and it surely will keep poultry scientists busy for decades to come. It is now time to move from an emphasis on obtaining "THE" chicken genome sequence to obtaining multiple sequences, especially of foundation stocks, and a broader understanding of the full genetic and phenotypic diversity of the domesticated chicken.

  20. Affiliative Behavior, Ultrasonic Communication and Social Reward Are Influenced by Genetic Variation in Adolescent Mice

    PubMed Central

    Panksepp, Jules B.; Jochman, Kimberly A.; Kim, Joseph U.; Koy, Jamie J.; Wilson, Ellie D.; Chen, QiLiang; Wilson, Clarinda R.; Lahvis, Garet P.

    2007-01-01

    Social approach is crucial for establishing relationships among individuals. In rodents, social approach has been studied primarily within the context of behavioral phenomena related to sexual reproduction, such as mating, territory defense and parental care. However, many forms of social interaction occur before the onset of reproductive maturity, which suggests that some processes underlying social approach among juvenile animals are probably distinct from those in adults. We conducted a longitudinal study of social investigation (SI) in mice from two inbred strains to assess the extent to which genetic factors influence the motivation for young mice to approach one another. Early-adolescent C57BL/6J (B6) mice, tested 4–6 days after weaning, investigated former cage mates to a greater degree than BALB/cJ (BALB) mice, irrespective of the sex composition within an interacting pair. This strain difference was not due to variation in maternal care, the phenotypic characteristics of stimulus mice or sensitivity to the length of isolation prior to testing, nor was it attributable to a general difference in appetitive motivation. Ultrasonic vocalization (USV) production was positively correlated with the SI responses of mice from both strains. Interestingly, several USV characteristics segregated with the genetic background of young mice, including a higher average frequency and shorter duration for the USVs emitted by B6 mice. An assessment of conditioned place preference responses indicated that there was a strain-dependent difference in the rewarding nature of social contact. As adolescent mice aged, SI responses gradually became less sensitive to genetic background and more responsive to the particular sex of individuals within an interacting pair. We have thus identified a specific, genetic influence on the motivation of early-adolescent mice to approach one another. Consistent with classical theories of motivation, which propose a functional relationship between behavioral approach and reward, our findings indicate that reward is a proximal mechanism through which genetic factors affect social motivation during early adolescence. PMID:17406675

  1. The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome

    PubMed Central

    2011-01-01

    Background The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. Results Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. Conclusions Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence. PMID:21878127

  2. Implications of sex-specific selection for the genetic basis of disease.

    PubMed

    Morrow, Edward H; Connallon, Tim

    2013-12-01

    Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.

  3. Etiological heterogeneity in the development of antisocial behavior: the Virginia Twin Study of Adolescent Behavioral Development and the Young Adult Follow-Up

    PubMed Central

    SILBERG, JUDY L.; RUTTER, MICHAEL; TRACY, KELLY; MAES, HERMINE H.; EAVES, LINDON

    2014-01-01

    Background Longitudinal, genetically informed, prospective data collected on a large population of male twins (n = 1037) were used to examine developmental differences in the etiology of antisocial behavior. Method Analyses were carried out on both mother- and child-reported symptoms of conduct disorder (CD) in 10- to 17-year-old twins from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and self-reported antisocial behavior by the twins as young adults from the Young Adult Follow-Up (YAFU) study. Results The following trends were identified: (1) a single genetic factor influencing antisocial behavior beginning at age 10 through young adulthood (‘life-course persistent’); (2) a shared-environmental effect beginning in adolescence (‘adolescent-onset’); (3) a transient genetic effect at puberty; and (4) a genetic influence specific to adult antisocial behavior. Conclusions Overall, these etiological findings are consistent with predictions from Moffitt’s developmental theory of antisocial behavior. The genetic effect at puberty at ages 12–15 is also consistent with a genetically mediated influence on the timing of puberty affecting the expression of genetic differences in antisocial outcomes. PMID:17376258

  4. Genetic Diversity in Nothofagus alessandrii (Fagaceae), an Endangered Endemic Tree Species of the Coastal Maulino Forest of Central Chile

    PubMed Central

    Torres-Díaz, Cristian; Ruiz, Eduardo; González, Fidelina; Fuentes, Glenda; Cavieres, Lohengrin A.

    2007-01-01

    Background and Aims The endemic tree Nothofagus alessandrii (Fagaceae) has been historically restricted to the coastal range of Region VII of central Chile, and its forests have been increasingly destroyed and fragmented since the end of the 19th century. In this study, the patterns of within- and among-population genetic diversity in seven fragments of this endangered narrowly endemic tree were examined. Methods Allozyme electrophoresis of seven loci of N. alessandrii was used to estimate genetic diversity, genetic structure and gene flow. Key Results High levels of genetic diversity were found as shown by mean expected heterozygosity (He = 0·182 ± 0·034), percentage of polymorphic loci (Pp = 61·2 %), mean number of alleles per locus (A = 1·8) and mean number of alleles per polymorphic locus (Ap = 2·3). Genetic differentiation was also high (GST = 0·257 and Nm = 0·7). These values are high compared with more widespread congeneric species. Conclusions Despite its endemic status and restricted geographical range N. alessandrii showed high levels of genetic diversity. The observed patterns of diversity are explained in part by historical processes and more recent human fragmentation. PMID:17513870

  5. Genetic diversity in the germplasm of black pepper determined by EST-SSR markers.

    PubMed

    Wu, B D; Fan, R; Hu, L S; Wu, H S; Hao, C Y

    2016-03-18

    This study aimed to assess genetic diversity in the germplasm of black pepper from around the world using SSR markers from EST. In total, 13 markers were selected and successfully amplified the target loci across the black pepper germplasm. All the EST-SSR markers showed high levels of polymorphisms with an average polymorphism information content of 0.93. The genetic similarity coefficients among all accessions ranged from 0.724 to 1.000, with an average of 0.867. These results indicated that black pepper germplasms possess a complex genetic background and high genetic diversity. Based on a cluster analysis, 148 black pepper germplasms were grouped in two major clades: the Neotropics and the Asian tropics. Peperomia pellucida was grouped separately and distantly from all other accessions. These results generally agreed with the genetic and geographic distances. However, the Asian tropics clade did not cluster according to their geographic origins. In addition, compared with the American accessions, the Asian wild accessions and cultivated accessions grouped together, indicating a close genetic relationship. This verified the origin of black pepper. The newly developed EST-SSRs are highly valuable resources for the conservation of black pepper germplasm diversity and for black pepper breeding.

  6. Diagnosis of cystic fibrosis in a patient of Egyptian background.

    PubMed

    Yoshida, Rie; Ruge, Bobby

    2016-10-20

    Cystic fibrosis (CF) is the most common genetically inherited condition in European-derived populations. However, it is being increasingly recognised in other populations, including people of Asian, Black African and Caribbean descent. We present a case detailing the diagnosis of CF in a 12-year-old patient of Egyptian background who had been treated for difficult asthma. In doing so, we aim to highlight the importance of considering CF in all patients, regardless of ethnicity. 2016 BMJ Publishing Group Ltd.

  7. How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data

    PubMed Central

    Yashin, Anatoliy I.; Arbeev, Konstantin G.; Wu, Deqing; Arbeeva, Liubov; Kulminski, Alexander; Kulminskaya, Irina; Akushevich, Igor; Ukraintseva, Svetlana V.

    2016-01-01

    Background and Objective To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. Data and Methods We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways. Results We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants. Conclusions . The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity. PMID:27773987

  8. Genetic and Environmental Influence on Attachment Disorganization

    ERIC Educational Resources Information Center

    Spangler, Gottfried; Johann, Monika; Ronai, Zsolt; Zimmermann, Peter

    2009-01-01

    Background: Empirical studies demonstrate that maternal sensitivity is associated with attachment security in infancy, while maternal frightening/frightened behavior is related to attachment disorganization. However, attachment disorganization is also predicted by individual dispositions in infancy. Indeed, recent studies indicate a link between…

  9. Biotechnology and Open University Science.

    ERIC Educational Resources Information Center

    Grobstein, Clifford

    1985-01-01

    Discusses whether biotechnology commercial application will significantly inhibit the free flow of information traditional in academic environments. Background factors, crux of the concern, assessment, and current options are given. Although little evidence that industry-university collaboration has impaired academic molecular genetics exists,…

  10. Genecology of Douglas fir in western Oregon and Washington.

    Treesearch

    J. Bradley St Clair; Nancy L. Mandel; Kenneth W. Vance-Borland

    2005-01-01

    Background and Aims. Genecological knowledge is important for understanding evolutionary processes and for managing genetic resources. Previous studies of coastal Douglas fir (Pseudotsuga menziesii var. menziesii) have been inconclusive with respect to geographical patterns of variation, due in part to...

  11. Social stratification in the Sikh population of Punjab (India) has a genetic basis: evidence from serological and biochemical markers.

    PubMed

    Chahal, Sukh Mohinder Singh; Virk, Rupinder Kaur; Kaur, Sukhvir; Bansal, Rupinder

    2011-01-01

    The present study was planned to assess whether social stratification in the Sikh population inhabiting the northwest border Indian state of Punjab has any genetic basis. Blood samples were collected randomly from a total of 2851 unrelated subjects belonging to 21 groups of two low-ranking Sikh scheduled caste populations, viz. Mazhabi and Ramdasi, and a high-ranking Jat Sikh caste population of Punjab. The genetic profile of Sikh groups was investigated using a total of nine serobiochemical genetic markers, comprising two blood groups (ABO, RH(D)) and a battery of seven red cell enzyme polymorphisms (ADA, AK1, ESD, PGM1, GLO1, ACP1, GPI), following standard serological and biochemical laboratory protocols. Genetic structure was studied using original allele frequency data and statistical measures of heterozygosity, genic differentiation, genetic distance, and genetic admixture. Great heterogeneity was observed between Sikh scheduled caste and Jat Sikh populations, especially in the RH(D) blood group system, and distribution of ESD, ACP1, and PGM1 enzyme markers was also found to be significantly different between many of their groups. Genetic distance trees demonstrated little or no genetic affinities between Sikh scheduled caste and Jat Sikh populations; the Mazhabi and Ramdasi also showed little genetic relationship. Genetic admixture analysis suggested a higher element of autochthonous tribal extraction in the Ramdasi. The present study revealed much genetic heterogeneity in differently ranking Sikh caste populations of Punjab, mainly attributable to their different ethnic backgrounds, and provided a genetic basis to social stratification present in this religious community of Punjab, India.

  12. Evaluating Genetic Counseling for Family Members of Individuals With Schizophrenia in the Molecular Age

    PubMed Central

    Bassett, Anne S.

    2014-01-01

    Background: Myths and concerns about the extent and meaning of genetic risk in schizophrenia may contribute to significant stigma and burden for families. Genetic counseling has long been proposed to be a potentially informative and therapeutic intervention for schizophrenia. Surprisingly, however, available data are limited. We evaluated a contemporary genetic counseling protocol for use in a community mental health-care setting by non–genetics professionals. Methods: We used a pre-post study design with longitudinal follow-up to assess the impact of genetic counseling on family members of individuals with schizophrenia, where molecular testing had revealed no known clinically relevant genetic risk variant. We assessed the outcome using multiple measures, including standard items and scales used to evaluate genetic counseling for other complex diseases. Results: Of the 122 family members approached, 78 (63.9%) actively expressed an interest in the study. Participants (n = 52) on average overestimated the risk of familial recurrence at baseline, and demonstrated a significant improvement in this estimate postintervention (P < .0001). This change was associated with an enduring decrease in concern about recurrence (P = .0003). Significant and lasting benefits were observed in other key areas, including increased knowledge (P < .0001) and a decreased sense of stigma (P = .0047). Endorsement of the need for genetic counseling was high (96.1%). Conclusions: These results provide initial evidence of the efficacy of schizophrenia genetic counseling for families, even in the absence of individually relevant genetic test results or professional genetics services. The findings support the integration of contemporary genetic counseling for families into the general management of schizophrenia in the community. PMID:23104866

  13. Accepting adoption's uncertainty: the limited ethics of pre-adoption genetic testing.

    PubMed

    Leighton, Kimberly J

    2014-06-01

    An increasing number of children are adopted in the United States from countries where both medical care and environmental conditions are extremely poor. In response to worries about the accuracy of medical histories, prospective adoptive parents increasingly request genetic testing of children prior to adoption. Though a general consensus on the ethics of pre-adoption genetic testing (PAGT) argues against permitting genetic testing on children available for adoption that is not also permitted for children in general, a view gaining traction argues for expanding the tests permitted. The reasoning behind this view is that the State has a duty to provide a child with parents who are the best "match," and thus all information that advances this end should be obtained. While the matching argument aims to promote the best interests of children, I show how it rests on the claim that what is in the best interests of children available for adoption is for prospective adoptive parents to have their genetic preferences satisfied such that the "genetics" of the children they end up adopting accurately reflects those preferences. Instead of protecting a vulnerable population, I conclude, PAGT contributes to the risks of harm such children face as it encourages people with strong genetic preferences to adopt children whose genetic backgrounds will always be uncertain.

  14. Identifying future models for delivering genetic services: a nominal group study in primary care

    PubMed Central

    Elwyn, Glyn; Edwards, Adrian; Iredale, Rachel; Davies, Peter; Gray, Jonathon

    2005-01-01

    Background To enable primary care medical practitioners to generate a range of possible service delivery models for genetic counselling services and critically assess their suitability. Methods Modified nominal group technique using in primary care professional development workshops. Results 37 general practitioners in Wales, United Kingdom too part in the nominal group process. The practitioners who attended did not believe current systems were sufficient to meet anticipated demand for genetic services. A wide range of different service models was proposed, although no single option emerged as a clear preference. No argument was put forward for genetic assessment and counselling being central to family practice, neither was there a voice for the view that the family doctor should become skilled at advising patients about predictive genetic testing and be able to counsel patients about the wider implications of genetic testing for patients and their family members, even for areas such as common cancers. Nevertheless, all the preferred models put a high priority on providing the service in the community, and often co-located in primary care, by clinicians who had developed expertise. Conclusion There is a need for a wider debate about how healthcare systems address individual concerns about genetic concerns and risk, especially given the increasing commercial marketing of genetic tests. PMID:15831099

  15. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    PubMed

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  16. Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice.

    PubMed

    van Wyk, Michiel; Schneider, Sabine; Kleinlogel, Sonja

    2015-01-01

    Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.

  17. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    PubMed Central

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and “motivation during discrimination.” Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks. PMID:24586288

  18. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains

    PubMed Central

    2009-01-01

    Background Bacterial genomes are mosaic structures composed of genes present in every strain of the same species (core genome), and genes present in some but not all strains of a species (accessory genome). The aim of this study was to compare the genetic diversity of core and accessory genes of a Salmonella enterica subspecies enterica serovar Typhimurium (Typhimurium) population isolated from food-animal and human sources in four regions of Mexico. Multilocus sequence typing (MLST) and macrorestriction fingerprints by pulsed-field gel electrophoresis (PFGE) were used to address the core genetic variation, and genes involved in pathogenesis and antibiotic resistance were selected to evaluate the accessory genome. Results We found a low genetic diversity for both housekeeping and accessory genes. Sequence type 19 (ST19) was supported as the founder genotype of STs 213, 302 and 429. We found a temporal pattern in which the derived ST213 is replacing the founder ST19 in the four geographic regions analyzed and a geographic trend in the number of resistance determinants. The distribution of the accessory genes was not random among chromosomal genotypes. We detected strong associations among the different accessory genes and the multilocus chromosomal genotypes (STs). First, the Salmonella virulence plasmid (pSTV) was found mostly in ST19 isolates. Second, the plasmid-borne betalactamase cmy-2 was found only in ST213 isolates. Third, the most abundant integron, IP-1 (dfrA12, orfF and aadA2), was found only in ST213 isolates. Fourth, the Salmonella genomic island (SGI1) was found mainly in a subgroup of ST19 isolates carrying pSTV. The mapping of accessory genes and multilocus genotypes on the dendrogram derived from macrorestiction fingerprints allowed the establishment of genetic subgroups within the population. Conclusion Despite the low levels of genetic diversity of core and accessory genes, the non-random distribution of the accessory genes across chromosomal backgrounds allowed us to discover genetic subgroups within the population. This study provides information about the importance of the accessory genome in generating genetic variability within a bacterial population. PMID:19573249

  19. Genetic Differentiation of the Mitochondrial Cytochrome Oxidase c Subunit I Gene in Genus Paramecium (Protista, Ciliophora)

    PubMed Central

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    Background The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. Methodology/Principal findings We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Conclusions Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp. PMID:24204730

  20. The clinical genetics of phaeochromocytoma and paraganglioma.

    PubMed

    Kavinga Gunawardane, P T; Grossman, Ashley

    2017-10-01

    Phaeochromocytoma and paraganglioma are rare catecholamine-producing tumours, recognised to have one of the richest hereditary backgrounds of all neoplasms, with germline mutations seen in approximately 30% of patients. They can be a part of genetic syndromes such as MEN 2 or Neurofibromatosis type 1, or can be found as apparently sporadic tumours. Germline mutations are almost always found in syndromic patients. Nonetheless, apparently sporadic phaeochromocytoma too show high germline mutation rates. Early detection of a genetic mutation can lead to early diagnosis of further tumours via surveillance, early treatment and better prognosis. Apart from this, the genetic profile has important relevance for tumour location and biochemical profile, and can be a useful predictor of future tumour behaviour. It also enables family screening and surveillance. Moreover, recent studies have demonstrated significant driver somatic mutations in up to 75% of all tumours. Arch Endocrinol Metab. 2017;61(5):490-500.

  1. Getting Personal: Head and Neck Cancer Management in the Era of Genomic Medicine

    PubMed Central

    Birkeland, Andrew C.; Uhlmann, Wendy R.; Brenner, J. Chad; Shuman, Andrew G.

    2015-01-01

    Background Genetic testing is rapidly becoming an important tool in the management of patients with head and neck cancer. As we enter the era of genomics and personalized medicine, providers should be aware of testing options, counseling resources, and the benefits, limitations and future of personalized therapy. Methods This manuscript offers a primer to assist clinicians treating patients in anticipating and managing the inherent practical and ethical challenges of cancer care in the genomic era. Results Clinical applications of genomics for head and neck cancer are emerging. We discuss the indications for genetic testing, types of testing available, implications for care, privacy/disclosure concerns and ethical considerations. Hereditary genetic syndromes associated with head and neck neoplasms are reviewed, and online genetics resources are provided. Conclusions This article summarizes and contextualizes the evolving diagnostic and therapeutic options that impact the care of patients with head and neck cancer in the genomic era. PMID:25995036

  2. Clinical impact of genetic variants of drug transporters in different ethnic groups within and across regions.

    PubMed

    Ono, Chiho; Kikkawa, Hironori; Suzuki, Akiyuki; Suzuki, Misaki; Yamamoto, Yuichi; Ichikawa, Katsuomi; Fukae, Masato; Ieiri, Ichiro

    2013-11-01

    Drug transporters, together with drug metabolic enzymes, are major determinants of drug disposition and are known to alter the response to many commonly used drugs. Substantial frequency differences for known variants exist across geographic regions for certain drug transporters. To deliver efficacious medicine with the right dose for each patient, it is important to understand the contribution of genetic variants for drug transporters. Recently, mutual pharmacokinetic data usage among Asian regions, which are thought to be relatively similar in their own genetic background, is expected to accelerate new drug applications and reduce developmental costs. Polymorphisms of drug transporters could be key factors to be considered in implementing multiethnic global clinical trials. This review addresses the current knowledge on genetic variations of major drug transporters affecting drug disposition, efficacy and toxicity, focusing on the east Asian populations, and provides insights into future directions for precision medicine and drug development in east Asia.

  3. A Method for Inferring an Individual’s Genetic Ancestry and Degree of Admixture Associated with Six Major Continental Populations

    PubMed Central

    Libiger, Ondrej; Schork, Nicholas J.

    2013-01-01

    The determination of the ancestry and genetic backgrounds of the subjects in genetic and general epidemiology studies is a crucial component in the analysis of relevant outcomes or associations. Although there are many methods for differentiating ancestral subgroups among individuals based on genetic markers only a few of these methods provide actual estimates of the fraction of an individual’s genome that is likely to be associated with different ancestral populations. We propose a method for assigning ancestry that works in stages to refine estimates of ancestral population contributions to individual genomes. The method leverages genotype data in the public domain obtained from individuals with known ancestries. Although we showcase the method in the assessment of ancestral genome proportions leveraging largely continental populations, the strategy can be used for assessing within-continent or more subtle ancestral origins with the appropriate data. PMID:23335941

  4. Familial systemic sclerosis following exposure to organic solvents and the possible implication of genetic factors.

    PubMed

    Calvani, N; Silvestris, F; Dammacco, F

    2001-01-01

    Both genetic and environmental factors are suspected to play a role in the pathogenesis of systemic sclerosis. We compare its occurrence in 3 sisters working in a dry cleaner's shop and exposed to occupational inhalation of organic solvents. Two sisters showing the human leukocyte antigens (HLA)-DR11/DQ7 haplotype were affected. The third has maintained the same job as the others for over 10 years and has no signs of the disease. The fact that she has a different HLA haplotype points to the significance of genetic factors in increasing the risk of systemic sclerosis. It is suggested that the DR11/DQ7 haplotype enhances the development of a clinical subset of systemic sclerosis associated with production of anti-topoisomerase-I antibodies, and that environmental triggers prime the disease in subjects with this genetic background.

  5. Giardia/giardiasis - a perspective on diagnostic and analytical tools.

    PubMed

    Koehler, Anson V; Jex, Aaron R; Haydon, Shane R; Stevens, Melita A; Gasser, Robin B

    2014-01-01

    Giardiasis is a gastrointestinal disease of humans and other animals caused by species of parasitic protists of the genus Giardia. This disease is transmitted mainly via the faecal-oral route (e.g., in water or food) and is of socioeconomic importance worldwide. The accurate detection and genetic characterisation of the different species and population variants (usually referred to as assemblages and/or sub-assemblages) of Giardia are central to understanding their transmission patterns and host spectra. The present article provides a background on Giardia and giardiasis, and reviews some key techniques employed for the identification and genetic characterisation of Giardia in biological samples, the diagnosis of infection and the analysis of genetic variation within and among species of Giardia. Advances in molecular techniques provide a solid basis for investigating the systematics, population genetics, ecology and epidemiology of Giardia species and genotypes as well as the prevention and control of giardiasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Genetic background of supernumerary teeth.

    PubMed

    Subasioglu, Asli; Savas, Selcuk; Kucukyilmaz, Ebru; Kesim, Servet; Yagci, Ahmet; Dundar, Munis

    2015-01-01

    Supernumerary teeth (ST) are odontostomatologic anomaly characterized by as the existence excessive number of teeth in relation to the normal dental formula. This condition is commonly seen with several congenital genetic disorders such as Gardner's syndrome, cleidocranial dysostosis and cleft lip and palate. Less common syndromes that are associated with ST are; Fabry Disease, Ellis-van Creveld syndrome, Nance-Horan syndrome, Rubinstein-Taybi Syndrome and Trico-Rhino-Phalangeal syndrome. ST can be an important component of a distinctive disorder and an important clue for early diagnosis. Certainly early detecting the abnormalities gives us to make correct management of the patient and also it is important for making well-informed decisions about long-term medical care and treatment. In this review, the genetic syndromes that are related with ST were discussed.

  7. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion

    PubMed Central

    O’Donoghue, Patrick; Prat, Laure; Heinemann, Ilka U.; Ling, Jiqiang; Odoi, Keturah; Liu, Wenshe R.; Söll, Dieter

    2012-01-01

    Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to ‘statistical protein’ that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNAPyl orthogonal pair cannot completely outcompete contamination by natural amino acids. PMID:23036644

  8. EHR based Genetic Testing Knowledge Base (iGTKB) Development

    PubMed Central

    2015-01-01

    Background The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). Methods We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Results Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. Conclusions In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics. PMID:26606281

  9. Inherited disorders in the Afrikaner population of southern Africa. Part I. Historical and demographic background, cardiovascular, neurological, metabolic and intestinal conditions.

    PubMed

    Botha, M C; Beighton, P

    1983-10-08

    Certain genetic disorders occur with unusually high frequency in the Afrikaner population of southern Africa. Conditions of this type (reviewed in Part I of this article) include familial hypercholesterolaemia, progressive familial heart block, Huntington's chorea, porphyria variegata, Gaucher's disease, cystic fibrosis and familial colonic polyposis. This genetic situation is explicable to some extent on the basis of the demographic development of the Afrikaner population during the 14 generations since the arrival of the first immigrants from Holland more than 330 years ago.

  10. Genetic continuity across a deeply divergent linguistic contact zone in North Maluku, Indonesia

    PubMed Central

    2011-01-01

    Background The islands of North Maluku, Indonesia occupy a central position in the major prehistoric dispersal streams that shaped the peoples of Island Southeast Asia and the Pacific. Within this region a linguistic contact zone exists where speakers of Papuan and Austronesian languages reside in close proximity. Here we use population genetic data to assess the extent to which North Maluku populations experienced admixture of Asian genetic material, and whether linguistic boundaries reflect genetic differentiation today. Results Autosomal and X-linked markers reveal overall Asian admixture of 67% in North Maluku, demonstrating a substantial contribution of genetic material into the region from Asia. We observe no evidence of population structure associated with ethnicity or language affiliation. Conclusions Our data support a model of widespread Asian admixture in North Maluku, likely mediated by the expansion of Austronesian-speaking peoples into the region during the mid Holocene. In North Maluku there is no genetic differentiation in terms of Austronesian- versus Papuan-speakers, suggesting extensive gene flow across linguistic boundaries. In a regional context, our results illuminate a major genetic divide at the Molucca Sea, between the islands of Sulawesi and North Maluku. West of this divide, populations exhibit predominantly Asian ancestry, with very little contribution of Papuan genetic material. East of the Molucca Sea, populations show diminished rates of Asian admixture and substantial persistence of Papuan genetic diversity. PMID:22098696

  11. Genes, Environments, Personality, and Successful Aging: Toward a Comprehensive Developmental Model in Later Life

    PubMed Central

    Krueger, Robert F.; South, Susan C.; Gruenewald, Tara L.; Seeman, Teresa E.; Roberts, Brent W.

    2012-01-01

    Background. Outcomes in aging and health research, such as longevity, can be conceptualized as reflecting both genetic and environmental (nongenetic) effects. Parsing genetic and environmental influences can be challenging, particularly when taking a life span perspective, but an understanding of how genetic variants and environments relate to successful aging is critical to public health and intervention efforts. Methods. We review the literature, and survey promising methods, to understand this interplay. We also propose the investigation of personality as a nexus connecting genetics, environments, and health outcomes. Results. Personality traits may reflect psychological mechanisms by which underlying etiologic (genetic and environmental) effects predispose individuals to broad propensities to engage in (un)healthy patterns of behavior across the life span. In terms of methodology, traditional behavior genetic approaches have been used profitably to understand how genetic factors and environments relate to health and personality in somewhat separate literatures; we discuss how other behavior genetic approaches can help connect these literatures and provide new insights. Conclusions. Co-twin control designs can be employed to help determine causality via a closer approximation of the idealized counterfactual design. Gene-by-environment interaction (G × E) designs can be employed to understand how individual difference characteristics, such as personality, might moderate genetic and environmental influences on successful aging outcomes. Application of such methods can clarify the interplay of genes, environments, personality, and successful aging. PMID:22454369

  12. Who’s Afraid of Math? Two Sources of Genetic Variance for Mathematical Anxiety

    PubMed Central

    Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A.; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W.; Lyons, Ian M.; Petrill, Stephen A.

    2015-01-01

    Background Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem-solving and achievement. The present study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. Methods Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. Results Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and non-familial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. Conclusions The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics, and may extend to other areas of academic achievement. PMID:24611799

  13. Characterization of recombination features and the genetic basis in multiple cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Background: Crossover generated by meiotic recombination is a fundamental event which facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination between species, but the characterization of recombination between bovine breeds remains elusive. Cattle p...

  14. A high-quality annotated transcriptome of swine peripheral blood

    USDA-ARS?s Scientific Manuscript database

    Background: High throughput gene expression profiling assays of peripheral blood are widely used in biomedicine, as well as in animal genetics and physiology research. Accurate, comprehensive, and precise interpretation of such high throughput assays relies on well-characterized reference genomes an...

  15. Evaluation of Genetic Susceptibility to Childhood Allergy and Asthma in an African American Urban Population

    EPA Science Inventory

    Background: Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify ...

  16. Hormonal response to bidirectional selection on social behavior

    USDA-ARS?s Scientific Manuscript database

    Behavior is a quantitative trait determined through the actions of multiple genes. These genes form pleiotropic networks that are sensitive to environmental variation and genetic background. One aspect of behavioral gene networks that is of special interest includes effects during early development....

  17. Large scale variation in DNA copy number in chicken breeds

    USDA-ARS?s Scientific Manuscript database

    Background Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, c...

  18. A Pediatric Twin Study of Brain Morphometry

    ERIC Educational Resources Information Center

    Wallace, Gregory L.; Schmitt, J. Eric; Lenroot, Rhoshel; Viding, Essi; Ordaz, Sarah; Rosenthal, Michael A.; Molloy, Elizabeth A.; Clasen, Liv S.; Kendler, Kenneth S.; Neale, Michael C.; Giedd, Jay N.

    2006-01-01

    Background: Longitudinal pediatric neuroimaging studies have demonstrated increasing volumes of white matter and regionally-specific inverted U shaped developmental trajectories of gray matter volumes during childhood and adolescence. Studies of monozygotic and dyzygotic twins during this developmental period allow exploration of genetic and…

  19. Ladybirds as Teaching Aids: 2. Potential for Practical and Project Work.

    ERIC Educational Resources Information Center

    Majerus, M. E. N.; And Others

    1989-01-01

    Presented are several ideas for projects involving ladybird beetles. Discussed is background information about the insects; and projects involving life histories, intra-specific variation, taxonomy, genetics, behavior, ecology, habitat surveys, population biology, and overwintering biology. Lists 12 references. (CW)

  20. Common genetic determinants of vitamin D insufficiency: the sunlight consortium

    USDA-ARS?s Scientific Manuscript database

    Background: Vitamin D is crucial for maintaining musculoskeletal health. Recently, vitamin D insufficiency has been linked to a number of extraskeletal disorders, including diabetes, cancer, and cardiovascular disease. Determinants of circulating 25-hydroxyvitamin D (25-OH D) include sun exposure an...

  1. A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1)-Mediated Immunity.

    PubMed

    Chern, Mawsheng; Xu, Qiufang; Bart, Rebecca S; Bai, Wei; Ruan, Deling; Sze-To, Wing Hoi; Canlas, Patrick E; Jain, Rashmi; Chen, Xuewei; Ronald, Pamela C

    2016-05-01

    Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression.

  2. Simultaneous suppression of TGF-β and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains.

    PubMed

    Hassani, Seyedeh-Nafiseh; Totonchi, Mehdi; Farrokhi, Ali; Taei, Adeleh; Larijani, Mehran Rezaei; Gourabi, Hamid; Baharvand, Hossein

    2012-06-01

    Mouse embryonic stem cells (ESCs) are pluripotent stem cell lines derived from pre-implantation embryos. The efficiency of mESC generation is affected by genetic variation in mice; that is, some mouse strains are refractory or non-permissive to ESC establishment. Developing an efficient method to derive mESCs from strains of various genetic backgrounds should be valuable for establishment of ESCs in various mammalian species. In the present study, we identified dual inhibition of TGF-β and ERK1/2, by SB431542 and PD0325901, respectively led to the highly efficient and reproducible generation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which previously considered refractory or non-permissive for ESC establishment. These mESCs expressed pluripotency markers and retained the capacity to differentiate into derivatives of all three germ layers. The evaluated lines exhibited high rates of chimerism when reintroduced into blastocysts. To our knowledge, this is the first report of efficient (100%) mESC lines generation from different genetic backgrounds. The application of these two inhibitors will not only solve the problems of mESC derivation but also clarifies new signaling pathways in pluripotent mESCs.

  3. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R.

    2001-01-01

    Transgenic animals, with the integrated target gene, provide a unique approach for measuring and characterizing mutations in any tissue of the animal. We are using the plasmid-based lacZ transgenic mice with different p53 genetic background to examine radiation-induced genetic damage resulting from exposure to heavy particle radiation. We measured lacZ mutation frequencies (MF) in the brain and spleen tissues at various times after exposing animals to an acute dose of 1 Gy of 1GeV/amu iron particles. MF in the spleen of p53+/+ animals increased up to 2.6-fold above spontaneous levels at 8 weeks post irradiation. In contrast, brain MF from the same animals increased 1.7-fold above controls in the same period. In the p53-/- animals, brain MF increased to 2.2-fold above spontaneous levels at 1 week after treatment, but returned to control levels thereafter. Radiation also induced alterations in the spectrum of mutants in both tissues, accompanied by changes in the frequency of mutants with deletions extending past the transgene into mouse genomic DNA. Our results indicate that the accumulation of transgene MF after radiation exposure is dependant on the tissue examined as well as the p53 genetic background of the animals.

  4. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana.

    PubMed Central

    Alonso-Blanco, Carlos; Bentsink, Leónie; Hanhart, Corrie J; Blankestijn-de Vries, Hetty; Koornneef, Maarten

    2003-01-01

    Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination. PMID:12807791

  5. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana.

    PubMed

    Alonso-Blanco, Carlos; Bentsink, Leónie; Hanhart, Corrie J; Blankestijn-de Vries, Hetty; Koornneef, Maarten

    2003-06-01

    Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.

  6. Disruption of the Aortic Elastic Lamina and Medial Calcification Share Genetic Determinants in Mice

    PubMed Central

    Wang, Susanna S.; Martin, Lisa J.; Schadt, Eric E.; Meng, Haijin; Wang, Xuping; Zhao, Wei; Ingram-Drake, Leslie; Nebohacova, Martina; Mehrabian, Margarete; Drake, Thomas A.; Lusis, Aldons J.

    2010-01-01

    Background Disruption of the elastic lamina, as an early indicator of aneurysm formation, and vascular calcification frequently occur together in atherosclerotic lesions of humans. Methods and Results We now report evidence of shared genetic basis for disruption of the elastic lamina (medial disruption) and medial calcification in an F2 mouse intercross between C57BL/6J and C3H/HeJ on a hyperlipidemic apolipoprotein E (ApoE−/−) null background. We identified 3 quantitative trait loci (QTLs) on chromosomes 6, 13, and 18, which are common to both traits, and 2 additional QTLs for medial calcification on chromosomes 3 and 7. Medial disruption, including severe disruptions leading to aneurysm formation, and medial calcification were highly correlated and occurred concomitantly in the cross. The chromosome 18 locus showed a striking male sex-specificity for both traits. To identify candidate genes, we integrated data from microarray analysis, genetic segregation, and clinical traits. The chromosome 7 locus contains the Abcc6 gene, known to mediate myocardial calcification. Using transgenic complementation, we show that Abcc6 also contributes to aortic medial calcification. Conclusions Our data indicate that calcification, though possibly contributory, does not always lead to medial disruption and that in addition to aneurysm formation, medial disruption may be the precursor to calcification. PMID:20031637

  7. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    PubMed

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  8. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  9. Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers

    PubMed Central

    2014-01-01

    Background Cycas simplicipinna (T. Smitinand) K. Hill. (Cycadaceae) is an endangered species in China. There were seven populations and 118 individuals that we could collect were genotyped in this study. Here, we assessed the genetic diversity, genetic structure and demographic history of this species. Results Analyses of data of DNA sequences (two maternally inherited intergenic spacers of chloroplast, cpDNA and one biparentally inherited internal transcribed spacer region ITS4-ITS5, nrDNA) and sixteen microsatellite loci (SSR) were conducted in the species. Of the 118 samples, 86 individuals from the seven populations were used for DNA sequencing and 115 individuals from six populations were used for the microsatellite study. We found high genetic diversity at the species level, low genetic diversity within each of the seven populations and high genetic differentiation among the populations. There was a clear genetic structure within populations of C. simplicipinna. A demographic history inferred from DNA sequencing data indicates that C. simplicipinna experienced a recent population contraction without retreating to a common refugium during the last glacial period. The results derived from SSR data also showed that C. simplicipinna underwent past effective population contraction, likely during the Pleistocene. Conclusions Some genetic features of C. simplicipinna such as having high genetic differentiation among the populations, a clear genetic structure and a recent population contraction could provide guidelines for protecting this endangered species from extinction. Furthermore, the genetic features with population dynamics of the species in our study would help provide insights and guidelines for protecting other endangered species effectively. PMID:25016306

  10. Genetic educational needs and the role of genetics in primary care: a focus group study with multiple perspectives

    PubMed Central

    2011-01-01

    Background Available evidence suggests that improvements in genetics education are needed to prepare primary care providers for the impact of ongoing rapid advances in genomics. Postgraduate (physician training) and master (midwifery training) programmes in primary care and public health are failing to meet these perceived educational needs. The aim of this study was to explore the role of genetics in primary care (i.e. family medicine and midwifery care) and the need for education in this area as perceived by primary care providers, patient advocacy groups and clinical genetics professionals. Methods Forty-four participants took part in three types of focus groups: mono-disciplinary groups of general practitioners and midwives, respectively and multidisciplinary groups composed of a diverse set of experts. The focus group sessions were audio-taped, transcribed verbatim and analysed using content analysis. Recurrent themes were identified. Results Four themes emerged regarding the educational needs and the role of genetics in primary care: (1) genetics knowledge, (2) family history, (3) ethical dilemmas and psychosocial effects in relation to genetics and (4) insight into the organisation and role of clinical genetics services. These themes reflect a shift in the role of genetics in primary care with implications for education. Although all focus group participants acknowledged the importance of genetics education, general practitioners felt this need more urgently than midwives and more strongly emphasized their perceived knowledge deficiencies. Conclusion The responsibilities of primary care providers with regard to genetics require further study. The results of this study will help to develop effective genetics education strategies to improve primary care providers' competencies in this area. More research into the educational priorities in genetics is needed to design courses that are suitable for postgraduate and master programmes for general practitioners and midwives. PMID:21329524

  11. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923

  12. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.

    PubMed

    Salvadó, Zoel; Ramos-Alonso, Lucía; Tronchoni, Jordi; Penacho, Vanessa; García-Ríos, Estéfani; Morales, Pilar; Gonzalez, Ramon; Guillamón, José Manuel

    2016-11-07

    Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells

    PubMed Central

    2014-01-01

    Background The importance of the genetic background of cancer cells for the individual susceptibility to cancer treatments is increasingly apparent. In melanoma, the existence of a BRAF mutation is a main predictor for successful BRAF-targeted therapy. However, despite initial successes with these therapies, patients relapse within a year and have to move on to other therapies. Moreover, patients harbouring a wild type BRAF gene (including 25% with NRAS mutations) still require alternative treatment such as chemotherapy. Multiple genetic parameters have been associated with response to chemotherapy, but despite their high frequency in melanoma nothing is known about the impact of BRAF or NRAS mutations on the response to chemotherapeutic agents. Methods Using cell proliferation and DNA methylation assays, FACS analysis and quantitative-RT-PCR we have characterised the response of a panel of NRAS and BRAF mutant melanoma cell lines to various chemotherapy drugs, amongst them dacarbazine (DTIC) and temozolomide (TMZ) and DNA synthesis inhibitors. Results Although both, DTIC and TMZ act as alkylating agents through the same intermediate, NRAS and BRAF mutant cells responded differentially only to DTIC. Further analysis revealed that the growth-inhibitory effects mediated by DTIC were rather due to interference with nucleotide salvaging, and that NRAS mutant melanoma cells exhibit higher activity of the nucleotide synthesis enzymes IMPDH and TK1. Importantly, the enhanced ability of RAS mutant cells to use nucleotide salvaging resulted in resistance to DHFR inhibitors. Conclusion In summary, our data suggest that the genetic background in melanoma cells influences the response to inhibitors blocking de novo DNA synthesis, and that defining the RAS mutation status could be used to stratify patients for the use of antifolate drugs. PMID:24941944

  14. Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds.

    PubMed

    Qin, Xike; Liu, Bolin; Soulard, Jonathan; Morse, David; Cappadocia, Mario

    2006-01-01

    A method for the quantification of S-RNase levels in single styles of self-incompatible Solanum chacoense was developed and applied toward an experimental determination of the S-RNase threshold required for pollen rejection. It was found that, when single style values are averaged, accumulated levels of the S(11)- and S(12)-RNases can differ up to 10-fold within a genotype, while accumulated levels of the S(12)-RNase can differ by over 3-fold when different genotypes are compared. Surprisingly, the amount of S(12)-RNase accumulated in different styles of the same plant can differ by over 20-fold. A low level of 160 ng S-RNase in individual styles of fully incompatible plants, and a high value of 68 ng in a sporadic self-compatible (SSC) line during a bout of complete compatibility was measured, suggesting that these values bracket the threshold level of S-RNase needed for pollen rejection. Remarkably, correlations of S-RNase values to average fruit sets in different plant lines displaying sporadic self-compatibility (SSC) to different extents as well as to fruit set in immature flowers, are all consistent with a threshold value of 80 ng S(12)-RNase. Taken together, these results suggest that S-RNase levels alone are the principal determinant of the incompatibility phenotype. Interestingly, while the S-RNase threshold required for rejection of S(12)-pollen from a given genetic background is the same in styles of different genetic backgrounds, it is different when pollen donors of different genetic backgrounds are used. These results reveal a previously unsuspected level of complexity in the incompatibility reaction.

  15. Association of cytokines polymorphisms with chronic peridontitis and rheumatoid arthritis in a Mexican population.

    PubMed

    Domínguez-Pérez, Rubén Abraham; Loyola-Rodriguez, Juan Pablo; Abud-Mendoza, Carlos; Alpuche-Solis, Angel Gabriel; Ayala-Herrera, José Luis; Martínez-Martínez, Rita Elizabeth

    2017-05-01

    Historically, it has been shown that rheumatoid arthritis (RA) and periodontitis (PE) share pathophysiological similarities and possibly a genetic background. In order to elucidate the genetic background between both diseases, we evaluated the distributions of five SNPs genotypes and all the possible haplotypes composed in subjects with isolated RA, PE, combined diseases and healthy controls. The study population consisted of 280 Mexican subjects. Genomic DNA was isolated from buccal epithelial cells collected by cheek scrapings and analyzed for the determination of the following SNPs: IL-1α + 4845 (rs17561), IL-1α -889 (rs1800587), IL-1β + 3954 (rs1143634), IL-1β -511(rs16944) and TNF-α -308 (rs1800629). After adjustment for age, sex and smoking status, multiple logistic regression analysis revealed a no significant association in the genotype frequencies of TNF-α -308 and IL-1α + 4845 SNPs. Otherwise a significant association was observed in IL-1β + 3954 and IL-1β -511 (p < 0.05) while IL-1α -889 was of borderline statistical significance (p = 0.054). Also, we found three negative associated haplotypes with PE: IL-1α + 4845 G/IL-1β -511 A, IL-1β + 3954 C/IL-1β -511 A and interestingly IL-1α -889 C/IL-1β -511 A also with a positive association with RA. Some genotypes and haplotypes are associated with the diseases. But it seems that the genetic background of the association between RA and PE needs to be explored deeper.

  16. Age, experience and genetic background influence treadmill walking in mice

    PubMed Central

    Wooley, Christine M.; Xing, Shuqin; Burgess, Robert W.; Cox, Gregory A.; Seburn, Kevin L.

    2009-01-01

    WOOLEY, C.M., S. XING, R.W. BURGESS, G.A. COX, AND K.L. SEBURN. Age, experience and genetic background influence treadmill walking in mice. PHYSIOL. BEHAV. XX(X), XXX-XXX, 2008 – The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In general, B6 mice tend to take shorter, more frequent steps and adopt a wider dynamic stance with repeated walking trials. The nature and extent of the response changes with both the number and timing of the trials and was observed with inter-trial intervals as long as 3 months. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design. PMID:19027767

  17. The role of the immunological background of mice in the genetic variability of Schistosoma mansoni as detected by random amplification of polymorphic DNA.

    PubMed

    Cossa-Moiane, I L; Mendes, T; Ferreira, T M; Mauricio, I; Calado, M; Afonso, A; Belo, S

    2015-11-01

    Schistosomiasis is a parasitic disease caused by flatworms of the genus Schistosoma. Among the Schistosoma species known to infect humans, S. mansoni is the most frequent cause of intestinal schistosomiasis in sub-Saharan Africa and South America: the World Health Organization estimates that about 200,000 deaths per year result from schistosomiasis in sub-Saharan Africa alone. The Schistosoma life cycle requires two different hosts: a snail as intermediate host and a mammal as definitive host. People become infected when they come into contact with water contaminated with free-living larvae (e.g. when swimming, fishing, washing). Although S. mansoni has mechanisms for escaping the host immune system, only a minority of infecting larvae develop into adults, suggesting that strain selection occurs at the host level. To test this hypothesis, we compared the Belo Horizonte (BH) strain of S. mansoni recovered from definitive hosts with different immunological backgrounds using random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR). Schistosoma mansoni DNA profiles of worms obtained from wild-type (CD1 and C57BL/6J) and mutant (Jα18- / - and TGFβRIIdn) mice were analysed. Four primers produced polymorphic profiles, which can therefore potentially be used as reference biomarkers. All male worms were genetically distinct from females isolated from the same host, with female worms showing more specific fragments than males. Of the four host-derived schistosome populations, female and male adults recovered from TGFβRIIdn mice showed RAPD-PCR profiles that were most similar to each other. Altogether, these data indicate that host immunological backgrounds can influence the genetic diversity of parasite populations.

  18. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    PubMed

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  19. Genetic structure of the Mon-Khmer speaking groups and their affinity to the neighbouring Tai populations in Northern Thailand

    PubMed Central

    2011-01-01

    Background The Mon-Khmer speaking peoples inhabited northern Thailand before the arrival of the Tai speaking people from southern China in the thirteenth century A.D. Historical and anthropological evidence suggests a close relationship between the Mon-Khmer groups and the present day majority northern Thai groups. In this study, mitochondrial and Y-chromosomal DNA polymorphisms in more than 800 volunteers from eight Mon-Khmer and ten Tai speaking populations were investigated to estimate the degree of genetic divergence between these major linguistic groups and their internal structure. Results A large fraction of genetic variation is observed within populations (about 80% and 90% for mtDNA and the Y-chromosome, respectively). The genetic divergence between populations is much higher in Mon-Khmer than in Tai speaking groups, especially at the paternally inherited markers. The two major linguistic groups are genetically distinct, but only for a marginal fraction (1 to 2%) of the total genetic variation. Genetic distances between populations correlate with their linguistic differences, whereas the geographic distance does not explain the genetic divergence pattern. Conclusions The Mon-Khmer speaking populations in northern Thailand exhibited the genetic divergence among each other and also when compared to Tai speaking peoples. The different drift effects and the post-marital residence patterns between the two linguistic groups are the explanation for a small but significant fraction of the genetic variation pattern within and between them. PMID:21672265

  20. Genetic relatedness among indigenous rice varieties in the Eastern Himalayan region based on nucleotide sequences of the Waxy gene.

    PubMed

    Choudhury, Baharul I; Khan, Mohammed L; Dayanandan, Selvadurai

    2014-12-29

    Indigenous rice varieties in the Eastern Himalayan region of Northeast India are traditionally classified into sali, boro and jum ecotypes based on geographical locality and the season of cultivation. In this study, we used DNA sequence data from the Waxy (Wx) gene to infer the genetic relatedness among indigenous rice varieties in Northeast India and to assess the genetic distinctiveness of ecotypes. The results of all three analyses (Bayesian, Maximum Parsimony and Neighbor Joining) were congruent and revealed two genetically distinct clusters of rice varieties in the region. The large group comprised several varieties of sali and boro ecotypes, and all agronomically improved varieties. The small group consisted of only traditionally cultivated indigenous rice varieties, which included one boro, few sali and all jum varieties. The fixation index analysis revealed a very low level of differentiation between sali and boro (F(ST) = 0.005), moderate differentiation between sali and jum (F(ST) = 0.108) and high differentiation between jum and boro (F(ST) = 0.230) ecotypes. The genetic relatedness analyses revealed that sali, boro and jum ecotypes are genetically heterogeneous, and the current classification based on cultivation type is not congruent with the genetic background of rice varieties. Indigenous rice varieties chosen from genetically distinct clusters could be used in breeding programs to improve genetic gain through heterosis, while maintaining high genetic diversity.

Top