Critical roles for a genetic code alteration in the evolution of the genus Candida.
Silva, Raquel M; Paredes, João A; Moura, Gabriela R; Manadas, Bruno; Lima-Costa, Tatiana; Rocha, Rita; Miranda, Isabel; Gomes, Ana C; Koerkamp, Marian J G; Perrot, Michel; Holstege, Frank C P; Boucherie, Hélian; Santos, Manuel A S
2007-10-31
During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.
Mistranslation: from adaptations to applications.
Hoffman, Kyle S; O'Donoghue, Patrick; Brandl, Christopher J
2017-11-01
The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Bender, Aline; Hajieva, Parvana; Moosmann, Bernd
2008-10-28
Humans and most other animals use 2 different genetic codes to translate their hereditary information: the standard code for nuclear-encoded proteins and a modern variant of this code in mitochondria. Despite the pivotal role of the genetic code for cell biology, the functional significance of the deviant mitochondrial code has remained enigmatic since its first description in 1979. Here, we show that profound and functionally beneficial alterations on the encoded protein level were causative for the AUA codon reassignment from isoleucine to methionine observed in most mitochondrial lineages. We demonstrate that this codon reassignment leads to a massive accumulation of the easily oxidized amino acid methionine in the highly oxidative inner mitochondrial membrane. This apparently paradoxical outcome can yet be smoothly settled if the antioxidant surface chemistry of methionine is taken into account, and we present direct experimental evidence that intramembrane accumulation of methionine exhibits antioxidant and cytoprotective properties in living cells. Our results unveil that methionine is an evolutionarily selected antioxidant building block of respiratory chain complexes. Collective protein alterations can thus constitute the selective advantage behind codon reassignments, which authenticates the "ambiguous decoding" hypothesis of genetic code evolution. Oxidative stress has shaped the mitochondrial genetic code.
Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life
Wong, J. Tze-Fei; Ng, Siu-Kin; Mat, Wai-Kin; Hu, Taobo; Xue, Hong
2016-01-01
The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets. PMID:26999216
Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin
2016-01-01
The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221
Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin
2016-07-01
The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
Jones, Siân; Zhang, Xiaosong; Parsons, D Williams; Lin, Jimmy Cheng-Ho; Leary, Rebecca J; Angenendt, Philipp; Mankoo, Parminder; Carter, Hannah; Kamiyama, Hirohiko; Jimeno, Antonio; Hong, Seung-Mo; Fu, Baojin; Lin, Ming-Tseh; Calhoun, Eric S; Kamiyama, Mihoko; Walter, Kimberly; Nikolskaya, Tatiana; Nikolsky, Yuri; Hartigan, James; Smith, Douglas R; Hidalgo, Manuel; Leach, Steven D; Klein, Alison P; Jaffee, Elizabeth M; Goggins, Michael; Maitra, Anirban; Iacobuzio-Donahue, Christine; Eshleman, James R; Kern, Scott E; Hruban, Ralph H; Karchin, Rachel; Papadopoulos, Nickolas; Parmigiani, Giovanni; Vogelstein, Bert; Velculescu, Victor E; Kinzler, Kenneth W
2008-09-26
There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in these samples. Then, we searched for homozygous deletions and amplifications in the tumor DNA by using microarrays containing probes for approximately 10(6) single-nucleotide polymorphisms. We found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations. These alterations defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors. Analysis of these tumors' transcriptomes with next-generation sequencing-by-synthesis technologies provided independent evidence for the importance of these pathways and processes. Our data indicate that genetically altered core pathways and regulatory processes only become evident once the coding regions of the genome are analyzed in depth. Dysregulation of these core pathways and processes through mutation can explain the major features of pancreatic tumorigenesis.
[Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].
Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V
2014-01-01
Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.
Magistri, Marco; Velmeshev, Dmitry; Makhmutova, Madina; Faghihi, Mohammad Ali
2015-01-01
Abstract The underlying genetic variations of late-onset Alzheimer’s disease (LOAD) cases remain largely unknown. A combination of genetic variations with variable penetrance and lifetime epigenetic factors may converge on transcriptomic alterations that drive LOAD pathological process. Transcriptome profiling using deep sequencing technology offers insight into common altered pathways regardless of underpinning genetic or epigenetic factors and thus represents an ideal tool to investigate molecular mechanisms related to the pathophysiology of LOAD. We performed directional RNA sequencing on high quality RNA samples extracted from hippocampi of LOAD and age-matched controls. We further validated our data using qRT-PCR on a larger set of postmortem brain tissues, confirming downregulation of the gene encoding substance P (TAC1) and upregulation of the gene encoding the plasminogen activator inhibitor-1 (SERPINE1). Pathway analysis indicates dysregulation in neural communication, cerebral vasculature, and amyloid-β clearance. Beside protein coding genes, we identified several annotated and non-annotated long noncoding RNAs that are differentially expressed in LOAD brain tissues, three of them are activity-dependent regulated and one is induced by Aβ1 - 42 exposure of human neural cells. Our data provide a comprehensive list of transcriptomics alterations in LOAD hippocampi and warrant holistic approach including both coding and non-coding RNAs in functional studies aimed to understand the pathophysiology of LOAD. PMID:26402107
Reducing the genetic code induces massive rearrangement of the proteome
O’Donoghue, Patrick; Prat, Laure; Kucklick, Martin; Schäfer, Johannes G.; Riedel, Katharina; Rinehart, Jesse; Söll, Dieter; Heinemann, Ilka U.
2014-01-01
Expanding the genetic code is an important aim of synthetic biology, but some organisms developed naturally expanded genetic codes long ago over the course of evolution. Less than 1% of all sequenced genomes encode an operon that reassigns the stop codon UAG to pyrrolysine (Pyl), a genetic code variant that results from the biosynthesis of Pyl-tRNAPyl. To understand the selective advantage of genetically encoding more than 20 amino acids, we constructed a markerless tRNAPyl deletion strain of Methanosarcina acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on trimethylamine. Phenotypic defects in the ΔpylT strain were evident in minimal medium containing methanol. Proteomic analyses of wild type (WT) M. acetivorans and ΔpylT cells identified 841 proteins from >7,000 significant peptides detected by MS/MS. Protein production from UAG-containing mRNAs was verified for 19 proteins. Translation of UAG codons was verified by MS/MS for eight proteins, including identification of a Pyl residue in PylB, which catalyzes the first step of Pyl biosynthesis. Deletion of tRNAPyl globally altered the proteome, leading to >300 differentially abundant proteins. Reduction of the genetic code from 21 to 20 amino acids led to significant down-regulation in translation initiation factors, amino acid metabolism, and methanogenesis from methanol, which was offset by a compensatory (100-fold) up-regulation in dimethyl sulfide metabolic enzymes. The data show how a natural proteome adapts to genetic code reduction and indicate that the selective value of an expanded genetic code is related to carbon source range and metabolic efficiency. PMID:25404328
Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong
2017-01-01
Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses. PMID:28217082
Ancient DNA sequence revealed by error-correcting codes.
Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo
2015-07-10
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.
Ancient DNA sequence revealed by error-correcting codes
Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo
2015-01-01
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228
Predicting Gene Structure Changes Resulting from Genetic Variants via Exon Definition Features.
Majoros, William H; Holt, Carson; Campbell, Michael S; Ware, Doreen; Yandell, Mark; Reddy, Timothy E
2018-04-25
Genetic variation that disrupts gene function by altering gene splicing between individuals can substantially influence traits and disease. In those cases, accurately predicting the effects of genetic variation on splicing can be highly valuable for investigating the mechanisms underlying those traits and diseases. While methods have been developed to generate high quality computational predictions of gene structures in reference genomes, the same methods perform poorly when used to predict the potentially deleterious effects of genetic changes that alter gene splicing between individuals. Underlying that discrepancy in predictive ability are the common assumptions by reference gene finding algorithms that genes are conserved, well-formed, and produce functional proteins. We describe a probabilistic approach for predicting recent changes to gene structure that may or may not conserve function. The model is applicable to both coding and noncoding genes, and can be trained on existing gene annotations without requiring curated examples of aberrant splicing. We apply this model to the problem of predicting altered splicing patterns in the genomes of individual humans, and we demonstrate that performing gene-structure prediction without relying on conserved coding features is feasible. The model predicts an unexpected abundance of variants that create de novo splice sites, an observation supported by both simulations and empirical data from RNA-seq experiments. While these de novo splice variants are commonly misinterpreted by other tools as coding or noncoding variants of little or no effect, we find that in some cases they can have large effects on splicing activity and protein products, and we propose that they may commonly act as cryptic factors in disease. The software is available from geneprediction.org/SGRF. bmajoros@duke.edu. Supplementary information is available at Bioinformatics online.
Genetic code mutations: the breaking of a three billion year invariance.
Mat, Wai-Kin; Xue, Hong; Wong, J Tze-Fei
2010-08-20
The genetic code has been unchanging for some three billion years in its canonical ensemble of encoded amino acids, as indicated by the universal adoption of this ensemble by all known organisms. Code mutations beginning with the encoding of 4-fluoro-Trp by Bacillus subtilis, initially replacing and eventually displacing Trp from the ensemble, first revealed the intrinsic mutability of the code. This has since been confirmed by a spectrum of other experimental code alterations in both prokaryotes and eukaryotes. To shed light on the experimental conversion of a rigidly invariant code to a mutating code, the present study examined code mutations determining the propagation of Bacillus subtilis on Trp and 4-, 5- and 6-fluoro-tryptophans. The results obtained with the mutants with respect to cross-inhibitions between the different indole amino acids, and the growth effects of individual nutrient withdrawals rendering essential their biosynthetic pathways, suggested that oligogenic barriers comprising sensitive proteins which malfunction with amino acid analogues provide effective mechanisms for preserving the invariance of the code through immemorial time, and mutations of these barriers open up the code to continuous change.
Refactoring the Genetic Code for Increased Evolvability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pines, Gur; Winkler, James D.; Pines, Assaf
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
Refactoring the Genetic Code for Increased Evolvability
Pines, Gur; Winkler, James D.; Pines, Assaf; ...
2017-11-14
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
Epigenetic regulation in human melanoma: past and future.
Sarkar, Debina; Leung, Euphemia Y; Baguley, Bruce C; Finlay, Graeme J; Askarian-Amiri, Marjan E
2015-01-01
The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.
Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altemus, M.; Murphy, D.L.; Greenberg, B.
1996-07-26
Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less
Xenobiology: State-of-the-Art, Ethics, and Philosophy of New-to-Nature Organisms.
Schmidt, Markus; Pei, Lei; Budisa, Nediljko
The basic chemical constitution of all living organisms in the context of carbon-based chemistry consists of a limited number of small molecules and polymers. Until the twenty-first century, biology was mainly an analytical science and has now reached a point where it merges with engineering science, paving the way for synthetic biology. One of the objectives of synthetic biology is to try to change the chemical compositions of living cells, that is, to create an artificial biological diversity, which in turn fosters a new sub-field of synthetic biology, xenobiology. In particular, the genetic code in living systems is based on highly standardized chemistry composed of the same "letters" or nucleotides as informational polymers (DNA, RNA) and the 20 amino acids which serve as basic building blocks for proteins. The universality of the genetic code enables not only vertical gene transfer within the same species but also horizontal gene transfer across biological taxa, which require a high degree of standardization and interconnectivity. Although some minor alterations of the standard genetic code are found in nature (e.g., proteins containing non-conical amino acids exist in nature, and some organisms use alternated coding systems), all structurally deep chemistry changes within living systems are generally lethal, making the creation of artificial biological system an extremely difficult challenge.In this context, one of the great challenges for bioscience is the development of a strategy for expanding the standard basic chemical repertoire of living cells. Attempts to alter the meaning of the genetic information stored in DNA as an informational polymer by changing the chemistry of the polymer (i.e., xeno-nucleic acids) or by changes in the genetic code have already yielded successful results. In the future this should enable the partial or full redirection of the biological information flow to generate "new" version(s) of the genetic code derived from the "old" biological world.In addition to the scientific challenges, the attempt to increase biochemical diversity also raises important ethical and philosophical issues. Although promotors of this branch of synthetic biology highlight the many potential applications to come (e.g., novel tools for diagnostics and fighting infection diseases), such developments could also bring risks affecting social, political, and other structures of nearly all societies.
THE GENOMIC LANDSCAPE OF PEDIATRIC AND YOUNG ADULT T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA
Liu, Yu; Easton, John; Shao, Ying; Maciaszek, Jamie; Wang, Zhaoming; Wilkinson, Mark R.; McCastlain, Kelly; Edmonson, Michael; Pounds, Stanley B.; Shi, Lei; Zhou, Xin; Ma, Xiaotu; Sioson, Edgar; Li, Yongjin; Rusch, Michael; Gupta, Pankaj; Pei, Deqing; Cheng, Cheng; Smith, Malcolm A.; Auvil, Jaime Guidry; Gerhard, Daniela S.; Relling, Mary V.; Winick, Naomi J.; Carroll, Andrew J.; Heerema, Nyla A.; Raetz, Elizabeth; Devidas, Meenakshi; Willman, Cheryl L.; Harvey, Richard C.; Carroll, William L.; Dunsmore, Kimberly P.; Winter, Stuart S.; Wood, Brent L; Sorrentino, Brian P.; Downing, James R.; Loh, Mignon L.; Hunger, Stephen P; Zhang, Jinghui; Mullighan, Charles G.
2017-01-01
Genetic alterations activating NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors are hallmarks of T-ALL, but detailed genome-wide sequencing of large T-ALL cohorts has not been performed. Using integrated genomic analysis of 264 T-ALL cases, we identify 106 putative driver genes, half of which were not previously described in childhood T-ALL (e.g. CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We described new mechanisms of coding and non-coding alteration, and identify 10 recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOX1 deregulated ALL, PTPN2 mutations in TLX1 T-ALL, and PIK3R1/PTEN mutations in TAL1 ALL, suggesting that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches. PMID:28671688
Potassium Channels in Epilepsy
Köhling, Rüdiger; Wolfart, Jakob
2016-01-01
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079
Stephen Baylin, M.D., Explains Genetics and Epigenetics - TCGA
Stephen Baylin, M.D., at the Johns Hopkins Kimmel Cancer Center discusses the how alterations in the DNA code are deciphered in a combined effort with The Cancer Genome Atlas at the National Cancer Institute to decode the brain cancer genome.
Chromatin remodeling: the interface between extrinsic cues and the genetic code?
Ezzat, Shereen
2008-10-01
The successful completion of the human genome project ushered a new era of hope and skepticism. However, the promise of finding the fundamental basis of human traits and diseases appears less than fulfilled. The original premise was that the DNA sequence of every gene would allow precise characterization of critical differences responsible for altered cellular functions. The characterization of intragenic mutations in cancers paved the way for early screening and the design of targeted therapies. However, it has also become evident that unmasking genetic codes alone cannot explain the diversity of disease phenotypes within a population. Further, classic genetics has not been able to explain the differences that have been observed among identical twins or even cloned animals. This new reality has re-ignited interest in the field of epigenetics. While traditionally defined as heritable changes that can alter gene expression without affecting the corresponding DNA sequence, this definition has come into question. The extent to which epigenetic change can also be acquired in response to chemical stimuli represents an exciting dimension in the "nature vs nurture" debate. In this review I will describe a series of studies in my laboratory that illustrate the significance of epigenetics and its potential clinical implications.
Genetic and Epigenetic Variations Induced by Wheat-Rye 2R and 5R Monosomic Addition Lines
Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang
2013-01-01
Background Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. Methodology/Principal Findings In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. Conclusions/Significance The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat. PMID:23342073
Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.
Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang
2013-01-01
Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.
Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia.
Churchman, Michelle L; Qian, Maoxiang; Te Kronnie, Geertruy; Zhang, Ranran; Yang, Wenjian; Zhang, Hui; Lana, Tobia; Tedrick, Paige; Baskin, Rebekah; Verbist, Katherine; Peters, Jennifer L; Devidas, Meenakshi; Larsen, Eric; Moore, Ian M; Gu, Zhaohui; Qu, Chunxu; Yoshihara, Hiroki; Porter, Shaina N; Pruett-Miller, Shondra M; Wu, Gang; Raetz, Elizabeth; Martin, Paul L; Bowman, W Paul; Winick, Naomi; Mardis, Elaine; Fulton, Robert; Stanulla, Martin; Evans, William E; Relling, Mary V; Pui, Ching-Hon; Hunger, Stephen P; Loh, Mignon L; Handgretinger, Rupert; Nichols, Kim E; Yang, Jun J; Mullighan, Charles G
2018-05-14
Somatic genetic alterations of IKZF1, which encodes the lymphoid transcription factor IKAROS, are common in high-risk B-progenitor acute lymphoblastic leukemia (ALL) and are associated with poor prognosis. Such alterations result in the acquisition of stem cell-like features, overexpression of adhesion molecules causing aberrant cell-cell and cell-stroma interaction, and decreased sensitivity to tyrosine kinase inhibitors. Here we report coding germline IKZF1 variation in familial childhood ALL and 0.9% of presumed sporadic B-ALL, identifying 28 unique variants in 45 children. The majority of variants adversely affected IKZF1 function and drug responsiveness of leukemic cells. These results identify IKZF1 as a leukemia predisposition gene, and emphasize the importance of germline genetic variation in the development of both familial and sporadic ALL. Copyright © 2018 Elsevier Inc. All rights reserved.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-Man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H-H; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B; Adair, Linda S; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; Chen, Yii-Der Ida; Shu, Xiao-Ou; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars G; Nielsen, Jonas Bille; Tse, Hung-Fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Kathiresan, Sekar; Mohlke, Karen L; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-12-01
Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J.; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N.; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H.-H.; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B.; Adair, Linda S.; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; da Chen, Yii-Der I; Shu, XiaoOu; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K.; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars; Nielsen, Jonas Bille; Tse, Hung-fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y. Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Consortium, GLGC; Kathiresan, Sekar; Mohlke, Karen L.; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-01-01
Most genome-wide association studies have been conducted in European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with > 300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population-specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci. PMID:29083407
MicroRNAs in genetic disease: rethinking the dosage.
Henrion-Caude, Alexandra; Girard, Muriel; Amiel, Jeanne
2012-08-01
To date, the general assumption was that most mutations interested protein-coding genes only. Thus, only few illustrations have mentioned here that mutations may occur in non-protein coding genes such as microRNAs (miRNAs). We thus report progress in delineating their contribution as phenotypic modulators, genetic switches and fine-tuners of gene expression. We reasoned that browsing their contribution to genetic disease may provide a framework for understanding the proper requirements to devise miRNA-based therapy strategies, in particular the relief of an appropriate dosage. Gain and loss of function of miRNA enforce the need to respectively antagonize or supply the miRNAs. We further categorized human disease according to the different ways in which the miRNA was altered arising either de novo, or inherited whether as a mendelian or as an epistatic trait, uncovering its role in epigenetics. We discuss how improving our knowledge on the contribution of miRNAs to genetic disease may be beneficial to devise appropriate gene therapy strategies.
Bernardinelli, Emanuele; Nofziger, Charity; Patsch, Wolfgang; Rasp, Gerd; Paulmichl, Markus; Dossena, Silvia
2018-01-01
The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype. PMID:29320412
Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao
2018-01-01
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038
USDA-ARS?s Scientific Manuscript database
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a mor...
Lee, Yi; El Andaloussi, Samir; Wood, Matthew J A
2012-10-15
Exosomes and microvesicles are extracellular nanovesicles released by most but not all cells. They are specifically equipped to mediate intercellular communication via the transfer of genetic information, including the transfer of both coding and non-coding RNAs, to recipient cells. As a result, both exosomes and microvesicles play a fundamental biological role in the regulation of normal physiological as well as aberrant pathological processes, via altered gene regulatory networks and/or via epigenetic programming. For example, microvesicle-mediated genetic transfer can regulate the maintenance of stem cell plasticity and induce beneficial cell phenotype modulation. Alternatively, such vesicles play a role in tumor pathogenesis and the spread of neurodegenerative diseases via the transfer of specific microRNAs and pathogenic proteins. Given this natural property for genetic information transfer, the possibility of exploiting these vesicles for therapeutic purposes is now being investigated. Stem cell-derived microvesicles appear to be naturally equipped to mediate tissue regeneration under certain conditions, while recent evidence suggests that exosomes might be harnessed for the targeted delivery of human genetic therapies via the introduction of exogenous genetic cargoes such as siRNA. Thus, extracellular vesicles are emerging as potent genetic information transfer agents underpinning a range of biological processes and with therapeutic potential.
Non-coding recurrent mutations in chronic lymphocytic leukaemia.
Puente, Xose S; Beà, Silvia; Valdés-Mas, Rafael; Villamor, Neus; Gutiérrez-Abril, Jesús; Martín-Subero, José I; Munar, Marta; Rubio-Pérez, Carlota; Jares, Pedro; Aymerich, Marta; Baumann, Tycho; Beekman, Renée; Belver, Laura; Carrio, Anna; Castellano, Giancarlo; Clot, Guillem; Colado, Enrique; Colomer, Dolors; Costa, Dolors; Delgado, Julio; Enjuanes, Anna; Estivill, Xavier; Ferrando, Adolfo A; Gelpí, Josep L; González, Blanca; González, Santiago; González, Marcos; Gut, Marta; Hernández-Rivas, Jesús M; López-Guerra, Mónica; Martín-García, David; Navarro, Alba; Nicolás, Pilar; Orozco, Modesto; Payer, Ángel R; Pinyol, Magda; Pisano, David G; Puente, Diana A; Queirós, Ana C; Quesada, Víctor; Romeo-Casabona, Carlos M; Royo, Cristina; Royo, Romina; Rozman, María; Russiñol, Nuria; Salaverría, Itziar; Stamatopoulos, Kostas; Stunnenberg, Hendrik G; Tamborero, David; Terol, María J; Valencia, Alfonso; López-Bigas, Nuria; Torrents, David; Gut, Ivo; López-Guillermo, Armando; López-Otín, Carlos; Campo, Elías
2015-10-22
Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.
Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of Autism.
Yu, Li; Wu, YiMing; Wu, Bai-Lin
2015-10-01
Autism spectrum disorder (ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Multiple factors, including genetic/genomic, epigenetic/epigenomic and environmental, are thought to be necessary for autism development. Recent reviews have provided further insight into the genetic/genomic basis of ASD. It has long been suspected that epigenetic mechanisms, including DNA methylation, chromatin structures and long non-coding RNAs may play important roles in the pathology of ASD. In addition to genetic/genomic alterations and epigenetic/epigenomic influences, environmental exposures have been widely accepted as an important role in autism etiology, among which immune dysregulation and gastrointestinal microbiota are two prominent ones.
An expanding universe of the non-coding genome in cancer biology.
Xue, Bin; He, Lin
2014-06-01
Neoplastic transformation is caused by accumulation of genetic and epigenetic alterations that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential and invasive growth [Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674]. Although the majority of the cancer studies have focused on the functions of protein-coding genes, emerging evidence has started to reveal the importance of the vast non-coding genome, which constitutes more than 98% of the human genome. A number of non-coding RNAs (ncRNAs) derived from the 'dark matter' of the human genome exhibit cancer-specific differential expression and/or genomic alterations, and it is increasingly clear that ncRNAs, including small ncRNAs and long ncRNAs (lncRNAs), play an important role in cancer development by regulating protein-coding gene expression through diverse mechanisms. In addition to ncRNAs, nearly half of the mammalian genomes consist of transposable elements, particularly retrotransposons. Once depicted as selfish genomic parasites that propagate at the expense of host fitness, retrotransposon elements could also confer regulatory complexity to the host genomes during development and disease. Reactivation of retrotransposons in cancer, while capable of causing insertional mutagenesis and genome rearrangements to promote oncogenesis, could also alter host gene expression networks to favor tumor development. Taken together, the functional significance of non-coding genome in tumorigenesis has been previously underestimated, and diverse transcripts derived from the non-coding genome could act as integral functional components of the oncogene and tumor suppressor network. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Systematic screening for mutations in the promoter and the coding region of the 5-HT{sub 1A} gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdmann, J.; Shimron-Abarbanell, D.; Cichon, S.
1995-10-09
In the present study we sought to identify genetic variation in the 5-HT{sub 1A} receptor gene which through alteration of protein function or level of expression might contribute to the genetic predisposition to neuropsychiatric diseases. Genomic DNA samples from 159 unrelated subjects (including 45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 healthy controls) were investigated by single-strand conformation analysis. Overlapping PCR (polymerase chain reaction) fragments covered the whole coding sequence as well as the 5{prime} untranslated region of the 5-HT{sub 1A} gene. The region upstream to the coding sequence we investigated contains amore » functional promoter. We found two rare nucleotide sequence variants. Both mutations are located in the coding region of the gene: a coding mutation (A{yields}G) in nucleotide position 82 which leads to an amino acid exchange (Ile{yields}Val) in position 28 of the receptor protein and a silent mutation (C{yields}T) in nucleotide position 549. The occurrence of the Ile-28-Val substitution was studied in an extended sample of patients (n = 352) and controls (n = 210) but was found in similar frequencies in all groups. Thus, this mutation is unlikely to play a significant role in the genetic predisposition to the diseases investigated. In conclusion, our study does not provide evidence that the 5-HT{sub 1A} gene plays either a major or a minor role in the genetic predisposition to schizophrenia, bipolar affective disorder, or Tourette`s syndrome. 29 refs., 4 figs., 1 tab.« less
Cabezas, Oscar Rubio; Flanagan, Sarah E; Stanescu, Horia; García-Martínez, Elena; Caswell, Richard; Lango-Allen, Hana; Antón-Gamero, Montserrat; Argente, Jesús; Bussell, Anna-Marie; Brandli, Andre; Cheshire, Chris; Crowne, Elizabeth; Dumitriu, Simona; Drynda, Robert; Hamilton-Shield, Julian P; Hayes, Wesley; Hofherr, Alexis; Iancu, Daniela; Issler, Naomi; Jefferies, Craig; Jones, Peter; Johnson, Matthew; Kesselheim, Anne; Klootwijk, Enriko; Koettgen, Michael; Lewis, Wendy; Martos, José María; Mozere, Monika; Norman, Jill; Patel, Vaksha; Parrish, Andrew; Pérez-Cerdá, Celia; Pozo, Jesús; Rahman, Sofia A; Sebire, Neil; Tekman, Mehmet; Turnpenny, Peter D; Hoff, William Van't; Viering, Daan H H M; Weedon, Michael N; Wilson, Patricia; Guay-Woodford, Lisa; Kleta, Robert; Hussain, Khalid; Ellard, Sian; Bockenhauer, Detlef
2017-08-01
Hyperinsulinemic hypoglycemia (HI) and congenital polycystic kidney disease (PKD) are rare, genetically heterogeneous disorders. The co-occurrence of these disorders (HIPKD) in 17 children from 11 unrelated families suggested an unrecognized genetic disorder. Whole-genome linkage analysis in five informative families identified a single significant locus on chromosome 16p13.2 (logarithm of odds score 6.5). Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, we found in all patients a promoter mutation (c.-167G>T) in the phosphomannomutase 2 gene ( PMM2 ), either homozygous or in trans with PMM2 coding mutations. PMM2 encodes a key enzyme in N-glycosylation. Abnormal glycosylation has been associated with PKD, and we found that deglycosylation in cultured pancreatic β cells altered insulin secretion. Recessive coding mutations in PMM2 cause congenital disorder of glycosylation type 1a (CDG1A), a devastating multisystem disorder with prominent neurologic involvement. Yet our patients did not exhibit the typical clinical or diagnostic features of CDG1A. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2 We propose that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy. Copyright © 2017 by the American Society of Nephrology.
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.
Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J
2015-01-09
To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine. Copyright © 2015, American Association for the Advancement of Science.
Araujo, Luiz H.; Timmers, Cynthia; Bell, Erica Hlavin; Shilo, Konstantin; Lammers, Philip E.; Zhao, Weiqiang; Natarajan, Thanemozhi G.; Miller, Clinton J.; Zhang, Jianying; Yilmaz, Ayse S.; Liu, Tom; Coombes, Kevin; Amann, Joseph; Carbone, David P.
2015-01-01
Purpose Technologic advances have enabled the comprehensive analysis of genetic perturbations in non–small-cell lung cancer (NSCLC); however, African Americans have often been underrepresented in these studies. This ethnic group has higher lung cancer incidence and mortality rates, and some studies have suggested a lower incidence of epidermal growth factor receptor mutations. Herein, we report the most in-depth molecular profile of NSCLC in African Americans to date. Methods A custom panel was designed to cover the coding regions of 81 NSCLC-related genes and 40 ancestry-informative markers. Clinical samples were sequenced on a massively parallel sequencing instrument, and anaplastic lymphoma kinase translocation was evaluated by fluorescent in situ hybridization. Results The study cohort included 99 patients (61% males, 94% smokers) comprising 31 squamous and 68 nonsquamous cell carcinomas. We detected 227 nonsilent variants in the coding sequence, including 24 samples with nonoverlapping, classic driver alterations. The frequency of driver mutations was not significantly different from that of whites, and no association was found between genetic ancestry and the presence of somatic mutations. Copy number alteration analysis disclosed distinguishable amplifications in the 3q chromosome arm in squamous cell carcinomas and pointed toward a handful of targetable alterations. We also found frequent SMARCA4 mutations and protein loss, mostly in driver-negative tumors. Conclusion Our data suggest that African American ancestry may not be significantly different from European/white background for the presence of somatic driver mutations in NSCLC. Furthermore, we demonstrated that using a comprehensive genotyping approach could identify numerous targetable alterations, with potential impact on therapeutic decisions. PMID:25918285
Role of non-Invasive Tests for the Early Detection of Cancer
Dr. Nickolas Papadopoulos is Professor of Oncology & Pathology and Director of Translational Genetics at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. He is internationally known as a co-discoverer of the genetic basis of the predisposition to hereditary nonpolyposis colon cancer (HNPCC), one of the most common hereditary forms of cancer, earlier in his career. He is known for the development of diagnostic tests and is considered an expert in cancer genetics and diagnostics. He was part of the interdisciplinary team that was first to sequence all of the protein coding genes, determine genetic alterations, and construct expression profiles of four common tumor types. Later, he was involved in the identification of genetic alterations that drive tumorigenesis in multiple tumor types. Noteworthy discoveries made by Dr. Papadopoulos include the identification of novel mutations in chromatin remodeling genes in ovarian clear cell carcinomas and pancreatic neuroendocrine tumors. He is a co-developer of sensitive methods for the detection of tumor DNA in liquid biopsy, and also the co-founder of two companies that develop diagnostics for cancer. Currently, he is focused on translating the genetic information derived from cancer genome analyses to clinical applications in early detection, diagnosis and monitoring of cancer. Dr. Papadopoulos received his PhD from the University of Texas McGovern Medical School in Houston.
Hsp90 and environmental stress transform the adaptive value of natural genetic variation.
Jarosz, Daniel F; Lindquist, Susan
2010-12-24
How can species remain unaltered for long periods yet also undergo rapid diversification? By linking genetic variation to phenotypic variation via environmental stress, the Hsp90 protein-folding reservoir might promote both stasis and change. However, the nature and adaptive value of Hsp90-contingent traits remain uncertain. In ecologically and genetically diverse yeasts, we find such traits to be both common and frequently adaptive. Most are based on preexisting variation, with causative polymorphisms occurring in coding and regulatory sequences alike. A common temperature stress alters phenotypes similarly. Both selective inhibition of Hsp90 and temperature stress increase correlations between genotype and phenotype. This system broadly determines the adaptive value of standing genetic variation and, in so doing, has influenced the evolution of current genomes.
Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment.
Biddle, Wil; Schmitt, Margaret A; Fisk, John D
2016-12-01
Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNA Opt We suspected a modification of the tRNA Opt AUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNA Opt AUG is converted to inosine. We identified tRNA Opt AUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alterations of CHEK2 forkhead-associated domain increase the risk of Hodgkin lymphoma.
Havranek, O; Spacek, M; Hubacek, P; Mocikova, H; Markova, J; Trneny, M; Kleibl, Z
2011-01-01
Checkpoint kinase 2 gene (CHEK2) codes for an important mediator of DNA damage response pathway. Mutations in the CHEK2 gene increase the risk of several cancer types, however, their role in Hodgkin lymphoma (HL) has not been studied so far. The most frequent CHEK2 alterations (including c.470T>C; p.I157T) cluster into the forkhead-associated (FHA) domain-coding region of the CHEK2 gene. We performed mutation analysis of the CHEK2 gene segment coding for FHA domain using denaturing high-performance liquid chromatography in 298 HL patients and analyzed the impact of characterized CHEK2 gene variants on the risk of HL development and progression-free survival (PFS). The overall frequency of CHEK2 alterations was significantly higher in HL patients (17/298; 5.7%) compared to the previously analyzed non-cancer controls (19/683; 2.8%; p= 0.04). Presence of any alteration within the analyzed region of the CHEK2 gene was associated with increased risk of HL development (OR = 2.11; 95% CI = 1.08 - 4.13; p= 0.04). The most frequent I157T mutation was found in 4.0% of HL patients and 2.5% of controls (p = 0.22), however, the frequency of 5 other alterations (excluding I157T) was significantly higher in HL cases and associated with increased risk of HL development (OR = 5.81; 95% CI = 1.12 - 30.12; p= 0.03). PFS in HL patients did not differ between CHEK2 mutation carriers and non-carriers. The predominant I157T mutation together with other alterations in its proximity represent moderate genetic predisposition factor increasing the risk of HL development.
Histone Code Modulation by Oncogenic PWWP-domain Protein in Breast Cancers
2013-06-01
Plant Homeo Domain (PHD)-type zinc fingers and two Tudor do- mains (Fig. 1). In 2006, there was a breakthrough in the un- derstanding of how chromatin ...amplification is significantly associated with disease -specific survival and distant recurrence in breast cancer patients (1-5). Earlier, we used genomic...from genetic alterations that dictate abnormal chromatin regulation. Recently, the use of systematic genome-wide discovery efforts has revealed the
Biocontainment of genetically modified organisms by synthetic protein design
Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.
2015-01-01
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient either because they impose evolutionary pressure on the organism to eject the safeguard, because they can be circumvented by environmentally available compounds, or because they can be overcome by horizontal gene transfer (HGT). Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code to confer metabolic dependence on nonstandard amino acids for survival. The resulting GMOs cannot metabolically circumvent their biocontainment mechanisms using environmentally available compounds, and they exhibit unprecedented resistance to evolutionary escape via mutagenesis and HGT. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by reliance on synthetic metabolites. PMID:25607366
Biocontainment of genetically modified organisms by synthetic protein design.
Mandell, Daniel J; Lajoie, Marc J; Mee, Michael T; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E; Gregg, Christopher J; Stoddard, Barry L; Church, George M
2015-02-05
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.
Biocontainment of genetically modified organisms by synthetic protein design
NASA Astrophysics Data System (ADS)
Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.
2015-02-01
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.
Di Giulio, Massimo
2017-02-07
Whereas it is extremely easy to prove that "if the biosynthetic relationships between amino acids were fundamental in the structuring of the genetic code, then their physico-chemical properties might also be revealed in the genetic code table"; it is, on the contrary, impossible to prove that "if the physico-chemical properties of amino acids were fundamental in the structuring of the genetic code, then the presence of the biosynthetic relationships between amino acids should not be revealed in the genetic code". And, given that in the genetic code table are mirrored both the biosynthetic relationships between amino acids and their physico-chemical properties, all this would be a test that would falsify the physico-chemical theories of the origin of the genetic code. That is to say, if the physico-chemical properties of amino acids had a fundamental role in organizing the genetic code, then we would not have duly revealed the presence - in the genetic code - of the biosynthetic relationships between amino acids, and on the contrary this has been observed. Therefore, this falsifies the physico-chemical theories of genetic code origin. Whereas, the coevolution theory of the origin of the genetic code would be corroborated by this analysis, because it would be able to give a description of evolution of the genetic code more coherent with the indisputable empirical observations that link both the biosynthetic relationships of amino acids and their physico-chemical properties to the evolutionary organization of the genetic code. Copyright © 2016 Elsevier Ltd. All rights reserved.
An analysis of the metabolic theory of the origin of the genetic code
NASA Technical Reports Server (NTRS)
Amirnovin, R.; Bada, J. L. (Principal Investigator)
1997-01-01
A computer program was used to test Wong's coevolution theory of the genetic code. The codon correlations between the codons of biosynthetically related amino acids in the universal genetic code and in randomly generated genetic codes were compared. It was determined that many codon correlations are also present within random genetic codes and that among the random codes there are always several which have many more correlations than that found in the universal code. Although the number of correlations depends on the choice of biosynthetically related amino acids, the probability of choosing a random genetic code with the same or greater number of codon correlations as the universal genetic code was found to vary from 0.1% to 34% (with respect to a fairly complete listing of related amino acids). Thus, Wong's theory that the genetic code arose by coevolution with the biosynthetic pathways of amino acids, based on codon correlations between biosynthetically related amino acids, is statistical in nature.
[Numeric alterations in the dys gene and their association with clinical features].
Mampel, Alejandra; Echeverría, María Inés; Vargas, Ana Lía; Roque, María
2011-01-01
The Duchenne/Becker muscular dystrophy is a hereditary miopathy with a recessive sex-linked pattern. The related gene is called DYS and the coded protein plays a crucial role in the anchorage between the cytoskeleton and the cellular membrane in muscle cells. Different clinical manifestations are observed depending on the impact of the genetic alteration on the protein. The global register of mutations reveals an enhanced frequency for deletions/duplications of one or more exons affecting the DYS gene. In the present work, numeric alterations have been studied in the 79 exons of the DYS gene. The study has been performed on 59 individuals, including 31 independent cases and 28 cases with a familial link. The applied methodology was Multiplex Ligation Dependent Probe Amplification (MLPA). In the 31 independent cases clinical data were established: i.e. the clinical score, the Raven test percentiles, and the creatininphosphokinase (CPK) blood values. Our results reveal a 61.3% frequency of numeric alterations affecting the DYS gene in our population, provoking all of them a reading frame shift. The rate for de novo mutations was identified as 35.2%. Alterations involving a specific region of one exon were observed with high frequency, affecting a specific region. A significant association was found between numeric alterations and a low percentile for the Raven test. These data contribute to the local knowledge of genetic alterations and their phenotypic impact for the Duchenne/Becker disease.
The functional spectrum of low-frequency coding variation.
Marth, Gabor T; Yu, Fuli; Indap, Amit R; Garimella, Kiran; Gravel, Simon; Leong, Wen Fung; Tyler-Smith, Chris; Bainbridge, Matthew; Blackwell, Tom; Zheng-Bradley, Xiangqun; Chen, Yuan; Challis, Danny; Clarke, Laura; Ball, Edward V; Cibulskis, Kristian; Cooper, David N; Fulton, Bob; Hartl, Chris; Koboldt, Dan; Muzny, Donna; Smith, Richard; Sougnez, Carrie; Stewart, Chip; Ward, Alistair; Yu, Jin; Xue, Yali; Altshuler, David; Bustamante, Carlos D; Clark, Andrew G; Daly, Mark; DePristo, Mark; Flicek, Paul; Gabriel, Stacey; Mardis, Elaine; Palotie, Aarno; Gibbs, Richard
2011-09-14
Rare coding variants constitute an important class of human genetic variation, but are underrepresented in current databases that are based on small population samples. Recent studies show that variants altering amino acid sequence and protein function are enriched at low variant allele frequency, 2 to 5%, but because of insufficient sample size it is not clear if the same trend holds for rare variants below 1% allele frequency. The 1000 Genomes Exon Pilot Project has collected deep-coverage exon-capture data in roughly 1,000 human genes, for nearly 700 samples. Although medical whole-exome projects are currently afoot, this is still the deepest reported sampling of a large number of human genes with next-generation technologies. According to the goals of the 1000 Genomes Project, we created effective informatics pipelines to process and analyze the data, and discovered 12,758 exonic SNPs, 70% of them novel, and 74% below 1% allele frequency in the seven population samples we examined. Our analysis confirms that coding variants below 1% allele frequency show increased population-specificity and are enriched for functional variants. This study represents a large step toward detecting and interpreting low frequency coding variation, clearly lays out technical steps for effective analysis of DNA capture data, and articulates functional and population properties of this important class of genetic variation.
Bio Warfare and Terrorism: Toxins and Other Mid-Spectrum Agents
2005-01-01
biotechnology, toxicogenomics, toxin, tetrodotoxin, and others. Once an agent has and proteomics may also help to open the door to the 276 Bio Warfare...also interferon gamma, interleukin-6, and tumor alsointrfern gmma intrlekin6, ad tmor by the mold Aspergillus flavus and commonly conta- necrosis factor...as bullets. No the new sciences of genomics and proteomics to alter toxoid or antitoxin is available, genetic code and to affect the expression of
Epigenetics in prostate cancer: biologic and clinical relevance.
Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F
2011-10-01
Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Biocontainment of genetically modified organisms by synthetic protein design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass theirmore » biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.« less
Biocontainment of genetically modified organisms by synthetic protein design
Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; ...
2015-01-21
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass theirmore » biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.« less
RNA Editing in Plant Mitochondria
NASA Astrophysics Data System (ADS)
Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel
1989-12-01
Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.
Disruption of long-distance highly conserved noncoding elements in neurocristopathies.
Amiel, Jeanne; Benko, Sabina; Gordon, Christopher T; Lyonnet, Stanislas
2010-12-01
One of the key discoveries of vertebrate genome sequencing projects has been the identification of highly conserved noncoding elements (CNEs). Some characteristics of CNEs include their high frequency in mammalian genomes, their potential regulatory role in gene expression, and their enrichment in gene deserts nearby master developmental genes. The abnormal development of neural crest cells (NCCs) leads to a broad spectrum of congenital malformation(s), termed neurocristopathies, and/or tumor predisposition. Here we review recent findings that disruptions of CNEs, within or at long distance from the coding sequences of key genes involved in NCC development, result in neurocristopathies via the alteration of tissue- or stage-specific long-distance regulation of gene expression. While most studies on human genetic disorders have focused on protein-coding sequences, these examples suggest that investigation of genomic alterations of CNEs will provide a broader understanding of the molecular etiology of both rare and common human congenital malformations. © 2010 New York Academy of Sciences.
Oncogenomic disruptions in arsenic-induced carcinogenesis
Ng, Kevin W.; Stewart, Greg L.; Dummer, Trevor J.B.; Lam, Wan L.; Martinez, Victor D
2017-01-01
Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process. PMID:28179585
Fritsche, Lars G.; Igl, Wilmar; Cooke Bailey, Jessica N.; Grassmann, Felix; Sengupta, Sebanti; Bragg-Gresham, Jennifer L.; Burdon, Kathryn P.; Hebbring, Scott J.; Wen, Cindy; Gorski, Mathias; Kim, Ivana K.; Cho, David; Zack, Donald; Souied, Eric; Scholl, Hendrik P. N.; Bala, Elisa; Lee, Kristine E.; Hunter, David J.; Sardell, Rebecca J.; Mitchell, Paul; Merriam, Joanna E.; Cipriani, Valentina; Hoffman, Joshua D.; Schick, Tina; Lechanteur, Yara T. E.; Guymer, Robyn H.; Johnson, Matthew P.; Jiang, Yingda; Stanton, Chloe M.; Buitendijk, Gabriëlle H. S.; Zhan, Xiaowei; Kwong, Alan M.; Boleda, Alexis; Brooks, Matthew; Gieser, Linn; Ratnapriya, Rinki; Branham, Kari E.; Foerster, Johanna R.; Heckenlively, John R.; Othman, Mohammad I.; Vote, Brendan J.; Liang, Helena Hai; Souzeau, Emmanuelle; McAllister, Ian L.; Isaacs, Timothy; Hall, Janette; Lake, Stewart; Mackey, David A.; Constable, Ian J.; Craig, Jamie E.; Kitchner, Terrie E.; Yang, Zhenglin; Su, Zhiguang; Luo, Hongrong; Chen, Daniel; Ouyang, Hong; Flagg, Ken; Lin, Danni; Mao, Guanping; Ferreyra, Henry; Stark, Klaus; von Strachwitz, Claudia N.; Wolf, Armin; Brandl, Caroline; Rudolph, Guenther; Olden, Matthias; Morrison, Margaux A.; Morgan, Denise J.; Schu, Matthew; Ahn, Jeeyun; Silvestri, Giuliana; Tsironi, Evangelia E.; Park, Kyu Hyung; Farrer, Lindsay A.; Orlin, Anton; Brucker, Alexander; Li, Mingyao; Curcio, Christine; Mohand-Saïd, Saddek; Sahel, José-Alain; Audo, Isabelle; Benchaboune, Mustapha; Cree, Angela J.; Rennie, Christina A.; Goverdhan, Srinivas V.; Grunin, Michelle; Hagbi-Levi, Shira; Campochiaro, Peter; Katsanis, Nicholas; Holz, Frank G.; Blond, Frédéric; Blanché, Hélène; Deleuze, Jean-François; Igo, Robert P.; Truitt, Barbara; Peachey, Neal S.; Meuer, Stacy M.; Myers, Chelsea E.; Moore, Emily L.; Klein, Ronald; Hauser, Michael A.; Postel, Eric A.; Courtenay, Monique D.; Schwartz, Stephen G.; Kovach, Jaclyn L.; Scott, William K.; Liew, Gerald; Tƒan, Ava G.; Gopinath, Bamini; Merriam, John C.; Smith, R. Theodore; Khan, Jane C.; Shahid, Humma; Moore, Anthony T.; McGrath, J. Allie; Laux, Reneé; Brantley, Milam A.; Agarwal, Anita; Ersoy, Lebriz; Caramoy, Albert; Langmann, Thomas; Saksens, Nicole T. M.; de Jong, Eiko K.; Hoyng, Carel B.; Cain, Melinda S.; Richardson, Andrea J.; Martin, Tammy M.; Blangero, John; Weeks, Daniel E.; Dhillon, Bal; van Duijn, Cornelia M.; Doheny, Kimberly F.; Romm, Jane; Klaver, Caroline C. W.; Hayward, Caroline; Gorin, Michael B.; Klein, Michael L.; Baird, Paul N.; den Hollander, Anneke I.; Fauser, Sascha; Yates, John R. W.; Allikmets, Rando; Wang, Jie Jin; Schaumberg, Debra A.; Klein, Barbara E. K.; Hagstrom, Stephanie A.; Chowers, Itay; Lotery, Andrew J.; Léveillard, Thierry; Zhang, Kang; Brilliant, Murray H.; Hewitt, Alex W.; Swaroop, Anand; Chew, Emily Y.; Pericak-Vance, Margaret A.; DeAngelis, Margaret; Stambolian, Dwight; Haines, Jonathan L.; Iyengar, Sudha K.; Weber, Bernhard H. F.; Abecasis, Gonçalo R.; Heid, Iris M.
2016-01-01
Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes. PMID:26691988
Pancreatic Cancer, A Mis-interpreter of the Epigenetic Language.
Iguchi, Eriko; Safgren, Stephanie L; Marks, David L; Olson, Rachel L; Fernandez-Zapico, Martin E
2016-12-01
Pancreatic cancer is the third leading cause of cancer mortality in the U.S. with close to 40,000 deaths per year. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90 percent of all pancreatic cancer cases and is the most lethal form of the disease. Current therapies for PDAC are ineffective and most patients cannot be treated by surgical resection. Most research efforts have primarily focused on how genetic alterations cause, alter progression, contribute to diagnosis, and influence PDAC management. Over the past two decades, a model has been advanced of PDAC initiation and progression as a multi-step process driven by the acquisition of mutations leading to loss of tumor suppressors and activation of oncogenes. The recognition of the essential roles of these genetic alterations in the development of PDAC has revolutionized our knowledge of this disease. However, none of these findings have turned into effective treatment for this dismal malignancy. In recent years, studies in the areas of chromatin modifications, and non-coding RNAs have uncovered mechanisms for regulating gene expression which occur independently of genetic alterations. Chromatin-based mechanisms are interwoven with microRNA-driven regulation of protein translation to create an integrated epigenetic language, which is grossly dysregulated in PDAC. Thus in PDAC, key tumor suppressors that are well established to play a role in PDAC may be repressed, and oncogenes can be upregulated secondary to epigenetic alterations. Unlike mutations, epigenetic changes are potentially reversible. Given this feature of epigenetic mechanisms, it is conceivable that targeting epigenetic-based events promoting and maintaining PDAC could serve as foundation for the development of new therapeutic and diagnostic approaches for this disease.
Genetic variation in steelhead of Oregon and northern California
Reisenbichler, R.R.; McIntyre, J.D.; Solazzi, M.F.; Landino, S.W
1992-01-01
Steelhead Oncorhynchus mykiss from various sites between the Columbia River and the Mad River, California, were genetically characterized at 10 protein-coding loci or pairs of loci by starch gel electrophoresis. Fish from coastal streams differed from fish east of the Cascade Mountains and from fish of the Willamette River (a tributary of the Columbia River, west of the Cascade Mountains). Coastal steelhead from the northern part of the study area differed from those in the southern part. Genetic differentiation within and among drainages was not statistically significant; however, gene diversity analysis and the life history of steelhead suggested that fish from different drainages should be considered as separate populations. Genetic variation among fish in separate drainages was similar to that reported in northwestern Washington and less than that reported in British Columbia. Allele frequencies varied significantly among year-classes. Genetic variation within samples accounted for 98.3% of the total genetic variation observed in this study. Most hatchery populations differed from wild populations, suggesting that conservation of genetic diversity among and within wild populations could be facilitated by altering hatchery programs.
A genetic scale of reading frame coding.
Michel, Christian J
2014-08-21
The reading frame coding (RFC) of codes (sets) of trinucleotides is a genetic concept which has been largely ignored during the last 50 years. A first objective is the definition of a new and simple statistical parameter PrRFC for analysing the probability (efficiency) of reading frame coding (RFC) of any trinucleotide code. A second objective is to reveal different classes and subclasses of trinucleotide codes involved in reading frame coding: the circular codes of 20 trinucleotides and the bijective genetic codes of 20 trinucleotides coding the 20 amino acids. This approach allows us to propose a genetic scale of reading frame coding which ranges from 1/3 with the random codes (RFC probability identical in the three frames) to 1 with the comma-free circular codes (RFC probability maximal in the reading frame and null in the two shifted frames). This genetic scale shows, in particular, the reading frame coding probabilities of the 12,964,440 circular codes (PrRFC=83.2% in average), the 216 C(3) self-complementary circular codes (PrRFC=84.1% in average) including the code X identified in eukaryotic and prokaryotic genes (PrRFC=81.3%) and the 339,738,624 bijective genetic codes (PrRFC=61.5% in average) including the 52 codes without permuted trinucleotides (PrRFC=66.0% in average). Otherwise, the reading frame coding probabilities of each trinucleotide code coding an amino acid with the universal genetic code are also determined. The four amino acids Gly, Lys, Phe and Pro are coded by codes (not circular) with RFC probabilities equal to 2/3, 1/2, 1/2 and 2/3, respectively. The amino acid Leu is coded by a circular code (not comma-free) with a RFC probability equal to 18/19. The 15 other amino acids are coded by comma-free circular codes, i.e. with RFC probabilities equal to 1. The identification of coding properties in some classes of trinucleotide codes studied here may bring new insights in the origin and evolution of the genetic code. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calin, George; Ranzani, Guglielmina N; Amadori, Dino; Herlea, Vlad; Matei, Irina; Barbanti-Brodano, Giuseppe; Negrini, Massimo
2001-01-01
Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). Methods We analyzed 50 gastric carcinomas (GCs) for mutations in the BLM poly(A) tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases) but not in any of the MMP negative GCs (0/35 cases). The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %), BAX (27%), hMSH6 (20%),hMSH3 (13%), CBL (13%), IGFIIR (7%), RECQL (0%) and WRN (0%). Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors. PMID:11532193
Genetic code, hamming distance and stochastic matrices.
He, Matthew X; Petoukhov, Sergei V; Ricci, Paolo E
2004-09-01
In this paper we use the Gray code representation of the genetic code C=00, U=10, G=11 and A=01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices, which provides a hypercube representation of the genetic code. It is also observed that there is a Hamiltonian cycle in a genetic code-based hypercube.
Chan, Kin
2018-01-01
Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.
Can a few non‐coding mutations make a human brain?
Franchini, Lucía F.
2015-01-01
The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human‐specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human‐specific genetic and genomic changes are linked to complex human traits. Also watch the Video Abstract. PMID:26350501
Two Perspectives on the Origin of the Standard Genetic Code
NASA Astrophysics Data System (ADS)
Sengupta, Supratim; Aggarwal, Neha; Bandhu, Ashutosh Vishwa
2014-12-01
The origin of a genetic code made it possible to create ordered sequences of amino acids. In this article we provide two perspectives on code origin by carrying out simulations of code-sequence coevolution in finite populations with the aim of examining how the standard genetic code may have evolved from more primitive code(s) encoding a small number of amino acids. We determine the efficacy of the physico-chemical hypothesis of code origin in the absence and presence of horizontal gene transfer (HGT) by allowing a diverse collection of code-sequence sets to compete with each other. We find that in the absence of horizontal gene transfer, natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. However, for certain probabilities of the horizontal transfer events, a universal code emerges having a structure that is consistent with the standard genetic code.
The agents of natural genome editing.
Witzany, Guenther
2011-06-01
The DNA serves as a stable information storage medium and every protein which is needed by the cell is produced from this blueprint via an RNA intermediate code. More recently it was found that an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on RNA transcripts. Natural genome editing on one side is the competent agent-driven generation and integration of meaningful DNA nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing on the other side designates the integration of all RNA activities acting on RNA transcripts without altering DNA-encoded genes. If we take the genetic code seriously as a natural code, there must be agents that are competent to act on this code because no natural code codes itself as no natural language speaks itself. As code editing agents, viral and subviral agents have been suggested because there are several indicators that demonstrate viruses competent in both RNA and DNA natural genome editing.
Coppella, S J; DelaCruz, N; Payne, G F; Pogell, B M; Speedie, M K; Karns, J S; Sybert, E M; Connor, M A
1990-01-01
Currently, there has been limited use of genetic engineering for waste treatment. In this work, we are developing a procedure for the in situ treatment of toxic organophosphate wastes using the enzyme parathion hydrolase. Since this strategy is based on the use of an enzyme and not viable microorganisms, recombinant DNA technology could be used without the problems associated with releasing genetically altered microorganisms into the environment. The gene coding for parathion hydrolase was cloned into a Streptomyces lividans, and this transformed bacterium was observed to express and excrete this enzyme. Subsequently, fermentation conditions were developed to enhance enzyme production, and this fermentation was scaled-up to the pilot scale. The cell-free culture fluid (i.e., a nonpurified enzyme solution) was observed to be capable of effectively hydrolyzing organophosphate compounds under laboratory and simulated in situ conditions.
Di Giulio, Massimo
2017-11-07
The coevolution theory of the origin of the genetic code suggests that the organization of the genetic code coevolved with the biosynthetic relationships between amino acids. The mechanism that allowed this coevolution was based on tRNA-like molecules on which-this theory-would postulate the biosynthetic transformations between amino acids to have occurred. This mechanism makes a prediction on how the role conducted by the aminoacyl-tRNA synthetases (ARSs), in the origin of the genetic code, should have been. Indeed, if the biosynthetic transformations between amino acids occurred on tRNA-like molecules, then there was no need to link amino acids to these molecules because amino acids were already charged on tRNA-like molecules, as the coevolution theory suggests. In spite of the fact that ARSs make the genetic code responsible for the first interaction between a component of nucleic acids and that of proteins, for the coevolution theory the role of ARSs should have been entirely marginal in the genetic code origin. Therefore, I have conducted a further analysis of the distribution of the two classes of ARSs and of their subclasses-in the genetic code table-in order to perform a falsification test of the coevolution theory. Indeed, in the case in which the distribution of ARSs within the genetic code would have been highly significant, then the coevolution theory would be falsified since the mechanism on which it is based would not predict a fundamental role of ARSs in the origin of the genetic code. I found that the statistical significance of the distribution of the two classes of ARSs in the table of the genetic code is low or marginal, whereas that of the subclasses of ARSs statistically significant. However, this is in perfect agreement with the postulates of the coevolution theory. Indeed, the only case of statistical significance-regarding the classes of ARSs-is appreciable for the CAG code, whereas for its complement-the UNN/NUN code-only a marginal significance is measurable. These two codes codify roughly for the two ARS classes, in particular, the CAG code for the class II while the UNN/NUN code for the class I. Furthermore, the subclasses of ARSs show a statistical significance of their distribution in the genetic code table. Nevertheless, the more sensible explanation for these observations would be the following. The observation that would link the two classes of ARSs to the CAG and UNN/NUN codes, and the statistical significance of the distribution of the subclasses of ARSs in the genetic code table, would be only a secondary effect due to the highly significant distribution of the polarity of amino acids and their biosynthetic relationships in the genetic code. That is to say, the polarity of amino acids and their biosynthetic relationships would have conditioned the evolution of ARSs so that their presence in the genetic code would have been detectable. Even if the ARSs would not have-on their own-influenced directly the evolutionary organization of the genetic code. In other words, the role that ARSs had in the origin of the genetic code would have been entirely marginal. This conclusion would be in perfect accord with the predictions of the coevolution theory. Conversely, this conclusion would be in contrast-at least partially-with the physicochemical theories of the origin of the genetic code because they would foresee an absolutely more active role of ARSs in the origin of the organization of the genetic code. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wojtasik, Wioleta; Kulma, Anna; Boba, Aleksandra; Szopa, Jan
2014-10-05
Nowadays, the challenge for biotechnology is to develop tools for agriculture and industry to provide plants characterized by productivity and quality that will satisfy the growing demand for different kinds of natural products. To meet the challenge, the generation and application of genetically modified plants is justified. However, the strong social resistance to genetically modified organisms and restrictive regulations in European Union countries necessitated the development of a new technology for new plant types generation which uses the knowledge resulting from analysis of genetically modified plants to generate favourably altered plants while omitting the introduction of heterologous genes to their genome. Four-year experiments led to the development of a technology inducing heritable epigenetic gene activation without transgenesis. The method comprises the induction of changes in methylation/demethylation of the endogenous gene by the plant's treatment with short oligodeoxynucleotides antisense to the coding region. In vitro cultured plants and F3 generation flax plants overproducing the β-1,3-glucanase gene (EMO-βGlu flax) were characterized by up-regulation of β-glucanase and chitinase genes, decreases in the methylation of CCGG sequences in the β-glucanase gene and in total DNA methylation and, more importantly, reasonable resistance against Fusarium infection. In addition, EMO-βGlu flax obtained by this technology showed similar features as those obtained by genetic engineering. To our best knowledge, this is the first report on plant gene activation by treatment with oligodeoxynucleotides homologous to the coding region of the gene. Apart from the evident effectiveness, the most important issue is that the EMO method allows generation of favourably altered plants, whose cultivation makes the plant producer independent from the complicated procedure of obtaining an agreement on GMO release into the environment and whose products might be more easily introduced to the global market.
Arbitrariness is not enough: towards a functional approach to the genetic code.
Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan
2017-12-01
Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.
Seligmann, Hervé
2018-05-01
Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.
Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš
2017-01-01
Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063
Living Organisms Author Their Read-Write Genomes in Evolution.
Shapiro, James A
2017-12-06
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes
Nagy, Corina; Turecki, Gustavo
2017-01-01
Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183
Familial orthostatic tachycardia due to norepinephrine transporter deficiency
NASA Technical Reports Server (NTRS)
Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.
2001-01-01
Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuppuswamy, M.N.; Hoffmann, J.W.; Spitzer, S.G.
1991-02-15
In this report, the authors describe an approach to detect the presence of abnormal alleles in those genetic diseases in which frequency of occurrence of the same mutation is high (e.g., hemophilia B). Initially, from each subject, the DNA fragment containing the putative mutation site is amplified by the polymerase chain reaction. For each fragment two reaction mixtures are then prepared. Each contains the amplified fragment, a primer (18-mer or longer) whose sequence is identical to the coding sequence of the normal gene immediately flanking the 5{prime} end of the mutation site, and either an {alpha}-{sup 32}P-labeled nucleotide corresponding tomore » the normal coding sequence at the mutation site or an {alpha}-{sup 32}P-labeled nucleotide corresponding to the mutant sequence. An essential feature of the present methodology is that the base immediately 3{prime} to the template-bound primer is one of those altered in the mutant, since in this way an extension of the primer by a single base will give an extended molecule characteristic of either the mutant or the wild type. The method is rapid and should be useful in carrier detection and prenatal diagnosis of every genetic disease with a known sequence variation.« less
Basic Concepts in Molecular Biology Related to Genetics and Epigenetics.
Corella, Dolores; Ordovas, Jose M
2017-09-01
The observation that "one size does not fit all" for the prevention and treatment of cardiovascular disease, among other diseases, has driven the concept of precision medicine. The goal of precision medicine is to provide the best-targeted interventions tailored to an individual's genome. The human genome is composed of billions of sequence arrangements containing a code that controls how genes are expressed. This code depends on other nonstatic regulators that surround the DNA and constitute the epigenome. Moreover, environmental factors also play an important role in this complex regulation. This review provides a general perspective on the basic concepts of molecular biology related to genetics and epigenetics and a glossary of key terms. Several examples are given of polymorphisms and genetic risk scores related to cardiovascular risk. Likewise, an overview is presented of the main epigenetic regulators, including DNA methylation, methylcytosine-phosphate-guanine-binding proteins, histone modifications, other histone regulations, micro-RNA effects, and additional emerging regulators. One of the greatest challenges is to understand how environmental factors (diet, physical activity, smoking, etc.) could alter the epigenome, resulting in healthy or unhealthy cardiovascular phenotypes. We discuss some gene-environment interactions and provide a methodological overview. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer.
Wojcik, Sylwia E; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z; Rai, Kanti R; Kipps, Thomas J; Keating, Michael J; Croce, Carlo M; Calin, George A
2010-02-01
Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas.
Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer
Wojcik, Sylwia E.; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S.; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z.; Rai, Kanti R.; Kipps, Thomas J.; Keating, Michael J.
2010-01-01
Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas. PMID:19926640
Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M; Berindan-Neagoe, Ioana
2017-04-25
In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.
Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M.; Berindan-Neagoe, Ioana
2017-01-01
In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs. PMID:28392501
NASA Astrophysics Data System (ADS)
Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.
2018-01-01
The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/
Lassen, Kara G; McKenzie, Craig I; Mari, Muriel; Murano, Tatsuro; Begun, Jakob; Baxt, Leigh A; Goel, Gautam; Villablanca, Eduardo J; Kuo, Szu-Yu; Huang, Hailiang; Macia, Laurence; Bhan, Atul K; Batten, Marcel; Daly, Mark J; Reggiori, Fulvio; Mackay, Charles R; Xavier, Ramnik J
2016-06-21
Although numerous polymorphisms have been associated with inflammatory bowel disease (IBD), identifying the function of these genetic factors has proved challenging. Here we identified a role for nine genes in IBD susceptibility loci in antibacterial autophagy and characterized a role for one of these genes, GPR65, in maintaining lysosome function. Mice lacking Gpr65, a proton-sensing G protein-coupled receptor, showed increased susceptibly to bacteria-induced colitis. Epithelial cells and macrophages lacking GPR65 exhibited impaired clearance of intracellular bacteria and accumulation of aberrant lysosomes. Similarly, IBD patient cells and epithelial cells expressing an IBD-associated missense variant, GPR65 I231L, displayed aberrant lysosomal pH resulting in lysosomal dysfunction, impaired bacterial restriction, and altered lipid droplet formation. The GPR65 I231L polymorphism was sufficient to confer decreased GPR65 signaling. Collectively, these data establish a role for GPR65 in IBD susceptibility and identify lysosomal dysfunction as a potentially causative element in IBD pathogenesis with effects on cellular homeostasis and defense. Copyright © 2016 Elsevier Inc. All rights reserved.
Szymonowicz, Klaudia; Oeck, Sebastian; Malewicz, Nathalie M; Jendrossek, Verena
2018-03-18
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt's activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
The SPINK gene family and celiac disease susceptibility.
Wapenaar, Martin C; Monsuur, Alienke J; Poell, Jos; van 't Slot, Ruben; Meijer, Jos W R; Meijer, Gerrit A; Mulder, Chris J; Mearin, Maria Luisa; Wijmenga, Cisca
2007-05-01
The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n=15) and diet-treated patients (n=31) and controls (n=16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population.
Mathematical fundamentals for the noise immunity of the genetic code.
Fimmel, Elena; Strüngmann, Lutz
2018-02-01
Symmetry is one of the essential and most visible patterns that can be seen in nature. Starting from the left-right symmetry of the human body, all types of symmetry can be found in crystals, plants, animals and nature as a whole. Similarly, principals of symmetry are also some of the fundamental and most useful tools in modern mathematical natural science that play a major role in theory and applications. As a consequence, it is not surprising that the desire to understand the origin of life, based on the genetic code, forces us to involve symmetry as a mathematical concept. The genetic code can be seen as a key to biological self-organisation. All living organisms have the same molecular bases - an alphabet consisting of four letters (nitrogenous bases): adenine, cytosine, guanine, and thymine. Linearly ordered sequences of these bases contain the genetic information for synthesis of proteins in all forms of life. Thus, one of the most fascinating riddles of nature is to explain why the genetic code is as it is. Genetic coding possesses noise immunity which is the fundamental feature that allows to pass on the genetic information from parents to their descendants. Hence, since the time of the discovery of the genetic code, scientists have tried to explain the noise immunity of the genetic information. In this chapter we will discuss recent results in mathematical modelling of the genetic code with respect to noise immunity, in particular error-detection and error-correction. We will focus on two central properties: Degeneracy and frameshift correction. Different amino acids are encoded by different quantities of codons and a connection between this degeneracy and the noise immunity of genetic information is a long standing hypothesis. Biological implications of the degeneracy have been intensively studied and whether the natural code is a frozen accident or a highly optimised product of evolution is still controversially discussed. Symmetries in the structure of degeneracy of the genetic code are essential and give evidence of substantial advantages of the natural code over other possible ones. In the present chapter we will present a recent approach to explain the degeneracy of the genetic code by algorithmic methods from bioinformatics, and discuss its biological consequences. The biologists recognised this problem immediately after the detection of the non-overlapping structure of the genetic code, i.e., coding sequences are to be read in a unique way determined by their reading frame. But how does the reading head of the ribosome recognises an error in the grouping of codons, caused by e.g. insertion or deletion of a base, that can be fatal during the translation process and may result in nonfunctional proteins? In this chapter we will discuss possible solutions to the frameshift problem with a focus on the theory of so-called circular codes that were discovered in large gene populations of prokaryotes and eukaryotes in the early 90s. Circular codes allow to detect a frameshift of one or two positions and recently a beautiful theory of such codes has been developed using statistics, group theory and graph theory. Copyright © 2017 Elsevier B.V. All rights reserved.
Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids.
Liu, Chao; Wang, Mingbo; Wang, Lingli; Guo, Qigao; Liang, Guolu
2018-04-24
We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.
Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel
2018-06-28
Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.
Reprogramming neurodegeneration in the big data era.
Zhou, Lujia; Verstreken, Patrik
2018-02-01
Recent genome-wide association studies (GWAS) have identified numerous genetic risk variants for late-onset Alzheimer's disease (AD) and Parkinson's disease (PD). However, deciphering the functional consequences of GWAS data is challenging due to a lack of reliable model systems to study the genetic variants that are often of low penetrance and non-coding identities. Pluripotent stem cell (PSC) technologies offer unprecedented opportunities for molecular phenotyping of GWAS variants in human neurons and microglia. Moreover, rapid technological advances in whole-genome RNA-sequencing and epigenome mapping fuel comprehensive and unbiased investigations of molecular alterations in PSC-derived disease models. Here, we review and discuss how integrated studies that utilize PSC technologies and genome-wide approaches may bring new mechanistic insight into the pathogenesis of AD and PD. Copyright © 2018 Elsevier Ltd. All rights reserved.
The neutral emergence of error minimized genetic codes superior to the standard genetic code.
Massey, Steven E
2016-11-07
The standard genetic code (SGC) assigns amino acids to codons in such a way that the impact of point mutations is reduced, this is termed 'error minimization' (EM). The occurrence of EM has been attributed to the direct action of selection, however it is difficult to explain how the searching of alternative codes for an error minimized code can occur via codon reassignments, given that these are likely to be disruptive to the proteome. An alternative scenario is that EM has arisen via the process of genetic code expansion, facilitated by the duplication of genes encoding charging enzymes and adaptor molecules. This is likely to have led to similar amino acids being assigned to similar codons. Strikingly, we show that if during code expansion the most similar amino acid to the parent amino acid, out of the set of unassigned amino acids, is assigned to codons related to those of the parent amino acid, then genetic codes with EM superior to the SGC easily arise. This scheme mimics code expansion via the gene duplication of charging enzymes and adaptors. The result is obtained for a variety of different schemes of genetic code expansion and provides a mechanistically realistic manner in which EM has arisen in the SGC. These observations might be taken as evidence for self-organization in the earliest stages of life. Copyright © 2016 Elsevier Ltd. All rights reserved.
43 CFR 11.64 - Injury determination phase-testing and sampling methods.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... In developing these objectives, the availability of information from response actions relating to the...), test cases proving the code works, and any alteration of previously documented code made to adapt the... computer code (if any), test cases proving the code works, and any alteration of previously documented code...
43 CFR 11.64 - Injury determination phase-testing and sampling methods.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... In developing these objectives, the availability of information from response actions relating to the...), test cases proving the code works, and any alteration of previously documented code made to adapt the... computer code (if any), test cases proving the code works, and any alteration of previously documented code...
43 CFR 11.64 - Injury determination phase-testing and sampling methods.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... In developing these objectives, the availability of information from response actions relating to the...), test cases proving the code works, and any alteration of previously documented code made to adapt the... computer code (if any), test cases proving the code works, and any alteration of previously documented code...
Savel'eva, I V; Khatsukov, K X; Savel'eva, E I; Moskvitina, S I; Kovalev, D A; Savel'ev, V N; Kulichenko, A N; Antonenko, A D; Babenyshev, B V
2015-01-01
Improvement of laboratory diagnostics of cholera taking into the account appearance of hybrid variants of cholera vibrio El Tor biovar in the 1990s. Phenotypic and molecular-genetic properties of typical toxigenic (151 strains) and hybrid (102 strains) variants of El Tor biovar cholera vibrios, isolated in the Caucuses in 1970-1990 and 1993-1998, respectively, were studied. Toxigenicity gene DNA fragments, inherent to El Tor biovars or classic, were detected by using a reagent kit "Genes of Vibrio cholerae variant ctxB-rstR-rstC, REF" developed by us. Reagent kit "Genes of V. cholerae variant ctxB-rstR-rstC, REF" is proposed to be used for laboratory diagnostics of cholera during study of material from humans or environmental objects and for identification of V. cholerae 01 on genome level in PCR-analysis as a necessary addition to the classic scheme of bacteriological analysis. Laboratory diagnostics of cholera due to genetically altered (hybrid) variants of cholera vibrio El Tor biovar is based on a complex study of material from humans and environmental objects by routine bacteriologic and PCR-analysis methods with the aim of detection of gene DNA fragments in the studied material, that determine biovar (classic or El Tor), identification of V. cholerae O1 strains with differentiation of El Tor vibrios into typical and altered, as well as determination of enterotoxin, produced by the specific cholera vibrio strain (by the presence ctxB(El) or ctxB(Cl) gene DNA fragment, coding biosynthesis of CT-2 or CT-1, respectively).
A Comparative Review of microRNA Expression Patterns in Autism Spectrum Disorder.
Hicks, Steven D; Middleton, Frank A
2016-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a wide spectrum of deficits in social interaction, communication, and behavior. There is a significant genetic component to ASD, yet no single gene variant accounts for >1% of incidence. Posttranscriptional mechanisms such as microRNAs (miRNAs) regulate gene expression without altering the genetic code. They are abundant in the developing brain and are dysregulated in children with ASD. Patterns of miRNA expression are altered in the brain, blood, saliva, and olfactory precursor cells of ASD subjects. The ability of miRNAs to regulate broad molecular pathways in response to environmental stimuli makes them an intriguing player in ASD, a disorder characterized by genetic predisposition with ill-defined environmental triggers. In addition, the availability and extracellular stability of miRNAs make them an ideal candidate for biomarker discovery. Here, we discuss 27 miRNAs with overlap across ASD studies, including 3 miRNAs identified in 3 or more studies (miR-23a, miR-146a, and miR-106b). Together, these 27 miRNAs have 1245 high-confidence mRNA targets, a significant number of which are expressed in the brain. Furthermore, these mRNA targets demonstrate over-representation of autism-related genes with enrichment of neurotrophic signaling molecules. Brain-derived neurotrophic factor, a molecule involved in hippocampal neurogenesis and altered in ASD, is targeted by 6 of the 27 miRNAs of interest. This neurotrophic pathway represents one intriguing mechanism by which perturbations in miRNA signaling might influence central nervous system development in children with ASD.
Prostate cancer epigenetics and its clinical implications
Yegnasubramanian, Srinivasan
2016-01-01
Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy. PMID:27212125
Prostate cancer epigenetics and its clinical implications.
Yegnasubramanian, Srinivasan
2016-01-01
Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.
Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information
2017-01-01
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5′- and 3′-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell’s epigenome. PMID:28937658
Crucial steps to life: From chemical reactions to code using agents.
Witzany, Guenther
2016-02-01
The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Frisso, Giulia; Detta, Nicola; Coppola, Pamela; Mazzaccara, Cristina; Pricolo, Maria Rosaria; D'Onofrio, Antonio; Limongelli, Giuseppe; Calabrò, Raffaele; Salvatore, Francesco
2016-11-10
Point mutations are the most common cause of inherited diseases. Bioinformatics tools can help to predict the pathogenicity of mutations found during genetic screening, but they may work less well in determining the effect of point mutations in non-coding regions. In silico analysis of intronic variants can reveal their impact on the splicing process, but the consequence of a given substitution is generally not predictable. The aim of this study was to functionally test five intronic variants ( MYBPC3 -c.506-2A>C, MYBPC3 -c.906-7G>T, MYBPC3 -c.2308+3G>C, SCN5A -c.393-5C>A, and ACTC1 -c.617-7T>C) found in five patients affected by inherited cardiomyopathies in the attempt to verify their pathogenic role. Analysis of the MYBPC3 -c.506-2A>C mutation in mRNA from the peripheral blood of one of the patients affected by hypertrophic cardiac myopathy revealed the loss of the canonical splice site and the use of an alternative splicing site, which caused the loss of the first seven nucleotides of exon 5 ( MYBPC3 -G169AfsX14). In the other four patients, we generated minigene constructs and transfected them in HEK-293 cells. This minigene approach showed that MYBPC3 -c.2308+3G>C and SCN5A -c.393-5C>A altered pre-mRNA processing, thus resulting in the skipping of one exon. No alterations were found in either MYBPC3 -c.906-7G>T or ACTC1 -c.617-7T>C. In conclusion, functional in vitro analysis of the effects of potential splicing mutations can confirm or otherwise the putative pathogenicity of non-coding mutations, and thus help to guide the patient's clinical management and improve genetic counseling in affected families.
2013-01-01
Background Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. Results We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Conclusions Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice, which is concomitant with epigenetic alterations. Perturbed expression by tissue culture of a set of 41 genes encoding for enzymes involved in DNA repair and DNA methylation is associated with both genetic and epigenetic alterations. There exist fundamental differences among distinct genotypes, pure-lines, hybrids and tetraploids, in propensities of generating both genetic and epigenetic alterations under the tissue culture condition. Parent-of-origin has a conspicuous effect on the alteration frequencies. PMID:23642214
Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao
2013-05-05
Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice, which is concomitant with epigenetic alterations. Perturbed expression by tissue culture of a set of 41 genes encoding for enzymes involved in DNA repair and DNA methylation is associated with both genetic and epigenetic alterations. There exist fundamental differences among distinct genotypes, pure-lines, hybrids and tetraploids, in propensities of generating both genetic and epigenetic alterations under the tissue culture condition. Parent-of-origin has a conspicuous effect on the alteration frequencies.
Johnson, Amy R; Lao, Sai; Wang, Tongwen; Galanko, Joseph A; Zeisel, Steven H
2012-01-01
Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh(-/-) males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm.
Johnson, Amy R.; Lao, Sai; Wang, Tongwen; Galanko, Joseph A.; Zeisel, Steven H.
2012-01-01
Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm. PMID:22558321
Auer, Paul L; Nalls, Mike; Meschia, James F; Worrall, Bradford B; Longstreth, W T; Seshadri, Sudha; Kooperberg, Charles; Burger, Kathleen M; Carlson, Christopher S; Carty, Cara L; Chen, Wei-Min; Cupples, L Adrienne; DeStefano, Anita L; Fornage, Myriam; Hardy, John; Hsu, Li; Jackson, Rebecca D; Jarvik, Gail P; Kim, Daniel S; Lakshminarayan, Kamakshi; Lange, Leslie A; Manichaikul, Ani; Quinlan, Aaron R; Singleton, Andrew B; Thornton, Timothy A; Nickerson, Deborah A; Peters, Ulrike; Rich, Stephen S
2015-07-01
Stroke is the second leading cause of death and the third leading cause of years of life lost. Genetic factors contribute to stroke prevalence, and candidate gene and genome-wide association studies (GWAS) have identified variants associated with ischemic stroke risk. These variants often have small effects without obvious biological significance. Exome sequencing may discover predicted protein-altering variants with a potentially large effect on ischemic stroke risk. To investigate the contribution of rare and common genetic variants to ischemic stroke risk by targeting the protein-coding regions of the human genome. The National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP) analyzed approximately 6000 participants from numerous cohorts of European and African ancestry. For discovery, 365 cases of ischemic stroke (small-vessel and large-vessel subtypes) and 809 European ancestry controls were sequenced; for replication, 47 affected sibpairs concordant for stroke subtype and an African American case-control series were sequenced, with 1672 cases and 4509 European ancestry controls genotyped. The ESP's exome sequencing and genotyping started on January 1, 2010, and continued through June 30, 2012. Analyses were conducted on the full data set between July 12, 2012, and July 13, 2013. Discovery of new variants or genes contributing to ischemic stroke risk and subtype (primary analysis) and determination of support for protein-coding variants contributing to risk in previously published candidate genes (secondary analysis). We identified 2 novel genes associated with an increased risk of ischemic stroke: a protein-coding variant in PDE4DIP (rs1778155; odds ratio, 2.15; P = 2.63 × 10(-8)) with an intracellular signal transduction mechanism and in ACOT4 (rs35724886; odds ratio, 2.04; P = 1.24 × 10(-7)) with a fatty acid metabolism; confirmation of PDE4DIP was observed in affected sibpair families with large-vessel stroke subtype and in African Americans. Replication of protein-coding variants in candidate genes was observed for 2 previously reported GWAS associations: ZFHX3 (cardioembolic stroke) and ABCA1 (large-vessel stroke). Exome sequencing discovered 2 novel genes and mechanisms, PDE4DIP and ACOT4, associated with increased risk for ischemic stroke. In addition, ZFHX3 and ABCA1 were discovered to have protein-coding variants associated with ischemic stroke. These results suggest that genetic variation in novel pathways contributes to ischemic stroke risk and serves as a target for prediction, prevention, and therapy.
Xu, Zhen-Hua; Thomae, Bianca A; Eckloff, Bruce W; Wieben, Eric D; Weinshilboum, Richard M
2003-06-01
3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy "sulfate donor" for reactions catalyzed by sulfotransferase (SULT) enzymes. The strict requirement of SULTs for PAPS suggests that PAPS synthesis might influence the rate of sulfate conjugation. In humans, PAPS is synthesized from ATP and SO(4)(2-) by two isoforms of PAPS synthetase (PAPSS): PAPSS1 and PAPSS2. As a step toward pharmacogenetic studies, we have resequenced the entire coding sequence of the human PAPSS1 gene, including exon-intron splice junctions, using DNA samples from 60 Caucasian-American and 58 African-American subjects. Twenty-one genetic polymorphisms were observed-1 insertion-deletion event and 20 single nucleotide polymorphisms (SNPs)-including two non-synonymous coding SNPs (cSNPs) that altered the following amino acids: Arg333Cys and Glu531Gln. Twelve pairs of these polymorphisms were tightly linked, and a total of twelve unequivocal haplotypes could be identified-two that were common to both ethnic groups and ten that were ethnic-specific. The Arg333Cys polymorphism, with an allele frequency of 2.5%, was observed only in DNA samples from Caucasian subjects. The Glu531Gln polymorphism was rare, with only a single copy of that allele in a DNA sample from an African-American subject. Transient expression in mammalian cells showed that neither of the non-synonymous cSNPs resulted in a change in the basal level of enzyme activity measured under optimal assay conditions. However, the Glu531Gln polymorphism altered the substrate kinetic properties of the enzyme. The Gln531 variant allozyme had a 5-fold higher K(m) value for SO(4)(2-) than did the wild-type allozyme and displayed monophasic kinetics for Na(2)SO(4). The wild-type allozyme (Glu531) showed biphasic kinetics for that substrate. These observations represent a step toward testing the hypothesis that genetic variation in PAPS synthesis catalyzed by PAPSS1 might alter in vivo sulfate conjugation.
Giulio, Massimo Di
2018-05-19
A discriminative statistical test among the different theories proposed to explain the origin of the genetic code is presented. Gathering the amino acids into polarity and biosynthetic classes that are the first expression of the physicochemical theory of the origin of the genetic code and the second expression of the coevolution theory, these classes are utilized in the Fisher's exact test to establish their significance within the genetic code table. Linking to the rows and columns of the genetic code of probabilities that express the statistical significance of these classes, I have finally been in the condition to be able to calculate a χ value to link to both the physicochemical theory and to the coevolution theory that would express the corroboration level referred to these theories. The comparison between these two χ values showed that the coevolution theory is able to explain - in this strictly empirical analysis - the origin of the genetic code better than that of the physicochemical theory. Copyright © 2018 Elsevier B.V. All rights reserved.
Castillejo-López, Casimiro; Delgado-Vega, Angélica M; Wojcik, Jerome; Kozyrev, Sergey V; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Moser, Kathy L; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B; Gaffney, Patrick M; Martin, Javier; Guthridge, Joel M; Alarcón-Riquelme, Marta E
2012-01-01
Altered signalling in B cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signalling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterise the role of BANK1 and BLK in SLE, a genetic interaction analysis was performed hypothesising that genetic interactions could reveal functional pathways relevant to disease pathogenesis. The GPAT16 method was used to analyse the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localisation, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, the possibility that BANK1 and BLK could also show a protein-protein interaction was tested. The co-immunoprecipitation and co-localisation of BLK and BANK1 were demonstrated. In a Daudi cell line and primary naive B cells endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. This study shows a genetic interaction between BANK1 and BLK, and demonstrates that these molecules interact physically. The results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signalling pathway.
Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK
Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.
2012-01-01
Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998
MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering
Bonde, Mads T.; Klausen, Michael S.; Anderson, Mads V.; Wallin, Annika I.N.; Wang, Harris H.; Sommer, Morten O.A.
2014-01-01
Recombineering and multiplex automated genome engineering (MAGE) offer the possibility to rapidly modify multiple genomic or plasmid sites at high efficiencies. This enables efficient creation of genetic variants including both single mutants with specifically targeted modifications as well as combinatorial cell libraries. Manual design of oligonucleotides for these approaches can be tedious, time-consuming, and may not be practical for larger projects targeting many genomic sites. At present, the change from a desired phenotype (e.g. altered expression of a specific protein) to a designed MAGE oligo, which confers the corresponding genetic change, is performed manually. To address these challenges, we have developed the MAGE Oligo Design Tool (MODEST). This web-based tool allows designing of MAGE oligos for (i) tuning translation rates by modifying the ribosomal binding site, (ii) generating translational gene knockouts and (iii) introducing other coding or non-coding mutations, including amino acid substitutions, insertions, deletions and point mutations. The tool automatically designs oligos based on desired genotypic or phenotypic changes defined by the user, which can be used for high efficiency recombineering and MAGE. MODEST is available for free and is open to all users at http://modest.biosustain.dtu.dk. PMID:24838561
Santos, José; Monteagudo, Ángel
2017-03-27
The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
Lee, Min-Young; Ku, Bo Mi; Kim, Hae Su; Lee, Ji Yun; Lim, Sung Hee; Sun, Jong-Mu; Lee, Se-Hoon; Park, Keunchil; Oh, Young Lyun; Hong, Mineui; Jeong, Han-Sin; Son, Young-Ik; Baek, Chung-Hwan; Ahn, Myung-Ju
2017-10-01
Papillary thyroid carcinomas (PTCs) frequently involve genetic alterations. The objective of this study was to investigate genetic alterations and further explore the relationships between these genetic alterations and clinicopathological characteristics in a high-recurrence risk (node positive, N1) PTC group. Tumor tissue blocks were obtained from 240 surgically resected patients with histologically confirmed stage III/IV (pT3/4 or N1) PTCs. We screened gene fusions using NanoString's nCounter technology and mutational analysis was performed by direct DNA sequencing. Data describing the clinicopathological characteristics and clinical courses were retrospectively collected. Of the 240 PTC patients, 207 (86.3%) had at least one genetic alteration, including BRAF mutation in 190 patients (79.2%), PIK3CA mutation in 25 patients (10.4%), NTRK1/3 fusion in six patients (2.5%), and RET fusion in 24 patients (10.0%). Concomitant presence of more than two genetic alterations was seen in 36 patients (15%). PTCs harboring BRAF mutation were associated with RET wild-type expression (p=0.001). RET fusion genes have been found to occur with significantly higher frequency in N1b stage patients (p=0.003) or groups of patients aged 45 years or older (p=0.031); however, no significant correlation was found between other genetic alterations. There was no trend toward favorable recurrence-free survival or overall survival among patients lacking genetic alterations. In the selected high-recurrence risk PTC group, most patients had more than one genetic alteration. However, these known alterations could not entirely account for clinicopathological features of high-recurrence risk PTC.
Green, Nancy
2005-04-01
We developed a Bayesian network coding scheme for annotating biomedical content in layperson-oriented clinical genetics documents. The coding scheme supports the representation of probabilistic and causal relationships among concepts in this domain, at a high enough level of abstraction to capture commonalities among genetic processes and their relationship to health. We are using the coding scheme to annotate a corpus of genetic counseling patient letters as part of the requirements analysis and knowledge acquisition phase of a natural language generation project. This paper describes the coding scheme and presents an evaluation of intercoder reliability for its tag set. In addition to giving examples of use of the coding scheme for analysis of discourse and linguistic features in this genre, we suggest other uses for it in analysis of layperson-oriented text and dialogue in medical communication.
E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.
Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B
2017-01-01
Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.
An algebraic hypothesis about the primeval genetic code architecture.
Sánchez, Robersy; Grau, Ricardo
2009-09-01
A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D,A,C,G,U}, where symbol D represents one or more hypothetical bases with unspecific pairings. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvement of a primeval DNA repair system could make possible the transition from ancient to modern genetic codes. Our results suggest that the Watson-Crick base pairing G identical with C and A=U and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as, the transition from the former to the latter. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences. The phylogenetic analyses achieved with metrics defined in the N-dimensional vector space (B(3))(N) of DNA sequences and with the new evolutionary model presented here also suggest that an ancient DNA coding sequence with five or more bases does not contradict the expected evolutionary history.
Qu, Wen; Cingolani, Pablo; Zeeberg, Barry R; Ruden, Douglas M
2017-01-01
Deep sequencing of cDNAs made from spliced mRNAs indicates that most coding genes in many animals and plants have pre-mRNA transcripts that are alternatively spliced. In pre-mRNAs, in addition to invariant exons that are present in almost all mature mRNA products, there are at least 6 additional types of exons, such as exons from alternative promoters or with alternative polyA sites, mutually exclusive exons, skipped exons, or exons with alternative 5' or 3' splice sites. Our bioinformatics-based hypothesis is that, in analogy to the genetic code, there is an "alternative-splicing code" in introns and flanking exon sequences, analogous to the genetic code, that directs alternative splicing of many of the 36 types of introns. In humans, we identified 42 different consensus sequences that are each present in at least 100 human introns. 37 of the 42 top consensus sequences are significantly enriched or depleted in at least one of the 36 types of introns. We further supported our hypothesis by showing that 96 out of 96 analyzed human disease mutations that affect RNA splicing, and change alternative splicing from one class to another, can be partially explained by a mutation altering a consensus sequence from one type of intron to that of another type of intron. Some of the alternative splicing consensus sequences, and presumably their small-RNA or protein targets, are evolutionarily conserved from 50 plant to animal species. We also noticed the set of introns within a gene usually share the same splicing codes, thus arguing that one sub-type of splicesosome might process all (or most) of the introns in a given gene. Our work sheds new light on a possible mechanism for generating the tremendous diversity in protein structure by alternative splicing of pre-mRNAs.
Reassigning stop codons via translation termination: How a few eukaryotes broke the dogma.
Alkalaeva, Elena; Mikhailova, Tatiana
2017-03-01
The genetic code determines how amino acids are encoded within mRNA. It is universal among the vast majority of organisms, although several exceptions are known. Variant genetic codes are found in ciliates, mitochondria, and numerous other organisms. All revealed genetic codes (standard and variant) have at least one codon encoding a translation stop signal. However, recently two new genetic codes with a reassignment of all three stop codons were revealed in studies examining the protozoa transcriptomes. Here, we discuss this finding and the recent studies of variant genetic codes in eukaryotes. We consider the possible molecular mechanisms allowing the use of certain codons as sense and stop signals simultaneously. The results obtained by studying these amazing organisms represent a new and exciting insight into the mechanism of stop codon decoding in eukaryotes. Also see the video abstract here. © 2017 WILEY Periodicals, Inc.
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
Caetano-Anollés, Gustavo; Wang, Minglei; Caetano-Anollés, Derek
2013-01-01
The genetic code shapes the genetic repository. Its origin has puzzled molecular scientists for over half a century and remains a long-standing mystery. Here we show that the origin of the genetic code is tightly coupled to the history of aminoacyl-tRNA synthetase enzymes and their interactions with tRNA. A timeline of evolutionary appearance of protein domain families derived from a structural census in hundreds of genomes reveals the early emergence of the ‘operational’ RNA code and the late implementation of the standard genetic code. The emergence of codon specificities and amino acid charging involved tight coevolution of aminoacyl-tRNA synthetases and tRNA structures as well as episodes of structural recruitment. Remarkably, amino acid and dipeptide compositions of single-domain proteins appearing before the standard code suggest archaic synthetases with structures homologous to catalytic domains of tyrosyl-tRNA and seryl-tRNA synthetases were capable of peptide bond formation and aminoacylation. Results reveal that genetics arose through coevolutionary interactions between polypeptides and nucleic acid cofactors as an exacting mechanism that favored flexibility and folding of the emergent proteins. These enhancements of phenotypic robustness were likely internalized into the emerging genetic system with the early rise of modern protein structure. PMID:23991065
Ortega, Victor E.; Meyers, Deborah A.
2014-01-01
Pharmacogenetics is being used to develop personalized therapies specific to individuals from different ethnic or racial groups. Pharmacogenetic studies to date have been primarily performed in trial cohorts consisting of non-Hispanic whites of European descent. A “bottleneck” or collapse of genetic diversity associated with the first human colonization of Europe during the Upper Paleolithic period, followed by the recent mixing of African, European, and Native American ancestries has resulted in different ethnic groups with varying degrees of genetic diversity. Differences in genetic ancestry may introduce genetic variation which has the potential to alter the therapeutic efficacy of commonly used asthma therapies, for example β2-adrenergic receptor agonists (beta agonists). Pharmacogenetic studies of admixed ethnic groups have been limited to small candidate gene association studies of which the best example is the gene coding for the receptor target of beta agonist therapy, ADRB2. Large consortium-based sequencing studies are using next-generation whole-genome sequencing to provide a diverse genome map of different admixed populations which can be used for future pharmacogenetic studies. These studies will include candidate gene studies, genome-wide association studies, and whole-genome admixture-based approaches which account for ancestral genetic structure, complex haplotypes, gene-gene interactions, and rare variants to detect and replicate novel pharmacogenetic loci. PMID:24369795
Panicker, Vijay; Cluett, Christie; Shields, Beverley; Murray, Anna; Parnell, Kirstie S.; Perry, John R. B.; Weedon, Michael N.; Singleton, Andrew; Hernandez, Dena; Evans, Jonathan; Durant, Claire; Ferrucci, Luigi; Melzer, David; Saravanan, Ponnusamy; Visser, Theo J.; Ceresini, Graziano; Hattersley, Andrew T.; Vaidya, Bijay; Dayan, Colin M.; Frayling, Timothy M.
2008-01-01
Introduction: Genetic factors influence circulating thyroid hormone levels, but the common gene variants involved have not been conclusively identified. The genes encoding the iodothyronine deiodinases are good candidates because they alter the balance of thyroid hormones. We aimed to thoroughly examine the role of common variation across the three deiodinase genes in relation to thyroid hormones. Methods: We used HapMap data to select single-nucleotide polymorphisms (SNPs) that captured a large proportion of the common genetic variation across the three deiodinase genes. We analyzed these initially in a cohort of 552 people on T4 replacement. Suggestive findings were taken forward into three additional studies in people not on T4 (total n = 2513) and metaanalyzed for confirmation. Results: A SNP in the DIO1 gene, rs2235544, was associated with the free T3 to free T4 ratio with genome-wide levels of significance (P = 3.6 × 10−13). The C-allele of this SNP was associated with increased deiodinase 1 (D1) function with resulting increase in free T3/T4 ratio and free T3 and decrease in free T4 and rT3. There was no effect on serum TSH levels. None of the SNPs in the genes coding for D2 or D3 had any influence on hormone levels. Conclusions: This study provides convincing evidence that common genetic variation in DIO1 alters deiodinase function, resulting in an alteration in the balance of circulating free T3 to free T4. This should prove a valuable tool to assess the relative effects of circulating free T3 vs. free T4 on a wide range of biological parameters. PMID:18492748
Panicker, Vijay; Cluett, Christie; Shields, Beverley; Murray, Anna; Parnell, Kirstie S; Perry, John R B; Weedon, Michael N; Singleton, Andrew; Hernandez, Dena; Evans, Jonathan; Durant, Claire; Ferrucci, Luigi; Melzer, David; Saravanan, Ponnusamy; Visser, Theo J; Ceresini, Graziano; Hattersley, Andrew T; Vaidya, Bijay; Dayan, Colin M; Frayling, Timothy M
2008-08-01
Genetic factors influence circulating thyroid hormone levels, but the common gene variants involved have not been conclusively identified. The genes encoding the iodothyronine deiodinases are good candidates because they alter the balance of thyroid hormones. We aimed to thoroughly examine the role of common variation across the three deiodinase genes in relation to thyroid hormones. We used HapMap data to select single-nucleotide polymorphisms (SNPs) that captured a large proportion of the common genetic variation across the three deiodinase genes. We analyzed these initially in a cohort of 552 people on T(4) replacement. Suggestive findings were taken forward into three additional studies in people not on T(4) (total n = 2513) and metaanalyzed for confirmation. A SNP in the DIO1 gene, rs2235544, was associated with the free T(3) to free T(4) ratio with genome-wide levels of significance (P = 3.6 x 10(-13)). The C-allele of this SNP was associated with increased deiodinase 1 (D1) function with resulting increase in free T(3)/T(4) ratio and free T(3) and decrease in free T(4) and rT(3). There was no effect on serum TSH levels. None of the SNPs in the genes coding for D2 or D3 had any influence on hormone levels. This study provides convincing evidence that common genetic variation in DIO1 alters deiodinase function, resulting in an alteration in the balance of circulating free T(3) to free T(4). This should prove a valuable tool to assess the relative effects of circulating free T(3) vs. free T(4) on a wide range of biological parameters.
Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.
Xing, Mingzhao
2010-07-01
Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.
Coding and Plasticity in the Mammalian Thermosensory System.
Yarmolinsky, David A; Peng, Yueqing; Pogorzala, Leah A; Rutlin, Michael; Hoon, Mark A; Zuker, Charles S
2016-12-07
Perception of the thermal environment begins with the activation of peripheral thermosensory neurons innervating the body surface. To understand how temperature is represented in vivo, we used genetically encoded calcium indicators to measure temperature-evoked responses in hundreds of neurons across the trigeminal ganglion. Our results show how warm, hot, and cold stimuli are represented by distinct population responses, uncover unique functional classes of thermosensory neurons mediating heat and cold sensing, and reveal the molecular logic for peripheral warmth sensing. Next, we examined how the peripheral somatosensory system is functionally reorganized to produce altered perception of the thermal environment after injury. We identify fundamental transformations in sensory coding, including the silencing and recruitment of large ensembles of neurons, providing a cellular basis for perceptual changes in temperature sensing, including heat hypersensitivity, persistence of heat perception, cold hyperalgesia, and cold analgesia. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Daniel Seung; Crosslin, David R; Auer, Paul L; Suzuki, Stephanie M; Marsillach, Judit; Burt, Amber A; Gordon, Adam S; Meschia, James F; Nalls, Mike A; Worrall, Bradford B; Longstreth, W T; Gottesman, Rebecca F; Furlong, Clement E; Peters, Ulrike; Rich, Stephen S; Nickerson, Deborah A; Jarvik, Gail P
2014-06-01
HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10(-3)). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10(-3)). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10(-3); AA P = 6.52 × 10(-4)), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted.
Stop Codon Reassignment in the Wild
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James
Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hostsmore » must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences« less
Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas GD; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie CY; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Goncalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Heijer, Martin; den Hollander, Anneke I; den Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I. Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan FA; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna MM; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken Sin; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O’Donoghue, Michelle L.; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John RB; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva RB; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert Vernon; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; van der Laan, Sander W; van Duijn, Cornelia M; van Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth JF
2018-01-01
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAF<5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which eight in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly implicated in human obesity, two (MC4R, KSR2) previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically-supported therapeutic targets to treat obesity. PMID:29273807
Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function
Bali, Vedrana; Bebok, Zsuzsanna
2015-01-01
Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479
Nishida, Naoshi; Kudo, Masatoshi
Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development. In addition, genetic mutations in histone modulators and chromatin regulators would be critical for the acceleration of epigenetic alteration. It is also possible that major genetic mutations of HCC, such as TP53 and CNTTB1 mutations, are associated with the disturbance of epigenetic integrity. For example, specific TP53 mutations frequently induced by aflatoxin B1 exposure might affect histone modifiers and nucleosome remodelers. Generally, epigenetic alteration is reversible, because of which dysregulation of transcription takes place, without affecting protein structure. Therefore, differentiation therapy is one of the potential approaches for HCC with advanced epigenetic alterations. On the other hand, a tumor carrying an accumulation of genetic mutations would result in many abnormal proteins that could be recognized as non-self and could be targets for immune reactions; thus, immune-checkpoint blockers should be effective for HCCs with genetic hypermutation. Although the emergence of genetic and epigenetic alterations could be linked to each other and there could be some crossover or convergence between these cancer pathways, characterization of the mutation spectrum of genetic and epigenetic alterations could influence future HCC treatment. © 2016 S. Karger AG, Basel.
The fourfold way of the genetic code.
Jiménez-Montaño, Miguel Angel
2009-11-01
We describe a compact representation of the genetic code that factorizes the table in quartets. It represents a "least grammar" for the genetic language. It is justified by the Klein-4 group structure of RNA bases and codon doublets. The matrix of the outer product between the column-vector of bases and the corresponding row-vector V(T)=(C G U A), considered as signal vectors, has a block structure consisting of the four cosets of the KxK group of base transformations acting on doublet AA. This matrix, translated into weak/strong (W/S) and purine/pyrimidine (R/Y) nucleotide classes, leads to a code table with mixed and unmixed families in separate regions. A basic difference between them is the non-commuting (R/Y) doublets: AC/CA, GU/UG. We describe the degeneracy in the canonical code and the systematic changes in deviant codes in terms of the divisors of 24, employing modulo multiplication groups. We illustrate binary sub-codes characterizing mutations in the quartets. We introduce a decision-tree to predict the mode of tRNA recognition corresponding to each codon, and compare our result with related findings by Jestin and Soulé [Jestin, J.-L., Soulé, C., 2007. Symmetries by base substitutions in the genetic code predict 2' or 3' aminoacylation of tRNAs. J. Theor. Biol. 247, 391-394], and the rearrangements of the table by Delarue [Delarue, M., 2007. An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13, 161-169] and Rodin and Rodin [Rodin, S.N., Rodin, A.S., 2008. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100, 341-355], respectively.
CMCpy: Genetic Code-Message Coevolution Models in Python
Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.
2013-01-01
Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367
The evolution of the genetic code: Impasses and challenges.
Kun, Ádám; Radványi, Ádám
2018-02-01
The origin of the genetic code and translation is a "notoriously difficult problem". In this survey we present a list of questions that a full theory of the genetic code needs to answer. We assess the leading hypotheses according to these criteria. The stereochemical, the coding coenzyme handle, the coevolution, the four-column theory, the error minimization and the frozen accident hypotheses are discussed. The integration of these hypotheses can account for the origin of the genetic code. But experiments are badly needed. Thus we suggest a host of experiments that could (in)validate some of the models. We focus especially on the coding coenzyme handle hypothesis (CCH). The CCH suggests that amino acids attached to RNA handles enhanced catalytic activities of ribozymes. Alternatively, amino acids without handles or with a handle consisting of a single adenine, like in contemporary coenzymes could have been employed. All three scenarios can be tested in in vitro compartmentalized systems. Copyright © 2017 Elsevier B.V. All rights reserved.
A rare variant in COL11A1 is strongly associated with adult height in Chinese Han population.
Shen, Changbing; Zheng, Xiaodong; Gao, Jing; Zhu, Caihong; Ko, Randy; Tang, Xianfa; Yang, Chao; Dou, Jinfa; Lin, Yan; Cheng, Yuyan; Liu, Lu; Xu, Shuangjun; Chen, Gang; Zuo, Xianbo; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Yang, Sen; Zhang, Xuejun; Zhou, Fusheng
2016-09-20
Human height is a highly heritable trait in which multiple genes are involved. Recent genome-wide association studies (GWASs) have identified that COL11A1 is an important susceptibility gene for human height. To determine whether the variants of COL11A1 are associated with adult and children height, we analyzed splicing and coding single-nucleotide variants across COL11A1 through exome-targeted sequencing and two validation stages with a total 20,426 Chinese Han samples. A total of 105 variants were identified by exome-targeted sequencing, of which 30 SNPs were located in coding region. The strongest association signal was Chr1_103380393 with P value of 4.8 × 10(-7). Chr1_103380393 also showed nominal significance in the validation stage (P = 1.21 × 10(-6)). Combined analysis of 16,738 samples strengthened the original association of chr1_103380393 with adult height (Pcombined = 3.1 × 10(-8)), with an increased height of 0.292sd (standard deviation) per G allele (95% CI: 0.19-0.40). There was no evidence (P = 0.843) showing that chr1_103380393 altered child height in 3688 child samples. Only the group of 12-15 years showed slight significance with P value of 0.0258. This study firstly shows that genetic variants of COL11A1 contribute to adult height in Chinese Han population but not to children height, which expand our knowledge of the genetic factors underlying height variation and the biological regulation of human height. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. All rights reserved.
Genetic coding and gene expression - new Quadruplet genetic coding model
NASA Astrophysics Data System (ADS)
Shankar Singh, Rama
2012-07-01
Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.
Carbon source-dependent expansion of the genetic code in bacteria
Prat, Laure; Heinemann, Ilka U.; Aerni, Hans R.; Rinehart, Jesse; O’Donoghue, Patrick; Söll, Dieter
2012-01-01
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNAPyl is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ∼5% of ORFs, whereas Pyl-decoding bacteria (∼20% of ORFs contain in-frame TAGs) regulate Pyl-tRNAPyl formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases. PMID:23185002
Ma, Xiaoyin; Ma, Zhiwei; Jiao, Xiaodong; Hejtmancik, J Fielding
2017-08-30
To identify possible genetic variants influencing expression of EPHA2 (Ephrin-receptor Type-A2), a tyrosine kinase receptor that has been shown to be important for lens development and to contribute to both congenital and age related cataract when mutated, the extended promoter region of EPHA2 was screened for variants. SNP rs6603883 lies in a PAX2 binding site in the EPHA2 promoter region. The C (minor) allele decreased EPHA2 transcriptional activity relative to the T allele by reducing the binding affinity of PAX2. Knockdown of PAX2 in human lens epithelial (HLE) cells decreased endogenous expression of EPHA2. Whole RNA sequencing showed that extracellular matrix (ECM), MAPK-AKT signaling pathways and cytoskeleton related genes were dysregulated in EPHA2 knockdown HLE cells. Taken together, these results indicate a functional non-coding SNP in EPHA2 promoter affects PAX2 binding and reduces EPHA2 expression. They further suggest that decreasing EPHA2 levels alters MAPK, AKT signaling pathways and ECM and cytoskeletal genes in lens cells that could contribute to cataract. These results demonstrate a direct role for PAX2 in EPHA2 expression and help delineate the role of EPHA2 in development and homeostasis required for lens transparency.
Question 6: coevolution theory of the genetic code: a proven theory.
Wong, Jeffrey Tze-Fei
2007-10-01
The coevolution theory proposes that primordial proteins consisted only of those amino acids readily obtainable from the prebiotic environment, representing about half the twenty encoded amino acids of today, and the missing amino acids entered the system as the code expanded along with pathways of amino acid biosynthesis. The isolation of genetic code mutants, and the antiquity of pretran synthesis revealed by the comparative genomics of tRNAs and aminoacyl-tRNA synthetases, have combined to provide a rigorous proof of the four fundamental tenets of the theory, thus solving the riddle of the structure of the universal genetic code.
Rapid evolution of cis-regulatory sequences via local point mutations
NASA Technical Reports Server (NTRS)
Stone, J. R.; Wray, G. A.
2001-01-01
Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.
Lex genetica: the law and ethics of programming biological code.
Burk, Dan L
2002-01-01
Recent advances in genetic engineering now allow the design of programmable biological artifacts. Such programming may include usage constraints that will alter the balance of ownership and control for biotechnology products. Similar changes have been analyzed in the context of digital content management systems, and while this previous work is useful in analyzing issues related to biological programming, the latter technology presents new conceptual problems that require more comprehensive evaluation of the interplay between law and technologically embedded values. In particular, the ability to embed contractual terms in technological artifacts now requires a re-examination of disclosure and consent in transactions involving such artifacts.
Klintworth, Gordon K; Smith, Clayton F; Bowling, Brandy L
2006-03-10
To evaluate mutations in the carbohydrate sulfotransferase-6 (CHST6) gene in American subjects with macular corneal dystrophy (MCD). We analyzed CHST6 in 57 patients from 31 families with MCD from the United States, 57 carriers (parents or children), and 27 unaffected blood relatives of affected subjects. We compared the observed nucleotide sequences with those found by numerous investigators in other populations with MCD and in controls. In 24 families, the corneal disorder could be explained by mutations in the coding region of CHST6 or in the region upstream of this gene in both the maternal and paternal chromosome. In most instances of MCD a homozygous or heterozygous missense mutation in exon 3 of CHST6 was found. Six cases resulted from a deletion upstream of CHST6. Nucleotide changes within the coding region of CHST6 are predicted to alter the encoded protein significantly within evolutionary conserved parts of the encoded sulfotransferase. Our findings support the hypothesis that CHST6 mutations are cardinal to the pathogenesis of MCD. Moreover, the observation that some cases of MCD cannot be explained by mutations in CHST6 suggests that MCD may result from other subtle changes in CHST6 or from genetic heterogeneity.
Refactored M13 Bacteriophage as a Platform for Tumor Cell Imaging and Drug Delivery
MOSER, FELIX; ENDY, DREW; BELCHER, ANGELA M.
2014-01-01
M13 bacteriophage is a well-characterized platform for peptide display. The utility of the M13 display platform is derived from the ability to encode phage protein fusions with display peptides at the genomic level. However, the genome of the phage is complicated by overlaps of key genetic elements. These overlaps directly couple the coding sequence of one gene to the coding or regulatory sequence of another, making it difficult to alter one gene without disrupting the other. Specifically, overlap of the end of gene VII and the beginning of gene IX has prevented the functional genomic modification of the N-terminus of p9. By redesigning the M13 genome to physically separate these overlapping genetic elements, a process known as “refactoring,” we enabled independent manipulation of gene VII and gene IX and the construction of the first N-terminal genomic modification of p9 for peptide display. We demonstrate the utility of this refactored genome by developing an M13 bacteriophage-based platform for targeted imaging of and drug delivery to prostate cancer cells in vitro. This successful use of refactoring principles to reengineer a natural biological system strengthens the suggestion that natural genomes can be rationally designed for a number of applications. PMID:23656279
Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery.
Ghosh, Debadyuti; Kohli, Aditya G; Moser, Felix; Endy, Drew; Belcher, Angela M
2012-12-21
M13 bacteriophage is a well-characterized platform for peptide display. The utility of the M13 display platform is derived from the ability to encode phage protein fusions with display peptides at the genomic level. However, the genome of the phage is complicated by overlaps of key genetic elements. These overlaps directly couple the coding sequence of one gene to the coding or regulatory sequence of another, making it difficult to alter one gene without disrupting the other. Specifically, overlap of the end of gene VII and the beginning of gene IX has prevented the functional genomic modification of the N-terminus of p9. By redesigning the M13 genome to physically separate these overlapping genetic elements, a process known as "refactoring," we enabled independent manipulation of gene VII and gene IX and the construction of the first N-terminal genomic modification of p9 for peptide display. We demonstrate the utility of this refactored genome by developing an M13 bacteriophage-based platform for targeted imaging of and drug delivery to prostate cancer cells in vitro. This successful use of refactoring principles to re-engineer a natural biological system strengthens the suggestion that natural genomes can be rationally designed for a number of applications.
Myelin changes in Alexander disease.
Gómez-Pinedo, U; Duran-Moreno, M; Sirerol-Piquer, S; Matias-Guiu, J
2017-03-22
Alexander disease (AxD) is a type of leukodystrophy. Its pathological basis, along with myelin loss, is the appearance of Rosenthal bodies, which are cytoplasmic inclusions in astrocytes. Mutations in the gene coding for GFAP have been identified as a genetic basis for AxD. However, the mechanism by which these variants produce the disease is not understood. The most widespread hypothesis is that AxD develops when a gain of function mutation causes an increase in GFAP. However, this mechanism does not explain myelin loss, given that experimental models in which GFAP expression is normal or mutated do not exhibit myelin disorders. This review analyses other possibilities that may explain this alteration, such as epigenetic or inflammatory alterations, presence of NG2 (+) - GFAP (+) cells, or post-translational modifications in GFAP that are unrelated to increased expression. The different hypotheses analysed here may explain the myelin alteration affecting these patients, and multiple mechanisms may coexist. These theories raise the possibility of designing therapies based on these mechanisms. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal
NASA Astrophysics Data System (ADS)
Zamudio, Gabriel S.; José, Marco V.
2018-03-01
In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.
Ziemnicka, K; Budny, B; Drobnik, K; Baszko-Błaszyk, D; Stajgis, M; Katulska, K; Waśko, R; Wrotkowska, E; Słomski, R; Ruchała, M
2016-08-01
The role of genetic background in childhood-onset combined pituitary hormone deficiency (CPHD) has been extensively studied. The major contributors are the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes coding transcription factors implicated in pituitary organogenesis. The clinical consequences of mutations encompass impaired synthesis of a growth hormone (GH) and one or more concurrent pituitary hormones (i.e. LH, FSH, TSH, PRL). Manifestation of the disorder may vary due to various mutation impacts on the final gene products or an influence of environmental factors during pituitary organogenesis. We describe the clinical and molecular characteristics of two brothers aged 47 and 39 years presenting an uncommon manifestation of congenital hypopituitarism. Sequencing of the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes was performed to confirm the genetic origin of the disorder. A compound heterozygosity in the PROP1 gene has been identified for both probands. The first change represents a mutational hot spot (c.150delA, p.R53fsX164), whereas the second is a novel alteration (p.R112X) that leads to protein disruption. Based on precise genetic diagnosis, an in silico prediction of a p.R112X mutation on protein architecture was performed. The resulting clinical phenotype was surprisingly distinct compared to most patients with genetic alterations in PROP1 reported in the current literature. This may be caused by a residual activity of a newly identified p.R112X protein that preserves over 70 % of the homeodomain structure. This examination may confirm a key role of a DNA-binding homeodomain in maintaining PROP1 functionality and suggests a conceivable explanation of an unusual phenotype.
Chen, Chia-Yen; Lee, Phil H; Castro, Victor M; Minnier, Jessica; Charney, Alexander W; Stahl, Eli A; Ruderfer, Douglas M; Murphy, Shawn N; Gainer, Vivian; Cai, Tianxi; Jones, Ian; Pato, Carlos N; Pato, Michele T; Landén, Mikael; Sklar, Pamela; Perlis, Roy H; Smoller, Jordan W
2018-04-18
Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363-372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h 2 g ) and genetic correlation (r g ) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency-"coded-strict", "coded-broad", and "coded-broad based on a single clinical encounter" (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h 2 g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h 2 g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h 2 g ) was 0.12 (p = 0.004). These h 2 g were lower or similar to the h 2 g observed by the ICCBD + PGCBD (0.23, p = 3.17E-80, total N = 33,181). However, the r g between ICCBD + PGCBD and the EHR-based cases were high for 95-NLP (0.66, p = 3.69 × 10 -5 ), coded-strict (1.00, p = 2.40 × 10 -4 ), and coded-broad (0.74, p = 8.11 × 10 -7 ). The r g between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research.
Rooted tRNAomes and evolution of the genetic code
Pak, Daewoo; Du, Nan; Kim, Yunsoo; Sun, Yanni
2018-01-01
ABSTRACT We advocate for a tRNA- rather than an mRNA-centric model for evolution of the genetic code. The mechanism for evolution of cloverleaf tRNA provides a root sequence for radiation of tRNAs and suggests a simplified understanding of code evolution. To analyze code sectoring, rooted tRNAomes were compared for several archaeal and one bacterial species. Rooting of tRNAome trees reveals conserved structures, indicating how the code was shaped during evolution and suggesting a model for evolution of a LUCA tRNAome tree. We propose the polyglycine hypothesis that the initial product of the genetic code may have been short chain polyglycine to stabilize protocells. In order to describe how anticodons were allotted in evolution, the sectoring-degeneracy hypothesis is proposed. Based on sectoring, a simple stepwise model is developed, in which the code sectors from a 1→4→8→∼16 letter code. At initial stages of code evolution, we posit strong positive selection for wobble base ambiguity, supporting convergence to 4-codon sectors and ∼16 letters. In a later stage, ∼5–6 letters, including stops, were added through innovating at the anticodon wobble position. In archaea and bacteria, tRNA wobble adenine is negatively selected, shrinking the maximum size of the primordial genetic code to 48 anticodons. Because 64 codons are recognized in mRNA, tRNA-mRNA coevolution requires tRNA wobble position ambiguity leading to degeneracy of the code. PMID:29372672
The "periodic table" of the genetic code: A new way to look at the code and the decoding process.
Komar, Anton A
2016-01-01
Henri Grosjean and Eric Westhof recently presented an information-rich, alternative view of the genetic code, which takes into account current knowledge of the decoding process, including the complex nature of interactions between mRNA, tRNA and rRNA that take place during protein synthesis on the ribosome, and it also better reflects the evolution of the code. The new asymmetrical circular genetic code has a number of advantages over the traditional codon table and the previous circular diagrams (with a symmetrical/clockwise arrangement of the U, C, A, G bases). Most importantly, all sequence co-variances can be visualized and explained based on the internal logic of the thermodynamics of codon-anticodon interactions.
An autism-associated serotonin transporter variant disrupts multisensory processing.
Siemann, J K; Muller, C L; Forsberg, C G; Blakely, R D; Veenstra-VanderWeele, J; Wallace, M T
2017-03-21
Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.
Epigenetic Disregulation in Oral Cancer
Mascolo, Massimo; Siano, Maria; Ilardi, Gennaro; Russo, Daniela; Merolla, Francesco; De Rosa, Gaetano; Staibano, Stefania
2012-01-01
Squamous cell carcinoma of the oral region (OSCC) is one of the most common and highly aggressive malignancies worldwide, despite the fact that significant results have been achieved during the last decades in its detection, prevention and treatment. Although many efforts have been made to define the molecular signatures that identify the clinical outcome of oral cancers, OSCC still lacks reliable prognostic molecular markers. Scientific evidence indicates that transition from normal epithelium to pre-malignancy, and finally to oral carcinoma, depends on the accumulation of genetic and epigenetic alterations in a multistep process. Unlike genetic alterations, epigenetic changes are heritable and potentially reversible. The most common examples of such changes are DNA methylation, histone modification, and small non-coding RNAs. Although several epigenetic changes have been currently linked to OSCC initiation and progression, they have been only partially characterized. Over the last decade, it has been demonstrated that especially aberrant DNA methylation plays a critical role in oral cancer. The major goal of the present paper is to review the recent literature about the epigenetic modifications contribution in early and later phases of OSCC malignant transformation; in particular we point out the current evidence of epigenetic marks as novel markers for early diagnosis and prognosis as well as potential therapeutic targets in oral cancer. PMID:22408457
Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats.
Mul, Joram D; Begg, Denovan P; Alsters, Suzanne I M; van Haaften, Gijs; Duran, Karen J; D'Alessio, David A; le Roux, Carel W; Woods, Stephen C; Sandoval, Darleen A; Blakemore, Alexandra I F; Cuppen, Edwin; van Haelst, Mieke M; Seeley, Randy J
2012-07-01
Bariatric surgery is currently the most effective treatment for obesity. Vertical sleeve gastrectomy (VSG), a commonly applied bariatric procedure, involves surgically incising most of the volume of the stomach. In humans, partial loss of melanocortin receptor-4 (MC4R) activity is the most common monogenic correlate of obesity regardless of lifestyle. At present it is unclear whether genetic alteration of MC4R signaling modulates the beneficial effects of VSG. Following VSG, we analyzed body weight, food intake, glucose sensitivity, and macronutrient preference of wild-type and MC4R-deficient (Mc4r(+/-) and Mc4r(-/-)) rats compared with sham-operated controls. VSG reduced body weight and fat mass and improved glucose metabolism and also shifted preference toward carbohydrates and away from fat. All of this occurred independently of MC4R activity. In addition, MC4R was resequenced in 46 human subjects who underwent VSG. We observed common genetic variations in the coding sequence of MC4R in five subjects. However, none of those variations appeared to affect the outcome of VSG. Taken together, these data suggest that the beneficial effect of VSG on body weight and glucose metabolism is not mediated by alterations in MC4R activity.
Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats
Mul, Joram D.; Begg, Denovan P.; Alsters, Suzanne I. M.; van Haaften, Gijs; Duran, Karen J.; D'Alessio, David A.; le Roux, Carel W.; Woods, Stephen C.; Sandoval, Darleen A.; Blakemore, Alexandra I. F.; Cuppen, Edwin; van Haelst, Mieke M.
2012-01-01
Bariatric surgery is currently the most effective treatment for obesity. Vertical sleeve gastrectomy (VSG), a commonly applied bariatric procedure, involves surgically incising most of the volume of the stomach. In humans, partial loss of melanocortin receptor-4 (MC4R) activity is the most common monogenic correlate of obesity regardless of lifestyle. At present it is unclear whether genetic alteration of MC4R signaling modulates the beneficial effects of VSG. Following VSG, we analyzed body weight, food intake, glucose sensitivity, and macronutrient preference of wild-type and MC4R-deficient (Mc4r+/− and Mc4r−/−) rats compared with sham-operated controls. VSG reduced body weight and fat mass and improved glucose metabolism and also shifted preference toward carbohydrates and away from fat. All of this occurred independently of MC4R activity. In addition, MC4R was resequenced in 46 human subjects who underwent VSG. We observed common genetic variations in the coding sequence of MC4R in five subjects. However, none of those variations appeared to affect the outcome of VSG. Taken together, these data suggest that the beneficial effect of VSG on body weight and glucose metabolism is not mediated by alterations in MC4R activity. PMID:22535749
Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?
Kubyshkin, Vladimir; Budisa, Nediljko
2017-08-01
The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Problem-Based Test: An "In Vitro" Experiment to Analyze the Genetic Code
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2010-01-01
Terms to be familiar with before you start to solve the test: genetic code, translation, synthetic polynucleotide, leucine, serine, filter precipitation, radioactivity measurement, template, mRNA, tRNA, rRNA, aminoacyl-tRNA synthesis, ribosomes, degeneration of the code, wobble, initiation, and elongation of protein synthesis, initiation codon.…
2016-10-01
AWARD NUMBER: W81XWH-14-1-0303 TITLE: Genetic Alterations in Prostate Cancers among African-American Men and Comparisons with Cancers from...COVERED 29 Sep 2015 – 28 Sep 2016 4. TITLE AND SUBTITLE Genetic Alterations in Prostate Cancers among African- American Men and Comparisons with Cancers...identification of patients with aggressive PCa in African Americans. 15. SUBJECT TERMS Prostate cancer; genetics 16. SECURITY CLASSIFICATION OF
Kim, Daniel Seung; Crosslin, David R.; Auer, Paul L.; Suzuki, Stephanie M.; Marsillach, Judit; Burt, Amber A.; Gordon, Adam S.; Meschia, James F.; Nalls, Mike A.; Worrall, Bradford B.; Longstreth, W. T.; Gottesman, Rebecca F.; Furlong, Clement E.; Peters, Ulrike; Rich, Stephen S.; Nickerson, Deborah A.; Jarvik, Gail P.
2014-01-01
HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10−3). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10−3). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10−3; AA P = 6.52 × 10−4), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted. PMID:24711634
New genetic variants of LATS1 detected in urinary bladder and colon cancer.
Saadeldin, Mona K; Shawer, Heba; Mostafa, Ahmed; Kassem, Neemat M; Amleh, Asma; Siam, Rania
2014-01-01
LATS1, the large tumor suppressor 1 gene, encodes for a serine/threonine kinase protein and is implicated in cell cycle progression. LATS1 is down-regulated in various human cancers, such as breast cancer, and astrocytoma. Point mutations in LATS1 were reported in human sarcomas. Additionally, loss of heterozygosity of LATS1 chromosomal region predisposes to breast, ovarian, and cervical tumors. In the current study, we investigated LATS1 genetic variations including single nucleotide polymorphisms (SNPs), in 28 Egyptian patients with either urinary bladder or colon cancers. The LATS1 gene was amplified and sequenced and the expression of LATS1 at the RNA level was assessed in 12 urinary bladder cancer samples. We report, the identification of a total of 29 variants including previously identified SNPs within LATS1 coding and non-coding sequences. A total of 18 variants were novel. Majority of the novel variants, 13, were mapped to intronic sequences and un-translated regions of the gene. Four of the five novel variants located in the coding region of the gene, represented missense mutations within the serine/threonine kinase catalytic domain. Interestingly, LATS1 RNA steady state levels was lost in urinary bladder cancerous tissue harboring four specific SNPs (16045 + 41736 + 34614 + 56177) positioned in the 5'UTR, intron 6, and two silent mutations within exon 4 and exon 8, respectively. This study identifies novel single-base-sequence alterations in the LATS1 gene. These newly identified variants could potentially be used as novel diagnostic or prognostic tools in cancer.
An extension of the coevolution theory of the origin of the genetic code
Di Giulio, Massimo
2008-01-01
Background The coevolution theory of the origin of the genetic code suggests that the genetic code is an imprint of the biosynthetic relationships between amino acids. However, this theory does not seem to attribute a role to the biosynthetic relationships between the earliest amino acids that evolved along the pathways of energetic metabolism. As a result, the coevolution theory is unable to clearly define the very earliest phases of genetic code origin. In order to remove this difficulty, I here suggest an extension of the coevolution theory that attributes a crucial role to the first amino acids that evolved along these biosynthetic pathways and to their biosynthetic relationships, even when defined by the non-amino acid molecules that are their precursors. Results It is re-observed that the first amino acids to evolve along these biosynthetic pathways are predominantly those codified by codons of the type GNN, and this observation is found to be statistically significant. Furthermore, the close biosynthetic relationships between the sibling amino acids Ala-Ser, Ser-Gly, Asp-Glu, and Ala-Val are not random in the genetic code table and reinforce the hypothesis that the biosynthetic relationships between these six amino acids played a crucial role in defining the very earliest phases of genetic code origin. Conclusion All this leads to the hypothesis that there existed a code, GNS, reflecting the biosynthetic relationships between these six amino acids which, as it defines the very earliest phases of genetic code origin, removes the main difficulty of the coevolution theory. Furthermore, it is here discussed how this code might have naturally led to the code codifying only for the domains of the codons of precursor amino acids, as predicted by the coevolution theory. Finally, the hypothesis here suggested also removes other problems of the coevolution theory, such as the existence for certain pairs of amino acids with an unclear biosynthetic relationship between the precursor and product amino acids and the collocation of Ala between the amino acids Val and Leu belonging to the pyruvate biosynthetic family, which the coevolution theory considered as belonging to different biosyntheses. Reviewers This article was reviewed by Rob Knight, Paul Higgs (nominated by Laura Landweber), and Eugene Koonin. PMID:18775066
Imaging epigenetics in Alzheimer's disease.
Lista, Simone; Garaci, Francesco G; Toschi, Nicola; Hampel, Harald
2013-01-01
Sporadic Alzheimer's disease (AD) is a prevalent, complex and chronically progressive brain disease. Its course is non-linear, dynamic, adaptive to maladaptive, and compensatory to decompensatory, affecting large-scale neural networks through a plethora of mechanistic and signaling pathway alterations that converge into regional and cell type-specific neurodegeneration and, finally, into clinically overt cognitive and behavioral decline. This decline includes reductions in the activities of daily living, quality of life, independence, and life expectancy. Evolving lines of research suggest that epigenetic mechanisms may play a crucial role during AD development and progression. Epigenetics designates molecular mechanisms that alter gene expression without modifications of the genetic code. This topic includes modifications on DNA and histone proteins, the primary elements of chromatin structure. Accumulating evidence has revealed the relevant processes that mediate epigenetic modifications and has begun to elucidate how these processes are apparently dysregulated in AD. This evidence has led to the clarification of the roles of specific classes of therapeutic compounds that affect epigenetic pathways and characteristics of the epigenome. This insight is accompanied by the development of new methods for studying the global patterns of DNA methylation and chromatin alterations. In particular, high-throughput sequencing approaches, such as next-generation DNA sequencing techniques, are beginning to drive the field into the next stage of development. In parallel, genetic imaging is beginning to answer additional questions through its ability to uncover genetic variants, with or without genome-wide significance, that are related to brain structure, function and metabolism, which impact disease risk and fundamental network-based cognitive processes. Neuroimaging measures can further be used to define AD systems and endophenotypes. The integration of genetic neuroimaging methods with epigenetic markers in humans appears promising. This evolving development may lead to a new research discipline - imaging epigenetics - that will provide deeper insight into the causative pathogenetic and pathophysiological pathways through which genes and environment interrelate during life and impact human brain development, physiology, aging and disease. This knowledge may open doors for the development of novel biomarkers and preventive and disease-modifying treatments.
Splendore, A; Silva, E O; Alonso, L G; Richieri-Costa, A; Alonso, N; Rosa, A; Carakushanky, G; Cavalcanti, D P; Brunoni, D; Passos-Bueno, M R
2000-10-01
Twenty-eight families with a clinical diagnosis of Treacher Collins syndrome were screened for mutations in the 25 coding exons of TCOF1 and their adjacent splice junctions through SSCP and direct sequencing. Pathogenic mutations were detected in 26 patients, yielding the highest detection rate reported so far for this disease (93%) and bringing the number of known disease-causing mutations from 35 to 51. This is the first report to describe clustering of pathogenic mutations. Thirteen novel polymorphic alterations were characterized, confirming previous reports that TCOF1 has an unusually high rate of single-nucleotide polymorphisms (SNPs) within its coding region. We suggest a possible different mechanism leading to TCS or genetic heterogeneity for this condition, as we identified two families with no apparent pathogenic mutation in the gene. Furthermore, our data confirm the absence of genotype-phenotype correlation and reinforce that the apparent anticipation often observed in TCS families is due to ascertainment bias. Copyright 2000 Wiley-Liss, Inc.
Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter
2016-11-17
Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Novel human CRYGD rare variant in a Brazilian family with congenital cataract
Giordano, Gabriel Gorgone; Tavares, Anderson; da Silva, Márcio José; de Vasconcellos, José Paulo Cabral; Arieta, Carlos Eduardo Leite; de Melo, Mônica Barbosa
2011-01-01
Purpose To describe a novel polymorphism in the γD-crystallin (CRYGD) gene in a Brazilian family with congenital cataract. Methods A Brazilian four-generation family was analyzed. The proband had bilateral lamellar cataract and the phenotypes were classified by slit lamp examination. Genomic DNA was extracted from peripheral blood and coding regions and intron/exon boundaries of the αA-crystallin (CRYAA), γC-crystallin (CRYGC), and CRYGD genes were amplified by polymerase chain reaction and directly sequenced. Results Sequencing of the coding regions of CRYGD showed the presence of a heterozygous A→G transversion at c.401 position, which results in the substitution of a tyrosine to a cysteine (Y134C). The polymorphism was identified in three individuals, two affected and one unaffected. Conclusions A novel rare variant in CRYGD (Y134C) was detected in a Brazilian family with congenital cataract. Because there is no segregation between the substitution and the phenotypes in this family, other genetic alterations are likely to be present. PMID:21866214
DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer
Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine
2017-01-01
Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820
Jiménez, Cristina; Jara-Acevedo, María; Corchete, Luis A; Castillo, David; Ordóñez, Gonzalo R; Sarasquete, María E; Puig, Noemí; Martínez-López, Joaquín; Prieto-Conde, María I; García-Álvarez, María; Chillón, María C; Balanzategui, Ana; Alcoceba, Miguel; Oriol, Albert; Rosiñol, Laura; Palomera, Luis; Teruel, Ana I; Lahuerta, Juan J; Bladé, Joan; Mateos, María V; Orfão, Alberto; San Miguel, Jesús F; González, Marcos; Gutiérrez, Norma C; García-Sanz, Ramón
2017-01-01
Identification and characterization of genetic alterations are essential for diagnosis of multiple myeloma and may guide therapeutic decisions. Currently, genomic analysis of myeloma to cover the diverse range of alterations with prognostic impact requires fluorescence in situ hybridization (FISH), single nucleotide polymorphism arrays, and sequencing techniques, which are costly and labor intensive and require large numbers of plasma cells. To overcome these limitations, we designed a targeted-capture next-generation sequencing approach for one-step identification of IGH translocations, V(D)J clonal rearrangements, the IgH isotype, and somatic mutations to rapidly identify risk groups and specific targetable molecular lesions. Forty-eight newly diagnosed myeloma patients were tested with the panel, which included IGH and six genes that are recurrently mutated in myeloma: NRAS, KRAS, HRAS, TP53, MYC, and BRAF. We identified 14 of 17 IGH translocations previously detected by FISH and three confirmed translocations not detected by FISH, with the additional advantage of breakpoint identification, which can be used as a target for evaluating minimal residual disease. IgH subclass and V(D)J rearrangements were identified in 77% and 65% of patients, respectively. Mutation analysis revealed the presence of missense protein-coding alterations in at least one of the evaluating genes in 16 of 48 patients (33%). This method may represent a time- and cost-effective diagnostic method for the molecular characterization of multiple myeloma. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.
Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos
2016-01-01
The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.
Enabling plant synthetic biology through genome engineering.
Baltes, Nicholas J; Voytas, Daniel F
2015-02-01
Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Post partum depression: future perspectives].
Pinna, Martina; Zompo, Maria Del
2012-01-01
Post partum depression (PPD) is a psychiatric illness approximately affecting 10-20% of women after childbirth. The objective of this work is to update our knowledge of PPD giving particular emphasis to etiopathogenetic hypotheses. An accurate search of the literature on this topic was conducted using free dedicated websites such as PubMed. The most recent studies reveal that PPD is a complex disease, whose pathogenesis is not yet clarified, determined by a mix of genetic, biological and environmental factors. Genetic studies have shown a possible involvement of polymorphisms of genes coding for serotonin transporter, 5HT2A and 5HT2C receptors, HMCN1 and METTL13 genes, D2 receptor and GABAA receptor (GABAAR). The involvement of these systems might provide an explanation of the relations among genetic alterations, hormonal fluctuations in the post partum, changes in neurotransmission and mood fluctuations typical of PPD. The results obtained so far are not exhaustive. However, there is a substantial evidence showing that patients with PPD may have a high genetic vulnerability, although we have not been able yet to pinpoint a specific biological marker of the disease. Recent research is focusing on the δ subunit of GABAAR and the possible role of selective agonists of this subunit, such as gaboxadol, in the treatment of PPD.
Mitochondrial genetic codes evolve to match amino acid requirements of proteins.
Swire, Jonathan; Judson, Olivia P; Burt, Austin
2005-01-01
Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular--and contrary to the predictions of the mutation-drift hypothesis--the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.
Sinnott, Jennifer A; Cai, Fiona; Yu, Sheng; Hejblum, Boris P; Hong, Chuan; Kohane, Isaac S; Liao, Katherine P
2018-05-17
Standard approaches for large scale phenotypic screens using electronic health record (EHR) data apply thresholds, such as ≥2 diagnosis codes, to define subjects as having a phenotype. However, the variation in the accuracy of diagnosis codes can impair the power of such screens. Our objective was to develop and evaluate an approach which converts diagnosis codes into a probability of a phenotype (PheProb). We hypothesized that this alternate approach for defining phenotypes would improve power for genetic association studies. The PheProb approach employs unsupervised clustering to separate patients into 2 groups based on diagnosis codes. Subjects are assigned a probability of having the phenotype based on the number of diagnosis codes. This approach was developed using simulated EHR data and tested in a real world EHR cohort. In the latter, we tested the association between low density lipoprotein cholesterol (LDL-C) genetic risk alleles known for association with hyperlipidemia and hyperlipidemia codes (ICD-9 272.x). PheProb and thresholding approaches were compared. Among n = 1462 subjects in the real world EHR cohort, the threshold-based p-values for association between the genetic risk score (GRS) and hyperlipidemia were 0.126 (≥1 code), 0.123 (≥2 codes), and 0.142 (≥3 codes). The PheProb approach produced the expected significant association between the GRS and hyperlipidemia: p = .001. PheProb improves statistical power for association studies relative to standard thresholding approaches by leveraging information about the phenotype in the billing code counts. The PheProb approach has direct applications where efficient approaches are required, such as in Phenome-Wide Association Studies.
Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao
2005-01-01
AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039
Nutrigenetics and modulation of oxidative stress.
Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed
2012-01-01
Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.
Bohlke, Nina; Budisa, Nediljko
2014-01-01
One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function – a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. PMID:24433543
NASA Technical Reports Server (NTRS)
Lacey, J. C., Jr.; Mullins, D. W., Jr.
1983-01-01
A survey is presented of the literature on the experimental evidence for the genetic code assignments and the chemical reactions involved in the process of protein synthesis. In view of the enormous number of theoretical models that have been advanced to explain the origin of the genetic code, attention is confined to experimental studies. Since genetic coding has significance only within the context of protein synthesis, it is believed that the problem of the origin of the code must be dealt with in terms of the origin of the process of protein synthesis. It is contended that the answers must lie in the nature of the molecules, amino acids and nucleotides, the affinities they might have for one another, and the effect that those affinities must have on the chemical reactions that are related to primitive protein synthesis. The survey establishes that for the bulk of amino acids, there is a direct and significant correlation between the hydrophobicity rank of the amino acids and the hydrophobicity rank of their anticodonic dinucleotides.
Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci
Brorsson, Caroline A.; Pociot, Flemming
2014-01-01
Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376
Generate Optimized Genetic Rhythm for Enzyme Expression in Non-native systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-11-03
Most amino acids are represented by more than one codon, resulting in redundancy in the genetic code. Silent codon substitutions that do not alter the amino acid sequence still have an effect on protein expression. We have developed an algorithm, GoGREEN, to enhance the expression of foreign proteins in a host organism. GoGREEN selects codons according to frequency patterns seen in the gene of interest using the codon usage table from the host organism. GoGREEN is also designed to accommodate gaps in the sequence.This software takes for input (1) the aligned protein sequences for genes the user wishes to express,more » (2) the codon usage table for the host organism, (3) and the DNA sequence for the target protein found in the host organism. The program will select codons based on codon usage patterns for the target DNA sequence. The program will also select codons for “gaps” found in the aligned protein sequences using the codon usage table from the host organism.« less
Li, Penggao; Yang, Chun; Yue, Rong; Zhen, Yaping; Zhuo, Qin; Piao, Jianhua; Yang, Xiaoguang; Xiao, Rong
2018-01-17
This study investigated the composition and proportions of fecal microbiota in Sprague-Dawley rats after consuming two genetically modified (GM) corn lines in comparison with the isogenic corn and the AIN93G standard feed for 10 weeks using bar-coded 16S rRNA gene sequencing. As a result, GM corn did not significantly alter the overall health and alpha-diversity of fecal microbiota. Fecal microbiota structures could be separated into noncorn and corn but not non-GM and GM corn subgroups. Both non-GM and GM corn caused the increase in bacterial populations related to carbohydrates utilization, such as Lactobacillus, Barnesiella, and Bifidobacterium, and the reduction in potentially pathogenic populations, such as Tannerella and Moraxellaceae. In conclusion, similar effects on the fecal microbiota were observed after consuming a GM- and non-GM-corn-based diet for long periods. Further studies are warranted to elucidate the functional relevance of the changes in the proportions of bacterial populations in these diets.
Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov
Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V
2016-01-01
Objective: Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. Methods: We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. Results and Discussion: The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. PMID:27013523
Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov.
Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V; Xu, Hua
2016-07-01
Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł
2016-12-01
One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Real coded genetic algorithm for fuzzy time series prediction
NASA Astrophysics Data System (ADS)
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen in invertebrates and plants. The reverse engineering of chromosome I' into 2D rotating circles and squares was undertaken, yielding a 100% symmetrical 3D geometry which was coupled to a previously obtained genetic code tetrahedron in order to differentiate the start methionine from the methionine that is acting as a codifying non-start codon. PMID:23431415
Molecular and Genomic Alterations in Glioblastoma Multiforme.
Crespo, Ines; Vital, Ana Louisa; Gonzalez-Tablas, María; Patino, María del Carmen; Otero, Alvaro; Lopes, María Celeste; de Oliveira, Catarina; Domingues, Patricia; Orfao, Alberto; Tabernero, Maria Dolores
2015-07-01
In recent years, important advances have been achieved in the understanding of the molecular biology of glioblastoma multiforme (GBM); thus, complex genetic alterations and genomic profiles, which recurrently involve multiple signaling pathways, have been defined, leading to the first molecular/genetic classification of the disease. In this regard, different genetic alterations and genetic pathways appear to distinguish primary (eg, EGFR amplification) versus secondary (eg, IDH1/2 or TP53 mutation) GBM. Such genetic alterations target distinct combinations of the growth factor receptor-ras signaling pathways, as well as the phosphatidylinositol 3-kinase/phosphatase and tensin homolog/AKT, retinoblastoma/cyclin-dependent kinase (CDK) N2A-p16(INK4A), and TP53/mouse double minute (MDM) 2/MDM4/CDKN2A-p14(ARF) pathways, in cells that present features associated with key stages of normal neurogenesis and (normal) central nervous system cell types. This translates into well-defined genomic profiles that have been recently classified by The Cancer Genome Atlas Consortium into four subtypes: classic, mesenchymal, proneural, and neural GBM. Herein, we review the most relevant genetic alterations of primary versus secondary GBM, the specific signaling pathways involved, and the overall genomic profile of this genetically heterogeneous group of malignant tumors. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Spectrum of mutations in leiomyosarcomas identified by clinical targeted next-generation sequencing.
Lee, Paul J; Yoo, Naomi S; Hagemann, Ian S; Pfeifer, John D; Cottrell, Catherine E; Abel, Haley J; Duncavage, Eric J
2017-02-01
Recurrent genomic mutations in uterine and non-uterine leiomyosarcomas have not been well established. Using a next generation sequencing (NGS) panel of common cancer-associated genes, 25 leiomyosarcomas arising from multiple sites were examined to explore genetic alterations, including single nucleotide variants (SNV), small insertions/deletions (indels), and copy number alterations (CNA). Sequencing showed 86 non-synonymous, coding region somatic variants within 151 gene targets in 21 cases, with a mean of 4.1 variants per case; 4 cases had no putative mutations in the panel of genes assayed. The most frequently altered genes were TP53 (36%), ATM and ATRX (16%), and EGFR and RB1 (12%). CNA were identified in 85% of cases, with the most frequent copy number losses observed in chromosomes 10 and 13 including PTEN and RB1; the most frequent gains were seen in chromosomes 7 and 17. Our data show that deletions in canonical cancer-related genes are common in leiomyosarcomas. Further, the spectrum of gene mutations observed shows that defects in DNA repair and chromosomal maintenance are central to the biology of leiomyosarcomas, and that activating mutations observed in other common cancer types are rare in leiomyosarcomas. Copyright © 2017 Elsevier Inc. All rights reserved.
Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review).
Jiménez-Wences, Hilda; Peralta-Zaragoza, Oscar; Fernández-Tilapa, Gloria
2014-06-01
Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53.
A New Zealand platform to enable genetic investigation of adverse drug reactions.
Maggo, Simran Ds; Chua, Eng Wee; Chin, Paul; Cree, Simone; Pearson, John; Doogue, Matthew; Kennedy, Martin A
2017-12-01
A multitude of factors can affect drug response in individuals. It is now well established that variations in genes, especially those coding for drug metabolising enzymes, can alter the pharmacokinetic and/or pharmacodynamic profile of a drug, impacting on efficacy and often resulting in drug-induced toxicity. The UDRUGS study is an initiative from the Carney Centre for Pharmacogenomics to biobank DNA and store associated clinical data from patients who have suffered rare and/or serious adverse drug reactions (ADRs). The aim is to provide a genetic explanation of drug-induced ADRs using methods ranging from Sanger sequencing to whole exome and whole genome sequencing. Participants for the UDRUGS study are recruited from various sources, mainly via referral through clinicians working in Canterbury District Health Board, but also from district health boards across New Zealand. Participants have also self-referred to us from word-of-mouth communication between participants. We have recruited various ADRs across most drug classes. Where possible, we have conducted genetic analyses in single or a cohort of cases to identify known and novel genetic association(s) to offer an explanation to why the ADR occurred. Any genetic results relevant to the ADR are communicated back to the referring clinician and/or participant. In conclusion, we have developed a programme for studying the genetic basis of severe, rare or unusual ADR cases resulting from pharmacological treatment. Genomic analyses could eventually identify most genetic variants that predispose to ADRs, enabling a priori detection of such variants with high throughput DNA tests.
2012-01-01
Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement. PMID:22401291
Lidral, Andrew C.; Liu, Huan; Bullard, Steven A.; Bonde, Greg; Machida, Junichiro; Visel, Axel; Uribe, Lina M. Moreno; Li, Xiao; Amendt, Brad; Cornell, Robert A.
2015-01-01
Three common diseases, isolated cleft lip and cleft palate (CLP), hypothyroidism and thyroid cancer all map to the FOXE1 locus, but causative variants have yet to be identified. In patients with CLP, the frequency of coding mutations in FOXE1 fails to account for the risk attributable to this locus, suggesting that the common risk alleles reside in nearby regulatory elements. Using a combination of zebrafish and mouse transgenesis, we screened 15 conserved non-coding sequences for enhancer activity, identifying three that regulate expression in a tissue specific pattern consistent with endogenous foxe1 expression. These three, located −82.4, −67.7 and +22.6 kb from the FOXE1 start codon, are all active in the oral epithelium or branchial arches. The −67.7 and +22.6 kb elements are also active in the developing heart, and the −67.7 kb element uniquely directs expression in the developing thyroid. Within the −67.7 kb element is the SNP rs7850258 that is associated with all three diseases. Quantitative reporter assays in oral epithelial and thyroid cell lines show that the rs7850258 allele (G) associated with CLP and hypothyroidism has significantly greater enhancer activity than the allele associated with thyroid cancer (A). Moreover, consistent with predicted transcription factor binding differences, the −67.7 kb element containing rs7850258 allele G is significantly more responsive to both MYC and ARNT than allele A. By demonstrating that this common non-coding variant alters FOXE1 expression, we have identified at least in part the functional basis for the genetic risk of these seemingly disparate disorders. PMID:25652407
Quaternionic representation of the genetic code.
Carlevaro, C Manuel; Irastorza, Ramiro M; Vericat, Fernando
2016-03-01
A heuristic diagram of the evolution of the standard genetic code is presented. It incorporates, in a way that resembles the energy levels of an atom, the physical notion of broken symmetry and it is consistent with original ideas by Crick on the origin and evolution of the code as well as with the chronological order of appearance of the amino acids along the evolution as inferred from work that mixtures known experimental results with theoretical speculations. Suggested by the diagram we propose a Hamilton quaternions based mathematical representation of the code as it stands now-a-days. The central object in the description is a codon function that assigns to each amino acid an integer quaternion in such a way that the observed code degeneration is preserved. We emphasize the advantages of a quaternionic representation of amino acids taking as an example the folding of proteins. With this aim we propose an algorithm to go from the quaternions sequence to the protein three dimensional structure which can be compared with the corresponding experimental one stored at the Protein Data Bank. In our criterion the mathematical representation of the genetic code in terms of quaternions merits to be taken into account because it describes not only most of the known properties of the genetic code but also opens new perspectives that are mainly derived from the close relationship between quaternions and rotations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chaste, Pauline; Clement, Nathalie; Mercati, Oriane; Guillaume, Jean-Luc; Delorme, Richard; Botros, Hany Goubran; Pagan, Cécile; Périvier, Samuel; Scheid, Isabelle; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Ståhlberg, Ola; Gillberg, Carina; Serrano, Emilie; Lemière, Nathalie; Launay, Jean Marie; Mouren-Simeoni, Marie Christine; Leboyer, Marion; Gillberg, Christopher; Jockers, Ralf; Bourgeron, Thomas
2010-07-15
Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Delta502-505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients.
Genetics of pancreatic neuroendocrine tumors: implications for the clinic
Pea, Antonio; Hruban, Ralph H.; Wood, Laura D.
2016-01-01
Pancreatic neuroendocrine tumors (PanNETs) are a common and deadly neoplasm of the pancreas. Although the importance of genetic alterations in PanNETs has been known for many years, recent comprehensive sequencing studies have greatly expanded our knowledge of neuroendocrine tumorigenesis in the pancreas. These studies have identified specific cellular processes that are altered in PanNETs, highlighted alterations with prognostic implications, and pointed to pathways for targeted therapies. In this review, we will discuss the genetic alterations that play a key role in PanNET tumorigenesis, with a specific focus on those alterations with the potential to change the way patients with these neoplasms are diagnosed and treated. PMID:26413978
Discovery of stimulation-responsive immune enhancers with CRISPR activation
Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander
2017-01-01
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172
Discovery of stimulation-responsive immune enhancers with CRISPR activation.
Simeonov, Dimitre R; Gowen, Benjamin G; Boontanrart, Mandy; Roth, Theodore L; Gagnon, John D; Mumbach, Maxwell R; Satpathy, Ansuman T; Lee, Youjin; Bray, Nicolas L; Chan, Alice Y; Lituiev, Dmytro S; Nguyen, Michelle L; Gate, Rachel E; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M; Mitros, Therese; Ray, Graham J; Curie, Gemma L; Naddaf, Nicki; Chu, Julia S; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R; Schumann, Kathrin; Daly, Mark J; Farh, Kyle K; Ansel, K Mark; Ye, Chun J; Greenleaf, William J; Anderson, Mark S; Bluestone, Jeffrey A; Chang, Howard Y; Corn, Jacob E; Marson, Alexander
2017-09-07
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (T H 17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.
Discovery of stimulation-responsive immune enhancers with CRISPR activation
NASA Astrophysics Data System (ADS)
Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander
2017-09-01
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.
Introduction to the Natural Anticipator and the Artificial Anticipator
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
2010-11-01
This short communication deals with the introduction of the concept of anticipator, which is one who anticipates, in the framework of computing anticipatory systems. The definition of anticipation deals with the concept of program. Indeed, the word program, comes from "pro-gram" meaning "to write before" by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes or behavioural responses, that is part of an organism. Any natural or artificial programs are thus related to anticipatory rewriting systems, as shown in this paper. All the cells in the body, and the neurons in the brain, are programmed by the anticipatory genetic code, DNA, in a low-level language with four signs. The programs in computers are also computing anticipatory systems. It will be shown, at one hand, that the genetic code DNA is a natural anticipator. As demonstrated by Nobel laureate McClintock [8], genomes are programmed. The fundamental program deals with the DNA genetic code. The properties of the DNA consist in self-replication and self-modification. The self-replicating process leads to reproduction of the species, while the self-modifying process leads to new species or evolution and adaptation in existing ones. The genetic code DNA keeps its instructions in memory in the DNA coding molecule. The genetic code DNA is a rewriting system, from DNA coding to DNA template molecule. The DNA template molecule is a rewriting system to the Messenger RNA molecule. The information is not destroyed during the execution of the rewriting program. On the other hand, it will be demonstrated that Turing machine is an artificial anticipator. The Turing machine is a rewriting system. The head reads and writes, modifying the content of the tape. The information is destroyed during the execution of the program. This is an irreversible process. The input data are lost.
Biosemiotics: a new understanding of life.
Barbieri, Marcello
2008-07-01
Biosemiotics is the idea that life is based on semiosis, i.e., on signs and codes. This idea has been strongly suggested by the discovery of the genetic code, but so far it has made little impact in the scientific world and is largely regarded as a philosophy rather than a science. The main reason for this is that modern biology assumes that signs and meanings do not exist at the molecular level, and that the genetic code was not followed by any other organic code for almost four billion years, which implies that it was an utterly isolated exception in the history of life. These ideas have effectively ruled out the existence of semiosis in the organic world, and yet there are experimental facts against all of them. If we look at the evidence of life without the preconditions of the present paradigm, we discover that semiosis is there, in every single cell, and that it has been there since the very beginning. This is what biosemiotics is really about. It is not a philosophy. It is a new scientific paradigm that is rigorously based on experimental facts. Biosemiotics claims that the genetic code (1) is a real code and (2) has been the first of a long series of organic codes that have shaped the history of life on our planet. The reality of the genetic code and the existence of other organic codes imply that life is based on two fundamental processes--copying and coding--and this in turn implies that evolution took place by two distinct mechanisms, i.e., by natural selection (based on copying) and by natural conventions (based on coding). It also implies that the copying of genes works on individual molecules, whereas the coding of proteins operates on collections of molecules, which means that different mechanisms of evolution exist at different levels of organization. This review intends to underline the scientific nature of biosemiotics, and to this purpose, it aims to prove (1) that the cell is a real semiotic system, (2) that the genetic code is a real code, (3) that evolution took place by natural selection and by natural conventions, and (4) that it was natural conventions, i.e., organic codes, that gave origin to the great novelties of macroevolution. Biological semiosis, in other words, is a scientific reality because the codes of life are experimental realities. The time has come, therefore, to acknowledge this fact of life, even if that means abandoning the present theoretical framework in favor of a more general one where biology and semiotics finally come together and become biosemiotics.
Fedrigo, Olivier; Babbitt, Courtney C.; Wortham, Matthew; Tewari, Alok K.; London, Darin; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Parker, Stephen C. J.; Margulies, Elliott H.; Wray, Gregory A.; Furey, Terrence S.; Crawford, Gregory E.
2012-01-01
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. PMID:22761590
Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms
Telford, Maximilian J.; Herniou, Elisabeth A.; Russell, Robert B.; Littlewood, D. Timothy J.
2000-01-01
Shared molecular genetic characteristics other than DNA and protein sequences can provide excellent sources of phylogenetic information, particularly if they are complex and rare and are consequently unlikely to have arisen by chance convergence. We have used two such characters, arising from changes in mitochondrial genetic code, to define a clade within the Platyhelminthes (flatworms), the Rhabditophora. We have sampled 10 distinct classes within the Rhabditophora and find that all have the codon AAA coding for the amino acid Asn rather than the usual Lys and AUA for Ile rather than the usual Met. We find no evidence to support claims that the codon UAA codes for Tyr in the Platyhelminthes rather than the standard stop codon. The Rhabditophora are a very diverse group comprising the majority of the free-living turbellarian taxa and the parasitic Neodermata. In contrast, three other classes of turbellarian flatworm, the Acoela, Nemertodermatida, and Catenulida, have the standard invertebrate assignments for these codons and so are convincingly excluded from the rhabditophoran clade. We have developed a rapid computerized method for analyzing genetic codes and demonstrate the wide phylogenetic distribution of the standard invertebrate code as well as confirming already known metazoan deviations from it (ascidian, vertebrate, echinoderm/hemichordate). PMID:11027335
Dumas, Laura; Dickens, C Michael; Anderson, Nathan; Davis, Jonathan; Bennett, Beth; Radcliffe, Richard A; Sikela, James M
2014-06-01
It has been well documented that genetic factors can influence predisposition to develop alcoholism. While the underlying genomic changes may be of several types, two of the most common and disease associated are copy number variations (CNVs) and sequence alterations of protein coding regions. The goal of this study was to identify CNVs and single-nucleotide polymorphisms that occur in gene coding regions that may play a role in influencing the risk of an individual developing alcoholism. Toward this end, two mouse strains were used that have been selectively bred based on their differential sensitivity to alcohol: the Inbred long sleep (ILS) and Inbred short sleep (ISS) mouse strains. Differences in initial response to alcohol have been linked to risk for alcoholism, and the ILS/ISS strains are used to investigate the genetics of initial sensitivity to alcohol. Array comparative genomic hybridization (arrayCGH) and exome sequencing were conducted to identify CNVs and gene coding sequence differences, respectively, between ILS and ISS mice. Mouse arrayCGH was performed using catalog Agilent 1 × 244 k mouse arrays. Subsequently, exome sequencing was carried out using an Illumina HiSeq 2000 instrument. ArrayCGH detected 74 CNVs that were strain-specific (38 ILS/36 ISS), including several ISS-specific deletions that contained genes implicated in brain function and neurotransmitter release. Among several interesting coding variations detected by exome sequencing was the gain of a premature stop codon in the alpha-amylase 2B (AMY2B) gene specifically in the ILS strain. In total, exome sequencing detected 2,597 and 1,768 strain-specific exonic gene variants in the ILS and ISS mice, respectively. This study represents the most comprehensive and detailed genomic comparison of ILS and ISS mouse strains to date. The two complementary genome-wide approaches identified strain-specific CNVs and gene coding sequence variations that should provide strong candidates to contribute to the alcohol-related phenotypic differences associated with these strains.
Varga, Elizabeth; Chao, Elizabeth C; Yeager, Nicholas D
2015-09-01
Next-generation sequencing (NGS) technology is increasingly utilized to identify therapeutic targets for patients with malignancy. This technology also has the capability to reveal the presence of constitutional genetic alterations, which may have significant implications for patients and their family members. Here we present the case of a 23 year old Caucasian patient with recurrent undifferentiated sarcoma who had NGS-based tumor analysis using an assay which simultaneously analyzed the entire coding sequence of 236 cancer-related genes (3769 exons) plus 47 introns from 19 genes often rearranged or altered in cancer. Pathogenic alterations were reported in tumor as the predicted protein alterations, BRCA2 "R645fs*15″ and MLH1 "E694*". Because constitutional BRCA2 and MLH1 gene mutations are associated with Hereditary Breast Ovarian Cancer Syndrome (HBOCS) and Lynch syndrome respectively, sequence analysis of DNA isolated from peripheral blood was performed. The presence of the alterations, BRCA2 c.1929delG and MLH1 c.2080G>T, corresponding to the previously reported predicted protein alterations, were confirmed by Sanger sequencing in the constitutional DNA. An additional DNA finding was reported in this analysis, MLH1 c.2081A>C at the neighboring nucleotide. Further evaluation of the family revealed that all alterations were paternally inherited and the two MLH1 substitutions were in cis, more appropriately referred to as MLH1 c.2080_2081delGAinsTC, which is classified as a variant of uncertain significance. This case illustrates important considerations related to appropriate interpretation of NGS tumor results and follow-up of patients with potentially deleterious constitutional alterations.
Contribution of transposable elements in the plant's genome.
Sahebi, Mahbod; Hanafi, Mohamed M; van Wijnen, Andre J; Rice, David; Rafii, M Y; Azizi, Parisa; Osman, Mohamad; Taheri, Sima; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat; Noor, Yusuf Muhammad
2018-07-30
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach
Harrison, Peter W.; Montgomery, Stephen H.
2017-01-01
What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure. PMID:28683440
Scherrer, Simone; Landolt, Patricia; Carroli, Natasha; Stephan, Roger
2018-01-01
Mycobacterium avium subsp. hominissuis (MAH) is an important zoonotic pathogen with raising global health concerns. In humans, MAH is one of the most widespread non-tuberculous mycobacterial species responsible for lung disease. In animals, MAH is frequently isolated from pigs; however, it is also an opportunistic pathogen for other mammals including cattle. To elucidate the genetic diversity of MAH in cattle, a molecular characterization of isolates ( n = 26) derived from lymph nodes was performed. Fourteen isolates originated from slaughtered cattle with visible altered lymph nodes at meat inspection, whereas 12 isolates were from lymph nodes without any gross pathological changes of healthy slaughtered cattle. Variable number of tandem repeat (VNTR) analysis was performed at 20 loci to examine genetic differences of isolates and to compare to previously reported VNTR data of human isolates from different countries. Genetic elements IS901, IS1245, IS1311, LSPA17, ITS1 sequevar, and hsp65 code were determined. Interestingly, two bovine MAH isolates harbored ISMav6 and hsp65 code 15, which so far has only been observed in human isolates. We supposed that VNTR data of Swiss samples would show clustering with European samples. Minimum spanning tree and unweighted pair group method using arithmetic averages analyses based on the VNTR data indicated a specific cluster of MAH isolates obtained from lymph nodes without any gross pathological changes of healthy slaughtered cattle. Comparing Swiss isolates with isolates from different other countries, no geographical clustering was observed; however, four Swiss isolates had an identical VNTR profile as human isolates from the Netherlands, the United States, and Japan. These findings indicate a possible public health issue.
Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome.
Raymann, Kasie; Bobay, Louis-Marie; Moran, Nancy A
2018-04-01
The gut microbiome plays a key role in animal health, and perturbing it can have detrimental effects. One major source of perturbation to microbiomes, in humans and human-associated animals, is exposure to antibiotics. Most studies of how antibiotics affect the microbiome have used amplicon sequencing of highly conserved 16S rRNA sequences, as in a recent study showing that antibiotic treatment severely alters the species-level composition of the honeybee gut microbiome. But because the standard 16S rRNA-based methods cannot resolve closely related strains, strain-level changes could not be evaluated. To address this gap, we used amplicon sequencing of protein-coding genes to assess effects of antibiotics on fine-scale genetic diversity of the honeybee gut microbiota. We followed the population dynamics of alleles within two dominant core species of the bee gut community, Gilliamella apicola and Snodgrassella alvi, following antibiotic perturbation. Whereas we observed a large reduction in genetic diversity in G. apicola, S. alvi diversity was mostly unaffected. The reduction in G. apicola diversity accompanied an increase in the frequency of several alleles, suggesting resistance to antibiotic treatment. We find that antibiotic perturbation can cause major shifts in diversity and that the extent of these shifts can vary substantially across species. Thus, antibiotics impact not only species composition, but also allelic diversity within species, potentially affecting hosts if variants with particular functions are reduced or eliminated. Overall, we show that amplicon sequencing of protein-coding genes, without clustering into operational taxonomic units, provides an accurate picture of the fine-scale dynamics of microbial communities over time. © 2017 John Wiley & Sons Ltd.
Genetically altered mice for evaluation of mode-of-action (MOA)
Genetically altered mice for evaluation of mode-of-action (MOA). Barbara D. Abbott, Cynthia J. Wolf, Kaberi P. Das, Christopher S. Lau. (Presented by B. Abbott). This presentation provides an example of the use of genetically modified mice to determine the mode-of-action of r...
Biosemiotics: a new understanding of life
NASA Astrophysics Data System (ADS)
Barbieri, Marcello
2008-07-01
Biosemiotics is the idea that life is based on semiosis, i.e., on signs and codes. This idea has been strongly suggested by the discovery of the genetic code, but so far it has made little impact in the scientific world and is largely regarded as a philosophy rather than a science. The main reason for this is that modern biology assumes that signs and meanings do not exist at the molecular level, and that the genetic code was not followed by any other organic code for almost four billion years, which implies that it was an utterly isolated exception in the history of life. These ideas have effectively ruled out the existence of semiosis in the organic world, and yet there are experimental facts against all of them. If we look at the evidence of life without the preconditions of the present paradigm, we discover that semiosis is there, in every single cell, and that it has been there since the very beginning. This is what biosemiotics is really about. It is not a philosophy. It is a new scientific paradigm that is rigorously based on experimental facts. Biosemiotics claims that the genetic code (1) is a real code and (2) has been the first of a long series of organic codes that have shaped the history of life on our planet. The reality of the genetic code and the existence of other organic codes imply that life is based on two fundamental processes—copying and coding—and this in turn implies that evolution took place by two distinct mechanisms, i.e., by natural selection (based on copying) and by natural conventions (based on coding). It also implies that the copying of genes works on individual molecules, whereas the coding of proteins operates on collections of molecules, which means that different mechanisms of evolution exist at different levels of organization. This review intends to underline the scientific nature of biosemiotics, and to this purpose, it aims to prove (1) that the cell is a real semiotic system, (2) that the genetic code is a real code, (3) that evolution took place by natural selection and by natural conventions, and (4) that it was natural conventions, i.e., organic codes, that gave origin to the great novelties of macroevolution. Biological semiosis, in other words, is a scientific reality because the codes of life are experimental realities. The time has come, therefore, to acknowledge this fact of life, even if that means abandoning the present theoretical framework in favor of a more general one where biology and semiotics finally come together and become biosemiotics.
Castro-Chavez, Fernando
2014-01-01
Objective The objective of this article is to demonstrate that the genetic code can be studied and represented in a 3-D Sphered Cube for bioinformatics and for education by using the graphical help of the ancient “Book of Changes” or I Ching for the comparison, pair by pair, of the three basic characteristics of nucleotides: H-bonds, molecular structure, and their tautomerism. Methods The source of natural biodiversity is the high plasticity of the genetic code, analyzable with a reverse engineering of its 2-D and 3-D representations (here illustrated), but also through the classical 64-hexagrams of the ancient I Ching, as if they were the 64-codons or words of the genetic code. Results In this article, the four elements of the Yin/Yang were found by correlating the 3×2=6 sets of Cartesian comparisons of the mentioned properties of nucleic acids, to the directionality of their resulting blocks of codons grouped according to their resulting amino acids and/or functions, integrating a 384-codon Sphered Cube whose function is illustrated by comparing six brain peptides and a promoter of osteoblasts from Humans versus Neanderthal, as well as to Negadi’s work on the importance of the number 384 within the genetic code. Conclusions Starting with the codon/anticodon correlation of Nirenberg, published in full here for the first time, and by studying the genetic code and its 3-D display, the buffers of reiteration within codons codifying for the same amino acid, displayed the two long (binary number one) and older Yin/Yang arrows that travel in opposite directions, mimicking the parental DNA strands, while annealing to the two younger and broken (binary number zero) Yin/Yang arrows, mimicking the new DNA strands; the graphic analysis of the of the genetic code and its plasticity was helpful to compare compatible sequences (human compatible to human versus neanderthal compatible to neanderthal), while further exploring the wondrous biodiversity of nature for educational purposes. PMID:25340175
Colard, Alexandre; Angelard, Caroline; Sanders, Ian R
2011-09-01
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts with most terrestrial plants. They improve plant nutrition, particularly phosphate acquisition, and thus are able to improve plant growth. In exchange, the fungi obtain photosynthetically fixed carbon. AMF are coenocytic, meaning that many nuclei coexist in a common cytoplasm. Genetic exchange recently has been demonstrated in the AMF Glomus intraradices, allowing nuclei of different Glomus intraradices strains to mix. Such genetic exchange was shown previously to have negative effects on plant growth and to alter fungal colonization. However, no attempt was made to detect whether genetic exchange in AMF can alter plant gene expression and if this effect was time dependent. Here, we show that genetic exchange in AMF also can be beneficial for rice growth, and that symbiosis-specific gene transcription is altered by genetic exchange. Moreover, our results show that genetic exchange can change the dynamics of the colonization of the fungus in the plant. Our results demonstrate that the simple manipulation of the genetics of AMF can have important consequences for their symbiotic effects on plants such as rice, which is considered the most important crop in the world. Exploiting natural AMF genetic variation by generating novel AMF genotypes through genetic exchange is a potentially useful tool in the development of AMF inocula that are more beneficial for crop growth.
Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids.
Brown, Kalyn A; Deiters, Alexander
2015-09-01
The expansion of the genetic code of mammalian cells enables the incorporation of unnatural amino acids into proteins. This is achieved by adding components to the protein biosynthetic machinery, specifically an engineered aminoacyl-tRNA synthetase/tRNA pair. The unnatural amino acids are chemically synthesized and supplemented to the growth medium. Using this methodology, fundamental new chemistries can be added to the functional repertoire of the genetic code of mammalian cells. This protocol outlines the steps necessary to incorporate a photocaged lysine into proteins and showcases its application in the optical triggering of protein translocation to the nucleus. Copyright © 2015 John Wiley & Sons, Inc.
Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.
1988-01-01
Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.
Possibilities for the evolution of the genetic code from a preceding form
NASA Technical Reports Server (NTRS)
Jukes, T. H.
1973-01-01
Analysis of the interaction between mRNA codons and tRNA anticodons suggests a model for the evolution of the genetic code. Modification of the nucleic acid following the anticodon is at present essential in both eukaryotes and prokaryotes to ensure fidelity of translation of codons starting with A, and the amino acids which could be coded for before the evolution of the modifying enzymes can be deduced.
Griewank, Klaus G; Wiesner, Thomas; Murali, Rajmohan; Pischler, Carina; Müller, Hansgeorg; Koelsche, Christian; Möller, Inga; Franklin, Cindy; Cosgarea, Ioana; Sucker, Antje; Schadendorf, Dirk; Schaller, Jörg; Horn, Susanne; Brenn, Thomas; Mentzel, Thomas
2018-03-01
Atypical fibroxanthomas and pleomorphic dermal sarcomas are tumors arising in sun-damaged skin of elderly patients. They have differing prognoses and are currently distinguished using histological criteria, such as invasion of deeper tissue structures, necrosis and lymphovascular or perineural invasion. To investigate the as-yet poorly understood genetics of these tumors, 41 atypical fibroxanthomas and 40 pleomorphic dermal sarcomas were subjected to targeted next-generation sequencing approaches as well as DNA copy number analysis by comparative genomic hybridization. In an analysis of the entire coding region of 341 oncogenes and tumor suppressor genes in 13 atypical fibroxanthomas using an established hybridization-based next-generation sequencing approach, we found that these tumors harbor a large number of mutations. Gene alterations were identified in more than half of the analyzed samples in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter. The presence of these alterations was verified in 26 atypical fibroxanthoma and 35 pleomorphic dermal sarcoma samples by targeted amplicon-based next-generation sequencing. Similar mutation profiles in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter were identified in both atypical fibroxanthoma and pleomorphic dermal sarcoma. Activating RAS mutations (G12 and G13) identified in 3 pleomorphic dermal sarcoma were not found in atypical fibroxanthoma. Comprehensive DNA copy number analysis demonstrated a wide array of different copy number gains and losses, with similar profiles in atypical fibroxanthoma and pleomorphic dermal sarcoma. In summary, atypical fibroxanthoma and pleomorphic dermal sarcoma are highly mutated tumors with recurrent mutations in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter, and a range of DNA copy number alterations. These findings suggest that atypical fibroxanthomas and pleomorphic dermal sarcomas are genetically related, potentially representing two ends of a common tumor spectrum and distinguishing these entities is at present still best performed using histological criteria.
I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies.
Hu, Zhengbing; Petoukhov, Sergey V; Petukhova, Elena S
2017-12-01
The ancient Chinese book I-Ching was written a few thousand years ago. It introduces the system of symbols Yin and Yang (equivalents of 0 and 1). It had a powerful impact on culture, medicine and science of ancient China and several other countries. From the modern standpoint, I-Ching declares the importance of dyadic groups of binary numbers for the Nature. The system of I-Ching is represented by the tables with dyadic groups of 4 bigrams, 8 trigrams and 64 hexagrams, which were declared as fundamental archetypes of the Nature. The ancient Chinese did not know about the genetic code of protein sequences of amino acids but this code is organized in accordance with the I-Ching: in particularly, the genetic code is constructed on DNA molecules using 4 nitrogenous bases, 16 doublets, and 64 triplets. The article also describes the usage of dyadic groups as a foundation of the bio-mathematical doctrine of the geno-logic code, which exists in parallel with the known genetic code of amino acids but serves for a different goal: to code the inherited algorithmic processes using the logical holography and the spectral logic of systems of genetic Boolean functions. Some relations of this doctrine with the I-Ching are discussed. In addition, the ratios of musical harmony that can be revealed in the parameters of DNA structure are also represented in the I-Ching book. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the possible origin and evolution of the genetic code
NASA Technical Reports Server (NTRS)
Jukes, T. H.
1974-01-01
The genetic code is examined for indications of possible preceding codes that existed during early evolution. Eight of the 20 amino acids are coded by 'quartets' of codons with fourfold degeneracy, and 16 such quartets can exist, so that an earlier code could have provided for 15 or 16 amino acids, rather than 20. If twofold degeneracy is postulated for the first position of the codon, there could have been ten amino acids in the code. It is speculated that these may have been phenylalanine, valine, proline, alanine, histidine, glutamine, glutanic acid, aspartic acid, cysteine and glycine. There is a notable deficiency of arginine in proteins, despite the fact that it has six codons. Simultaneously, there is more lysine in proteins than would be expected from its two codons, if the four bases in mRNA are equiprobable and are arranged randomly. It is speculated that arginine is an 'intruder' into the genetic code, and that it may have displayed another amino acid such as ornithine, or may even have displayed lysine from some of its previous codon assignments. As a result, natural selection has favored lysine against the fact that it has only two codons.
NASA Astrophysics Data System (ADS)
Terrell, Jessica L.; Dong, Hong; Holthoff, Ellen L.; Small, Meagan C.; Sarkes, Deborah A.; Hurley, Margaret M.; Stratis-Cullum, Dimitra N.
2016-05-01
The convenience of cellular genetic engineering has afforded the power to build `smart' synthetic biological tools with novel applications. Here, we have explored opportunities to hybridize engineered cells with inorganic materials toward the development of 'living' device-compatible systems. Cellular structural biology is engineerable based on the ability to rewrite genetic code to generate recombinant, foreign, or even unnatural proteins. With this capability on the biological end, it should be possible to achieve superior abio-compatibility with the inorganic materials that compose current microfabricated technology. This work investigated the hair-like appendages of Escherichia coli known as Type 1 fimbriae that enable natural adhesion to glycosylated substrates. Sequence alterations within the fimbrial gene cluster were found to be well-tolerated, evidenced by tagging the fimbriae with peptide-based probes. As a further development, fimbriae tips could be reconfigured to, in turn, alter cell binding. In particular, the fimbriae were fused with a genetically optimized peptide-for-inorganics to enable metal binding. This work established methodologies to systematically survey cell adhesion properties across a suite of fimbriae-modified cell types as well as to direct patterned cell adhesion. Cell types were further customized for added complexity including turning on secondary gene expression and binding to gold surfaces. The former demonstrates potential for programmable gene switches and the latter for interfacing biology with inorganic materials. In general, the incorporation of 'programmed' cells into devices can be used to provide the feature of dynamic and automated cell response. The outcomes of this study are foundational toward the critical feature of deliberate positioning of cells as configurable biocomponentry. Overall, cellular integration into bioMEMs will yield advanced sensing and actuation.
Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice.
Zhu, Qiuyu Martin; Ko, Kyung Ae; Ture, Sara; Mastrangelo, Michael A; Chen, Ming-Huei; Johnson, Andrew D; O'Donnell, Christopher J; Morrell, Craig N; Miano, Joseph M; Lowenstein, Charles J
2017-02-01
To identify and characterize the effect of a SNP (single-nucleotide polymorphism) in the STXBP5 locus that is associated with altered thrombosis in humans. GWAS (genome-wide association studies) have identified numerous SNPs associated with human thrombotic phenotypes, but determining the functional significance of an individual candidate SNP can be challenging, particularly when in vivo modeling is required. Recent GWAS led to the discovery of STXBP5 as a regulator of platelet secretion in humans. Further clinical studies have identified genetic variants of STXBP5 that are linked to altered plasma von Willebrand factor levels and thrombosis in humans, but the functional significance of these variants in STXBP5 is not understood. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) techniques to produce a precise mouse model carrying a human coding SNP rs1039084 (encoding human p. N436S) in the STXBP5 locus associated with decreased thrombosis. Mice carrying the orthologous human mutation (encoding p. N437S in mouse STXBP5) have lower plasma von Willebrand factor levels, decreased thrombosis, and decreased platelet secretion compared with wild-type mice. This thrombosis phenotype recapitulates the phenotype of humans carrying the minor allele of rs1039084. Decreased plasma von Willebrand factor and platelet activation may partially explain the decreased thrombotic phenotype in mutant mice. Using precise mammalian genome editing, we have identified a human nonsynonymous SNP rs1039084 in the STXBP5 locus as a causal variant for a decreased thrombotic phenotype. CRISPR/Cas9 genetic editing facilitates the rapid and efficient generation of animals to study the function of human genetic variation in vascular diseases. © 2016 American Heart Association, Inc.
Lopes, Karen de Carvalho; Sartorato, Edi Lúcia; da Silva-Costa, Sueli M; de Macedo Adamov, Nadya Soares; Ganança, Fernando Freitas
2016-09-01
Ménière's disease (MD) is a complex disease of unknown etiology characterized by a symptomatic tetrad of vertigo, hearing loss, tinnitus, and aural fullness. In addition to factors related to homeostasis of the inner ear, genetic factors have been implicated in its pathophysiology, including genes related to the transport of water and ionic composition maintenance of the endolymph, such as the aquaporin genes AQP2 and AQP3, and the potassium channel gene KCNE1. The aim of this study was to identify polymorphisms of these genes and determine their association with clinical characteristics of patients with MD. A case-control genetic association study was carried out, including 30 patients with definite Ménière's disease and 30 healthy controls. The coding regions of the target genes were amplified from blood samples by polymerase chain reaction (PCR), followed by direct sequencing. The associations of polymorphisms with clinical characteristics were analyzed with logistic regression. Five polymorphisms were identified: rs426496 in AQP2; rs591810 in AQP3; and rs1805127, rs1805128, and rs17173510 in KCNE1. After adjustment, rs426496 was significantly associated with tinnitus during the initial crisis and with altered electronystagmography, and rs1805127 was significantly associated with nephropathy. The genetic variant rs426496 in AQP2; rs591810 in AQP3 and rs1805127, rs1805128, and rs17173510, in KCNE1 were found in patients with Ménière's disease. The polymorphism rs426496, in AQP2, is associated with tinnitus at the onset of Ménière's disease and altered electronystagmography. In addition, rs1805127, in KCNE1, is associated with the presence of nephropathy.
Genetic modifiers of Huntington's disease.
Gusella, James F; MacDonald, Marcy E; Lee, Jong-Min
2014-09-15
Huntington's disease (HD) is a devastating neurodegenerative disorder that directly affects more than 1 in 10,000 persons in Western societies but, as a family disorder with a long, costly, debilitating course, it has an indirect impact on a far greater proportion of the population. Although some palliative treatments are used, no effective treatment exists for preventing clinical onset of the disorder or for delaying its inevitable progression toward premature death, approximately 15 years after diagnosis. Huntington's disease involves a movement disorder characterized by chorea, as well as a variety of psychiatric disturbances and intellectual decline, with a gradual loss of independence. A dire need exists for effective HD therapies to alleviate the suffering and costs to the individual, family, and health care system. In past decades, genetics, the study of DNA sequence variation and its consequences, provided the tools to map the HD gene to chromosome 4 and ultimately to identify its mutation as an expanded CAG trinucleotide repeat in the coding sequence of a large protein, dubbed huntingtin. Now, advances in genetic technology offer an unbiased route to the identification of genetic factors that are disease-modifying agents in human patients. Such genetic modifiers are expected to highlight processes capable of altering the course of HD and therefore to provide new, human-validated targets for traditional drug development, with the goal of developing rational treatments to delay or prevent onset of HD clinical signs. © 2014 International Parkinson and Movement Disorder Society.
Genetic heterogeneity of the hepatitis C virus.
Bukh, J; Miller, R H; Purcell, R H
1995-01-01
Hepatitis C virus (HCV) is an important etiological agent in the development of chronic liver diseases such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The virus, identified only recently, contains a single-stranded RNA genome of positive polarity, is distantly related to pestiviruses and flaviviruses, and has been classified as the first member of a third genus within the family Flaviviridae. Extensive analysis of HCV genomic sequences demonstrated that this virus possesses significant genetic heterogeneity. Different regions of the viral genome demonstrate a varying degree of heterogeneity; the regions coding for the putative envelope proteins are the most variable sites between different isolates. Furthermore, HCV circulates as a quasispecies in the host. During the course of acute and chronic infection, the sequence composition of the HCV population in one patient has been found to change sequentially with an extremely high rate of nonconserved nucleotide changes in the hypervariable region I (HVR1) of HCV. Such sequence changes alter the antigenicity of the epitopes coded within HVR1 so that these are not always recognized by preexisting antibodies. It has been suggested that this could represent one mechanism by which HCV evades host immune surveillance and may account for the high rate of chronicity observed in such infections. Continuous viral replication may, in turn, lead to the development of chronic liver disease, including HCC, in infected individuals. To date, at least nine major genetic groups (genotypes 1-9) and more than 30 subgroups of HCV have been recognized based on genetic differences. A distinct difference has been observed in the genotype distribution in Africa compared with other continents. Recent data have suggested a difference in pathogenesis and in the outcome of interferon therapy in individuals infected with HCV of certain genotypes. For example, genotype 1b (II) seems to be associated with more severe liver disease, including HCC, and with a poorer response to interferon therapy. The extensive genetic heterogeneity of HCV may have serious implications for the diagnosis, treatment and prevention of hepatitis C as well as in understanding the biology of infection by this important human pathogen.
Genomic and Epigenomic Alterations in Cancer.
Chakravarthi, Balabhadrapatruni V S K; Nepal, Saroj; Varambally, Sooryanarayana
2016-07-01
Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu
Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, andmore » chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.« less
Defining the genetics of thrombotic microangiopathies.
Vieira-Martins, Paula; El Sissy, Carine; Bordereau, Pauline; Gruber, Aurelia; Rosain, Jeremie; Fremeaux-Bacchi, Veronique
2016-04-01
The spectrum of the thrombotic microangiopathies (TMA) encompasses a heterogeneous group of disorders with hereditary and acquired forms. Endothelial cell injury in the microvasculature is common to all TMAs, whatever the pathophysiological process. In this review we describe genetic mutations characteristic of certain TMAs and review their contributions to disease. Recent identification of novel pathologic mutations has been enabled by exome studies. The monogenic forms of TMA are more frequently caused by recessive alterations in von Willebrand factor cleaving protease ADAMST13, leading to congenital thrombotic thrombocytopenic purpura, or cobalamine C and DGKE genes, leading to an atypical hemolytic-uremic syndrome (aHUS)-like TMA. aHUS, whether idiopathic or linked to a known complement amplifying condition, is a TMA that primarily affects kidney function. It often results from a combination of an underlying genetic susceptibility with environmental factors activating the alternative complement pathway. Pathogenic variants in at least five complement genes coding for complement factor H (CFH) complement factor I (CFI), MCP (CD46), C3 and complement factor B (CFB) have been demonstrated to increase the risk of developing aHUS, but several more genes have been implicated. A new challenge is to separate disease-associated genetic variants from the broader background of variants or polymorphisms present in all human genomes that are rare, potentially functional, but may or may not be pathogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.
The importance of biochemical and genetic findings in the diagnosis of atypical Norrie disease.
Rodríguez-Muñoz, Ana; García-García, Gema; Menor, Francisco; Millán, José M; Tomás-Vila, Miguel; Jaijo, Teresa
2018-01-26
Norrie disease (ND) is a rare X-linked disorder characterized by bilateral congenital blindness. ND is caused by a mutation in the Norrie disease pseudoglioma (NDP) gene, which encodes a 133-amino acid protein called norrin. Intragenic deletions including NDP and adjacent genes have been identified in ND patients with a more severe neurologic phenotype. We report the biochemical, molecular, clinical and radiological features of two unrelated affected males with a deletion including NDP and MAO genes. Biochemical and genetic analyses were performed to understand the atypical phenotype and radiological findings. Biogenic amines in cerebrospinal fluid (CSF) were measured by high-performance liquid chromatography. The coding exons of NDP gene were amplified by polymerase chain reaction. Multiplex ligation-dependent probe amplification and chromosomal microarray were carried out on both affected males. Computed tomography and magnetic resonance imaging were performed on the two patients. In one patient, the serotonin and catecholamine metabolite levels in CSF were virtually undetectable. In both patients, genetic studies revealed microdeletions in the Xp11.3 region, involving the NDP, MAOA and MAOB genes. Radiological examination demonstrated brain and cerebellar atrophy. We suggest that alterations caused by MAO deficit may remain during the first years of life. Clinical phenotype, biochemical findings and neuroimaging can guide the genetic study in patients with atypical ND and help us to a better understanding of this disease.
Summary of evidence for an anticodonic basis for the origin of the genetic code
NASA Technical Reports Server (NTRS)
Lacey, J. C., Jr.; Mullins, D. W., Jr.
1981-01-01
This article summarizes data supporting the hypothesis that the genetic code origin was based on relationships (probably affinities) between amino acids and their anticodon nucleotides. Selective activation seems to follow from selective affinity and consequently, incorporation of amino acids into peptides can also be selective. It is suggested that these selectivities in affinity and activation, coupled with the base pairing specificities, allowed the origin of the code and the process of translation.
Genetic and molecular alterations across medulloblastoma subgroups.
Skowron, Patryk; Ramaswamy, Vijay; Taylor, Michael D
2015-10-01
Medulloblastoma is the most common malignant brain tumour diagnosed in children. Over the last few decades, advances in radiation and chemotherapy have significantly improved the odds of survival. Nevertheless, one third of all patients still succumb to their disease, and many long-term survivors are afflicted with neurocognitive sequelae. Large-scale multi-institutional efforts have provided insight into the transcriptional and genetic landscape of medulloblastoma. Four distinct subgroups of medulloblastoma have been identified, defined by distinct transcriptomes, genetics, demographics and outcomes. Integrated genomic profiling of each of these subgroups has revealed distinct genetic alterations, driving pathways and in some instances cells of origin. In this review, we highlight, in a subgroup-specific manner, our current knowledge of the genetic and molecular alterations in medulloblastoma and underscore the possible avenues for future therapeutic intervention.
Park, Solip; Lehner, Ben
2015-01-01
Cancers, like many diseases, are normally caused by combinations of genetic alterations rather than by changes affecting single genes. It is well established that the genetic alterations that drive cancer often interact epistatically, having greater or weaker consequences in combination than expected from their individual effects. In a stringent statistical analysis of data from > 3,000 tumors, we find that the co-occurrence and mutual exclusivity relationships between cancer driver alterations change quite extensively in different types of cancer. This cannot be accounted for by variation in tumor heterogeneity or unrecognized cancer subtypes. Rather, it suggests that how genomic alterations interact cooperatively or partially redundantly to driver cancer changes in different types of cancers. This re-wiring of epistasis across cell types is likely to be a basic feature of genetic architecture, with important implications for understanding the evolution of multicellularity and human genetic diseases. In addition, if this plasticity of epistasis across cell types is also true for synthetic lethal interactions, a synthetic lethal strategy to kill cancer cells may frequently work in one type of cancer but prove ineffective in another. PMID:26227665
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.
Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin
2015-04-02
Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.
RNA Nuclear Export: From Neurological Disorders to Cancer.
Hautbergue, Guillaume M
2017-01-01
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
The emerging role of epigenetics in rheumatic diseases.
Gay, Steffen; Wilson, Anthony G
2014-03-01
Epigenetics is a key mechanism regulating the expression of genes. There are three main and interrelated mechanisms: DNA methylation, post-translational modification of histone proteins and non-coding RNA. Gene activation is generally associated with lower levels of DNA methylation in promoters and with distinct histone marks such as acetylation of amino acids in histones. Unlike the genetic code, the epigenome is altered by endogenous (e.g. hormonal) and environmental (e.g. diet, exercise) factors and changes with age. Recent evidence implicates epigenetic mechanisms in the pathogenesis of common rheumatic disease, including RA, OA, SLE and scleroderma. Epigenetic drift has been implicated in age-related changes in the immune system that result in the development of a pro-inflammatory status termed inflammageing, potentially increasing the risk of age-related conditions such as polymyalgia rheumatica. Therapeutic targeting of the epigenome has shown promise in animal models of rheumatic diseases. Rapid advances in computational biology and DNA sequencing technology will lead to a more comprehensive understanding of the roles of epigenetics in the pathogenesis of common rheumatic diseases.
NASA Astrophysics Data System (ADS)
Gusev, Oleg; Sugimoto, Manabu; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro
2012-07-01
Anhydrobiotic chironomid larvae of Polypedilum vanderplanki (Diptera) can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. Recent experiments showed that this insect is able to survive long-tern exposure to real outer space. At the same time, we found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Analysis of several remote populations of the chironomid in Africa that desiccation-related DNA damage might be a driving genetic force for rapid radiation within the species. First results of ongoing genome project suggest that origin and evolution of anhydrobiosis in this single insect species related to rapid duplication of the genes, coding late embryogenesis abundant proteins (LEA) and other molecular agents directly involved in desiccation resistance in the cells. Analysis of genome-wide mRNA expression profiles in the larvae subjected to desiccation shows that joint-activity of large multiple-genes coding regions in the genome involved in control of anhydrobiosis-related molecular adaptations in the chironomid.
Lourenco-Jaramillo, Diana Lelidett; Sifuentes-Rincón, Ana María; Parra-Bracamonte, Gaspar Manuel; de la Rosa-Reyna, Xochitl Fabiola; Segura-Cabrera, Aldo; Arellano-Vera, Williams
2012-01-01
DNA from four cattle breeds was used to re-sequence all of the exons and 56% of the introns of the bovine tyrosine hydroxylase (TH) gene and 97% and 13% of the bovine dopamine β-hydroxylase (DBH) coding and non-coding sequences, respectively. Two novel single nucleotide polymorphisms (SNPs) and a microsatellite motif were found in the TH sequences. The DBH sequences contained 62 nucleotide changes, including eight non-synonymous SNPs (nsSNPs) that are of particular interest because they may alter protein function and therefore affect the phenotype. These DBH nsSNPs resulted in amino acid substitutions that were predicted to destabilize the protein structure. Six SNPs (one from TH and five from DBH non-synonymous SNPs) were genotyped in 140 animals; all of them were polymorphic and had a minor allele frequency of > 9%. There were significant differences in the intra- and inter-population haplotype distributions. The haplotype differences between Brahman cattle and the three B. t. taurus breeds (Charolais, Holstein and Lidia) were interesting from a behavioural point of view because of the differences in temperament between these breeds. PMID:22888292
Han, Zhenyun; Hu, Yanan; Lv, Yuanda; Sun, Yaqiang; Shen, Fei; Wang, Yi; Zhang, Xinzhong; Xu, Xuefeng
2018-01-01
Through natural or human selection, many fleshy fruits have evolved vivid external or internal coloration, which often develops during ripening. Such developmental changes in color are associated with the biosynthesis of pigments as well as with degreening through chlorophyll degradation. Here, we demonstrated that natural variation in the coding region of the gene ETHYLENE RESPONSE FACTOR17 (ERF17) contributes to apple (Malus domestica) fruit peel degreening. Specifically, ERF17 mutant alleles with different serine (Ser) repeat insertions in the coding region exhibited enhanced transcriptional regulation activity in a dual-luciferase reporter assay when more Ser repeats were present. Notably, surface plasmon resonance analysis showed that the number of Ser repeats affected the binding activity of ERF17 to the promoter sequences of chlorophyll degradation-related genes. In addition, overexpression of ERF17 in evergreen apples altered the accumulation of chlorophyll. Furthermore, we demonstrated that ERF17 has been under selection since the origin of apple tree cultivation. Taken together, these results reveal allelic variation underlying an important fruit quality trait and a molecular genetic mechanism associated with apple domestication. PMID:29431631
Prié, Dominique; Huart, Virginie; Bakouh, Naziha; Planelles, Gabrielle; Dellis, Olivier; Gérard, Bénédicte; Hulin, Philippe; Benqué-Blanchet, François; Silve, Caroline; Grandchamp, Bernard; Friedlander, Gérard
2002-09-26
Epidemiologic studies suggest that genetic factors confer a predisposition to the formation of renal calcium stones or bone demineralization. Low serum phosphate concentrations due to a decrease in renal phosphate reabsorption have been reported in some patients with these conditions, suggesting that genetic factors leading to a decrease in renal phosphate reabsorption may contribute to them. We hypothesized that mutations in the gene coding for the main renal sodium-phosphate cotransporter (NPT2a) may be present in patients with these disorders. We studied 20 patients with urolithiasis or bone demineralization and persistent idiopathic hypophosphatemia associated with a decrease in maximal renal phosphate reabsorption. The coding region of the gene for NPT2a was sequenced in all patients. The functional consequences of the mutations identified were analyzed by expressing the mutated RNA in Xenopus laevis oocytes. Two patients, one with recurrent urolithiasis and one with bone demineralization, were heterozygous for two distinct mutations. One mutation resulted in the substitution of phenylalanine for alanine at position 48, and the other in a substitution of methionine for valine at position 147. Phosphate-induced current and sodium-dependent phosphate uptake were impaired in oocytes expressing the mutant NPT2a. Coinjection of oocytes with wild-type and mutant RNA indicated that the mutant protein had altered function. Heterozygous mutations in the NPT2a gene may be responsible for hypophosphatemia and urinary phosphate loss in persons with urolithiasis or bone demineralization. Copyright 2002 Massachusetts Medical Society
Bohlke, Nina; Budisa, Nediljko
2014-02-01
One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function - a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
USDA-ARS?s Scientific Manuscript database
It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...
[Direct genetic manipulation and criminal code in Venezuela: absolute criminal law void?].
Cermeño Zambrano, Fernando G De J
2002-01-01
The judicial regulation of genetic biotechnology applied to the human genome is of big relevance currently in Venezuela due to the drafting of an innovative bioethical law in the country's parliament. This article will highlight the constitutional normative of Venezuela's 1999 Constitution regarding this subject, as it establishes the framework from which this matter will be legally regulated. The approach this article makes towards the genetic biotechnology applied to the human genome is made taking into account the Venezuelan penal law and by highlighting the violent genetic manipulations that have criminal relevance. The genetic biotechnology applied to the human genome has another important relevance as a consequence of the reformulation of the Venezuelan Penal Code discussed by the country's National Assembly. Therefore, a concise study of the country's penal code will be made in this article to better understand what judicial-penal properties have been protected by the Venezuelan penal legislation. This last step will enable us to identify the penal tools Venezuela counts on to face direct genetic manipulations. We will equally indicate the existing punitive loophole and that should be covered by the penal legislator. In conclusion, this essay concerns criminal policy, referred to the direct genetic manipulations on the human genome that haven't been typified in Venezuelan law, thus discovering a genetic biotechnology paradise.
A-to-I editing of coding and non-coding RNAs by ADARs
Nishikura, Kazuko
2016-01-01
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264
Decoding the genome beyond sequencing: the new phase of genomic research.
Heng, Henry H Q; Liu, Guo; Stevens, Joshua B; Bremer, Steven W; Ye, Karen J; Abdallah, Batoul Y; Horne, Steven D; Ye, Christine J
2011-10-01
While our understanding of gene-based biology has greatly improved, it is clear that the function of the genome and most diseases cannot be fully explained by genes and other regulatory elements. Genes and the genome represent distinct levels of genetic organization with their own coding systems; Genes code parts like protein and RNA, but the genome codes the structure of genetic networks, which are defined by the whole set of genes, chromosomes and their topological interactions within a cell. Accordingly, the genetic code of DNA offers limited understanding of genome functions. In this perspective, we introduce the genome theory which calls for the departure of gene-centric genomic research. To make this transition for the next phase of genomic research, it is essential to acknowledge the importance of new genome-based biological concepts and to establish new technology platforms to decode the genome beyond sequencing. Copyright © 2011 Elsevier Inc. All rights reserved.
Hoffman, Robert M
2016-03-01
Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.
2010-01-01
The canonical genetic code is on a sub-optimal adaptive peak with respect to its ability to minimize errors, and is close to, but not quite, optimal. This is demonstrated by the near-total adjacency of synonymous codons, the similarity of adjacent codons, and comparisons of frequency of amino acid usage with number of codons in the code for each amino acid. As a rare empirical example of an adaptive peak in nature, it shows adaptive peaks are real, not merely theoretical. The evolution of deviant genetic codes illustrates how populations move from a lower to a higher adaptive peak. This is done by the use of “adaptive bridges,” neutral pathways that cross over maladaptive valleys by virtue of masking of the phenotypic expression of some maladaptive aspects in the genotype. This appears to be the general mechanism by which populations travel from one adaptive peak to another. There are multiple routes a population can follow to cross from one adaptive peak to another. These routes vary in the probability that they will be used, and this probability is determined by the number and nature of the mutations that happen along each of the routes. A modification of the depiction of adaptive landscapes showing genetic distances and probabilities of travel along their multiple possible routes would throw light on this important concept. PMID:20711776
Computation of the Genetic Code
NASA Astrophysics Data System (ADS)
Kozlov, Nicolay N.; Kozlova, Olga N.
2018-03-01
One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.
Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y
2016-06-17
The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.
Coding of Class I and II aminoacyl-tRNA synthetases
Carter, Charles W.
2018-01-01
SUMMARY The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels—protozymes and Urzymes—associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric—middle base-pairing frequencies in sense/antisense alignments—that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins. PMID:28828732
Di Giulio, Massimo
2016-06-21
I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the genetic code would be a theory highly corroborated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M
2017-12-01
The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Kobayashi, Hiroshi; Imanaka, Shogo; Nakamura, Haruki; Tsuji, Ayumi
2014-05-01
Endometriosis is a complex disease influenced by genetic, epigenetic and environmental factors. The aim of the present study was to describe genomic instability, genetic polymorphisms and their haplotype, epigenetic alterations associated with predisposition to endometriosis, and the key factors associated with endometriosis-related ovarian neoplasms. Focus has been given on the developing paradigm that epigenetic alterations or genetic mutations in endometriosis may start in utero or in adolescent and young adults. A search was conducted between 1966 and 2010 through the English language literature (online Medline PubMed database) using the keywords endometriosis combined with epigenetic, genetic and environment. Genetic/epigenetic alterations include single‑nucleotide polymorphisms (SNPs), copy number variation, loss of heterozygosity (LOH), and promoter methylation. Several genes with genetic polymorphisms analyzed in the present study tended to overlap previously reported endometriosis susceptibility genes. Retrograde menstruation leads to iron overload, which facilitates the accumulation of somatic mutations through Fenton reaction-mediated oxidative stress. The epigenetic disruption of gene expression plays an important role in the development of endometriosis through interaction with environmental changes. There seems to be at least three spatiotemporally distinct phases of the development of endometriosis: the initial phase of genetic background inherited from parents; followed by epigenetic modifications in the female offspring; and iron overload, which is subject to dynamic modulation later in life. In conclusion, the marked regulation of endometriosis susceptibility genes may stem from a mechanism responsible for epigenetic and genetic mutations based on the microenvironmental changes.
Sollie, Annet; Sijmons, Rolf H; Lindhout, Dick; van der Ploeg, Ans T; Rubio Gozalbo, M Estela; Smit, G Peter A; Verheijen, Frans; Waterham, Hans R; van Weely, Sonja; Wijburg, Frits A; Wijburg, Rudolph; Visser, Gepke
2013-07-01
Data sharing is essential for a better understanding of genetic disorders. Good phenotype coding plays a key role in this process. Unfortunately, the two most widely used coding systems in medicine, ICD-10 and SNOMED-CT, lack information necessary for the detailed classification and annotation of rare and genetic disorders. This prevents the optimal registration of such patients in databases and thus data-sharing efforts. To improve care and to facilitate research for patients with metabolic disorders, we developed a new coding system for metabolic diseases with a dedicated group of clinical specialists. Next, we compared the resulting codes with those in ICD and SNOMED-CT. No matches were found in 76% of cases in ICD-10 and in 54% in SNOMED-CT. We conclude that there are sizable gaps in the SNOMED-CT and ICD coding systems for metabolic disorders. There may be similar gaps for other classes of rare and genetic disorders. We have demonstrated that expert groups can help in addressing such coding issues. Our coding system has been made available to the ICD and SNOMED-CT organizations as well as to the Orphanet and HPO organizations for further public application and updates will be published online (www.ddrmd.nl and www.cineas.org). © 2013 WILEY PERIODICALS, INC.
Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis
Fletcher, Phillip D.; Downey, Laura E.; Golden, Hannah L.; Clark, Camilla N.; Slattery, Catherine F.; Paterson, Ross W.; Schott, Jonathan M.; Rohrer, Jonathan D.; Rossor, Martin N.; Warren, Jason D.
2015-01-01
Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music (‘musicophilia’) occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease. PMID:25929717
Bečanović, Kristina; Nørremølle, Anne; Neal, Scott J; Kay, Chris; Collins, Jennifer A; Arenillas, David; Lilja, Tobias; Gaudenzi, Giulia; Manoharan, Shiana; Doty, Crystal N; Beck, Jessalyn; Lahiri, Nayana; Portales-Casamar, Elodie; Warby, Simon C; Connolly, Colúm; De Souza, Rebecca A G; Tabrizi, Sarah J; Hermanson, Ola; Langbehn, Douglas R; Hayden, Michael R; Wasserman, Wyeth W; Leavitt, Blair R
2015-06-01
Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case-based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.
Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation.
Kanekura, Kohsuke; Yagi, Takuya; Cammack, Alexander J; Mahadevan, Jana; Kuroda, Masahiko; Harms, Matthew B; Miller, Timothy M; Urano, Fumihiko
2016-05-01
The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rossi, Silvia; Motta, Caterina; Studer, Valeria; Monteleone, Fabrizia; De Chiara, Valentina; Buttari, Fabio; Barbieri, Francesca; Bernardi, Giorgio; Battistini, Luca; Cutter, Gary; Stüve, Olaf; Salvetti, Marco; Centonze, Diego
2013-01-01
Multiple sclerosis (MS) patients discontinuing natalizumab treatment are at risk of disease reactivation. No clinical or surrogate parameters exist to identify patients at risk of post-natalizumab MS reactivation. To determine the role of natalizumab-induced lymphocytosis and of Akt polymorphisms in disease reactivation after natalizumab discontinuation. Peripheral leukocyte count and composition were monitored in 93 MS patients during natalizumab treatment, and in 56 of these subjects who discontinued the treatment. Genetic variants of the anti-apoptotic protein Akt were determined in all subjects because natalizumab modulates the apoptotic pathway and lymphocyte survival is regulated by the apoptotic cascade. Natalizumab-induced peripheral lymphocytosis protected from post-natalizumab MS reactivation. Subjects who relapsed or had magnetic resonance imaging (MRI) worsening after treatment cessation, in fact, had milder peripheral lymphocyte increases during the treatment, largely caused by less marked T cell increase. Furthermore, subjects carrying a variant of the gene coding for Akt associated with reduced anti-apoptotic efficiency (rs2498804T) had lower lymphocytosis and higher risk of disease reactivation. This study identified one functionally meaningful genetic variant within the Akt signaling pathway that is associated with both lymphocyte count and composition alterations during natalizumab treatment, and with the risk of disease reactivation after natalizumab discontinuation.
Adiposopathy and epigenetics: an introduction to obesity as a transgenerational disease.
Bays, Harold; Scinta, Wendy
2015-11-01
To examine the contribution of generational epigenetic dysregulation to the inception of obesity and its adiposopathic consequences. Sources for this review included searches of PubMed, Google Scholar, and international government/major association websites using terms including adiposity, adiposopathy, epigenetics, genetics, and obesity. Excessive energy storage in adipose tissue often results in fat cell and fat organ dysfunction, which may cause metabolic and fat mass disorders. The adverse clinical manifestations of obesity are not solely due to the amount of body fat (adiposity), but are also dependent on anatomical and functional perturbations (adiposopathy or 'sick fat'). This review describes extragenetic factors and genetic conditions that promote obesity. It also serves as an introduction to epigenetic dysregulation (i.e., abnormalities in gene expression that occur without alteration in the genetic code itself), which may contribute to obesity and adiposopathic metabolic health outcomes in offspring. Within the epigenetic paradigm, obesity is a transgenerational disease, with weight lost or gained by either parent potentially impacting generational risk for obesity and its complications. Epigenetics may be an important contributor to the emergence of obesity and its complications as global epidemics. Although transgenerational epigenetic influences present challenges, they may also present interventional opportunities, via justifying weight management for individuals before, during, and after pregnancy and for future generations.
Laurent-Puig, P; Agostini, J; Maley, K
2010-11-01
Recent progress in the field of molecular biology has allowed us to identify at least two different molecular mechanisms implicated in colorectal carcinogenesis (CRC): chromosomal instability (CIN) and genetic instability. Even though the two molecular mechanisms differ, their signalling pathways, implicated in malignant transformation of colonic epithelial cells, appear to be similar. The most frequent group of CRC, which represents 80% of sporadic CRC, is characterized by allelic losses on the short arm of chromosome 17 and 8 and on the long arm of chromosome 5, 18 and 22. These allelic losses are associated with mutations in TP53, APC, SMAD2 and SMAD4 genes. All of these alterations are grouped under the phenotype CIN. A genetic instability termed MSI (microsatellite instability), which results from a mismatch repair (MMR) deficiency, appears in 12-15% of CRC cases. The presence of MMR deficiency leads to the accumulation of mutations in genes controlling cell cycle and apoptosis (TGFBRII, BAX or CASPASE5). More recently, the existence of a third phenotype was suggested. The main alteration associated with this group of tumors is the hypermethylation of the promoter region of numerous genes, leading to their inactivation. An activating mutation of BRAF is frequently associated with this phenotype. As described above, CRC shows genetic heterogeneity, however the consequences in terms of signalling pathway alterations are similar. For example, the activation of Wnt signalling pathways can result from the inactivation of the APC gene in the CIN phenotype or from an activating mutation in the β-catenin gene in MSI tumors. The inactivation of TGFβ pathways is also present in both tumor types and is driven by SMAD4, and more rarely by a SMAD2 inactivating mutation in CIN tumors, or by the existence of a frame-shift mutation occurring in a polyG coding track of the TGFβ (transforming growth factor) receptor type II in MSI tumors. The RAS-MAP kinase pathway is activated by KRAS mutations in CIN tumors or by BRAF mutations in MSI tumors. The p53 pathway is inactivated by TP53 inactivation in CIN tumors or by BAX inactivating mutations in MSI tumors.
Wu, F C; Zhang, H; Zhou, Q; Wu, M; Ballard, Z; Tian, Y; Wang, J Y; Niu, Z W; Huang, Y
2014-04-18
A method for site-specific and high yield modification of tobacco mosaic virus coat protein (TMVCP) utilizing a genetic code expanding technology and copper free cycloaddition reaction has been established, and biotin-functionalized virus-like particles were built by the self-assembly of the protein monomers.
Aminkeng, Folefac; Bhavsar, Amit P; Visscher, Henk; Rassekh, Shahrad R; Li, Yuling; Lee, Jong W; Brunham, Liam R; Caron, Huib N; van Dalen, Elvira C; Kremer, Leontien C; van der Pal, Helena J; Amstutz, Ursula; Rieder, Michael J; Bernstein, Daniel; Carleton, Bruce C; Hayden, Michael R; Ross, Colin J D
2015-09-01
Anthracyclines are used in over 50% of childhood cancer treatment protocols, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively. Candidate gene studies have reported genetic associations with ACT, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10(-8), odds ratio (95% confidence interval) = 4.7 (2.7-8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction.
Micro-RNAs as regulators and possible diagnostic bio-markers in inflammatory bowel disease.
Archanioti, Paraskevi; Gazouli, Maria; Theodoropoulos, George; Vaiopoulou, Anna; Nikiteas, Nikolaos
2011-12-01
Not fully defined pathophysiologic mechanisms of inflammatory bowel disease (IBD) involve an array of genetic, epigenetic, infectious, physiological and immunological factors. Nowadays, an inadequate activation of the innate immune system to a luminal factor occurring in genetically predisposed subjects is the most widely accepted today. Micro-autoimmune diseases, a group of small, single-stranded, non-coding RNA molecules act as potent negative gene regulators. Beyond cancer and various autoimmune diseases, their impact on IBD has recently been the focus of research. Differential expression of various micro-RNAs has been documented in active and inactive ulcerative colitis, while micro-RNA profile appears to differ between ileal and colonic Crohn's disease. Except for tissue samples, attempts have been made to estimate similar differences at patients' blood samples. Apart from offering new directions in related research, these molecules arise as useful diagnostic tools and potential therapeutic targets. This review focuses on micro-RNA alterations in IBD and their potential implication on immunologic deregulation. Copyright © 2011 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
Sanna, Daria; Pala, Maria; Cossu, Piero; Dedola, Gian Luca; Melis, Sonia; Fresu, Giovanni; Morelli, Laura; Obinu, Domenica; Tonolo, Giancarlo; Secchi, Giannina; Triunfo, Riccardo; Lorenz, Joseph G.; Scheinfeldt, Laura; Torroni, Antonio; Robledo, Renato; Francalacci, Paolo
2011-01-01
We report a sampling strategy based on Mendelian Breeding Units (MBUs), representing an interbreeding group of individuals sharing a common gene pool. The identification of MBUs is crucial for case-control experimental design in association studies. The aim of this work was to evaluate the possible existence of bias in terms of genetic variability and haplogroup frequencies in the MBU sample, due to severe sample selection. In order to reach this goal, the MBU sampling strategy was compared to a standard selection of individuals according to their surname and place of birth. We analysed mitochondrial DNA variation (first hypervariable segment and coding region) in unrelated healthy subjects from two different areas of Sardinia: the area around the town of Cabras and the western Campidano area. No statistically significant differences were observed when the two sampling methods were compared, indicating that the stringent sample selection needed to establish a MBU does not alter original genetic variability and haplogroup distribution. Therefore, the MBU sampling strategy can be considered a useful tool in association studies of complex traits. PMID:21734814
Quantitative proteomic analysis of human breast epithelial cells with differential telomere length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Li-Rong; Chan, King C.; Tahara, Hidetoshi
Telomeres play important functional roles in cell proliferation, cell cycle regulation, and genetic stability, in which telomere length is critical. In this study, quantitative proteome comparisons for the human breast epithelial cells with short and long telomeres (184-hTERT{sub L} vs. 184-hTERT{sub S} and 90P-hTERT{sub L} vs. 90P-hTERT{sub S}), resulting from transfection of the human telomerase reverse transcriptase (hTERT) gene, were performed using cleavable isotope-coded affinity tags. More than 2000 proteins were quantified in each comparative experiment, with approximately 77% of the proteins identified in both analyses. In the cells with long telomeres, significant and consistent alterations were observed in metabolismmore » (amino acid, nucleotide, and lipid metabolism), genetic information transmission (transcription and translation regulation, spliceosome and ribosome complexes), and cell signaling. Interestingly, the DNA excision repair pathway is enhanced, while integrin and its ligands are downregulated in the cells with long telomeres. These results may provide valuable information related to telomere functions.« less
Geeleher, Paul; Zhang, Zhenyu; Wang, Fan; Gruener, Robert F; Nath, Aritro; Morrison, Gladys; Bhutra, Steven; Grossman, Robert L; Huang, R Stephanie
2017-10-01
Obtaining accurate drug response data in large cohorts of cancer patients is very challenging; thus, most cancer pharmacogenomics discovery is conducted in preclinical studies, typically using cell lines and mouse models. However, these platforms suffer from serious limitations, including small sample sizes. Here, we have developed a novel computational method that allows us to impute drug response in very large clinical cancer genomics data sets, such as The Cancer Genome Atlas (TCGA). The approach works by creating statistical models relating gene expression to drug response in large panels of cancer cell lines and applying these models to tumor gene expression data in the clinical data sets (e.g., TCGA). This yields an imputed drug response for every drug in each patient. These imputed drug response data are then associated with somatic genetic variants measured in the clinical cohort, such as copy number changes or mutations in protein coding genes. These analyses recapitulated drug associations for known clinically actionable somatic genetic alterations and identified new predictive biomarkers for existing drugs. © 2017 Geeleher et al.; Published by Cold Spring Harbor Laboratory Press.
On origin of genetic code and tRNA before translation
2011-01-01
Background Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids. Results The aa-binding sites of arginine, isoleucine and tyrosine contain both their cognate triplets, anticodons and codons. We have noticed that these cases might be associated with palindrome-dinucleotides. For example, one-base shift to the left brings arginine codons CGN, with CG at 1-2 positions, to the respective anticodons NCG, with CG at 2-3 positions. Formally, the concomitant presence of codons and anticodons is also expected in the reverse situation, with codons containing palindrome-dinucleotides at their 2-3 positions, and anticodons exhibiting them at 1-2 positions. A closer analysis reveals that, surprisingly, RNA binding sites for Arg, Ile and Tyr "prefer" (exactly as in the actual genetic code) the anticodon(2-3)/codon(1-2) tetramers to their anticodon(1-2)/codon(2-3) counterparts, despite the seemingly perfect symmetry of the latter. However, since in vitro selection of aa-specific RNA aptamers apparently had nothing to do with translation, this striking preference provides a new strong support to the notion of the genetic code emerging before translation, in response to catalytic (and possibly other) needs of ancient RNA life. Consistently with the pre-translation origin of the code, we propose here a new model of tRNA origin by the gradual, Fibonacci process-like, elongation of a tRNA molecule from a primordial coding triplet and 5'DCCA3' quadruplet (D is a base-determinator) to the eventual 76 base-long cloverleaf-shaped molecule. Conclusion Taken together, our findings necessarily imply that primordial tRNAs, tRNA aminoacylating ribozymes, and (later) the translation machinery in general have been co-evolving to ''fit'' the (likely already defined) genetic code, rather than the opposite way around. Coding triplets in this primal pre-translational code were likely similar to the anticodons, with second and third nucleotides being more important than the less specific first one. Later, when the code was expanding in co-evolution with the translation apparatus, the importance of 2-3 nucleotides of coding triplets "transferred" to the 1-2 nucleotides of their complements, thus distinguishing anticodons from codons. This evolutionary primacy of anticodons in genetic coding makes the hypothesis of primal stereo-chemical affinity between amino acids and cognate triplets, the hypothesis of coding coenzyme handles for amino acids, the hypothesis of tRNA-like genomic 3' tags suggesting that tRNAs originated in replication, and the hypothesis of ancient ribozymes-mediated operational code of tRNA aminoacylation not mutually contradicting but rather co-existing in harmony. Reviewers This article was reviewed by Eugene V. Koonin, Wentao Ma (nominated by Juergen Brosius) and Anthony Poole. PMID:21342520
The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.
Cortez, Michael H; Patel, Swati
2017-07-01
This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.
A complex chromosomal rearrangement involving chromosomes 2, 5, and X in autism spectrum disorder.
Griesi-Oliveira, Karina; Moreira, Danielle de Paula; Davis-Wright, Nicole; Sanders, Stephan; Mason, Christopher; Orabona, Guilherme Müller; Vadasz, Estevão; Bertola, Débora Romeo; State, Matthew W; Passos-Bueno, Maria Rita
2012-07-01
Here, we describe a female patient with autism spectrum disorder and dysmorphic features that harbors a complex genetic alteration, involving a de novo balanced translocation t(2;X)(q11;q24), a 5q11 segmental trisomy and a maternally inherited isodisomy on chromosome 5. All the possibly damaging genetic effects of such alterations are discussed. In light of recent findings on ASD genetic causes, the hypothesis that all these alterations might be acting in orchestration and contributing to the phenotype is also considered. Copyright © 2012 Wiley Periodicals, Inc.
Ewing sarcoma: a chronicle of molecular pathogenesis.
Kim, Sang Kyum; Park, Yong-Koo
2016-09-01
Sarcomas have traditionally been classified according to their chromosomal alterations regardless of whether they accompany simple or complex genetic changes. Ewing sarcoma, a classic small round cell bone tumor, is a well-known mesenchymal malignancy that results from simple sarcoma-specific genetic alterations. The genetic alterations are translocations between genes of the TET/FET family (TLS/FUS, EWSR1, and TAF15) and genes of the E26 transformation-specific (ETS) family. In this review, we intend to summarize a chronicle of molecular findings of Ewing sarcoma including recent advances and explain resultant molecular pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Smurf2 Regulates DNA Repair and Packaging to Prevent Tumors | Center for Cancer Research
The blueprint for all of a cell’s functions is written in the genetic code of DNA sequences as well as in the landscape of DNA and histone modifications. DNA is wrapped around histones to package it into chromatin, which is stored in the nucleus. It is important to maintain the integrity of the chromatin structure to ensure that the cell continues to behave appropriately. Recently, Ying Zhang, Ph.D., Senior Investigator in CCR’s Laboratory of Cellular and Molecular Biology, and her colleagues showed that alterations in the organization of the DNA can lead to tumor growth in a variety of tissues. This study appeared in the February 2012 issue of Nature Medicine and was featured as a cover story of that issue.
Aging in the Brain: New Roles of Epigenetics in Cognitive Decline.
Barter, Jolie D; Foster, Thomas C
2018-06-01
Gene expression in the aging brain depends on transcription signals generated by senescent physiology, interacting with genetic and epigenetic programs. In turn, environmental factors influence epigenetic mechanisms, such that an epigenetic-environmental link may contribute to the accumulation of cellular damage, susceptibility or resilience to stressors, and variability in the trajectory of age-related cognitive decline. Epigenetic mechanisms, DNA methylation and histone modifications, alter chromatin structure and the accessibility of DNA. Furthermore, small non-coding RNA, termed microRNA (miRNA) bind to messenger RNA (mRNA) to regulate translation. In this review, we examine key questions concerning epigenetic mechanisms in regulating the expression of genes associated with brain aging and age-related cognitive decline. In addition, we highlight the interaction of epigenetics with senescent physiology and environmental factors in regulating transcription.
Foundation on Economic Trends v. Bowen.
1989-10-04
The National Enviromental Policy Act requires that government agencies make a detailed enviromental impact statement (EIS) for all research significantly affecting the environment. These statements must be supplemented if the project substantially changes or if new information is obtained. The Foundation on Economic Trends argued that three developments in recombinant DNA research will significantly alter the enviromental impact, thereby mandating a new EIS by the National Institutes of Health (NIH). These developments are cloning oncogenic viruses, engineering the human immunodeficiency virus into cells not normally susceptible to it, and introducing AIDS genetic codes into mice. The U.S. District Court, District of Columbia, held that the first two projects do not pose a greater risk and that the enviromental assessment being prepared by NIH on the third satisfies the requirements of the National Enviromental Policy Act.
José, Marco V.; Govezensky, Tzipe; García, José A.; Bobadilla, Juan R.
2009-01-01
Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC. PMID:19183813
[Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].
Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue
2014-12-01
In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.
Optimization of algorithm of coding of genetic information of Chlamydia
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Ulyanov, Sergey S.; Zaytsev, Sergey S.; Saltykov, Yury V.; Ulianova, Onega V.
2018-04-01
New method of coding of genetic information using coherent optical fields is developed. Universal technique of transformation of nucleotide sequences of bacterial gene into laser speckle pattern is suggested. Reference speckle patterns of the nucleotide sequences of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci serovar I as well are generated. Algorithm of coding of gene information into speckle pattern is optimized. Fully developed speckles with Gaussian statistics for gene-based speckles have been used as criterion of optimization.
Xenomicrobiology: a roadmap for genetic code engineering.
Acevedo-Rocha, Carlos G; Budisa, Nediljko
2016-09-01
Biology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high-throughput and low-cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing non-natural building blocks in living cells. In this context, genetic code engineering respectively enables the re-design of genes/genomes and proteins/proteomes with non-canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new-to-nature therapeutic proteins/peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a 'genetic firewall' will also allow to study and understand the relation between code evolution and horizontal gene transfer. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Color Code: Using Hair Color to Make a Clear Connection between Genotype and Phenotype
ERIC Educational Resources Information Center
Bonner, J. Jose
2011-01-01
Students may wonder why they look the way they do. The answer lies in genetics, the branch of biology that deals with heredity and the variation of inherited traits. However, understanding how an organism's genetic code (i.e., genotype) affects its characteristics (i.e., phenotype) is more than a matter of idle curiosity: It's essential for…
USDA-ARS?s Scientific Manuscript database
It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...
The chemical basis for the origin of the genetic code and the process of protein synthesis
NASA Technical Reports Server (NTRS)
1982-01-01
The major thrust is to understand just how the process of protein synthesis, including that very important aspect, genetic coding, came to be. Two aspects of the problem: the chemistry of active aminoacyl species; and affinities between amino acids and nucleotides, and specifically, how these affinities might affect the chemistry between the two are stressed.
The impact of rare variation on gene expression across tissues.
Li, Xin; Kim, Yungil; Tsang, Emily K; Davis, Joe R; Damani, Farhan N; Chiang, Colby; Hess, Gaelen T; Zappala, Zachary; Strober, Benjamin J; Scott, Alexandra J; Li, Amy; Ganna, Andrea; Bassik, Michael C; Merker, Jason D; Hall, Ira M; Battle, Alexis; Montgomery, Stephen B
2017-10-11
Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.
On the evolution of primitive genetic codes.
Weberndorfer, Günter; Hofacker, Ivo L; Stadler, Peter F
2003-10-01
The primordial genetic code probably has been a drastically simplified ancestor of the canonical code that is used by contemporary cells. In order to understand how the present-day code came about we first need to explain how the language of the building plan can change without destroying the encoded information. In this work we introduce a minimal organism model that is based on biophysically reasonable descriptions of RNA and protein, namely secondary structure folding and knowledge based potentials. The evolution of a population of such organism under competition for a common resource is simulated explicitly at the level of individual replication events. Starting with very simple codes, and hence greatly reduced amino acid alphabets, we observe a diversification of the codes in most simulation runs. The driving force behind this effect is the possibility to produce fitter proteins when the repertoire of amino acids is enlarged.
Adventures in hepatocarcinogenesis.
Pitot, Henry C
2007-01-01
Neoplasia is a heritably altered, relatively autonomous growth of tissue. Hepatocarcinogenesis, the pathogenesis of neoplasia in liver, as modeled in the rat exhibits three distinct, quantifiable stages: initiation, promotion, and progression. Simple mutations and/or epigenetic alterations may result in the irreversible stage of initiation. The stage of promotion results from selective enhancement of cell replication and selective inhibition of cellular apoptosis of initiated cells dependent on the genetic and/or epigenetic alterations of the latter. The irreversible stage of progression results from initial karyotypic alterations that evolve into greater degrees of genomic instability. The initial genomic alteration in the transition from promotion to progression may involve primarily epigenetic mechanisms driven by epigenetic and genetic alterations fixed during the stage of promotion.
Genetics of Inflammatory Bowel Diseases
McGovern, Dermot; Kugathasan, Subra; Cho, Judy H.
2015-01-01
In this Review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and non-coding genetic variation. In the small minority of loci where major association signals correspond to non-synonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve non-coding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that expression of the large majority of human genes is regulated by non-coding genetic variation. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (i.e. odds ratios markedly deviating from one) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in very-early onset, more severe cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility, through emerging precision medicine initiatives. We discuss the rapidly evolving area of direct to consumer genetic testing, as well as the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect of partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research centers and across subspecialties and disciplines will be required to fully realize the promise of genetic discovery in IBD. PMID:26255561
Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique
NASA Technical Reports Server (NTRS)
Tiampo, Kristy F.
1999-01-01
In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.
Saturation of recognition elements blocks evolution of new tRNA identities
Saint-Léger, Adélaïde; Bello, Carla; Dans, Pablo D.; Torres, Adrian Gabriel; Novoa, Eva Maria; Camacho, Noelia; Orozco, Modesto; Kondrashov, Fyodor A.; Ribas de Pouplana, Lluís
2016-01-01
Understanding the principles that led to the current complexity of the genetic code is a central question in evolution. Expansion of the genetic code required the selection of new transfer RNAs (tRNAs) with specific recognition signals that allowed them to be matured, modified, aminoacylated, and processed by the ribosome without compromising the fidelity or efficiency of protein synthesis. We show that saturation of recognition signals blocks the emergence of new tRNA identities and that the rate of nucleotide substitutions in tRNAs is higher in species with fewer tRNA genes. We propose that the growth of the genetic code stalled because a limit was reached in the number of identity elements that can be effectively used in the tRNA structure. PMID:27386510
Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.
Rebeiz, Mark; Patel, Nipam H; Hinman, Veronica F
2015-01-01
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Evidence-Based Reading and Writing Assessment for Dyslexia in Adolescents and Young Adults
Nielsen, Kathleen; Abbott, Robert; Griffin, Whitney; Lott, Joe; Raskind, Wendy; Berninger, Virginia W.
2016-01-01
The same working memory and reading and writing achievement phenotypes (behavioral markers of genetic variants) validated in prior research with younger children and older adults in a multi-generational family genetics study of dyslexia were used to study 81 adolescent and young adults (ages 16 to 25) from that study. Dyslexia is impaired word reading and spelling skills below the population mean and ability to use oral language to express thinking. These working memory predictor measures were given and used to predict reading and writing achievement: Coding (storing and processing) heard and spoken words (phonological coding), read and written words (orthographic coding), base words and affixes (morphological coding), and accumulating words over time (syntax coding); Cross-Code Integration (phonological loop for linking phonological name and orthographic letter codes and orthographic loop for linking orthographic letter codes and finger sequencing codes), and Supervisory Attention (focused and switching attention and self-monitoring during written word finding). Multiple regressions showed that most predictors explained individual difference in at least one reading or writing outcome, but which predictors explained unique variance beyond shared variance depended on outcome. ANOVAs confirmed that research-supported criteria for dyslexia validated for younger children and their parents could be used to diagnose which adolescents and young adults did (n=31) or did not (n=50) meet research criteria for dyslexia. Findings are discussed in reference to the heterogeneity of phenotypes (behavioral markers of genetic variables) and their application to assessment for accommodations and ongoing instruction for adolescents and young adults with dyslexia. PMID:26855554
Nutrigenetics: links between genetic background and response to Mediterranean-type diets.
Lairon, Denis; Defoort, Catherine; Martin, Jean-Charles; Amiot-Carlin, Marie-Jo; Gastaldi, Marguerite; Planells, Richard
2009-09-01
It has been substantiated that the onset of most major diseases (CVD, diabetes, obesity, cancers, etc.) is modulated by the interaction between genetic traits (susceptibility) and environmental factors, especially diet. We aim to report more specific observations relating the effects of Mediterranean-type diets on cardiovascular risk factors and the genetic background of subjects. In the first part, general concepts about nutrigenetics are briefly presented. Human genome has, overall, only marginally changed since its origin but it is thought that minor changes (polymorphisms) of common genes that occurred during evolution are now widespread in human populations, and can alter metabolic pathways and response to diets. In the second part, we report the data obtained during the Medi-RIVAGE intervention study performed in the South-East of France. Data obtained in 169 subjects at moderate cardiovascular risk after a 3-month dietary intervention indicate that some of the twenty-three single nucleotide polymorphisms (SNP) studied exhibit interactions with diets regarding changes of particular parameters after 3-month regimens. Detailed examples are presented, such as interactions between SNP in genes coding for microsomial transfer protein (MTTP) or intestinal fatty acid binding protein (FABP2) and triglyceride, LDL-cholesterol or Framigham score lowering in responses to Mediterranean-type diets. The data provided add further evidence of the interaction between particular SNP and metabolic responses to diets. Finally, improvement in dietary recommendations by taking into account known genetic variability has been discussed.
On models of the genetic code generated by binary dichotomic algorithms.
Gumbel, Markus; Fimmel, Elena; Danielli, Alberto; Strüngmann, Lutz
2015-02-01
In this paper we introduce the concept of a BDA-generated model of the genetic code which is based on binary dichotomic algorithms (BDAs). A BDA-generated model is based on binary dichotomic algorithms (BDAs). Such a BDA partitions the set of 64 codons into two disjoint classes of size 32 each and provides a generalization of known partitions like the Rumer dichotomy. We investigate what partitions can be generated when a set of different BDAs is applied sequentially to the set of codons. The search revealed that these models are able to generate code tables with very different numbers of classes ranging from 2 to 64. We have analyzed whether there are models that map the codons to their amino acids. A perfect matching is not possible. However, we present models that describe the standard genetic code with only few errors. There are also models that map all 64 codons uniquely to 64 classes showing that BDAs can be used to identify codons precisely. This could serve as a basis for further mathematical analysis using coding theory, for example. The hypothesis that BDAs might reflect a molecular mechanism taking place in the decoding center of the ribosome is discussed. The scan demonstrated that binary dichotomic partitions are able to model different aspects of the genetic code very well. The search was performed with our tool Beady-A. This software is freely available at http://mi.informatik.hs-mannheim.de/beady-a. It requires a JVM version 6 or higher. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Polakovicova, Iva; Jerez, Sofia; Wichmann, Ignacio A.; Sandoval-Bórquez, Alejandra; Carrasco-Véliz, Nicolás; Corvalán, Alejandro H.
2018-01-01
Emerging evidence suggests that chronic inflammation caused by pathogen infection is connected to the development of various types of cancer. It is estimated that up to 20% of all cancer deaths is linked to infections and inflammation. In gastric cancer, such triggers can be infection of the gastric epithelium by either Helicobacter pylori (H. pylori), a bacterium present in half of the world population; or by Epstein-Barr virus (EBV), a double-stranded DNA virus which has recently been associated with gastric cancer. Both agents can establish lifelong inflammation by evolving to escape immune surveillance and, under certain conditions, contribute to the development of gastric cancer. Non-coding RNAs, mainly microRNAs (miRNAs), influence the host innate and adaptive immune responses, though long non-coding RNAs and viral miRNAs also alter these processes. Reports suggest that chronic infection results in altered expression of host miRNAs. In turn, dysregulated miRNAs modulate the host inflammatory immune response, favoring bacterial survival and persistence within the gastric mucosa. Given the established roles of miRNAs in tumorigenesis and innate immunity, they may serve as an important link between H. pylori- and EBV-associated inflammation and carcinogenesis. Example of this is up-regulation of miR-155 in H. pylori and EBV infection. The tumor environment contains a variety of cells that need to communicate with each other. Extracellular vesicles, especially exosomes, allow these cells to deliver certain type of information to other cells promoting cancer growth and metastasis. Exosomes have been shown to deliver not only various types of genetic information, mainly miRNAs, but also cytotoxin-associated gene A (CagA), a major H. pylori virulence factor. In addition, a growing body of evidence demonstrates that exosomes contain genetic material of viruses and viral miRNAs and proteins such as EBV latent membrane protein 1 (LMP1) which are delivered into recipient cells. In this review, we focus on the dysregulated H. pylori- and EBV-associated miRNAs while trying to unveil possible causal mechanisms. Moreover, we discuss the role of exosomes as vehicles for miRNA delivery in H. pylori- and EBV-related carcinogenesis. PMID:29675003
Rare endocrine cancers have novel genetic alterations
A molecular characterization of adrenocortical carcinoma, a rare cancer of the adrenal cortex, analyzed 91 cases for alterations in the tumor genomes and identified several novel genetic mutations as likely mechanisms driving the disease as well as whole genome doubling as a probable driver of the disease.
Ramírez de Arellano, A; Coca, A; de la Figuera, M; Rubio-Terrés, C; Rubio-Rodríguez, D; Gracia, A; Boldeanu, A; Puig-Gilberte, J; Salas, E
2013-10-01
A clinical–genetic function (Cardio inCode®) was generated using genetic variants associated with coronary heart disease (CHD), but not with classical CHD risk factors, to achieve a more precise estimation of the CHD risk of individuals by incorporating genetics into risk equations [Framingham and REGICOR (Registre Gironí del Cor)]. The objective of this study was to conduct an economic analysis of the CHD risk assessment with Cardio inCode®, which incorporates the patient’s genetic risk into the functions of REGICOR and Framingham, compared with the standard method (using only the functions). A Markov model was developed with seven states of health (low CHD risk, moderate CHD risk, high CHD risk, CHD event, recurrent CHD, chronic CHD, and death). The reclassification of CHD risk derived from genetic information and transition probabilities between states was obtained from a validation study conducted in cohorts of REGICOR (Spain) and Framingham (USA). It was assumed that patients classified as at moderate risk by the standard method were the best candidates to test the risk reclassification with Cardio inCode®. The utilities and costs (€; year 2011 values) of Markov states were obtained from the literature and Spanish sources. The analysis was performed from the perspective of the Spanish National Health System, for a life expectancy of 82 years in Spain. An annual discount rate of 3.5 % for costs and benefits was applied. For a Cardio inCode® price of €400, the cost per QALY gained compared with the standard method [incremental cost-effectiveness ratio (ICER)] would be €12,969 and €21,385 in REGICOR and Framingham cohorts, respectively. The threshold price of Cardio inCode® to reach the ICER threshold generally accepted in Spain (€30,000/QALY) would range between €668 and €836. The greatest benefit occurred in the subgroup of patients with moderate–high risk, with a high-risk reclassification of 22.8 % and 12 % of patients and an ICER of €1,652/QALY and €5,884/QALY in the REGICOR and Framingham cohorts, respectively. Sensitivity analyses confirmed the stability of the study results. Cardio inCode® is a cost-effective risk score option in CHD risk assessment compared with the standard method.
Genetic Programming-based Phononic Bandgap Structure Design
2011-09-01
derivative-based methods is that they require a good starting location to find the global minimum of a function. As can be seen from figure 2, there are many... FRANCHI CODE 7100 M H ORR CODE 7120 J A BUCARO CODE 7130 G J ORRIS 7140 J S PERKINS CODE 7140 S A CHIN BING CODE 7180 4555 OVERLOOK AVE SW WASHINGTON DC
Inter-individual variation in expression: a missing link in biomarker biology?
Little, Peter F R; Williams, Rohan B H; Wilkins, Marc R
2009-01-01
The past decade has seen an explosion of variation data demonstrating that diversity of both protein-coding sequences and of regulatory elements of protein-coding genes is common and of functional importance. In this article, we argue that genetic diversity can no longer be ignored in studies of human biology, even research projects without explicit genetic experimental design, and that this knowledge can, and must, inform research. By way of illustration, we focus on the potential role of genetic data in case-control studies to identify and validate cancer protein biomarkers. We argue that a consideration of genetics, in conjunction with proteomic biomarker discovery projects, should improve the proportion of biomarkers that can accurately classify patients.
Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development
Depew, Michael J; Simpson, Carol A; Morasso, Maria; Rubenstein, John LR
2005-01-01
The branchial arches are meristic vertebrate structures, being metameric both between each other within the rostrocaudal series along the ventrocephalic surface of the embryonic head and within each individual arch: thus, just as each branchial arch must acquire a unique identity along the rostrocaudal axis, each structure within the proximodistal axis of an arch must also acquire a unique identity. It is believed that regional specification of metameric structures is controlled by the nested expression of related genes resulting in a regional code, a principal that is though to be demonstrated by the regulation of rostrocaudal axis development in animals exerted by the nested HOM-C/Hox homeobox genes. The nested expression pattern of the Dlx genes within the murine branchial arch ectomesenchyme has more recently led to the proposal of a Dlx code for the regional specification along the proximodistal axis of the branchial arches (i.e. it establishes intra-arch identity). This review re-examines this hypothesis, and presents new work on an allelic series of Dlx loss-of-function mouse mutants that includes various combinations of Dlx1, Dlx2, Dlx3, Dlx5 and Dlx6. Although we confirm fundamental aspects of the hypothesis, we further report a number of novel findings. First, contrary to initial reports, Dlx1, Dlx2 and Dlx1/2 heterozygotes exhibit alterations of branchial arch structures and Dlx2−/− and Dlx1/2−/− mutants have slight alterations of structures derived from the distal portions of their branchial arches. Second, we present evidence for a role for murine Dlx3 in the development of the branchial arches. Third, analysis of compound Dlx mutants reveals four grades of mandibular arch transformations and that the genetic interactions of cis first-order (e.g. Dlx5 and Dlx6), trans second-order (e.g. Dlx5 and Dlx2) and trans third-order paralogues (e.g. Dlx5 and Dlx1) result in significant and distinct morphological differences in mandibular arch development. We conclude by integrating functions of the Dlx genes within the context of a hypothesized general mechanism for the establishment of pattern and polarity in the first branchial arch of gnathostomes that includes regionally secreted growth factors such as Fgf8 and Bmp and other transcription factors such as Msx1, and is consistent both with the structure of the conserved gnathostome jaw bauplan and the elaboration of this bauplan to meet organismal end-point designs. PMID:16313391
Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli
Napolitano, Michael G.; Landon, Matthieu; Gregg, Christopher J.; Lajoie, Marc J.; Govindarajan, Lakshmi; Mosberg, Joshua A.; Kuznetsov, Gleb; Goodman, Daniel B.; Vargas-Rodriguez, Oscar; Isaacs, Farren J.; Söll, Dieter; Church, George M.
2016-01-01
The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 “recalcitrant” AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional “safe replacement zone” (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes. PMID:27601680
Monitoring adaptive genetic responses to environmental change
Michael M. Hansen; Isabelle Olivieri; Donald M. Waller; Einar E. Nielsen; F. W. Allendorf; M. K. Schwartz; C. S. Baker; D. P. Gregovich; J. A. Jackson; K. C. Kendall; L. Laikre; K. McKelvey; M. C. Neel; N. Ryman; R. Short Bull; J. B. Stetz; D. A. Tallmon; C. D. Vojta; R. S. Waples
2012-01-01
Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis...
A SNP panel and online tool for checking genotype concordance through comparing QR codes.
Du, Yonghong; Martin, Joshua S; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun; Huang, Jie
2017-01-01
In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.
A SNP panel and online tool for checking genotype concordance through comparing QR codes
Du, Yonghong; Martin, Joshua S.; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun
2017-01-01
In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine. PMID:28926565
Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding
Carter, Charles W; Wills, Peter R
2018-01-01
Abstract Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide•RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: 1) aaRS enzymes must be interdependent; 2) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; 3) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; and 4) the Central Dogma’s emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene–replicase–translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today. PMID:29077934
MOLECULAR ALTERATIONS IN GLIOBLASTOMA: POTENTIAL TARGETS FOR IMMUNOTHERAPY
Haque, Azizul; Banik, Naren L.; Ray, Swapan K.
2015-01-01
Glioblastoma is the most common and deadly brain tumor, possibly arising from genetic and epigenetic alterations in normal astroglial cells. Multiple cytogenetic, chromosomal, and genetic alterations have been identified in glioblastoma, with distinct expression of antigens (Ags) and biomarkers that may alter therapeutic potential of this aggressive cancer. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. In spite of these treatments, the prognosis for glioblastoma patients is poor. Although recent studies have focused on the development of novel immunotherapeutics against glioblastoma, little is known about glioblastoma specific immune responses. A better understanding of the molecular interactions among glioblastoma tumors, host immune cells, and the tumor microenvironment may give rise to novel integrated approaches for the simultaneous control of tumor escape pathways and the activation of antitumor immune responses. This review provides a detailed overview concerning genetic alterations in glioblastoma, their effects on Ag and biomarker expression and the future design of chemoimmunotherapeutics against glioblastoma. PMID:21199773
Genetic evolution of nevus of Ota reveals clonal heterogeneity acquiring BAP1 and TP53 mutations.
Vivancos, Ana; Caratú, Ginevra; Matito, Judit; Muñoz, Eva; Ferrer, Berta; Hernández-Losa, Javier; Bodet, Domingo; Pérez-Alea, Mileidys; Cortés, Javier; Garcia-Patos, Vicente; Recio, Juan A
2016-03-01
Melanoma presents molecular alterations based on its anatomical location and exposure to environmental factors. Due to its intrinsic genetic heterogeneity, a simple snapshot of a tumor's genetic alterations does not reflect the tumor clonal complexity or specific gene-gene cooperation. Here, we studied the genetic alterations and clonal evolution of a unique patient with a Nevus of Ota that developed into a recurring uveal-like dermal melanoma. The Nevus of Ota and ulterior lesions contained GNAQ mutations were c-KIT positive, and tumors showed an increased RAS pathway activity during progression. Whole-exome sequencing of these lesions revealed the acquisition of BAP1 and TP53 mutations during tumor evolution, thereby unmasking clonal heterogeneity and allowing the identification of cooperating genes within the same tumor. Our results highlight the importance of studying tumor genetic evolution to identify cooperating mechanisms and delineate effective therapies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
TIP: protein backtranslation aided by genetic algorithms.
Moreira, Andrés; Maass, Alejandro
2004-09-01
Several applications require the backtranslation of a protein sequence into a nucleic acid sequence. The degeneracy of the genetic code makes this process ambiguous; moreover, not every translation is equally viable. The usual answer is to mimic the codon usage of the target species; however, this does not capture all the relevant features of the 'genomic styles' from different taxa. The program TIP ' Traducción Inversa de Proteínas') applies genetic algorithms to improve the backtranslation, by minimizing the difference of some coding statistics with respect to their average value in the target. http://www.cmm.uchile.cl/genoma/tip/
Expanding and reprogramming the genetic code.
Chin, Jason W
2017-10-04
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Network perturbation by recurrent regulatory variants in cancer
Cho, Ara; Lee, Insuk; Choi, Jung Kyoon
2017-01-01
Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928
The Genetic Privacy Act and commentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annas, G.J.; Glantz, L.H.; Roche, P.A.
1995-02-28
The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. The DNA molecule holds an extensive amount of currently indecipherable information. The major goal of the Human Genome Project is to decipher this code so that the information it contains is accessible. The privacy question is, accessible to whom? The highly personal nature of the information contained in DNA can be illustrated by thinking of DNA as containing an individual`s {open_quotes}future diary.{close_quotes} A diary is perhapsmore » the most personal and private document a person can create. It contains a person`s innermost thoughts and perceptions, and is usually hidden and locked to assure its secrecy. Diaries describe the past. The information in one`s genetic code can be thought of as a coded probabilistic future diary because it describes an important part of a unique and personal future. This document presents an introduction to the proposal for federal legislation `the Genetic Privacy Act`; a copy of the proposed act; and comment.« less
Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs
Adoue, Veronique; Schiavi, Alicia; Light, Nicholas; Almlöf, Jonas Carlsson; Lundmark, Per; Ge, Bing; Kwan, Tony; Caron, Maxime; Rönnblom, Lars; Wang, Chuan; Chen, Shu-Huang; Goodall, Alison H; Cambien, Francois; Deloukas, Panos; Ouwehand, Willem H; Syvänen, Ann-Christine; Pastinen, Tomi
2014-01-01
Most complex disease-associated genetic variants are located in non-coding regions and are therefore thought to be regulatory in nature. Association mapping of differential allelic expression (AE) is a powerful method to identify SNPs with direct cis-regulatory impact (cis-rSNPs). We used AE mapping to identify cis-rSNPs regulating gene expression in 55 and 63 HapMap lymphoblastoid cell lines from a Caucasian and an African population, respectively, 70 fibroblast cell lines, and 188 purified monocyte samples and found 40–60% of these cis-rSNPs to be shared across cell types. We uncover a new class of cis-rSNPs, which disrupt footprint-derived de novo motifs that are predominantly bound by repressive factors and are implicated in disease susceptibility through overlaps with GWAS SNPs. Finally, we provide the proof-of-principle for a new approach for genome-wide functional validation of transcription factor–SNP interactions. By perturbing NFκB action in lymphoblasts, we identified 489 cis-regulated transcripts with altered AE after NFκB perturbation. Altogether, we perform a comprehensive analysis of cis-variation in four cell populations and provide new tools for the identification of functional variants associated to complex diseases. PMID:25326100
[Epigenetic alterations in acute lymphoblastic leukemia].
Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.
O'Roak, Brian J; Vives, Laura; Girirajan, Santhosh; Karakoc, Emre; Krumm, Niklas; Coe, Bradley P; Levy, Roie; Ko, Arthur; Lee, Choli; Smith, Joshua D; Turner, Emily H; Stanaway, Ian B; Vernot, Benjamin; Malig, Maika; Baker, Carl; Reilly, Beau; Akey, Joshua M; Borenstein, Elhanan; Rieder, Mark J; Nickerson, Deborah A; Bernier, Raphael; Shendure, Jay; Eichler, Evan E
2012-04-04
It is well established that autism spectrum disorders (ASD) have a strong genetic component; however, for at least 70% of cases, the underlying genetic cause is unknown. Under the hypothesis that de novo mutations underlie a substantial fraction of the risk for developing ASD in families with no previous history of ASD or related phenotypes--so-called sporadic or simplex families--we sequenced all coding regions of the genome (the exome) for parent-child trios exhibiting sporadic ASD, including 189 new trios and 20 that were previously reported. Additionally, we also sequenced the exomes of 50 unaffected siblings corresponding to these new (n = 31) and previously reported trios (n = 19), for a total of 677 individual exomes from 209 families. Here we show that de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD. Moreover, 39% (49 of 126) of the most severe or disruptive de novo mutations map to a highly interconnected β-catenin/chromatin remodelling protein network ranked significantly for autism candidate genes. In proband exomes, recurrent protein-altering mutations were observed in two genes: CHD8 and NTNG1. Mutation screening of six candidate genes in 1,703 ASD probands identified additional de novo, protein-altering mutations in GRIN2B, LAMC3 and SCN1A. Combined with copy number variant (CNV) data, these results indicate extreme locus heterogeneity but also provide a target for future discovery, diagnostics and therapeutics.
Castellone, Maria D; Verrienti, Antonella; Magendra Rao, Deva; Sponziello, Marialuisa; Fabbro, Dora; Muthu, Magesh; Durante, Cosimo; Maranghi, Marianna; Damante, Giuseppe; Pizzolitto, Stefano; Costante, Giuseppe; Russo, Diego; Santoro, Massimo; Filetti, Sebastiano
2010-10-01
In multiple endocrine neoplasia (MEN), rearranged during transfection (RET), gene testing has been extensively exploited to characterize tumour aggressiveness and optimize the diagnostic and clinical management. To report the underlying genetic alterations in an unusual case of MEN type 2 (MEN-2A). Occult medullary thyroid carcinoma (MTC) was diagnosed in a 44-year-old man who had presented with unilateral phaeochromcytoma. DNA extracted from the blood and tumour tissues was analysed for mutations in RET. The transforming potential and mitogenic properties of the identified RET mutation were investigated. The patient carried a novel heterozygous germ-line RET mutation in exon 5 (Val292Met, GTG>ATG) (V292M/RET) with no evidence of additional somatic alterations. The mutation maps to the third cadherin-like domain of RET, which is usually not included in RET screening. Interestingly, MTC with concomitant phaeochromcytoma has never been associated with a RET mutation involving the extracellular cadherin-like domain. V292M/RET was absent in the only two relatives examined. In vitro assays indicate that the mutant has low-grade transforming potential. Complete characterization and classification of all novel RET mutations are essential for extending genetic analysis in clinical practice. Our findings suggest that: (i) in all MEN-2 patients negative for RET hot-spot mutations, testing should be extended to all coding regions of the gene and (ii) the newly identified V292M/RET mutation is characterized by relatively weak in vitro transforming ability. © 2010 Blackwell Publishing Ltd.
Kuipers, Jeroen; van Ham, Tjakko J; Kalicharan, Ruby D; Veenstra-Algra, Anneke; Sjollema, Klaas A; Dijk, Freark; Schnell, Ulrike; Giepmans, Ben N G
2015-04-01
Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely difficult. Even when combining light microscopy (LM) with EM (correlated LM and EM: CLEM) to find areas of interest, the labeling of molecules is still a challenge. We present a new genetically encoded probe for CLEM, named "FLIPPER", which facilitates quantitative analysis of ultrastructural features in cells. FLIPPER consists of a fluorescent protein (cyan, green, orange, or red) for LM visualization, fused to a peroxidase allowing visualization of targets at the EM level. The use of FLIPPER is straightforward and because the module is completely genetically encoded, cells can be optimally prepared for EM examination. We use FLIPPER to quantify cellular morphology at the EM level in cells expressing a normal and disease-causing point-mutant cell-surface protein called EpCAM (epithelial cell adhesion molecule). The mutant protein is retained in the endoplasmic reticulum (ER) and could therefore alter ER function and morphology. To reveal possible ER alterations, cells were co-transfected with color-coded full-length or mutant EpCAM and a FLIPPER targeted to the ER. CLEM examination of the mixed cell population allowed color-based cell identification, followed by an unbiased quantitative analysis of the ER ultrastructure by EM. Thus, FLIPPER combines bright fluorescent proteins optimized for live imaging with high sensitivity for EM labeling, thereby representing a promising tool for CLEM.
Rhodes, Gillian; Ewing, Louise; Jeffery, Linda; Avard, Eleni; Taylor, Libby
2014-09-01
Faces are adaptively coded relative to visual norms that are updated by experience. This coding is compromised in autism and the broader autism phenotype, suggesting that atypical adaptive coding of faces may be an endophenotype for autism. Here we investigate the nature of this atypicality, asking whether adaptive face-coding mechanisms are fundamentally altered, or simply less responsive to experience, in autism. We measured adaptive coding, using face identity aftereffects, in cognitively able children and adolescents with autism and neurotypical age- and ability-matched participants. We asked whether these aftereffects increase with adaptor identity strength as in neurotypical populations, or whether they show a different pattern indicating a more fundamental alteration in face-coding mechanisms. As expected, face identity aftereffects were reduced in the autism group, but they nevertheless increased with adaptor strength, like those of our neurotypical participants, consistent with norm-based coding of face identity. Moreover, their aftereffects correlated positively with face recognition ability, consistent with an intact functional role for adaptive coding in face recognition ability. We conclude that adaptive norm-based face-coding mechanisms are basically intact in autism, but are less readily calibrated by experience. Copyright © 2014 Elsevier Ltd. All rights reserved.
2012-01-01
We have entered a new era in agricultural and biomedical science made possible by remarkable advances in DNA sequencing technologies. The complete sequence of an individual’s set of chromosomes (collectively, its genome) provides a primary genetic code for what makes that individual unique, just as the contents of every personal computer reflect the unique attributes of its owner. But a second code, composed of “epigenetic” layers of information, affects the accessibility of the stored information and the execution of specific tasks. Nature’s second code is enigmatic and must be deciphered if we are to fully understand and optimize the genetic potential of crop plants. The goal of the Epigenomics of Plants International Consortium is to crack this second code, and ultimately master its control, to help catalyze a new green revolution. PMID:22751210
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R
2008-05-15
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... into which altered genetic matter, or genetic matter from another species, has been transferred in order that the host organism acquires the genetic traits of the transferred genes. Motorized personal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... into which altered genetic matter, or genetic matter from another species, has been transferred in order that the host organism acquires the genetic traits of the transferred genes. Motorized personal...
Code of Federal Regulations, 2011 CFR
2011-01-01
... into which altered genetic matter, or genetic matter from another species, has been transferred in order that the host organism acquires the genetic traits of the transferred genes. Motorized personal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... into which altered genetic matter, or genetic matter from another species, has been transferred in order that the host organism acquires the genetic traits of the transferred genes. Motorized personal...
A unified model of the standard genetic code.
José, Marco V; Zamudio, Gabriel S; Morgado, Eberto R
2017-03-01
The Rodin-Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
This is the first code, designed to run on a desktop, which models the intracellular replication and the cell-to-cell infection and demonstrates virus evolution at the molecular level. This code simulates the infection of a population of "idealized biological cells" (represented as objects that do not divide or have metabolism) with "virus" (represented by its genetic sequence), the replication and simultaneous mutation of the virus which leads to evolution of the population of genetically diverse viruses. The code is built to simulate single-stranded RNA viruses. The input for the code is 1. the number of biological cells in the culture,more » 2. the initial composition of the virus population, 3. the reference genome of the RNA virus, 4. the coordinates of the genome regions and their significance and, 5. parameters determining the dynamics of virus replication, such as the mutation rate. The simulation ends when all cells have been infected or when no more infections occurs after a given number of attempts. The code has the ability to simulate the evolution of the virus in serial passage of cell "cultures", i.e. after the end of a simulation, a new one is immediately scheduled with a new culture of infected cells. The code outputs characteristics of the resulting virus population dynamics and genetic composition of the virus population, such as the top dominant genomes, percentage of a genome with specific characteristics.« less
Attempt to model laboratory-scale diffusion and retardation data.
Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V
2001-02-01
Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.
The "Wow! signal" of the terrestrial genetic code
NASA Astrophysics Data System (ADS)
shCherbak, Vladimir I.; Makukov, Maxim A.
2013-05-01
It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store non-biological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10-13). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible ways of embedding the signal into the code and possible interpretation of its content are discussed. Overall, while the code is nearly optimized biologically, its limited capacity is used extremely efficiently to pass non-biological information.
Marancik, David; Gao, Guangtu; Paneru, Bam; Ma, Hao; Hernandez, Alvaro G.; Salem, Mohamed; Yao, Jianbo; Palti, Yniv; Wiens, Gregory D.
2014-01-01
Genetic improvement for enhanced disease resistance in fish is an increasingly utilized approach to mitigate endemic infectious disease in aquaculture. In domesticated salmonid populations, large phenotypic variation in disease resistance has been identified but the genetic basis for altered responsiveness remains unclear. We previously reported three generations of selection and phenotypic validation of a bacterial cold water disease (BCWD) resistant line of rainbow trout, designated ARS-Fp-R. This line has higher survival after infection by either standardized laboratory challenge or natural challenge as compared to two reference lines, designated ARS-Fp-C (control) and ARS-Fp-S (susceptible). In this study, we utilized 1.1 g fry from the three genetic lines and performed RNA-seq to measure transcript abundance from the whole body of naive and Flavobacterium psychrophilum infected fish at day 1 (early time-point) and at day 5 post-challenge (onset of mortality). Sequences from 24 libraries were mapped onto the rainbow trout genome reference transcriptome of 46,585 predicted protein coding mRNAs that included 2633 putative immune-relevant gene transcripts. A total of 1884 genes (4.0% genome) exhibited differential transcript abundance between infected and mock-challenged fish (FDR < 0.05) that included chemokines, complement components, tnf receptor superfamily members, interleukins, nod-like receptor family members, and genes involved in metabolism and wound healing. The largest number of differentially expressed genes occurred on day 5 post-infection between naive and challenged ARS-Fp-S line fish correlating with high bacterial load. After excluding the effect of infection, we identified 21 differentially expressed genes between the three genetic lines. In summary, these data indicate global transcriptome differences between genetic lines of naive animals as well as differentially regulated transcriptional responses to infection. PMID:25620978
Powers, Sara J.; Wang, Yingying; Beach, Sara D.; Sideridis, Georgios D.; Gaab, Nadine
2016-01-01
Developmental dyslexia is a language-based learning disability characterized by persistent difficulty in learning to read. While an understanding of genetic contributions is emerging, the ways the environment affects brain functioning in children with developmental dyslexia are poorly understood. A relationship between the home literacy environment (HLE) and neural correlates of reading has been identified in typically developing children, yet it remains unclear whether similar effects are observable in children with a genetic predisposition for dyslexia. Understanding environmental contributions is important given that we do not understand why some genetically at-risk children do not develop dyslexia. Here we investigate for the first time the relationship between HLE and the neural correlates of phonological processing in beginning readers with (FHD+, n=29) and without (FHD−, n=21) a family history of developmental dyslexia. We controlled for socio-economic status to isolate the neurobiological mechanism by which HLE affects reading development. Group differences revealed stronger correlation of HLE with brain activation in the left inferior/middle frontal and right fusiform gyri in FHD− compared to FHD+ children, suggesting greater impact of HLE on manipulation of phonological codes and recruitment of orthographic representations in typically developing children. In contrast, activation in the right precentral gyrus showed a significantly stronger correlation with HLE in FHD+ compared to FHD− children, suggesting emerging compensatory networks in genetically at-risk children. Overall, our results suggest that genetic predisposition for dyslexia alters contributions of HLE to early reading skills before formal reading instruction, which has important implications for educational practice and intervention models. PMID:27550556
Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.
2018-01-01
Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869
Powers, Sara J; Wang, Yingying; Beach, Sara D; Sideridis, Georgios D; Gaab, Nadine
2016-10-01
Developmental dyslexia is a language-based learning disability characterized by persistent difficulty in learning to read. While an understanding of genetic contributions is emerging, the ways the environment affects brain functioning in children with developmental dyslexia are poorly understood. A relationship between the home literacy environment (HLE) and neural correlates of reading has been identified in typically developing children, yet it remains unclear whether similar effects are observable in children with a genetic predisposition for dyslexia. Understanding environmental contributions is important given that we do not understand why some genetically at-risk children do not develop dyslexia. Here, we investigate for the first time the relationship between HLE and the neural correlates of phonological processing in beginning readers with (FHD+, n = 29) and without (FHD-, n = 21) a family history of developmental dyslexia. We further controlled for socioeconomic status to isolate the neurobiological mechanism by which HLE affects reading development. Group differences revealed stronger correlation of HLE with brain activation in the left inferior/middle frontal and right fusiform gyri in FHD- compared to FHD+ children, suggesting greater impact of HLE on manipulation of phonological codes and recruitment of orthographic representations in typically developing children. In contrast, activation in the right precentral gyrus showed a significantly stronger correlation with HLE in FHD+ compared to FHD- children, suggesting emerging compensatory networks in genetically at-risk children. Overall, our results suggest that genetic predisposition for dyslexia alters contributions of HLE to early reading skills before formal reading instruction, which has important implications for educational practice and intervention models.
Genes, embryos, and future people.
Glannon, Walter
1998-07-01
Testing embryonic cells for genetic abnormalities gives us the capacity to predict whether and to what extent people will exist with disease and disability. Moreover, the freezing of embryos for long periods of time enables us to alter the length of a normal human lifespan. After highlighting the shortcomings of somatic-cell gene therapy and germ-line genetic alteration, I argue that the testing and selective termination of genetically defective embryos is the only medically and morally defensible way to prevent the existence of people with severe disability, pain and suffering that make their lives not worth living for them on the whole. In addition, I consider the possible harmful effects on children born from frozen embryos after the deaths of their biological parents, or when their parents are at an advanced age. I also explore whether embryos have moral status and whether the prospects for disease-preventing genetic alteration can justify long-term cryopreservation of embryos.
Tumor Hypoxia and Genetic Alterations in Sporadic Cancers
Koi, Minoru; Boland, C.R.
2011-01-01
The cancer genome contains many gene alterations. How cancer cells acquire these alterations is a matter for discussion. One hypothesis is that cancer cells obtain mutations in genome stability genes at an early stage of tumor development, which results in genetic instability and generates a gene pool that enhances cellular proliferation and survival. Another hypothesis puts its emphasis on the natural selection of gene mutations for fitness. Recent data for systematic cancer genome sequencing shows that mutations in stability genes are rare in human sporadic cancers. Instead, many “passenger” mutations that do not drive the carcinogenesis process have been found in the cancer genome. Both the hypotheses mentioned above fall short in explaining recent data. Recently, many studies demonstrate the role of the tumor microenvironment, especially hypoxia and reoxygenation, in genetic instability. In this review, literature will be presented which supports a third hypothesis, i.e. that hypoxia/re-oxygenation induces genetic instability. PMID:21272156
Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations.
Zhou, Stanley; Treloar, Aislinn E; Lupien, Mathieu
2016-11-01
The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR. ©2016 American Association for Cancer Research.
González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.
2017-01-01
Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. PMID:28159988
RNA-Seq identifies SNP markers for growth traits in rainbow trout.
Salem, Mohamed; Vallejo, Roger L; Leeds, Timothy D; Palti, Yniv; Liu, Sixin; Sabbagh, Annas; Rexroad, Caird E; Yao, Jianbo
2012-01-01
Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs) explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample) were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is suitable for marker development in non-model species lacking complete and well-annotated genome reference sequences.
Genetic alterations in hepatocellular carcinoma: An update
Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong
2016-01-01
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC. PMID:27895396
SETI in vivo: testing the we-are-them hypothesis
NASA Astrophysics Data System (ADS)
Makukov, Maxim A.; Shcherbak, Vladimir I.
2018-04-01
After it was proposed that life on Earth might descend from seeding by an earlier extraterrestrial civilization motivated to secure and spread life, some authors noted that this alternative offers a testable implication: microbial seeds could be intentionally supplied with a durable signature that might be found in extant organisms. In particular, it was suggested that the optimal location for such an artefact is the genetic code, as the least evolving part of cells. However, as the mainstream view goes, this scenario is too speculative and cannot be meaningfully tested because encoding/decoding a signature within the genetic code is something ill-defined, so any retrieval attempt is doomed to guesswork. Here we refresh the seeded-Earth hypothesis in light of recent observations, and discuss the motivation for inserting a signature. We then show that `biological SETI' involves even weaker assumptions than traditional SETI and admits a well-defined methodological framework. After assessing the possibility in terms of molecular and evolutionary biology, we formalize the approach and, adopting the standard guideline of SETI that encoding/decoding should follow from first principles and be convention-free, develop a universal retrieval strategy. Applied to the canonical genetic code, it reveals a non-trivial precision structure of interlocked logical and numerical attributes of systematic character (previously we found these heuristically). To assess this result in view of the initial assumption, we perform statistical, comparison, interdependence and semiotic analyses. Statistical analysis reveals no causal connection of the result to evolutionary models of the genetic code, interdependence analysis precludes overinterpretation, and comparison analysis shows that known variations of the code lack any precision-logic structures, in agreement with these variations being post-LUCA (i.e. post-seeding) evolutionary deviations from the canonical code. Finally, semiotic analysis shows that not only the found attributes are consistent with the initial assumption, but that they make perfect sense from SETI perspective, as they ultimately maintain some of the most universal codes of culture.
The chemical basis for the origin of the genetic code and the process of protein synthesis
NASA Technical Reports Server (NTRS)
1981-01-01
The principles upon which the process of protein synthesis and the genetic code were established are elucidated. Extensive work on nuclear magnetic resonance studies of both monomermonomer and monoamino acid polynucleotide interactions is included. A new method of general utility for studying any amino acid interacting with any polynucleotide was developed. This system involves the use of methyl esters of amino acids interacting with polynucleotides.
The genetic code as a periodic table: algebraic aspects.
Bashford, J D; Jarvis, P D
2000-01-01
The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.
Emergence of Coding and its Specificity as a Physico-Informatic Problem
NASA Astrophysics Data System (ADS)
Wills, Peter R.; Nieselt, Kay; McCaskill, John S.
2015-06-01
We explore the origin-of-life consequences of the view that biological systems are demarcated from inanimate matter by their possession of referential information, which is processed computationally to control choices of specific physico-chemical events. Cells are cybernetic: they use genetic information in processes of communication and control, subjecting physical events to a system of integrated governance. The genetic code is the most obvious example of how cells use information computationally, but the historical origin of the usefulness of molecular information is not well understood. Genetic coding made information useful because it imposed a modular metric on the evolutionary search and thereby offered a general solution to the problem of finding catalysts of any specificity. We use the term "quasispecies symmetry breaking" to describe the iterated process of self-organisation whereby the alphabets of distinguishable codons and amino acids increased, step by step.
Francis, Brian R.
2015-01-01
Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet. PMID:25679748
EDGE 2017 R&D 100 Entry with Appendix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, Patrick Sam Guy; Davenport, Karen Walston; Li, Po-E
Diabetes, infertility, cancer, and Alzheimer’s disease—the key to one day preventing or even curing such afflictions and diseases (both infectious and genetically driven) may be locked in our own genetic code and the code of microorganisms that inhabit our bodies. The study of this code, known as genomics, has recently become much more promising as a result of two things: (1) vast improvements in high-throughput, nextgeneration sequencing (NSG), and (2) an exponential decrease in the cost of such sequencing. For example, it originally cost approximately $3 billion to sequence the human genome; today, this genome could be resequenced for lessmore » than $1,000.« less
Shi, Lihua; Zhang, Zhe; Yu, Angela M; Wang, Wei; Wei, Zhi; Akhter, Ehtisham; Maurer, Kelly; Costa Reis, Patrícia; Song, Li; Petri, Michelle; Sullivan, Kathleen E
2014-01-01
Gene expression studies of peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE) have demonstrated a type I interferon signature and increased expression of inflammatory cytokine genes. Studies of patients with Aicardi Goutières syndrome, commonly cited as a single gene model for SLE, have suggested that accumulation of non-coding RNAs may drive some of the pathologic gene expression, however, no RNA sequencing studies of SLE patients have been performed. This study was designed to define altered expression of coding and non-coding RNAs and to detect globally altered RNA processing in SLE. Purified monocytes from eight healthy age/gender matched controls and nine SLE patients (with low-moderate disease activity and lack of biologic drug use or immune suppressive treatment) were studied using RNA-seq. Quantitative RT-PCR was used to validate findings. Serum levels of endotoxin were measured by ELISA. We found that SLE patients had diminished expression of most endogenous retroviruses and small nucleolar RNAs, but exhibited increased expression of pri-miRNAs. Splicing patterns and polyadenylation were significantly altered. In addition, SLE monocytes expressed novel transcripts, an effect that was replicated by LPS treatment of control monocytes. We further identified increased circulating endotoxin in SLE patients. Monocytes from SLE patients exhibit globally dysregulated gene expression. The transcriptome is not simply altered by the transcriptional activation of a set of genes, but is qualitatively different in SLE. The identification of novel loci, inducible by LPS, suggests that chronic microbial translocation could contribute to the immunologic dysregulation in SLE, a new potential disease mechanism.
Bioinformatics and variability in drug response: a protein structural perspective
Lahti, Jennifer L.; Tang, Grace W.; Capriotti, Emidio; Liu, Tianyun; Altman, Russ B.
2012-01-01
Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk–benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein–drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein–drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants. PMID:22552919
Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni
2012-01-01
Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821
Drug metabolism and hypersensitivity reactions to drugs.
Agúndez, José A G; Mayorga, Cristobalina; García-Martin, Elena
2015-08-01
The aim of the present review was to discuss recent advances supporting a role of drug metabolism, and particularly of the generation of reactive metabolites, in hypersensitivity reactions to drugs. The development of novel mass-spectrometry procedures has allowed the identification of reactive metabolites from drugs known to be involved in hypersensitivity reactions, including amoxicillin and nonsteroidal antiinflammatory drugs such as aspirin, diclofenac or metamizole. Recent studies demonstrated that reactive metabolites may efficiently bind plasma proteins, thus suggesting that drug metabolites, rather than - or in addition to - parent drugs, may elicit an immune response. As drug metabolic profiles are often determined by variability in the genes coding for drug-metabolizing enzymes, it is conceivable that an altered drug metabolism may predispose to the generation of reactive drug metabolites and hence to hypersensitivity reactions. These findings support the potential for the use of pharmacogenomics tests in hypersensitivity (type B) adverse reactions, in addition to the well known utility of these tests in type A adverse reactions. Growing evidence supports a link between genetically determined drug metabolism, altered metabolic profiles, generation of highly reactive metabolites and haptenization. Additional research is required to developing robust biomarkers for drug-induced hypersensitivity reactions.
Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina
2017-06-01
Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.
Bartesaghi, Stefano; Graziano, Vincenzo; Galavotti, Sara; Henriquez, Nick V.; Betts, Joanne; Saxena, Jayeta; Minieri, Valentina; A, Deli; Karlsson, Anna; Martins, L. Miguel; Capasso, Melania; Nicotera, Pierluigi; Brandner, Sebastian; De Laurenzi, Vincenzo; Salomoni, Paolo
2015-01-01
Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis. PMID:25583481
Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.
2015-01-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470
Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.
2015-01-01
Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310
Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M
2015-11-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).
Ananian, Viviana; Tozzo, Pamela; Ponzano, Elena; Nitti, Donato; Rodriguez, Daniele; Caenazzo, Luciana
2011-05-01
In certain circumstances, tumour tissue specimens are the only DNA resource available for forensic DNA analysis. However, cancer tissues can show microsatellite instability and loss of heterozygosity which, if concerning the short tandem repeats (STRs) used in the forensic field, can cause misinterpretation of the results. Moreover, though formalin-fixed paraffin-embedded tissues (FFPET) represent a large resource for these analyses, the quality of the DNA obtained from this kind of specimen can be an important limit. In this study, we evaluated the use of tumoural tissue as biological material for the determination of genetic profiles in the forensic field, highlighting which STR polymorphisms are more susceptible to tumour genetic alterations and which of the analysed tumours show a higher genetic variability. The analyses were conducted on samples of the same tissues conserved in different storage conditions, to compare genetic profiles obtained by frozen tissues and formalin-fixed paraffin-embedded tissues. The importance of this study is due to the large number of specimens analysed (122), the large number of polymorphisms analysed for each specimen (39), and the possibility to compare, many years after storage, the same tissue frozen and formalin-fixed paraffin-embedded. In the comparison between the genetic profiles of frozen tumour tissues and FFPET, the same genetic alterations have been reported in both kinds of specimens. However, FFPET showed new alterations. We conclude that the use of FFPET requires greater attention than frozen tissues in the results interpretation and great care in both pre-extraction and extraction processes.
Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription
NASA Astrophysics Data System (ADS)
Schmidt, Moritz; Summerer, Daniel
2014-02-01
The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.
Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids
Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James
2015-01-01
Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223
Identification of a rare coding variant in TREM2 in a Chinese individual with Alzheimer's disease.
Bonham, Luke W; Sirkis, Daniel W; Fan, Jia; Aparicio, Renan E; Tse, Marian; Ramos, Eliana Marisa; Wang, Qing; Coppola, Giovanni; Rosen, Howard J; Miller, Bruce L; Yokoyama, Jennifer S
2017-02-01
Rare variation in the TREM2 gene is associated with a broad spectrum of neurodegenerative disorders including Alzheimer's disease (AD). TREM2 encodes a receptor expressed in microglia which is thought to influence neurodegeneration by sensing damage signals and regulating neuroinflammation. Many of the variants reported to be associated with AD, including the rare R47H variant, were discovered in populations of European ancestry and have not replicated in diverse populations from other genetic backgrounds. We utilized a cohort of elderly Chinese individuals diagnosed as cognitively normal, or with mild cognitive impairment or AD to identify a rare variant, A192T, present in a single patient diagnosed with AD. We characterized this variant using biochemical cell surface expression assays and found that it significantly altered cell surface expression of the TREM2 protein. Together these data provide evidence that the A192T variant in TREM2 could contribute risk for AD. This study underscores the increasingly recognized role of immune-related processes in AD and highlights the importance of including diverse populations in research to identify genetic variation that contributes risk for AD and other neurodegenerative disorders.
The spinocerebellar ataxias: order emerges from chaos.
Margolis, Russell L
2002-09-01
In the past decade, the genetic etiologies accounting for most cases of adult-onset dominant cerebellar ataxia have been discovered. This group of disorders, generally referred to as the spinocerebellar ataxias (SCAs), can now be classified by a simple genetic nosology, essentially a sequential list in which each new SCA is given a number. However, recent advances in the elucidation of SCA pathogenesis provide the opportunity to subclassify the disorders into three discrete groups based on pathogenesis: 1) the polyglutamine disorders, SCAs 1, 2, 3, 7, and 17, which result from proteins with toxic stretches of polyglutamine; 2) the channelopathies, SCA6 and episodic ataxia types 1 and 2 (EA1 and EA2), which result from disruption of calcium or potassium channel function; and 3) the gene expression disorders, SCAs 8, 10, and 12, which result from repeat expansions outside of coding regions that may quantitatively alter gene expression. SCAs 4, 5, 9, 11, 13-16, 19, 21, and 22 are of unknown etiology, and may or may not fit into one of these three groups. At present, most diagnostic and therapeutic strategies apply equally to all of the SCAs. Therapy specific for individual diseases or types of diseases is a realistic goal in the foreseeable future.
Liang, Mingyu; Cowley, Allen W.; Mattson, David L.; Kotchen, Theodore A.; Liu, Yong
2013-01-01
Multiple genes and pathways are involved in the pathogenesis of hypertension. Epigenomic studies of hypertension are beginning to emerge and hold great promise of providing novel insights into the mechanisms underlying hypertension. Epigenetic marks or mediators including DNA methylation, histone modifications, and non-coding RNA can be studied at a genome or near-genome scale using epigenomic approaches. At the single gene level, several studies have identified changes in epigenetic modifications in genes expressed in the kidney that correlate with the development of hypertension. Systematic analysis and integration of epigenetic marks at the genome scale, demonstration of cellular and physiological roles of specific epigenetic modifications, and investigation of inheritance are among the major challenges and opportunities for future epigenomic and epigenetic studies of hypertension. Essential hypertension is a multifactorial disease involving multiple genetic and environmental factors and mediated by alterations in multiple biological pathways. Because the non-genetic mechanisms may involve epigenetic modifications, epigenomics is one of the latest concepts and approaches brought to bear on hypertension research. In this article, we summarize briefly the concepts and techniques for epigenomics, discuss the rationale for applying epigenomic approaches to study hypertension, and review the current state of this research area. PMID:24011581
[Biochemical and genetic mechanisms for bacteria to acquire aminoglycoside antibiotic resistance].
Hotta, K
1997-05-01
Aminoglycoside (AG)-modifying enzymes are the major biochemical basis for the AG resistance of clinically-occurring bacteria. Recent AG resistance profiles can be characterized by the involvement of AAC(6') in combination with other modifying enzymes in Gram negative bacteria. AAC(6')/APH(2") in Staphylococcus aureus is also remarkable. Genetic basis for the emergence or alteration of AG resistance profiles includes point mutations in the regulatory region or specific sites of the coding region of AG-modifying enzyme genes, and rearrangement of the genes caused by transposon and/or integron. In addition, semisynthetic AG antibiotics such as amikacin, arbekacin (ABK) and isepamicin were also reviewed for their stability to AG-modifying enzymes. ABK that has been widely used as an anti-MRSA drug in Japan is distinct from the other AGs because its monoacetylated derivatives (3"-N-acetylABK and 2'-N-acetylABK) by AG acetyltransferases, AAC(3) and AAC(2'), respectively, retain clear antibiotic activities. Based on this novel aspect and the lack of modification sites for APH(3') and ANT(4'), ABK should be regarded as the most refractory AG for bacteria to acquire resistance.
Method of rapid production of hybridomas expressing monoclonal antibodies on the cell surface
Meagher, Richard B.; Laterza, Vince
2006-12-12
The present invention relates to genetically altered hybridomas, myelomas and B cells. The invention also relates to utilizing genetically altered hybridomas, myelomas and B cells in methods of making monoclonal antibodies. The present invention also provides populations of hybridomas and B cells that can be utilized to make a monoclonal antibody of interest.
Epigenetics: a new frontier in dentistry.
Williams, S D; Hughes, T E; Adler, C J; Brook, A H; Townsend, G C
2014-06-01
In 2007, only four years after the completion of the Human Genome Project, the journal Science announced that epigenetics was the 'breakthrough of the year'. Time magazine placed it second in the top 10 discoveries of 2009. While our genetic code (i.e. our DNA) contains all of the information to produce the elements we require to function, our epigenetic code determines when and where genes in the genetic code are expressed. Without the epigenetic code, the genetic code is like an orchestra without a conductor. Although there is now a substantial amount of published research on epigenetics in medicine and biology, epigenetics in dental research is in its infancy. However, epigenetics promises to become increasingly relevant to dentistry because of the role it plays in gene expression during development and subsequently potentially influencing oral disease susceptibility. This paper provides a review of the field of epigenetics aimed specifically at oral health professionals. It defines epigenetics, addresses the underlying concepts and provides details about specific epigenetic molecular mechanisms. Further, we discuss some of the key areas where epigenetics is implicated, and review the literature on epigenetics research in dentistry, including its relevance to clinical disciplines. This review considers some implications of epigenetics for the future of dental practice, including a 'personalized medicine' approach to the management of common oral diseases. © 2014 Australian Dental Association.
Tabor, M P; Brakenhoff, R H; van Houten, V M; Kummer, J A; Snel, M H; Snijders, P J; Snow, G B; Leemans, C R; Braakhuis, B J
2001-06-01
In 1953, Slaughter et al. [D. P. Slaughter et al., Cancer (Phila.), 6: 963-968, 1953] proposed the concept of field cancerization in patients with squamous cell carcinoma of the head and neck (HNSCC) and discussed its clinical significance for the development of second primary tumors and local recurrences. To define the process of field cancerization and its putative clinical implications, we analyzed genetic aberrations in HNSCC and the accompanying macroscopically normal mucosa. In 28 HNSCC patients, loss of heterozygosity was determined in tumor and five noncontiguous mucosal biopsies using eight microsatellite markers at 9p, 3p, and 17p. For patients who showed loss of heterozygosity in their mucosal biopsies, all margins of the surgical specimen were subsequently analyzed to determine the extension of the field. In these cases, additional markers at 8p, 13q, and 18q as well as p53 mutations were included to determine subclonal differences between field and tumor. Genetically altered fields were detected in 36% (10 of 28) of the HNSCC patients. The field varied in size between patients and consisted of genetically different subclones. In 7 of 10 cases, the field extended into the surgical margins. One particular patient with a genetically altered field in a surgical margin developed a local recurrence after 28 months of follow-up. Microsatellite analysis showed that this recurrence had more molecular markers in common with the nonresected premalignant field than with the original tumor, suggesting that this persistent field has progressed further into a new malignancy. Our data show that genetically altered mucosa remains after treatment in a significant proportion of HNSCC patients, which may explain in part the high frequency of local recurrences and second primary tumors. Adequate identification and risk assessment of these genetically altered fields may have profound implications for future patient management.
Chigira, M; Watanabe, H
1994-07-01
Preservation of the identity of DNA is the ultimate goal of multicellular organisms. An abnormal DNA sequence in cells within an individual means its parasitic nature in cell society as shown in tumors. Somatic gene arrangement and gene mutation in development may be considered as de novo formation of parasites. It is likely that the developmental process with genetic alterations means symbiosis between altered cells and germ line cells preserving genetic information without alterations, when somatic alteration of DNA sequence is a major mechanism of differentiation. According to the selfish gene theory of Dawkins, germ line cells permit symbiosis when somatic cell society derives clear profit for the replication of original DNA copies.
Skinner, Michael K
2015-04-26
Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Kobayashi, Shintaro; Yoshii, Kentaro; Hirano, Minato; Muto, Memi; Kariwa, Hiroaki
2017-02-01
Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection. Copyright © 2016 Elsevier B.V. All rights reserved.
The Human Proteome Project: Unlocking the Mysteries of Human Life and Unleashing Its Potential
2011-02-16
Australasian Genetics Resource Book. June 2007. Accessed September 27, 2010. www.genetics.com.au/pdf/factsheets/fs24.pdf. 2 White House, Office of...Project and Beyond." The Australasian Genetics Resource Book. June 2007. Accessed September 27, 2010. www.genetics.com.au/pdf/factsheets/fs24.pdf...9 Centre for Genetics Education. "The Human Genetic Code – The Human Genome Project and Beyond." The Australasian Genetics Resource Book. June
Does the Genetic Code Have A Eukaryotic Origin?
Zhang, Zhang; Yu, Jun
2013-01-01
In the RNA world, RNA is assumed to be the dominant macromolecule performing most, if not all, core “house-keeping” functions. The ribo-cell hypothesis suggests that the genetic code and the translation machinery may both be born of the RNA world, and the introduction of DNA to ribo-cells may take over the informational role of RNA gradually, such as a mature set of genetic code and mechanism enabling stable inheritance of sequence and its variation. In this context, we modeled the genetic code in two content variables—GC and purine contents—of protein-coding sequences and measured the purine content sensitivities for each codon when the sensitivity (% usage) is plotted as a function of GC content variation. The analysis leads to a new pattern—the symmetric pattern—where the sensitivity of purine content variation shows diagonally symmetry in the codon table more significantly in the two GC content invariable quarters in addition to the two existing patterns where the table is divided into either four GC content sensitivity quarters or two amino acid diversity halves. The most insensitive codon sets are GUN (valine) and CAN (CAR for asparagine and CAY for aspartic acid) and the most biased amino acid is valine (always over-estimated) followed by alanine (always under-estimated). The unique position of valine and its codons suggests its key roles in the final recruitment of the complete codon set of the canonical table. The distinct choice may only be attributable to sequence signatures or signals of splice sites for spliceosomal introns shared by all extant eukaryotes. PMID:23402863
He, Xiaoqing; Jin, Yi; Ye, Meixia; Chen, Nan; Zhu, Jing; Wang, Jingqi; Jiang, Libo; Wu, Rongling
2017-01-01
How a species responds to such a biotic environment in the community, ultimately leading to its evolution, has been a topic of intense interest to ecological evolutionary biologists. Until recently, limited knowledge was available regarding the genotypic changes that underlie phenotypic changes. Our study implemented GWAS (Genome-Wide Association Studies) to illustrate the genetic architecture of ecological interactions that take place in microbial populations. By choosing 45 such interspecific pairs of Escherichia coli and Staphylococcus aureus strains that were all genotyped throughout the entire genome, we employed Q-ROADTRIPS to analyze the association between single SNPs and microbial abundance measured at each time point for bacterial populations reared in monoculture and co-culture, respectively. We identified a large number of SNPs and indels across the genomes (35.69 G clean data of E. coli and 50.41 G of S. aureus ). We reported 66 and 111 SNPs that were associated with interaction in E. coli and S. aureus , respectively. 23 out of 66 polymorphic changes resulted in amino acid alterations.12 significant genes, such as murE, treA, argS , and relA , which were also identified in previous evolutionary studies. In S. aureus , 111 SNPs detected in coding sequences could be divided into 35 non-synonymous and 76 synonymous SNPs. Our study illustrated the potential of genome-wide association methods for studying rapidly evolving traits in bacteria. Genetic association study methods will facilitate the identification of genetic elements likely to cause phenotypes of interest and provide targets for further laboratory investigation.
Olschwang, S.; Boisson, C.; Thomas, G.
2001-01-01
INTRODUCTION—Germline mutations of the STK11/LKB1 tumour suppressor gene (19p13.3) are responsible for Peutz-Jeghers syndrome (PJS), a rare genetic disorder, which is dominantly inherited. In addition to the typical hamartomatous gastrointestinal polyps and perioral pigmented lesions, PJS is also associated with the development of tumours in various sites. No specific follow up has yet been evaluated for gene carriers. Furthermore, genetic heterogeneity has been reported, which makes genetic counselling difficult. METHODS—We report here the analysis of the STK11/LKB1 locus in a series of 34 PJS families, combining the search for mutations and rearrangements in the coding sequence, allele specific expression tests, and linkage studies. RESULTS—Germline deleterious mutation of the STK11/LKB1 gene were identified in 70% of cases. The hypothesis of a second PJS locus was reinforced and PJS families could be divided into two groups on the basis of the presence or absence of an identified STK11/LKB1 alteration. Analysis of clinical data indicates that the cancer associated risk is markedly different in the two groups. PJS patients with no identified STK11/LKB1 mutation are at major risk for proximal biliary adenocarcinoma, an infrequent tumour in the general population. CONCLUSION—Up to 30% of PJS patients are caused by mutation in an unidentified gene that confers high susceptibility to cancer development. Keywords: Peutz-Jeghers disease; genetic heterogeneity; cancer predisposition; risk estimation PMID:11389158
[Genetic diversity of modern Russian durum wheat cultivars at the gliadin-coding loci].
Kudriavtsev, A M; Dedova, L V; Mel'nik, V A; Shishkina, A A; Upelniek, V P; Novosel'skaia-Dragovich, A Iu
2014-05-01
The allelic diversity at four gliadin-coding loci was examined in modern cultivars of the spring and winter durum wheat Triticum durum Desf. Comparative analysis of the allelic diversity showed that the gene pools of these two types of durum wheat, having different life styles, were considerably different. For the modern spring durum wheat cultivars, a certain reduction of the genetic diversity was observed compared to the cultivars bred in the 20th century.
Xiao, P; Niu, L L; Zhao, Q J; Chen, X Y; Wang, L J; Li, L; Zhang, H P; Guo, J Z; Xu, H Y; Zhong, T
2017-11-16
The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.
Vatrano, S; Righi, L; Vavalá, T; Rapa, I; Busso, M; Izzo, S; Cappia, S; Veltri, A; Papotti, M; Scagliotti, G V; Novello, S
2016-04-01
Recently, in advanced non-small cell lung cancer (NSCLC), standard chemotherapy was flanked by biological agents directed against genomic abnormalities, including EGFR and ALK alterations, that significantly improved patient outcome. Despite these achievements, tumour progression almost always occurs and a reassessment of the tumour genetic profile may contribute to modulating the therapeutic regimen. Resampling may provide tissue for additional tests to detect acquired resistance and/or new genetic alterations, but the currently available information is limited. Histological and genetic reassessments of biopsy or surgical tissue samples from 50 non-squamous NSCLC patients before and after at least one systemic treatment were performed. EGFR, KRAS, BRAF, PIK3CA and HER2 mutations were sequenced, p.T790M was identified with real-time PCR, and ALK and MET genomic alterations by fluorescence in situ hybridization. Overall in baseline biopsies, 37/50 (74 %) tumours had genetic alterations, either single (52 %) or multiple (22 %). Among them, 16 were EGFR mutations and 6 ALK rearrangements. In the second tissue sampling, 54 % of cases had additional genomic changes, including newly acquired alterations (81 %) or losses (18 %). The commonest changes were MET amplification and p.T790M mutation. One case had a histological shift from adenocarcinoma to small cell carcinoma. The remarkable number of molecular changes following systemic therapy and the genetic complexity of some cases underline the value of histological and molecular re-evaluation of lung cancer to tailor the most appropriate therapy during disease progression.
An investigation of messy genetic algorithms
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley
1990-01-01
Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.
Sakrikar, Dhananjay; Mazei-Robison, Michelle S.; Mergy, Marc A.; Richtand, Nathan W.; Han, Qiao; Hamilton, Peter J.; Bowton, Erica; Galli, Aurelio; Veenstra-VanderWeele, Jeremy; Gill, Michael; Blakely, Randy D.
2012-01-01
Attention-Deficit Hyperactivity Disorder (ADHD) is the most commonly diagnosed disorder of school-age children. Although genetic and brain imaging studies suggest a contribution of altered dopamine (DA) signaling in ADHD, evidence of signaling perturbations contributing to risk is largely circumstantial. The presynaptic, cocaine and amphetamine (AMPH)-sensitive DA transporter (DAT) constrains DA availability at pre- and post-synaptic receptors following vesicular release and is targeted by the most commonly prescribed ADHD therapeutics. Using polymorphism discovery approaches with an ADHD cohort, we identified a human DAT (hDAT) coding variant, R615C, located in the transporter’s distal C-terminus, a region previously implicated in constitutive and regulated transporter trafficking. Here we demonstrate that whereas wildtype DAT proteins traffic in a highly regulated manner, DAT 615C proteins recycle constitutively, and demonstrate insensitivity to the endocytic effects of AMPH and protein kinase C (PKC) activation. The disrupted regulation of DAT 615C parallels a redistribution of the transporter variant away from GM1 ganglioside- and flotillin1-enriched membranes, and is accompanied by altered calcium/calmodulin-dependent protein kinase II (CaMKII) and flotillin-1 interactions. Using C-terminal peptides derived from wildtype DAT and the R615C variant, we establish that the DAT 615C C-terminus can act dominantly to preclude AMPH regulation of wildtype DAT. Mutagenesis of DAT C-terminal sequences suggest that phosphorylation of T613 may be important in sorting DAT between constitutive and regulated pathways. Together, our studies support a coupling of DAT microdomain localization with transporter regulation and provide evidence of perturbed DAT activity and DA signaling as a risk determinant for ADHD. PMID:22514303
Dana-Farber Cancer Institute | Office of Cancer Genomics
Functional Annotation of Cancer Genomes Principal Investigator: William C. Hahn, M.D., Ph.D. The comprehensive characterization of cancer genomes has and will continue to provide an increasingly complete catalog of genetic alterations in specific cancers. However, most epithelial cancers harbor hundreds of genetic alterations as a consequence of genomic instability. Therefore, the functional consequences of the majority of mutations remain unclear.
CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic
Marshall, A D; Bailey, C G; Champ, K; Vellozzi, M; O'Young, P; Metierre, C; Feng, Y; Thoeng, A; Richards, A M; Schmitz, U; Biro, M; Jayasinghe, R; Ding, L; Anderson, L; Mardis, E R; Rasko, J E J
2017-01-01
CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer. PMID:28319062
Boldogköi, Zsolt
2004-09-01
Population genetics, the mathematical theory of modern evolutionary biology, defines evolution as the alteration of the frequency of distinct gene variants (alleles) differing in fitness over the time. The major problem with this view is that in gene and protein sequences we can find little evidence concerning the molecular basis of phenotypic variance, especially those that would confer adaptive benefit to the bearers. Some novel data, however, suggest that a large amount of genetic variation exists in the regulatory region of genes within populations. In addition, comparison of homologous DNA sequences of various species shows that evolution appears to depend more strongly on gene expression than on the genes themselves. Furthermore, it has been demonstrated in several systems that genes form functional networks, whose products exhibit interrelated expression profiles. Finally, it has been found that regulatory circuits of development behave as evolutionary units. These data demonstrate that our view of evolution calls for a new synthesis. In this article I propose a novel concept, termed the selfish gene network hypothesis, which is based on an overall consideration of the above findings. The major statements of this hypothesis are as follows. (1) Instead of individual genes, gene networks (GNs) are responsible for the determination of traits and behaviors. (2) The primary source of microevolution is the intraspecific polymorphism in GNs and not the allelic variation in either the coding or the regulatory sequences of individual genes. (3) GN polymorphism is generated by the variation in the regulatory regions of the component genes and not by the variance in their coding sequences. (4) Evolution proceeds through continuous restructuring of the composition of GNs rather than fixing of specific alleles or GN variants.
Swann, Gregory; Byck, Gayle R; Dick, Danielle M; Aliev, Fazil; Latendresse, Shawn J; Riley, Brien; Kertes, Darlene; Sun, Cuie; Salvatore, Jessica E; Bolland, John; Mustanski, Brian
2014-06-01
In a community sample of low-income African American adolescents, we tested the interactive effects of variation in the mu 1 opioid receptor (OPRM1) gene and the occurrence of stressful life events on symptoms of depression. Interactive effects of 24 OPRM1 simple nucleotide polymorphisms (SNP) and adolescent report of stressful life events on depression were tested using multilevel regressions. SNPs were dummy coded to test both additive and dominate forms of coding. Five OPRM1 SNPs showed significant evidence of interaction with stressful life events to alter depression risk (or symptoms) after adjusting for multiple testing and the correlated nature of the SNPs. Follow-up analyses showed significant differences based on OPRM1 genotype at both lower and higher frequencies of stressful life events, suggesting that participants with a copy of the minor allele on OPRM1 SNPs rs524731, rs9478503, rs3778157, rs10485057, and rs511420 have fewer symptoms in low stress conditions but more symptoms in high stress conditions compared to major allele homozygotes. The genetic variants associated with depression in African American adolescents may not translate to other ethnic groups. This study is also limited in that only one gene that functions within a complex biological system is addressed. This current study is the first to find an interaction between OPRM1 and life stress that is associated with depression. It also addressed an understudied population within the behavioral genetics literature. Further research should test additional genes involved in the opioid system and expand the current findings to more diverse samples. Copyright © 2014 Elsevier B.V. All rights reserved.
DNA-based watermarks using the DNA-Crypt algorithm.
Heider, Dominik; Barnekow, Angelika
2007-05-29
The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.
DNA-based watermarks using the DNA-Crypt algorithm
Heider, Dominik; Barnekow, Angelika
2007-01-01
Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434
On Francis Crick, the genetic code, and a clever kid.
Goldstein, Bob
2018-04-02
A few years ago, Francis Crick's son told me a story that I can't get out of my mind. I had contacted Michael Crick by email while digging through the background of the researchers who had cracked the genetic code in the 1960s. Francis had died in 2004, and I was contacting some of the people who knew him when he was struggling to decipher the code. Francis didn't appear to struggle often - he is known mostly for his successes - and, as it turns out, this one well-known struggle may have had a clue sitting just barely out of sight. Copyright © 2018 Elsevier Ltd. All rights reserved.
Identification of common, unique and polymorphic microsatellites among 73 cyanobacterial genomes.
Kabra, Ritika; Kapil, Aditi; Attarwala, Kherunnisa; Rai, Piyush Kant; Shanker, Asheesh
2016-04-01
Microsatellites also known as Simple Sequence Repeats are short tandem repeats of 1-6 nucleotides. These repeats are found in coding as well as non-coding regions of both prokaryotic and eukaryotic genomes and play a significant role in the study of gene regulation, genetic mapping, DNA fingerprinting and evolutionary studies. The availability of 73 complete genome sequences of cyanobacteria enabled us to mine and statistically analyze microsatellites in these genomes. The cyanobacterial microsatellites identified through bioinformatics analysis were stored in a user-friendly database named CyanoSat, which is an efficient data representation and query system designed using ASP.net. The information in CyanoSat comprises of perfect, imperfect and compound microsatellites found in coding, non-coding and coding-non-coding regions. Moreover, it contains PCR primers with 200 nucleotides long flanking region. The mined cyanobacterial microsatellites can be freely accessed at www.compubio.in/CyanoSat/home.aspx. In addition to this 82 polymorphic, 13,866 unique and 2390 common microsatellites were also detected. These microsatellites will be useful in strain identification and genetic diversity studies of cyanobacteria.
Global analysis of A-to-I RNA editing reveals association with common disease variants
Jain, Rajeev; Jain, Anamika; Betsholtz, Christer; Giannarelli, Chiara; Kovacic, Jason C.; Ruusalepp, Arno; Skogsberg, Josefin; Hao, Ke; Schadt, Eric E.
2018-01-01
RNA editing modifies transcripts and may alter their regulation or function. In humans, the most common modification is adenosine to inosine (A-to-I). We examined the global characteristics of RNA editing in 4,301 human tissue samples. More than 1.6 million A-to-I edits were identified in 62% of all protein-coding transcripts. mRNA recoding was extremely rare; only 11 novel recoding sites were uncovered. Thirty single nucleotide polymorphisms from genome-wide association studies were associated with RNA editing; one that influences type 2 diabetes (rs2028299) was associated with editing in ARPIN. Twenty-five genes, including LRP11 and PLIN5, had editing sites that were associated with plasma lipid levels. Our findings provide new insights into the genetic regulation of RNA editing and establish a rich catalogue for further exploration of this process. PMID:29527417
Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome
Cohen, Andrea J.; Saiakhova, Alina; Corradin, Olivia; Luppino, Jennifer M.; Lovrenert, Katreya; Bartels, Cynthia F.; Morrow, James J.; Mack, Stephen C.; Dhillon, Gursimran; Beard, Lydia; Myeroff, Lois; Kalady, Matthew F.; Willis, Joseph; Bradner, James E.; Keri, Ruth A.; Berger, Nathan A.; Pruett-Miller, Shondra M.; Markowitz, Sanford D.; Scacheri, Peter C.
2017-01-01
In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival. PMID:28169291
Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.
Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C
2014-03-07
To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.
Host-microbiota interactions: Epigenomic regulation
Woo, Vivienne; Alenghat, Theresa
2016-01-01
The coevolution of mammalian hosts and their commensal microbiota has led to the development of complex symbiotic relationships between resident microbes and mammalian cells. Epigenomic modifications enable host cells to alter gene expression without modifying the genetic code, and therefore represent potent mechanisms by which mammalian cells can transcriptionally respond, transiently or stably, to environmental cues. Advances in genome-wide approaches are accelerating our appreciation of microbial influences on host physiology, and increasing evidence highlights that epigenomics represent a level of regulation by which the host integrates and responds to microbial signals. In particular, bacterial-derived short chain fatty acids have emerged as one clear link between how the microbiota intersects with host epigenomic pathways. Here we review recent findings describing crosstalk between the microbiota and epigenomic pathways in multiple mammalian cell populations. Further, we discuss interesting links that suggest that the scope of our understanding of epigenomic regulation in the host-microbiota relationship is still in its infancy. PMID:28103497
The role of epigenetics in personalized medicine: challenges and opportunities
2015-01-01
Epigenetic alterations are considered to be very influential in both the normal and disease states of an organism. These alterations include methylation, acetylation, phosphorylation, and ubiquitylation of DNA and histone proteins (nucleosomes) as well as chromatin remodeling. Many diseases, such as cancers and neurodegenerative disorders, are often associated with epigenetic alterations. DNA methylation is one important modification that leads to disease. Standard therapies are given to patients; however, few patients respond to these drugs, because of various molecular alterations in their cells, which may be partially due to genetic heterogeneity and epigenetic alterations. To realize the promise of personalized medicine, both genetic and epigenetic diagnostic testing will be required. This review will discuss the advances that have been made as well as the challenges for the future. PMID:25951941
Ronquillo, Jay G; Weng, Chunhua; Lester, William T
2017-11-17
Precision medicine involves three major innovations currently taking place in healthcare: electronic health records, genomics, and big data. A major challenge for healthcare providers, however, is understanding the readiness for practical application of initiatives like precision medicine. To better understand the current state and challenges of precision medicine interoperability using a national genetic testing registry as a starting point, placed in the context of established interoperability formats. We performed an exploratory analysis of the National Institutes of Health Genetic Testing Registry. Relevant standards included Health Level Seven International Version 3 Implementation Guide for Family History, the Human Genome Organization Gene Nomenclature Committee (HGNC) database, and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT). We analyzed the distribution of genetic testing laboratories, genetic test characteristics, and standardized genome/clinical code mappings, stratified by laboratory setting. There were a total of 25472 genetic tests from 240 laboratories testing for approximately 3632 distinct genes. Most tests focused on diagnosis, mutation confirmation, and/or risk assessment of germline mutations that could be passed to offspring. Genes were successfully mapped to all HGNC identifiers, but less than half of tests mapped to SNOMED CT codes, highlighting significant gaps when linking genetic tests to standardized clinical codes that explain the medical motivations behind test ordering. Conclusion: While precision medicine could potentially transform healthcare, successful practical and clinical application will first require the comprehensive and responsible adoption of interoperable standards, terminologies, and formats across all aspects of the precision medicine pipeline.
An overview of the major changes in the 2002 APA Ethics Code.
Knapp, Samuel; VandeCreek, Leon
2003-06-01
This article summarizes the major changes that were made to the 2002 Ethical Principles and Code of Conduct of the American Psychological Association. The 2002 Ethics Code retains the general format of the 1992 Ethics Code and does not radically alter the obligations of psychologists. One goal of the Ethics Committee Task Force was to reduce the potential of the Ethics Code to be used to unnecessarily punish psychologists. In addition, the revised Ethics Code expresses greater sensitivity to the needs of cultural and linguistic minorities and students. Shortcomings of the 2002 Ethics Code are discussed.
Epigenetic Modifications of Major Depressive Disorder
Saavedra, Kathleen; Molina-Márquez, Ana María; Saavedra, Nicolás; Zambrano, Tomás; Salazar, Luis A.
2016-01-01
Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders. PMID:27527165
Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.
2015-01-01
Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984
Genetic Alterations in Hungarian Patients with Papillary Thyroid Cancer.
Tobiás, Bálint; Halászlaki, Csaba; Balla, Bernadett; Kósa, János P; Árvai, Kristóf; Horváth, Péter; Takács, István; Nagy, Zsolt; Horváth, Evelin; Horányi, János; Járay, Balázs; Székely, Eszter; Székely, Tamás; Győri, Gabriella; Putz, Zsuzsanna; Dank, Magdolna; Valkusz, Zsuzsanna; Vasas, Béla; Iványi, Béla; Lakatos, Péter
2016-01-01
The incidence of thyroid cancers is increasing worldwide. Some somatic oncogene mutations (BRAF, NRAS, HRAS, KRAS) as well as gene translocations (RET/PTC, PAX8/PPAR-gamma) have been associated with the development of thyroid cancer. In our study, we analyzed these genetic alterations in 394 thyroid tissue samples (197 papillary carcinomas and 197 healthy). The somatic mutations and translocations were detected by Light Cycler melting method and Real-Time Polymerase Chain Reaction techniques, respectively. In tumorous samples, 86 BRAF (44.2%), 5 NRAS (3.1%), 2 HRAS (1.0%) and 1 KRAS (0.5%) mutations were found, as well as 9 RET/PTC1 (4.6%) and 1 RET/PTC3 (0.5%) translocations. No genetic alteration was seen in the non tumorous control thyroid tissues. No correlation was detected between the genetic variants and the pathological subtypes of papillary cancer as well as the severity of the disease. Our results are only partly concordant with the data found in the literature.
Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O
2015-08-01
Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.
Wang, Hui-Yun; Greenawalt, Danielle; Cui, Xiangfeng; Tereshchenko, Irina V; Luo, Minjie; Yang, Qifeng; Azaro, Marco A; Hu, Guohong; Chu, Yi; Li, James Y; Shen, Li; Lin, Yong; Zhang, Lianjun
2009-01-01
Context: Cancer cell lines are used extensively in various research. Knowledge of genetic alterations in these lines is important for understanding mechanisms underlying their biology. However, since paired normal tissues are usually unavailable for comparison, precisely determining genetic alterations in cancer cell lines is difficult. To address this issue, a highly efficient and reliable method is developed. Aims: Establishing a highly efficient and reliable experimental system for genetic profiling of cell lines. Materials and Methods: A widely used breast cancer cell line, MCF-7, was genetically profiled with 4,396 single nucleotide polymorphisms (SNPs) spanning 11 whole chromosomes and two other small regions using a newly developed high-throughput multiplex genotyping approach. Results: The fractions of homozygous SNPs in MCF-7 (13.3%) were significantly lower than those in the control cell line and in 24 normal human individuals (25.1% and 27.4%, respectively). Homozygous SNPs in MCF-7 were found in clusters. The sizes of these clusters were significantly larger than the expected based on random allelic combination. Fourteen such regions were found on chromosomes 1p, 1q, 2q, 6q, 13, 15q, 16q, 17q and 18p in MCF-7 and two in the small regions. Conclusions: These results are generally concordant with those obtained using different approaches but are better in defining their chromosomal positions. The used approach provides a reliable way to detecting possible genetic alterations in cancer cell lines without paired normal tissues. PMID:19439911
Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu
2006-06-01
VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation.
Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu
2006-01-01
VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation. PMID:16757746
Altered sensitivity of the mouse fetus to impaired prostatic bud formation by dioxin: Influence of genetic background and null expression of TGF and EGF.
Rasmussen, N.T., Lin T-M., Fenton, S.E., Abbott, B.D. and R.E. Peterson.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)...
Dynamic gene expression response to altered gravity in human T cells.
Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver
2017-07-12
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Methods, media, and systems for detecting attack on a digital processing device
Stolfo, Salvatore J.; Li, Wei-Jen; Keromylis, Angelos D.; Androulaki, Elli
2014-07-22
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.
Methods, media, and systems for detecting attack on a digital processing device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolfo, Salvatore J.; Li, Wei-Jen; Keromytis, Angelos D.
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document tomore » the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.« less
Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks
Caetano-Anollés, Derek; Caetano-Anollés, Gustavo
2016-01-01
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates. PMID:27918435
Biosamples, genomics, and human rights: context and content of Iceland's Biobanks Act.
Winickoff, D E
2001-01-01
In recent years, human DNA sampling and collection has accelerated without the development of enforceable rules protecting the human rights of donors. The need for regulation of biobanking is especially acute in Iceland, whose parliament has granted a for-profit corporation, deCODE Genetics, an exclusive license to create a centralized database of health records for studies on human genetic variation. Until recently, how deCODE Genetics would get genetic material for its genotypic-phenotypic database remained unclear. However, in May 2000, the Icelandic Parliament passed the Icelandic Biobanks Act, the world's earliest attempt to construct binding rules for the use of biobanks in scientific research. Unfortunately, Iceland has lost an opportunity for bringing clear and ethically sound standards to the use of human biological samples in deCODE's database and in other projects: the Biobanks Act has extended a notion of "presumed consent" from the use of medical records to the use of patients' biological samples; worse, the act has made it possible--perhaps likely--that a donor's wish to withdraw his/her sample will be ignored. Inadequacies in the Act's legislative process help account for these deficiencies in the protection of donor autonomy.
Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks.
Caetano-Anollés, Derek; Caetano-Anollés, Gustavo
2016-12-02
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates.
Villanueva, Pía; Nudel, Ron; Hoischen, Alexander; Fernández, María Angélica; Simpson, Nuala H; Gilissen, Christian; Reader, Rose H; Jara, Lillian; Echeverry, María Magdalena; Echeverry, Maria Magdalena; Francks, Clyde; Baird, Gillian; Conti-Ramsden, Gina; O'Hare, Anne; Bolton, Patrick F; Hennessy, Elizabeth R; Palomino, Hernán; Carvajal-Carmona, Luis; Veltman, Joris A; Cazier, Jean-Baptiste; De Barbieri, Zulema; Fisher, Simon E; Newbury, Dianne F
2015-03-01
Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10-4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model.
Anthropogenic stressors that reduce population size, alter migration corridors or modify mutational and selective forces on populations are expected to leave a lasting genetic footprint on the distribution of intraspecific genetic variation. Thus, the pattern of intraspecific gen...
Wagener, Kerstin C; Kolbrink, Benedikt; Dietrich, Katharina; Kizina, Kathrin M; Terwitte, Lukas S; Kempkes, Belinda; Bao, Guobin; Müller, Michael
2016-07-01
Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging. Yet, the successful delivery of sensor-coding DNA, which demands transfection/transduction of cultured preparations or stereotaxic microinjections of each subject, remains challenging. By generating transgenic mice, we aimed to overcome limiting cultured preparations, circumvent surgical interventions, and to extend effectively redox imaging to complex and adult preparations. Our redox indicator mice widely express Thy1-driven roGFP1 (reduction-oxidation-sensitive green fluorescent protein 1) in neuronal cytosol or mitochondria. Negative phenotypic effects of roGFP1 were excluded and its proper targeting and functionality confirmed. Redox mapping by ratiometric wide-field imaging reveals most oxidizing conditions in CA3 neurons. Furthermore, mitochondria are more oxidized than cytosol. Cytosolic and mitochondrial roGFP1s reliably report cell endogenous redox dynamics upon metabolic challenge or stimulation. Fluorescence lifetime imaging yields stable, but marginal, response ranges. We therefore developed automated excitation ratiometric 2-photon imaging. It offers superior sensitivity, spatial resolution, and response dynamics. Redox indicator mice enable quantitative analyses of subcellular redox dynamics in a multitude of preparations and at all postnatal stages. This will uncover cell- and compartment-specific cerebral redox signals and their defined alterations during development, maturation, and aging. Cross-breeding with other disease models will reveal molecular details on compartmental redox homeostasis in neuropathology. Combined with ratiometric 2-photon imaging, this will foster our mechanistic understanding of cellular redox signals in their full complexity. Antioxid. Redox Signal. 25, 41-58.
VKORC1 V66M mutation in African Brazilian patients resistant to oral anticoagulant therapy.
Orsi, Fernanda A; Annichino Bizzacchi, Joyce M; de Paula, Erich V; Ozelo, Margareth C; Langley, Michael R; Weck, Karen E
2010-09-01
Warfarin-based anticoagulant therapy is associated with large variability in dose response. Genetic variability in the VKORC1 and CYP2C9 genes is associated with increased warfarin sensitivity. In addition, rare coding region mutations in VKORC1 have been associated with resistance to warfarin. VKORC1 and CYP2C9 variability associated with altered warfarin response is less well characterized in African and mixed-raced populations such as Brazilians. To determine genetic variability associated with altered warfarin response among Brazilian patients, sixty-two adult patients with extreme resistance or sensitivity to warfarin were genotyped for variants in CYP2C9 and VKORC1. Of the 51 patients on low doses of warfarin, the VKORC1--1639 (3673) G>A polymorphism associated with warfarin sensitivity was present in 48 (94.1%), including 97% of Caucasians, 82% of African-descent patients, and all 7 (100%) patients of Indian descent. Additionally, 52.9% of warfarin sensitive patients had at least one CYP2C9*2 or CYP2C9*3 decreased metabolism allele, 63.6% of Caucasians and 54% of African-descent patients. Of the 11 patients on high doses of warfarin, sequencing of VKORC1 revealed a nonsynonymous V66M mutation in two warfarin resistant patients, both of African-descent. Brazilian patients requiring low doses of warfarin have a high frequency of VKORC1 and CYP2C9 variants associated with warfarin sensitivity. The presence of the rare VKORC1 V66M in two warfarin high dose outlier patients implies that this variant may be more frequent among African Brazilians and has implications for future warfarin studies in other populations of African descent. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Suzuki, O. T.; Sertié, A. L.; Der Kaloustian, V. M.; Kok, F.; Carpenter, M.; Murray, J.; Czeizel, A. E.; Kliemann, S. E.; Rosemberg, S.; Monteiro, M.; Olsen, B. R.; Passos-Bueno, M. R.
2002-01-01
Knobloch syndrome (KS) is a rare disease characterized by severe ocular alterations, including vitreoretinal degeneration associated with retinal detachment and occipital scalp defect. The responsible gene, COL18A1, has been mapped to 21q22.3, and, on the basis of the analysis of one family, we have demonstrated that a mutation affecting only one of the three COL18A1 isoforms causes this phenotype. We report here the results of the screening of both the entire coding region and the exon-intron boundaries of the COL18A1 gene (which includes 43 exons), in eight unrelated patients with KS. Besides 20 polymorphic changes, we identified 6 different pathogenic changes in both alleles of five unrelated patients with KS (three compound heterozygotes and two homozygotes). All are truncating mutations leading to deficiency of one or all collagen XVIII isoforms and endostatin. We have verified that, in exon 41, the deletion c3514-3515delCT, found in three unrelated alleles, is embedded in different haplotypes, suggesting that this mutation has occurred more than once. In addition, our results provide evidence of nonallelic genetic heterogeneity in KS. We also show that the longest human isoform (NC11-728) is expressed in several tissues (including the human eye) and that lack of either the short variant or all of the collagen XVIII isoforms causes similar phenotypes but that those patients who lack all forms present more-severe ocular alterations. Despite the small sample size, we found low endostatin plasma levels in those patients with mutations leading to deficiency of all isoforms; in addition, it seems that absence of all collagen XVIII isoforms causes predisposition to epilepsy. PMID:12415512
Hershberger, Ray E.; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Jakobs, Petra; Nauman, Deirdre; Burgess, Donna; Partain, Julie; Litt, Michael
2008-01-01
Abstract Background: More than 20 genes have been reported to cause idiopathic and familial dilated cardiomyopathy (IDC/FDC), but the frequency of genetic causation remains poorly understood. Methods and Results: Blood samples were collected and DNA prepared from 313 patients, 183 with FDC and 130 with IDC. Genomic DNA underwent bidirectional sequencing of six genes, and mutation carriers were followed up by evaluation of additional family members. We identified in 36 probands, 31 unique protein‐altering variants (11.5% overall) that were not identified in 253 control subjects (506 chromosomes). These included 13 probands (4.2%) with 12 β‐myosin heavy chain (MYH7) mutations, nine probands (2.9%) with six different cardiac troponin T (TNNT2) mutations, eight probands (2.6%) carrying seven different cardiac sodium channel (SCN5A) mutations, three probands (1.0%) with three titin‐cap or telethonin (TCAP) mutations, three probands (1.0%) with two LIM domain binding 3 (LDB3) mutations, and one proband (0.3%) with a muscle LIM protein (CSRP3) mutation. Four nucleotide changes did not segregate with phentoype and/or did not alter a conserved amino acid and were therefore considered unlikely to be disease‐causing. Mutations in 11 probands were assessed as likely disease‐causing, and in 21 probands were considered possibly disease‐causing. These 32 probands included 14 of the 130 with IDC (10.8%) and 18 of the 183 with FDC (9.8%) Conclusions: Mutations of these six genes each account for a small fraction of the genetic cause of FDC/IDC. The frequency of possible or likely disease‐causing mutations in these genes is similar for IDC and FDC. PMID:19412328
Wagener, Kerstin C.; Kolbrink, Benedikt; Dietrich, Katharina; Kizina, Kathrin M.; Terwitte, Lukas S.; Kempkes, Belinda; Bao, Guobin
2016-01-01
Abstract Aims: Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging. Yet, the successful delivery of sensor-coding DNA, which demands transfection/transduction of cultured preparations or stereotaxic microinjections of each subject, remains challenging. By generating transgenic mice, we aimed to overcome limiting cultured preparations, circumvent surgical interventions, and to extend effectively redox imaging to complex and adult preparations. Results: Our redox indicator mice widely express Thy1-driven roGFP1 (reduction–oxidation-sensitive green fluorescent protein 1) in neuronal cytosol or mitochondria. Negative phenotypic effects of roGFP1 were excluded and its proper targeting and functionality confirmed. Redox mapping by ratiometric wide-field imaging reveals most oxidizing conditions in CA3 neurons. Furthermore, mitochondria are more oxidized than cytosol. Cytosolic and mitochondrial roGFP1s reliably report cell endogenous redox dynamics upon metabolic challenge or stimulation. Fluorescence lifetime imaging yields stable, but marginal, response ranges. We therefore developed automated excitation ratiometric 2-photon imaging. It offers superior sensitivity, spatial resolution, and response dynamics. Innovation and Conclusion: Redox indicator mice enable quantitative analyses of subcellular redox dynamics in a multitude of preparations and at all postnatal stages. This will uncover cell- and compartment-specific cerebral redox signals and their defined alterations during development, maturation, and aging. Cross-breeding with other disease models will reveal molecular details on compartmental redox homeostasis in neuropathology. Combined with ratiometric 2-photon imaging, this will foster our mechanistic understanding of cellular redox signals in their full complexity. Antioxid. Redox Signal. 25, 41–58. PMID:27059697
Analysis of protein-coding genetic variation in 60,706 humans.
Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V; Samocha, Kaitlin E; Banks, Eric; Fennell, Timothy; O'Donnell-Luria, Anne H; Ware, James S; Hill, Andrew J; Cummings, Beryl B; Tukiainen, Taru; Birnbaum, Daniel P; Kosmicki, Jack A; Duncan, Laramie E; Estrada, Karol; Zhao, Fengmei; Zou, James; Pierce-Hoffman, Emma; Berghout, Joanne; Cooper, David N; Deflaux, Nicole; DePristo, Mark; Do, Ron; Flannick, Jason; Fromer, Menachem; Gauthier, Laura; Goldstein, Jackie; Gupta, Namrata; Howrigan, Daniel; Kiezun, Adam; Kurki, Mitja I; Moonshine, Ami Levy; Natarajan, Pradeep; Orozco, Lorena; Peloso, Gina M; Poplin, Ryan; Rivas, Manuel A; Ruano-Rubio, Valentin; Rose, Samuel A; Ruderfer, Douglas M; Shakir, Khalid; Stenson, Peter D; Stevens, Christine; Thomas, Brett P; Tiao, Grace; Tusie-Luna, Maria T; Weisburd, Ben; Won, Hong-Hee; Yu, Dongmei; Altshuler, David M; Ardissino, Diego; Boehnke, Michael; Danesh, John; Donnelly, Stacey; Elosua, Roberto; Florez, Jose C; Gabriel, Stacey B; Getz, Gad; Glatt, Stephen J; Hultman, Christina M; Kathiresan, Sekar; Laakso, Markku; McCarroll, Steven; McCarthy, Mark I; McGovern, Dermot; McPherson, Ruth; Neale, Benjamin M; Palotie, Aarno; Purcell, Shaun M; Saleheen, Danish; Scharf, Jeremiah M; Sklar, Pamela; Sullivan, Patrick F; Tuomilehto, Jaakko; Tsuang, Ming T; Watkins, Hugh C; Wilson, James G; Daly, Mark J; MacArthur, Daniel G
2016-08-18
Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.
NASA Astrophysics Data System (ADS)
Phan, Duoc T.; Lim, James B. P.; Sha, Wei; Siew, Calvin Y. M.; Tanyimboh, Tiku T.; Issa, Honar K.; Mohammad, Fouad A.
2013-04-01
Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes. A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.
Kotakis, Christos
2015-01-01
Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.
Optimal sensor placement for spatial lattice structure based on genetic algorithms
NASA Astrophysics Data System (ADS)
Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian
2008-10-01
Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.
Engqvist, Martin K M; Nielsen, Jens
2015-08-21
The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.
Physical Model for the Evolution of the Genetic Code
NASA Astrophysics Data System (ADS)
Yamashita, Tatsuro; Narikiyo, Osamu
2011-12-01
Using the shape space of codons and tRNAs we give a physical description of the genetic code evolution on the basis of the codon capture and ambiguous intermediate scenarios in a consistent manner. In the lowest dimensional version of our description, a physical quantity, codon level is introduced. In terms of the codon levels two scenarios are typically classified into two different routes of the evolutional process. In the case of the ambiguous intermediate scenario we perform an evolutional simulation implemented cost selection of amino acids and confirm a rapid transition of the code change. Such rapidness reduces uncomfortableness of the non-unique translation of the code at intermediate state that is the weakness of the scenario. In the case of the codon capture scenario the survival against mutations under the mutational pressure minimizing GC content in genomes is simulated and it is demonstrated that cells which experience only neutral mutations survive.
Yano, Shuya; Hiroshima, Yukihiko; Maawy, Ali; Kishimoto, Hiroyuki; Suetsugu, Atsushi; Miwa, Shinji; Toneri, Makoto; Yamamoto, Mako; Katz, Matthew H.G.; Fleming, Jason B.; Urata, Yasuo; Tazawa, Hiroshi; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.
2015-01-01
Precise fluorescence-guided surgery (FGS) for pancreatic cancer has the potential to greatly improve the outcome in this recalcitrant disease. In order to achieve this goal, we have used genetic reporters to color code cancer and stroma cells in a patient-derived orthotopic xenograft (PDOX) model. The telomerase-dependent green fluorescent protein (GFP) containing adenovirus OBP401 was used to label the cancer cells of the pancreatic cancer PDOX. The PDOX was previously grown in a red fluorescent protein (RFP) transgenic mouse that stably labeled the PDOX stroma cells bright red. The color-coded PDOX model enabled FGS to completely resect the pancreatic tumors including stroma. Dual-colored FGS significantly prevented local recurrence, which bright-light surgery (BLS) or single color could not. FGS, with color-coded cancer and stroma cells has important potential for improving the outcome of recalcitrant cancer. PMID:26088297
Multiple Head and Neck Tumors Frequently Originate from a Single Preneoplastic Lesion
Tabor, Maarten P.; Brakenhoff, Ruud H.; Ruijter-Schippers, Henrique J.; van der Wal, Jacqueline E.; Snow, Gordon B.; Leemans, C. René; Braakhuis, Boudewijn J. M.
2002-01-01
The development of second primary tumors has a negative impact on the prognosis of head and neck squamous cell carcinoma. Previously, we detected genetically altered and tumor-related mucosal lesions in the resection margins in 25% of unselected head and neck squamous cell carcinoma patients (Tabor MP, Brakenhoff RH, van Houten VMM, Kummer JA, Snel MHJ, Snijders PJF, Snow GB, Leemans CR, Braakhuis BJM: Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res 2001, 7: 1523–1532). The aim of this study was to determine whether first and second primary tumors are clonally related and originate from a single genetically altered field. From 10 patients we analyzed the first tumor of the oral cavity or oropharynx, the >3-cm remote second primary tumor, and the mucosa from the tumor-free margins from both resection specimens. We compared TP53 mutations and loss of heterozygosity profiles using 19 microsatellite markers at chromosomes 3p, 9p, 13q, and 17p. In all patients, genetically altered mucosal lesions were detected in at least one resection margin from both first and second primary tumor. Evidence for a common clonal origin of the first tumor, second primary tumor, and the intervening mucosa was found for at least 6 of 10 patients. Our results indicate that a proportion of multiple primary tumors have developed within a single preneoplastic field. Based on different etiology and clinical consequences, we propose that independent second primary tumors should be distinguished from second field tumors, that arise from the same genetically altered field the first tumor has developed from. PMID:12213734
Prenatal Genetic Testing Chart
... www.acog.org/Patients/FAQs/Prenatal-Genetic-Diagnostic-Tests › › Resources & Publications Committee Opinions Practice Bulletins Patient Education Green Journal Clinical Updates Practice Management Coding Health Info Technology Professional Liability Managing Your Practice Patient Safety & Quality ...
Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy
2015-10-01
available, work will commence. Tau, genetics , susceptibility, MAPT, chronic traumatic encephalopathy, Alzheimer disease U U U U 1 USAMRMC Table of...AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John
An integrated, structure- and energy-based view of the genetic code.
Grosjean, Henri; Westhof, Eric
2016-09-30
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon-anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson-Crick pairs in the codon-anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon-anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Genome wide analysis of rare copy number variations in alcohol abuse or dependence.
Rodríguez-López, Julio; Flórez, Gerardo; Blanco, Vanessa; Pereiro, César; Fernández, José Manuel; Fariñas, Emilio; Estévez, Valentín; Gómez-Trigo, Jesús; Gurriarán, Xaquín; Calvo, Raquel; Sáiz, Pilar; Vázquez, Fernando Lino; Arrojo, Manuel; Costas, Javier
2018-06-02
Genetics plays an important role in alcohol abuse/dependence. Its heritability has been estimated as 45-65%. Rare copy number variations (CNVs) have been confirmed as relevant genetic factors in other neuropsychiatric disorders, such as autism spectrum disorders, schizophrenia, epilepsy, or Tourette syndrome. In the present study, we analyzed the role of rare CNVs affecting exons of coding genes in a sample from Northwest Spain genotyped using the Illumina Infinium PsychArray Beadchip. After rigorous genotyping quality control procedure, 712 patients with alcohol abuse or dependence and 804 controls were used for CNV detection. CNV calling was performed using PennCNV and cnvPartition, and analyses were restricted to CNVs of at least 100 kb and including at least 10 single nucleotide polymorphisms. Logistic regression was used to test for the effect of CNV as well as number of genes affected by CNVs on case/control status, after adjustment for demographic and experimental covariates. We have found an excess of deletions (p = 0.008) and genes affected by deletions (p = 0.017) in cases. This effect was restricted to the 14.8% of affected genes that are intolerant to loss-of-function mutations (gene count p = 0.009). The importance of this subset of genes is emerging in other psychiatric disorders of neurodevelopmental origin, suggesting that disturbance in neurodevelopment mediated by genetic alterations may be a risk factor for alcohol use disorder. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marjanovic, Irena; Kostic, Jelena; Stanic, Bojana; Pejanovic, Nadja; Lucic, Bojana; Karan-Djurasevic, Teodora; Janic, Dragana; Dokmanovic, Lidija; Jankovic, Srdja; Vukovic, Nada Suvajdzic; Tomin, Dragica; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Pavlovic, Sonja; Tosic, Natasa
2016-10-01
The age-specific differences in the genetic mechanisms of myeloid leukemogenesis have been observed and studied previously. However, NGS technology has provided a possibility to obtain a large amount of mutation data. We analyzed DNA samples from 20 childhood (cAML) and 20 adult AML (aAML) patients, using NGS targeted sequencing. The average coverage of high-quality sequences was 2981 × per amplicon. A total of 412 (207 cAML, 205 aAML) variants in the coding regions were detected; out of which, only 122 (62 cAML and 60 aAML) were potentially protein-changing. Our results confirmed that AML contains small number of genetic alterations (median 3 mutations/patient in both groups). The prevalence of the most frequent single gene AML associated mutations differed in cAML and aAML patient cohorts: IDH1 (0 % cAML, 5 % aAML), IDH2 (0 % cAML, 10 % aAML), NPM1 (10 % cAML, 35 % aAML). Additionally, potentially protein-changing variants were found in tyrosine kinase genes or genes encoding tyrosine kinase associated proteins (JAK3, ABL1, GNAQ, and EGFR) in cAML, while among aAML, the prevalence is directed towards variants in the methylation and histone modifying genes (IDH1, IDH2, and SMARCB1). Besides uniform genomic profile of AML, specific genetic characteristic was exclusively detected in cAML and aAML.
Generation of Infectious Poliovirus with Altered Genetic Information from Cloned cDNA.
Bujaki, Erika
2016-01-01
The effect of specific genetic alterations on virus biology and phenotype can be studied by a great number of available assays. The following method describes the basic protocol to generate infectious poliovirus with altered genetic information from cloned cDNA in cultured cells.The example explained here involves generation of a recombinant poliovirus genome by simply replacing a portion of the 5' noncoding region with a synthetic gene by restriction cloning. The vector containing the full length poliovirus genome and the insert DNA with the known mutation(s) are cleaved for directional cloning, then ligated and transformed into competent bacteria. The recombinant plasmid DNA is then propagated in bacteria and transcribed to RNA in vitro before RNA transfection of cultured cells is performed. Finally, viral particles are recovered from the cell culture.
Rewiring protein synthesis: From natural to synthetic amino acids.
Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang
2017-11-01
The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic Architectures of Quantitative Variation in RNA Editing Pathways
Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.
2016-01-01
RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740
Pathogenesis of Chagas' Disease: Parasite Persistence and Autoimmunity
Teixeira, Antonio R. L.; Hecht, Mariana M.; Guimaro, Maria C.; Sousa, Alessandro O.; Nitz, Nadjar
2011-01-01
Summary: Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8+ γδ, and CD8α+ T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease. PMID:21734249
Custer, Thomas C; Walter, Nils G
2017-07-01
RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling. © 2016 The Protein Society.
Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas G D; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie C Y; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Gonçalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der I; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Corominas Galbany, Jordi; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; Bakker, Paul I W; Groot, Mark C H; Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; Heijer, Martin; Hollander, Anneke I; Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan F A; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna M M; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L R; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken S; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O'Donoghue, Michelle L; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin N A; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R B; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva R B; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert V; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; Laan, Sander W; Duijn, Cornelia M; Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth J F
2018-01-01
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
The Reference Genome of the Halophytic Plant Eutrema salsugineum
Yang, Ruolin; Jarvis, David E.; Chen, Hao; Beilstein, Mark A.; Grimwood, Jane; Jenkins, Jerry; Shu, ShengQiang; Prochnik, Simon; Xin, Mingming; Ma, Chuang; Schmutz, Jeremy; Wing, Rod A.; Mitchell-Olds, Thomas; Schumaker, Karen S.; Wang, Xiangfeng
2013-01-01
Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb) of E. salsugineum at 8× coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species. PMID:23518688
Brena Sesma, Ingrid
2004-01-01
The article that one presents has for purpose outline and comment on the recent modifications to the Penal Code for the Federal District of México which establish, for the first time, crimes related to the artificial procreation and to the genetic manipulation. Also one refers to the interaction of the new legal texts with the sanitary legislation of the country. Since it will be stated in some cases they present confrontations between the penal and the sanitary reglamentation and some points related to the legality or unlawfulness of a conduct that stayed without the enough development. These lacks will complicate the application of the new rules of the Penal Code of the Federal District.
Stewart, Claire; Shoemaker, Jamie; Keller-Smith, Rachel; Edmunds, Katherine; Davis, Andrew; Tegtmeyer, Ken
2017-10-16
Pediatric code blue activations are infrequent events with a high mortality rate despite the best effort of code teams. The best method for training these code teams is debatable; however, it is clear that training is needed to assure adherence to American Heart Association (AHA) Resuscitation Guidelines and to prevent the decay that invariably occurs after Pediatric Advanced Life Support training. The objectives of this project were to train a multidisciplinary, multidepartmental code team and to measure this team's adherence to AHA guidelines during code simulation. Multidisciplinary code team training sessions were held using high-fidelity, in situ simulation. Sessions were held several times per month. Each session was filmed and reviewed for adherence to 5 AHA guidelines: chest compression rate, ventilation rate, chest compression fraction, use of a backboard, and use of a team leader. After the first study period, modifications were made to the code team including implementation of just-in-time training and alteration of the compression team. Thirty-eight sessions were completed, with 31 eligible for video analysis. During the first study period, 1 session adhered to all AHA guidelines. During the second study period, after alteration of the code team and implementation of just-in-time training, no sessions adhered to all AHA guidelines; however, there was an improvement in percentage of sessions adhering to ventilation rate and chest compression rate and an improvement in median ventilation rate. We present a method for training a large code team drawn from multiple hospital departments and a method of assessing code team performance. Despite subjective improvement in code team positioning, communication, and role completion and some improvement in ventilation rate and chest compression rate, we failed to consistently demonstrate improvement in adherence to all guidelines.
Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.
Sajnani, Karishma; Islam, Farhadul; Smith, Robert Anthony; Gopalan, Vinod; Lam, Alfred King-Yin
2017-04-01
Cancer cells exhibit alterations in many cellular processes, including oxygen sensing and energy metabolism. Glycolysis in non-oxygen condition is the main energy production process in cancer rather than mitochondrial respiration as in benign cells. Genetic and epigenetic alterations of Krebs cycle enzymes favour the shift of cancer cells from oxidative phosphorylation to anaerobic glycolysis. Mutations in genes encoding aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, and citrate synthase are noted in many cancers. Abnormalities of Krebs cycle enzymes cause ectopic production of Krebs cycle intermediates (oncometabolites) such as 2-hydroxyglutarate, and citrate. These oncometabolites stabilize hypoxia inducible factor 1 (HIF1), nuclear factor like 2 (Nrf2), inhibit p53 and prolyl hydroxylase 3 (PDH3) activities as well as regulate DNA/histone methylation, which in turn activate cell growth signalling. They also stimulate increased glutaminolysis, glycolysis and production of reactive oxygen species (ROS). Additionally, genetic alterations in Krebs cycle enzymes are involved with increased fatty acid β-oxidations and epithelial mesenchymal transition (EMT) induction. These altered phenomena in cancer could in turn promote carcinogenesis by stimulating cell proliferation and survival. Overall, epigenetic and genetic changes of Krebs cycle enzymes lead to the production of oncometabolite intermediates, which are important driving forces of cancer pathogenesis and progression. Understanding and applying the knowledge of these mechanisms opens new therapeutic options for patients with cancer. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... maximum extent feasible, comply with one of the nationally recognized model building codes and with other nationally-recognized codes in their construction or alteration of each building in accordance with 40 U.S.C. 3312; and (f) Use the applicable national codes and standards as a guide for their building operations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... maximum extent feasible, comply with one of the nationally recognized model building codes and with other nationally-recognized codes in their construction or alteration of each building in accordance with 40 U.S.C. 3312; and (f) Use the applicable national codes and standards as a guide for their building operations...
Code of Federal Regulations, 2012 CFR
2012-01-01
... maximum extent feasible, comply with one of the nationally recognized model building codes and with other nationally-recognized codes in their construction or alteration of each building in accordance with 40 U.S.C. 3312; and (f) Use the applicable national codes and standards as a guide for their building operations...
Code of Federal Regulations, 2011 CFR
2011-01-01
... maximum extent feasible, comply with one of the nationally recognized model building codes and with other nationally-recognized codes in their construction or alteration of each building in accordance with 40 U.S.C. 3312; and (f) Use the applicable national codes and standards as a guide for their building operations...
Mulder, J. W.; Offerhaus, G. J.; de Feyter, E. P.; Floyd, J. J.; Kern, S. E.; Vogelstein, B.; Hamilton, S. R.
1992-01-01
The relationship of abnormal nuclear morphology to molecular genetic alterations that are important in colorectal tumorigenesis is unknown. Therefore, Feulgen-stained isolated nuclei from 22 adenomas and 42 carcinomas that had been analyzed for ras gene mutations and allelic deletions on chromosomes 5q, 18q, and 17p were characterized by computerized image analysis. Both nuclear area and the nuclear shape factor representing irregularity correlated with adenoma-carcinoma progression (r = 0.57 and r = 0.52, P < 0.0001), whereas standard nuclear texture, a parameter of chromatin homogeneity, was inversely correlated with progression (r = -0.80, P < 0.0001). The nuclear parameters were strongly interrelated (P < 0.0005). In multivariate analysis, the nuclear parameters were predominantly associated with adenoma-carcinoma progression (P < or = 0.0001) and were not influenced significantly by the individual molecular genetic alterations. Nuclear texture, however, was inversely correlated with fractional allelic loss, a global measure of genetic changes, in carcinomas (r = -0.39, P = 0.011). The findings indicate that nuclear morphology in colorectal neoplasms is strongly related to tumor progression. Nuclear morphology and biologic behavior appear to be influenced by accumulated alterations in cancer-associated genes. Images Figure 1 PMID:1357973
The molecular genetic makeup of acute lymphoblastic leukemia.
Mullighan, Charles G
2012-01-01
Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention. Mutations in genes regulating lymphoid development are a hallmark of ALL, and alterations of the lymphoid transcription factor gene IKZF1 (IKAROS) are associated with a high risk of treatment failure in B-ALL. Approximately 20% of B-ALL cases harbor genetic alterations that activate kinase signaling that may be amenable to treatment with tyrosine kinase inhibitors, including rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Whole-genome sequencing has also identified novel targets of mutation in aggressive T-lineage ALL, including hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and epigenetic regulators. Challenges for the future are to comprehensively identify and experimentally validate all genetic alterations driving leukemogenesis and treatment failure in childhood and adult ALL and to implement genomic profiling into the clinical setting to guide risk stratification and targeted therapy.
Sanchez, Robersy; Grau, Ricardo
2005-09-01
A Boolean structure of the genetic code where Boolean deductions have biological and physicochemical meanings was discussed in a previous paper. Now, from these Boolean deductions we propose to define the value of amino acid information in order to consider the genetic information system as a communication system and to introduce the semantic content of information ignored by the conventional information theory. In this proposal, the value of amino acid information is proportional to the molecular weight of amino acids with a proportional constant of about 1.96 x 10(25) bits per kg. In addition to this, for the experimental estimations of the minimum energy dissipation in genetic logic operations, we present two postulates: (1) the energy Ei (i=1,2,...,20) of amino acids in the messages conveyed by proteins is proportional to the value of information, and (2) amino acids are distributed according to their energy Ei so the amino acid population in proteins follows a Boltzmann distribution. Specifically, in the genetic message carried by the DNA from the genomes of living organisms, we found that the minimum energy dissipation in genetic logic operations was close to kTLn(2) joules per bit.
Kleiber, Morgan L; Diehl, Eric J; Laufer, Benjamin I; Mantha, Katarzyna; Chokroborty-Hoque, Aniruddho; Alberry, Bonnie; Singh, Shiva M
2014-01-01
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term "footprint" of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder.
Kleiber, Morgan L.; Diehl, Eric J.; Laufer, Benjamin I.; Mantha, Katarzyna; Chokroborty-Hoque, Aniruddho; Alberry, Bonnie; Singh, Shiva M.
2014-01-01
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term “footprint” of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder. PMID:24917881
Shedding subspecies: The influence of genetics on reptile subspecies taxonomy.
Torstrom, Shannon M; Pangle, Kevin L; Swanson, Bradley J
2014-07-01
The subspecies concept influences multiple aspects of biology and management. The 'molecular revolution' altered traditional methods (morphological traits) of subspecies classification by applying genetic analyses resulting in alternative or contradictory classifications. We evaluated recent reptile literature for bias in the recommendations regarding subspecies status when genetic data were included. Reviewing characteristics of the study, genetic variables, genetic distance values and noting the species concepts, we found that subspecies were more likely elevated to species when using genetic analysis. However, there was no predictive relationship between variables used and taxonomic recommendation. There was a significant difference between the median genetic distance values when researchers elevated or collapsed a subspecies. Our review found nine different concepts of species used when recommending taxonomic change, and studies incorporating multiple species concepts were more likely to recommend a taxonomic change. Since using genetic techniques significantly alter reptile taxonomy there is a need to establish a standard method to determine the species-subspecies boundary in order to effectively use the subspecies classification for research and conservation purposes. Copyright © 2014 Elsevier Inc. All rights reserved.
Decoding the non-coding genome: elucidating genetic risk outside the coding genome.
Barr, C L; Misener, V L
2016-01-01
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Genetics and culture: the geneticization thesis.
ten Have, H A
2001-01-01
The concept of 'geneticization' has been introduced in the scholarly literature to describe the various interlocking and imperceptible mechanisms of interaction between medicine, genetics, society and culture. It is argued that Western culture currently is deeply involved in a process of geneticization. This process implies a redefinition of individuals in terms of DNA codes, a new language to describe and interpret human life and behavior in a genomic vocabulary of codes, blueprints, traits, dispositions, genetic mapping, and a gentechnological approach to disease, health and the body. This article analyses the thesis of 'geneticization'. Explaining the implications of the thesis, and discussing the critical refutations, it is argued that 'geneticization' primarily is a heuristic tool that can help to re-focus the moral debate on the implications of new genetic knowledge towards interpersonal relations, the power of medicine, the cultural context and social constraints, rather than emphasizing issues as personal autonomy and individual rights.
Genetically improved BarraCUDA.
Langdon, W B; Lam, Brian Yee Hong
2017-01-01
BarraCUDA is an open source C program which uses the BWA algorithm in parallel with nVidia CUDA to align short next generation DNA sequences against a reference genome. Recently its source code was optimised using "Genetic Improvement". The genetically improved (GI) code is up to three times faster on short paired end reads from The 1000 Genomes Project and 60% more accurate on a short BioPlanet.com GCAT alignment benchmark. GPGPU BarraCUDA running on a single K80 Tesla GPU can align short paired end nextGen sequences up to ten times faster than bwa on a 12 core server. The speed up was such that the GI version was adopted and has been regularly downloaded from SourceForge for more than 12 months.
Finding the needle in a haystack: identification of cases of Lynch syndrome with MLH1 epimutation.
Hitchins, Megan P
2016-07-01
Constitutional epimutation of the DNA mismatch repair gene, MLH1, represents a minor cause of Lynch syndrome. MLH1 epimutations are characterized by the soma-wide distribution of methylation of a single allele of the MLH1 promoter accompanied by constitutive allelic loss of transcription. 'Primary' MLH1 epimutations, considered pure epigenetic defects, tend to arise de novo in patients without a family history or any apparent genetic mutation. These demonstrate non-Mendelian inheritance. 'Secondary' MLH1 epimutations have a genetic basis and have been linked to non-coding genetic alterations in the vicinity of MLH1. These demonstrate autosomal dominant inheritance. Despite convincing evidence of their role in causing Lynch-type cancers, routine screening for MLH1 epimutations has not been widely adopted. Complicating factors may include: the need to perform additional methylation-based testing beyond the standard genetic screening for a germline mutation; the lack of a consensus algorithm for the selection of patients warranting MLH1 epimutation testing; overlapping molecular pathology features of MLH1 methylation and loss of MLH1 expression with more prevalent sporadic MSI cancers; the rarity of MLH1 epimutation; the variable inter-generational inheritance patterns; and the cost-effectiveness of screening. Nevertheless, a positive molecular diagnosis of MLH1 epimutation is clinically important because carriers have a high personal risk of developing metachronous Lynch-type cancers, and their relatives may also be at risk of carriage. Extending existing universal and clinic-based screening algorithms for Lynch syndrome to include an additional arm of selection criteria for cases warranting MLH1 epimutation testing could provide a cost-effective means of diagnosing these cases.
Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.
2015-01-01
Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227
Lee, Seung Eun; Hwang, Tae Sook; Choi, Yoon-La; Kim, Wook Youn; Han, Hye Seung; Lim, So Dug; Kim, Wan-Seop; Yoo, Young Bum; Kim, Suk Kyeong
2017-06-01
The BRAF V600E mutation in papillary thyroid carcinoma (PTC) is particularly prevalent in Korea, and a considerable number of wild-type BRAF PTCs harbor RAS mutations. In addition, subsets of other genetic alterations clearly exist, but their prevalence in the Korean population has not been well studied. Recent increased insight into noninvasive encapsulated follicular variant PTC has prompted endocrine pathologists to reclassify this entity as "noninvasive follicular thyroid neoplasm with papillary-like nuclear features" (NIFTP). This study analyzed the genetic alterations among the histologic variants of PTC, including NIFTP. Mutations of the BRAF and RAS genes and rearrangement of the RET/PTC1, NTRK1, and ALK genes using 769 preoperative fine-needle aspiration specimens and resected PTCs were analyzed. Molecular alterations were found in 687 (89.3%) of 769 PTCs. BRAF V600E mutation (80.8%) was the most frequent alteration, followed by RAS mutation and RET/PTC1, NTRK1, and ALK rearrangements (5.6%, 2.1%, 0.4%, and 0%, respectively). The low prevalence of NTRK1 fusions and the absence of an ALK fusion detected in Korea may also be attributed to the higher prevalence of the BRAF V600E mutation. There were significant differences in the frequency of the genetic alterations among the histologic variants of PTC. The prevalence of NIFTP in PTC was 2.7%, and among the NIFTPs, 28.6% and 57.1% harbored BRAF and RAS mutations, respectively. Clinicopathologic factors and mutational profiles between NIFTP and encapsulated follicular variant PTC with capsular invasion group were not significantly different. Genetic alterations in PTC vary among its different histologic variants and seem to be different in each ethnic group.
tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry
Carter, Charles W.; Wolfenden, Richard
2016-01-01
abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350
Murray, James D; Maga, Elizabeth A
2016-06-01
At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.
The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition
NASA Astrophysics Data System (ADS)
Štambuk, Nikola
The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.
Analysis of Molecular Genetics Content in Spanish Secondary School Textbooks
ERIC Educational Resources Information Center
Martinez-Gracia, M. V.; Gil-Quilez, M. J.; Osada, J.
2006-01-01
The treatment of molecular biology in thirty-four Spanish high school biology textbooks has been analysed using a check-list made up of twenty-three items. The study showed a tendency to confuse the genetic code with genetic information. The treatment of DNA transcription, regulation of gene expression and translation were presented as masses of…
Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand
1999-01-01
The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...
USDA-ARS?s Scientific Manuscript database
The aneupolyploidy genome of sugarcane (Saccharum hybrids spp.) and lack of a classical genetic linkage map make genetics research most difficult for sugarcane. Whole genome sequencing and genetic characterization of sugarcane and related taxa are far behind other crops. In this study, universal PCR...
NASA Astrophysics Data System (ADS)
Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk
2016-05-01
Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.
Living Organisms Author Their Read-Write Genomes in Evolution
2017-01-01
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with “non-coding” DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called “non-coding” RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations. PMID:29211049
Marini, Joan C; Forlino, Antonella; Bächinger, Hans Peter; Bishop, Nick J; Byers, Peter H; Paepe, Anne De; Fassier, Francois; Fratzl-Zelman, Nadja; Kozloff, Kenneth M; Krakow, Deborah; Montpetit, Kathleen; Semler, Oliver
2017-08-18
Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation.
Conditional-suicide containment system for bacteria which mineralize aromatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, A.; Ramos, J.L.; Molin, S.
A model conditional-suicide system to control genetically engineered microorganisms able to degrade substituted benzoates is reported. The system is based on two elements. One element consists of a fusion between the promoter of the Pseudomonas putide TOL plasmid-encoded meta-cleavage pathway operon (P{sub m}) and the lacI gene encoding Lac repressor plus sylS, coding for the positive regulator of P{sub m}. The other element carries a fusion between the P{sub tac} promoter and the gef gene, which encodes a killing function. In the absence of effectors, expression of the P{sub tac}::gef cassette is no longer prevented and a high rate ofmore » cell killing is observed. The substitution of XylS for XylSthr45, a mutant regulator with altered effector specificity and increased affinity for benzoates, allows the control of populations able to degrade a wider range of benzoates at micromolar substrate concentrations. Given the wide effector specificity of the key regulators, the wild-type and mutant ZylS proteins, the system should allow the control of populations able to metabolize benzoate; methyl-, dimethyl-, chloro-, dichloro-, ethyl-, and methoxybenzoates; salicylate; and methyl- and chlorosalicylates. A small population of genetically engineered microorganisms became Gef resistant; however, the mechanism of such survival remains unknown.« less
Impact of Pharmacogenetics on Efficacy and Safety of Statin Therapy for Dyslipidemia.
Maxwell, Whitney D; Ramsey, Laura B; Johnson, Samuel G; Moore, Kate G; Shtutman, Michael; Schoonover, John H; Kawaguchi-Suzuki, Marina
2017-09-01
Interindividual variability in response to 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, with regard to both efficacy and safety is an obvious target for pharmacogenetic research. Many genes have been identified as possible contributors to variability in statin response and safety. Genetic polymorphisms may alter the structure or expression of coded proteins, with potential impacts on lipid and statin absorption, distribution, metabolism, and elimination as well as response pathways related to the pharmacologic effect. Many studies have explored the variation in statins' pharmacokinetic and pharmacodynamic parameters; however, to our knowledge, few have established definitive relationships between the genetic polymorphisms and patient outcomes, such as cardiovascular events. In this review article, we provide a statin-based summary of available evidence describing pharmacogenetic associations that may be of clinical relevance in the future. Although currently available studies are often small or retrospective, and may have conflicting results, they may be useful in providing direction for future confirmatory studies and may point to associations that could be confirmed in the future when more patient outcomes-based studies are available. We also summarize the clinically relevant evidence currently available to assist clinicians with providing personalized pharmacotherapy for patients requiring statin therapy. © 2017 Pharmacotherapy Publications, Inc.
Shannon information entropy in the canonical genetic code.
Nemzer, Louis R
2017-02-21
The Shannon entropy measures the expected information value of messages. As with thermodynamic entropy, the Shannon entropy is only defined within a system that identifies at the outset the collections of possible messages, analogous to microstates, that will be considered indistinguishable macrostates. This fundamental insight is applied here for the first time to amino acid alphabets, which group the twenty common amino acids into families based on chemical and physical similarities. To evaluate these schemas objectively, a novel quantitative method is introduced based the inherent redundancy in the canonical genetic code. Each alphabet is taken as a separate system that partitions the 64 possible RNA codons, the microstates, into families, the macrostates. By calculating the normalized mutual information, which measures the reduction in Shannon entropy, conveyed by single nucleotide messages, groupings that best leverage this aspect of fault tolerance in the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. This approach allows the quantification of the average information value of nucleotide positions, which can shed light on the coevolution of the canonical genetic code with the tRNA-protein translation mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blakely, Collin M.; Watkins, Thomas B.K.; Wu, Wei; Gini, Beatrice; Chabon, Jacob J.; McCoach, Caroline E.; McGranahan, Nicholas; Wilson, Gareth A.; Birkbak, Nicolai J.; Olivas, Victor R.; Rotow, Julia; Maynard, Ashley; Wang, Victoria; Gubens, Matthew A.; Banks, Kimberly C.; Lanman, Richard B.; Caulin, Aleah F.; John, John St.; Cordero, Anibal R.; Giannikopoulos, Petros; Simmons, Andrew D.; Mack, Philip C.; Gandara, David R.; Husain, Hatim; Doebele, Robert C.; Riess, Jonathan W.; Diehn, Maximilian; Swanton, Charles; Bivona, Trever G.
2017-01-01
A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant protein product (e.g. EGFR inhibitor treatment in EGFR-mutant lung cancers). However, genetically-driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1122 EGFR-mutant lung cancer cell-free DNA samples and whole exome analysis of seven longitudinally collected tumor samples from an EGFR-mutant lung cancer patient, we identify critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We define new pathways limiting EGFR inhibitor response, including WNT/β-catenin and cell cycle gene (e.g. CDK4, CDK6) alterations. Tumor genomic complexity increases with EGFR inhibitor treatment and co-occurring alterations in CTNNB1, and PIK3CA exhibit non-redundant functions that cooperatively promote tumor metastasis or limit EGFR inhibitor response. This study challenges the prevailing single-gene driver oncogene view and links clinical outcomes to co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancer patients. PMID:29106415
The neurobiological basis of binge-eating disorder.
Kessler, Robert M; Hutson, Peter H; Herman, Barry K; Potenza, Marc N
2016-04-01
Relatively little is known about the neuropathophysiology of binge-eating disorder (BED). Here, the evidence from neuroimaging, neurocognitive, genetics, and animal studies are reviewed to synthesize our current understanding of the pathophysiology of BED. Binge-eating disorder may be conceptualized as an impulsive/compulsive disorder, with altered reward sensitivity and food-related attentional biases. Neuroimaging studies suggest there are corticostriatal circuitry alterations in BED similar to those observed in substance abuse, including altered function of prefrontal, insular, and orbitofrontal cortices and the striatum. Human genetics and animal studies suggest that there are changes in neurotransmitter networks, including dopaminergic and opioidergic systems, associated with binge-eating behaviors. Overall, the current evidence suggests that BED may be related to maladaptation of the corticostriatal circuitry regulating motivation and impulse control similar to that found in other impulsive/compulsive disorders. Further studies are needed to understand the genetics of BED and how neurotransmitter activity and neurocircuitry function are altered in BED and how pharmacotherapies may influence these systems to reduce BED symptoms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.
Zhang, Jinghui; Wu, Gang; Miller, Claudia P; Tatevossian, Ruth G; Dalton, James D; Tang, Bo; Orisme, Wilda; Punchihewa, Chandanamali; Parker, Matthew; Qaddoumi, Ibrahim; Boop, Fredrick A; Lu, Charles; Kandoth, Cyriac; Ding, Li; Lee, Ryan; Huether, Robert; Chen, Xiang; Hedlund, Erin; Nagahawatte, Panduka; Rusch, Michael; Boggs, Kristy; Cheng, Jinjun; Becksfort, Jared; Ma, Jing; Song, Guangchun; Li, Yongjin; Wei, Lei; Wang, Jianmin; Shurtleff, Sheila; Easton, John; Zhao, David; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Vadodaria, Bhavin; Mulder, Heather L; Tang, Chunlao; Ochoa, Kerri; Mullighan, Charles G; Gajjar, Amar; Kriwacki, Richard; Sheer, Denise; Gilbertson, Richard J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Baker, Suzanne J; Ellison, David W
2013-06-01
The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.
A Genetic Interaction Screen for Breast Cancer Progression Driver Genes
2013-06-01
analysis of genetic alterations in human breast cancers has revealed that individual tumors accumulate mutations in approximately ninety different genes ...cancer. We performed a screen to test the roles of seventy breast cancer mutated genes in mouse mammary tumorigenesis using the MMTV-PyVT mouse breast...cancer model and piggyBac insertional mutation strains. We found that insertional mutations in 23 genes altered the onset of tumor formation and four
Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng
2013-03-01
The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.
NASA Astrophysics Data System (ADS)
De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.
2013-02-01
We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.
A transposon-based genetic screen in mice identifies genes altered in colorectal cancer.
Starr, Timothy K; Allaei, Raha; Silverstein, Kevin A T; Staggs, Rodney A; Sarver, Aaron L; Bergemann, Tracy L; Gupta, Mihir; O'Sullivan, M Gerard; Matise, Ilze; Dupuy, Adam J; Collier, Lara S; Powers, Scott; Oberg, Ann L; Asmann, Yan W; Thibodeau, Stephen N; Tessarollo, Lino; Copeland, Neal G; Jenkins, Nancy A; Cormier, Robert T; Largaespada, David A
2009-03-27
Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.
Tops, Sanne; Habel, Ute; Radke, Sina
2018-03-12
Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.
Schizophrenia: What's Arc Got to Do with It?
Managò, Francesca; Papaleo, Francesco
2017-01-01
Human studies of schizophrenia are now reporting a previously unidentified genetic convergence on postsynaptic signaling complexes such as the activity-regulated cytoskeletal-associated (Arc) gene. However, because this evidence is still very recent, the neurobiological implication of Arc in schizophrenia is still scattered and unrecognized. Here, we first review current and developing findings connecting Arc in schizophrenia. We then highlight recent and previous findings from preclinical mouse models that elucidate how Arc genetic modifications might recapitulate schizophrenia-relevant behavioral phenotypes following the novel Research Domain Criteria (RDoC) framework. Building on this, we finally compare and evaluate several lines of evidence demonstrating that Arc genetics can alter both glutamatergic and dopaminergic systems in a very selective way, again consistent with molecular alterations characteristic of schizophrenia. Despite being only initial, accumulating and compelling data are showing that Arc might be one of the primary biological players in schizophrenia. Synaptic plasticity alterations in the genetic architecture of psychiatric disorders might be a rule, not an exception. Thus, we anticipate that additional evidence will soon emerge to clarify the Arc-dependent mechanisms involved in the psychiatric-related dysfunctional behavior.
Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.
Genetic Testing for Breast Cancer: Psychological and Social Impact
... concerns with your genetic counselor, doctor or other health care provider. Learning that genetic testing found no alteration in the BRCA genes might produce feelings of: Relief that you don't have an increased cancer risk. If your test result is negative and there's ...
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn
2008-01-01
Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...
Mamantopoulos, Michail; Ronchi, Francesca; McCoy, Kathy D; Wullaert, Andy
2018-04-19
Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions.
El-Telbany, Ahmed
2012-01-01
Cancer is now known as a disease of genomic alterations. Mutational analysis and genomics profiling in recent years have advanced the field of lung cancer genetics/genomics significantly. It is becoming more accepted now that the identification of genomic alterations in lung cancer can impact therapeutics, especially when the alterations represent “oncogenic drivers” in the processes of tumorigenesis and progression. In this review, we will highlight the key driver oncogenic gene mutations and fusions identified in lung cancer. The review will summarize and report the available demographic and clinicopathological data as well as molecular details behind various lung cancer gene alterations in the context of race. We hope to shed some light into the disparities in the incidence of various genetic mutations among lung cancer patients of different racial backgrounds. As molecularly targeted therapy continues to advance in lung cancer, racial differences in specific genetic/genomic alterations can have an important impact in the choices of therapeutics and in our understanding of the drug sensitivity/resistance profile. The most relevant genes in lung cancer described in this review include the following: EGFR, KRAS, MET, LKB1, BRAF, PIK3CA, ALK, RET, and ROS1. Commonly identified genetic/genomic alterations such as missense or nonsense mutations, small insertions or deletions, alternative splicing, and chromosomal fusion rearrangements were discussed. Relevance in current targeted therapeutic drugs was mentioned when appropriate. We also highlighted various targeted therapeutics that are currently under clinical development, such as the MET inhibitors and antibodies. With the advent of next-generation sequencing, the landscape of genomic alterations in lung cancer is expected to be much transformed and detailed in upcoming years. These genomic landscape differences in the context of racial disparities should be emphasized both in tumorigenesis and in drug sensitivity/resistance. It is hoped that such effort will help to diminish racial disparities in lung cancer outcome in the future. PMID:23264847
Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam
2017-04-01
The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Molecular techniques and genetic alterations in head and neck cancer
Ha, Patrick K; Chang, Steven S; Glazer, Chad A; Califano, Joseph A; Sidransky, David
2009-01-01
It is well known that cellular DNA alterations can lead to the formation of cancer, and there has been much discovery in the pathways involved in the development of head and neck squamous cell carcinoma (HNSCC). With novel genome-wide molecular assays, our ability to detect these abnormalities has increased. We now have a better understanding of the molecular complexity of HNSCC, but there is still much research to be done. In this review, we discuss the well described genetic alterations and touch on the newer findings, as well as some of the future directions of head and neck cancer research. PMID:18674960
The generation of meaningful information in molecular systems.
Wills, Peter R
2016-03-13
The physico-chemical processes occurring inside cells are under the computational control of genetic (DNA) and epigenetic (internal structural) programming. The origin and evolution of genetic information (nucleic acid sequences) is reasonably well understood, but scant attention has been paid to the origin and evolution of the molecular biological interpreters that give phenotypic meaning to the sequence information that is quite faithfully replicated during cellular reproduction. The near universality and age of the mapping from nucleotide triplets to amino acids embedded in the functionality of the protein synthetic machinery speaks to the early development of a system of coding which is still extant in every living organism. We take the origin of genetic coding as a paradigm of the emergence of computation in natural systems, focusing on the requirement that the molecular components of an interpreter be synthesized autocatalytically. Within this context, it is seen that interpreters of increasing complexity are generated by series of transitions through stepped dynamic instabilities (non-equilibrium phase transitions). The early phylogeny of the amino acyl-tRNA synthetase enzymes is discussed in such terms, leading to the conclusion that the observed optimality of the genetic code is a natural outcome of the processes of self-organization that produced it. © 2016 The Author(s).
Villanueva, Pía; Nudel, Ron; Hoischen, Alexander; Fernández, María Angélica; Simpson, Nuala H.; Gilissen, Christian; Reader, Rose H.; Jara, Lillian; Echeverry, Maria Magdalena; Francks, Clyde; Baird, Gillian; Conti-Ramsden, Gina; O’Hare, Anne; Bolton, Patrick F.; Hennessy, Elizabeth R.; Palomino, Hernán; Carvajal-Carmona, Luis; Veltman, Joris A.; Cazier, Jean-Baptiste; De Barbieri, Zulema
2015-01-01
Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10–4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model. PMID:25781923
Identity, prudential concern, and extended lives.
Glannon, Walter
2002-06-01
Recent advances in human genetics suggest that it may become possible to genetically manipulate telomerase and embryonic stem cells to alter the mechanisms of aging and extend the human life span. But a life span significantly longer than the present norm would be undesirable because it would severely weaken the connections between past- and future-oriented mental states and turn the psychological grounds for personal identity and prudential concern for our future selves. In addition, the collective effects of longer lives might lower the quality of life for all people. These two problems provide reasons against genetic manipulation of cells to alter the length of the human life span.
The functional consequences of non-genetic diversity in cellular navigation
NASA Astrophysics Data System (ADS)
Emonet, Thierry; Waite, Adam J.; Frankel, Nicholas W.; Dufour, Yann; Johnston, Jessica F.
Substantial non-genetic diversity in complex behaviors, such as chemotaxis in E. coli, has been observed for decades, but the relevance of this diversity for the population is not well understood. Here, we use microfluidics to show that non-genetic diversity leads to significant structuring of the population in space and time, which confirms predictions made by our detailed mathematical model of chemotaxis. We then use genetic tools to show that altering the expression level of a single chemotaxis protein is sufficient to alter the distribution of swimming behaviors, which directly determines the performance of a population in a gradient of attractant, a result also predicted by our model. Supported by NIH 1R01GM106189, the James S McDonnell Foundation, and the Paul Allen foundation.
Decoding the complex genetic causes of heart diseases using systems biology.
Djordjevic, Djordje; Deshpande, Vinita; Szczesnik, Tomasz; Yang, Andrian; Humphreys, David T; Giannoulatou, Eleni; Ho, Joshua W K
2015-03-01
The pace of disease gene discovery is still much slower than expected, even with the use of cost-effective DNA sequencing and genotyping technologies. It is increasingly clear that many inherited heart diseases have a more complex polygenic aetiology than previously thought. Understanding the role of gene-gene interactions, epigenetics, and non-coding regulatory regions is becoming increasingly critical in predicting the functional consequences of genetic mutations identified by genome-wide association studies and whole-genome or exome sequencing. A systems biology approach is now being widely employed to systematically discover genes that are involved in heart diseases in humans or relevant animal models through bioinformatics. The overarching premise is that the integration of high-quality causal gene regulatory networks (GRNs), genomics, epigenomics, transcriptomics and other genome-wide data will greatly accelerate the discovery of the complex genetic causes of congenital and complex heart diseases. This review summarises state-of-the-art genomic and bioinformatics techniques that are used in accelerating the pace of disease gene discovery in heart diseases. Accompanying this review, we provide an interactive web-resource for systems biology analysis of mammalian heart development and diseases, CardiacCode ( http://CardiacCode.victorchang.edu.au/ ). CardiacCode features a dataset of over 700 pieces of manually curated genetic or molecular perturbation data, which enables the inference of a cardiac-specific GRN of 280 regulatory relationships between 33 regulator genes and 129 target genes. We believe this growing resource will fill an urgent unmet need to fully realise the true potential of predictive and personalised genomic medicine in tackling human heart disease.
Harnessing epigenome modifications for better crops
USDA-ARS?s Scientific Manuscript database
Chemical DNA modifications such as methylation influence translation of the DNA code to specific genetic outcomes. While such modifications can be heritable, others are transient, and their overall contribution to plant genetic diversity remains intriguing but uncertain. The focus of this article is...
Informational structure of genetic sequences and nature of gene splicing
NASA Astrophysics Data System (ADS)
Trifonov, E. N.
1991-10-01
Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.
In Silico Analysis of Single Nucleotide Polymorphism (SNPs) in Human β-Globin Gene
Alanazi, Mohammed; Abduljaleel, Zainularifeen; Khan, Wajahatullah; Warsy, Arjumand S.; Elrobh, Mohamed; Khan, Zahid; Amri, Abdullah Al; Bazzi, Mohammad D.
2011-01-01
Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies- the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues were determined and secondary structures were observed for solvent accessibility to confirm the protein stability. The functional study in this investigation may be a good model for additional future studies. PMID:22028795
Valkonen, Mira; Ruusuvuori, Pekka; Kartasalo, Kimmo; Nykter, Matti; Visakorpi, Tapio; Latonen, Leena
2017-01-01
Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes. Here, we set out to develop computational methods for early detection and distinction of prostate cancer-related pathological alterations. We use analysis of features from HE stained histological images of normal mouse prostate epithelium, distinguishing the descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model separating the early pathological lesions provoked by these genetic alterations. This work offers a set of computational methods for separation of early neoplastic lesions in the prostates of model mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological characteristics. The results obtained show that separation between different spatial locations within the organ, as well as classification between histologies linked to different genetic backgrounds, can be performed with very high specificity and sensitivity. PMID:28317907
Untapped genetic variability in Herefords: implications for climate change
USDA-ARS?s Scientific Manuscript database
Global climate change (CC) has the potential to significantly alter US cattle productivity. As a result, the creation of genetic resources for a specific environment may be necessary, given that genetic-environmental interactions are present and may become more important. Molecular evaluation of a s...
Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription.
Angelard, Caroline; Colard, Alexandre; Niculita-Hirzel, Hélène; Croll, Daniel; Sanders, Ian R
2010-07-13
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops. Copyright 2010 Elsevier Ltd. All rights reserved.
Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara
2016-01-01
Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine–pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism. PMID:26791911
Beyond terrestrial biology: charting the chemical universe of α-amino acid structures.
Meringer, Markus; Cleaves, H James; Freeland, Stephen J
2013-11-25
α-Amino acids are fundamental to biochemistry as the monomeric building blocks with which cells construct proteins according to genetic instructions. However, the 20 amino acids of the standard genetic code represent a tiny fraction of the number of α-amino acid chemical structures that could plausibly play such a role, both from the perspective of natural processes by which life emerged and evolved, and from the perspective of human-engineered genetically coded proteins. Until now, efforts to describe the structures comprising this broader set, or even estimate their number, have been hampered by the complex combinatorial properties of organic molecules. Here, we use computer software based on graph theory and constructive combinatorics in order to conduct an efficient and exhaustive search of the chemical structures implied by two careful and precise definitions of the α-amino acids relevant to coded biological proteins. Our results include two virtual libraries of α-amino acid structures corresponding to these different approaches, comprising 121 044 and 3 846 structures, respectively, and suggest a simple approach to exploring much larger, as yet uncomputed, libraries of interest.
Reuther, Peter; Göpfert, Kristina; Dudek, Alexandra H.; Heiner, Monika; Herold, Susanne; Schwemmle, Martin
2015-01-01
Influenza A viruses (IAV) pose a constant threat to the human population and therefore a better understanding of their fundamental biology and identification of novel therapeutics is of upmost importance. Various reporter-encoding IAV were generated to achieve these goals, however, one recurring difficulty was the genetic instability especially of larger reporter genes. We employed the viral NS segment coding for the non-structural protein 1 (NS1) and nuclear export protein (NEP) for stable expression of diverse reporter proteins. This was achieved by converting the NS segment into a single open reading frame (ORF) coding for NS1, the respective reporter and NEP. To allow expression of individual proteins, the reporter genes were flanked by two porcine Teschovirus-1 2A peptide (PTV-1 2A)-coding sequences. The resulting viruses encoding luciferases, fluorescent proteins or a Cre recombinase are characterized by a high genetic stability in vitro and in mice and can be readily employed for antiviral compound screenings, visualization of infected cells or cells that survived acute infection. PMID:26068081
Zhang, Fan; Zhang, Liang; Zhang, Caiguo
2016-01-01
The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.
Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara
2016-01-21
Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.
NASA Astrophysics Data System (ADS)
Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara
2016-01-01
Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.
Moinfar, Farid; Beham, Alfred; Friedrich, Gerhard; Deutsch, Alexander; Hrzenjak, Andelko; Luschin, Gero; Tavassoli, Fattaneh A
2008-05-01
Genetic abnormalities in microenvironmental tissues with subsequent alterations of reciprocal interactions between epithelial and mesenchymal cells play a key role in the breast carcinogenesis. Although a few reports have demonstrated abnormal fibroblastic functions in normal-appearing fibroblasts taken from the skins of breast cancer patients, the genetic basis of this phenomenon and its implication for carcinogenesis are unexplored. We analyzed 12 mastectomy specimens showing invasive ductal carcinomas. In each case, morphologically normal epidermis and dermis, carcinoma, normal stroma close to carcinoma, and stroma at a distant from carcinoma were microdissected. Metastatic-free lymphatic tissues from lymph nodes served as a control. Using PCR, DNA extracts were examined with 11 microsatellite markers known for a high frequency of allelic imbalances in breast cancer. Losses of heterozygosity and/or microsatellite instability were detected in 83% of the skin samples occurring either concurrently with or independently from the cancerous tissues. In 80% of these cases at least one microsatellite marker displayed loss of heterozygosity or microsatellite instability in the skin, which was absent in carcinoma. A total of 41% of samples showed alterations of certain loci observed exclusively in the carcinoma but not in the skin compartments. Our study suggests that breast cancer is not just a localized genetic disorder, but rather part of a larger field of genetic alterations/instabilities affecting multiple cell populations in the organ with various cellular elements, ultimately contributing to the manifestation of the more 'localized' carcinoma. These data indicate that more global assessment of tumor micro- and macro-environment is crucial for our understanding of breast carcinogenesis.
Genetic Alterations of RDINK4/ARF Enhancer in Human Cancer Cells
Li, Junan; Knobloch, Thomas J.; Poi, Ming J.; Zhang, Zhaoxia; Davis, Andrew T.; Muscarella, Peter; Weghorst, Christopher M.
2017-01-01
Recent identification of an enhancer element, RDINK4/ARF (RD), in the prominent INK4/ARF locus provides a novel mechanism to simultaneously regulate the transcription of p15INK4B (p15), p14ARF, and p16INK4A (p16) tumor suppressor genes. While genetic inactivation of p15, p14ARF, and p16 in human tumors has been extensively studied, little is known about genetic alterations of RD and its impact on p15, p14ARF, and p16 in human cancer. The purpose of this study was to investigate the potential existence of genetic alterations of RD in human cancer cells. DNAs extracted from 17 different cancer cell lines and 31 primary pheochromocytoma tumors were analyzed for deletion and mutation of RD using qPCR and direct DNA sequencing. We found that RD was deleted in human cancer cell lines and pheochromocytoma tumors at frequencies of 41.2% (7/17) and 13.0% (4/31), respectively. While some of these RD deletion events occurred along with deletions of the entire INK4/ARF locus, other RD deletion events were independent of genetic alterations in p15, p14ARF, and p16. Furthermore, the status of RD was poorly associated with the expression of p15, p14ARF, and p16 in tested cancer cell lines and tumors. This study demonstrates for the first time that deletion of the RD enhancer is a prevalent event in human cancer cells. Its implication in carcinogenesis remains to be further explored. PMID:23065809
Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review.
MacKenzie, Meghan; Hall, Richard
2017-01-01
Knowledge of how alterations in pharmacogenomics and pharmacogenetics may affect drug therapy in the intensive care unit (ICU) has received little study. We review the clinically relevant application of pharmacogenetics and pharmacogenomics to drugs and conditions encountered in the ICU. We selected relevant literature to illustrate the important concepts contained within. Two main approaches have been used to identify genetic abnormalities - the candidate gene approach and the genome-wide approach. Genetic variability in response to drugs may occur as a result of alterations of drug-metabolizing (cytochrome P [CYP]) enzymes, receptors, and transport proteins leading to enhancement or delay in the therapeutic response. Of relevance to the ICU, genetic variation in CYP-450 isoenzymes results in altered effects of midazolam, fentanyl, morphine, codeine, phenytoin, clopidogrel, warfarin, carvedilol, metoprolol, HMG-CoA reductase inhibitors, calcineurin inhibitors, non-steroidal anti-inflammatory agents, proton pump inhibitors, and ondansetron. Changes in cholinesterase enzyme function may affect the disposition of succinylcholine, benzylisoquinoline muscle relaxants, remifentanil, and hydralazine. Genetic variation in transport proteins leads to differences in the response to opioids and clopidogrel. Polymorphisms in drug receptors result in altered effects of β-blockers, catecholamines, antipsychotic agents, and opioids. Genetic variation also contributes to the diversity and incidence of diseases and conditions such as sepsis, malignant hyperthermia, drug-induced hypersensitivity reactions, cardiac channelopathies, thromboembolic disease, and congestive heart failure. Application of pharmacogenetics and pharmacogenomics has seen improvements in drug therapy. Ongoing study and incorporation of these concepts into clinical decision making in the ICU has the potential to affect patient outcomes.
Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia.
Chen, Shih-Shih; Chiorazzi, Nicholas
2014-07-01
Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaolong Jiang; Mingli Zhang
2015-01-01
Fritillaria pallidiflora is an endangered officinal herb distributed in the Tianshan Mountains of northwestern China. We examined its phylogeography to study evolutionary processes and suggest implications for conservation. Six haplotypes were detected based on three chloroplast non-coding spacers (psbA-trnH, rps16, and trnS-trnG); genetic variation mainly occurred...
ERIC Educational Resources Information Center
Plomin, Robert; Davis, Oliver S. P.
2009-01-01
Background: Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? Methods: Although quantitative genetics such as twin studies will continue…
Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji
2007-06-01
Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.
Shannon Entropy of the Canonical Genetic Code
NASA Astrophysics Data System (ADS)
Nemzer, Louis
The probability that a non-synonymous point mutation in DNA will adversely affect the functionality of the resultant protein is greatly reduced if the substitution is conservative. In that case, the amino acid coded by the mutated codon has similar physico-chemical properties to the original. Many simplified alphabets, which group the 20 common amino acids into families, have been proposed. To evaluate these schema objectively, we introduce a novel, quantitative method based on the inherent redundancy in the canonical genetic code. By calculating the Shannon information entropy carried by 1- or 2-bit messages, groupings that best leverage the robustness of the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. In addition, this approach allows us to quantify the average information value of nucleotide codon positions, and explore the physiological basis for distinguishing between transition and transversion mutations. Supported by NSU PFRDG Grant #335347.
Genetics Home Reference: osteopetrosis
... is one of the two sex chromosomes . In males (who have only one X chromosome ), one altered ... will have two altered copies of this gene, males are affected by X-linked recessive disorders much ...
Rabow, A. A.; Scheraga, H. A.
1996-01-01
We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904
Conserving and managing the trees of the future: genetic resources for Pacific Northwest forests.
Sally Duncan
2003-01-01
Genetic resource management has historically called for altering the genetic structure of plant populations through selection for traits of interest such as rapid growth. Although this is still a principal component of tree breeding programs in the Pacific Northwest, managing genetic resources now also brings a clear focus on retaining a broad diversity within and...
Molecular genetic heterogeneity in undifferentiated endometrial carcinomas.
Rosa-Rosa, Juan M; Leskelä, Susanna; Cristóbal-Lana, Eva; Santón, Almudena; López-García, Ma Ángeles; Muñoz, Gloria; Pérez-Mies, Belen; Biscuola, Michele; Prat, Jaime; Esther, Oliva E; Soslow, Robert A; Matias-Guiu, Xavier; Palacios, Jose
2016-11-01
Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumors, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well-differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole-exome sequencing of the endometrioid and undifferentiated components, as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: (a) hypermutated tumors with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); (b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); (c) high copy number alterations (copy-number high) tumors group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%); and (d) low copy number alterations (copy-number low) tumors with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group, whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumors. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumors, which may have prognostic value.
Molecular genetic heterogeneity in undifferentiated endometrial carcinomas
Rosa-Rosa, J.M.; Leskelä, S.; Cristóbal-Lana, E.; Santón, A.; López-García, M.A.; Muñoz, G.; Pérez-Mies, B.; Biscuola, M; Prat, J.; Oliva, E.; Soslow, R.A.; Matias-Guiu, X.; Palacios, J.
2017-01-01
Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumours, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole exome sequencing of the endometrioid and undifferentiated components as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: a) hypermutated tumours with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); c) high copy number alterations (copy-number high) tumours group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%) ; and d) low copy number alterations (copy-number low) tumours with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumours. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumours, which may have prognostic value. PMID:27491810